ste_dma40.c 94 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671
  1. /*
  2. * Copyright (C) Ericsson AB 2007-2008
  3. * Copyright (C) ST-Ericsson SA 2008-2010
  4. * Author: Per Forlin <per.forlin@stericsson.com> for ST-Ericsson
  5. * Author: Jonas Aaberg <jonas.aberg@stericsson.com> for ST-Ericsson
  6. * License terms: GNU General Public License (GPL) version 2
  7. */
  8. #include <linux/dma-mapping.h>
  9. #include <linux/kernel.h>
  10. #include <linux/slab.h>
  11. #include <linux/export.h>
  12. #include <linux/dmaengine.h>
  13. #include <linux/platform_device.h>
  14. #include <linux/clk.h>
  15. #include <linux/delay.h>
  16. #include <linux/pm.h>
  17. #include <linux/pm_runtime.h>
  18. #include <linux/err.h>
  19. #include <linux/amba/bus.h>
  20. #include <linux/regulator/consumer.h>
  21. #include <linux/platform_data/dma-ste-dma40.h>
  22. #include "dmaengine.h"
  23. #include "ste_dma40_ll.h"
  24. #define D40_NAME "dma40"
  25. #define D40_PHY_CHAN -1
  26. /* For masking out/in 2 bit channel positions */
  27. #define D40_CHAN_POS(chan) (2 * (chan / 2))
  28. #define D40_CHAN_POS_MASK(chan) (0x3 << D40_CHAN_POS(chan))
  29. /* Maximum iterations taken before giving up suspending a channel */
  30. #define D40_SUSPEND_MAX_IT 500
  31. /* Milliseconds */
  32. #define DMA40_AUTOSUSPEND_DELAY 100
  33. /* Hardware requirement on LCLA alignment */
  34. #define LCLA_ALIGNMENT 0x40000
  35. /* Max number of links per event group */
  36. #define D40_LCLA_LINK_PER_EVENT_GRP 128
  37. #define D40_LCLA_END D40_LCLA_LINK_PER_EVENT_GRP
  38. /* Max number of logical channels per physical channel */
  39. #define D40_MAX_LOG_CHAN_PER_PHY 32
  40. /* Attempts before giving up to trying to get pages that are aligned */
  41. #define MAX_LCLA_ALLOC_ATTEMPTS 256
  42. /* Bit markings for allocation map */
  43. #define D40_ALLOC_FREE (1 << 31)
  44. #define D40_ALLOC_PHY (1 << 30)
  45. #define D40_ALLOC_LOG_FREE 0
  46. /* Reserved event lines for memcpy only. */
  47. #define DB8500_DMA_MEMCPY_EV_0 51
  48. #define DB8500_DMA_MEMCPY_EV_1 56
  49. #define DB8500_DMA_MEMCPY_EV_2 57
  50. #define DB8500_DMA_MEMCPY_EV_3 58
  51. #define DB8500_DMA_MEMCPY_EV_4 59
  52. #define DB8500_DMA_MEMCPY_EV_5 60
  53. static int dma40_memcpy_channels[] = {
  54. DB8500_DMA_MEMCPY_EV_0,
  55. DB8500_DMA_MEMCPY_EV_1,
  56. DB8500_DMA_MEMCPY_EV_2,
  57. DB8500_DMA_MEMCPY_EV_3,
  58. DB8500_DMA_MEMCPY_EV_4,
  59. DB8500_DMA_MEMCPY_EV_5,
  60. };
  61. /* Default configuration for physcial memcpy */
  62. struct stedma40_chan_cfg dma40_memcpy_conf_phy = {
  63. .mode = STEDMA40_MODE_PHYSICAL,
  64. .dir = STEDMA40_MEM_TO_MEM,
  65. .src_info.data_width = STEDMA40_BYTE_WIDTH,
  66. .src_info.psize = STEDMA40_PSIZE_PHY_1,
  67. .src_info.flow_ctrl = STEDMA40_NO_FLOW_CTRL,
  68. .dst_info.data_width = STEDMA40_BYTE_WIDTH,
  69. .dst_info.psize = STEDMA40_PSIZE_PHY_1,
  70. .dst_info.flow_ctrl = STEDMA40_NO_FLOW_CTRL,
  71. };
  72. /* Default configuration for logical memcpy */
  73. struct stedma40_chan_cfg dma40_memcpy_conf_log = {
  74. .mode = STEDMA40_MODE_LOGICAL,
  75. .dir = STEDMA40_MEM_TO_MEM,
  76. .src_info.data_width = STEDMA40_BYTE_WIDTH,
  77. .src_info.psize = STEDMA40_PSIZE_LOG_1,
  78. .src_info.flow_ctrl = STEDMA40_NO_FLOW_CTRL,
  79. .dst_info.data_width = STEDMA40_BYTE_WIDTH,
  80. .dst_info.psize = STEDMA40_PSIZE_LOG_1,
  81. .dst_info.flow_ctrl = STEDMA40_NO_FLOW_CTRL,
  82. };
  83. /**
  84. * enum 40_command - The different commands and/or statuses.
  85. *
  86. * @D40_DMA_STOP: DMA channel command STOP or status STOPPED,
  87. * @D40_DMA_RUN: The DMA channel is RUNNING of the command RUN.
  88. * @D40_DMA_SUSPEND_REQ: Request the DMA to SUSPEND as soon as possible.
  89. * @D40_DMA_SUSPENDED: The DMA channel is SUSPENDED.
  90. */
  91. enum d40_command {
  92. D40_DMA_STOP = 0,
  93. D40_DMA_RUN = 1,
  94. D40_DMA_SUSPEND_REQ = 2,
  95. D40_DMA_SUSPENDED = 3
  96. };
  97. /*
  98. * enum d40_events - The different Event Enables for the event lines.
  99. *
  100. * @D40_DEACTIVATE_EVENTLINE: De-activate Event line, stopping the logical chan.
  101. * @D40_ACTIVATE_EVENTLINE: Activate the Event line, to start a logical chan.
  102. * @D40_SUSPEND_REQ_EVENTLINE: Requesting for suspending a event line.
  103. * @D40_ROUND_EVENTLINE: Status check for event line.
  104. */
  105. enum d40_events {
  106. D40_DEACTIVATE_EVENTLINE = 0,
  107. D40_ACTIVATE_EVENTLINE = 1,
  108. D40_SUSPEND_REQ_EVENTLINE = 2,
  109. D40_ROUND_EVENTLINE = 3
  110. };
  111. /*
  112. * These are the registers that has to be saved and later restored
  113. * when the DMA hw is powered off.
  114. * TODO: Add save/restore of D40_DREG_GCC on dma40 v3 or later, if that works.
  115. */
  116. static u32 d40_backup_regs[] = {
  117. D40_DREG_LCPA,
  118. D40_DREG_LCLA,
  119. D40_DREG_PRMSE,
  120. D40_DREG_PRMSO,
  121. D40_DREG_PRMOE,
  122. D40_DREG_PRMOO,
  123. };
  124. #define BACKUP_REGS_SZ ARRAY_SIZE(d40_backup_regs)
  125. /*
  126. * since 9540 and 8540 has the same HW revision
  127. * use v4a for 9540 or ealier
  128. * use v4b for 8540 or later
  129. * HW revision:
  130. * DB8500ed has revision 0
  131. * DB8500v1 has revision 2
  132. * DB8500v2 has revision 3
  133. * AP9540v1 has revision 4
  134. * DB8540v1 has revision 4
  135. * TODO: Check if all these registers have to be saved/restored on dma40 v4a
  136. */
  137. static u32 d40_backup_regs_v4a[] = {
  138. D40_DREG_PSEG1,
  139. D40_DREG_PSEG2,
  140. D40_DREG_PSEG3,
  141. D40_DREG_PSEG4,
  142. D40_DREG_PCEG1,
  143. D40_DREG_PCEG2,
  144. D40_DREG_PCEG3,
  145. D40_DREG_PCEG4,
  146. D40_DREG_RSEG1,
  147. D40_DREG_RSEG2,
  148. D40_DREG_RSEG3,
  149. D40_DREG_RSEG4,
  150. D40_DREG_RCEG1,
  151. D40_DREG_RCEG2,
  152. D40_DREG_RCEG3,
  153. D40_DREG_RCEG4,
  154. };
  155. #define BACKUP_REGS_SZ_V4A ARRAY_SIZE(d40_backup_regs_v4a)
  156. static u32 d40_backup_regs_v4b[] = {
  157. D40_DREG_CPSEG1,
  158. D40_DREG_CPSEG2,
  159. D40_DREG_CPSEG3,
  160. D40_DREG_CPSEG4,
  161. D40_DREG_CPSEG5,
  162. D40_DREG_CPCEG1,
  163. D40_DREG_CPCEG2,
  164. D40_DREG_CPCEG3,
  165. D40_DREG_CPCEG4,
  166. D40_DREG_CPCEG5,
  167. D40_DREG_CRSEG1,
  168. D40_DREG_CRSEG2,
  169. D40_DREG_CRSEG3,
  170. D40_DREG_CRSEG4,
  171. D40_DREG_CRSEG5,
  172. D40_DREG_CRCEG1,
  173. D40_DREG_CRCEG2,
  174. D40_DREG_CRCEG3,
  175. D40_DREG_CRCEG4,
  176. D40_DREG_CRCEG5,
  177. };
  178. #define BACKUP_REGS_SZ_V4B ARRAY_SIZE(d40_backup_regs_v4b)
  179. static u32 d40_backup_regs_chan[] = {
  180. D40_CHAN_REG_SSCFG,
  181. D40_CHAN_REG_SSELT,
  182. D40_CHAN_REG_SSPTR,
  183. D40_CHAN_REG_SSLNK,
  184. D40_CHAN_REG_SDCFG,
  185. D40_CHAN_REG_SDELT,
  186. D40_CHAN_REG_SDPTR,
  187. D40_CHAN_REG_SDLNK,
  188. };
  189. #define BACKUP_REGS_SZ_MAX ((BACKUP_REGS_SZ_V4A > BACKUP_REGS_SZ_V4B) ? \
  190. BACKUP_REGS_SZ_V4A : BACKUP_REGS_SZ_V4B)
  191. /**
  192. * struct d40_interrupt_lookup - lookup table for interrupt handler
  193. *
  194. * @src: Interrupt mask register.
  195. * @clr: Interrupt clear register.
  196. * @is_error: true if this is an error interrupt.
  197. * @offset: start delta in the lookup_log_chans in d40_base. If equals to
  198. * D40_PHY_CHAN, the lookup_phy_chans shall be used instead.
  199. */
  200. struct d40_interrupt_lookup {
  201. u32 src;
  202. u32 clr;
  203. bool is_error;
  204. int offset;
  205. };
  206. static struct d40_interrupt_lookup il_v4a[] = {
  207. {D40_DREG_LCTIS0, D40_DREG_LCICR0, false, 0},
  208. {D40_DREG_LCTIS1, D40_DREG_LCICR1, false, 32},
  209. {D40_DREG_LCTIS2, D40_DREG_LCICR2, false, 64},
  210. {D40_DREG_LCTIS3, D40_DREG_LCICR3, false, 96},
  211. {D40_DREG_LCEIS0, D40_DREG_LCICR0, true, 0},
  212. {D40_DREG_LCEIS1, D40_DREG_LCICR1, true, 32},
  213. {D40_DREG_LCEIS2, D40_DREG_LCICR2, true, 64},
  214. {D40_DREG_LCEIS3, D40_DREG_LCICR3, true, 96},
  215. {D40_DREG_PCTIS, D40_DREG_PCICR, false, D40_PHY_CHAN},
  216. {D40_DREG_PCEIS, D40_DREG_PCICR, true, D40_PHY_CHAN},
  217. };
  218. static struct d40_interrupt_lookup il_v4b[] = {
  219. {D40_DREG_CLCTIS1, D40_DREG_CLCICR1, false, 0},
  220. {D40_DREG_CLCTIS2, D40_DREG_CLCICR2, false, 32},
  221. {D40_DREG_CLCTIS3, D40_DREG_CLCICR3, false, 64},
  222. {D40_DREG_CLCTIS4, D40_DREG_CLCICR4, false, 96},
  223. {D40_DREG_CLCTIS5, D40_DREG_CLCICR5, false, 128},
  224. {D40_DREG_CLCEIS1, D40_DREG_CLCICR1, true, 0},
  225. {D40_DREG_CLCEIS2, D40_DREG_CLCICR2, true, 32},
  226. {D40_DREG_CLCEIS3, D40_DREG_CLCICR3, true, 64},
  227. {D40_DREG_CLCEIS4, D40_DREG_CLCICR4, true, 96},
  228. {D40_DREG_CLCEIS5, D40_DREG_CLCICR5, true, 128},
  229. {D40_DREG_CPCTIS, D40_DREG_CPCICR, false, D40_PHY_CHAN},
  230. {D40_DREG_CPCEIS, D40_DREG_CPCICR, true, D40_PHY_CHAN},
  231. };
  232. /**
  233. * struct d40_reg_val - simple lookup struct
  234. *
  235. * @reg: The register.
  236. * @val: The value that belongs to the register in reg.
  237. */
  238. struct d40_reg_val {
  239. unsigned int reg;
  240. unsigned int val;
  241. };
  242. static __initdata struct d40_reg_val dma_init_reg_v4a[] = {
  243. /* Clock every part of the DMA block from start */
  244. { .reg = D40_DREG_GCC, .val = D40_DREG_GCC_ENABLE_ALL},
  245. /* Interrupts on all logical channels */
  246. { .reg = D40_DREG_LCMIS0, .val = 0xFFFFFFFF},
  247. { .reg = D40_DREG_LCMIS1, .val = 0xFFFFFFFF},
  248. { .reg = D40_DREG_LCMIS2, .val = 0xFFFFFFFF},
  249. { .reg = D40_DREG_LCMIS3, .val = 0xFFFFFFFF},
  250. { .reg = D40_DREG_LCICR0, .val = 0xFFFFFFFF},
  251. { .reg = D40_DREG_LCICR1, .val = 0xFFFFFFFF},
  252. { .reg = D40_DREG_LCICR2, .val = 0xFFFFFFFF},
  253. { .reg = D40_DREG_LCICR3, .val = 0xFFFFFFFF},
  254. { .reg = D40_DREG_LCTIS0, .val = 0xFFFFFFFF},
  255. { .reg = D40_DREG_LCTIS1, .val = 0xFFFFFFFF},
  256. { .reg = D40_DREG_LCTIS2, .val = 0xFFFFFFFF},
  257. { .reg = D40_DREG_LCTIS3, .val = 0xFFFFFFFF}
  258. };
  259. static __initdata struct d40_reg_val dma_init_reg_v4b[] = {
  260. /* Clock every part of the DMA block from start */
  261. { .reg = D40_DREG_GCC, .val = D40_DREG_GCC_ENABLE_ALL},
  262. /* Interrupts on all logical channels */
  263. { .reg = D40_DREG_CLCMIS1, .val = 0xFFFFFFFF},
  264. { .reg = D40_DREG_CLCMIS2, .val = 0xFFFFFFFF},
  265. { .reg = D40_DREG_CLCMIS3, .val = 0xFFFFFFFF},
  266. { .reg = D40_DREG_CLCMIS4, .val = 0xFFFFFFFF},
  267. { .reg = D40_DREG_CLCMIS5, .val = 0xFFFFFFFF},
  268. { .reg = D40_DREG_CLCICR1, .val = 0xFFFFFFFF},
  269. { .reg = D40_DREG_CLCICR2, .val = 0xFFFFFFFF},
  270. { .reg = D40_DREG_CLCICR3, .val = 0xFFFFFFFF},
  271. { .reg = D40_DREG_CLCICR4, .val = 0xFFFFFFFF},
  272. { .reg = D40_DREG_CLCICR5, .val = 0xFFFFFFFF},
  273. { .reg = D40_DREG_CLCTIS1, .val = 0xFFFFFFFF},
  274. { .reg = D40_DREG_CLCTIS2, .val = 0xFFFFFFFF},
  275. { .reg = D40_DREG_CLCTIS3, .val = 0xFFFFFFFF},
  276. { .reg = D40_DREG_CLCTIS4, .val = 0xFFFFFFFF},
  277. { .reg = D40_DREG_CLCTIS5, .val = 0xFFFFFFFF}
  278. };
  279. /**
  280. * struct d40_lli_pool - Structure for keeping LLIs in memory
  281. *
  282. * @base: Pointer to memory area when the pre_alloc_lli's are not large
  283. * enough, IE bigger than the most common case, 1 dst and 1 src. NULL if
  284. * pre_alloc_lli is used.
  285. * @dma_addr: DMA address, if mapped
  286. * @size: The size in bytes of the memory at base or the size of pre_alloc_lli.
  287. * @pre_alloc_lli: Pre allocated area for the most common case of transfers,
  288. * one buffer to one buffer.
  289. */
  290. struct d40_lli_pool {
  291. void *base;
  292. int size;
  293. dma_addr_t dma_addr;
  294. /* Space for dst and src, plus an extra for padding */
  295. u8 pre_alloc_lli[3 * sizeof(struct d40_phy_lli)];
  296. };
  297. /**
  298. * struct d40_desc - A descriptor is one DMA job.
  299. *
  300. * @lli_phy: LLI settings for physical channel. Both src and dst=
  301. * points into the lli_pool, to base if lli_len > 1 or to pre_alloc_lli if
  302. * lli_len equals one.
  303. * @lli_log: Same as above but for logical channels.
  304. * @lli_pool: The pool with two entries pre-allocated.
  305. * @lli_len: Number of llis of current descriptor.
  306. * @lli_current: Number of transferred llis.
  307. * @lcla_alloc: Number of LCLA entries allocated.
  308. * @txd: DMA engine struct. Used for among other things for communication
  309. * during a transfer.
  310. * @node: List entry.
  311. * @is_in_client_list: true if the client owns this descriptor.
  312. * @cyclic: true if this is a cyclic job
  313. *
  314. * This descriptor is used for both logical and physical transfers.
  315. */
  316. struct d40_desc {
  317. /* LLI physical */
  318. struct d40_phy_lli_bidir lli_phy;
  319. /* LLI logical */
  320. struct d40_log_lli_bidir lli_log;
  321. struct d40_lli_pool lli_pool;
  322. int lli_len;
  323. int lli_current;
  324. int lcla_alloc;
  325. struct dma_async_tx_descriptor txd;
  326. struct list_head node;
  327. bool is_in_client_list;
  328. bool cyclic;
  329. };
  330. /**
  331. * struct d40_lcla_pool - LCLA pool settings and data.
  332. *
  333. * @base: The virtual address of LCLA. 18 bit aligned.
  334. * @base_unaligned: The orignal kmalloc pointer, if kmalloc is used.
  335. * This pointer is only there for clean-up on error.
  336. * @pages: The number of pages needed for all physical channels.
  337. * Only used later for clean-up on error
  338. * @lock: Lock to protect the content in this struct.
  339. * @alloc_map: big map over which LCLA entry is own by which job.
  340. */
  341. struct d40_lcla_pool {
  342. void *base;
  343. dma_addr_t dma_addr;
  344. void *base_unaligned;
  345. int pages;
  346. spinlock_t lock;
  347. struct d40_desc **alloc_map;
  348. };
  349. /**
  350. * struct d40_phy_res - struct for handling eventlines mapped to physical
  351. * channels.
  352. *
  353. * @lock: A lock protection this entity.
  354. * @reserved: True if used by secure world or otherwise.
  355. * @num: The physical channel number of this entity.
  356. * @allocated_src: Bit mapped to show which src event line's are mapped to
  357. * this physical channel. Can also be free or physically allocated.
  358. * @allocated_dst: Same as for src but is dst.
  359. * allocated_dst and allocated_src uses the D40_ALLOC* defines as well as
  360. * event line number.
  361. * @use_soft_lli: To mark if the linked lists of channel are managed by SW.
  362. */
  363. struct d40_phy_res {
  364. spinlock_t lock;
  365. bool reserved;
  366. int num;
  367. u32 allocated_src;
  368. u32 allocated_dst;
  369. bool use_soft_lli;
  370. };
  371. struct d40_base;
  372. /**
  373. * struct d40_chan - Struct that describes a channel.
  374. *
  375. * @lock: A spinlock to protect this struct.
  376. * @log_num: The logical number, if any of this channel.
  377. * @pending_tx: The number of pending transfers. Used between interrupt handler
  378. * and tasklet.
  379. * @busy: Set to true when transfer is ongoing on this channel.
  380. * @phy_chan: Pointer to physical channel which this instance runs on. If this
  381. * point is NULL, then the channel is not allocated.
  382. * @chan: DMA engine handle.
  383. * @tasklet: Tasklet that gets scheduled from interrupt context to complete a
  384. * transfer and call client callback.
  385. * @client: Cliented owned descriptor list.
  386. * @pending_queue: Submitted jobs, to be issued by issue_pending()
  387. * @active: Active descriptor.
  388. * @done: Completed jobs
  389. * @queue: Queued jobs.
  390. * @prepare_queue: Prepared jobs.
  391. * @dma_cfg: The client configuration of this dma channel.
  392. * @configured: whether the dma_cfg configuration is valid
  393. * @base: Pointer to the device instance struct.
  394. * @src_def_cfg: Default cfg register setting for src.
  395. * @dst_def_cfg: Default cfg register setting for dst.
  396. * @log_def: Default logical channel settings.
  397. * @lcpa: Pointer to dst and src lcpa settings.
  398. * @runtime_addr: runtime configured address.
  399. * @runtime_direction: runtime configured direction.
  400. *
  401. * This struct can either "be" a logical or a physical channel.
  402. */
  403. struct d40_chan {
  404. spinlock_t lock;
  405. int log_num;
  406. int pending_tx;
  407. bool busy;
  408. struct d40_phy_res *phy_chan;
  409. struct dma_chan chan;
  410. struct tasklet_struct tasklet;
  411. struct list_head client;
  412. struct list_head pending_queue;
  413. struct list_head active;
  414. struct list_head done;
  415. struct list_head queue;
  416. struct list_head prepare_queue;
  417. struct stedma40_chan_cfg dma_cfg;
  418. bool configured;
  419. struct d40_base *base;
  420. /* Default register configurations */
  421. u32 src_def_cfg;
  422. u32 dst_def_cfg;
  423. struct d40_def_lcsp log_def;
  424. struct d40_log_lli_full *lcpa;
  425. /* Runtime reconfiguration */
  426. dma_addr_t runtime_addr;
  427. enum dma_transfer_direction runtime_direction;
  428. };
  429. /**
  430. * struct d40_gen_dmac - generic values to represent u8500/u8540 DMA
  431. * controller
  432. *
  433. * @backup: the pointer to the registers address array for backup
  434. * @backup_size: the size of the registers address array for backup
  435. * @realtime_en: the realtime enable register
  436. * @realtime_clear: the realtime clear register
  437. * @high_prio_en: the high priority enable register
  438. * @high_prio_clear: the high priority clear register
  439. * @interrupt_en: the interrupt enable register
  440. * @interrupt_clear: the interrupt clear register
  441. * @il: the pointer to struct d40_interrupt_lookup
  442. * @il_size: the size of d40_interrupt_lookup array
  443. * @init_reg: the pointer to the struct d40_reg_val
  444. * @init_reg_size: the size of d40_reg_val array
  445. */
  446. struct d40_gen_dmac {
  447. u32 *backup;
  448. u32 backup_size;
  449. u32 realtime_en;
  450. u32 realtime_clear;
  451. u32 high_prio_en;
  452. u32 high_prio_clear;
  453. u32 interrupt_en;
  454. u32 interrupt_clear;
  455. struct d40_interrupt_lookup *il;
  456. u32 il_size;
  457. struct d40_reg_val *init_reg;
  458. u32 init_reg_size;
  459. };
  460. /**
  461. * struct d40_base - The big global struct, one for each probe'd instance.
  462. *
  463. * @interrupt_lock: Lock used to make sure one interrupt is handle a time.
  464. * @execmd_lock: Lock for execute command usage since several channels share
  465. * the same physical register.
  466. * @dev: The device structure.
  467. * @virtbase: The virtual base address of the DMA's register.
  468. * @rev: silicon revision detected.
  469. * @clk: Pointer to the DMA clock structure.
  470. * @phy_start: Physical memory start of the DMA registers.
  471. * @phy_size: Size of the DMA register map.
  472. * @irq: The IRQ number.
  473. * @num_phy_chans: The number of physical channels. Read from HW. This
  474. * is the number of available channels for this driver, not counting "Secure
  475. * mode" allocated physical channels.
  476. * @num_log_chans: The number of logical channels. Calculated from
  477. * num_phy_chans.
  478. * @dma_both: dma_device channels that can do both memcpy and slave transfers.
  479. * @dma_slave: dma_device channels that can do only do slave transfers.
  480. * @dma_memcpy: dma_device channels that can do only do memcpy transfers.
  481. * @phy_chans: Room for all possible physical channels in system.
  482. * @log_chans: Room for all possible logical channels in system.
  483. * @lookup_log_chans: Used to map interrupt number to logical channel. Points
  484. * to log_chans entries.
  485. * @lookup_phy_chans: Used to map interrupt number to physical channel. Points
  486. * to phy_chans entries.
  487. * @plat_data: Pointer to provided platform_data which is the driver
  488. * configuration.
  489. * @lcpa_regulator: Pointer to hold the regulator for the esram bank for lcla.
  490. * @phy_res: Vector containing all physical channels.
  491. * @lcla_pool: lcla pool settings and data.
  492. * @lcpa_base: The virtual mapped address of LCPA.
  493. * @phy_lcpa: The physical address of the LCPA.
  494. * @lcpa_size: The size of the LCPA area.
  495. * @desc_slab: cache for descriptors.
  496. * @reg_val_backup: Here the values of some hardware registers are stored
  497. * before the DMA is powered off. They are restored when the power is back on.
  498. * @reg_val_backup_v4: Backup of registers that only exits on dma40 v3 and
  499. * later
  500. * @reg_val_backup_chan: Backup data for standard channel parameter registers.
  501. * @gcc_pwr_off_mask: Mask to maintain the channels that can be turned off.
  502. * @initialized: true if the dma has been initialized
  503. * @gen_dmac: the struct for generic registers values to represent u8500/8540
  504. * DMA controller
  505. */
  506. struct d40_base {
  507. spinlock_t interrupt_lock;
  508. spinlock_t execmd_lock;
  509. struct device *dev;
  510. void __iomem *virtbase;
  511. u8 rev:4;
  512. struct clk *clk;
  513. phys_addr_t phy_start;
  514. resource_size_t phy_size;
  515. int irq;
  516. int num_phy_chans;
  517. int num_log_chans;
  518. struct device_dma_parameters dma_parms;
  519. struct dma_device dma_both;
  520. struct dma_device dma_slave;
  521. struct dma_device dma_memcpy;
  522. struct d40_chan *phy_chans;
  523. struct d40_chan *log_chans;
  524. struct d40_chan **lookup_log_chans;
  525. struct d40_chan **lookup_phy_chans;
  526. struct stedma40_platform_data *plat_data;
  527. struct regulator *lcpa_regulator;
  528. /* Physical half channels */
  529. struct d40_phy_res *phy_res;
  530. struct d40_lcla_pool lcla_pool;
  531. void *lcpa_base;
  532. dma_addr_t phy_lcpa;
  533. resource_size_t lcpa_size;
  534. struct kmem_cache *desc_slab;
  535. u32 reg_val_backup[BACKUP_REGS_SZ];
  536. u32 reg_val_backup_v4[BACKUP_REGS_SZ_MAX];
  537. u32 *reg_val_backup_chan;
  538. u16 gcc_pwr_off_mask;
  539. bool initialized;
  540. struct d40_gen_dmac gen_dmac;
  541. };
  542. static struct device *chan2dev(struct d40_chan *d40c)
  543. {
  544. return &d40c->chan.dev->device;
  545. }
  546. static bool chan_is_physical(struct d40_chan *chan)
  547. {
  548. return chan->log_num == D40_PHY_CHAN;
  549. }
  550. static bool chan_is_logical(struct d40_chan *chan)
  551. {
  552. return !chan_is_physical(chan);
  553. }
  554. static void __iomem *chan_base(struct d40_chan *chan)
  555. {
  556. return chan->base->virtbase + D40_DREG_PCBASE +
  557. chan->phy_chan->num * D40_DREG_PCDELTA;
  558. }
  559. #define d40_err(dev, format, arg...) \
  560. dev_err(dev, "[%s] " format, __func__, ## arg)
  561. #define chan_err(d40c, format, arg...) \
  562. d40_err(chan2dev(d40c), format, ## arg)
  563. static int d40_pool_lli_alloc(struct d40_chan *d40c, struct d40_desc *d40d,
  564. int lli_len)
  565. {
  566. bool is_log = chan_is_logical(d40c);
  567. u32 align;
  568. void *base;
  569. if (is_log)
  570. align = sizeof(struct d40_log_lli);
  571. else
  572. align = sizeof(struct d40_phy_lli);
  573. if (lli_len == 1) {
  574. base = d40d->lli_pool.pre_alloc_lli;
  575. d40d->lli_pool.size = sizeof(d40d->lli_pool.pre_alloc_lli);
  576. d40d->lli_pool.base = NULL;
  577. } else {
  578. d40d->lli_pool.size = lli_len * 2 * align;
  579. base = kmalloc(d40d->lli_pool.size + align, GFP_NOWAIT);
  580. d40d->lli_pool.base = base;
  581. if (d40d->lli_pool.base == NULL)
  582. return -ENOMEM;
  583. }
  584. if (is_log) {
  585. d40d->lli_log.src = PTR_ALIGN(base, align);
  586. d40d->lli_log.dst = d40d->lli_log.src + lli_len;
  587. d40d->lli_pool.dma_addr = 0;
  588. } else {
  589. d40d->lli_phy.src = PTR_ALIGN(base, align);
  590. d40d->lli_phy.dst = d40d->lli_phy.src + lli_len;
  591. d40d->lli_pool.dma_addr = dma_map_single(d40c->base->dev,
  592. d40d->lli_phy.src,
  593. d40d->lli_pool.size,
  594. DMA_TO_DEVICE);
  595. if (dma_mapping_error(d40c->base->dev,
  596. d40d->lli_pool.dma_addr)) {
  597. kfree(d40d->lli_pool.base);
  598. d40d->lli_pool.base = NULL;
  599. d40d->lli_pool.dma_addr = 0;
  600. return -ENOMEM;
  601. }
  602. }
  603. return 0;
  604. }
  605. static void d40_pool_lli_free(struct d40_chan *d40c, struct d40_desc *d40d)
  606. {
  607. if (d40d->lli_pool.dma_addr)
  608. dma_unmap_single(d40c->base->dev, d40d->lli_pool.dma_addr,
  609. d40d->lli_pool.size, DMA_TO_DEVICE);
  610. kfree(d40d->lli_pool.base);
  611. d40d->lli_pool.base = NULL;
  612. d40d->lli_pool.size = 0;
  613. d40d->lli_log.src = NULL;
  614. d40d->lli_log.dst = NULL;
  615. d40d->lli_phy.src = NULL;
  616. d40d->lli_phy.dst = NULL;
  617. }
  618. static int d40_lcla_alloc_one(struct d40_chan *d40c,
  619. struct d40_desc *d40d)
  620. {
  621. unsigned long flags;
  622. int i;
  623. int ret = -EINVAL;
  624. spin_lock_irqsave(&d40c->base->lcla_pool.lock, flags);
  625. /*
  626. * Allocate both src and dst at the same time, therefore the half
  627. * start on 1 since 0 can't be used since zero is used as end marker.
  628. */
  629. for (i = 1 ; i < D40_LCLA_LINK_PER_EVENT_GRP / 2; i++) {
  630. int idx = d40c->phy_chan->num * D40_LCLA_LINK_PER_EVENT_GRP + i;
  631. if (!d40c->base->lcla_pool.alloc_map[idx]) {
  632. d40c->base->lcla_pool.alloc_map[idx] = d40d;
  633. d40d->lcla_alloc++;
  634. ret = i;
  635. break;
  636. }
  637. }
  638. spin_unlock_irqrestore(&d40c->base->lcla_pool.lock, flags);
  639. return ret;
  640. }
  641. static int d40_lcla_free_all(struct d40_chan *d40c,
  642. struct d40_desc *d40d)
  643. {
  644. unsigned long flags;
  645. int i;
  646. int ret = -EINVAL;
  647. if (chan_is_physical(d40c))
  648. return 0;
  649. spin_lock_irqsave(&d40c->base->lcla_pool.lock, flags);
  650. for (i = 1 ; i < D40_LCLA_LINK_PER_EVENT_GRP / 2; i++) {
  651. int idx = d40c->phy_chan->num * D40_LCLA_LINK_PER_EVENT_GRP + i;
  652. if (d40c->base->lcla_pool.alloc_map[idx] == d40d) {
  653. d40c->base->lcla_pool.alloc_map[idx] = NULL;
  654. d40d->lcla_alloc--;
  655. if (d40d->lcla_alloc == 0) {
  656. ret = 0;
  657. break;
  658. }
  659. }
  660. }
  661. spin_unlock_irqrestore(&d40c->base->lcla_pool.lock, flags);
  662. return ret;
  663. }
  664. static void d40_desc_remove(struct d40_desc *d40d)
  665. {
  666. list_del(&d40d->node);
  667. }
  668. static struct d40_desc *d40_desc_get(struct d40_chan *d40c)
  669. {
  670. struct d40_desc *desc = NULL;
  671. if (!list_empty(&d40c->client)) {
  672. struct d40_desc *d;
  673. struct d40_desc *_d;
  674. list_for_each_entry_safe(d, _d, &d40c->client, node) {
  675. if (async_tx_test_ack(&d->txd)) {
  676. d40_desc_remove(d);
  677. desc = d;
  678. memset(desc, 0, sizeof(*desc));
  679. break;
  680. }
  681. }
  682. }
  683. if (!desc)
  684. desc = kmem_cache_zalloc(d40c->base->desc_slab, GFP_NOWAIT);
  685. if (desc)
  686. INIT_LIST_HEAD(&desc->node);
  687. return desc;
  688. }
  689. static void d40_desc_free(struct d40_chan *d40c, struct d40_desc *d40d)
  690. {
  691. d40_pool_lli_free(d40c, d40d);
  692. d40_lcla_free_all(d40c, d40d);
  693. kmem_cache_free(d40c->base->desc_slab, d40d);
  694. }
  695. static void d40_desc_submit(struct d40_chan *d40c, struct d40_desc *desc)
  696. {
  697. list_add_tail(&desc->node, &d40c->active);
  698. }
  699. static void d40_phy_lli_load(struct d40_chan *chan, struct d40_desc *desc)
  700. {
  701. struct d40_phy_lli *lli_dst = desc->lli_phy.dst;
  702. struct d40_phy_lli *lli_src = desc->lli_phy.src;
  703. void __iomem *base = chan_base(chan);
  704. writel(lli_src->reg_cfg, base + D40_CHAN_REG_SSCFG);
  705. writel(lli_src->reg_elt, base + D40_CHAN_REG_SSELT);
  706. writel(lli_src->reg_ptr, base + D40_CHAN_REG_SSPTR);
  707. writel(lli_src->reg_lnk, base + D40_CHAN_REG_SSLNK);
  708. writel(lli_dst->reg_cfg, base + D40_CHAN_REG_SDCFG);
  709. writel(lli_dst->reg_elt, base + D40_CHAN_REG_SDELT);
  710. writel(lli_dst->reg_ptr, base + D40_CHAN_REG_SDPTR);
  711. writel(lli_dst->reg_lnk, base + D40_CHAN_REG_SDLNK);
  712. }
  713. static void d40_desc_done(struct d40_chan *d40c, struct d40_desc *desc)
  714. {
  715. list_add_tail(&desc->node, &d40c->done);
  716. }
  717. static void d40_log_lli_to_lcxa(struct d40_chan *chan, struct d40_desc *desc)
  718. {
  719. struct d40_lcla_pool *pool = &chan->base->lcla_pool;
  720. struct d40_log_lli_bidir *lli = &desc->lli_log;
  721. int lli_current = desc->lli_current;
  722. int lli_len = desc->lli_len;
  723. bool cyclic = desc->cyclic;
  724. int curr_lcla = -EINVAL;
  725. int first_lcla = 0;
  726. bool use_esram_lcla = chan->base->plat_data->use_esram_lcla;
  727. bool linkback;
  728. /*
  729. * We may have partially running cyclic transfers, in case we did't get
  730. * enough LCLA entries.
  731. */
  732. linkback = cyclic && lli_current == 0;
  733. /*
  734. * For linkback, we need one LCLA even with only one link, because we
  735. * can't link back to the one in LCPA space
  736. */
  737. if (linkback || (lli_len - lli_current > 1)) {
  738. /*
  739. * If the channel is expected to use only soft_lli don't
  740. * allocate a lcla. This is to avoid a HW issue that exists
  741. * in some controller during a peripheral to memory transfer
  742. * that uses linked lists.
  743. */
  744. if (!(chan->phy_chan->use_soft_lli &&
  745. chan->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM))
  746. curr_lcla = d40_lcla_alloc_one(chan, desc);
  747. first_lcla = curr_lcla;
  748. }
  749. /*
  750. * For linkback, we normally load the LCPA in the loop since we need to
  751. * link it to the second LCLA and not the first. However, if we
  752. * couldn't even get a first LCLA, then we have to run in LCPA and
  753. * reload manually.
  754. */
  755. if (!linkback || curr_lcla == -EINVAL) {
  756. unsigned int flags = 0;
  757. if (curr_lcla == -EINVAL)
  758. flags |= LLI_TERM_INT;
  759. d40_log_lli_lcpa_write(chan->lcpa,
  760. &lli->dst[lli_current],
  761. &lli->src[lli_current],
  762. curr_lcla,
  763. flags);
  764. lli_current++;
  765. }
  766. if (curr_lcla < 0)
  767. goto out;
  768. for (; lli_current < lli_len; lli_current++) {
  769. unsigned int lcla_offset = chan->phy_chan->num * 1024 +
  770. 8 * curr_lcla * 2;
  771. struct d40_log_lli *lcla = pool->base + lcla_offset;
  772. unsigned int flags = 0;
  773. int next_lcla;
  774. if (lli_current + 1 < lli_len)
  775. next_lcla = d40_lcla_alloc_one(chan, desc);
  776. else
  777. next_lcla = linkback ? first_lcla : -EINVAL;
  778. if (cyclic || next_lcla == -EINVAL)
  779. flags |= LLI_TERM_INT;
  780. if (linkback && curr_lcla == first_lcla) {
  781. /* First link goes in both LCPA and LCLA */
  782. d40_log_lli_lcpa_write(chan->lcpa,
  783. &lli->dst[lli_current],
  784. &lli->src[lli_current],
  785. next_lcla, flags);
  786. }
  787. /*
  788. * One unused LCLA in the cyclic case if the very first
  789. * next_lcla fails...
  790. */
  791. d40_log_lli_lcla_write(lcla,
  792. &lli->dst[lli_current],
  793. &lli->src[lli_current],
  794. next_lcla, flags);
  795. /*
  796. * Cache maintenance is not needed if lcla is
  797. * mapped in esram
  798. */
  799. if (!use_esram_lcla) {
  800. dma_sync_single_range_for_device(chan->base->dev,
  801. pool->dma_addr, lcla_offset,
  802. 2 * sizeof(struct d40_log_lli),
  803. DMA_TO_DEVICE);
  804. }
  805. curr_lcla = next_lcla;
  806. if (curr_lcla == -EINVAL || curr_lcla == first_lcla) {
  807. lli_current++;
  808. break;
  809. }
  810. }
  811. out:
  812. desc->lli_current = lli_current;
  813. }
  814. static void d40_desc_load(struct d40_chan *d40c, struct d40_desc *d40d)
  815. {
  816. if (chan_is_physical(d40c)) {
  817. d40_phy_lli_load(d40c, d40d);
  818. d40d->lli_current = d40d->lli_len;
  819. } else
  820. d40_log_lli_to_lcxa(d40c, d40d);
  821. }
  822. static struct d40_desc *d40_first_active_get(struct d40_chan *d40c)
  823. {
  824. struct d40_desc *d;
  825. if (list_empty(&d40c->active))
  826. return NULL;
  827. d = list_first_entry(&d40c->active,
  828. struct d40_desc,
  829. node);
  830. return d;
  831. }
  832. /* remove desc from current queue and add it to the pending_queue */
  833. static void d40_desc_queue(struct d40_chan *d40c, struct d40_desc *desc)
  834. {
  835. d40_desc_remove(desc);
  836. desc->is_in_client_list = false;
  837. list_add_tail(&desc->node, &d40c->pending_queue);
  838. }
  839. static struct d40_desc *d40_first_pending(struct d40_chan *d40c)
  840. {
  841. struct d40_desc *d;
  842. if (list_empty(&d40c->pending_queue))
  843. return NULL;
  844. d = list_first_entry(&d40c->pending_queue,
  845. struct d40_desc,
  846. node);
  847. return d;
  848. }
  849. static struct d40_desc *d40_first_queued(struct d40_chan *d40c)
  850. {
  851. struct d40_desc *d;
  852. if (list_empty(&d40c->queue))
  853. return NULL;
  854. d = list_first_entry(&d40c->queue,
  855. struct d40_desc,
  856. node);
  857. return d;
  858. }
  859. static struct d40_desc *d40_first_done(struct d40_chan *d40c)
  860. {
  861. if (list_empty(&d40c->done))
  862. return NULL;
  863. return list_first_entry(&d40c->done, struct d40_desc, node);
  864. }
  865. static int d40_psize_2_burst_size(bool is_log, int psize)
  866. {
  867. if (is_log) {
  868. if (psize == STEDMA40_PSIZE_LOG_1)
  869. return 1;
  870. } else {
  871. if (psize == STEDMA40_PSIZE_PHY_1)
  872. return 1;
  873. }
  874. return 2 << psize;
  875. }
  876. /*
  877. * The dma only supports transmitting packages up to
  878. * STEDMA40_MAX_SEG_SIZE << data_width. Calculate the total number of
  879. * dma elements required to send the entire sg list
  880. */
  881. static int d40_size_2_dmalen(int size, u32 data_width1, u32 data_width2)
  882. {
  883. int dmalen;
  884. u32 max_w = max(data_width1, data_width2);
  885. u32 min_w = min(data_width1, data_width2);
  886. u32 seg_max = ALIGN(STEDMA40_MAX_SEG_SIZE << min_w, 1 << max_w);
  887. if (seg_max > STEDMA40_MAX_SEG_SIZE)
  888. seg_max -= (1 << max_w);
  889. if (!IS_ALIGNED(size, 1 << max_w))
  890. return -EINVAL;
  891. if (size <= seg_max)
  892. dmalen = 1;
  893. else {
  894. dmalen = size / seg_max;
  895. if (dmalen * seg_max < size)
  896. dmalen++;
  897. }
  898. return dmalen;
  899. }
  900. static int d40_sg_2_dmalen(struct scatterlist *sgl, int sg_len,
  901. u32 data_width1, u32 data_width2)
  902. {
  903. struct scatterlist *sg;
  904. int i;
  905. int len = 0;
  906. int ret;
  907. for_each_sg(sgl, sg, sg_len, i) {
  908. ret = d40_size_2_dmalen(sg_dma_len(sg),
  909. data_width1, data_width2);
  910. if (ret < 0)
  911. return ret;
  912. len += ret;
  913. }
  914. return len;
  915. }
  916. #ifdef CONFIG_PM
  917. static void dma40_backup(void __iomem *baseaddr, u32 *backup,
  918. u32 *regaddr, int num, bool save)
  919. {
  920. int i;
  921. for (i = 0; i < num; i++) {
  922. void __iomem *addr = baseaddr + regaddr[i];
  923. if (save)
  924. backup[i] = readl_relaxed(addr);
  925. else
  926. writel_relaxed(backup[i], addr);
  927. }
  928. }
  929. static void d40_save_restore_registers(struct d40_base *base, bool save)
  930. {
  931. int i;
  932. /* Save/Restore channel specific registers */
  933. for (i = 0; i < base->num_phy_chans; i++) {
  934. void __iomem *addr;
  935. int idx;
  936. if (base->phy_res[i].reserved)
  937. continue;
  938. addr = base->virtbase + D40_DREG_PCBASE + i * D40_DREG_PCDELTA;
  939. idx = i * ARRAY_SIZE(d40_backup_regs_chan);
  940. dma40_backup(addr, &base->reg_val_backup_chan[idx],
  941. d40_backup_regs_chan,
  942. ARRAY_SIZE(d40_backup_regs_chan),
  943. save);
  944. }
  945. /* Save/Restore global registers */
  946. dma40_backup(base->virtbase, base->reg_val_backup,
  947. d40_backup_regs, ARRAY_SIZE(d40_backup_regs),
  948. save);
  949. /* Save/Restore registers only existing on dma40 v3 and later */
  950. if (base->gen_dmac.backup)
  951. dma40_backup(base->virtbase, base->reg_val_backup_v4,
  952. base->gen_dmac.backup,
  953. base->gen_dmac.backup_size,
  954. save);
  955. }
  956. #else
  957. static void d40_save_restore_registers(struct d40_base *base, bool save)
  958. {
  959. }
  960. #endif
  961. static int __d40_execute_command_phy(struct d40_chan *d40c,
  962. enum d40_command command)
  963. {
  964. u32 status;
  965. int i;
  966. void __iomem *active_reg;
  967. int ret = 0;
  968. unsigned long flags;
  969. u32 wmask;
  970. if (command == D40_DMA_STOP) {
  971. ret = __d40_execute_command_phy(d40c, D40_DMA_SUSPEND_REQ);
  972. if (ret)
  973. return ret;
  974. }
  975. spin_lock_irqsave(&d40c->base->execmd_lock, flags);
  976. if (d40c->phy_chan->num % 2 == 0)
  977. active_reg = d40c->base->virtbase + D40_DREG_ACTIVE;
  978. else
  979. active_reg = d40c->base->virtbase + D40_DREG_ACTIVO;
  980. if (command == D40_DMA_SUSPEND_REQ) {
  981. status = (readl(active_reg) &
  982. D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
  983. D40_CHAN_POS(d40c->phy_chan->num);
  984. if (status == D40_DMA_SUSPENDED || status == D40_DMA_STOP)
  985. goto done;
  986. }
  987. wmask = 0xffffffff & ~(D40_CHAN_POS_MASK(d40c->phy_chan->num));
  988. writel(wmask | (command << D40_CHAN_POS(d40c->phy_chan->num)),
  989. active_reg);
  990. if (command == D40_DMA_SUSPEND_REQ) {
  991. for (i = 0 ; i < D40_SUSPEND_MAX_IT; i++) {
  992. status = (readl(active_reg) &
  993. D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
  994. D40_CHAN_POS(d40c->phy_chan->num);
  995. cpu_relax();
  996. /*
  997. * Reduce the number of bus accesses while
  998. * waiting for the DMA to suspend.
  999. */
  1000. udelay(3);
  1001. if (status == D40_DMA_STOP ||
  1002. status == D40_DMA_SUSPENDED)
  1003. break;
  1004. }
  1005. if (i == D40_SUSPEND_MAX_IT) {
  1006. chan_err(d40c,
  1007. "unable to suspend the chl %d (log: %d) status %x\n",
  1008. d40c->phy_chan->num, d40c->log_num,
  1009. status);
  1010. dump_stack();
  1011. ret = -EBUSY;
  1012. }
  1013. }
  1014. done:
  1015. spin_unlock_irqrestore(&d40c->base->execmd_lock, flags);
  1016. return ret;
  1017. }
  1018. static void d40_term_all(struct d40_chan *d40c)
  1019. {
  1020. struct d40_desc *d40d;
  1021. struct d40_desc *_d;
  1022. /* Release completed descriptors */
  1023. while ((d40d = d40_first_done(d40c))) {
  1024. d40_desc_remove(d40d);
  1025. d40_desc_free(d40c, d40d);
  1026. }
  1027. /* Release active descriptors */
  1028. while ((d40d = d40_first_active_get(d40c))) {
  1029. d40_desc_remove(d40d);
  1030. d40_desc_free(d40c, d40d);
  1031. }
  1032. /* Release queued descriptors waiting for transfer */
  1033. while ((d40d = d40_first_queued(d40c))) {
  1034. d40_desc_remove(d40d);
  1035. d40_desc_free(d40c, d40d);
  1036. }
  1037. /* Release pending descriptors */
  1038. while ((d40d = d40_first_pending(d40c))) {
  1039. d40_desc_remove(d40d);
  1040. d40_desc_free(d40c, d40d);
  1041. }
  1042. /* Release client owned descriptors */
  1043. if (!list_empty(&d40c->client))
  1044. list_for_each_entry_safe(d40d, _d, &d40c->client, node) {
  1045. d40_desc_remove(d40d);
  1046. d40_desc_free(d40c, d40d);
  1047. }
  1048. /* Release descriptors in prepare queue */
  1049. if (!list_empty(&d40c->prepare_queue))
  1050. list_for_each_entry_safe(d40d, _d,
  1051. &d40c->prepare_queue, node) {
  1052. d40_desc_remove(d40d);
  1053. d40_desc_free(d40c, d40d);
  1054. }
  1055. d40c->pending_tx = 0;
  1056. }
  1057. static void __d40_config_set_event(struct d40_chan *d40c,
  1058. enum d40_events event_type, u32 event,
  1059. int reg)
  1060. {
  1061. void __iomem *addr = chan_base(d40c) + reg;
  1062. int tries;
  1063. u32 status;
  1064. switch (event_type) {
  1065. case D40_DEACTIVATE_EVENTLINE:
  1066. writel((D40_DEACTIVATE_EVENTLINE << D40_EVENTLINE_POS(event))
  1067. | ~D40_EVENTLINE_MASK(event), addr);
  1068. break;
  1069. case D40_SUSPEND_REQ_EVENTLINE:
  1070. status = (readl(addr) & D40_EVENTLINE_MASK(event)) >>
  1071. D40_EVENTLINE_POS(event);
  1072. if (status == D40_DEACTIVATE_EVENTLINE ||
  1073. status == D40_SUSPEND_REQ_EVENTLINE)
  1074. break;
  1075. writel((D40_SUSPEND_REQ_EVENTLINE << D40_EVENTLINE_POS(event))
  1076. | ~D40_EVENTLINE_MASK(event), addr);
  1077. for (tries = 0 ; tries < D40_SUSPEND_MAX_IT; tries++) {
  1078. status = (readl(addr) & D40_EVENTLINE_MASK(event)) >>
  1079. D40_EVENTLINE_POS(event);
  1080. cpu_relax();
  1081. /*
  1082. * Reduce the number of bus accesses while
  1083. * waiting for the DMA to suspend.
  1084. */
  1085. udelay(3);
  1086. if (status == D40_DEACTIVATE_EVENTLINE)
  1087. break;
  1088. }
  1089. if (tries == D40_SUSPEND_MAX_IT) {
  1090. chan_err(d40c,
  1091. "unable to stop the event_line chl %d (log: %d)"
  1092. "status %x\n", d40c->phy_chan->num,
  1093. d40c->log_num, status);
  1094. }
  1095. break;
  1096. case D40_ACTIVATE_EVENTLINE:
  1097. /*
  1098. * The hardware sometimes doesn't register the enable when src and dst
  1099. * event lines are active on the same logical channel. Retry to ensure
  1100. * it does. Usually only one retry is sufficient.
  1101. */
  1102. tries = 100;
  1103. while (--tries) {
  1104. writel((D40_ACTIVATE_EVENTLINE <<
  1105. D40_EVENTLINE_POS(event)) |
  1106. ~D40_EVENTLINE_MASK(event), addr);
  1107. if (readl(addr) & D40_EVENTLINE_MASK(event))
  1108. break;
  1109. }
  1110. if (tries != 99)
  1111. dev_dbg(chan2dev(d40c),
  1112. "[%s] workaround enable S%cLNK (%d tries)\n",
  1113. __func__, reg == D40_CHAN_REG_SSLNK ? 'S' : 'D',
  1114. 100 - tries);
  1115. WARN_ON(!tries);
  1116. break;
  1117. case D40_ROUND_EVENTLINE:
  1118. BUG();
  1119. break;
  1120. }
  1121. }
  1122. static void d40_config_set_event(struct d40_chan *d40c,
  1123. enum d40_events event_type)
  1124. {
  1125. u32 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dev_type);
  1126. /* Enable event line connected to device (or memcpy) */
  1127. if ((d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) ||
  1128. (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_PERIPH))
  1129. __d40_config_set_event(d40c, event_type, event,
  1130. D40_CHAN_REG_SSLNK);
  1131. if (d40c->dma_cfg.dir != STEDMA40_PERIPH_TO_MEM)
  1132. __d40_config_set_event(d40c, event_type, event,
  1133. D40_CHAN_REG_SDLNK);
  1134. }
  1135. static u32 d40_chan_has_events(struct d40_chan *d40c)
  1136. {
  1137. void __iomem *chanbase = chan_base(d40c);
  1138. u32 val;
  1139. val = readl(chanbase + D40_CHAN_REG_SSLNK);
  1140. val |= readl(chanbase + D40_CHAN_REG_SDLNK);
  1141. return val;
  1142. }
  1143. static int
  1144. __d40_execute_command_log(struct d40_chan *d40c, enum d40_command command)
  1145. {
  1146. unsigned long flags;
  1147. int ret = 0;
  1148. u32 active_status;
  1149. void __iomem *active_reg;
  1150. if (d40c->phy_chan->num % 2 == 0)
  1151. active_reg = d40c->base->virtbase + D40_DREG_ACTIVE;
  1152. else
  1153. active_reg = d40c->base->virtbase + D40_DREG_ACTIVO;
  1154. spin_lock_irqsave(&d40c->phy_chan->lock, flags);
  1155. switch (command) {
  1156. case D40_DMA_STOP:
  1157. case D40_DMA_SUSPEND_REQ:
  1158. active_status = (readl(active_reg) &
  1159. D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
  1160. D40_CHAN_POS(d40c->phy_chan->num);
  1161. if (active_status == D40_DMA_RUN)
  1162. d40_config_set_event(d40c, D40_SUSPEND_REQ_EVENTLINE);
  1163. else
  1164. d40_config_set_event(d40c, D40_DEACTIVATE_EVENTLINE);
  1165. if (!d40_chan_has_events(d40c) && (command == D40_DMA_STOP))
  1166. ret = __d40_execute_command_phy(d40c, command);
  1167. break;
  1168. case D40_DMA_RUN:
  1169. d40_config_set_event(d40c, D40_ACTIVATE_EVENTLINE);
  1170. ret = __d40_execute_command_phy(d40c, command);
  1171. break;
  1172. case D40_DMA_SUSPENDED:
  1173. BUG();
  1174. break;
  1175. }
  1176. spin_unlock_irqrestore(&d40c->phy_chan->lock, flags);
  1177. return ret;
  1178. }
  1179. static int d40_channel_execute_command(struct d40_chan *d40c,
  1180. enum d40_command command)
  1181. {
  1182. if (chan_is_logical(d40c))
  1183. return __d40_execute_command_log(d40c, command);
  1184. else
  1185. return __d40_execute_command_phy(d40c, command);
  1186. }
  1187. static u32 d40_get_prmo(struct d40_chan *d40c)
  1188. {
  1189. static const unsigned int phy_map[] = {
  1190. [STEDMA40_PCHAN_BASIC_MODE]
  1191. = D40_DREG_PRMO_PCHAN_BASIC,
  1192. [STEDMA40_PCHAN_MODULO_MODE]
  1193. = D40_DREG_PRMO_PCHAN_MODULO,
  1194. [STEDMA40_PCHAN_DOUBLE_DST_MODE]
  1195. = D40_DREG_PRMO_PCHAN_DOUBLE_DST,
  1196. };
  1197. static const unsigned int log_map[] = {
  1198. [STEDMA40_LCHAN_SRC_PHY_DST_LOG]
  1199. = D40_DREG_PRMO_LCHAN_SRC_PHY_DST_LOG,
  1200. [STEDMA40_LCHAN_SRC_LOG_DST_PHY]
  1201. = D40_DREG_PRMO_LCHAN_SRC_LOG_DST_PHY,
  1202. [STEDMA40_LCHAN_SRC_LOG_DST_LOG]
  1203. = D40_DREG_PRMO_LCHAN_SRC_LOG_DST_LOG,
  1204. };
  1205. if (chan_is_physical(d40c))
  1206. return phy_map[d40c->dma_cfg.mode_opt];
  1207. else
  1208. return log_map[d40c->dma_cfg.mode_opt];
  1209. }
  1210. static void d40_config_write(struct d40_chan *d40c)
  1211. {
  1212. u32 addr_base;
  1213. u32 var;
  1214. /* Odd addresses are even addresses + 4 */
  1215. addr_base = (d40c->phy_chan->num % 2) * 4;
  1216. /* Setup channel mode to logical or physical */
  1217. var = ((u32)(chan_is_logical(d40c)) + 1) <<
  1218. D40_CHAN_POS(d40c->phy_chan->num);
  1219. writel(var, d40c->base->virtbase + D40_DREG_PRMSE + addr_base);
  1220. /* Setup operational mode option register */
  1221. var = d40_get_prmo(d40c) << D40_CHAN_POS(d40c->phy_chan->num);
  1222. writel(var, d40c->base->virtbase + D40_DREG_PRMOE + addr_base);
  1223. if (chan_is_logical(d40c)) {
  1224. int lidx = (d40c->phy_chan->num << D40_SREG_ELEM_LOG_LIDX_POS)
  1225. & D40_SREG_ELEM_LOG_LIDX_MASK;
  1226. void __iomem *chanbase = chan_base(d40c);
  1227. /* Set default config for CFG reg */
  1228. writel(d40c->src_def_cfg, chanbase + D40_CHAN_REG_SSCFG);
  1229. writel(d40c->dst_def_cfg, chanbase + D40_CHAN_REG_SDCFG);
  1230. /* Set LIDX for lcla */
  1231. writel(lidx, chanbase + D40_CHAN_REG_SSELT);
  1232. writel(lidx, chanbase + D40_CHAN_REG_SDELT);
  1233. /* Clear LNK which will be used by d40_chan_has_events() */
  1234. writel(0, chanbase + D40_CHAN_REG_SSLNK);
  1235. writel(0, chanbase + D40_CHAN_REG_SDLNK);
  1236. }
  1237. }
  1238. static u32 d40_residue(struct d40_chan *d40c)
  1239. {
  1240. u32 num_elt;
  1241. if (chan_is_logical(d40c))
  1242. num_elt = (readl(&d40c->lcpa->lcsp2) & D40_MEM_LCSP2_ECNT_MASK)
  1243. >> D40_MEM_LCSP2_ECNT_POS;
  1244. else {
  1245. u32 val = readl(chan_base(d40c) + D40_CHAN_REG_SDELT);
  1246. num_elt = (val & D40_SREG_ELEM_PHY_ECNT_MASK)
  1247. >> D40_SREG_ELEM_PHY_ECNT_POS;
  1248. }
  1249. return num_elt * (1 << d40c->dma_cfg.dst_info.data_width);
  1250. }
  1251. static bool d40_tx_is_linked(struct d40_chan *d40c)
  1252. {
  1253. bool is_link;
  1254. if (chan_is_logical(d40c))
  1255. is_link = readl(&d40c->lcpa->lcsp3) & D40_MEM_LCSP3_DLOS_MASK;
  1256. else
  1257. is_link = readl(chan_base(d40c) + D40_CHAN_REG_SDLNK)
  1258. & D40_SREG_LNK_PHYS_LNK_MASK;
  1259. return is_link;
  1260. }
  1261. static int d40_pause(struct d40_chan *d40c)
  1262. {
  1263. int res = 0;
  1264. unsigned long flags;
  1265. if (!d40c->busy)
  1266. return 0;
  1267. pm_runtime_get_sync(d40c->base->dev);
  1268. spin_lock_irqsave(&d40c->lock, flags);
  1269. res = d40_channel_execute_command(d40c, D40_DMA_SUSPEND_REQ);
  1270. pm_runtime_mark_last_busy(d40c->base->dev);
  1271. pm_runtime_put_autosuspend(d40c->base->dev);
  1272. spin_unlock_irqrestore(&d40c->lock, flags);
  1273. return res;
  1274. }
  1275. static int d40_resume(struct d40_chan *d40c)
  1276. {
  1277. int res = 0;
  1278. unsigned long flags;
  1279. if (!d40c->busy)
  1280. return 0;
  1281. spin_lock_irqsave(&d40c->lock, flags);
  1282. pm_runtime_get_sync(d40c->base->dev);
  1283. /* If bytes left to transfer or linked tx resume job */
  1284. if (d40_residue(d40c) || d40_tx_is_linked(d40c))
  1285. res = d40_channel_execute_command(d40c, D40_DMA_RUN);
  1286. pm_runtime_mark_last_busy(d40c->base->dev);
  1287. pm_runtime_put_autosuspend(d40c->base->dev);
  1288. spin_unlock_irqrestore(&d40c->lock, flags);
  1289. return res;
  1290. }
  1291. static dma_cookie_t d40_tx_submit(struct dma_async_tx_descriptor *tx)
  1292. {
  1293. struct d40_chan *d40c = container_of(tx->chan,
  1294. struct d40_chan,
  1295. chan);
  1296. struct d40_desc *d40d = container_of(tx, struct d40_desc, txd);
  1297. unsigned long flags;
  1298. dma_cookie_t cookie;
  1299. spin_lock_irqsave(&d40c->lock, flags);
  1300. cookie = dma_cookie_assign(tx);
  1301. d40_desc_queue(d40c, d40d);
  1302. spin_unlock_irqrestore(&d40c->lock, flags);
  1303. return cookie;
  1304. }
  1305. static int d40_start(struct d40_chan *d40c)
  1306. {
  1307. return d40_channel_execute_command(d40c, D40_DMA_RUN);
  1308. }
  1309. static struct d40_desc *d40_queue_start(struct d40_chan *d40c)
  1310. {
  1311. struct d40_desc *d40d;
  1312. int err;
  1313. /* Start queued jobs, if any */
  1314. d40d = d40_first_queued(d40c);
  1315. if (d40d != NULL) {
  1316. if (!d40c->busy) {
  1317. d40c->busy = true;
  1318. pm_runtime_get_sync(d40c->base->dev);
  1319. }
  1320. /* Remove from queue */
  1321. d40_desc_remove(d40d);
  1322. /* Add to active queue */
  1323. d40_desc_submit(d40c, d40d);
  1324. /* Initiate DMA job */
  1325. d40_desc_load(d40c, d40d);
  1326. /* Start dma job */
  1327. err = d40_start(d40c);
  1328. if (err)
  1329. return NULL;
  1330. }
  1331. return d40d;
  1332. }
  1333. /* called from interrupt context */
  1334. static void dma_tc_handle(struct d40_chan *d40c)
  1335. {
  1336. struct d40_desc *d40d;
  1337. /* Get first active entry from list */
  1338. d40d = d40_first_active_get(d40c);
  1339. if (d40d == NULL)
  1340. return;
  1341. if (d40d->cyclic) {
  1342. /*
  1343. * If this was a paritially loaded list, we need to reloaded
  1344. * it, and only when the list is completed. We need to check
  1345. * for done because the interrupt will hit for every link, and
  1346. * not just the last one.
  1347. */
  1348. if (d40d->lli_current < d40d->lli_len
  1349. && !d40_tx_is_linked(d40c)
  1350. && !d40_residue(d40c)) {
  1351. d40_lcla_free_all(d40c, d40d);
  1352. d40_desc_load(d40c, d40d);
  1353. (void) d40_start(d40c);
  1354. if (d40d->lli_current == d40d->lli_len)
  1355. d40d->lli_current = 0;
  1356. }
  1357. } else {
  1358. d40_lcla_free_all(d40c, d40d);
  1359. if (d40d->lli_current < d40d->lli_len) {
  1360. d40_desc_load(d40c, d40d);
  1361. /* Start dma job */
  1362. (void) d40_start(d40c);
  1363. return;
  1364. }
  1365. if (d40_queue_start(d40c) == NULL)
  1366. d40c->busy = false;
  1367. pm_runtime_mark_last_busy(d40c->base->dev);
  1368. pm_runtime_put_autosuspend(d40c->base->dev);
  1369. d40_desc_remove(d40d);
  1370. d40_desc_done(d40c, d40d);
  1371. }
  1372. d40c->pending_tx++;
  1373. tasklet_schedule(&d40c->tasklet);
  1374. }
  1375. static void dma_tasklet(unsigned long data)
  1376. {
  1377. struct d40_chan *d40c = (struct d40_chan *) data;
  1378. struct d40_desc *d40d;
  1379. unsigned long flags;
  1380. dma_async_tx_callback callback;
  1381. void *callback_param;
  1382. spin_lock_irqsave(&d40c->lock, flags);
  1383. /* Get first entry from the done list */
  1384. d40d = d40_first_done(d40c);
  1385. if (d40d == NULL) {
  1386. /* Check if we have reached here for cyclic job */
  1387. d40d = d40_first_active_get(d40c);
  1388. if (d40d == NULL || !d40d->cyclic)
  1389. goto err;
  1390. }
  1391. if (!d40d->cyclic)
  1392. dma_cookie_complete(&d40d->txd);
  1393. /*
  1394. * If terminating a channel pending_tx is set to zero.
  1395. * This prevents any finished active jobs to return to the client.
  1396. */
  1397. if (d40c->pending_tx == 0) {
  1398. spin_unlock_irqrestore(&d40c->lock, flags);
  1399. return;
  1400. }
  1401. /* Callback to client */
  1402. callback = d40d->txd.callback;
  1403. callback_param = d40d->txd.callback_param;
  1404. if (!d40d->cyclic) {
  1405. if (async_tx_test_ack(&d40d->txd)) {
  1406. d40_desc_remove(d40d);
  1407. d40_desc_free(d40c, d40d);
  1408. } else if (!d40d->is_in_client_list) {
  1409. d40_desc_remove(d40d);
  1410. d40_lcla_free_all(d40c, d40d);
  1411. list_add_tail(&d40d->node, &d40c->client);
  1412. d40d->is_in_client_list = true;
  1413. }
  1414. }
  1415. d40c->pending_tx--;
  1416. if (d40c->pending_tx)
  1417. tasklet_schedule(&d40c->tasklet);
  1418. spin_unlock_irqrestore(&d40c->lock, flags);
  1419. if (callback && (d40d->txd.flags & DMA_PREP_INTERRUPT))
  1420. callback(callback_param);
  1421. return;
  1422. err:
  1423. /* Rescue manouver if receiving double interrupts */
  1424. if (d40c->pending_tx > 0)
  1425. d40c->pending_tx--;
  1426. spin_unlock_irqrestore(&d40c->lock, flags);
  1427. }
  1428. static irqreturn_t d40_handle_interrupt(int irq, void *data)
  1429. {
  1430. int i;
  1431. u32 idx;
  1432. u32 row;
  1433. long chan = -1;
  1434. struct d40_chan *d40c;
  1435. unsigned long flags;
  1436. struct d40_base *base = data;
  1437. u32 regs[base->gen_dmac.il_size];
  1438. struct d40_interrupt_lookup *il = base->gen_dmac.il;
  1439. u32 il_size = base->gen_dmac.il_size;
  1440. spin_lock_irqsave(&base->interrupt_lock, flags);
  1441. /* Read interrupt status of both logical and physical channels */
  1442. for (i = 0; i < il_size; i++)
  1443. regs[i] = readl(base->virtbase + il[i].src);
  1444. for (;;) {
  1445. chan = find_next_bit((unsigned long *)regs,
  1446. BITS_PER_LONG * il_size, chan + 1);
  1447. /* No more set bits found? */
  1448. if (chan == BITS_PER_LONG * il_size)
  1449. break;
  1450. row = chan / BITS_PER_LONG;
  1451. idx = chan & (BITS_PER_LONG - 1);
  1452. if (il[row].offset == D40_PHY_CHAN)
  1453. d40c = base->lookup_phy_chans[idx];
  1454. else
  1455. d40c = base->lookup_log_chans[il[row].offset + idx];
  1456. if (!d40c) {
  1457. /*
  1458. * No error because this can happen if something else
  1459. * in the system is using the channel.
  1460. */
  1461. continue;
  1462. }
  1463. /* ACK interrupt */
  1464. writel(1 << idx, base->virtbase + il[row].clr);
  1465. spin_lock(&d40c->lock);
  1466. if (!il[row].is_error)
  1467. dma_tc_handle(d40c);
  1468. else
  1469. d40_err(base->dev, "IRQ chan: %ld offset %d idx %d\n",
  1470. chan, il[row].offset, idx);
  1471. spin_unlock(&d40c->lock);
  1472. }
  1473. spin_unlock_irqrestore(&base->interrupt_lock, flags);
  1474. return IRQ_HANDLED;
  1475. }
  1476. static int d40_validate_conf(struct d40_chan *d40c,
  1477. struct stedma40_chan_cfg *conf)
  1478. {
  1479. int res = 0;
  1480. bool is_log = conf->mode == STEDMA40_MODE_LOGICAL;
  1481. if (!conf->dir) {
  1482. chan_err(d40c, "Invalid direction.\n");
  1483. res = -EINVAL;
  1484. }
  1485. if ((is_log && conf->dev_type > d40c->base->num_log_chans) ||
  1486. (!is_log && conf->dev_type > d40c->base->num_phy_chans) ||
  1487. (conf->dev_type < 0)) {
  1488. chan_err(d40c, "Invalid device type (%d)\n", conf->dev_type);
  1489. res = -EINVAL;
  1490. }
  1491. if (conf->dir == STEDMA40_MEM_TO_PERIPH &&
  1492. d40c->base->plat_data->dev_tx[conf->dev_type] == 0 &&
  1493. d40c->runtime_addr == 0) {
  1494. chan_err(d40c, "Invalid TX channel address (%d)\n",
  1495. conf->dev_type);
  1496. res = -EINVAL;
  1497. }
  1498. if (conf->dir == STEDMA40_PERIPH_TO_MEM &&
  1499. d40c->base->plat_data->dev_rx[conf->dev_type] == 0 &&
  1500. d40c->runtime_addr == 0) {
  1501. chan_err(d40c, "Invalid RX channel address (%d)\n",
  1502. conf->dev_type);
  1503. res = -EINVAL;
  1504. }
  1505. if (conf->dir == STEDMA40_PERIPH_TO_PERIPH) {
  1506. /*
  1507. * DMAC HW supports it. Will be added to this driver,
  1508. * in case any dma client requires it.
  1509. */
  1510. chan_err(d40c, "periph to periph not supported\n");
  1511. res = -EINVAL;
  1512. }
  1513. if (d40_psize_2_burst_size(is_log, conf->src_info.psize) *
  1514. (1 << conf->src_info.data_width) !=
  1515. d40_psize_2_burst_size(is_log, conf->dst_info.psize) *
  1516. (1 << conf->dst_info.data_width)) {
  1517. /*
  1518. * The DMAC hardware only supports
  1519. * src (burst x width) == dst (burst x width)
  1520. */
  1521. chan_err(d40c, "src (burst x width) != dst (burst x width)\n");
  1522. res = -EINVAL;
  1523. }
  1524. return res;
  1525. }
  1526. static bool d40_alloc_mask_set(struct d40_phy_res *phy,
  1527. bool is_src, int log_event_line, bool is_log,
  1528. bool *first_user)
  1529. {
  1530. unsigned long flags;
  1531. spin_lock_irqsave(&phy->lock, flags);
  1532. *first_user = ((phy->allocated_src | phy->allocated_dst)
  1533. == D40_ALLOC_FREE);
  1534. if (!is_log) {
  1535. /* Physical interrupts are masked per physical full channel */
  1536. if (phy->allocated_src == D40_ALLOC_FREE &&
  1537. phy->allocated_dst == D40_ALLOC_FREE) {
  1538. phy->allocated_dst = D40_ALLOC_PHY;
  1539. phy->allocated_src = D40_ALLOC_PHY;
  1540. goto found;
  1541. } else
  1542. goto not_found;
  1543. }
  1544. /* Logical channel */
  1545. if (is_src) {
  1546. if (phy->allocated_src == D40_ALLOC_PHY)
  1547. goto not_found;
  1548. if (phy->allocated_src == D40_ALLOC_FREE)
  1549. phy->allocated_src = D40_ALLOC_LOG_FREE;
  1550. if (!(phy->allocated_src & (1 << log_event_line))) {
  1551. phy->allocated_src |= 1 << log_event_line;
  1552. goto found;
  1553. } else
  1554. goto not_found;
  1555. } else {
  1556. if (phy->allocated_dst == D40_ALLOC_PHY)
  1557. goto not_found;
  1558. if (phy->allocated_dst == D40_ALLOC_FREE)
  1559. phy->allocated_dst = D40_ALLOC_LOG_FREE;
  1560. if (!(phy->allocated_dst & (1 << log_event_line))) {
  1561. phy->allocated_dst |= 1 << log_event_line;
  1562. goto found;
  1563. } else
  1564. goto not_found;
  1565. }
  1566. not_found:
  1567. spin_unlock_irqrestore(&phy->lock, flags);
  1568. return false;
  1569. found:
  1570. spin_unlock_irqrestore(&phy->lock, flags);
  1571. return true;
  1572. }
  1573. static bool d40_alloc_mask_free(struct d40_phy_res *phy, bool is_src,
  1574. int log_event_line)
  1575. {
  1576. unsigned long flags;
  1577. bool is_free = false;
  1578. spin_lock_irqsave(&phy->lock, flags);
  1579. if (!log_event_line) {
  1580. phy->allocated_dst = D40_ALLOC_FREE;
  1581. phy->allocated_src = D40_ALLOC_FREE;
  1582. is_free = true;
  1583. goto out;
  1584. }
  1585. /* Logical channel */
  1586. if (is_src) {
  1587. phy->allocated_src &= ~(1 << log_event_line);
  1588. if (phy->allocated_src == D40_ALLOC_LOG_FREE)
  1589. phy->allocated_src = D40_ALLOC_FREE;
  1590. } else {
  1591. phy->allocated_dst &= ~(1 << log_event_line);
  1592. if (phy->allocated_dst == D40_ALLOC_LOG_FREE)
  1593. phy->allocated_dst = D40_ALLOC_FREE;
  1594. }
  1595. is_free = ((phy->allocated_src | phy->allocated_dst) ==
  1596. D40_ALLOC_FREE);
  1597. out:
  1598. spin_unlock_irqrestore(&phy->lock, flags);
  1599. return is_free;
  1600. }
  1601. static int d40_allocate_channel(struct d40_chan *d40c, bool *first_phy_user)
  1602. {
  1603. int dev_type = d40c->dma_cfg.dev_type;
  1604. int event_group;
  1605. int event_line;
  1606. struct d40_phy_res *phys;
  1607. int i;
  1608. int j;
  1609. int log_num;
  1610. int num_phy_chans;
  1611. bool is_src;
  1612. bool is_log = d40c->dma_cfg.mode == STEDMA40_MODE_LOGICAL;
  1613. phys = d40c->base->phy_res;
  1614. num_phy_chans = d40c->base->num_phy_chans;
  1615. if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) {
  1616. log_num = 2 * dev_type;
  1617. is_src = true;
  1618. } else if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_PERIPH ||
  1619. d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) {
  1620. /* dst event lines are used for logical memcpy */
  1621. log_num = 2 * dev_type + 1;
  1622. is_src = false;
  1623. } else
  1624. return -EINVAL;
  1625. event_group = D40_TYPE_TO_GROUP(dev_type);
  1626. event_line = D40_TYPE_TO_EVENT(dev_type);
  1627. if (!is_log) {
  1628. if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) {
  1629. /* Find physical half channel */
  1630. if (d40c->dma_cfg.use_fixed_channel) {
  1631. i = d40c->dma_cfg.phy_channel;
  1632. if (d40_alloc_mask_set(&phys[i], is_src,
  1633. 0, is_log,
  1634. first_phy_user))
  1635. goto found_phy;
  1636. } else {
  1637. for (i = 0; i < num_phy_chans; i++) {
  1638. if (d40_alloc_mask_set(&phys[i], is_src,
  1639. 0, is_log,
  1640. first_phy_user))
  1641. goto found_phy;
  1642. }
  1643. }
  1644. } else
  1645. for (j = 0; j < d40c->base->num_phy_chans; j += 8) {
  1646. int phy_num = j + event_group * 2;
  1647. for (i = phy_num; i < phy_num + 2; i++) {
  1648. if (d40_alloc_mask_set(&phys[i],
  1649. is_src,
  1650. 0,
  1651. is_log,
  1652. first_phy_user))
  1653. goto found_phy;
  1654. }
  1655. }
  1656. return -EINVAL;
  1657. found_phy:
  1658. d40c->phy_chan = &phys[i];
  1659. d40c->log_num = D40_PHY_CHAN;
  1660. goto out;
  1661. }
  1662. if (dev_type == -1)
  1663. return -EINVAL;
  1664. /* Find logical channel */
  1665. for (j = 0; j < d40c->base->num_phy_chans; j += 8) {
  1666. int phy_num = j + event_group * 2;
  1667. if (d40c->dma_cfg.use_fixed_channel) {
  1668. i = d40c->dma_cfg.phy_channel;
  1669. if ((i != phy_num) && (i != phy_num + 1)) {
  1670. dev_err(chan2dev(d40c),
  1671. "invalid fixed phy channel %d\n", i);
  1672. return -EINVAL;
  1673. }
  1674. if (d40_alloc_mask_set(&phys[i], is_src, event_line,
  1675. is_log, first_phy_user))
  1676. goto found_log;
  1677. dev_err(chan2dev(d40c),
  1678. "could not allocate fixed phy channel %d\n", i);
  1679. return -EINVAL;
  1680. }
  1681. /*
  1682. * Spread logical channels across all available physical rather
  1683. * than pack every logical channel at the first available phy
  1684. * channels.
  1685. */
  1686. if (is_src) {
  1687. for (i = phy_num; i < phy_num + 2; i++) {
  1688. if (d40_alloc_mask_set(&phys[i], is_src,
  1689. event_line, is_log,
  1690. first_phy_user))
  1691. goto found_log;
  1692. }
  1693. } else {
  1694. for (i = phy_num + 1; i >= phy_num; i--) {
  1695. if (d40_alloc_mask_set(&phys[i], is_src,
  1696. event_line, is_log,
  1697. first_phy_user))
  1698. goto found_log;
  1699. }
  1700. }
  1701. }
  1702. return -EINVAL;
  1703. found_log:
  1704. d40c->phy_chan = &phys[i];
  1705. d40c->log_num = log_num;
  1706. out:
  1707. if (is_log)
  1708. d40c->base->lookup_log_chans[d40c->log_num] = d40c;
  1709. else
  1710. d40c->base->lookup_phy_chans[d40c->phy_chan->num] = d40c;
  1711. return 0;
  1712. }
  1713. static int d40_config_memcpy(struct d40_chan *d40c)
  1714. {
  1715. dma_cap_mask_t cap = d40c->chan.device->cap_mask;
  1716. if (dma_has_cap(DMA_MEMCPY, cap) && !dma_has_cap(DMA_SLAVE, cap)) {
  1717. d40c->dma_cfg = dma40_memcpy_conf_log;
  1718. d40c->dma_cfg.dev_type = dma40_memcpy_channels[d40c->chan.chan_id];
  1719. } else if (dma_has_cap(DMA_MEMCPY, cap) &&
  1720. dma_has_cap(DMA_SLAVE, cap)) {
  1721. d40c->dma_cfg = dma40_memcpy_conf_phy;
  1722. } else {
  1723. chan_err(d40c, "No memcpy\n");
  1724. return -EINVAL;
  1725. }
  1726. return 0;
  1727. }
  1728. static int d40_free_dma(struct d40_chan *d40c)
  1729. {
  1730. int res = 0;
  1731. u32 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dev_type);
  1732. struct d40_phy_res *phy = d40c->phy_chan;
  1733. bool is_src;
  1734. /* Terminate all queued and active transfers */
  1735. d40_term_all(d40c);
  1736. if (phy == NULL) {
  1737. chan_err(d40c, "phy == null\n");
  1738. return -EINVAL;
  1739. }
  1740. if (phy->allocated_src == D40_ALLOC_FREE &&
  1741. phy->allocated_dst == D40_ALLOC_FREE) {
  1742. chan_err(d40c, "channel already free\n");
  1743. return -EINVAL;
  1744. }
  1745. if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_PERIPH ||
  1746. d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM)
  1747. is_src = false;
  1748. else if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM)
  1749. is_src = true;
  1750. else {
  1751. chan_err(d40c, "Unknown direction\n");
  1752. return -EINVAL;
  1753. }
  1754. pm_runtime_get_sync(d40c->base->dev);
  1755. res = d40_channel_execute_command(d40c, D40_DMA_STOP);
  1756. if (res) {
  1757. chan_err(d40c, "stop failed\n");
  1758. goto out;
  1759. }
  1760. d40_alloc_mask_free(phy, is_src, chan_is_logical(d40c) ? event : 0);
  1761. if (chan_is_logical(d40c))
  1762. d40c->base->lookup_log_chans[d40c->log_num] = NULL;
  1763. else
  1764. d40c->base->lookup_phy_chans[phy->num] = NULL;
  1765. if (d40c->busy) {
  1766. pm_runtime_mark_last_busy(d40c->base->dev);
  1767. pm_runtime_put_autosuspend(d40c->base->dev);
  1768. }
  1769. d40c->busy = false;
  1770. d40c->phy_chan = NULL;
  1771. d40c->configured = false;
  1772. out:
  1773. pm_runtime_mark_last_busy(d40c->base->dev);
  1774. pm_runtime_put_autosuspend(d40c->base->dev);
  1775. return res;
  1776. }
  1777. static bool d40_is_paused(struct d40_chan *d40c)
  1778. {
  1779. void __iomem *chanbase = chan_base(d40c);
  1780. bool is_paused = false;
  1781. unsigned long flags;
  1782. void __iomem *active_reg;
  1783. u32 status;
  1784. u32 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dev_type);
  1785. spin_lock_irqsave(&d40c->lock, flags);
  1786. if (chan_is_physical(d40c)) {
  1787. if (d40c->phy_chan->num % 2 == 0)
  1788. active_reg = d40c->base->virtbase + D40_DREG_ACTIVE;
  1789. else
  1790. active_reg = d40c->base->virtbase + D40_DREG_ACTIVO;
  1791. status = (readl(active_reg) &
  1792. D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
  1793. D40_CHAN_POS(d40c->phy_chan->num);
  1794. if (status == D40_DMA_SUSPENDED || status == D40_DMA_STOP)
  1795. is_paused = true;
  1796. goto _exit;
  1797. }
  1798. if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_PERIPH ||
  1799. d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) {
  1800. status = readl(chanbase + D40_CHAN_REG_SDLNK);
  1801. } else if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) {
  1802. status = readl(chanbase + D40_CHAN_REG_SSLNK);
  1803. } else {
  1804. chan_err(d40c, "Unknown direction\n");
  1805. goto _exit;
  1806. }
  1807. status = (status & D40_EVENTLINE_MASK(event)) >>
  1808. D40_EVENTLINE_POS(event);
  1809. if (status != D40_DMA_RUN)
  1810. is_paused = true;
  1811. _exit:
  1812. spin_unlock_irqrestore(&d40c->lock, flags);
  1813. return is_paused;
  1814. }
  1815. static u32 stedma40_residue(struct dma_chan *chan)
  1816. {
  1817. struct d40_chan *d40c =
  1818. container_of(chan, struct d40_chan, chan);
  1819. u32 bytes_left;
  1820. unsigned long flags;
  1821. spin_lock_irqsave(&d40c->lock, flags);
  1822. bytes_left = d40_residue(d40c);
  1823. spin_unlock_irqrestore(&d40c->lock, flags);
  1824. return bytes_left;
  1825. }
  1826. static int
  1827. d40_prep_sg_log(struct d40_chan *chan, struct d40_desc *desc,
  1828. struct scatterlist *sg_src, struct scatterlist *sg_dst,
  1829. unsigned int sg_len, dma_addr_t src_dev_addr,
  1830. dma_addr_t dst_dev_addr)
  1831. {
  1832. struct stedma40_chan_cfg *cfg = &chan->dma_cfg;
  1833. struct stedma40_half_channel_info *src_info = &cfg->src_info;
  1834. struct stedma40_half_channel_info *dst_info = &cfg->dst_info;
  1835. int ret;
  1836. ret = d40_log_sg_to_lli(sg_src, sg_len,
  1837. src_dev_addr,
  1838. desc->lli_log.src,
  1839. chan->log_def.lcsp1,
  1840. src_info->data_width,
  1841. dst_info->data_width);
  1842. ret = d40_log_sg_to_lli(sg_dst, sg_len,
  1843. dst_dev_addr,
  1844. desc->lli_log.dst,
  1845. chan->log_def.lcsp3,
  1846. dst_info->data_width,
  1847. src_info->data_width);
  1848. return ret < 0 ? ret : 0;
  1849. }
  1850. static int
  1851. d40_prep_sg_phy(struct d40_chan *chan, struct d40_desc *desc,
  1852. struct scatterlist *sg_src, struct scatterlist *sg_dst,
  1853. unsigned int sg_len, dma_addr_t src_dev_addr,
  1854. dma_addr_t dst_dev_addr)
  1855. {
  1856. struct stedma40_chan_cfg *cfg = &chan->dma_cfg;
  1857. struct stedma40_half_channel_info *src_info = &cfg->src_info;
  1858. struct stedma40_half_channel_info *dst_info = &cfg->dst_info;
  1859. unsigned long flags = 0;
  1860. int ret;
  1861. if (desc->cyclic)
  1862. flags |= LLI_CYCLIC | LLI_TERM_INT;
  1863. ret = d40_phy_sg_to_lli(sg_src, sg_len, src_dev_addr,
  1864. desc->lli_phy.src,
  1865. virt_to_phys(desc->lli_phy.src),
  1866. chan->src_def_cfg,
  1867. src_info, dst_info, flags);
  1868. ret = d40_phy_sg_to_lli(sg_dst, sg_len, dst_dev_addr,
  1869. desc->lli_phy.dst,
  1870. virt_to_phys(desc->lli_phy.dst),
  1871. chan->dst_def_cfg,
  1872. dst_info, src_info, flags);
  1873. dma_sync_single_for_device(chan->base->dev, desc->lli_pool.dma_addr,
  1874. desc->lli_pool.size, DMA_TO_DEVICE);
  1875. return ret < 0 ? ret : 0;
  1876. }
  1877. static struct d40_desc *
  1878. d40_prep_desc(struct d40_chan *chan, struct scatterlist *sg,
  1879. unsigned int sg_len, unsigned long dma_flags)
  1880. {
  1881. struct stedma40_chan_cfg *cfg = &chan->dma_cfg;
  1882. struct d40_desc *desc;
  1883. int ret;
  1884. desc = d40_desc_get(chan);
  1885. if (!desc)
  1886. return NULL;
  1887. desc->lli_len = d40_sg_2_dmalen(sg, sg_len, cfg->src_info.data_width,
  1888. cfg->dst_info.data_width);
  1889. if (desc->lli_len < 0) {
  1890. chan_err(chan, "Unaligned size\n");
  1891. goto err;
  1892. }
  1893. ret = d40_pool_lli_alloc(chan, desc, desc->lli_len);
  1894. if (ret < 0) {
  1895. chan_err(chan, "Could not allocate lli\n");
  1896. goto err;
  1897. }
  1898. desc->lli_current = 0;
  1899. desc->txd.flags = dma_flags;
  1900. desc->txd.tx_submit = d40_tx_submit;
  1901. dma_async_tx_descriptor_init(&desc->txd, &chan->chan);
  1902. return desc;
  1903. err:
  1904. d40_desc_free(chan, desc);
  1905. return NULL;
  1906. }
  1907. static dma_addr_t
  1908. d40_get_dev_addr(struct d40_chan *chan, enum dma_transfer_direction direction)
  1909. {
  1910. struct stedma40_platform_data *plat = chan->base->plat_data;
  1911. struct stedma40_chan_cfg *cfg = &chan->dma_cfg;
  1912. dma_addr_t addr = 0;
  1913. if (chan->runtime_addr)
  1914. return chan->runtime_addr;
  1915. if (direction == DMA_DEV_TO_MEM)
  1916. addr = plat->dev_rx[cfg->dev_type];
  1917. else if (direction == DMA_MEM_TO_DEV)
  1918. addr = plat->dev_tx[cfg->dev_type];
  1919. return addr;
  1920. }
  1921. static struct dma_async_tx_descriptor *
  1922. d40_prep_sg(struct dma_chan *dchan, struct scatterlist *sg_src,
  1923. struct scatterlist *sg_dst, unsigned int sg_len,
  1924. enum dma_transfer_direction direction, unsigned long dma_flags)
  1925. {
  1926. struct d40_chan *chan = container_of(dchan, struct d40_chan, chan);
  1927. dma_addr_t src_dev_addr = 0;
  1928. dma_addr_t dst_dev_addr = 0;
  1929. struct d40_desc *desc;
  1930. unsigned long flags;
  1931. int ret;
  1932. if (!chan->phy_chan) {
  1933. chan_err(chan, "Cannot prepare unallocated channel\n");
  1934. return NULL;
  1935. }
  1936. spin_lock_irqsave(&chan->lock, flags);
  1937. desc = d40_prep_desc(chan, sg_src, sg_len, dma_flags);
  1938. if (desc == NULL)
  1939. goto err;
  1940. if (sg_next(&sg_src[sg_len - 1]) == sg_src)
  1941. desc->cyclic = true;
  1942. if (direction != DMA_TRANS_NONE) {
  1943. dma_addr_t dev_addr = d40_get_dev_addr(chan, direction);
  1944. if (direction == DMA_DEV_TO_MEM)
  1945. src_dev_addr = dev_addr;
  1946. else if (direction == DMA_MEM_TO_DEV)
  1947. dst_dev_addr = dev_addr;
  1948. }
  1949. if (chan_is_logical(chan))
  1950. ret = d40_prep_sg_log(chan, desc, sg_src, sg_dst,
  1951. sg_len, src_dev_addr, dst_dev_addr);
  1952. else
  1953. ret = d40_prep_sg_phy(chan, desc, sg_src, sg_dst,
  1954. sg_len, src_dev_addr, dst_dev_addr);
  1955. if (ret) {
  1956. chan_err(chan, "Failed to prepare %s sg job: %d\n",
  1957. chan_is_logical(chan) ? "log" : "phy", ret);
  1958. goto err;
  1959. }
  1960. /*
  1961. * add descriptor to the prepare queue in order to be able
  1962. * to free them later in terminate_all
  1963. */
  1964. list_add_tail(&desc->node, &chan->prepare_queue);
  1965. spin_unlock_irqrestore(&chan->lock, flags);
  1966. return &desc->txd;
  1967. err:
  1968. if (desc)
  1969. d40_desc_free(chan, desc);
  1970. spin_unlock_irqrestore(&chan->lock, flags);
  1971. return NULL;
  1972. }
  1973. bool stedma40_filter(struct dma_chan *chan, void *data)
  1974. {
  1975. struct stedma40_chan_cfg *info = data;
  1976. struct d40_chan *d40c =
  1977. container_of(chan, struct d40_chan, chan);
  1978. int err;
  1979. if (data) {
  1980. err = d40_validate_conf(d40c, info);
  1981. if (!err)
  1982. d40c->dma_cfg = *info;
  1983. } else
  1984. err = d40_config_memcpy(d40c);
  1985. if (!err)
  1986. d40c->configured = true;
  1987. return err == 0;
  1988. }
  1989. EXPORT_SYMBOL(stedma40_filter);
  1990. static void __d40_set_prio_rt(struct d40_chan *d40c, int dev_type, bool src)
  1991. {
  1992. bool realtime = d40c->dma_cfg.realtime;
  1993. bool highprio = d40c->dma_cfg.high_priority;
  1994. u32 rtreg;
  1995. u32 event = D40_TYPE_TO_EVENT(dev_type);
  1996. u32 group = D40_TYPE_TO_GROUP(dev_type);
  1997. u32 bit = 1 << event;
  1998. u32 prioreg;
  1999. struct d40_gen_dmac *dmac = &d40c->base->gen_dmac;
  2000. rtreg = realtime ? dmac->realtime_en : dmac->realtime_clear;
  2001. /*
  2002. * Due to a hardware bug, in some cases a logical channel triggered by
  2003. * a high priority destination event line can generate extra packet
  2004. * transactions.
  2005. *
  2006. * The workaround is to not set the high priority level for the
  2007. * destination event lines that trigger logical channels.
  2008. */
  2009. if (!src && chan_is_logical(d40c))
  2010. highprio = false;
  2011. prioreg = highprio ? dmac->high_prio_en : dmac->high_prio_clear;
  2012. /* Destination event lines are stored in the upper halfword */
  2013. if (!src)
  2014. bit <<= 16;
  2015. writel(bit, d40c->base->virtbase + prioreg + group * 4);
  2016. writel(bit, d40c->base->virtbase + rtreg + group * 4);
  2017. }
  2018. static void d40_set_prio_realtime(struct d40_chan *d40c)
  2019. {
  2020. if (d40c->base->rev < 3)
  2021. return;
  2022. if ((d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) ||
  2023. (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_PERIPH))
  2024. __d40_set_prio_rt(d40c, d40c->dma_cfg.dev_type, true);
  2025. if ((d40c->dma_cfg.dir == STEDMA40_MEM_TO_PERIPH) ||
  2026. (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_PERIPH))
  2027. __d40_set_prio_rt(d40c, d40c->dma_cfg.dev_type, false);
  2028. }
  2029. /* DMA ENGINE functions */
  2030. static int d40_alloc_chan_resources(struct dma_chan *chan)
  2031. {
  2032. int err;
  2033. unsigned long flags;
  2034. struct d40_chan *d40c =
  2035. container_of(chan, struct d40_chan, chan);
  2036. bool is_free_phy;
  2037. spin_lock_irqsave(&d40c->lock, flags);
  2038. dma_cookie_init(chan);
  2039. /* If no dma configuration is set use default configuration (memcpy) */
  2040. if (!d40c->configured) {
  2041. err = d40_config_memcpy(d40c);
  2042. if (err) {
  2043. chan_err(d40c, "Failed to configure memcpy channel\n");
  2044. goto fail;
  2045. }
  2046. }
  2047. err = d40_allocate_channel(d40c, &is_free_phy);
  2048. if (err) {
  2049. chan_err(d40c, "Failed to allocate channel\n");
  2050. d40c->configured = false;
  2051. goto fail;
  2052. }
  2053. pm_runtime_get_sync(d40c->base->dev);
  2054. /* Fill in basic CFG register values */
  2055. d40_phy_cfg(&d40c->dma_cfg, &d40c->src_def_cfg,
  2056. &d40c->dst_def_cfg, chan_is_logical(d40c));
  2057. d40_set_prio_realtime(d40c);
  2058. if (chan_is_logical(d40c)) {
  2059. d40_log_cfg(&d40c->dma_cfg,
  2060. &d40c->log_def.lcsp1, &d40c->log_def.lcsp3);
  2061. if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM)
  2062. d40c->lcpa = d40c->base->lcpa_base +
  2063. d40c->dma_cfg.dev_type * D40_LCPA_CHAN_SIZE;
  2064. else
  2065. d40c->lcpa = d40c->base->lcpa_base +
  2066. d40c->dma_cfg.dev_type *
  2067. D40_LCPA_CHAN_SIZE + D40_LCPA_CHAN_DST_DELTA;
  2068. }
  2069. dev_dbg(chan2dev(d40c), "allocated %s channel (phy %d%s)\n",
  2070. chan_is_logical(d40c) ? "logical" : "physical",
  2071. d40c->phy_chan->num,
  2072. d40c->dma_cfg.use_fixed_channel ? ", fixed" : "");
  2073. /*
  2074. * Only write channel configuration to the DMA if the physical
  2075. * resource is free. In case of multiple logical channels
  2076. * on the same physical resource, only the first write is necessary.
  2077. */
  2078. if (is_free_phy)
  2079. d40_config_write(d40c);
  2080. fail:
  2081. pm_runtime_mark_last_busy(d40c->base->dev);
  2082. pm_runtime_put_autosuspend(d40c->base->dev);
  2083. spin_unlock_irqrestore(&d40c->lock, flags);
  2084. return err;
  2085. }
  2086. static void d40_free_chan_resources(struct dma_chan *chan)
  2087. {
  2088. struct d40_chan *d40c =
  2089. container_of(chan, struct d40_chan, chan);
  2090. int err;
  2091. unsigned long flags;
  2092. if (d40c->phy_chan == NULL) {
  2093. chan_err(d40c, "Cannot free unallocated channel\n");
  2094. return;
  2095. }
  2096. spin_lock_irqsave(&d40c->lock, flags);
  2097. err = d40_free_dma(d40c);
  2098. if (err)
  2099. chan_err(d40c, "Failed to free channel\n");
  2100. spin_unlock_irqrestore(&d40c->lock, flags);
  2101. }
  2102. static struct dma_async_tx_descriptor *d40_prep_memcpy(struct dma_chan *chan,
  2103. dma_addr_t dst,
  2104. dma_addr_t src,
  2105. size_t size,
  2106. unsigned long dma_flags)
  2107. {
  2108. struct scatterlist dst_sg;
  2109. struct scatterlist src_sg;
  2110. sg_init_table(&dst_sg, 1);
  2111. sg_init_table(&src_sg, 1);
  2112. sg_dma_address(&dst_sg) = dst;
  2113. sg_dma_address(&src_sg) = src;
  2114. sg_dma_len(&dst_sg) = size;
  2115. sg_dma_len(&src_sg) = size;
  2116. return d40_prep_sg(chan, &src_sg, &dst_sg, 1, DMA_NONE, dma_flags);
  2117. }
  2118. static struct dma_async_tx_descriptor *
  2119. d40_prep_memcpy_sg(struct dma_chan *chan,
  2120. struct scatterlist *dst_sg, unsigned int dst_nents,
  2121. struct scatterlist *src_sg, unsigned int src_nents,
  2122. unsigned long dma_flags)
  2123. {
  2124. if (dst_nents != src_nents)
  2125. return NULL;
  2126. return d40_prep_sg(chan, src_sg, dst_sg, src_nents, DMA_NONE, dma_flags);
  2127. }
  2128. static struct dma_async_tx_descriptor *
  2129. d40_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl,
  2130. unsigned int sg_len, enum dma_transfer_direction direction,
  2131. unsigned long dma_flags, void *context)
  2132. {
  2133. if (!is_slave_direction(direction))
  2134. return NULL;
  2135. return d40_prep_sg(chan, sgl, sgl, sg_len, direction, dma_flags);
  2136. }
  2137. static struct dma_async_tx_descriptor *
  2138. dma40_prep_dma_cyclic(struct dma_chan *chan, dma_addr_t dma_addr,
  2139. size_t buf_len, size_t period_len,
  2140. enum dma_transfer_direction direction, unsigned long flags,
  2141. void *context)
  2142. {
  2143. unsigned int periods = buf_len / period_len;
  2144. struct dma_async_tx_descriptor *txd;
  2145. struct scatterlist *sg;
  2146. int i;
  2147. sg = kcalloc(periods + 1, sizeof(struct scatterlist), GFP_NOWAIT);
  2148. for (i = 0; i < periods; i++) {
  2149. sg_dma_address(&sg[i]) = dma_addr;
  2150. sg_dma_len(&sg[i]) = period_len;
  2151. dma_addr += period_len;
  2152. }
  2153. sg[periods].offset = 0;
  2154. sg_dma_len(&sg[periods]) = 0;
  2155. sg[periods].page_link =
  2156. ((unsigned long)sg | 0x01) & ~0x02;
  2157. txd = d40_prep_sg(chan, sg, sg, periods, direction,
  2158. DMA_PREP_INTERRUPT);
  2159. kfree(sg);
  2160. return txd;
  2161. }
  2162. static enum dma_status d40_tx_status(struct dma_chan *chan,
  2163. dma_cookie_t cookie,
  2164. struct dma_tx_state *txstate)
  2165. {
  2166. struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
  2167. enum dma_status ret;
  2168. if (d40c->phy_chan == NULL) {
  2169. chan_err(d40c, "Cannot read status of unallocated channel\n");
  2170. return -EINVAL;
  2171. }
  2172. ret = dma_cookie_status(chan, cookie, txstate);
  2173. if (ret != DMA_SUCCESS)
  2174. dma_set_residue(txstate, stedma40_residue(chan));
  2175. if (d40_is_paused(d40c))
  2176. ret = DMA_PAUSED;
  2177. return ret;
  2178. }
  2179. static void d40_issue_pending(struct dma_chan *chan)
  2180. {
  2181. struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
  2182. unsigned long flags;
  2183. if (d40c->phy_chan == NULL) {
  2184. chan_err(d40c, "Channel is not allocated!\n");
  2185. return;
  2186. }
  2187. spin_lock_irqsave(&d40c->lock, flags);
  2188. list_splice_tail_init(&d40c->pending_queue, &d40c->queue);
  2189. /* Busy means that queued jobs are already being processed */
  2190. if (!d40c->busy)
  2191. (void) d40_queue_start(d40c);
  2192. spin_unlock_irqrestore(&d40c->lock, flags);
  2193. }
  2194. static void d40_terminate_all(struct dma_chan *chan)
  2195. {
  2196. unsigned long flags;
  2197. struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
  2198. int ret;
  2199. spin_lock_irqsave(&d40c->lock, flags);
  2200. pm_runtime_get_sync(d40c->base->dev);
  2201. ret = d40_channel_execute_command(d40c, D40_DMA_STOP);
  2202. if (ret)
  2203. chan_err(d40c, "Failed to stop channel\n");
  2204. d40_term_all(d40c);
  2205. pm_runtime_mark_last_busy(d40c->base->dev);
  2206. pm_runtime_put_autosuspend(d40c->base->dev);
  2207. if (d40c->busy) {
  2208. pm_runtime_mark_last_busy(d40c->base->dev);
  2209. pm_runtime_put_autosuspend(d40c->base->dev);
  2210. }
  2211. d40c->busy = false;
  2212. spin_unlock_irqrestore(&d40c->lock, flags);
  2213. }
  2214. static int
  2215. dma40_config_to_halfchannel(struct d40_chan *d40c,
  2216. struct stedma40_half_channel_info *info,
  2217. enum dma_slave_buswidth width,
  2218. u32 maxburst)
  2219. {
  2220. enum stedma40_periph_data_width addr_width;
  2221. int psize;
  2222. switch (width) {
  2223. case DMA_SLAVE_BUSWIDTH_1_BYTE:
  2224. addr_width = STEDMA40_BYTE_WIDTH;
  2225. break;
  2226. case DMA_SLAVE_BUSWIDTH_2_BYTES:
  2227. addr_width = STEDMA40_HALFWORD_WIDTH;
  2228. break;
  2229. case DMA_SLAVE_BUSWIDTH_4_BYTES:
  2230. addr_width = STEDMA40_WORD_WIDTH;
  2231. break;
  2232. case DMA_SLAVE_BUSWIDTH_8_BYTES:
  2233. addr_width = STEDMA40_DOUBLEWORD_WIDTH;
  2234. break;
  2235. default:
  2236. dev_err(d40c->base->dev,
  2237. "illegal peripheral address width "
  2238. "requested (%d)\n",
  2239. width);
  2240. return -EINVAL;
  2241. }
  2242. if (chan_is_logical(d40c)) {
  2243. if (maxburst >= 16)
  2244. psize = STEDMA40_PSIZE_LOG_16;
  2245. else if (maxburst >= 8)
  2246. psize = STEDMA40_PSIZE_LOG_8;
  2247. else if (maxburst >= 4)
  2248. psize = STEDMA40_PSIZE_LOG_4;
  2249. else
  2250. psize = STEDMA40_PSIZE_LOG_1;
  2251. } else {
  2252. if (maxburst >= 16)
  2253. psize = STEDMA40_PSIZE_PHY_16;
  2254. else if (maxburst >= 8)
  2255. psize = STEDMA40_PSIZE_PHY_8;
  2256. else if (maxburst >= 4)
  2257. psize = STEDMA40_PSIZE_PHY_4;
  2258. else
  2259. psize = STEDMA40_PSIZE_PHY_1;
  2260. }
  2261. info->data_width = addr_width;
  2262. info->psize = psize;
  2263. info->flow_ctrl = STEDMA40_NO_FLOW_CTRL;
  2264. return 0;
  2265. }
  2266. /* Runtime reconfiguration extension */
  2267. static int d40_set_runtime_config(struct dma_chan *chan,
  2268. struct dma_slave_config *config)
  2269. {
  2270. struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
  2271. struct stedma40_chan_cfg *cfg = &d40c->dma_cfg;
  2272. enum dma_slave_buswidth src_addr_width, dst_addr_width;
  2273. dma_addr_t config_addr;
  2274. u32 src_maxburst, dst_maxburst;
  2275. int ret;
  2276. src_addr_width = config->src_addr_width;
  2277. src_maxburst = config->src_maxburst;
  2278. dst_addr_width = config->dst_addr_width;
  2279. dst_maxburst = config->dst_maxburst;
  2280. if (config->direction == DMA_DEV_TO_MEM) {
  2281. dma_addr_t dev_addr_rx =
  2282. d40c->base->plat_data->dev_rx[cfg->dev_type];
  2283. config_addr = config->src_addr;
  2284. if (dev_addr_rx)
  2285. dev_dbg(d40c->base->dev,
  2286. "channel has a pre-wired RX address %08x "
  2287. "overriding with %08x\n",
  2288. dev_addr_rx, config_addr);
  2289. if (cfg->dir != STEDMA40_PERIPH_TO_MEM)
  2290. dev_dbg(d40c->base->dev,
  2291. "channel was not configured for peripheral "
  2292. "to memory transfer (%d) overriding\n",
  2293. cfg->dir);
  2294. cfg->dir = STEDMA40_PERIPH_TO_MEM;
  2295. /* Configure the memory side */
  2296. if (dst_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED)
  2297. dst_addr_width = src_addr_width;
  2298. if (dst_maxburst == 0)
  2299. dst_maxburst = src_maxburst;
  2300. } else if (config->direction == DMA_MEM_TO_DEV) {
  2301. dma_addr_t dev_addr_tx =
  2302. d40c->base->plat_data->dev_tx[cfg->dev_type];
  2303. config_addr = config->dst_addr;
  2304. if (dev_addr_tx)
  2305. dev_dbg(d40c->base->dev,
  2306. "channel has a pre-wired TX address %08x "
  2307. "overriding with %08x\n",
  2308. dev_addr_tx, config_addr);
  2309. if (cfg->dir != STEDMA40_MEM_TO_PERIPH)
  2310. dev_dbg(d40c->base->dev,
  2311. "channel was not configured for memory "
  2312. "to peripheral transfer (%d) overriding\n",
  2313. cfg->dir);
  2314. cfg->dir = STEDMA40_MEM_TO_PERIPH;
  2315. /* Configure the memory side */
  2316. if (src_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED)
  2317. src_addr_width = dst_addr_width;
  2318. if (src_maxburst == 0)
  2319. src_maxburst = dst_maxburst;
  2320. } else {
  2321. dev_err(d40c->base->dev,
  2322. "unrecognized channel direction %d\n",
  2323. config->direction);
  2324. return -EINVAL;
  2325. }
  2326. if (src_maxburst * src_addr_width != dst_maxburst * dst_addr_width) {
  2327. dev_err(d40c->base->dev,
  2328. "src/dst width/maxburst mismatch: %d*%d != %d*%d\n",
  2329. src_maxburst,
  2330. src_addr_width,
  2331. dst_maxburst,
  2332. dst_addr_width);
  2333. return -EINVAL;
  2334. }
  2335. if (src_maxburst > 16) {
  2336. src_maxburst = 16;
  2337. dst_maxburst = src_maxburst * src_addr_width / dst_addr_width;
  2338. } else if (dst_maxburst > 16) {
  2339. dst_maxburst = 16;
  2340. src_maxburst = dst_maxburst * dst_addr_width / src_addr_width;
  2341. }
  2342. ret = dma40_config_to_halfchannel(d40c, &cfg->src_info,
  2343. src_addr_width,
  2344. src_maxburst);
  2345. if (ret)
  2346. return ret;
  2347. ret = dma40_config_to_halfchannel(d40c, &cfg->dst_info,
  2348. dst_addr_width,
  2349. dst_maxburst);
  2350. if (ret)
  2351. return ret;
  2352. /* Fill in register values */
  2353. if (chan_is_logical(d40c))
  2354. d40_log_cfg(cfg, &d40c->log_def.lcsp1, &d40c->log_def.lcsp3);
  2355. else
  2356. d40_phy_cfg(cfg, &d40c->src_def_cfg,
  2357. &d40c->dst_def_cfg, false);
  2358. /* These settings will take precedence later */
  2359. d40c->runtime_addr = config_addr;
  2360. d40c->runtime_direction = config->direction;
  2361. dev_dbg(d40c->base->dev,
  2362. "configured channel %s for %s, data width %d/%d, "
  2363. "maxburst %d/%d elements, LE, no flow control\n",
  2364. dma_chan_name(chan),
  2365. (config->direction == DMA_DEV_TO_MEM) ? "RX" : "TX",
  2366. src_addr_width, dst_addr_width,
  2367. src_maxburst, dst_maxburst);
  2368. return 0;
  2369. }
  2370. static int d40_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd,
  2371. unsigned long arg)
  2372. {
  2373. struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
  2374. if (d40c->phy_chan == NULL) {
  2375. chan_err(d40c, "Channel is not allocated!\n");
  2376. return -EINVAL;
  2377. }
  2378. switch (cmd) {
  2379. case DMA_TERMINATE_ALL:
  2380. d40_terminate_all(chan);
  2381. return 0;
  2382. case DMA_PAUSE:
  2383. return d40_pause(d40c);
  2384. case DMA_RESUME:
  2385. return d40_resume(d40c);
  2386. case DMA_SLAVE_CONFIG:
  2387. return d40_set_runtime_config(chan,
  2388. (struct dma_slave_config *) arg);
  2389. default:
  2390. break;
  2391. }
  2392. /* Other commands are unimplemented */
  2393. return -ENXIO;
  2394. }
  2395. /* Initialization functions */
  2396. static void __init d40_chan_init(struct d40_base *base, struct dma_device *dma,
  2397. struct d40_chan *chans, int offset,
  2398. int num_chans)
  2399. {
  2400. int i = 0;
  2401. struct d40_chan *d40c;
  2402. INIT_LIST_HEAD(&dma->channels);
  2403. for (i = offset; i < offset + num_chans; i++) {
  2404. d40c = &chans[i];
  2405. d40c->base = base;
  2406. d40c->chan.device = dma;
  2407. spin_lock_init(&d40c->lock);
  2408. d40c->log_num = D40_PHY_CHAN;
  2409. INIT_LIST_HEAD(&d40c->done);
  2410. INIT_LIST_HEAD(&d40c->active);
  2411. INIT_LIST_HEAD(&d40c->queue);
  2412. INIT_LIST_HEAD(&d40c->pending_queue);
  2413. INIT_LIST_HEAD(&d40c->client);
  2414. INIT_LIST_HEAD(&d40c->prepare_queue);
  2415. tasklet_init(&d40c->tasklet, dma_tasklet,
  2416. (unsigned long) d40c);
  2417. list_add_tail(&d40c->chan.device_node,
  2418. &dma->channels);
  2419. }
  2420. }
  2421. static void d40_ops_init(struct d40_base *base, struct dma_device *dev)
  2422. {
  2423. if (dma_has_cap(DMA_SLAVE, dev->cap_mask))
  2424. dev->device_prep_slave_sg = d40_prep_slave_sg;
  2425. if (dma_has_cap(DMA_MEMCPY, dev->cap_mask)) {
  2426. dev->device_prep_dma_memcpy = d40_prep_memcpy;
  2427. /*
  2428. * This controller can only access address at even
  2429. * 32bit boundaries, i.e. 2^2
  2430. */
  2431. dev->copy_align = 2;
  2432. }
  2433. if (dma_has_cap(DMA_SG, dev->cap_mask))
  2434. dev->device_prep_dma_sg = d40_prep_memcpy_sg;
  2435. if (dma_has_cap(DMA_CYCLIC, dev->cap_mask))
  2436. dev->device_prep_dma_cyclic = dma40_prep_dma_cyclic;
  2437. dev->device_alloc_chan_resources = d40_alloc_chan_resources;
  2438. dev->device_free_chan_resources = d40_free_chan_resources;
  2439. dev->device_issue_pending = d40_issue_pending;
  2440. dev->device_tx_status = d40_tx_status;
  2441. dev->device_control = d40_control;
  2442. dev->dev = base->dev;
  2443. }
  2444. static int __init d40_dmaengine_init(struct d40_base *base,
  2445. int num_reserved_chans)
  2446. {
  2447. int err ;
  2448. d40_chan_init(base, &base->dma_slave, base->log_chans,
  2449. 0, base->num_log_chans);
  2450. dma_cap_zero(base->dma_slave.cap_mask);
  2451. dma_cap_set(DMA_SLAVE, base->dma_slave.cap_mask);
  2452. dma_cap_set(DMA_CYCLIC, base->dma_slave.cap_mask);
  2453. d40_ops_init(base, &base->dma_slave);
  2454. err = dma_async_device_register(&base->dma_slave);
  2455. if (err) {
  2456. d40_err(base->dev, "Failed to register slave channels\n");
  2457. goto failure1;
  2458. }
  2459. d40_chan_init(base, &base->dma_memcpy, base->log_chans,
  2460. base->num_log_chans, ARRAY_SIZE(dma40_memcpy_channels));
  2461. dma_cap_zero(base->dma_memcpy.cap_mask);
  2462. dma_cap_set(DMA_MEMCPY, base->dma_memcpy.cap_mask);
  2463. dma_cap_set(DMA_SG, base->dma_memcpy.cap_mask);
  2464. d40_ops_init(base, &base->dma_memcpy);
  2465. err = dma_async_device_register(&base->dma_memcpy);
  2466. if (err) {
  2467. d40_err(base->dev,
  2468. "Failed to regsiter memcpy only channels\n");
  2469. goto failure2;
  2470. }
  2471. d40_chan_init(base, &base->dma_both, base->phy_chans,
  2472. 0, num_reserved_chans);
  2473. dma_cap_zero(base->dma_both.cap_mask);
  2474. dma_cap_set(DMA_SLAVE, base->dma_both.cap_mask);
  2475. dma_cap_set(DMA_MEMCPY, base->dma_both.cap_mask);
  2476. dma_cap_set(DMA_SG, base->dma_both.cap_mask);
  2477. dma_cap_set(DMA_CYCLIC, base->dma_slave.cap_mask);
  2478. d40_ops_init(base, &base->dma_both);
  2479. err = dma_async_device_register(&base->dma_both);
  2480. if (err) {
  2481. d40_err(base->dev,
  2482. "Failed to register logical and physical capable channels\n");
  2483. goto failure3;
  2484. }
  2485. return 0;
  2486. failure3:
  2487. dma_async_device_unregister(&base->dma_memcpy);
  2488. failure2:
  2489. dma_async_device_unregister(&base->dma_slave);
  2490. failure1:
  2491. return err;
  2492. }
  2493. /* Suspend resume functionality */
  2494. #ifdef CONFIG_PM
  2495. static int dma40_pm_suspend(struct device *dev)
  2496. {
  2497. struct platform_device *pdev = to_platform_device(dev);
  2498. struct d40_base *base = platform_get_drvdata(pdev);
  2499. int ret = 0;
  2500. if (base->lcpa_regulator)
  2501. ret = regulator_disable(base->lcpa_regulator);
  2502. return ret;
  2503. }
  2504. static int dma40_runtime_suspend(struct device *dev)
  2505. {
  2506. struct platform_device *pdev = to_platform_device(dev);
  2507. struct d40_base *base = platform_get_drvdata(pdev);
  2508. d40_save_restore_registers(base, true);
  2509. /* Don't disable/enable clocks for v1 due to HW bugs */
  2510. if (base->rev != 1)
  2511. writel_relaxed(base->gcc_pwr_off_mask,
  2512. base->virtbase + D40_DREG_GCC);
  2513. return 0;
  2514. }
  2515. static int dma40_runtime_resume(struct device *dev)
  2516. {
  2517. struct platform_device *pdev = to_platform_device(dev);
  2518. struct d40_base *base = platform_get_drvdata(pdev);
  2519. if (base->initialized)
  2520. d40_save_restore_registers(base, false);
  2521. writel_relaxed(D40_DREG_GCC_ENABLE_ALL,
  2522. base->virtbase + D40_DREG_GCC);
  2523. return 0;
  2524. }
  2525. static int dma40_resume(struct device *dev)
  2526. {
  2527. struct platform_device *pdev = to_platform_device(dev);
  2528. struct d40_base *base = platform_get_drvdata(pdev);
  2529. int ret = 0;
  2530. if (base->lcpa_regulator)
  2531. ret = regulator_enable(base->lcpa_regulator);
  2532. return ret;
  2533. }
  2534. static const struct dev_pm_ops dma40_pm_ops = {
  2535. .suspend = dma40_pm_suspend,
  2536. .runtime_suspend = dma40_runtime_suspend,
  2537. .runtime_resume = dma40_runtime_resume,
  2538. .resume = dma40_resume,
  2539. };
  2540. #define DMA40_PM_OPS (&dma40_pm_ops)
  2541. #else
  2542. #define DMA40_PM_OPS NULL
  2543. #endif
  2544. /* Initialization functions. */
  2545. static int __init d40_phy_res_init(struct d40_base *base)
  2546. {
  2547. int i;
  2548. int num_phy_chans_avail = 0;
  2549. u32 val[2];
  2550. int odd_even_bit = -2;
  2551. int gcc = D40_DREG_GCC_ENA;
  2552. val[0] = readl(base->virtbase + D40_DREG_PRSME);
  2553. val[1] = readl(base->virtbase + D40_DREG_PRSMO);
  2554. for (i = 0; i < base->num_phy_chans; i++) {
  2555. base->phy_res[i].num = i;
  2556. odd_even_bit += 2 * ((i % 2) == 0);
  2557. if (((val[i % 2] >> odd_even_bit) & 3) == 1) {
  2558. /* Mark security only channels as occupied */
  2559. base->phy_res[i].allocated_src = D40_ALLOC_PHY;
  2560. base->phy_res[i].allocated_dst = D40_ALLOC_PHY;
  2561. base->phy_res[i].reserved = true;
  2562. gcc |= D40_DREG_GCC_EVTGRP_ENA(D40_PHYS_TO_GROUP(i),
  2563. D40_DREG_GCC_SRC);
  2564. gcc |= D40_DREG_GCC_EVTGRP_ENA(D40_PHYS_TO_GROUP(i),
  2565. D40_DREG_GCC_DST);
  2566. } else {
  2567. base->phy_res[i].allocated_src = D40_ALLOC_FREE;
  2568. base->phy_res[i].allocated_dst = D40_ALLOC_FREE;
  2569. base->phy_res[i].reserved = false;
  2570. num_phy_chans_avail++;
  2571. }
  2572. spin_lock_init(&base->phy_res[i].lock);
  2573. }
  2574. /* Mark disabled channels as occupied */
  2575. for (i = 0; base->plat_data->disabled_channels[i] != -1; i++) {
  2576. int chan = base->plat_data->disabled_channels[i];
  2577. base->phy_res[chan].allocated_src = D40_ALLOC_PHY;
  2578. base->phy_res[chan].allocated_dst = D40_ALLOC_PHY;
  2579. base->phy_res[chan].reserved = true;
  2580. gcc |= D40_DREG_GCC_EVTGRP_ENA(D40_PHYS_TO_GROUP(chan),
  2581. D40_DREG_GCC_SRC);
  2582. gcc |= D40_DREG_GCC_EVTGRP_ENA(D40_PHYS_TO_GROUP(chan),
  2583. D40_DREG_GCC_DST);
  2584. num_phy_chans_avail--;
  2585. }
  2586. /* Mark soft_lli channels */
  2587. for (i = 0; i < base->plat_data->num_of_soft_lli_chans; i++) {
  2588. int chan = base->plat_data->soft_lli_chans[i];
  2589. base->phy_res[chan].use_soft_lli = true;
  2590. }
  2591. dev_info(base->dev, "%d of %d physical DMA channels available\n",
  2592. num_phy_chans_avail, base->num_phy_chans);
  2593. /* Verify settings extended vs standard */
  2594. val[0] = readl(base->virtbase + D40_DREG_PRTYP);
  2595. for (i = 0; i < base->num_phy_chans; i++) {
  2596. if (base->phy_res[i].allocated_src == D40_ALLOC_FREE &&
  2597. (val[0] & 0x3) != 1)
  2598. dev_info(base->dev,
  2599. "[%s] INFO: channel %d is misconfigured (%d)\n",
  2600. __func__, i, val[0] & 0x3);
  2601. val[0] = val[0] >> 2;
  2602. }
  2603. /*
  2604. * To keep things simple, Enable all clocks initially.
  2605. * The clocks will get managed later post channel allocation.
  2606. * The clocks for the event lines on which reserved channels exists
  2607. * are not managed here.
  2608. */
  2609. writel(D40_DREG_GCC_ENABLE_ALL, base->virtbase + D40_DREG_GCC);
  2610. base->gcc_pwr_off_mask = gcc;
  2611. return num_phy_chans_avail;
  2612. }
  2613. static struct d40_base * __init d40_hw_detect_init(struct platform_device *pdev)
  2614. {
  2615. struct stedma40_platform_data *plat_data;
  2616. struct clk *clk = NULL;
  2617. void __iomem *virtbase = NULL;
  2618. struct resource *res = NULL;
  2619. struct d40_base *base = NULL;
  2620. int num_log_chans = 0;
  2621. int num_phy_chans;
  2622. int clk_ret = -EINVAL;
  2623. int i;
  2624. u32 pid;
  2625. u32 cid;
  2626. u8 rev;
  2627. clk = clk_get(&pdev->dev, NULL);
  2628. if (IS_ERR(clk)) {
  2629. d40_err(&pdev->dev, "No matching clock found\n");
  2630. goto failure;
  2631. }
  2632. clk_ret = clk_prepare_enable(clk);
  2633. if (clk_ret) {
  2634. d40_err(&pdev->dev, "Failed to prepare/enable clock\n");
  2635. goto failure;
  2636. }
  2637. /* Get IO for DMAC base address */
  2638. res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "base");
  2639. if (!res)
  2640. goto failure;
  2641. if (request_mem_region(res->start, resource_size(res),
  2642. D40_NAME " I/O base") == NULL)
  2643. goto failure;
  2644. virtbase = ioremap(res->start, resource_size(res));
  2645. if (!virtbase)
  2646. goto failure;
  2647. /* This is just a regular AMBA PrimeCell ID actually */
  2648. for (pid = 0, i = 0; i < 4; i++)
  2649. pid |= (readl(virtbase + resource_size(res) - 0x20 + 4 * i)
  2650. & 255) << (i * 8);
  2651. for (cid = 0, i = 0; i < 4; i++)
  2652. cid |= (readl(virtbase + resource_size(res) - 0x10 + 4 * i)
  2653. & 255) << (i * 8);
  2654. if (cid != AMBA_CID) {
  2655. d40_err(&pdev->dev, "Unknown hardware! No PrimeCell ID\n");
  2656. goto failure;
  2657. }
  2658. if (AMBA_MANF_BITS(pid) != AMBA_VENDOR_ST) {
  2659. d40_err(&pdev->dev, "Unknown designer! Got %x wanted %x\n",
  2660. AMBA_MANF_BITS(pid),
  2661. AMBA_VENDOR_ST);
  2662. goto failure;
  2663. }
  2664. /*
  2665. * HW revision:
  2666. * DB8500ed has revision 0
  2667. * ? has revision 1
  2668. * DB8500v1 has revision 2
  2669. * DB8500v2 has revision 3
  2670. * AP9540v1 has revision 4
  2671. * DB8540v1 has revision 4
  2672. */
  2673. rev = AMBA_REV_BITS(pid);
  2674. if (rev < 2) {
  2675. d40_err(&pdev->dev, "hardware revision: %d is not supported", rev);
  2676. goto failure;
  2677. }
  2678. plat_data = pdev->dev.platform_data;
  2679. /* The number of physical channels on this HW */
  2680. if (plat_data->num_of_phy_chans)
  2681. num_phy_chans = plat_data->num_of_phy_chans;
  2682. else
  2683. num_phy_chans = 4 * (readl(virtbase + D40_DREG_ICFG) & 0x7) + 4;
  2684. num_log_chans = num_phy_chans * D40_MAX_LOG_CHAN_PER_PHY;
  2685. dev_info(&pdev->dev, "hardware revision: %d @ 0x%x with %d physical channels\n",
  2686. rev, res->start, num_phy_chans);
  2687. base = kzalloc(ALIGN(sizeof(struct d40_base), 4) +
  2688. (num_phy_chans + num_log_chans + ARRAY_SIZE(dma40_memcpy_channels)) *
  2689. sizeof(struct d40_chan), GFP_KERNEL);
  2690. if (base == NULL) {
  2691. d40_err(&pdev->dev, "Out of memory\n");
  2692. goto failure;
  2693. }
  2694. base->rev = rev;
  2695. base->clk = clk;
  2696. base->num_phy_chans = num_phy_chans;
  2697. base->num_log_chans = num_log_chans;
  2698. base->phy_start = res->start;
  2699. base->phy_size = resource_size(res);
  2700. base->virtbase = virtbase;
  2701. base->plat_data = plat_data;
  2702. base->dev = &pdev->dev;
  2703. base->phy_chans = ((void *)base) + ALIGN(sizeof(struct d40_base), 4);
  2704. base->log_chans = &base->phy_chans[num_phy_chans];
  2705. if (base->plat_data->num_of_phy_chans == 14) {
  2706. base->gen_dmac.backup = d40_backup_regs_v4b;
  2707. base->gen_dmac.backup_size = BACKUP_REGS_SZ_V4B;
  2708. base->gen_dmac.interrupt_en = D40_DREG_CPCMIS;
  2709. base->gen_dmac.interrupt_clear = D40_DREG_CPCICR;
  2710. base->gen_dmac.realtime_en = D40_DREG_CRSEG1;
  2711. base->gen_dmac.realtime_clear = D40_DREG_CRCEG1;
  2712. base->gen_dmac.high_prio_en = D40_DREG_CPSEG1;
  2713. base->gen_dmac.high_prio_clear = D40_DREG_CPCEG1;
  2714. base->gen_dmac.il = il_v4b;
  2715. base->gen_dmac.il_size = ARRAY_SIZE(il_v4b);
  2716. base->gen_dmac.init_reg = dma_init_reg_v4b;
  2717. base->gen_dmac.init_reg_size = ARRAY_SIZE(dma_init_reg_v4b);
  2718. } else {
  2719. if (base->rev >= 3) {
  2720. base->gen_dmac.backup = d40_backup_regs_v4a;
  2721. base->gen_dmac.backup_size = BACKUP_REGS_SZ_V4A;
  2722. }
  2723. base->gen_dmac.interrupt_en = D40_DREG_PCMIS;
  2724. base->gen_dmac.interrupt_clear = D40_DREG_PCICR;
  2725. base->gen_dmac.realtime_en = D40_DREG_RSEG1;
  2726. base->gen_dmac.realtime_clear = D40_DREG_RCEG1;
  2727. base->gen_dmac.high_prio_en = D40_DREG_PSEG1;
  2728. base->gen_dmac.high_prio_clear = D40_DREG_PCEG1;
  2729. base->gen_dmac.il = il_v4a;
  2730. base->gen_dmac.il_size = ARRAY_SIZE(il_v4a);
  2731. base->gen_dmac.init_reg = dma_init_reg_v4a;
  2732. base->gen_dmac.init_reg_size = ARRAY_SIZE(dma_init_reg_v4a);
  2733. }
  2734. base->phy_res = kzalloc(num_phy_chans * sizeof(struct d40_phy_res),
  2735. GFP_KERNEL);
  2736. if (!base->phy_res)
  2737. goto failure;
  2738. base->lookup_phy_chans = kzalloc(num_phy_chans *
  2739. sizeof(struct d40_chan *),
  2740. GFP_KERNEL);
  2741. if (!base->lookup_phy_chans)
  2742. goto failure;
  2743. base->lookup_log_chans = kzalloc(num_log_chans *
  2744. sizeof(struct d40_chan *),
  2745. GFP_KERNEL);
  2746. if (!base->lookup_log_chans)
  2747. goto failure;
  2748. base->reg_val_backup_chan = kmalloc(base->num_phy_chans *
  2749. sizeof(d40_backup_regs_chan),
  2750. GFP_KERNEL);
  2751. if (!base->reg_val_backup_chan)
  2752. goto failure;
  2753. base->lcla_pool.alloc_map =
  2754. kzalloc(num_phy_chans * sizeof(struct d40_desc *)
  2755. * D40_LCLA_LINK_PER_EVENT_GRP, GFP_KERNEL);
  2756. if (!base->lcla_pool.alloc_map)
  2757. goto failure;
  2758. base->desc_slab = kmem_cache_create(D40_NAME, sizeof(struct d40_desc),
  2759. 0, SLAB_HWCACHE_ALIGN,
  2760. NULL);
  2761. if (base->desc_slab == NULL)
  2762. goto failure;
  2763. return base;
  2764. failure:
  2765. if (!clk_ret)
  2766. clk_disable_unprepare(clk);
  2767. if (!IS_ERR(clk))
  2768. clk_put(clk);
  2769. if (virtbase)
  2770. iounmap(virtbase);
  2771. if (res)
  2772. release_mem_region(res->start,
  2773. resource_size(res));
  2774. if (virtbase)
  2775. iounmap(virtbase);
  2776. if (base) {
  2777. kfree(base->lcla_pool.alloc_map);
  2778. kfree(base->reg_val_backup_chan);
  2779. kfree(base->lookup_log_chans);
  2780. kfree(base->lookup_phy_chans);
  2781. kfree(base->phy_res);
  2782. kfree(base);
  2783. }
  2784. return NULL;
  2785. }
  2786. static void __init d40_hw_init(struct d40_base *base)
  2787. {
  2788. int i;
  2789. u32 prmseo[2] = {0, 0};
  2790. u32 activeo[2] = {0xFFFFFFFF, 0xFFFFFFFF};
  2791. u32 pcmis = 0;
  2792. u32 pcicr = 0;
  2793. struct d40_reg_val *dma_init_reg = base->gen_dmac.init_reg;
  2794. u32 reg_size = base->gen_dmac.init_reg_size;
  2795. for (i = 0; i < reg_size; i++)
  2796. writel(dma_init_reg[i].val,
  2797. base->virtbase + dma_init_reg[i].reg);
  2798. /* Configure all our dma channels to default settings */
  2799. for (i = 0; i < base->num_phy_chans; i++) {
  2800. activeo[i % 2] = activeo[i % 2] << 2;
  2801. if (base->phy_res[base->num_phy_chans - i - 1].allocated_src
  2802. == D40_ALLOC_PHY) {
  2803. activeo[i % 2] |= 3;
  2804. continue;
  2805. }
  2806. /* Enable interrupt # */
  2807. pcmis = (pcmis << 1) | 1;
  2808. /* Clear interrupt # */
  2809. pcicr = (pcicr << 1) | 1;
  2810. /* Set channel to physical mode */
  2811. prmseo[i % 2] = prmseo[i % 2] << 2;
  2812. prmseo[i % 2] |= 1;
  2813. }
  2814. writel(prmseo[1], base->virtbase + D40_DREG_PRMSE);
  2815. writel(prmseo[0], base->virtbase + D40_DREG_PRMSO);
  2816. writel(activeo[1], base->virtbase + D40_DREG_ACTIVE);
  2817. writel(activeo[0], base->virtbase + D40_DREG_ACTIVO);
  2818. /* Write which interrupt to enable */
  2819. writel(pcmis, base->virtbase + base->gen_dmac.interrupt_en);
  2820. /* Write which interrupt to clear */
  2821. writel(pcicr, base->virtbase + base->gen_dmac.interrupt_clear);
  2822. /* These are __initdata and cannot be accessed after init */
  2823. base->gen_dmac.init_reg = NULL;
  2824. base->gen_dmac.init_reg_size = 0;
  2825. }
  2826. static int __init d40_lcla_allocate(struct d40_base *base)
  2827. {
  2828. struct d40_lcla_pool *pool = &base->lcla_pool;
  2829. unsigned long *page_list;
  2830. int i, j;
  2831. int ret = 0;
  2832. /*
  2833. * This is somewhat ugly. We need 8192 bytes that are 18 bit aligned,
  2834. * To full fill this hardware requirement without wasting 256 kb
  2835. * we allocate pages until we get an aligned one.
  2836. */
  2837. page_list = kmalloc(sizeof(unsigned long) * MAX_LCLA_ALLOC_ATTEMPTS,
  2838. GFP_KERNEL);
  2839. if (!page_list) {
  2840. ret = -ENOMEM;
  2841. goto failure;
  2842. }
  2843. /* Calculating how many pages that are required */
  2844. base->lcla_pool.pages = SZ_1K * base->num_phy_chans / PAGE_SIZE;
  2845. for (i = 0; i < MAX_LCLA_ALLOC_ATTEMPTS; i++) {
  2846. page_list[i] = __get_free_pages(GFP_KERNEL,
  2847. base->lcla_pool.pages);
  2848. if (!page_list[i]) {
  2849. d40_err(base->dev, "Failed to allocate %d pages.\n",
  2850. base->lcla_pool.pages);
  2851. for (j = 0; j < i; j++)
  2852. free_pages(page_list[j], base->lcla_pool.pages);
  2853. goto failure;
  2854. }
  2855. if ((virt_to_phys((void *)page_list[i]) &
  2856. (LCLA_ALIGNMENT - 1)) == 0)
  2857. break;
  2858. }
  2859. for (j = 0; j < i; j++)
  2860. free_pages(page_list[j], base->lcla_pool.pages);
  2861. if (i < MAX_LCLA_ALLOC_ATTEMPTS) {
  2862. base->lcla_pool.base = (void *)page_list[i];
  2863. } else {
  2864. /*
  2865. * After many attempts and no succees with finding the correct
  2866. * alignment, try with allocating a big buffer.
  2867. */
  2868. dev_warn(base->dev,
  2869. "[%s] Failed to get %d pages @ 18 bit align.\n",
  2870. __func__, base->lcla_pool.pages);
  2871. base->lcla_pool.base_unaligned = kmalloc(SZ_1K *
  2872. base->num_phy_chans +
  2873. LCLA_ALIGNMENT,
  2874. GFP_KERNEL);
  2875. if (!base->lcla_pool.base_unaligned) {
  2876. ret = -ENOMEM;
  2877. goto failure;
  2878. }
  2879. base->lcla_pool.base = PTR_ALIGN(base->lcla_pool.base_unaligned,
  2880. LCLA_ALIGNMENT);
  2881. }
  2882. pool->dma_addr = dma_map_single(base->dev, pool->base,
  2883. SZ_1K * base->num_phy_chans,
  2884. DMA_TO_DEVICE);
  2885. if (dma_mapping_error(base->dev, pool->dma_addr)) {
  2886. pool->dma_addr = 0;
  2887. ret = -ENOMEM;
  2888. goto failure;
  2889. }
  2890. writel(virt_to_phys(base->lcla_pool.base),
  2891. base->virtbase + D40_DREG_LCLA);
  2892. failure:
  2893. kfree(page_list);
  2894. return ret;
  2895. }
  2896. static int __init d40_probe(struct platform_device *pdev)
  2897. {
  2898. int err;
  2899. int ret = -ENOENT;
  2900. struct d40_base *base;
  2901. struct resource *res = NULL;
  2902. int num_reserved_chans;
  2903. u32 val;
  2904. base = d40_hw_detect_init(pdev);
  2905. if (!base)
  2906. goto failure;
  2907. num_reserved_chans = d40_phy_res_init(base);
  2908. platform_set_drvdata(pdev, base);
  2909. spin_lock_init(&base->interrupt_lock);
  2910. spin_lock_init(&base->execmd_lock);
  2911. /* Get IO for logical channel parameter address */
  2912. res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "lcpa");
  2913. if (!res) {
  2914. ret = -ENOENT;
  2915. d40_err(&pdev->dev, "No \"lcpa\" memory resource\n");
  2916. goto failure;
  2917. }
  2918. base->lcpa_size = resource_size(res);
  2919. base->phy_lcpa = res->start;
  2920. if (request_mem_region(res->start, resource_size(res),
  2921. D40_NAME " I/O lcpa") == NULL) {
  2922. ret = -EBUSY;
  2923. d40_err(&pdev->dev,
  2924. "Failed to request LCPA region 0x%x-0x%x\n",
  2925. res->start, res->end);
  2926. goto failure;
  2927. }
  2928. /* We make use of ESRAM memory for this. */
  2929. val = readl(base->virtbase + D40_DREG_LCPA);
  2930. if (res->start != val && val != 0) {
  2931. dev_warn(&pdev->dev,
  2932. "[%s] Mismatch LCPA dma 0x%x, def 0x%x\n",
  2933. __func__, val, res->start);
  2934. } else
  2935. writel(res->start, base->virtbase + D40_DREG_LCPA);
  2936. base->lcpa_base = ioremap(res->start, resource_size(res));
  2937. if (!base->lcpa_base) {
  2938. ret = -ENOMEM;
  2939. d40_err(&pdev->dev, "Failed to ioremap LCPA region\n");
  2940. goto failure;
  2941. }
  2942. /* If lcla has to be located in ESRAM we don't need to allocate */
  2943. if (base->plat_data->use_esram_lcla) {
  2944. res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
  2945. "lcla_esram");
  2946. if (!res) {
  2947. ret = -ENOENT;
  2948. d40_err(&pdev->dev,
  2949. "No \"lcla_esram\" memory resource\n");
  2950. goto failure;
  2951. }
  2952. base->lcla_pool.base = ioremap(res->start,
  2953. resource_size(res));
  2954. if (!base->lcla_pool.base) {
  2955. ret = -ENOMEM;
  2956. d40_err(&pdev->dev, "Failed to ioremap LCLA region\n");
  2957. goto failure;
  2958. }
  2959. writel(res->start, base->virtbase + D40_DREG_LCLA);
  2960. } else {
  2961. ret = d40_lcla_allocate(base);
  2962. if (ret) {
  2963. d40_err(&pdev->dev, "Failed to allocate LCLA area\n");
  2964. goto failure;
  2965. }
  2966. }
  2967. spin_lock_init(&base->lcla_pool.lock);
  2968. base->irq = platform_get_irq(pdev, 0);
  2969. ret = request_irq(base->irq, d40_handle_interrupt, 0, D40_NAME, base);
  2970. if (ret) {
  2971. d40_err(&pdev->dev, "No IRQ defined\n");
  2972. goto failure;
  2973. }
  2974. pm_runtime_irq_safe(base->dev);
  2975. pm_runtime_set_autosuspend_delay(base->dev, DMA40_AUTOSUSPEND_DELAY);
  2976. pm_runtime_use_autosuspend(base->dev);
  2977. pm_runtime_enable(base->dev);
  2978. pm_runtime_resume(base->dev);
  2979. if (base->plat_data->use_esram_lcla) {
  2980. base->lcpa_regulator = regulator_get(base->dev, "lcla_esram");
  2981. if (IS_ERR(base->lcpa_regulator)) {
  2982. d40_err(&pdev->dev, "Failed to get lcpa_regulator\n");
  2983. base->lcpa_regulator = NULL;
  2984. goto failure;
  2985. }
  2986. ret = regulator_enable(base->lcpa_regulator);
  2987. if (ret) {
  2988. d40_err(&pdev->dev,
  2989. "Failed to enable lcpa_regulator\n");
  2990. regulator_put(base->lcpa_regulator);
  2991. base->lcpa_regulator = NULL;
  2992. goto failure;
  2993. }
  2994. }
  2995. base->initialized = true;
  2996. err = d40_dmaengine_init(base, num_reserved_chans);
  2997. if (err)
  2998. goto failure;
  2999. base->dev->dma_parms = &base->dma_parms;
  3000. err = dma_set_max_seg_size(base->dev, STEDMA40_MAX_SEG_SIZE);
  3001. if (err) {
  3002. d40_err(&pdev->dev, "Failed to set dma max seg size\n");
  3003. goto failure;
  3004. }
  3005. d40_hw_init(base);
  3006. dev_info(base->dev, "initialized\n");
  3007. return 0;
  3008. failure:
  3009. if (base) {
  3010. if (base->desc_slab)
  3011. kmem_cache_destroy(base->desc_slab);
  3012. if (base->virtbase)
  3013. iounmap(base->virtbase);
  3014. if (base->lcla_pool.base && base->plat_data->use_esram_lcla) {
  3015. iounmap(base->lcla_pool.base);
  3016. base->lcla_pool.base = NULL;
  3017. }
  3018. if (base->lcla_pool.dma_addr)
  3019. dma_unmap_single(base->dev, base->lcla_pool.dma_addr,
  3020. SZ_1K * base->num_phy_chans,
  3021. DMA_TO_DEVICE);
  3022. if (!base->lcla_pool.base_unaligned && base->lcla_pool.base)
  3023. free_pages((unsigned long)base->lcla_pool.base,
  3024. base->lcla_pool.pages);
  3025. kfree(base->lcla_pool.base_unaligned);
  3026. if (base->phy_lcpa)
  3027. release_mem_region(base->phy_lcpa,
  3028. base->lcpa_size);
  3029. if (base->phy_start)
  3030. release_mem_region(base->phy_start,
  3031. base->phy_size);
  3032. if (base->clk) {
  3033. clk_disable_unprepare(base->clk);
  3034. clk_put(base->clk);
  3035. }
  3036. if (base->lcpa_regulator) {
  3037. regulator_disable(base->lcpa_regulator);
  3038. regulator_put(base->lcpa_regulator);
  3039. }
  3040. kfree(base->lcla_pool.alloc_map);
  3041. kfree(base->lookup_log_chans);
  3042. kfree(base->lookup_phy_chans);
  3043. kfree(base->phy_res);
  3044. kfree(base);
  3045. }
  3046. d40_err(&pdev->dev, "probe failed\n");
  3047. return ret;
  3048. }
  3049. static struct platform_driver d40_driver = {
  3050. .driver = {
  3051. .owner = THIS_MODULE,
  3052. .name = D40_NAME,
  3053. .pm = DMA40_PM_OPS,
  3054. },
  3055. };
  3056. static int __init stedma40_init(void)
  3057. {
  3058. return platform_driver_probe(&d40_driver, d40_probe);
  3059. }
  3060. subsys_initcall(stedma40_init);