session.c 22 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897
  1. #define _FILE_OFFSET_BITS 64
  2. #include <linux/kernel.h>
  3. #include <byteswap.h>
  4. #include <unistd.h>
  5. #include <sys/types.h>
  6. #include <sys/mman.h>
  7. #include "session.h"
  8. #include "sort.h"
  9. #include "util.h"
  10. static int perf_session__open(struct perf_session *self, bool force)
  11. {
  12. struct stat input_stat;
  13. if (!strcmp(self->filename, "-")) {
  14. self->fd_pipe = true;
  15. self->fd = STDIN_FILENO;
  16. if (perf_header__read(self, self->fd) < 0)
  17. pr_err("incompatible file format");
  18. return 0;
  19. }
  20. self->fd = open(self->filename, O_RDONLY);
  21. if (self->fd < 0) {
  22. int err = errno;
  23. pr_err("failed to open %s: %s", self->filename, strerror(err));
  24. if (err == ENOENT && !strcmp(self->filename, "perf.data"))
  25. pr_err(" (try 'perf record' first)");
  26. pr_err("\n");
  27. return -errno;
  28. }
  29. if (fstat(self->fd, &input_stat) < 0)
  30. goto out_close;
  31. if (!force && input_stat.st_uid && (input_stat.st_uid != geteuid())) {
  32. pr_err("file %s not owned by current user or root\n",
  33. self->filename);
  34. goto out_close;
  35. }
  36. if (!input_stat.st_size) {
  37. pr_info("zero-sized file (%s), nothing to do!\n",
  38. self->filename);
  39. goto out_close;
  40. }
  41. if (perf_header__read(self, self->fd) < 0) {
  42. pr_err("incompatible file format");
  43. goto out_close;
  44. }
  45. self->size = input_stat.st_size;
  46. return 0;
  47. out_close:
  48. close(self->fd);
  49. self->fd = -1;
  50. return -1;
  51. }
  52. void perf_session__update_sample_type(struct perf_session *self)
  53. {
  54. self->sample_type = perf_header__sample_type(&self->header);
  55. }
  56. int perf_session__create_kernel_maps(struct perf_session *self)
  57. {
  58. int ret = machine__create_kernel_maps(&self->host_machine);
  59. if (ret >= 0)
  60. ret = machines__create_guest_kernel_maps(&self->machines);
  61. return ret;
  62. }
  63. struct perf_session *perf_session__new(const char *filename, int mode, bool force, bool repipe)
  64. {
  65. size_t len = filename ? strlen(filename) + 1 : 0;
  66. struct perf_session *self = zalloc(sizeof(*self) + len);
  67. if (self == NULL)
  68. goto out;
  69. if (perf_header__init(&self->header) < 0)
  70. goto out_free;
  71. memcpy(self->filename, filename, len);
  72. self->threads = RB_ROOT;
  73. INIT_LIST_HEAD(&self->dead_threads);
  74. self->hists_tree = RB_ROOT;
  75. self->last_match = NULL;
  76. self->mmap_window = 32;
  77. self->machines = RB_ROOT;
  78. self->repipe = repipe;
  79. INIT_LIST_HEAD(&self->ordered_samples.samples_head);
  80. machine__init(&self->host_machine, "", HOST_KERNEL_ID);
  81. if (mode == O_RDONLY) {
  82. if (perf_session__open(self, force) < 0)
  83. goto out_delete;
  84. } else if (mode == O_WRONLY) {
  85. /*
  86. * In O_RDONLY mode this will be performed when reading the
  87. * kernel MMAP event, in event__process_mmap().
  88. */
  89. if (perf_session__create_kernel_maps(self) < 0)
  90. goto out_delete;
  91. }
  92. perf_session__update_sample_type(self);
  93. out:
  94. return self;
  95. out_free:
  96. free(self);
  97. return NULL;
  98. out_delete:
  99. perf_session__delete(self);
  100. return NULL;
  101. }
  102. void perf_session__delete(struct perf_session *self)
  103. {
  104. perf_header__exit(&self->header);
  105. close(self->fd);
  106. free(self);
  107. }
  108. void perf_session__remove_thread(struct perf_session *self, struct thread *th)
  109. {
  110. rb_erase(&th->rb_node, &self->threads);
  111. /*
  112. * We may have references to this thread, for instance in some hist_entry
  113. * instances, so just move them to a separate list.
  114. */
  115. list_add_tail(&th->node, &self->dead_threads);
  116. }
  117. static bool symbol__match_parent_regex(struct symbol *sym)
  118. {
  119. if (sym->name && !regexec(&parent_regex, sym->name, 0, NULL, 0))
  120. return 1;
  121. return 0;
  122. }
  123. struct map_symbol *perf_session__resolve_callchain(struct perf_session *self,
  124. struct thread *thread,
  125. struct ip_callchain *chain,
  126. struct symbol **parent)
  127. {
  128. u8 cpumode = PERF_RECORD_MISC_USER;
  129. unsigned int i;
  130. struct map_symbol *syms = calloc(chain->nr, sizeof(*syms));
  131. if (!syms)
  132. return NULL;
  133. for (i = 0; i < chain->nr; i++) {
  134. u64 ip = chain->ips[i];
  135. struct addr_location al;
  136. if (ip >= PERF_CONTEXT_MAX) {
  137. switch (ip) {
  138. case PERF_CONTEXT_HV:
  139. cpumode = PERF_RECORD_MISC_HYPERVISOR; break;
  140. case PERF_CONTEXT_KERNEL:
  141. cpumode = PERF_RECORD_MISC_KERNEL; break;
  142. case PERF_CONTEXT_USER:
  143. cpumode = PERF_RECORD_MISC_USER; break;
  144. default:
  145. break;
  146. }
  147. continue;
  148. }
  149. al.filtered = false;
  150. thread__find_addr_location(thread, self, cpumode,
  151. MAP__FUNCTION, thread->pid, ip, &al, NULL);
  152. if (al.sym != NULL) {
  153. if (sort__has_parent && !*parent &&
  154. symbol__match_parent_regex(al.sym))
  155. *parent = al.sym;
  156. if (!symbol_conf.use_callchain)
  157. break;
  158. syms[i].map = al.map;
  159. syms[i].sym = al.sym;
  160. }
  161. }
  162. return syms;
  163. }
  164. static int process_event_stub(event_t *event __used,
  165. struct perf_session *session __used)
  166. {
  167. dump_printf(": unhandled!\n");
  168. return 0;
  169. }
  170. static int process_finished_round_stub(event_t *event __used,
  171. struct perf_session *session __used,
  172. struct perf_event_ops *ops __used)
  173. {
  174. dump_printf(": unhandled!\n");
  175. return 0;
  176. }
  177. static int process_finished_round(event_t *event,
  178. struct perf_session *session,
  179. struct perf_event_ops *ops);
  180. static void perf_event_ops__fill_defaults(struct perf_event_ops *handler)
  181. {
  182. if (handler->sample == NULL)
  183. handler->sample = process_event_stub;
  184. if (handler->mmap == NULL)
  185. handler->mmap = process_event_stub;
  186. if (handler->comm == NULL)
  187. handler->comm = process_event_stub;
  188. if (handler->fork == NULL)
  189. handler->fork = process_event_stub;
  190. if (handler->exit == NULL)
  191. handler->exit = process_event_stub;
  192. if (handler->lost == NULL)
  193. handler->lost = process_event_stub;
  194. if (handler->read == NULL)
  195. handler->read = process_event_stub;
  196. if (handler->throttle == NULL)
  197. handler->throttle = process_event_stub;
  198. if (handler->unthrottle == NULL)
  199. handler->unthrottle = process_event_stub;
  200. if (handler->attr == NULL)
  201. handler->attr = process_event_stub;
  202. if (handler->event_type == NULL)
  203. handler->event_type = process_event_stub;
  204. if (handler->tracing_data == NULL)
  205. handler->tracing_data = process_event_stub;
  206. if (handler->build_id == NULL)
  207. handler->build_id = process_event_stub;
  208. if (handler->finished_round == NULL) {
  209. if (handler->ordered_samples)
  210. handler->finished_round = process_finished_round;
  211. else
  212. handler->finished_round = process_finished_round_stub;
  213. }
  214. }
  215. void mem_bswap_64(void *src, int byte_size)
  216. {
  217. u64 *m = src;
  218. while (byte_size > 0) {
  219. *m = bswap_64(*m);
  220. byte_size -= sizeof(u64);
  221. ++m;
  222. }
  223. }
  224. static void event__all64_swap(event_t *self)
  225. {
  226. struct perf_event_header *hdr = &self->header;
  227. mem_bswap_64(hdr + 1, self->header.size - sizeof(*hdr));
  228. }
  229. static void event__comm_swap(event_t *self)
  230. {
  231. self->comm.pid = bswap_32(self->comm.pid);
  232. self->comm.tid = bswap_32(self->comm.tid);
  233. }
  234. static void event__mmap_swap(event_t *self)
  235. {
  236. self->mmap.pid = bswap_32(self->mmap.pid);
  237. self->mmap.tid = bswap_32(self->mmap.tid);
  238. self->mmap.start = bswap_64(self->mmap.start);
  239. self->mmap.len = bswap_64(self->mmap.len);
  240. self->mmap.pgoff = bswap_64(self->mmap.pgoff);
  241. }
  242. static void event__task_swap(event_t *self)
  243. {
  244. self->fork.pid = bswap_32(self->fork.pid);
  245. self->fork.tid = bswap_32(self->fork.tid);
  246. self->fork.ppid = bswap_32(self->fork.ppid);
  247. self->fork.ptid = bswap_32(self->fork.ptid);
  248. self->fork.time = bswap_64(self->fork.time);
  249. }
  250. static void event__read_swap(event_t *self)
  251. {
  252. self->read.pid = bswap_32(self->read.pid);
  253. self->read.tid = bswap_32(self->read.tid);
  254. self->read.value = bswap_64(self->read.value);
  255. self->read.time_enabled = bswap_64(self->read.time_enabled);
  256. self->read.time_running = bswap_64(self->read.time_running);
  257. self->read.id = bswap_64(self->read.id);
  258. }
  259. static void event__attr_swap(event_t *self)
  260. {
  261. size_t size;
  262. self->attr.attr.type = bswap_32(self->attr.attr.type);
  263. self->attr.attr.size = bswap_32(self->attr.attr.size);
  264. self->attr.attr.config = bswap_64(self->attr.attr.config);
  265. self->attr.attr.sample_period = bswap_64(self->attr.attr.sample_period);
  266. self->attr.attr.sample_type = bswap_64(self->attr.attr.sample_type);
  267. self->attr.attr.read_format = bswap_64(self->attr.attr.read_format);
  268. self->attr.attr.wakeup_events = bswap_32(self->attr.attr.wakeup_events);
  269. self->attr.attr.bp_type = bswap_32(self->attr.attr.bp_type);
  270. self->attr.attr.bp_addr = bswap_64(self->attr.attr.bp_addr);
  271. self->attr.attr.bp_len = bswap_64(self->attr.attr.bp_len);
  272. size = self->header.size;
  273. size -= (void *)&self->attr.id - (void *)self;
  274. mem_bswap_64(self->attr.id, size);
  275. }
  276. static void event__event_type_swap(event_t *self)
  277. {
  278. self->event_type.event_type.event_id =
  279. bswap_64(self->event_type.event_type.event_id);
  280. }
  281. static void event__tracing_data_swap(event_t *self)
  282. {
  283. self->tracing_data.size = bswap_32(self->tracing_data.size);
  284. }
  285. typedef void (*event__swap_op)(event_t *self);
  286. static event__swap_op event__swap_ops[] = {
  287. [PERF_RECORD_MMAP] = event__mmap_swap,
  288. [PERF_RECORD_COMM] = event__comm_swap,
  289. [PERF_RECORD_FORK] = event__task_swap,
  290. [PERF_RECORD_EXIT] = event__task_swap,
  291. [PERF_RECORD_LOST] = event__all64_swap,
  292. [PERF_RECORD_READ] = event__read_swap,
  293. [PERF_RECORD_SAMPLE] = event__all64_swap,
  294. [PERF_RECORD_HEADER_ATTR] = event__attr_swap,
  295. [PERF_RECORD_HEADER_EVENT_TYPE] = event__event_type_swap,
  296. [PERF_RECORD_HEADER_TRACING_DATA] = event__tracing_data_swap,
  297. [PERF_RECORD_HEADER_BUILD_ID] = NULL,
  298. [PERF_RECORD_HEADER_MAX] = NULL,
  299. };
  300. struct sample_queue {
  301. u64 timestamp;
  302. struct sample_event *event;
  303. struct list_head list;
  304. };
  305. static void flush_sample_queue(struct perf_session *s,
  306. struct perf_event_ops *ops)
  307. {
  308. struct list_head *head = &s->ordered_samples.samples_head;
  309. u64 limit = s->ordered_samples.next_flush;
  310. struct sample_queue *tmp, *iter;
  311. if (!ops->ordered_samples || !limit)
  312. return;
  313. list_for_each_entry_safe(iter, tmp, head, list) {
  314. if (iter->timestamp > limit)
  315. return;
  316. if (iter == s->ordered_samples.last_inserted)
  317. s->ordered_samples.last_inserted = NULL;
  318. ops->sample((event_t *)iter->event, s);
  319. s->ordered_samples.last_flush = iter->timestamp;
  320. list_del(&iter->list);
  321. free(iter->event);
  322. free(iter);
  323. }
  324. }
  325. /*
  326. * When perf record finishes a pass on every buffers, it records this pseudo
  327. * event.
  328. * We record the max timestamp t found in the pass n.
  329. * Assuming these timestamps are monotonic across cpus, we know that if
  330. * a buffer still has events with timestamps below t, they will be all
  331. * available and then read in the pass n + 1.
  332. * Hence when we start to read the pass n + 2, we can safely flush every
  333. * events with timestamps below t.
  334. *
  335. * ============ PASS n =================
  336. * CPU 0 | CPU 1
  337. * |
  338. * cnt1 timestamps | cnt2 timestamps
  339. * 1 | 2
  340. * 2 | 3
  341. * - | 4 <--- max recorded
  342. *
  343. * ============ PASS n + 1 ==============
  344. * CPU 0 | CPU 1
  345. * |
  346. * cnt1 timestamps | cnt2 timestamps
  347. * 3 | 5
  348. * 4 | 6
  349. * 5 | 7 <---- max recorded
  350. *
  351. * Flush every events below timestamp 4
  352. *
  353. * ============ PASS n + 2 ==============
  354. * CPU 0 | CPU 1
  355. * |
  356. * cnt1 timestamps | cnt2 timestamps
  357. * 6 | 8
  358. * 7 | 9
  359. * - | 10
  360. *
  361. * Flush every events below timestamp 7
  362. * etc...
  363. */
  364. static int process_finished_round(event_t *event __used,
  365. struct perf_session *session,
  366. struct perf_event_ops *ops)
  367. {
  368. flush_sample_queue(session, ops);
  369. session->ordered_samples.next_flush = session->ordered_samples.max_timestamp;
  370. return 0;
  371. }
  372. static void __queue_sample_end(struct sample_queue *new, struct list_head *head)
  373. {
  374. struct sample_queue *iter;
  375. list_for_each_entry_reverse(iter, head, list) {
  376. if (iter->timestamp < new->timestamp) {
  377. list_add(&new->list, &iter->list);
  378. return;
  379. }
  380. }
  381. list_add(&new->list, head);
  382. }
  383. static void __queue_sample_before(struct sample_queue *new,
  384. struct sample_queue *iter,
  385. struct list_head *head)
  386. {
  387. list_for_each_entry_continue_reverse(iter, head, list) {
  388. if (iter->timestamp < new->timestamp) {
  389. list_add(&new->list, &iter->list);
  390. return;
  391. }
  392. }
  393. list_add(&new->list, head);
  394. }
  395. static void __queue_sample_after(struct sample_queue *new,
  396. struct sample_queue *iter,
  397. struct list_head *head)
  398. {
  399. list_for_each_entry_continue(iter, head, list) {
  400. if (iter->timestamp > new->timestamp) {
  401. list_add_tail(&new->list, &iter->list);
  402. return;
  403. }
  404. }
  405. list_add_tail(&new->list, head);
  406. }
  407. /* The queue is ordered by time */
  408. static void __queue_sample_event(struct sample_queue *new,
  409. struct perf_session *s)
  410. {
  411. struct sample_queue *last_inserted = s->ordered_samples.last_inserted;
  412. struct list_head *head = &s->ordered_samples.samples_head;
  413. if (!last_inserted) {
  414. __queue_sample_end(new, head);
  415. return;
  416. }
  417. /*
  418. * Most of the time the current event has a timestamp
  419. * very close to the last event inserted, unless we just switched
  420. * to another event buffer. Having a sorting based on a list and
  421. * on the last inserted event that is close to the current one is
  422. * probably more efficient than an rbtree based sorting.
  423. */
  424. if (last_inserted->timestamp >= new->timestamp)
  425. __queue_sample_before(new, last_inserted, head);
  426. else
  427. __queue_sample_after(new, last_inserted, head);
  428. }
  429. static int queue_sample_event(event_t *event, struct sample_data *data,
  430. struct perf_session *s)
  431. {
  432. u64 timestamp = data->time;
  433. struct sample_queue *new;
  434. if (timestamp < s->ordered_samples.last_flush) {
  435. printf("Warning: Timestamp below last timeslice flush\n");
  436. return -EINVAL;
  437. }
  438. new = malloc(sizeof(*new));
  439. if (!new)
  440. return -ENOMEM;
  441. new->timestamp = timestamp;
  442. new->event = malloc(event->header.size);
  443. if (!new->event) {
  444. free(new);
  445. return -ENOMEM;
  446. }
  447. memcpy(new->event, event, event->header.size);
  448. __queue_sample_event(new, s);
  449. s->ordered_samples.last_inserted = new;
  450. if (new->timestamp > s->ordered_samples.max_timestamp)
  451. s->ordered_samples.max_timestamp = new->timestamp;
  452. return 0;
  453. }
  454. static int perf_session__process_sample(event_t *event, struct perf_session *s,
  455. struct perf_event_ops *ops)
  456. {
  457. struct sample_data data;
  458. if (!ops->ordered_samples)
  459. return ops->sample(event, s);
  460. bzero(&data, sizeof(struct sample_data));
  461. event__parse_sample(event, s->sample_type, &data);
  462. queue_sample_event(event, &data, s);
  463. return 0;
  464. }
  465. static int perf_session__process_event(struct perf_session *self,
  466. event_t *event,
  467. struct perf_event_ops *ops,
  468. u64 offset, u64 head)
  469. {
  470. trace_event(event);
  471. if (event->header.type < PERF_RECORD_HEADER_MAX) {
  472. dump_printf("%#Lx [%#x]: PERF_RECORD_%s",
  473. offset + head, event->header.size,
  474. event__name[event->header.type]);
  475. hists__inc_nr_events(&self->hists, event->header.type);
  476. }
  477. if (self->header.needs_swap && event__swap_ops[event->header.type])
  478. event__swap_ops[event->header.type](event);
  479. switch (event->header.type) {
  480. case PERF_RECORD_SAMPLE:
  481. return perf_session__process_sample(event, self, ops);
  482. case PERF_RECORD_MMAP:
  483. return ops->mmap(event, self);
  484. case PERF_RECORD_COMM:
  485. return ops->comm(event, self);
  486. case PERF_RECORD_FORK:
  487. return ops->fork(event, self);
  488. case PERF_RECORD_EXIT:
  489. return ops->exit(event, self);
  490. case PERF_RECORD_LOST:
  491. return ops->lost(event, self);
  492. case PERF_RECORD_READ:
  493. return ops->read(event, self);
  494. case PERF_RECORD_THROTTLE:
  495. return ops->throttle(event, self);
  496. case PERF_RECORD_UNTHROTTLE:
  497. return ops->unthrottle(event, self);
  498. case PERF_RECORD_HEADER_ATTR:
  499. return ops->attr(event, self);
  500. case PERF_RECORD_HEADER_EVENT_TYPE:
  501. return ops->event_type(event, self);
  502. case PERF_RECORD_HEADER_TRACING_DATA:
  503. /* setup for reading amidst mmap */
  504. lseek(self->fd, offset + head, SEEK_SET);
  505. return ops->tracing_data(event, self);
  506. case PERF_RECORD_HEADER_BUILD_ID:
  507. return ops->build_id(event, self);
  508. case PERF_RECORD_FINISHED_ROUND:
  509. return ops->finished_round(event, self, ops);
  510. default:
  511. ++self->hists.stats.nr_unknown_events;
  512. return -1;
  513. }
  514. }
  515. void perf_event_header__bswap(struct perf_event_header *self)
  516. {
  517. self->type = bswap_32(self->type);
  518. self->misc = bswap_16(self->misc);
  519. self->size = bswap_16(self->size);
  520. }
  521. static struct thread *perf_session__register_idle_thread(struct perf_session *self)
  522. {
  523. struct thread *thread = perf_session__findnew(self, 0);
  524. if (thread == NULL || thread__set_comm(thread, "swapper")) {
  525. pr_err("problem inserting idle task.\n");
  526. thread = NULL;
  527. }
  528. return thread;
  529. }
  530. int do_read(int fd, void *buf, size_t size)
  531. {
  532. void *buf_start = buf;
  533. while (size) {
  534. int ret = read(fd, buf, size);
  535. if (ret <= 0)
  536. return ret;
  537. size -= ret;
  538. buf += ret;
  539. }
  540. return buf - buf_start;
  541. }
  542. #define session_done() (*(volatile int *)(&session_done))
  543. volatile int session_done;
  544. static int __perf_session__process_pipe_events(struct perf_session *self,
  545. struct perf_event_ops *ops)
  546. {
  547. event_t event;
  548. uint32_t size;
  549. int skip = 0;
  550. u64 head;
  551. int err;
  552. void *p;
  553. perf_event_ops__fill_defaults(ops);
  554. head = 0;
  555. more:
  556. err = do_read(self->fd, &event, sizeof(struct perf_event_header));
  557. if (err <= 0) {
  558. if (err == 0)
  559. goto done;
  560. pr_err("failed to read event header\n");
  561. goto out_err;
  562. }
  563. if (self->header.needs_swap)
  564. perf_event_header__bswap(&event.header);
  565. size = event.header.size;
  566. if (size == 0)
  567. size = 8;
  568. p = &event;
  569. p += sizeof(struct perf_event_header);
  570. if (size - sizeof(struct perf_event_header)) {
  571. err = do_read(self->fd, p,
  572. size - sizeof(struct perf_event_header));
  573. if (err <= 0) {
  574. if (err == 0) {
  575. pr_err("unexpected end of event stream\n");
  576. goto done;
  577. }
  578. pr_err("failed to read event data\n");
  579. goto out_err;
  580. }
  581. }
  582. if (size == 0 ||
  583. (skip = perf_session__process_event(self, &event, ops,
  584. 0, head)) < 0) {
  585. dump_printf("%#Lx [%#x]: skipping unknown header type: %d\n",
  586. head, event.header.size, event.header.type);
  587. /*
  588. * assume we lost track of the stream, check alignment, and
  589. * increment a single u64 in the hope to catch on again 'soon'.
  590. */
  591. if (unlikely(head & 7))
  592. head &= ~7ULL;
  593. size = 8;
  594. }
  595. head += size;
  596. dump_printf("\n%#Lx [%#x]: event: %d\n",
  597. head, event.header.size, event.header.type);
  598. if (skip > 0)
  599. head += skip;
  600. if (!session_done())
  601. goto more;
  602. done:
  603. err = 0;
  604. out_err:
  605. return err;
  606. }
  607. int __perf_session__process_events(struct perf_session *self,
  608. u64 data_offset, u64 data_size,
  609. u64 file_size, struct perf_event_ops *ops)
  610. {
  611. int err, mmap_prot, mmap_flags;
  612. u64 head, shift;
  613. u64 offset = 0;
  614. size_t page_size;
  615. event_t *event;
  616. uint32_t size;
  617. char *buf;
  618. struct ui_progress *progress = ui_progress__new("Processing events...",
  619. self->size);
  620. if (progress == NULL)
  621. return -1;
  622. perf_event_ops__fill_defaults(ops);
  623. page_size = sysconf(_SC_PAGESIZE);
  624. head = data_offset;
  625. shift = page_size * (head / page_size);
  626. offset += shift;
  627. head -= shift;
  628. mmap_prot = PROT_READ;
  629. mmap_flags = MAP_SHARED;
  630. if (self->header.needs_swap) {
  631. mmap_prot |= PROT_WRITE;
  632. mmap_flags = MAP_PRIVATE;
  633. }
  634. remap:
  635. buf = mmap(NULL, page_size * self->mmap_window, mmap_prot,
  636. mmap_flags, self->fd, offset);
  637. if (buf == MAP_FAILED) {
  638. pr_err("failed to mmap file\n");
  639. err = -errno;
  640. goto out_err;
  641. }
  642. more:
  643. event = (event_t *)(buf + head);
  644. ui_progress__update(progress, offset);
  645. if (self->header.needs_swap)
  646. perf_event_header__bswap(&event->header);
  647. size = event->header.size;
  648. if (size == 0)
  649. size = 8;
  650. if (head + event->header.size >= page_size * self->mmap_window) {
  651. int munmap_ret;
  652. shift = page_size * (head / page_size);
  653. munmap_ret = munmap(buf, page_size * self->mmap_window);
  654. assert(munmap_ret == 0);
  655. offset += shift;
  656. head -= shift;
  657. goto remap;
  658. }
  659. size = event->header.size;
  660. dump_printf("\n%#Lx [%#x]: event: %d\n",
  661. offset + head, event->header.size, event->header.type);
  662. if (size == 0 ||
  663. perf_session__process_event(self, event, ops, offset, head) < 0) {
  664. dump_printf("%#Lx [%#x]: skipping unknown header type: %d\n",
  665. offset + head, event->header.size,
  666. event->header.type);
  667. /*
  668. * assume we lost track of the stream, check alignment, and
  669. * increment a single u64 in the hope to catch on again 'soon'.
  670. */
  671. if (unlikely(head & 7))
  672. head &= ~7ULL;
  673. size = 8;
  674. }
  675. head += size;
  676. if (offset + head >= data_offset + data_size)
  677. goto done;
  678. if (offset + head < file_size)
  679. goto more;
  680. done:
  681. err = 0;
  682. /* do the final flush for ordered samples */
  683. self->ordered_samples.next_flush = ULLONG_MAX;
  684. flush_sample_queue(self, ops);
  685. out_err:
  686. ui_progress__delete(progress);
  687. return err;
  688. }
  689. int perf_session__process_events(struct perf_session *self,
  690. struct perf_event_ops *ops)
  691. {
  692. int err;
  693. if (perf_session__register_idle_thread(self) == NULL)
  694. return -ENOMEM;
  695. if (!self->fd_pipe)
  696. err = __perf_session__process_events(self,
  697. self->header.data_offset,
  698. self->header.data_size,
  699. self->size, ops);
  700. else
  701. err = __perf_session__process_pipe_events(self, ops);
  702. return err;
  703. }
  704. bool perf_session__has_traces(struct perf_session *self, const char *msg)
  705. {
  706. if (!(self->sample_type & PERF_SAMPLE_RAW)) {
  707. pr_err("No trace sample to read. Did you call 'perf %s'?\n", msg);
  708. return false;
  709. }
  710. return true;
  711. }
  712. int perf_session__set_kallsyms_ref_reloc_sym(struct map **maps,
  713. const char *symbol_name,
  714. u64 addr)
  715. {
  716. char *bracket;
  717. enum map_type i;
  718. struct ref_reloc_sym *ref;
  719. ref = zalloc(sizeof(struct ref_reloc_sym));
  720. if (ref == NULL)
  721. return -ENOMEM;
  722. ref->name = strdup(symbol_name);
  723. if (ref->name == NULL) {
  724. free(ref);
  725. return -ENOMEM;
  726. }
  727. bracket = strchr(ref->name, ']');
  728. if (bracket)
  729. *bracket = '\0';
  730. ref->addr = addr;
  731. for (i = 0; i < MAP__NR_TYPES; ++i) {
  732. struct kmap *kmap = map__kmap(maps[i]);
  733. kmap->ref_reloc_sym = ref;
  734. }
  735. return 0;
  736. }
  737. size_t perf_session__fprintf_dsos(struct perf_session *self, FILE *fp)
  738. {
  739. return __dsos__fprintf(&self->host_machine.kernel_dsos, fp) +
  740. __dsos__fprintf(&self->host_machine.user_dsos, fp) +
  741. machines__fprintf_dsos(&self->machines, fp);
  742. }
  743. size_t perf_session__fprintf_dsos_buildid(struct perf_session *self, FILE *fp,
  744. bool with_hits)
  745. {
  746. size_t ret = machine__fprintf_dsos_buildid(&self->host_machine, fp, with_hits);
  747. return ret + machines__fprintf_dsos_buildid(&self->machines, fp, with_hits);
  748. }