bnx2x_sriov.c 95 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520
  1. /* bnx2x_sriov.c: Broadcom Everest network driver.
  2. *
  3. * Copyright 2009-2013 Broadcom Corporation
  4. *
  5. * Unless you and Broadcom execute a separate written software license
  6. * agreement governing use of this software, this software is licensed to you
  7. * under the terms of the GNU General Public License version 2, available
  8. * at http://www.gnu.org/licenses/old-licenses/gpl-2.0.html (the "GPL").
  9. *
  10. * Notwithstanding the above, under no circumstances may you combine this
  11. * software in any way with any other Broadcom software provided under a
  12. * license other than the GPL, without Broadcom's express prior written
  13. * consent.
  14. *
  15. * Maintained by: Eilon Greenstein <eilong@broadcom.com>
  16. * Written by: Shmulik Ravid <shmulikr@broadcom.com>
  17. * Ariel Elior <ariele@broadcom.com>
  18. *
  19. */
  20. #include "bnx2x.h"
  21. #include "bnx2x_init.h"
  22. #include "bnx2x_cmn.h"
  23. #include "bnx2x_sp.h"
  24. #include <linux/crc32.h>
  25. #include <linux/if_vlan.h>
  26. /* General service functions */
  27. static void storm_memset_vf_to_pf(struct bnx2x *bp, u16 abs_fid,
  28. u16 pf_id)
  29. {
  30. REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_VF_TO_PF_OFFSET(abs_fid),
  31. pf_id);
  32. REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_VF_TO_PF_OFFSET(abs_fid),
  33. pf_id);
  34. REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_VF_TO_PF_OFFSET(abs_fid),
  35. pf_id);
  36. REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_VF_TO_PF_OFFSET(abs_fid),
  37. pf_id);
  38. }
  39. static void storm_memset_func_en(struct bnx2x *bp, u16 abs_fid,
  40. u8 enable)
  41. {
  42. REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(abs_fid),
  43. enable);
  44. REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(abs_fid),
  45. enable);
  46. REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(abs_fid),
  47. enable);
  48. REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(abs_fid),
  49. enable);
  50. }
  51. int bnx2x_vf_idx_by_abs_fid(struct bnx2x *bp, u16 abs_vfid)
  52. {
  53. int idx;
  54. for_each_vf(bp, idx)
  55. if (bnx2x_vf(bp, idx, abs_vfid) == abs_vfid)
  56. break;
  57. return idx;
  58. }
  59. static
  60. struct bnx2x_virtf *bnx2x_vf_by_abs_fid(struct bnx2x *bp, u16 abs_vfid)
  61. {
  62. u16 idx = (u16)bnx2x_vf_idx_by_abs_fid(bp, abs_vfid);
  63. return (idx < BNX2X_NR_VIRTFN(bp)) ? BP_VF(bp, idx) : NULL;
  64. }
  65. static void bnx2x_vf_igu_ack_sb(struct bnx2x *bp, struct bnx2x_virtf *vf,
  66. u8 igu_sb_id, u8 segment, u16 index, u8 op,
  67. u8 update)
  68. {
  69. /* acking a VF sb through the PF - use the GRC */
  70. u32 ctl;
  71. u32 igu_addr_data = IGU_REG_COMMAND_REG_32LSB_DATA;
  72. u32 igu_addr_ctl = IGU_REG_COMMAND_REG_CTRL;
  73. u32 func_encode = vf->abs_vfid;
  74. u32 addr_encode = IGU_CMD_E2_PROD_UPD_BASE + igu_sb_id;
  75. struct igu_regular cmd_data = {0};
  76. cmd_data.sb_id_and_flags =
  77. ((index << IGU_REGULAR_SB_INDEX_SHIFT) |
  78. (segment << IGU_REGULAR_SEGMENT_ACCESS_SHIFT) |
  79. (update << IGU_REGULAR_BUPDATE_SHIFT) |
  80. (op << IGU_REGULAR_ENABLE_INT_SHIFT));
  81. ctl = addr_encode << IGU_CTRL_REG_ADDRESS_SHIFT |
  82. func_encode << IGU_CTRL_REG_FID_SHIFT |
  83. IGU_CTRL_CMD_TYPE_WR << IGU_CTRL_REG_TYPE_SHIFT;
  84. DP(NETIF_MSG_HW, "write 0x%08x to IGU(via GRC) addr 0x%x\n",
  85. cmd_data.sb_id_and_flags, igu_addr_data);
  86. REG_WR(bp, igu_addr_data, cmd_data.sb_id_and_flags);
  87. mmiowb();
  88. barrier();
  89. DP(NETIF_MSG_HW, "write 0x%08x to IGU(via GRC) addr 0x%x\n",
  90. ctl, igu_addr_ctl);
  91. REG_WR(bp, igu_addr_ctl, ctl);
  92. mmiowb();
  93. barrier();
  94. }
  95. /* VFOP - VF slow-path operation support */
  96. #define BNX2X_VFOP_FILTER_ADD_CNT_MAX 0x10000
  97. /* VFOP operations states */
  98. enum bnx2x_vfop_qctor_state {
  99. BNX2X_VFOP_QCTOR_INIT,
  100. BNX2X_VFOP_QCTOR_SETUP,
  101. BNX2X_VFOP_QCTOR_INT_EN
  102. };
  103. enum bnx2x_vfop_qdtor_state {
  104. BNX2X_VFOP_QDTOR_HALT,
  105. BNX2X_VFOP_QDTOR_TERMINATE,
  106. BNX2X_VFOP_QDTOR_CFCDEL,
  107. BNX2X_VFOP_QDTOR_DONE
  108. };
  109. enum bnx2x_vfop_vlan_mac_state {
  110. BNX2X_VFOP_VLAN_MAC_CONFIG_SINGLE,
  111. BNX2X_VFOP_VLAN_MAC_CLEAR,
  112. BNX2X_VFOP_VLAN_MAC_CHK_DONE,
  113. BNX2X_VFOP_MAC_CONFIG_LIST,
  114. BNX2X_VFOP_VLAN_CONFIG_LIST,
  115. BNX2X_VFOP_VLAN_CONFIG_LIST_0
  116. };
  117. enum bnx2x_vfop_qsetup_state {
  118. BNX2X_VFOP_QSETUP_CTOR,
  119. BNX2X_VFOP_QSETUP_VLAN0,
  120. BNX2X_VFOP_QSETUP_DONE
  121. };
  122. enum bnx2x_vfop_mcast_state {
  123. BNX2X_VFOP_MCAST_DEL,
  124. BNX2X_VFOP_MCAST_ADD,
  125. BNX2X_VFOP_MCAST_CHK_DONE
  126. };
  127. enum bnx2x_vfop_qflr_state {
  128. BNX2X_VFOP_QFLR_CLR_VLAN,
  129. BNX2X_VFOP_QFLR_CLR_MAC,
  130. BNX2X_VFOP_QFLR_TERMINATE,
  131. BNX2X_VFOP_QFLR_DONE
  132. };
  133. enum bnx2x_vfop_flr_state {
  134. BNX2X_VFOP_FLR_QUEUES,
  135. BNX2X_VFOP_FLR_HW
  136. };
  137. enum bnx2x_vfop_close_state {
  138. BNX2X_VFOP_CLOSE_QUEUES,
  139. BNX2X_VFOP_CLOSE_HW
  140. };
  141. enum bnx2x_vfop_rxmode_state {
  142. BNX2X_VFOP_RXMODE_CONFIG,
  143. BNX2X_VFOP_RXMODE_DONE
  144. };
  145. enum bnx2x_vfop_qteardown_state {
  146. BNX2X_VFOP_QTEARDOWN_RXMODE,
  147. BNX2X_VFOP_QTEARDOWN_CLR_VLAN,
  148. BNX2X_VFOP_QTEARDOWN_CLR_MAC,
  149. BNX2X_VFOP_QTEARDOWN_QDTOR,
  150. BNX2X_VFOP_QTEARDOWN_DONE
  151. };
  152. #define bnx2x_vfop_reset_wq(vf) atomic_set(&vf->op_in_progress, 0)
  153. void bnx2x_vfop_qctor_dump_tx(struct bnx2x *bp, struct bnx2x_virtf *vf,
  154. struct bnx2x_queue_init_params *init_params,
  155. struct bnx2x_queue_setup_params *setup_params,
  156. u16 q_idx, u16 sb_idx)
  157. {
  158. DP(BNX2X_MSG_IOV,
  159. "VF[%d] Q_SETUP: txq[%d]-- vfsb=%d, sb-index=%d, hc-rate=%d, flags=0x%lx, traffic-type=%d",
  160. vf->abs_vfid,
  161. q_idx,
  162. sb_idx,
  163. init_params->tx.sb_cq_index,
  164. init_params->tx.hc_rate,
  165. setup_params->flags,
  166. setup_params->txq_params.traffic_type);
  167. }
  168. void bnx2x_vfop_qctor_dump_rx(struct bnx2x *bp, struct bnx2x_virtf *vf,
  169. struct bnx2x_queue_init_params *init_params,
  170. struct bnx2x_queue_setup_params *setup_params,
  171. u16 q_idx, u16 sb_idx)
  172. {
  173. struct bnx2x_rxq_setup_params *rxq_params = &setup_params->rxq_params;
  174. DP(BNX2X_MSG_IOV, "VF[%d] Q_SETUP: rxq[%d]-- vfsb=%d, sb-index=%d, hc-rate=%d, mtu=%d, buf-size=%d\n"
  175. "sge-size=%d, max_sge_pkt=%d, tpa-agg-size=%d, flags=0x%lx, drop-flags=0x%x, cache-log=%d\n",
  176. vf->abs_vfid,
  177. q_idx,
  178. sb_idx,
  179. init_params->rx.sb_cq_index,
  180. init_params->rx.hc_rate,
  181. setup_params->gen_params.mtu,
  182. rxq_params->buf_sz,
  183. rxq_params->sge_buf_sz,
  184. rxq_params->max_sges_pkt,
  185. rxq_params->tpa_agg_sz,
  186. setup_params->flags,
  187. rxq_params->drop_flags,
  188. rxq_params->cache_line_log);
  189. }
  190. void bnx2x_vfop_qctor_prep(struct bnx2x *bp,
  191. struct bnx2x_virtf *vf,
  192. struct bnx2x_vf_queue *q,
  193. struct bnx2x_vfop_qctor_params *p,
  194. unsigned long q_type)
  195. {
  196. struct bnx2x_queue_init_params *init_p = &p->qstate.params.init;
  197. struct bnx2x_queue_setup_params *setup_p = &p->prep_qsetup;
  198. /* INIT */
  199. /* Enable host coalescing in the transition to INIT state */
  200. if (test_bit(BNX2X_Q_FLG_HC, &init_p->rx.flags))
  201. __set_bit(BNX2X_Q_FLG_HC_EN, &init_p->rx.flags);
  202. if (test_bit(BNX2X_Q_FLG_HC, &init_p->tx.flags))
  203. __set_bit(BNX2X_Q_FLG_HC_EN, &init_p->tx.flags);
  204. /* FW SB ID */
  205. init_p->rx.fw_sb_id = vf_igu_sb(vf, q->sb_idx);
  206. init_p->tx.fw_sb_id = vf_igu_sb(vf, q->sb_idx);
  207. /* context */
  208. init_p->cxts[0] = q->cxt;
  209. /* SETUP */
  210. /* Setup-op general parameters */
  211. setup_p->gen_params.spcl_id = vf->sp_cl_id;
  212. setup_p->gen_params.stat_id = vfq_stat_id(vf, q);
  213. /* Setup-op pause params:
  214. * Nothing to do, the pause thresholds are set by default to 0 which
  215. * effectively turns off the feature for this queue. We don't want
  216. * one queue (VF) to interfering with another queue (another VF)
  217. */
  218. if (vf->cfg_flags & VF_CFG_FW_FC)
  219. BNX2X_ERR("No support for pause to VFs (abs_vfid: %d)\n",
  220. vf->abs_vfid);
  221. /* Setup-op flags:
  222. * collect statistics, zero statistics, local-switching, security,
  223. * OV for Flex10, RSS and MCAST for leading
  224. */
  225. if (test_bit(BNX2X_Q_FLG_STATS, &setup_p->flags))
  226. __set_bit(BNX2X_Q_FLG_ZERO_STATS, &setup_p->flags);
  227. /* for VFs, enable tx switching, bd coherency, and mac address
  228. * anti-spoofing
  229. */
  230. __set_bit(BNX2X_Q_FLG_TX_SWITCH, &setup_p->flags);
  231. __set_bit(BNX2X_Q_FLG_TX_SEC, &setup_p->flags);
  232. __set_bit(BNX2X_Q_FLG_ANTI_SPOOF, &setup_p->flags);
  233. if (vfq_is_leading(q)) {
  234. __set_bit(BNX2X_Q_FLG_LEADING_RSS, &setup_p->flags);
  235. __set_bit(BNX2X_Q_FLG_MCAST, &setup_p->flags);
  236. }
  237. /* Setup-op rx parameters */
  238. if (test_bit(BNX2X_Q_TYPE_HAS_RX, &q_type)) {
  239. struct bnx2x_rxq_setup_params *rxq_p = &setup_p->rxq_params;
  240. rxq_p->cl_qzone_id = vfq_qzone_id(vf, q);
  241. rxq_p->fw_sb_id = vf_igu_sb(vf, q->sb_idx);
  242. rxq_p->rss_engine_id = FW_VF_HANDLE(vf->abs_vfid);
  243. if (test_bit(BNX2X_Q_FLG_TPA, &setup_p->flags))
  244. rxq_p->max_tpa_queues = BNX2X_VF_MAX_TPA_AGG_QUEUES;
  245. }
  246. /* Setup-op tx parameters */
  247. if (test_bit(BNX2X_Q_TYPE_HAS_TX, &q_type)) {
  248. setup_p->txq_params.tss_leading_cl_id = vf->leading_rss;
  249. setup_p->txq_params.fw_sb_id = vf_igu_sb(vf, q->sb_idx);
  250. }
  251. }
  252. /* VFOP queue construction */
  253. static void bnx2x_vfop_qctor(struct bnx2x *bp, struct bnx2x_virtf *vf)
  254. {
  255. struct bnx2x_vfop *vfop = bnx2x_vfop_cur(bp, vf);
  256. struct bnx2x_vfop_args_qctor *args = &vfop->args.qctor;
  257. struct bnx2x_queue_state_params *q_params = &vfop->op_p->qctor.qstate;
  258. enum bnx2x_vfop_qctor_state state = vfop->state;
  259. bnx2x_vfop_reset_wq(vf);
  260. if (vfop->rc < 0)
  261. goto op_err;
  262. DP(BNX2X_MSG_IOV, "vf[%d] STATE: %d\n", vf->abs_vfid, state);
  263. switch (state) {
  264. case BNX2X_VFOP_QCTOR_INIT:
  265. /* has this queue already been opened? */
  266. if (bnx2x_get_q_logical_state(bp, q_params->q_obj) ==
  267. BNX2X_Q_LOGICAL_STATE_ACTIVE) {
  268. DP(BNX2X_MSG_IOV,
  269. "Entered qctor but queue was already up. Aborting gracefully\n");
  270. goto op_done;
  271. }
  272. /* next state */
  273. vfop->state = BNX2X_VFOP_QCTOR_SETUP;
  274. q_params->cmd = BNX2X_Q_CMD_INIT;
  275. vfop->rc = bnx2x_queue_state_change(bp, q_params);
  276. bnx2x_vfop_finalize(vf, vfop->rc, VFOP_CONT);
  277. case BNX2X_VFOP_QCTOR_SETUP:
  278. /* next state */
  279. vfop->state = BNX2X_VFOP_QCTOR_INT_EN;
  280. /* copy pre-prepared setup params to the queue-state params */
  281. vfop->op_p->qctor.qstate.params.setup =
  282. vfop->op_p->qctor.prep_qsetup;
  283. q_params->cmd = BNX2X_Q_CMD_SETUP;
  284. vfop->rc = bnx2x_queue_state_change(bp, q_params);
  285. bnx2x_vfop_finalize(vf, vfop->rc, VFOP_CONT);
  286. case BNX2X_VFOP_QCTOR_INT_EN:
  287. /* enable interrupts */
  288. bnx2x_vf_igu_ack_sb(bp, vf, vf_igu_sb(vf, args->sb_idx),
  289. USTORM_ID, 0, IGU_INT_ENABLE, 0);
  290. goto op_done;
  291. default:
  292. bnx2x_vfop_default(state);
  293. }
  294. op_err:
  295. BNX2X_ERR("QCTOR[%d:%d] error: cmd %d, rc %d\n",
  296. vf->abs_vfid, args->qid, q_params->cmd, vfop->rc);
  297. op_done:
  298. bnx2x_vfop_end(bp, vf, vfop);
  299. op_pending:
  300. return;
  301. }
  302. static int bnx2x_vfop_qctor_cmd(struct bnx2x *bp,
  303. struct bnx2x_virtf *vf,
  304. struct bnx2x_vfop_cmd *cmd,
  305. int qid)
  306. {
  307. struct bnx2x_vfop *vfop = bnx2x_vfop_add(bp, vf);
  308. if (vfop) {
  309. vf->op_params.qctor.qstate.q_obj = &bnx2x_vfq(vf, qid, sp_obj);
  310. vfop->args.qctor.qid = qid;
  311. vfop->args.qctor.sb_idx = bnx2x_vfq(vf, qid, sb_idx);
  312. bnx2x_vfop_opset(BNX2X_VFOP_QCTOR_INIT,
  313. bnx2x_vfop_qctor, cmd->done);
  314. return bnx2x_vfop_transition(bp, vf, bnx2x_vfop_qctor,
  315. cmd->block);
  316. }
  317. return -ENOMEM;
  318. }
  319. /* VFOP queue destruction */
  320. static void bnx2x_vfop_qdtor(struct bnx2x *bp, struct bnx2x_virtf *vf)
  321. {
  322. struct bnx2x_vfop *vfop = bnx2x_vfop_cur(bp, vf);
  323. struct bnx2x_vfop_args_qdtor *qdtor = &vfop->args.qdtor;
  324. struct bnx2x_queue_state_params *q_params = &vfop->op_p->qctor.qstate;
  325. enum bnx2x_vfop_qdtor_state state = vfop->state;
  326. bnx2x_vfop_reset_wq(vf);
  327. if (vfop->rc < 0)
  328. goto op_err;
  329. DP(BNX2X_MSG_IOV, "vf[%d] STATE: %d\n", vf->abs_vfid, state);
  330. switch (state) {
  331. case BNX2X_VFOP_QDTOR_HALT:
  332. /* has this queue already been stopped? */
  333. if (bnx2x_get_q_logical_state(bp, q_params->q_obj) ==
  334. BNX2X_Q_LOGICAL_STATE_STOPPED) {
  335. DP(BNX2X_MSG_IOV,
  336. "Entered qdtor but queue was already stopped. Aborting gracefully\n");
  337. goto op_done;
  338. }
  339. /* next state */
  340. vfop->state = BNX2X_VFOP_QDTOR_TERMINATE;
  341. q_params->cmd = BNX2X_Q_CMD_HALT;
  342. vfop->rc = bnx2x_queue_state_change(bp, q_params);
  343. bnx2x_vfop_finalize(vf, vfop->rc, VFOP_CONT);
  344. case BNX2X_VFOP_QDTOR_TERMINATE:
  345. /* next state */
  346. vfop->state = BNX2X_VFOP_QDTOR_CFCDEL;
  347. q_params->cmd = BNX2X_Q_CMD_TERMINATE;
  348. vfop->rc = bnx2x_queue_state_change(bp, q_params);
  349. bnx2x_vfop_finalize(vf, vfop->rc, VFOP_CONT);
  350. case BNX2X_VFOP_QDTOR_CFCDEL:
  351. /* next state */
  352. vfop->state = BNX2X_VFOP_QDTOR_DONE;
  353. q_params->cmd = BNX2X_Q_CMD_CFC_DEL;
  354. vfop->rc = bnx2x_queue_state_change(bp, q_params);
  355. bnx2x_vfop_finalize(vf, vfop->rc, VFOP_DONE);
  356. op_err:
  357. BNX2X_ERR("QDTOR[%d:%d] error: cmd %d, rc %d\n",
  358. vf->abs_vfid, qdtor->qid, q_params->cmd, vfop->rc);
  359. op_done:
  360. case BNX2X_VFOP_QDTOR_DONE:
  361. /* invalidate the context */
  362. qdtor->cxt->ustorm_ag_context.cdu_usage = 0;
  363. qdtor->cxt->xstorm_ag_context.cdu_reserved = 0;
  364. bnx2x_vfop_end(bp, vf, vfop);
  365. return;
  366. default:
  367. bnx2x_vfop_default(state);
  368. }
  369. op_pending:
  370. return;
  371. }
  372. static int bnx2x_vfop_qdtor_cmd(struct bnx2x *bp,
  373. struct bnx2x_virtf *vf,
  374. struct bnx2x_vfop_cmd *cmd,
  375. int qid)
  376. {
  377. struct bnx2x_vfop *vfop = bnx2x_vfop_add(bp, vf);
  378. if (vfop) {
  379. struct bnx2x_queue_state_params *qstate =
  380. &vf->op_params.qctor.qstate;
  381. memset(qstate, 0, sizeof(*qstate));
  382. qstate->q_obj = &bnx2x_vfq(vf, qid, sp_obj);
  383. vfop->args.qdtor.qid = qid;
  384. vfop->args.qdtor.cxt = bnx2x_vfq(vf, qid, cxt);
  385. bnx2x_vfop_opset(BNX2X_VFOP_QDTOR_HALT,
  386. bnx2x_vfop_qdtor, cmd->done);
  387. return bnx2x_vfop_transition(bp, vf, bnx2x_vfop_qdtor,
  388. cmd->block);
  389. }
  390. DP(BNX2X_MSG_IOV, "VF[%d] failed to add a vfop.\n", vf->abs_vfid);
  391. return -ENOMEM;
  392. }
  393. static void
  394. bnx2x_vf_set_igu_info(struct bnx2x *bp, u8 igu_sb_id, u8 abs_vfid)
  395. {
  396. struct bnx2x_virtf *vf = bnx2x_vf_by_abs_fid(bp, abs_vfid);
  397. if (vf) {
  398. if (!vf_sb_count(vf))
  399. vf->igu_base_id = igu_sb_id;
  400. ++vf_sb_count(vf);
  401. }
  402. }
  403. /* VFOP MAC/VLAN helpers */
  404. static inline void bnx2x_vfop_credit(struct bnx2x *bp,
  405. struct bnx2x_vfop *vfop,
  406. struct bnx2x_vlan_mac_obj *obj)
  407. {
  408. struct bnx2x_vfop_args_filters *args = &vfop->args.filters;
  409. /* update credit only if there is no error
  410. * and a valid credit counter
  411. */
  412. if (!vfop->rc && args->credit) {
  413. struct list_head *pos;
  414. int read_lock;
  415. int cnt = 0;
  416. read_lock = bnx2x_vlan_mac_h_read_lock(bp, obj);
  417. if (read_lock)
  418. DP(BNX2X_MSG_SP, "Failed to take vlan mac read head; continuing anyway\n");
  419. list_for_each(pos, &obj->head)
  420. cnt++;
  421. if (!read_lock)
  422. bnx2x_vlan_mac_h_read_unlock(bp, obj);
  423. atomic_set(args->credit, cnt);
  424. }
  425. }
  426. static int bnx2x_vfop_set_user_req(struct bnx2x *bp,
  427. struct bnx2x_vfop_filter *pos,
  428. struct bnx2x_vlan_mac_data *user_req)
  429. {
  430. user_req->cmd = pos->add ? BNX2X_VLAN_MAC_ADD :
  431. BNX2X_VLAN_MAC_DEL;
  432. switch (pos->type) {
  433. case BNX2X_VFOP_FILTER_MAC:
  434. memcpy(user_req->u.mac.mac, pos->mac, ETH_ALEN);
  435. break;
  436. case BNX2X_VFOP_FILTER_VLAN:
  437. user_req->u.vlan.vlan = pos->vid;
  438. break;
  439. default:
  440. BNX2X_ERR("Invalid filter type, skipping\n");
  441. return 1;
  442. }
  443. return 0;
  444. }
  445. static int
  446. bnx2x_vfop_config_vlan0(struct bnx2x *bp,
  447. struct bnx2x_vlan_mac_ramrod_params *vlan_mac,
  448. bool add)
  449. {
  450. int rc;
  451. vlan_mac->user_req.cmd = add ? BNX2X_VLAN_MAC_ADD :
  452. BNX2X_VLAN_MAC_DEL;
  453. vlan_mac->user_req.u.vlan.vlan = 0;
  454. rc = bnx2x_config_vlan_mac(bp, vlan_mac);
  455. if (rc == -EEXIST)
  456. rc = 0;
  457. return rc;
  458. }
  459. static int bnx2x_vfop_config_list(struct bnx2x *bp,
  460. struct bnx2x_vfop_filters *filters,
  461. struct bnx2x_vlan_mac_ramrod_params *vlan_mac)
  462. {
  463. struct bnx2x_vfop_filter *pos, *tmp;
  464. struct list_head rollback_list, *filters_list = &filters->head;
  465. struct bnx2x_vlan_mac_data *user_req = &vlan_mac->user_req;
  466. int rc = 0, cnt = 0;
  467. INIT_LIST_HEAD(&rollback_list);
  468. list_for_each_entry_safe(pos, tmp, filters_list, link) {
  469. if (bnx2x_vfop_set_user_req(bp, pos, user_req))
  470. continue;
  471. rc = bnx2x_config_vlan_mac(bp, vlan_mac);
  472. if (rc >= 0) {
  473. cnt += pos->add ? 1 : -1;
  474. list_move(&pos->link, &rollback_list);
  475. rc = 0;
  476. } else if (rc == -EEXIST) {
  477. rc = 0;
  478. } else {
  479. BNX2X_ERR("Failed to add a new vlan_mac command\n");
  480. break;
  481. }
  482. }
  483. /* rollback if error or too many rules added */
  484. if (rc || cnt > filters->add_cnt) {
  485. BNX2X_ERR("error or too many rules added. Performing rollback\n");
  486. list_for_each_entry_safe(pos, tmp, &rollback_list, link) {
  487. pos->add = !pos->add; /* reverse op */
  488. bnx2x_vfop_set_user_req(bp, pos, user_req);
  489. bnx2x_config_vlan_mac(bp, vlan_mac);
  490. list_del(&pos->link);
  491. }
  492. cnt = 0;
  493. if (!rc)
  494. rc = -EINVAL;
  495. }
  496. filters->add_cnt = cnt;
  497. return rc;
  498. }
  499. /* VFOP set VLAN/MAC */
  500. static void bnx2x_vfop_vlan_mac(struct bnx2x *bp, struct bnx2x_virtf *vf)
  501. {
  502. struct bnx2x_vfop *vfop = bnx2x_vfop_cur(bp, vf);
  503. struct bnx2x_vlan_mac_ramrod_params *vlan_mac = &vfop->op_p->vlan_mac;
  504. struct bnx2x_vlan_mac_obj *obj = vlan_mac->vlan_mac_obj;
  505. struct bnx2x_vfop_filters *filters = vfop->args.filters.multi_filter;
  506. enum bnx2x_vfop_vlan_mac_state state = vfop->state;
  507. if (vfop->rc < 0)
  508. goto op_err;
  509. DP(BNX2X_MSG_IOV, "vf[%d] STATE: %d\n", vf->abs_vfid, state);
  510. bnx2x_vfop_reset_wq(vf);
  511. switch (state) {
  512. case BNX2X_VFOP_VLAN_MAC_CLEAR:
  513. /* next state */
  514. vfop->state = BNX2X_VFOP_VLAN_MAC_CHK_DONE;
  515. /* do delete */
  516. vfop->rc = obj->delete_all(bp, obj,
  517. &vlan_mac->user_req.vlan_mac_flags,
  518. &vlan_mac->ramrod_flags);
  519. bnx2x_vfop_finalize(vf, vfop->rc, VFOP_DONE);
  520. case BNX2X_VFOP_VLAN_MAC_CONFIG_SINGLE:
  521. /* next state */
  522. vfop->state = BNX2X_VFOP_VLAN_MAC_CHK_DONE;
  523. /* do config */
  524. vfop->rc = bnx2x_config_vlan_mac(bp, vlan_mac);
  525. if (vfop->rc == -EEXIST)
  526. vfop->rc = 0;
  527. bnx2x_vfop_finalize(vf, vfop->rc, VFOP_DONE);
  528. case BNX2X_VFOP_VLAN_MAC_CHK_DONE:
  529. vfop->rc = !!obj->raw.check_pending(&obj->raw);
  530. bnx2x_vfop_finalize(vf, vfop->rc, VFOP_DONE);
  531. case BNX2X_VFOP_MAC_CONFIG_LIST:
  532. /* next state */
  533. vfop->state = BNX2X_VFOP_VLAN_MAC_CHK_DONE;
  534. /* do list config */
  535. vfop->rc = bnx2x_vfop_config_list(bp, filters, vlan_mac);
  536. if (vfop->rc)
  537. goto op_err;
  538. set_bit(RAMROD_CONT, &vlan_mac->ramrod_flags);
  539. vfop->rc = bnx2x_config_vlan_mac(bp, vlan_mac);
  540. bnx2x_vfop_finalize(vf, vfop->rc, VFOP_DONE);
  541. case BNX2X_VFOP_VLAN_CONFIG_LIST:
  542. /* next state */
  543. vfop->state = BNX2X_VFOP_VLAN_CONFIG_LIST_0;
  544. /* remove vlan0 - could be no-op */
  545. vfop->rc = bnx2x_vfop_config_vlan0(bp, vlan_mac, false);
  546. if (vfop->rc)
  547. goto op_err;
  548. /* Do vlan list config. if this operation fails we try to
  549. * restore vlan0 to keep the queue is working order
  550. */
  551. vfop->rc = bnx2x_vfop_config_list(bp, filters, vlan_mac);
  552. if (!vfop->rc) {
  553. set_bit(RAMROD_CONT, &vlan_mac->ramrod_flags);
  554. vfop->rc = bnx2x_config_vlan_mac(bp, vlan_mac);
  555. }
  556. bnx2x_vfop_finalize(vf, vfop->rc, VFOP_CONT); /* fall-through */
  557. case BNX2X_VFOP_VLAN_CONFIG_LIST_0:
  558. /* next state */
  559. vfop->state = BNX2X_VFOP_VLAN_MAC_CHK_DONE;
  560. if (list_empty(&obj->head))
  561. /* add vlan0 */
  562. vfop->rc = bnx2x_vfop_config_vlan0(bp, vlan_mac, true);
  563. bnx2x_vfop_finalize(vf, vfop->rc, VFOP_DONE);
  564. default:
  565. bnx2x_vfop_default(state);
  566. }
  567. op_err:
  568. BNX2X_ERR("VLAN-MAC error: rc %d\n", vfop->rc);
  569. op_done:
  570. kfree(filters);
  571. bnx2x_vfop_credit(bp, vfop, obj);
  572. bnx2x_vfop_end(bp, vf, vfop);
  573. op_pending:
  574. return;
  575. }
  576. struct bnx2x_vfop_vlan_mac_flags {
  577. bool drv_only;
  578. bool dont_consume;
  579. bool single_cmd;
  580. bool add;
  581. };
  582. static void
  583. bnx2x_vfop_vlan_mac_prep_ramrod(struct bnx2x_vlan_mac_ramrod_params *ramrod,
  584. struct bnx2x_vfop_vlan_mac_flags *flags)
  585. {
  586. struct bnx2x_vlan_mac_data *ureq = &ramrod->user_req;
  587. memset(ramrod, 0, sizeof(*ramrod));
  588. /* ramrod flags */
  589. if (flags->drv_only)
  590. set_bit(RAMROD_DRV_CLR_ONLY, &ramrod->ramrod_flags);
  591. if (flags->single_cmd)
  592. set_bit(RAMROD_EXEC, &ramrod->ramrod_flags);
  593. /* mac_vlan flags */
  594. if (flags->dont_consume)
  595. set_bit(BNX2X_DONT_CONSUME_CAM_CREDIT, &ureq->vlan_mac_flags);
  596. /* cmd */
  597. ureq->cmd = flags->add ? BNX2X_VLAN_MAC_ADD : BNX2X_VLAN_MAC_DEL;
  598. }
  599. static inline void
  600. bnx2x_vfop_mac_prep_ramrod(struct bnx2x_vlan_mac_ramrod_params *ramrod,
  601. struct bnx2x_vfop_vlan_mac_flags *flags)
  602. {
  603. bnx2x_vfop_vlan_mac_prep_ramrod(ramrod, flags);
  604. set_bit(BNX2X_ETH_MAC, &ramrod->user_req.vlan_mac_flags);
  605. }
  606. static int bnx2x_vfop_mac_delall_cmd(struct bnx2x *bp,
  607. struct bnx2x_virtf *vf,
  608. struct bnx2x_vfop_cmd *cmd,
  609. int qid, bool drv_only)
  610. {
  611. struct bnx2x_vfop *vfop = bnx2x_vfop_add(bp, vf);
  612. if (vfop) {
  613. struct bnx2x_vfop_args_filters filters = {
  614. .multi_filter = NULL, /* single */
  615. .credit = NULL, /* consume credit */
  616. };
  617. struct bnx2x_vfop_vlan_mac_flags flags = {
  618. .drv_only = drv_only,
  619. .dont_consume = (filters.credit != NULL),
  620. .single_cmd = true,
  621. .add = false /* don't care */,
  622. };
  623. struct bnx2x_vlan_mac_ramrod_params *ramrod =
  624. &vf->op_params.vlan_mac;
  625. /* set ramrod params */
  626. bnx2x_vfop_mac_prep_ramrod(ramrod, &flags);
  627. /* set object */
  628. ramrod->vlan_mac_obj = &bnx2x_vfq(vf, qid, mac_obj);
  629. /* set extra args */
  630. vfop->args.filters = filters;
  631. bnx2x_vfop_opset(BNX2X_VFOP_VLAN_MAC_CLEAR,
  632. bnx2x_vfop_vlan_mac, cmd->done);
  633. return bnx2x_vfop_transition(bp, vf, bnx2x_vfop_vlan_mac,
  634. cmd->block);
  635. }
  636. return -ENOMEM;
  637. }
  638. int bnx2x_vfop_mac_list_cmd(struct bnx2x *bp,
  639. struct bnx2x_virtf *vf,
  640. struct bnx2x_vfop_cmd *cmd,
  641. struct bnx2x_vfop_filters *macs,
  642. int qid, bool drv_only)
  643. {
  644. struct bnx2x_vfop *vfop = bnx2x_vfop_add(bp, vf);
  645. if (vfop) {
  646. struct bnx2x_vfop_args_filters filters = {
  647. .multi_filter = macs,
  648. .credit = NULL, /* consume credit */
  649. };
  650. struct bnx2x_vfop_vlan_mac_flags flags = {
  651. .drv_only = drv_only,
  652. .dont_consume = (filters.credit != NULL),
  653. .single_cmd = false,
  654. .add = false, /* don't care since only the items in the
  655. * filters list affect the sp operation,
  656. * not the list itself
  657. */
  658. };
  659. struct bnx2x_vlan_mac_ramrod_params *ramrod =
  660. &vf->op_params.vlan_mac;
  661. /* set ramrod params */
  662. bnx2x_vfop_mac_prep_ramrod(ramrod, &flags);
  663. /* set object */
  664. ramrod->vlan_mac_obj = &bnx2x_vfq(vf, qid, mac_obj);
  665. /* set extra args */
  666. filters.multi_filter->add_cnt = BNX2X_VFOP_FILTER_ADD_CNT_MAX;
  667. vfop->args.filters = filters;
  668. bnx2x_vfop_opset(BNX2X_VFOP_MAC_CONFIG_LIST,
  669. bnx2x_vfop_vlan_mac, cmd->done);
  670. return bnx2x_vfop_transition(bp, vf, bnx2x_vfop_vlan_mac,
  671. cmd->block);
  672. }
  673. return -ENOMEM;
  674. }
  675. int bnx2x_vfop_vlan_set_cmd(struct bnx2x *bp,
  676. struct bnx2x_virtf *vf,
  677. struct bnx2x_vfop_cmd *cmd,
  678. int qid, u16 vid, bool add)
  679. {
  680. struct bnx2x_vfop *vfop = bnx2x_vfop_add(bp, vf);
  681. if (vfop) {
  682. struct bnx2x_vfop_args_filters filters = {
  683. .multi_filter = NULL, /* single command */
  684. .credit = &bnx2x_vfq(vf, qid, vlan_count),
  685. };
  686. struct bnx2x_vfop_vlan_mac_flags flags = {
  687. .drv_only = false,
  688. .dont_consume = (filters.credit != NULL),
  689. .single_cmd = true,
  690. .add = add,
  691. };
  692. struct bnx2x_vlan_mac_ramrod_params *ramrod =
  693. &vf->op_params.vlan_mac;
  694. /* set ramrod params */
  695. bnx2x_vfop_vlan_mac_prep_ramrod(ramrod, &flags);
  696. ramrod->user_req.u.vlan.vlan = vid;
  697. /* set object */
  698. ramrod->vlan_mac_obj = &bnx2x_vfq(vf, qid, vlan_obj);
  699. /* set extra args */
  700. vfop->args.filters = filters;
  701. bnx2x_vfop_opset(BNX2X_VFOP_VLAN_MAC_CONFIG_SINGLE,
  702. bnx2x_vfop_vlan_mac, cmd->done);
  703. return bnx2x_vfop_transition(bp, vf, bnx2x_vfop_vlan_mac,
  704. cmd->block);
  705. }
  706. return -ENOMEM;
  707. }
  708. static int bnx2x_vfop_vlan_delall_cmd(struct bnx2x *bp,
  709. struct bnx2x_virtf *vf,
  710. struct bnx2x_vfop_cmd *cmd,
  711. int qid, bool drv_only)
  712. {
  713. struct bnx2x_vfop *vfop = bnx2x_vfop_add(bp, vf);
  714. if (vfop) {
  715. struct bnx2x_vfop_args_filters filters = {
  716. .multi_filter = NULL, /* single command */
  717. .credit = &bnx2x_vfq(vf, qid, vlan_count),
  718. };
  719. struct bnx2x_vfop_vlan_mac_flags flags = {
  720. .drv_only = drv_only,
  721. .dont_consume = (filters.credit != NULL),
  722. .single_cmd = true,
  723. .add = false, /* don't care */
  724. };
  725. struct bnx2x_vlan_mac_ramrod_params *ramrod =
  726. &vf->op_params.vlan_mac;
  727. /* set ramrod params */
  728. bnx2x_vfop_vlan_mac_prep_ramrod(ramrod, &flags);
  729. /* set object */
  730. ramrod->vlan_mac_obj = &bnx2x_vfq(vf, qid, vlan_obj);
  731. /* set extra args */
  732. vfop->args.filters = filters;
  733. bnx2x_vfop_opset(BNX2X_VFOP_VLAN_MAC_CLEAR,
  734. bnx2x_vfop_vlan_mac, cmd->done);
  735. return bnx2x_vfop_transition(bp, vf, bnx2x_vfop_vlan_mac,
  736. cmd->block);
  737. }
  738. return -ENOMEM;
  739. }
  740. int bnx2x_vfop_vlan_list_cmd(struct bnx2x *bp,
  741. struct bnx2x_virtf *vf,
  742. struct bnx2x_vfop_cmd *cmd,
  743. struct bnx2x_vfop_filters *vlans,
  744. int qid, bool drv_only)
  745. {
  746. struct bnx2x_vfop *vfop = bnx2x_vfop_add(bp, vf);
  747. if (vfop) {
  748. struct bnx2x_vfop_args_filters filters = {
  749. .multi_filter = vlans,
  750. .credit = &bnx2x_vfq(vf, qid, vlan_count),
  751. };
  752. struct bnx2x_vfop_vlan_mac_flags flags = {
  753. .drv_only = drv_only,
  754. .dont_consume = (filters.credit != NULL),
  755. .single_cmd = false,
  756. .add = false, /* don't care */
  757. };
  758. struct bnx2x_vlan_mac_ramrod_params *ramrod =
  759. &vf->op_params.vlan_mac;
  760. /* set ramrod params */
  761. bnx2x_vfop_vlan_mac_prep_ramrod(ramrod, &flags);
  762. /* set object */
  763. ramrod->vlan_mac_obj = &bnx2x_vfq(vf, qid, vlan_obj);
  764. /* set extra args */
  765. filters.multi_filter->add_cnt = vf_vlan_rules_cnt(vf) -
  766. atomic_read(filters.credit);
  767. vfop->args.filters = filters;
  768. bnx2x_vfop_opset(BNX2X_VFOP_VLAN_CONFIG_LIST,
  769. bnx2x_vfop_vlan_mac, cmd->done);
  770. return bnx2x_vfop_transition(bp, vf, bnx2x_vfop_vlan_mac,
  771. cmd->block);
  772. }
  773. return -ENOMEM;
  774. }
  775. /* VFOP queue setup (queue constructor + set vlan 0) */
  776. static void bnx2x_vfop_qsetup(struct bnx2x *bp, struct bnx2x_virtf *vf)
  777. {
  778. struct bnx2x_vfop *vfop = bnx2x_vfop_cur(bp, vf);
  779. int qid = vfop->args.qctor.qid;
  780. enum bnx2x_vfop_qsetup_state state = vfop->state;
  781. struct bnx2x_vfop_cmd cmd = {
  782. .done = bnx2x_vfop_qsetup,
  783. .block = false,
  784. };
  785. if (vfop->rc < 0)
  786. goto op_err;
  787. DP(BNX2X_MSG_IOV, "vf[%d] STATE: %d\n", vf->abs_vfid, state);
  788. switch (state) {
  789. case BNX2X_VFOP_QSETUP_CTOR:
  790. /* init the queue ctor command */
  791. vfop->state = BNX2X_VFOP_QSETUP_VLAN0;
  792. vfop->rc = bnx2x_vfop_qctor_cmd(bp, vf, &cmd, qid);
  793. if (vfop->rc)
  794. goto op_err;
  795. return;
  796. case BNX2X_VFOP_QSETUP_VLAN0:
  797. /* skip if non-leading or FPGA/EMU*/
  798. if (qid)
  799. goto op_done;
  800. /* init the queue set-vlan command (for vlan 0) */
  801. vfop->state = BNX2X_VFOP_QSETUP_DONE;
  802. vfop->rc = bnx2x_vfop_vlan_set_cmd(bp, vf, &cmd, qid, 0, true);
  803. if (vfop->rc)
  804. goto op_err;
  805. return;
  806. op_err:
  807. BNX2X_ERR("QSETUP[%d:%d] error: rc %d\n", vf->abs_vfid, qid, vfop->rc);
  808. op_done:
  809. case BNX2X_VFOP_QSETUP_DONE:
  810. vf->cfg_flags |= VF_CFG_VLAN;
  811. smp_mb__before_clear_bit();
  812. set_bit(BNX2X_SP_RTNL_HYPERVISOR_VLAN,
  813. &bp->sp_rtnl_state);
  814. smp_mb__after_clear_bit();
  815. schedule_delayed_work(&bp->sp_rtnl_task, 0);
  816. bnx2x_vfop_end(bp, vf, vfop);
  817. return;
  818. default:
  819. bnx2x_vfop_default(state);
  820. }
  821. }
  822. int bnx2x_vfop_qsetup_cmd(struct bnx2x *bp,
  823. struct bnx2x_virtf *vf,
  824. struct bnx2x_vfop_cmd *cmd,
  825. int qid)
  826. {
  827. struct bnx2x_vfop *vfop = bnx2x_vfop_add(bp, vf);
  828. if (vfop) {
  829. vfop->args.qctor.qid = qid;
  830. bnx2x_vfop_opset(BNX2X_VFOP_QSETUP_CTOR,
  831. bnx2x_vfop_qsetup, cmd->done);
  832. return bnx2x_vfop_transition(bp, vf, bnx2x_vfop_qsetup,
  833. cmd->block);
  834. }
  835. return -ENOMEM;
  836. }
  837. /* VFOP queue FLR handling (clear vlans, clear macs, queue destructor) */
  838. static void bnx2x_vfop_qflr(struct bnx2x *bp, struct bnx2x_virtf *vf)
  839. {
  840. struct bnx2x_vfop *vfop = bnx2x_vfop_cur(bp, vf);
  841. int qid = vfop->args.qx.qid;
  842. enum bnx2x_vfop_qflr_state state = vfop->state;
  843. struct bnx2x_queue_state_params *qstate;
  844. struct bnx2x_vfop_cmd cmd;
  845. bnx2x_vfop_reset_wq(vf);
  846. if (vfop->rc < 0)
  847. goto op_err;
  848. DP(BNX2X_MSG_IOV, "VF[%d] STATE: %d\n", vf->abs_vfid, state);
  849. cmd.done = bnx2x_vfop_qflr;
  850. cmd.block = false;
  851. switch (state) {
  852. case BNX2X_VFOP_QFLR_CLR_VLAN:
  853. /* vlan-clear-all: driver-only, don't consume credit */
  854. vfop->state = BNX2X_VFOP_QFLR_CLR_MAC;
  855. vfop->rc = bnx2x_vfop_vlan_delall_cmd(bp, vf, &cmd, qid, true);
  856. if (vfop->rc)
  857. goto op_err;
  858. return;
  859. case BNX2X_VFOP_QFLR_CLR_MAC:
  860. /* mac-clear-all: driver only consume credit */
  861. vfop->state = BNX2X_VFOP_QFLR_TERMINATE;
  862. vfop->rc = bnx2x_vfop_mac_delall_cmd(bp, vf, &cmd, qid, true);
  863. DP(BNX2X_MSG_IOV,
  864. "VF[%d] vfop->rc after bnx2x_vfop_mac_delall_cmd was %d",
  865. vf->abs_vfid, vfop->rc);
  866. if (vfop->rc)
  867. goto op_err;
  868. return;
  869. case BNX2X_VFOP_QFLR_TERMINATE:
  870. qstate = &vfop->op_p->qctor.qstate;
  871. memset(qstate , 0, sizeof(*qstate));
  872. qstate->q_obj = &bnx2x_vfq(vf, qid, sp_obj);
  873. vfop->state = BNX2X_VFOP_QFLR_DONE;
  874. DP(BNX2X_MSG_IOV, "VF[%d] qstate during flr was %d\n",
  875. vf->abs_vfid, qstate->q_obj->state);
  876. if (qstate->q_obj->state != BNX2X_Q_STATE_RESET) {
  877. qstate->q_obj->state = BNX2X_Q_STATE_STOPPED;
  878. qstate->cmd = BNX2X_Q_CMD_TERMINATE;
  879. vfop->rc = bnx2x_queue_state_change(bp, qstate);
  880. bnx2x_vfop_finalize(vf, vfop->rc, VFOP_VERIFY_PEND);
  881. } else {
  882. goto op_done;
  883. }
  884. op_err:
  885. BNX2X_ERR("QFLR[%d:%d] error: rc %d\n",
  886. vf->abs_vfid, qid, vfop->rc);
  887. op_done:
  888. case BNX2X_VFOP_QFLR_DONE:
  889. bnx2x_vfop_end(bp, vf, vfop);
  890. return;
  891. default:
  892. bnx2x_vfop_default(state);
  893. }
  894. op_pending:
  895. return;
  896. }
  897. static int bnx2x_vfop_qflr_cmd(struct bnx2x *bp,
  898. struct bnx2x_virtf *vf,
  899. struct bnx2x_vfop_cmd *cmd,
  900. int qid)
  901. {
  902. struct bnx2x_vfop *vfop = bnx2x_vfop_add(bp, vf);
  903. if (vfop) {
  904. vfop->args.qx.qid = qid;
  905. bnx2x_vfop_opset(BNX2X_VFOP_QFLR_CLR_VLAN,
  906. bnx2x_vfop_qflr, cmd->done);
  907. return bnx2x_vfop_transition(bp, vf, bnx2x_vfop_qflr,
  908. cmd->block);
  909. }
  910. return -ENOMEM;
  911. }
  912. /* VFOP multi-casts */
  913. static void bnx2x_vfop_mcast(struct bnx2x *bp, struct bnx2x_virtf *vf)
  914. {
  915. struct bnx2x_vfop *vfop = bnx2x_vfop_cur(bp, vf);
  916. struct bnx2x_mcast_ramrod_params *mcast = &vfop->op_p->mcast;
  917. struct bnx2x_raw_obj *raw = &mcast->mcast_obj->raw;
  918. struct bnx2x_vfop_args_mcast *args = &vfop->args.mc_list;
  919. enum bnx2x_vfop_mcast_state state = vfop->state;
  920. int i;
  921. bnx2x_vfop_reset_wq(vf);
  922. if (vfop->rc < 0)
  923. goto op_err;
  924. DP(BNX2X_MSG_IOV, "vf[%d] STATE: %d\n", vf->abs_vfid, state);
  925. switch (state) {
  926. case BNX2X_VFOP_MCAST_DEL:
  927. /* clear existing mcasts */
  928. vfop->state = BNX2X_VFOP_MCAST_ADD;
  929. vfop->rc = bnx2x_config_mcast(bp, mcast, BNX2X_MCAST_CMD_DEL);
  930. bnx2x_vfop_finalize(vf, vfop->rc, VFOP_CONT);
  931. case BNX2X_VFOP_MCAST_ADD:
  932. if (raw->check_pending(raw))
  933. goto op_pending;
  934. if (args->mc_num) {
  935. /* update mcast list on the ramrod params */
  936. INIT_LIST_HEAD(&mcast->mcast_list);
  937. for (i = 0; i < args->mc_num; i++)
  938. list_add_tail(&(args->mc[i].link),
  939. &mcast->mcast_list);
  940. /* add new mcasts */
  941. vfop->state = BNX2X_VFOP_MCAST_CHK_DONE;
  942. vfop->rc = bnx2x_config_mcast(bp, mcast,
  943. BNX2X_MCAST_CMD_ADD);
  944. }
  945. bnx2x_vfop_finalize(vf, vfop->rc, VFOP_DONE);
  946. case BNX2X_VFOP_MCAST_CHK_DONE:
  947. vfop->rc = raw->check_pending(raw) ? 1 : 0;
  948. bnx2x_vfop_finalize(vf, vfop->rc, VFOP_DONE);
  949. default:
  950. bnx2x_vfop_default(state);
  951. }
  952. op_err:
  953. BNX2X_ERR("MCAST CONFIG error: rc %d\n", vfop->rc);
  954. op_done:
  955. kfree(args->mc);
  956. bnx2x_vfop_end(bp, vf, vfop);
  957. op_pending:
  958. return;
  959. }
  960. int bnx2x_vfop_mcast_cmd(struct bnx2x *bp,
  961. struct bnx2x_virtf *vf,
  962. struct bnx2x_vfop_cmd *cmd,
  963. bnx2x_mac_addr_t *mcasts,
  964. int mcast_num, bool drv_only)
  965. {
  966. struct bnx2x_vfop *vfop = NULL;
  967. size_t mc_sz = mcast_num * sizeof(struct bnx2x_mcast_list_elem);
  968. struct bnx2x_mcast_list_elem *mc = mc_sz ? kzalloc(mc_sz, GFP_KERNEL) :
  969. NULL;
  970. if (!mc_sz || mc) {
  971. vfop = bnx2x_vfop_add(bp, vf);
  972. if (vfop) {
  973. int i;
  974. struct bnx2x_mcast_ramrod_params *ramrod =
  975. &vf->op_params.mcast;
  976. /* set ramrod params */
  977. memset(ramrod, 0, sizeof(*ramrod));
  978. ramrod->mcast_obj = &vf->mcast_obj;
  979. if (drv_only)
  980. set_bit(RAMROD_DRV_CLR_ONLY,
  981. &ramrod->ramrod_flags);
  982. /* copy mcasts pointers */
  983. vfop->args.mc_list.mc_num = mcast_num;
  984. vfop->args.mc_list.mc = mc;
  985. for (i = 0; i < mcast_num; i++)
  986. mc[i].mac = mcasts[i];
  987. bnx2x_vfop_opset(BNX2X_VFOP_MCAST_DEL,
  988. bnx2x_vfop_mcast, cmd->done);
  989. return bnx2x_vfop_transition(bp, vf, bnx2x_vfop_mcast,
  990. cmd->block);
  991. } else {
  992. kfree(mc);
  993. }
  994. }
  995. return -ENOMEM;
  996. }
  997. /* VFOP rx-mode */
  998. static void bnx2x_vfop_rxmode(struct bnx2x *bp, struct bnx2x_virtf *vf)
  999. {
  1000. struct bnx2x_vfop *vfop = bnx2x_vfop_cur(bp, vf);
  1001. struct bnx2x_rx_mode_ramrod_params *ramrod = &vfop->op_p->rx_mode;
  1002. enum bnx2x_vfop_rxmode_state state = vfop->state;
  1003. bnx2x_vfop_reset_wq(vf);
  1004. if (vfop->rc < 0)
  1005. goto op_err;
  1006. DP(BNX2X_MSG_IOV, "vf[%d] STATE: %d\n", vf->abs_vfid, state);
  1007. switch (state) {
  1008. case BNX2X_VFOP_RXMODE_CONFIG:
  1009. /* next state */
  1010. vfop->state = BNX2X_VFOP_RXMODE_DONE;
  1011. vfop->rc = bnx2x_config_rx_mode(bp, ramrod);
  1012. bnx2x_vfop_finalize(vf, vfop->rc, VFOP_DONE);
  1013. op_err:
  1014. BNX2X_ERR("RXMODE error: rc %d\n", vfop->rc);
  1015. op_done:
  1016. case BNX2X_VFOP_RXMODE_DONE:
  1017. bnx2x_vfop_end(bp, vf, vfop);
  1018. return;
  1019. default:
  1020. bnx2x_vfop_default(state);
  1021. }
  1022. op_pending:
  1023. return;
  1024. }
  1025. int bnx2x_vfop_rxmode_cmd(struct bnx2x *bp,
  1026. struct bnx2x_virtf *vf,
  1027. struct bnx2x_vfop_cmd *cmd,
  1028. int qid, unsigned long accept_flags)
  1029. {
  1030. struct bnx2x_vf_queue *vfq = vfq_get(vf, qid);
  1031. struct bnx2x_vfop *vfop = bnx2x_vfop_add(bp, vf);
  1032. if (vfop) {
  1033. struct bnx2x_rx_mode_ramrod_params *ramrod =
  1034. &vf->op_params.rx_mode;
  1035. memset(ramrod, 0, sizeof(*ramrod));
  1036. /* Prepare ramrod parameters */
  1037. ramrod->cid = vfq->cid;
  1038. ramrod->cl_id = vfq_cl_id(vf, vfq);
  1039. ramrod->rx_mode_obj = &bp->rx_mode_obj;
  1040. ramrod->func_id = FW_VF_HANDLE(vf->abs_vfid);
  1041. ramrod->rx_accept_flags = accept_flags;
  1042. ramrod->tx_accept_flags = accept_flags;
  1043. ramrod->pstate = &vf->filter_state;
  1044. ramrod->state = BNX2X_FILTER_RX_MODE_PENDING;
  1045. set_bit(BNX2X_FILTER_RX_MODE_PENDING, &vf->filter_state);
  1046. set_bit(RAMROD_RX, &ramrod->ramrod_flags);
  1047. set_bit(RAMROD_TX, &ramrod->ramrod_flags);
  1048. ramrod->rdata =
  1049. bnx2x_vf_sp(bp, vf, rx_mode_rdata.e2);
  1050. ramrod->rdata_mapping =
  1051. bnx2x_vf_sp_map(bp, vf, rx_mode_rdata.e2);
  1052. bnx2x_vfop_opset(BNX2X_VFOP_RXMODE_CONFIG,
  1053. bnx2x_vfop_rxmode, cmd->done);
  1054. return bnx2x_vfop_transition(bp, vf, bnx2x_vfop_rxmode,
  1055. cmd->block);
  1056. }
  1057. return -ENOMEM;
  1058. }
  1059. /* VFOP queue tear-down ('drop all' rx-mode, clear vlans, clear macs,
  1060. * queue destructor)
  1061. */
  1062. static void bnx2x_vfop_qdown(struct bnx2x *bp, struct bnx2x_virtf *vf)
  1063. {
  1064. struct bnx2x_vfop *vfop = bnx2x_vfop_cur(bp, vf);
  1065. int qid = vfop->args.qx.qid;
  1066. enum bnx2x_vfop_qteardown_state state = vfop->state;
  1067. struct bnx2x_vfop_cmd cmd;
  1068. if (vfop->rc < 0)
  1069. goto op_err;
  1070. DP(BNX2X_MSG_IOV, "vf[%d] STATE: %d\n", vf->abs_vfid, state);
  1071. cmd.done = bnx2x_vfop_qdown;
  1072. cmd.block = false;
  1073. switch (state) {
  1074. case BNX2X_VFOP_QTEARDOWN_RXMODE:
  1075. /* Drop all */
  1076. vfop->state = BNX2X_VFOP_QTEARDOWN_CLR_VLAN;
  1077. vfop->rc = bnx2x_vfop_rxmode_cmd(bp, vf, &cmd, qid, 0);
  1078. if (vfop->rc)
  1079. goto op_err;
  1080. return;
  1081. case BNX2X_VFOP_QTEARDOWN_CLR_VLAN:
  1082. /* vlan-clear-all: don't consume credit */
  1083. vfop->state = BNX2X_VFOP_QTEARDOWN_CLR_MAC;
  1084. vfop->rc = bnx2x_vfop_vlan_delall_cmd(bp, vf, &cmd, qid, false);
  1085. if (vfop->rc)
  1086. goto op_err;
  1087. return;
  1088. case BNX2X_VFOP_QTEARDOWN_CLR_MAC:
  1089. /* mac-clear-all: consume credit */
  1090. vfop->state = BNX2X_VFOP_QTEARDOWN_QDTOR;
  1091. vfop->rc = bnx2x_vfop_mac_delall_cmd(bp, vf, &cmd, qid, false);
  1092. if (vfop->rc)
  1093. goto op_err;
  1094. return;
  1095. case BNX2X_VFOP_QTEARDOWN_QDTOR:
  1096. /* run the queue destruction flow */
  1097. DP(BNX2X_MSG_IOV, "case: BNX2X_VFOP_QTEARDOWN_QDTOR\n");
  1098. vfop->state = BNX2X_VFOP_QTEARDOWN_DONE;
  1099. DP(BNX2X_MSG_IOV, "new state: BNX2X_VFOP_QTEARDOWN_DONE\n");
  1100. vfop->rc = bnx2x_vfop_qdtor_cmd(bp, vf, &cmd, qid);
  1101. DP(BNX2X_MSG_IOV, "returned from cmd\n");
  1102. if (vfop->rc)
  1103. goto op_err;
  1104. return;
  1105. op_err:
  1106. BNX2X_ERR("QTEARDOWN[%d:%d] error: rc %d\n",
  1107. vf->abs_vfid, qid, vfop->rc);
  1108. case BNX2X_VFOP_QTEARDOWN_DONE:
  1109. bnx2x_vfop_end(bp, vf, vfop);
  1110. return;
  1111. default:
  1112. bnx2x_vfop_default(state);
  1113. }
  1114. }
  1115. int bnx2x_vfop_qdown_cmd(struct bnx2x *bp,
  1116. struct bnx2x_virtf *vf,
  1117. struct bnx2x_vfop_cmd *cmd,
  1118. int qid)
  1119. {
  1120. struct bnx2x_vfop *vfop = bnx2x_vfop_add(bp, vf);
  1121. if (vfop) {
  1122. vfop->args.qx.qid = qid;
  1123. bnx2x_vfop_opset(BNX2X_VFOP_QTEARDOWN_RXMODE,
  1124. bnx2x_vfop_qdown, cmd->done);
  1125. return bnx2x_vfop_transition(bp, vf, bnx2x_vfop_qdown,
  1126. cmd->block);
  1127. }
  1128. return -ENOMEM;
  1129. }
  1130. /* VF enable primitives
  1131. * when pretend is required the caller is responsible
  1132. * for calling pretend prior to calling these routines
  1133. */
  1134. /* internal vf enable - until vf is enabled internally all transactions
  1135. * are blocked. This routine should always be called last with pretend.
  1136. */
  1137. static void bnx2x_vf_enable_internal(struct bnx2x *bp, u8 enable)
  1138. {
  1139. REG_WR(bp, PGLUE_B_REG_INTERNAL_VFID_ENABLE, enable ? 1 : 0);
  1140. }
  1141. /* clears vf error in all semi blocks */
  1142. static void bnx2x_vf_semi_clear_err(struct bnx2x *bp, u8 abs_vfid)
  1143. {
  1144. REG_WR(bp, TSEM_REG_VFPF_ERR_NUM, abs_vfid);
  1145. REG_WR(bp, USEM_REG_VFPF_ERR_NUM, abs_vfid);
  1146. REG_WR(bp, CSEM_REG_VFPF_ERR_NUM, abs_vfid);
  1147. REG_WR(bp, XSEM_REG_VFPF_ERR_NUM, abs_vfid);
  1148. }
  1149. static void bnx2x_vf_pglue_clear_err(struct bnx2x *bp, u8 abs_vfid)
  1150. {
  1151. u32 was_err_group = (2 * BP_PATH(bp) + abs_vfid) >> 5;
  1152. u32 was_err_reg = 0;
  1153. switch (was_err_group) {
  1154. case 0:
  1155. was_err_reg = PGLUE_B_REG_WAS_ERROR_VF_31_0_CLR;
  1156. break;
  1157. case 1:
  1158. was_err_reg = PGLUE_B_REG_WAS_ERROR_VF_63_32_CLR;
  1159. break;
  1160. case 2:
  1161. was_err_reg = PGLUE_B_REG_WAS_ERROR_VF_95_64_CLR;
  1162. break;
  1163. case 3:
  1164. was_err_reg = PGLUE_B_REG_WAS_ERROR_VF_127_96_CLR;
  1165. break;
  1166. }
  1167. REG_WR(bp, was_err_reg, 1 << (abs_vfid & 0x1f));
  1168. }
  1169. static void bnx2x_vf_igu_reset(struct bnx2x *bp, struct bnx2x_virtf *vf)
  1170. {
  1171. int i;
  1172. u32 val;
  1173. /* Set VF masks and configuration - pretend */
  1174. bnx2x_pretend_func(bp, HW_VF_HANDLE(bp, vf->abs_vfid));
  1175. REG_WR(bp, IGU_REG_SB_INT_BEFORE_MASK_LSB, 0);
  1176. REG_WR(bp, IGU_REG_SB_INT_BEFORE_MASK_MSB, 0);
  1177. REG_WR(bp, IGU_REG_SB_MASK_LSB, 0);
  1178. REG_WR(bp, IGU_REG_SB_MASK_MSB, 0);
  1179. REG_WR(bp, IGU_REG_PBA_STATUS_LSB, 0);
  1180. REG_WR(bp, IGU_REG_PBA_STATUS_MSB, 0);
  1181. val = REG_RD(bp, IGU_REG_VF_CONFIGURATION);
  1182. val |= (IGU_VF_CONF_FUNC_EN | IGU_VF_CONF_MSI_MSIX_EN);
  1183. if (vf->cfg_flags & VF_CFG_INT_SIMD)
  1184. val |= IGU_VF_CONF_SINGLE_ISR_EN;
  1185. val &= ~IGU_VF_CONF_PARENT_MASK;
  1186. val |= BP_FUNC(bp) << IGU_VF_CONF_PARENT_SHIFT; /* parent PF */
  1187. REG_WR(bp, IGU_REG_VF_CONFIGURATION, val);
  1188. DP(BNX2X_MSG_IOV,
  1189. "value in IGU_REG_VF_CONFIGURATION of vf %d after write %x\n",
  1190. vf->abs_vfid, REG_RD(bp, IGU_REG_VF_CONFIGURATION));
  1191. bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
  1192. /* iterate over all queues, clear sb consumer */
  1193. for (i = 0; i < vf_sb_count(vf); i++) {
  1194. u8 igu_sb_id = vf_igu_sb(vf, i);
  1195. /* zero prod memory */
  1196. REG_WR(bp, IGU_REG_PROD_CONS_MEMORY + igu_sb_id * 4, 0);
  1197. /* clear sb state machine */
  1198. bnx2x_igu_clear_sb_gen(bp, vf->abs_vfid, igu_sb_id,
  1199. false /* VF */);
  1200. /* disable + update */
  1201. bnx2x_vf_igu_ack_sb(bp, vf, igu_sb_id, USTORM_ID, 0,
  1202. IGU_INT_DISABLE, 1);
  1203. }
  1204. }
  1205. void bnx2x_vf_enable_access(struct bnx2x *bp, u8 abs_vfid)
  1206. {
  1207. /* set the VF-PF association in the FW */
  1208. storm_memset_vf_to_pf(bp, FW_VF_HANDLE(abs_vfid), BP_FUNC(bp));
  1209. storm_memset_func_en(bp, FW_VF_HANDLE(abs_vfid), 1);
  1210. /* clear vf errors*/
  1211. bnx2x_vf_semi_clear_err(bp, abs_vfid);
  1212. bnx2x_vf_pglue_clear_err(bp, abs_vfid);
  1213. /* internal vf-enable - pretend */
  1214. bnx2x_pretend_func(bp, HW_VF_HANDLE(bp, abs_vfid));
  1215. DP(BNX2X_MSG_IOV, "enabling internal access for vf %x\n", abs_vfid);
  1216. bnx2x_vf_enable_internal(bp, true);
  1217. bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
  1218. }
  1219. static void bnx2x_vf_enable_traffic(struct bnx2x *bp, struct bnx2x_virtf *vf)
  1220. {
  1221. /* Reset vf in IGU interrupts are still disabled */
  1222. bnx2x_vf_igu_reset(bp, vf);
  1223. /* pretend to enable the vf with the PBF */
  1224. bnx2x_pretend_func(bp, HW_VF_HANDLE(bp, vf->abs_vfid));
  1225. REG_WR(bp, PBF_REG_DISABLE_VF, 0);
  1226. bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
  1227. }
  1228. static u8 bnx2x_vf_is_pcie_pending(struct bnx2x *bp, u8 abs_vfid)
  1229. {
  1230. struct pci_dev *dev;
  1231. struct bnx2x_virtf *vf = bnx2x_vf_by_abs_fid(bp, abs_vfid);
  1232. if (!vf)
  1233. return false;
  1234. dev = pci_get_bus_and_slot(vf->bus, vf->devfn);
  1235. if (dev)
  1236. return bnx2x_is_pcie_pending(dev);
  1237. return false;
  1238. }
  1239. int bnx2x_vf_flr_clnup_epilog(struct bnx2x *bp, u8 abs_vfid)
  1240. {
  1241. /* Verify no pending pci transactions */
  1242. if (bnx2x_vf_is_pcie_pending(bp, abs_vfid))
  1243. BNX2X_ERR("PCIE Transactions still pending\n");
  1244. return 0;
  1245. }
  1246. /* must be called after the number of PF queues and the number of VFs are
  1247. * both known
  1248. */
  1249. static void
  1250. bnx2x_iov_static_resc(struct bnx2x *bp, struct vf_pf_resc_request *resc)
  1251. {
  1252. u16 vlan_count = 0;
  1253. /* will be set only during VF-ACQUIRE */
  1254. resc->num_rxqs = 0;
  1255. resc->num_txqs = 0;
  1256. /* no credit calculcis for macs (just yet) */
  1257. resc->num_mac_filters = 1;
  1258. /* divvy up vlan rules */
  1259. vlan_count = bp->vlans_pool.check(&bp->vlans_pool);
  1260. vlan_count = 1 << ilog2(vlan_count);
  1261. resc->num_vlan_filters = vlan_count / BNX2X_NR_VIRTFN(bp);
  1262. /* no real limitation */
  1263. resc->num_mc_filters = 0;
  1264. /* num_sbs already set */
  1265. }
  1266. /* FLR routines: */
  1267. static void bnx2x_vf_free_resc(struct bnx2x *bp, struct bnx2x_virtf *vf)
  1268. {
  1269. /* reset the state variables */
  1270. bnx2x_iov_static_resc(bp, &vf->alloc_resc);
  1271. vf->state = VF_FREE;
  1272. }
  1273. static void bnx2x_vf_flr_clnup_hw(struct bnx2x *bp, struct bnx2x_virtf *vf)
  1274. {
  1275. u32 poll_cnt = bnx2x_flr_clnup_poll_count(bp);
  1276. /* DQ usage counter */
  1277. bnx2x_pretend_func(bp, HW_VF_HANDLE(bp, vf->abs_vfid));
  1278. bnx2x_flr_clnup_poll_hw_counter(bp, DORQ_REG_VF_USAGE_CNT,
  1279. "DQ VF usage counter timed out",
  1280. poll_cnt);
  1281. bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
  1282. /* FW cleanup command - poll for the results */
  1283. if (bnx2x_send_final_clnup(bp, (u8)FW_VF_HANDLE(vf->abs_vfid),
  1284. poll_cnt))
  1285. BNX2X_ERR("VF[%d] Final cleanup timed-out\n", vf->abs_vfid);
  1286. /* verify TX hw is flushed */
  1287. bnx2x_tx_hw_flushed(bp, poll_cnt);
  1288. }
  1289. static void bnx2x_vfop_flr(struct bnx2x *bp, struct bnx2x_virtf *vf)
  1290. {
  1291. struct bnx2x_vfop *vfop = bnx2x_vfop_cur(bp, vf);
  1292. struct bnx2x_vfop_args_qx *qx = &vfop->args.qx;
  1293. enum bnx2x_vfop_flr_state state = vfop->state;
  1294. struct bnx2x_vfop_cmd cmd = {
  1295. .done = bnx2x_vfop_flr,
  1296. .block = false,
  1297. };
  1298. if (vfop->rc < 0)
  1299. goto op_err;
  1300. DP(BNX2X_MSG_IOV, "vf[%d] STATE: %d\n", vf->abs_vfid, state);
  1301. switch (state) {
  1302. case BNX2X_VFOP_FLR_QUEUES:
  1303. /* the cleanup operations are valid if and only if the VF
  1304. * was first acquired.
  1305. */
  1306. if (++(qx->qid) < vf_rxq_count(vf)) {
  1307. vfop->rc = bnx2x_vfop_qflr_cmd(bp, vf, &cmd,
  1308. qx->qid);
  1309. if (vfop->rc)
  1310. goto op_err;
  1311. return;
  1312. }
  1313. /* remove multicasts */
  1314. vfop->state = BNX2X_VFOP_FLR_HW;
  1315. vfop->rc = bnx2x_vfop_mcast_cmd(bp, vf, &cmd, NULL,
  1316. 0, true);
  1317. if (vfop->rc)
  1318. goto op_err;
  1319. return;
  1320. case BNX2X_VFOP_FLR_HW:
  1321. /* dispatch final cleanup and wait for HW queues to flush */
  1322. bnx2x_vf_flr_clnup_hw(bp, vf);
  1323. /* release VF resources */
  1324. bnx2x_vf_free_resc(bp, vf);
  1325. /* re-open the mailbox */
  1326. bnx2x_vf_enable_mbx(bp, vf->abs_vfid);
  1327. goto op_done;
  1328. default:
  1329. bnx2x_vfop_default(state);
  1330. }
  1331. op_err:
  1332. BNX2X_ERR("VF[%d] FLR error: rc %d\n", vf->abs_vfid, vfop->rc);
  1333. op_done:
  1334. vf->flr_clnup_stage = VF_FLR_ACK;
  1335. bnx2x_vfop_end(bp, vf, vfop);
  1336. bnx2x_unlock_vf_pf_channel(bp, vf, CHANNEL_TLV_FLR);
  1337. }
  1338. static int bnx2x_vfop_flr_cmd(struct bnx2x *bp,
  1339. struct bnx2x_virtf *vf,
  1340. vfop_handler_t done)
  1341. {
  1342. struct bnx2x_vfop *vfop = bnx2x_vfop_add(bp, vf);
  1343. if (vfop) {
  1344. vfop->args.qx.qid = -1; /* loop */
  1345. bnx2x_vfop_opset(BNX2X_VFOP_FLR_QUEUES,
  1346. bnx2x_vfop_flr, done);
  1347. return bnx2x_vfop_transition(bp, vf, bnx2x_vfop_flr, false);
  1348. }
  1349. return -ENOMEM;
  1350. }
  1351. static void bnx2x_vf_flr_clnup(struct bnx2x *bp, struct bnx2x_virtf *prev_vf)
  1352. {
  1353. int i = prev_vf ? prev_vf->index + 1 : 0;
  1354. struct bnx2x_virtf *vf;
  1355. /* find next VF to cleanup */
  1356. next_vf_to_clean:
  1357. for (;
  1358. i < BNX2X_NR_VIRTFN(bp) &&
  1359. (bnx2x_vf(bp, i, state) != VF_RESET ||
  1360. bnx2x_vf(bp, i, flr_clnup_stage) != VF_FLR_CLN);
  1361. i++)
  1362. ;
  1363. DP(BNX2X_MSG_IOV, "next vf to cleanup: %d. Num of vfs: %d\n", i,
  1364. BNX2X_NR_VIRTFN(bp));
  1365. if (i < BNX2X_NR_VIRTFN(bp)) {
  1366. vf = BP_VF(bp, i);
  1367. /* lock the vf pf channel */
  1368. bnx2x_lock_vf_pf_channel(bp, vf, CHANNEL_TLV_FLR);
  1369. /* invoke the VF FLR SM */
  1370. if (bnx2x_vfop_flr_cmd(bp, vf, bnx2x_vf_flr_clnup)) {
  1371. BNX2X_ERR("VF[%d]: FLR cleanup failed -ENOMEM\n",
  1372. vf->abs_vfid);
  1373. /* mark the VF to be ACKED and continue */
  1374. vf->flr_clnup_stage = VF_FLR_ACK;
  1375. goto next_vf_to_clean;
  1376. }
  1377. return;
  1378. }
  1379. /* we are done, update vf records */
  1380. for_each_vf(bp, i) {
  1381. vf = BP_VF(bp, i);
  1382. if (vf->flr_clnup_stage != VF_FLR_ACK)
  1383. continue;
  1384. vf->flr_clnup_stage = VF_FLR_EPILOG;
  1385. }
  1386. /* Acknowledge the handled VFs.
  1387. * we are acknowledge all the vfs which an flr was requested for, even
  1388. * if amongst them there are such that we never opened, since the mcp
  1389. * will interrupt us immediately again if we only ack some of the bits,
  1390. * resulting in an endless loop. This can happen for example in KVM
  1391. * where an 'all ones' flr request is sometimes given by hyper visor
  1392. */
  1393. DP(BNX2X_MSG_MCP, "DRV_STATUS_VF_DISABLED ACK for vfs 0x%x 0x%x\n",
  1394. bp->vfdb->flrd_vfs[0], bp->vfdb->flrd_vfs[1]);
  1395. for (i = 0; i < FLRD_VFS_DWORDS; i++)
  1396. SHMEM2_WR(bp, drv_ack_vf_disabled[BP_FW_MB_IDX(bp)][i],
  1397. bp->vfdb->flrd_vfs[i]);
  1398. bnx2x_fw_command(bp, DRV_MSG_CODE_VF_DISABLED_DONE, 0);
  1399. /* clear the acked bits - better yet if the MCP implemented
  1400. * write to clear semantics
  1401. */
  1402. for (i = 0; i < FLRD_VFS_DWORDS; i++)
  1403. SHMEM2_WR(bp, drv_ack_vf_disabled[BP_FW_MB_IDX(bp)][i], 0);
  1404. }
  1405. void bnx2x_vf_handle_flr_event(struct bnx2x *bp)
  1406. {
  1407. int i;
  1408. /* Read FLR'd VFs */
  1409. for (i = 0; i < FLRD_VFS_DWORDS; i++)
  1410. bp->vfdb->flrd_vfs[i] = SHMEM2_RD(bp, mcp_vf_disabled[i]);
  1411. DP(BNX2X_MSG_MCP,
  1412. "DRV_STATUS_VF_DISABLED received for vfs 0x%x 0x%x\n",
  1413. bp->vfdb->flrd_vfs[0], bp->vfdb->flrd_vfs[1]);
  1414. for_each_vf(bp, i) {
  1415. struct bnx2x_virtf *vf = BP_VF(bp, i);
  1416. u32 reset = 0;
  1417. if (vf->abs_vfid < 32)
  1418. reset = bp->vfdb->flrd_vfs[0] & (1 << vf->abs_vfid);
  1419. else
  1420. reset = bp->vfdb->flrd_vfs[1] &
  1421. (1 << (vf->abs_vfid - 32));
  1422. if (reset) {
  1423. /* set as reset and ready for cleanup */
  1424. vf->state = VF_RESET;
  1425. vf->flr_clnup_stage = VF_FLR_CLN;
  1426. DP(BNX2X_MSG_IOV,
  1427. "Initiating Final cleanup for VF %d\n",
  1428. vf->abs_vfid);
  1429. }
  1430. }
  1431. /* do the FLR cleanup for all marked VFs*/
  1432. bnx2x_vf_flr_clnup(bp, NULL);
  1433. }
  1434. /* IOV global initialization routines */
  1435. void bnx2x_iov_init_dq(struct bnx2x *bp)
  1436. {
  1437. if (!IS_SRIOV(bp))
  1438. return;
  1439. /* Set the DQ such that the CID reflect the abs_vfid */
  1440. REG_WR(bp, DORQ_REG_VF_NORM_VF_BASE, 0);
  1441. REG_WR(bp, DORQ_REG_MAX_RVFID_SIZE, ilog2(BNX2X_MAX_NUM_OF_VFS));
  1442. /* Set VFs starting CID. If its > 0 the preceding CIDs are belong to
  1443. * the PF L2 queues
  1444. */
  1445. REG_WR(bp, DORQ_REG_VF_NORM_CID_BASE, BNX2X_FIRST_VF_CID);
  1446. /* The VF window size is the log2 of the max number of CIDs per VF */
  1447. REG_WR(bp, DORQ_REG_VF_NORM_CID_WND_SIZE, BNX2X_VF_CID_WND);
  1448. /* The VF doorbell size 0 - *B, 4 - 128B. We set it here to match
  1449. * the Pf doorbell size although the 2 are independent.
  1450. */
  1451. REG_WR(bp, DORQ_REG_VF_NORM_CID_OFST,
  1452. BNX2X_DB_SHIFT - BNX2X_DB_MIN_SHIFT);
  1453. /* No security checks for now -
  1454. * configure single rule (out of 16) mask = 0x1, value = 0x0,
  1455. * CID range 0 - 0x1ffff
  1456. */
  1457. REG_WR(bp, DORQ_REG_VF_TYPE_MASK_0, 1);
  1458. REG_WR(bp, DORQ_REG_VF_TYPE_VALUE_0, 0);
  1459. REG_WR(bp, DORQ_REG_VF_TYPE_MIN_MCID_0, 0);
  1460. REG_WR(bp, DORQ_REG_VF_TYPE_MAX_MCID_0, 0x1ffff);
  1461. /* set the number of VF allowed doorbells to the full DQ range */
  1462. REG_WR(bp, DORQ_REG_VF_NORM_MAX_CID_COUNT, 0x20000);
  1463. /* set the VF doorbell threshold */
  1464. REG_WR(bp, DORQ_REG_VF_USAGE_CT_LIMIT, 4);
  1465. }
  1466. void bnx2x_iov_init_dmae(struct bnx2x *bp)
  1467. {
  1468. DP(BNX2X_MSG_IOV, "SRIOV is %s\n", IS_SRIOV(bp) ? "ON" : "OFF");
  1469. if (!IS_SRIOV(bp))
  1470. return;
  1471. REG_WR(bp, DMAE_REG_BACKWARD_COMP_EN, 0);
  1472. }
  1473. static int bnx2x_vf_bus(struct bnx2x *bp, int vfid)
  1474. {
  1475. struct pci_dev *dev = bp->pdev;
  1476. struct bnx2x_sriov *iov = &bp->vfdb->sriov;
  1477. return dev->bus->number + ((dev->devfn + iov->offset +
  1478. iov->stride * vfid) >> 8);
  1479. }
  1480. static int bnx2x_vf_devfn(struct bnx2x *bp, int vfid)
  1481. {
  1482. struct pci_dev *dev = bp->pdev;
  1483. struct bnx2x_sriov *iov = &bp->vfdb->sriov;
  1484. return (dev->devfn + iov->offset + iov->stride * vfid) & 0xff;
  1485. }
  1486. static void bnx2x_vf_set_bars(struct bnx2x *bp, struct bnx2x_virtf *vf)
  1487. {
  1488. int i, n;
  1489. struct pci_dev *dev = bp->pdev;
  1490. struct bnx2x_sriov *iov = &bp->vfdb->sriov;
  1491. for (i = 0, n = 0; i < PCI_SRIOV_NUM_BARS; i += 2, n++) {
  1492. u64 start = pci_resource_start(dev, PCI_IOV_RESOURCES + i);
  1493. u32 size = pci_resource_len(dev, PCI_IOV_RESOURCES + i);
  1494. size /= iov->total;
  1495. vf->bars[n].bar = start + size * vf->abs_vfid;
  1496. vf->bars[n].size = size;
  1497. }
  1498. }
  1499. static int bnx2x_ari_enabled(struct pci_dev *dev)
  1500. {
  1501. return dev->bus->self && dev->bus->self->ari_enabled;
  1502. }
  1503. static void
  1504. bnx2x_get_vf_igu_cam_info(struct bnx2x *bp)
  1505. {
  1506. int sb_id;
  1507. u32 val;
  1508. u8 fid;
  1509. /* IGU in normal mode - read CAM */
  1510. for (sb_id = 0; sb_id < IGU_REG_MAPPING_MEMORY_SIZE; sb_id++) {
  1511. val = REG_RD(bp, IGU_REG_MAPPING_MEMORY + sb_id * 4);
  1512. if (!(val & IGU_REG_MAPPING_MEMORY_VALID))
  1513. continue;
  1514. fid = GET_FIELD((val), IGU_REG_MAPPING_MEMORY_FID);
  1515. if (!(fid & IGU_FID_ENCODE_IS_PF))
  1516. bnx2x_vf_set_igu_info(bp, sb_id,
  1517. (fid & IGU_FID_VF_NUM_MASK));
  1518. DP(BNX2X_MSG_IOV, "%s[%d], igu_sb_id=%d, msix=%d\n",
  1519. ((fid & IGU_FID_ENCODE_IS_PF) ? "PF" : "VF"),
  1520. ((fid & IGU_FID_ENCODE_IS_PF) ? (fid & IGU_FID_PF_NUM_MASK) :
  1521. (fid & IGU_FID_VF_NUM_MASK)), sb_id,
  1522. GET_FIELD((val), IGU_REG_MAPPING_MEMORY_VECTOR));
  1523. }
  1524. }
  1525. static void __bnx2x_iov_free_vfdb(struct bnx2x *bp)
  1526. {
  1527. if (bp->vfdb) {
  1528. kfree(bp->vfdb->vfqs);
  1529. kfree(bp->vfdb->vfs);
  1530. kfree(bp->vfdb);
  1531. }
  1532. bp->vfdb = NULL;
  1533. }
  1534. static int bnx2x_sriov_pci_cfg_info(struct bnx2x *bp, struct bnx2x_sriov *iov)
  1535. {
  1536. int pos;
  1537. struct pci_dev *dev = bp->pdev;
  1538. pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_SRIOV);
  1539. if (!pos) {
  1540. BNX2X_ERR("failed to find SRIOV capability in device\n");
  1541. return -ENODEV;
  1542. }
  1543. iov->pos = pos;
  1544. DP(BNX2X_MSG_IOV, "sriov ext pos %d\n", pos);
  1545. pci_read_config_word(dev, pos + PCI_SRIOV_CTRL, &iov->ctrl);
  1546. pci_read_config_word(dev, pos + PCI_SRIOV_TOTAL_VF, &iov->total);
  1547. pci_read_config_word(dev, pos + PCI_SRIOV_INITIAL_VF, &iov->initial);
  1548. pci_read_config_word(dev, pos + PCI_SRIOV_VF_OFFSET, &iov->offset);
  1549. pci_read_config_word(dev, pos + PCI_SRIOV_VF_STRIDE, &iov->stride);
  1550. pci_read_config_dword(dev, pos + PCI_SRIOV_SUP_PGSIZE, &iov->pgsz);
  1551. pci_read_config_dword(dev, pos + PCI_SRIOV_CAP, &iov->cap);
  1552. pci_read_config_byte(dev, pos + PCI_SRIOV_FUNC_LINK, &iov->link);
  1553. return 0;
  1554. }
  1555. static int bnx2x_sriov_info(struct bnx2x *bp, struct bnx2x_sriov *iov)
  1556. {
  1557. u32 val;
  1558. /* read the SRIOV capability structure
  1559. * The fields can be read via configuration read or
  1560. * directly from the device (starting at offset PCICFG_OFFSET)
  1561. */
  1562. if (bnx2x_sriov_pci_cfg_info(bp, iov))
  1563. return -ENODEV;
  1564. /* get the number of SRIOV bars */
  1565. iov->nres = 0;
  1566. /* read the first_vfid */
  1567. val = REG_RD(bp, PCICFG_OFFSET + GRC_CONFIG_REG_PF_INIT_VF);
  1568. iov->first_vf_in_pf = ((val & GRC_CR_PF_INIT_VF_PF_FIRST_VF_NUM_MASK)
  1569. * 8) - (BNX2X_MAX_NUM_OF_VFS * BP_PATH(bp));
  1570. DP(BNX2X_MSG_IOV,
  1571. "IOV info[%d]: first vf %d, nres %d, cap 0x%x, ctrl 0x%x, total %d, initial %d, num vfs %d, offset %d, stride %d, page size 0x%x\n",
  1572. BP_FUNC(bp),
  1573. iov->first_vf_in_pf, iov->nres, iov->cap, iov->ctrl, iov->total,
  1574. iov->initial, iov->nr_virtfn, iov->offset, iov->stride, iov->pgsz);
  1575. return 0;
  1576. }
  1577. static u8 bnx2x_iov_get_max_queue_count(struct bnx2x *bp)
  1578. {
  1579. int i;
  1580. u8 queue_count = 0;
  1581. if (IS_SRIOV(bp))
  1582. for_each_vf(bp, i)
  1583. queue_count += bnx2x_vf(bp, i, alloc_resc.num_sbs);
  1584. return queue_count;
  1585. }
  1586. /* must be called after PF bars are mapped */
  1587. int bnx2x_iov_init_one(struct bnx2x *bp, int int_mode_param,
  1588. int num_vfs_param)
  1589. {
  1590. int err, i, qcount;
  1591. struct bnx2x_sriov *iov;
  1592. struct pci_dev *dev = bp->pdev;
  1593. bp->vfdb = NULL;
  1594. /* verify is pf */
  1595. if (IS_VF(bp))
  1596. return 0;
  1597. /* verify sriov capability is present in configuration space */
  1598. if (!pci_find_ext_capability(dev, PCI_EXT_CAP_ID_SRIOV))
  1599. return 0;
  1600. /* verify chip revision */
  1601. if (CHIP_IS_E1x(bp))
  1602. return 0;
  1603. /* check if SRIOV support is turned off */
  1604. if (!num_vfs_param)
  1605. return 0;
  1606. /* SRIOV assumes that num of PF CIDs < BNX2X_FIRST_VF_CID */
  1607. if (BNX2X_L2_MAX_CID(bp) >= BNX2X_FIRST_VF_CID) {
  1608. BNX2X_ERR("PF cids %d are overspilling into vf space (starts at %d). Abort SRIOV\n",
  1609. BNX2X_L2_MAX_CID(bp), BNX2X_FIRST_VF_CID);
  1610. return 0;
  1611. }
  1612. /* SRIOV can be enabled only with MSIX */
  1613. if (int_mode_param == BNX2X_INT_MODE_MSI ||
  1614. int_mode_param == BNX2X_INT_MODE_INTX) {
  1615. BNX2X_ERR("Forced MSI/INTx mode is incompatible with SRIOV\n");
  1616. return 0;
  1617. }
  1618. err = -EIO;
  1619. /* verify ari is enabled */
  1620. if (!bnx2x_ari_enabled(bp->pdev)) {
  1621. BNX2X_ERR("ARI not supported (check pci bridge ARI forwarding), SRIOV can not be enabled\n");
  1622. return 0;
  1623. }
  1624. /* verify igu is in normal mode */
  1625. if (CHIP_INT_MODE_IS_BC(bp)) {
  1626. BNX2X_ERR("IGU not normal mode, SRIOV can not be enabled\n");
  1627. return 0;
  1628. }
  1629. /* allocate the vfs database */
  1630. bp->vfdb = kzalloc(sizeof(*(bp->vfdb)), GFP_KERNEL);
  1631. if (!bp->vfdb) {
  1632. BNX2X_ERR("failed to allocate vf database\n");
  1633. err = -ENOMEM;
  1634. goto failed;
  1635. }
  1636. /* get the sriov info - Linux already collected all the pertinent
  1637. * information, however the sriov structure is for the private use
  1638. * of the pci module. Also we want this information regardless
  1639. * of the hyper-visor.
  1640. */
  1641. iov = &(bp->vfdb->sriov);
  1642. err = bnx2x_sriov_info(bp, iov);
  1643. if (err)
  1644. goto failed;
  1645. /* SR-IOV capability was enabled but there are no VFs*/
  1646. if (iov->total == 0)
  1647. goto failed;
  1648. iov->nr_virtfn = min_t(u16, iov->total, num_vfs_param);
  1649. DP(BNX2X_MSG_IOV, "num_vfs_param was %d, nr_virtfn was %d\n",
  1650. num_vfs_param, iov->nr_virtfn);
  1651. /* allocate the vf array */
  1652. bp->vfdb->vfs = kzalloc(sizeof(struct bnx2x_virtf) *
  1653. BNX2X_NR_VIRTFN(bp), GFP_KERNEL);
  1654. if (!bp->vfdb->vfs) {
  1655. BNX2X_ERR("failed to allocate vf array\n");
  1656. err = -ENOMEM;
  1657. goto failed;
  1658. }
  1659. /* Initial VF init - index and abs_vfid - nr_virtfn must be set */
  1660. for_each_vf(bp, i) {
  1661. bnx2x_vf(bp, i, index) = i;
  1662. bnx2x_vf(bp, i, abs_vfid) = iov->first_vf_in_pf + i;
  1663. bnx2x_vf(bp, i, state) = VF_FREE;
  1664. INIT_LIST_HEAD(&bnx2x_vf(bp, i, op_list_head));
  1665. mutex_init(&bnx2x_vf(bp, i, op_mutex));
  1666. bnx2x_vf(bp, i, op_current) = CHANNEL_TLV_NONE;
  1667. }
  1668. /* re-read the IGU CAM for VFs - index and abs_vfid must be set */
  1669. bnx2x_get_vf_igu_cam_info(bp);
  1670. /* get the total queue count and allocate the global queue arrays */
  1671. qcount = bnx2x_iov_get_max_queue_count(bp);
  1672. /* allocate the queue arrays for all VFs */
  1673. bp->vfdb->vfqs = kzalloc(qcount * sizeof(struct bnx2x_vf_queue),
  1674. GFP_KERNEL);
  1675. if (!bp->vfdb->vfqs) {
  1676. BNX2X_ERR("failed to allocate vf queue array\n");
  1677. err = -ENOMEM;
  1678. goto failed;
  1679. }
  1680. return 0;
  1681. failed:
  1682. DP(BNX2X_MSG_IOV, "Failed err=%d\n", err);
  1683. __bnx2x_iov_free_vfdb(bp);
  1684. return err;
  1685. }
  1686. void bnx2x_iov_remove_one(struct bnx2x *bp)
  1687. {
  1688. /* if SRIOV is not enabled there's nothing to do */
  1689. if (!IS_SRIOV(bp))
  1690. return;
  1691. DP(BNX2X_MSG_IOV, "about to call disable sriov\n");
  1692. pci_disable_sriov(bp->pdev);
  1693. DP(BNX2X_MSG_IOV, "sriov disabled\n");
  1694. /* free vf database */
  1695. __bnx2x_iov_free_vfdb(bp);
  1696. }
  1697. void bnx2x_iov_free_mem(struct bnx2x *bp)
  1698. {
  1699. int i;
  1700. if (!IS_SRIOV(bp))
  1701. return;
  1702. /* free vfs hw contexts */
  1703. for (i = 0; i < BNX2X_VF_CIDS/ILT_PAGE_CIDS; i++) {
  1704. struct hw_dma *cxt = &bp->vfdb->context[i];
  1705. BNX2X_PCI_FREE(cxt->addr, cxt->mapping, cxt->size);
  1706. }
  1707. BNX2X_PCI_FREE(BP_VFDB(bp)->sp_dma.addr,
  1708. BP_VFDB(bp)->sp_dma.mapping,
  1709. BP_VFDB(bp)->sp_dma.size);
  1710. BNX2X_PCI_FREE(BP_VF_MBX_DMA(bp)->addr,
  1711. BP_VF_MBX_DMA(bp)->mapping,
  1712. BP_VF_MBX_DMA(bp)->size);
  1713. BNX2X_PCI_FREE(BP_VF_BULLETIN_DMA(bp)->addr,
  1714. BP_VF_BULLETIN_DMA(bp)->mapping,
  1715. BP_VF_BULLETIN_DMA(bp)->size);
  1716. }
  1717. int bnx2x_iov_alloc_mem(struct bnx2x *bp)
  1718. {
  1719. size_t tot_size;
  1720. int i, rc = 0;
  1721. if (!IS_SRIOV(bp))
  1722. return rc;
  1723. /* allocate vfs hw contexts */
  1724. tot_size = (BP_VFDB(bp)->sriov.first_vf_in_pf + BNX2X_NR_VIRTFN(bp)) *
  1725. BNX2X_CIDS_PER_VF * sizeof(union cdu_context);
  1726. for (i = 0; i < BNX2X_VF_CIDS/ILT_PAGE_CIDS; i++) {
  1727. struct hw_dma *cxt = BP_VF_CXT_PAGE(bp, i);
  1728. cxt->size = min_t(size_t, tot_size, CDU_ILT_PAGE_SZ);
  1729. if (cxt->size) {
  1730. BNX2X_PCI_ALLOC(cxt->addr, &cxt->mapping, cxt->size);
  1731. } else {
  1732. cxt->addr = NULL;
  1733. cxt->mapping = 0;
  1734. }
  1735. tot_size -= cxt->size;
  1736. }
  1737. /* allocate vfs ramrods dma memory - client_init and set_mac */
  1738. tot_size = BNX2X_NR_VIRTFN(bp) * sizeof(struct bnx2x_vf_sp);
  1739. BNX2X_PCI_ALLOC(BP_VFDB(bp)->sp_dma.addr, &BP_VFDB(bp)->sp_dma.mapping,
  1740. tot_size);
  1741. BP_VFDB(bp)->sp_dma.size = tot_size;
  1742. /* allocate mailboxes */
  1743. tot_size = BNX2X_NR_VIRTFN(bp) * MBX_MSG_ALIGNED_SIZE;
  1744. BNX2X_PCI_ALLOC(BP_VF_MBX_DMA(bp)->addr, &BP_VF_MBX_DMA(bp)->mapping,
  1745. tot_size);
  1746. BP_VF_MBX_DMA(bp)->size = tot_size;
  1747. /* allocate local bulletin boards */
  1748. tot_size = BNX2X_NR_VIRTFN(bp) * BULLETIN_CONTENT_SIZE;
  1749. BNX2X_PCI_ALLOC(BP_VF_BULLETIN_DMA(bp)->addr,
  1750. &BP_VF_BULLETIN_DMA(bp)->mapping, tot_size);
  1751. BP_VF_BULLETIN_DMA(bp)->size = tot_size;
  1752. return 0;
  1753. alloc_mem_err:
  1754. return -ENOMEM;
  1755. }
  1756. static void bnx2x_vfq_init(struct bnx2x *bp, struct bnx2x_virtf *vf,
  1757. struct bnx2x_vf_queue *q)
  1758. {
  1759. u8 cl_id = vfq_cl_id(vf, q);
  1760. u8 func_id = FW_VF_HANDLE(vf->abs_vfid);
  1761. unsigned long q_type = 0;
  1762. set_bit(BNX2X_Q_TYPE_HAS_TX, &q_type);
  1763. set_bit(BNX2X_Q_TYPE_HAS_RX, &q_type);
  1764. /* Queue State object */
  1765. bnx2x_init_queue_obj(bp, &q->sp_obj,
  1766. cl_id, &q->cid, 1, func_id,
  1767. bnx2x_vf_sp(bp, vf, q_data),
  1768. bnx2x_vf_sp_map(bp, vf, q_data),
  1769. q_type);
  1770. DP(BNX2X_MSG_IOV,
  1771. "initialized vf %d's queue object. func id set to %d\n",
  1772. vf->abs_vfid, q->sp_obj.func_id);
  1773. /* mac/vlan objects are per queue, but only those
  1774. * that belong to the leading queue are initialized
  1775. */
  1776. if (vfq_is_leading(q)) {
  1777. /* mac */
  1778. bnx2x_init_mac_obj(bp, &q->mac_obj,
  1779. cl_id, q->cid, func_id,
  1780. bnx2x_vf_sp(bp, vf, mac_rdata),
  1781. bnx2x_vf_sp_map(bp, vf, mac_rdata),
  1782. BNX2X_FILTER_MAC_PENDING,
  1783. &vf->filter_state,
  1784. BNX2X_OBJ_TYPE_RX_TX,
  1785. &bp->macs_pool);
  1786. /* vlan */
  1787. bnx2x_init_vlan_obj(bp, &q->vlan_obj,
  1788. cl_id, q->cid, func_id,
  1789. bnx2x_vf_sp(bp, vf, vlan_rdata),
  1790. bnx2x_vf_sp_map(bp, vf, vlan_rdata),
  1791. BNX2X_FILTER_VLAN_PENDING,
  1792. &vf->filter_state,
  1793. BNX2X_OBJ_TYPE_RX_TX,
  1794. &bp->vlans_pool);
  1795. /* mcast */
  1796. bnx2x_init_mcast_obj(bp, &vf->mcast_obj, cl_id,
  1797. q->cid, func_id, func_id,
  1798. bnx2x_vf_sp(bp, vf, mcast_rdata),
  1799. bnx2x_vf_sp_map(bp, vf, mcast_rdata),
  1800. BNX2X_FILTER_MCAST_PENDING,
  1801. &vf->filter_state,
  1802. BNX2X_OBJ_TYPE_RX_TX);
  1803. vf->leading_rss = cl_id;
  1804. }
  1805. }
  1806. /* called by bnx2x_nic_load */
  1807. int bnx2x_iov_nic_init(struct bnx2x *bp)
  1808. {
  1809. int vfid, qcount, i;
  1810. if (!IS_SRIOV(bp)) {
  1811. DP(BNX2X_MSG_IOV, "vfdb was not allocated\n");
  1812. return 0;
  1813. }
  1814. DP(BNX2X_MSG_IOV, "num of vfs: %d\n", (bp)->vfdb->sriov.nr_virtfn);
  1815. /* let FLR complete ... */
  1816. msleep(100);
  1817. /* initialize vf database */
  1818. for_each_vf(bp, vfid) {
  1819. struct bnx2x_virtf *vf = BP_VF(bp, vfid);
  1820. int base_vf_cid = (BP_VFDB(bp)->sriov.first_vf_in_pf + vfid) *
  1821. BNX2X_CIDS_PER_VF;
  1822. union cdu_context *base_cxt = (union cdu_context *)
  1823. BP_VF_CXT_PAGE(bp, base_vf_cid/ILT_PAGE_CIDS)->addr +
  1824. (base_vf_cid & (ILT_PAGE_CIDS-1));
  1825. DP(BNX2X_MSG_IOV,
  1826. "VF[%d] Max IGU SBs: %d, base vf cid 0x%x, base cid 0x%x, base cxt %p\n",
  1827. vf->abs_vfid, vf_sb_count(vf), base_vf_cid,
  1828. BNX2X_FIRST_VF_CID + base_vf_cid, base_cxt);
  1829. /* init statically provisioned resources */
  1830. bnx2x_iov_static_resc(bp, &vf->alloc_resc);
  1831. /* queues are initialized during VF-ACQUIRE */
  1832. /* reserve the vf vlan credit */
  1833. bp->vlans_pool.get(&bp->vlans_pool, vf_vlan_rules_cnt(vf));
  1834. vf->filter_state = 0;
  1835. vf->sp_cl_id = bnx2x_fp(bp, 0, cl_id);
  1836. /* init mcast object - This object will be re-initialized
  1837. * during VF-ACQUIRE with the proper cl_id and cid.
  1838. * It needs to be initialized here so that it can be safely
  1839. * handled by a subsequent FLR flow.
  1840. */
  1841. bnx2x_init_mcast_obj(bp, &vf->mcast_obj, 0xFF,
  1842. 0xFF, 0xFF, 0xFF,
  1843. bnx2x_vf_sp(bp, vf, mcast_rdata),
  1844. bnx2x_vf_sp_map(bp, vf, mcast_rdata),
  1845. BNX2X_FILTER_MCAST_PENDING,
  1846. &vf->filter_state,
  1847. BNX2X_OBJ_TYPE_RX_TX);
  1848. /* set the mailbox message addresses */
  1849. BP_VF_MBX(bp, vfid)->msg = (struct bnx2x_vf_mbx_msg *)
  1850. (((u8 *)BP_VF_MBX_DMA(bp)->addr) + vfid *
  1851. MBX_MSG_ALIGNED_SIZE);
  1852. BP_VF_MBX(bp, vfid)->msg_mapping = BP_VF_MBX_DMA(bp)->mapping +
  1853. vfid * MBX_MSG_ALIGNED_SIZE;
  1854. /* Enable vf mailbox */
  1855. bnx2x_vf_enable_mbx(bp, vf->abs_vfid);
  1856. }
  1857. /* Final VF init */
  1858. qcount = 0;
  1859. for_each_vf(bp, i) {
  1860. struct bnx2x_virtf *vf = BP_VF(bp, i);
  1861. /* fill in the BDF and bars */
  1862. vf->bus = bnx2x_vf_bus(bp, i);
  1863. vf->devfn = bnx2x_vf_devfn(bp, i);
  1864. bnx2x_vf_set_bars(bp, vf);
  1865. DP(BNX2X_MSG_IOV,
  1866. "VF info[%d]: bus 0x%x, devfn 0x%x, bar0 [0x%x, %d], bar1 [0x%x, %d], bar2 [0x%x, %d]\n",
  1867. vf->abs_vfid, vf->bus, vf->devfn,
  1868. (unsigned)vf->bars[0].bar, vf->bars[0].size,
  1869. (unsigned)vf->bars[1].bar, vf->bars[1].size,
  1870. (unsigned)vf->bars[2].bar, vf->bars[2].size);
  1871. /* set local queue arrays */
  1872. vf->vfqs = &bp->vfdb->vfqs[qcount];
  1873. qcount += bnx2x_vf(bp, i, alloc_resc.num_sbs);
  1874. }
  1875. return 0;
  1876. }
  1877. /* called by bnx2x_chip_cleanup */
  1878. int bnx2x_iov_chip_cleanup(struct bnx2x *bp)
  1879. {
  1880. int i;
  1881. if (!IS_SRIOV(bp))
  1882. return 0;
  1883. /* release all the VFs */
  1884. for_each_vf(bp, i)
  1885. bnx2x_vf_release(bp, BP_VF(bp, i), true); /* blocking */
  1886. return 0;
  1887. }
  1888. /* called by bnx2x_init_hw_func, returns the next ilt line */
  1889. int bnx2x_iov_init_ilt(struct bnx2x *bp, u16 line)
  1890. {
  1891. int i;
  1892. struct bnx2x_ilt *ilt = BP_ILT(bp);
  1893. if (!IS_SRIOV(bp))
  1894. return line;
  1895. /* set vfs ilt lines */
  1896. for (i = 0; i < BNX2X_VF_CIDS/ILT_PAGE_CIDS; i++) {
  1897. struct hw_dma *hw_cxt = BP_VF_CXT_PAGE(bp, i);
  1898. ilt->lines[line+i].page = hw_cxt->addr;
  1899. ilt->lines[line+i].page_mapping = hw_cxt->mapping;
  1900. ilt->lines[line+i].size = hw_cxt->size; /* doesn't matter */
  1901. }
  1902. return line + i;
  1903. }
  1904. static u8 bnx2x_iov_is_vf_cid(struct bnx2x *bp, u16 cid)
  1905. {
  1906. return ((cid >= BNX2X_FIRST_VF_CID) &&
  1907. ((cid - BNX2X_FIRST_VF_CID) < BNX2X_VF_CIDS));
  1908. }
  1909. static
  1910. void bnx2x_vf_handle_classification_eqe(struct bnx2x *bp,
  1911. struct bnx2x_vf_queue *vfq,
  1912. union event_ring_elem *elem)
  1913. {
  1914. unsigned long ramrod_flags = 0;
  1915. int rc = 0;
  1916. /* Always push next commands out, don't wait here */
  1917. set_bit(RAMROD_CONT, &ramrod_flags);
  1918. switch (elem->message.data.eth_event.echo >> BNX2X_SWCID_SHIFT) {
  1919. case BNX2X_FILTER_MAC_PENDING:
  1920. rc = vfq->mac_obj.complete(bp, &vfq->mac_obj, elem,
  1921. &ramrod_flags);
  1922. break;
  1923. case BNX2X_FILTER_VLAN_PENDING:
  1924. rc = vfq->vlan_obj.complete(bp, &vfq->vlan_obj, elem,
  1925. &ramrod_flags);
  1926. break;
  1927. default:
  1928. BNX2X_ERR("Unsupported classification command: %d\n",
  1929. elem->message.data.eth_event.echo);
  1930. return;
  1931. }
  1932. if (rc < 0)
  1933. BNX2X_ERR("Failed to schedule new commands: %d\n", rc);
  1934. else if (rc > 0)
  1935. DP(BNX2X_MSG_IOV, "Scheduled next pending commands...\n");
  1936. }
  1937. static
  1938. void bnx2x_vf_handle_mcast_eqe(struct bnx2x *bp,
  1939. struct bnx2x_virtf *vf)
  1940. {
  1941. struct bnx2x_mcast_ramrod_params rparam = {NULL};
  1942. int rc;
  1943. rparam.mcast_obj = &vf->mcast_obj;
  1944. vf->mcast_obj.raw.clear_pending(&vf->mcast_obj.raw);
  1945. /* If there are pending mcast commands - send them */
  1946. if (vf->mcast_obj.check_pending(&vf->mcast_obj)) {
  1947. rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_CONT);
  1948. if (rc < 0)
  1949. BNX2X_ERR("Failed to send pending mcast commands: %d\n",
  1950. rc);
  1951. }
  1952. }
  1953. static
  1954. void bnx2x_vf_handle_filters_eqe(struct bnx2x *bp,
  1955. struct bnx2x_virtf *vf)
  1956. {
  1957. smp_mb__before_clear_bit();
  1958. clear_bit(BNX2X_FILTER_RX_MODE_PENDING, &vf->filter_state);
  1959. smp_mb__after_clear_bit();
  1960. }
  1961. int bnx2x_iov_eq_sp_event(struct bnx2x *bp, union event_ring_elem *elem)
  1962. {
  1963. struct bnx2x_virtf *vf;
  1964. int qidx = 0, abs_vfid;
  1965. u8 opcode;
  1966. u16 cid = 0xffff;
  1967. if (!IS_SRIOV(bp))
  1968. return 1;
  1969. /* first get the cid - the only events we handle here are cfc-delete
  1970. * and set-mac completion
  1971. */
  1972. opcode = elem->message.opcode;
  1973. switch (opcode) {
  1974. case EVENT_RING_OPCODE_CFC_DEL:
  1975. cid = SW_CID((__force __le32)
  1976. elem->message.data.cfc_del_event.cid);
  1977. DP(BNX2X_MSG_IOV, "checking cfc-del comp cid=%d\n", cid);
  1978. break;
  1979. case EVENT_RING_OPCODE_CLASSIFICATION_RULES:
  1980. case EVENT_RING_OPCODE_MULTICAST_RULES:
  1981. case EVENT_RING_OPCODE_FILTERS_RULES:
  1982. cid = (elem->message.data.eth_event.echo &
  1983. BNX2X_SWCID_MASK);
  1984. DP(BNX2X_MSG_IOV, "checking filtering comp cid=%d\n", cid);
  1985. break;
  1986. case EVENT_RING_OPCODE_VF_FLR:
  1987. abs_vfid = elem->message.data.vf_flr_event.vf_id;
  1988. DP(BNX2X_MSG_IOV, "Got VF FLR notification abs_vfid=%d\n",
  1989. abs_vfid);
  1990. goto get_vf;
  1991. case EVENT_RING_OPCODE_MALICIOUS_VF:
  1992. abs_vfid = elem->message.data.malicious_vf_event.vf_id;
  1993. DP(BNX2X_MSG_IOV, "Got VF MALICIOUS notification abs_vfid=%d err_id=0x%x\n",
  1994. abs_vfid, elem->message.data.malicious_vf_event.err_id);
  1995. goto get_vf;
  1996. default:
  1997. return 1;
  1998. }
  1999. /* check if the cid is the VF range */
  2000. if (!bnx2x_iov_is_vf_cid(bp, cid)) {
  2001. DP(BNX2X_MSG_IOV, "cid is outside vf range: %d\n", cid);
  2002. return 1;
  2003. }
  2004. /* extract vf and rxq index from vf_cid - relies on the following:
  2005. * 1. vfid on cid reflects the true abs_vfid
  2006. * 2. The max number of VFs (per path) is 64
  2007. */
  2008. qidx = cid & ((1 << BNX2X_VF_CID_WND)-1);
  2009. abs_vfid = (cid >> BNX2X_VF_CID_WND) & (BNX2X_MAX_NUM_OF_VFS-1);
  2010. get_vf:
  2011. vf = bnx2x_vf_by_abs_fid(bp, abs_vfid);
  2012. if (!vf) {
  2013. BNX2X_ERR("EQ completion for unknown VF, cid %d, abs_vfid %d\n",
  2014. cid, abs_vfid);
  2015. return 0;
  2016. }
  2017. switch (opcode) {
  2018. case EVENT_RING_OPCODE_CFC_DEL:
  2019. DP(BNX2X_MSG_IOV, "got VF [%d:%d] cfc delete ramrod\n",
  2020. vf->abs_vfid, qidx);
  2021. vfq_get(vf, qidx)->sp_obj.complete_cmd(bp,
  2022. &vfq_get(vf,
  2023. qidx)->sp_obj,
  2024. BNX2X_Q_CMD_CFC_DEL);
  2025. break;
  2026. case EVENT_RING_OPCODE_CLASSIFICATION_RULES:
  2027. DP(BNX2X_MSG_IOV, "got VF [%d:%d] set mac/vlan ramrod\n",
  2028. vf->abs_vfid, qidx);
  2029. bnx2x_vf_handle_classification_eqe(bp, vfq_get(vf, qidx), elem);
  2030. break;
  2031. case EVENT_RING_OPCODE_MULTICAST_RULES:
  2032. DP(BNX2X_MSG_IOV, "got VF [%d:%d] set mcast ramrod\n",
  2033. vf->abs_vfid, qidx);
  2034. bnx2x_vf_handle_mcast_eqe(bp, vf);
  2035. break;
  2036. case EVENT_RING_OPCODE_FILTERS_RULES:
  2037. DP(BNX2X_MSG_IOV, "got VF [%d:%d] set rx-mode ramrod\n",
  2038. vf->abs_vfid, qidx);
  2039. bnx2x_vf_handle_filters_eqe(bp, vf);
  2040. break;
  2041. case EVENT_RING_OPCODE_VF_FLR:
  2042. DP(BNX2X_MSG_IOV, "got VF [%d] FLR notification\n",
  2043. vf->abs_vfid);
  2044. /* Do nothing for now */
  2045. break;
  2046. case EVENT_RING_OPCODE_MALICIOUS_VF:
  2047. DP(BNX2X_MSG_IOV, "Got VF MALICIOUS notification abs_vfid=%d error id %x\n",
  2048. abs_vfid, elem->message.data.malicious_vf_event.err_id);
  2049. /* Do nothing for now */
  2050. break;
  2051. }
  2052. /* SRIOV: reschedule any 'in_progress' operations */
  2053. bnx2x_iov_sp_event(bp, cid, false);
  2054. return 0;
  2055. }
  2056. static struct bnx2x_virtf *bnx2x_vf_by_cid(struct bnx2x *bp, int vf_cid)
  2057. {
  2058. /* extract the vf from vf_cid - relies on the following:
  2059. * 1. vfid on cid reflects the true abs_vfid
  2060. * 2. The max number of VFs (per path) is 64
  2061. */
  2062. int abs_vfid = (vf_cid >> BNX2X_VF_CID_WND) & (BNX2X_MAX_NUM_OF_VFS-1);
  2063. return bnx2x_vf_by_abs_fid(bp, abs_vfid);
  2064. }
  2065. void bnx2x_iov_set_queue_sp_obj(struct bnx2x *bp, int vf_cid,
  2066. struct bnx2x_queue_sp_obj **q_obj)
  2067. {
  2068. struct bnx2x_virtf *vf;
  2069. if (!IS_SRIOV(bp))
  2070. return;
  2071. vf = bnx2x_vf_by_cid(bp, vf_cid);
  2072. if (vf) {
  2073. /* extract queue index from vf_cid - relies on the following:
  2074. * 1. vfid on cid reflects the true abs_vfid
  2075. * 2. The max number of VFs (per path) is 64
  2076. */
  2077. int q_index = vf_cid & ((1 << BNX2X_VF_CID_WND)-1);
  2078. *q_obj = &bnx2x_vfq(vf, q_index, sp_obj);
  2079. } else {
  2080. BNX2X_ERR("No vf matching cid %d\n", vf_cid);
  2081. }
  2082. }
  2083. void bnx2x_iov_sp_event(struct bnx2x *bp, int vf_cid, bool queue_work)
  2084. {
  2085. struct bnx2x_virtf *vf;
  2086. /* check if the cid is the VF range */
  2087. if (!IS_SRIOV(bp) || !bnx2x_iov_is_vf_cid(bp, vf_cid))
  2088. return;
  2089. vf = bnx2x_vf_by_cid(bp, vf_cid);
  2090. if (vf) {
  2091. /* set in_progress flag */
  2092. atomic_set(&vf->op_in_progress, 1);
  2093. if (queue_work)
  2094. queue_delayed_work(bnx2x_wq, &bp->sp_task, 0);
  2095. }
  2096. }
  2097. void bnx2x_iov_adjust_stats_req(struct bnx2x *bp)
  2098. {
  2099. int i;
  2100. int first_queue_query_index, num_queues_req;
  2101. dma_addr_t cur_data_offset;
  2102. struct stats_query_entry *cur_query_entry;
  2103. u8 stats_count = 0;
  2104. bool is_fcoe = false;
  2105. if (!IS_SRIOV(bp))
  2106. return;
  2107. if (!NO_FCOE(bp))
  2108. is_fcoe = true;
  2109. /* fcoe adds one global request and one queue request */
  2110. num_queues_req = BNX2X_NUM_ETH_QUEUES(bp) + is_fcoe;
  2111. first_queue_query_index = BNX2X_FIRST_QUEUE_QUERY_IDX -
  2112. (is_fcoe ? 0 : 1);
  2113. DP(BNX2X_MSG_IOV,
  2114. "BNX2X_NUM_ETH_QUEUES %d, is_fcoe %d, first_queue_query_index %d => determined the last non virtual statistics query index is %d. Will add queries on top of that\n",
  2115. BNX2X_NUM_ETH_QUEUES(bp), is_fcoe, first_queue_query_index,
  2116. first_queue_query_index + num_queues_req);
  2117. cur_data_offset = bp->fw_stats_data_mapping +
  2118. offsetof(struct bnx2x_fw_stats_data, queue_stats) +
  2119. num_queues_req * sizeof(struct per_queue_stats);
  2120. cur_query_entry = &bp->fw_stats_req->
  2121. query[first_queue_query_index + num_queues_req];
  2122. for_each_vf(bp, i) {
  2123. int j;
  2124. struct bnx2x_virtf *vf = BP_VF(bp, i);
  2125. if (vf->state != VF_ENABLED) {
  2126. DP(BNX2X_MSG_IOV,
  2127. "vf %d not enabled so no stats for it\n",
  2128. vf->abs_vfid);
  2129. continue;
  2130. }
  2131. DP(BNX2X_MSG_IOV, "add addresses for vf %d\n", vf->abs_vfid);
  2132. for_each_vfq(vf, j) {
  2133. struct bnx2x_vf_queue *rxq = vfq_get(vf, j);
  2134. /* collect stats fro active queues only */
  2135. if (bnx2x_get_q_logical_state(bp, &rxq->sp_obj) ==
  2136. BNX2X_Q_LOGICAL_STATE_STOPPED)
  2137. continue;
  2138. /* create stats query entry for this queue */
  2139. cur_query_entry->kind = STATS_TYPE_QUEUE;
  2140. cur_query_entry->index = vfq_cl_id(vf, rxq);
  2141. cur_query_entry->funcID =
  2142. cpu_to_le16(FW_VF_HANDLE(vf->abs_vfid));
  2143. cur_query_entry->address.hi =
  2144. cpu_to_le32(U64_HI(vf->fw_stat_map));
  2145. cur_query_entry->address.lo =
  2146. cpu_to_le32(U64_LO(vf->fw_stat_map));
  2147. DP(BNX2X_MSG_IOV,
  2148. "added address %x %x for vf %d queue %d client %d\n",
  2149. cur_query_entry->address.hi,
  2150. cur_query_entry->address.lo, cur_query_entry->funcID,
  2151. j, cur_query_entry->index);
  2152. cur_query_entry++;
  2153. cur_data_offset += sizeof(struct per_queue_stats);
  2154. stats_count++;
  2155. }
  2156. }
  2157. bp->fw_stats_req->hdr.cmd_num = bp->fw_stats_num + stats_count;
  2158. }
  2159. void bnx2x_iov_sp_task(struct bnx2x *bp)
  2160. {
  2161. int i;
  2162. if (!IS_SRIOV(bp))
  2163. return;
  2164. /* Iterate over all VFs and invoke state transition for VFs with
  2165. * 'in-progress' slow-path operations
  2166. */
  2167. DP(BNX2X_MSG_IOV, "searching for pending vf operations\n");
  2168. for_each_vf(bp, i) {
  2169. struct bnx2x_virtf *vf = BP_VF(bp, i);
  2170. if (!list_empty(&vf->op_list_head) &&
  2171. atomic_read(&vf->op_in_progress)) {
  2172. DP(BNX2X_MSG_IOV, "running pending op for vf %d\n", i);
  2173. bnx2x_vfop_cur(bp, vf)->transition(bp, vf);
  2174. }
  2175. }
  2176. }
  2177. static inline
  2178. struct bnx2x_virtf *__vf_from_stat_id(struct bnx2x *bp, u8 stat_id)
  2179. {
  2180. int i;
  2181. struct bnx2x_virtf *vf = NULL;
  2182. for_each_vf(bp, i) {
  2183. vf = BP_VF(bp, i);
  2184. if (stat_id >= vf->igu_base_id &&
  2185. stat_id < vf->igu_base_id + vf_sb_count(vf))
  2186. break;
  2187. }
  2188. return vf;
  2189. }
  2190. /* VF API helpers */
  2191. static void bnx2x_vf_qtbl_set_q(struct bnx2x *bp, u8 abs_vfid, u8 qid,
  2192. u8 enable)
  2193. {
  2194. u32 reg = PXP_REG_HST_ZONE_PERMISSION_TABLE + qid * 4;
  2195. u32 val = enable ? (abs_vfid | (1 << 6)) : 0;
  2196. REG_WR(bp, reg, val);
  2197. }
  2198. static void bnx2x_vf_clr_qtbl(struct bnx2x *bp, struct bnx2x_virtf *vf)
  2199. {
  2200. int i;
  2201. for_each_vfq(vf, i)
  2202. bnx2x_vf_qtbl_set_q(bp, vf->abs_vfid,
  2203. vfq_qzone_id(vf, vfq_get(vf, i)), false);
  2204. }
  2205. static void bnx2x_vf_igu_disable(struct bnx2x *bp, struct bnx2x_virtf *vf)
  2206. {
  2207. u32 val;
  2208. /* clear the VF configuration - pretend */
  2209. bnx2x_pretend_func(bp, HW_VF_HANDLE(bp, vf->abs_vfid));
  2210. val = REG_RD(bp, IGU_REG_VF_CONFIGURATION);
  2211. val &= ~(IGU_VF_CONF_MSI_MSIX_EN | IGU_VF_CONF_SINGLE_ISR_EN |
  2212. IGU_VF_CONF_FUNC_EN | IGU_VF_CONF_PARENT_MASK);
  2213. REG_WR(bp, IGU_REG_VF_CONFIGURATION, val);
  2214. bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
  2215. }
  2216. u8 bnx2x_vf_max_queue_cnt(struct bnx2x *bp, struct bnx2x_virtf *vf)
  2217. {
  2218. return min_t(u8, min_t(u8, vf_sb_count(vf), BNX2X_CIDS_PER_VF),
  2219. BNX2X_VF_MAX_QUEUES);
  2220. }
  2221. static
  2222. int bnx2x_vf_chk_avail_resc(struct bnx2x *bp, struct bnx2x_virtf *vf,
  2223. struct vf_pf_resc_request *req_resc)
  2224. {
  2225. u8 rxq_cnt = vf_rxq_count(vf) ? : bnx2x_vf_max_queue_cnt(bp, vf);
  2226. u8 txq_cnt = vf_txq_count(vf) ? : bnx2x_vf_max_queue_cnt(bp, vf);
  2227. return ((req_resc->num_rxqs <= rxq_cnt) &&
  2228. (req_resc->num_txqs <= txq_cnt) &&
  2229. (req_resc->num_sbs <= vf_sb_count(vf)) &&
  2230. (req_resc->num_mac_filters <= vf_mac_rules_cnt(vf)) &&
  2231. (req_resc->num_vlan_filters <= vf_vlan_rules_cnt(vf)));
  2232. }
  2233. /* CORE VF API */
  2234. int bnx2x_vf_acquire(struct bnx2x *bp, struct bnx2x_virtf *vf,
  2235. struct vf_pf_resc_request *resc)
  2236. {
  2237. int base_vf_cid = (BP_VFDB(bp)->sriov.first_vf_in_pf + vf->index) *
  2238. BNX2X_CIDS_PER_VF;
  2239. union cdu_context *base_cxt = (union cdu_context *)
  2240. BP_VF_CXT_PAGE(bp, base_vf_cid/ILT_PAGE_CIDS)->addr +
  2241. (base_vf_cid & (ILT_PAGE_CIDS-1));
  2242. int i;
  2243. /* if state is 'acquired' the VF was not released or FLR'd, in
  2244. * this case the returned resources match the acquired already
  2245. * acquired resources. Verify that the requested numbers do
  2246. * not exceed the already acquired numbers.
  2247. */
  2248. if (vf->state == VF_ACQUIRED) {
  2249. DP(BNX2X_MSG_IOV, "VF[%d] Trying to re-acquire resources (VF was not released or FLR'd)\n",
  2250. vf->abs_vfid);
  2251. if (!bnx2x_vf_chk_avail_resc(bp, vf, resc)) {
  2252. BNX2X_ERR("VF[%d] When re-acquiring resources, requested numbers must be <= then previously acquired numbers\n",
  2253. vf->abs_vfid);
  2254. return -EINVAL;
  2255. }
  2256. return 0;
  2257. }
  2258. /* Otherwise vf state must be 'free' or 'reset' */
  2259. if (vf->state != VF_FREE && vf->state != VF_RESET) {
  2260. BNX2X_ERR("VF[%d] Can not acquire a VF with state %d\n",
  2261. vf->abs_vfid, vf->state);
  2262. return -EINVAL;
  2263. }
  2264. /* static allocation:
  2265. * the global maximum number are fixed per VF. Fail the request if
  2266. * requested number exceed these globals
  2267. */
  2268. if (!bnx2x_vf_chk_avail_resc(bp, vf, resc)) {
  2269. DP(BNX2X_MSG_IOV,
  2270. "cannot fulfill vf resource request. Placing maximal available values in response\n");
  2271. /* set the max resource in the vf */
  2272. return -ENOMEM;
  2273. }
  2274. /* Set resources counters - 0 request means max available */
  2275. vf_sb_count(vf) = resc->num_sbs;
  2276. vf_rxq_count(vf) = resc->num_rxqs ? : bnx2x_vf_max_queue_cnt(bp, vf);
  2277. vf_txq_count(vf) = resc->num_txqs ? : bnx2x_vf_max_queue_cnt(bp, vf);
  2278. if (resc->num_mac_filters)
  2279. vf_mac_rules_cnt(vf) = resc->num_mac_filters;
  2280. if (resc->num_vlan_filters)
  2281. vf_vlan_rules_cnt(vf) = resc->num_vlan_filters;
  2282. DP(BNX2X_MSG_IOV,
  2283. "Fulfilling vf request: sb count %d, tx_count %d, rx_count %d, mac_rules_count %d, vlan_rules_count %d\n",
  2284. vf_sb_count(vf), vf_rxq_count(vf),
  2285. vf_txq_count(vf), vf_mac_rules_cnt(vf),
  2286. vf_vlan_rules_cnt(vf));
  2287. /* Initialize the queues */
  2288. if (!vf->vfqs) {
  2289. DP(BNX2X_MSG_IOV, "vf->vfqs was not allocated\n");
  2290. return -EINVAL;
  2291. }
  2292. for_each_vfq(vf, i) {
  2293. struct bnx2x_vf_queue *q = vfq_get(vf, i);
  2294. if (!q) {
  2295. DP(BNX2X_MSG_IOV, "q number %d was not allocated\n", i);
  2296. return -EINVAL;
  2297. }
  2298. q->index = i;
  2299. q->cxt = &((base_cxt + i)->eth);
  2300. q->cid = BNX2X_FIRST_VF_CID + base_vf_cid + i;
  2301. DP(BNX2X_MSG_IOV, "VFQ[%d:%d]: index %d, cid 0x%x, cxt %p\n",
  2302. vf->abs_vfid, i, q->index, q->cid, q->cxt);
  2303. /* init SP objects */
  2304. bnx2x_vfq_init(bp, vf, q);
  2305. }
  2306. vf->state = VF_ACQUIRED;
  2307. return 0;
  2308. }
  2309. int bnx2x_vf_init(struct bnx2x *bp, struct bnx2x_virtf *vf, dma_addr_t *sb_map)
  2310. {
  2311. struct bnx2x_func_init_params func_init = {0};
  2312. u16 flags = 0;
  2313. int i;
  2314. /* the sb resources are initialized at this point, do the
  2315. * FW/HW initializations
  2316. */
  2317. for_each_vf_sb(vf, i)
  2318. bnx2x_init_sb(bp, (dma_addr_t)sb_map[i], vf->abs_vfid, true,
  2319. vf_igu_sb(vf, i), vf_igu_sb(vf, i));
  2320. /* Sanity checks */
  2321. if (vf->state != VF_ACQUIRED) {
  2322. DP(BNX2X_MSG_IOV, "VF[%d] is not in VF_ACQUIRED, but %d\n",
  2323. vf->abs_vfid, vf->state);
  2324. return -EINVAL;
  2325. }
  2326. /* let FLR complete ... */
  2327. msleep(100);
  2328. /* FLR cleanup epilogue */
  2329. if (bnx2x_vf_flr_clnup_epilog(bp, vf->abs_vfid))
  2330. return -EBUSY;
  2331. /* reset IGU VF statistics: MSIX */
  2332. REG_WR(bp, IGU_REG_STATISTIC_NUM_MESSAGE_SENT + vf->abs_vfid * 4 , 0);
  2333. /* vf init */
  2334. if (vf->cfg_flags & VF_CFG_STATS)
  2335. flags |= (FUNC_FLG_STATS | FUNC_FLG_SPQ);
  2336. if (vf->cfg_flags & VF_CFG_TPA)
  2337. flags |= FUNC_FLG_TPA;
  2338. if (is_vf_multi(vf))
  2339. flags |= FUNC_FLG_RSS;
  2340. /* function setup */
  2341. func_init.func_flgs = flags;
  2342. func_init.pf_id = BP_FUNC(bp);
  2343. func_init.func_id = FW_VF_HANDLE(vf->abs_vfid);
  2344. func_init.fw_stat_map = vf->fw_stat_map;
  2345. func_init.spq_map = vf->spq_map;
  2346. func_init.spq_prod = 0;
  2347. bnx2x_func_init(bp, &func_init);
  2348. /* Enable the vf */
  2349. bnx2x_vf_enable_access(bp, vf->abs_vfid);
  2350. bnx2x_vf_enable_traffic(bp, vf);
  2351. /* queue protection table */
  2352. for_each_vfq(vf, i)
  2353. bnx2x_vf_qtbl_set_q(bp, vf->abs_vfid,
  2354. vfq_qzone_id(vf, vfq_get(vf, i)), true);
  2355. vf->state = VF_ENABLED;
  2356. /* update vf bulletin board */
  2357. bnx2x_post_vf_bulletin(bp, vf->index);
  2358. return 0;
  2359. }
  2360. /* VFOP close (teardown the queues, delete mcasts and close HW) */
  2361. static void bnx2x_vfop_close(struct bnx2x *bp, struct bnx2x_virtf *vf)
  2362. {
  2363. struct bnx2x_vfop *vfop = bnx2x_vfop_cur(bp, vf);
  2364. struct bnx2x_vfop_args_qx *qx = &vfop->args.qx;
  2365. enum bnx2x_vfop_close_state state = vfop->state;
  2366. struct bnx2x_vfop_cmd cmd = {
  2367. .done = bnx2x_vfop_close,
  2368. .block = false,
  2369. };
  2370. if (vfop->rc < 0)
  2371. goto op_err;
  2372. DP(BNX2X_MSG_IOV, "vf[%d] STATE: %d\n", vf->abs_vfid, state);
  2373. switch (state) {
  2374. case BNX2X_VFOP_CLOSE_QUEUES:
  2375. if (++(qx->qid) < vf_rxq_count(vf)) {
  2376. vfop->rc = bnx2x_vfop_qdown_cmd(bp, vf, &cmd, qx->qid);
  2377. if (vfop->rc)
  2378. goto op_err;
  2379. return;
  2380. }
  2381. /* remove multicasts */
  2382. vfop->state = BNX2X_VFOP_CLOSE_HW;
  2383. vfop->rc = bnx2x_vfop_mcast_cmd(bp, vf, &cmd, NULL, 0, false);
  2384. if (vfop->rc)
  2385. goto op_err;
  2386. return;
  2387. case BNX2X_VFOP_CLOSE_HW:
  2388. /* disable the interrupts */
  2389. DP(BNX2X_MSG_IOV, "disabling igu\n");
  2390. bnx2x_vf_igu_disable(bp, vf);
  2391. /* disable the VF */
  2392. DP(BNX2X_MSG_IOV, "clearing qtbl\n");
  2393. bnx2x_vf_clr_qtbl(bp, vf);
  2394. goto op_done;
  2395. default:
  2396. bnx2x_vfop_default(state);
  2397. }
  2398. op_err:
  2399. BNX2X_ERR("VF[%d] CLOSE error: rc %d\n", vf->abs_vfid, vfop->rc);
  2400. op_done:
  2401. vf->state = VF_ACQUIRED;
  2402. DP(BNX2X_MSG_IOV, "set state to acquired\n");
  2403. bnx2x_vfop_end(bp, vf, vfop);
  2404. }
  2405. int bnx2x_vfop_close_cmd(struct bnx2x *bp,
  2406. struct bnx2x_virtf *vf,
  2407. struct bnx2x_vfop_cmd *cmd)
  2408. {
  2409. struct bnx2x_vfop *vfop = bnx2x_vfop_add(bp, vf);
  2410. if (vfop) {
  2411. vfop->args.qx.qid = -1; /* loop */
  2412. bnx2x_vfop_opset(BNX2X_VFOP_CLOSE_QUEUES,
  2413. bnx2x_vfop_close, cmd->done);
  2414. return bnx2x_vfop_transition(bp, vf, bnx2x_vfop_close,
  2415. cmd->block);
  2416. }
  2417. return -ENOMEM;
  2418. }
  2419. /* VF release can be called either: 1. The VF was acquired but
  2420. * not enabled 2. the vf was enabled or in the process of being
  2421. * enabled
  2422. */
  2423. static void bnx2x_vfop_release(struct bnx2x *bp, struct bnx2x_virtf *vf)
  2424. {
  2425. struct bnx2x_vfop *vfop = bnx2x_vfop_cur(bp, vf);
  2426. struct bnx2x_vfop_cmd cmd = {
  2427. .done = bnx2x_vfop_release,
  2428. .block = false,
  2429. };
  2430. DP(BNX2X_MSG_IOV, "vfop->rc %d\n", vfop->rc);
  2431. if (vfop->rc < 0)
  2432. goto op_err;
  2433. DP(BNX2X_MSG_IOV, "VF[%d] STATE: %s\n", vf->abs_vfid,
  2434. vf->state == VF_FREE ? "Free" :
  2435. vf->state == VF_ACQUIRED ? "Acquired" :
  2436. vf->state == VF_ENABLED ? "Enabled" :
  2437. vf->state == VF_RESET ? "Reset" :
  2438. "Unknown");
  2439. switch (vf->state) {
  2440. case VF_ENABLED:
  2441. vfop->rc = bnx2x_vfop_close_cmd(bp, vf, &cmd);
  2442. if (vfop->rc)
  2443. goto op_err;
  2444. return;
  2445. case VF_ACQUIRED:
  2446. DP(BNX2X_MSG_IOV, "about to free resources\n");
  2447. bnx2x_vf_free_resc(bp, vf);
  2448. DP(BNX2X_MSG_IOV, "vfop->rc %d\n", vfop->rc);
  2449. goto op_done;
  2450. case VF_FREE:
  2451. case VF_RESET:
  2452. /* do nothing */
  2453. goto op_done;
  2454. default:
  2455. bnx2x_vfop_default(vf->state);
  2456. }
  2457. op_err:
  2458. BNX2X_ERR("VF[%d] RELEASE error: rc %d\n", vf->abs_vfid, vfop->rc);
  2459. op_done:
  2460. bnx2x_vfop_end(bp, vf, vfop);
  2461. }
  2462. int bnx2x_vfop_release_cmd(struct bnx2x *bp,
  2463. struct bnx2x_virtf *vf,
  2464. struct bnx2x_vfop_cmd *cmd)
  2465. {
  2466. struct bnx2x_vfop *vfop = bnx2x_vfop_add(bp, vf);
  2467. if (vfop) {
  2468. bnx2x_vfop_opset(-1, /* use vf->state */
  2469. bnx2x_vfop_release, cmd->done);
  2470. return bnx2x_vfop_transition(bp, vf, bnx2x_vfop_release,
  2471. cmd->block);
  2472. }
  2473. return -ENOMEM;
  2474. }
  2475. /* VF release ~ VF close + VF release-resources
  2476. * Release is the ultimate SW shutdown and is called whenever an
  2477. * irrecoverable error is encountered.
  2478. */
  2479. void bnx2x_vf_release(struct bnx2x *bp, struct bnx2x_virtf *vf, bool block)
  2480. {
  2481. struct bnx2x_vfop_cmd cmd = {
  2482. .done = NULL,
  2483. .block = block,
  2484. };
  2485. int rc;
  2486. bnx2x_lock_vf_pf_channel(bp, vf, CHANNEL_TLV_PF_RELEASE_VF);
  2487. rc = bnx2x_vfop_release_cmd(bp, vf, &cmd);
  2488. if (rc)
  2489. WARN(rc,
  2490. "VF[%d] Failed to allocate resources for release op- rc=%d\n",
  2491. vf->abs_vfid, rc);
  2492. }
  2493. static inline void bnx2x_vf_get_sbdf(struct bnx2x *bp,
  2494. struct bnx2x_virtf *vf, u32 *sbdf)
  2495. {
  2496. *sbdf = vf->devfn | (vf->bus << 8);
  2497. }
  2498. static inline void bnx2x_vf_get_bars(struct bnx2x *bp, struct bnx2x_virtf *vf,
  2499. struct bnx2x_vf_bar_info *bar_info)
  2500. {
  2501. int n;
  2502. bar_info->nr_bars = bp->vfdb->sriov.nres;
  2503. for (n = 0; n < bar_info->nr_bars; n++)
  2504. bar_info->bars[n] = vf->bars[n];
  2505. }
  2506. void bnx2x_lock_vf_pf_channel(struct bnx2x *bp, struct bnx2x_virtf *vf,
  2507. enum channel_tlvs tlv)
  2508. {
  2509. /* lock the channel */
  2510. mutex_lock(&vf->op_mutex);
  2511. /* record the locking op */
  2512. vf->op_current = tlv;
  2513. /* log the lock */
  2514. DP(BNX2X_MSG_IOV, "VF[%d]: vf pf channel locked by %d\n",
  2515. vf->abs_vfid, tlv);
  2516. }
  2517. void bnx2x_unlock_vf_pf_channel(struct bnx2x *bp, struct bnx2x_virtf *vf,
  2518. enum channel_tlvs expected_tlv)
  2519. {
  2520. WARN(expected_tlv != vf->op_current,
  2521. "lock mismatch: expected %d found %d", expected_tlv,
  2522. vf->op_current);
  2523. /* lock the channel */
  2524. mutex_unlock(&vf->op_mutex);
  2525. /* log the unlock */
  2526. DP(BNX2X_MSG_IOV, "VF[%d]: vf pf channel unlocked by %d\n",
  2527. vf->abs_vfid, vf->op_current);
  2528. /* record the locking op */
  2529. vf->op_current = CHANNEL_TLV_NONE;
  2530. }
  2531. int bnx2x_sriov_configure(struct pci_dev *dev, int num_vfs_param)
  2532. {
  2533. struct bnx2x *bp = netdev_priv(pci_get_drvdata(dev));
  2534. DP(BNX2X_MSG_IOV, "bnx2x_sriov_configure called with %d, BNX2X_NR_VIRTFN(bp) was %d\n",
  2535. num_vfs_param, BNX2X_NR_VIRTFN(bp));
  2536. /* HW channel is only operational when PF is up */
  2537. if (bp->state != BNX2X_STATE_OPEN) {
  2538. BNX2X_ERR("VF num configuration via sysfs not supported while PF is down\n");
  2539. return -EINVAL;
  2540. }
  2541. /* we are always bound by the total_vfs in the configuration space */
  2542. if (num_vfs_param > BNX2X_NR_VIRTFN(bp)) {
  2543. BNX2X_ERR("truncating requested number of VFs (%d) down to maximum allowed (%d)\n",
  2544. num_vfs_param, BNX2X_NR_VIRTFN(bp));
  2545. num_vfs_param = BNX2X_NR_VIRTFN(bp);
  2546. }
  2547. bp->requested_nr_virtfn = num_vfs_param;
  2548. if (num_vfs_param == 0) {
  2549. pci_disable_sriov(dev);
  2550. return 0;
  2551. } else {
  2552. return bnx2x_enable_sriov(bp);
  2553. }
  2554. }
  2555. int bnx2x_enable_sriov(struct bnx2x *bp)
  2556. {
  2557. int rc = 0, req_vfs = bp->requested_nr_virtfn;
  2558. rc = pci_enable_sriov(bp->pdev, req_vfs);
  2559. if (rc) {
  2560. BNX2X_ERR("pci_enable_sriov failed with %d\n", rc);
  2561. return rc;
  2562. }
  2563. DP(BNX2X_MSG_IOV, "sriov enabled (%d vfs)\n", req_vfs);
  2564. return req_vfs;
  2565. }
  2566. void bnx2x_pf_set_vfs_vlan(struct bnx2x *bp)
  2567. {
  2568. int vfidx;
  2569. struct pf_vf_bulletin_content *bulletin;
  2570. DP(BNX2X_MSG_IOV, "configuring vlan for VFs from sp-task\n");
  2571. for_each_vf(bp, vfidx) {
  2572. bulletin = BP_VF_BULLETIN(bp, vfidx);
  2573. if (BP_VF(bp, vfidx)->cfg_flags & VF_CFG_VLAN)
  2574. bnx2x_set_vf_vlan(bp->dev, vfidx, bulletin->vlan, 0);
  2575. }
  2576. }
  2577. void bnx2x_disable_sriov(struct bnx2x *bp)
  2578. {
  2579. pci_disable_sriov(bp->pdev);
  2580. }
  2581. static int bnx2x_vf_ndo_sanity(struct bnx2x *bp, int vfidx,
  2582. struct bnx2x_virtf *vf)
  2583. {
  2584. if (bp->state != BNX2X_STATE_OPEN) {
  2585. BNX2X_ERR("vf ndo called though PF is down\n");
  2586. return -EINVAL;
  2587. }
  2588. if (!IS_SRIOV(bp)) {
  2589. BNX2X_ERR("vf ndo called though sriov is disabled\n");
  2590. return -EINVAL;
  2591. }
  2592. if (vfidx >= BNX2X_NR_VIRTFN(bp)) {
  2593. BNX2X_ERR("vf ndo called for uninitialized VF. vfidx was %d BNX2X_NR_VIRTFN was %d\n",
  2594. vfidx, BNX2X_NR_VIRTFN(bp));
  2595. return -EINVAL;
  2596. }
  2597. if (!vf) {
  2598. BNX2X_ERR("vf ndo called but vf was null. vfidx was %d\n",
  2599. vfidx);
  2600. return -EINVAL;
  2601. }
  2602. return 0;
  2603. }
  2604. int bnx2x_get_vf_config(struct net_device *dev, int vfidx,
  2605. struct ifla_vf_info *ivi)
  2606. {
  2607. struct bnx2x *bp = netdev_priv(dev);
  2608. struct bnx2x_virtf *vf = BP_VF(bp, vfidx);
  2609. struct bnx2x_vlan_mac_obj *mac_obj = &bnx2x_vfq(vf, 0, mac_obj);
  2610. struct bnx2x_vlan_mac_obj *vlan_obj = &bnx2x_vfq(vf, 0, vlan_obj);
  2611. struct pf_vf_bulletin_content *bulletin = BP_VF_BULLETIN(bp, vfidx);
  2612. int rc;
  2613. /* sanity */
  2614. rc = bnx2x_vf_ndo_sanity(bp, vfidx, vf);
  2615. if (rc)
  2616. return rc;
  2617. if (!mac_obj || !vlan_obj || !bulletin) {
  2618. BNX2X_ERR("VF partially initialized\n");
  2619. return -EINVAL;
  2620. }
  2621. ivi->vf = vfidx;
  2622. ivi->qos = 0;
  2623. ivi->tx_rate = 10000; /* always 10G. TBA take from link struct */
  2624. ivi->spoofchk = 1; /*always enabled */
  2625. if (vf->state == VF_ENABLED) {
  2626. /* mac and vlan are in vlan_mac objects */
  2627. mac_obj->get_n_elements(bp, mac_obj, 1, (u8 *)&ivi->mac,
  2628. 0, ETH_ALEN);
  2629. vlan_obj->get_n_elements(bp, vlan_obj, 1, (u8 *)&ivi->vlan,
  2630. 0, VLAN_HLEN);
  2631. } else {
  2632. /* mac */
  2633. if (bulletin->valid_bitmap & (1 << MAC_ADDR_VALID))
  2634. /* mac configured by ndo so its in bulletin board */
  2635. memcpy(&ivi->mac, bulletin->mac, ETH_ALEN);
  2636. else
  2637. /* function has not been loaded yet. Show mac as 0s */
  2638. memset(&ivi->mac, 0, ETH_ALEN);
  2639. /* vlan */
  2640. if (bulletin->valid_bitmap & (1 << VLAN_VALID))
  2641. /* vlan configured by ndo so its in bulletin board */
  2642. memcpy(&ivi->vlan, &bulletin->vlan, VLAN_HLEN);
  2643. else
  2644. /* function has not been loaded yet. Show vlans as 0s */
  2645. memset(&ivi->vlan, 0, VLAN_HLEN);
  2646. }
  2647. return 0;
  2648. }
  2649. /* New mac for VF. Consider these cases:
  2650. * 1. VF hasn't been acquired yet - save the mac in local bulletin board and
  2651. * supply at acquire.
  2652. * 2. VF has already been acquired but has not yet initialized - store in local
  2653. * bulletin board. mac will be posted on VF bulletin board after VF init. VF
  2654. * will configure this mac when it is ready.
  2655. * 3. VF has already initialized but has not yet setup a queue - post the new
  2656. * mac on VF's bulletin board right now. VF will configure this mac when it
  2657. * is ready.
  2658. * 4. VF has already set a queue - delete any macs already configured for this
  2659. * queue and manually config the new mac.
  2660. * In any event, once this function has been called refuse any attempts by the
  2661. * VF to configure any mac for itself except for this mac. In case of a race
  2662. * where the VF fails to see the new post on its bulletin board before sending a
  2663. * mac configuration request, the PF will simply fail the request and VF can try
  2664. * again after consulting its bulletin board.
  2665. */
  2666. int bnx2x_set_vf_mac(struct net_device *dev, int vfidx, u8 *mac)
  2667. {
  2668. struct bnx2x *bp = netdev_priv(dev);
  2669. int rc, q_logical_state;
  2670. struct bnx2x_virtf *vf = BP_VF(bp, vfidx);
  2671. struct pf_vf_bulletin_content *bulletin = BP_VF_BULLETIN(bp, vfidx);
  2672. /* sanity */
  2673. rc = bnx2x_vf_ndo_sanity(bp, vfidx, vf);
  2674. if (rc)
  2675. return rc;
  2676. if (!is_valid_ether_addr(mac)) {
  2677. BNX2X_ERR("mac address invalid\n");
  2678. return -EINVAL;
  2679. }
  2680. /* update PF's copy of the VF's bulletin. Will no longer accept mac
  2681. * configuration requests from vf unless match this mac
  2682. */
  2683. bulletin->valid_bitmap |= 1 << MAC_ADDR_VALID;
  2684. memcpy(bulletin->mac, mac, ETH_ALEN);
  2685. /* Post update on VF's bulletin board */
  2686. rc = bnx2x_post_vf_bulletin(bp, vfidx);
  2687. if (rc) {
  2688. BNX2X_ERR("failed to update VF[%d] bulletin\n", vfidx);
  2689. return rc;
  2690. }
  2691. /* is vf initialized and queue set up? */
  2692. q_logical_state =
  2693. bnx2x_get_q_logical_state(bp, &bnx2x_vfq(vf, 0, sp_obj));
  2694. if (vf->state == VF_ENABLED &&
  2695. q_logical_state == BNX2X_Q_LOGICAL_STATE_ACTIVE) {
  2696. /* configure the mac in device on this vf's queue */
  2697. unsigned long ramrod_flags = 0;
  2698. struct bnx2x_vlan_mac_obj *mac_obj = &bnx2x_vfq(vf, 0, mac_obj);
  2699. /* must lock vfpf channel to protect against vf flows */
  2700. bnx2x_lock_vf_pf_channel(bp, vf, CHANNEL_TLV_PF_SET_MAC);
  2701. /* remove existing eth macs */
  2702. rc = bnx2x_del_all_macs(bp, mac_obj, BNX2X_ETH_MAC, true);
  2703. if (rc) {
  2704. BNX2X_ERR("failed to delete eth macs\n");
  2705. return -EINVAL;
  2706. }
  2707. /* remove existing uc list macs */
  2708. rc = bnx2x_del_all_macs(bp, mac_obj, BNX2X_UC_LIST_MAC, true);
  2709. if (rc) {
  2710. BNX2X_ERR("failed to delete uc_list macs\n");
  2711. return -EINVAL;
  2712. }
  2713. /* configure the new mac to device */
  2714. __set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
  2715. bnx2x_set_mac_one(bp, (u8 *)&bulletin->mac, mac_obj, true,
  2716. BNX2X_ETH_MAC, &ramrod_flags);
  2717. bnx2x_unlock_vf_pf_channel(bp, vf, CHANNEL_TLV_PF_SET_MAC);
  2718. }
  2719. return 0;
  2720. }
  2721. int bnx2x_set_vf_vlan(struct net_device *dev, int vfidx, u16 vlan, u8 qos)
  2722. {
  2723. struct bnx2x *bp = netdev_priv(dev);
  2724. int rc, q_logical_state;
  2725. struct bnx2x_virtf *vf = BP_VF(bp, vfidx);
  2726. struct pf_vf_bulletin_content *bulletin = BP_VF_BULLETIN(bp, vfidx);
  2727. /* sanity */
  2728. rc = bnx2x_vf_ndo_sanity(bp, vfidx, vf);
  2729. if (rc)
  2730. return rc;
  2731. if (vlan > 4095) {
  2732. BNX2X_ERR("illegal vlan value %d\n", vlan);
  2733. return -EINVAL;
  2734. }
  2735. DP(BNX2X_MSG_IOV, "configuring VF %d with VLAN %d qos %d\n",
  2736. vfidx, vlan, 0);
  2737. /* update PF's copy of the VF's bulletin. No point in posting the vlan
  2738. * to the VF since it doesn't have anything to do with it. But it useful
  2739. * to store it here in case the VF is not up yet and we can only
  2740. * configure the vlan later when it does.
  2741. */
  2742. bulletin->valid_bitmap |= 1 << VLAN_VALID;
  2743. bulletin->vlan = vlan;
  2744. /* is vf initialized and queue set up? */
  2745. q_logical_state =
  2746. bnx2x_get_q_logical_state(bp, &bnx2x_vfq(vf, 0, sp_obj));
  2747. if (vf->state == VF_ENABLED &&
  2748. q_logical_state == BNX2X_Q_LOGICAL_STATE_ACTIVE) {
  2749. /* configure the vlan in device on this vf's queue */
  2750. unsigned long ramrod_flags = 0;
  2751. unsigned long vlan_mac_flags = 0;
  2752. struct bnx2x_vlan_mac_obj *vlan_obj =
  2753. &bnx2x_vfq(vf, 0, vlan_obj);
  2754. struct bnx2x_vlan_mac_ramrod_params ramrod_param;
  2755. struct bnx2x_queue_state_params q_params = {NULL};
  2756. struct bnx2x_queue_update_params *update_params;
  2757. memset(&ramrod_param, 0, sizeof(ramrod_param));
  2758. /* must lock vfpf channel to protect against vf flows */
  2759. bnx2x_lock_vf_pf_channel(bp, vf, CHANNEL_TLV_PF_SET_VLAN);
  2760. /* remove existing vlans */
  2761. __set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
  2762. rc = vlan_obj->delete_all(bp, vlan_obj, &vlan_mac_flags,
  2763. &ramrod_flags);
  2764. if (rc) {
  2765. BNX2X_ERR("failed to delete vlans\n");
  2766. return -EINVAL;
  2767. }
  2768. /* send queue update ramrod to configure default vlan and silent
  2769. * vlan removal
  2770. */
  2771. __set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
  2772. q_params.cmd = BNX2X_Q_CMD_UPDATE;
  2773. q_params.q_obj = &bnx2x_vfq(vf, 0, sp_obj);
  2774. update_params = &q_params.params.update;
  2775. __set_bit(BNX2X_Q_UPDATE_DEF_VLAN_EN_CHNG,
  2776. &update_params->update_flags);
  2777. __set_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM_CHNG,
  2778. &update_params->update_flags);
  2779. if (vlan == 0) {
  2780. /* if vlan is 0 then we want to leave the VF traffic
  2781. * untagged, and leave the incoming traffic untouched
  2782. * (i.e. do not remove any vlan tags).
  2783. */
  2784. __clear_bit(BNX2X_Q_UPDATE_DEF_VLAN_EN,
  2785. &update_params->update_flags);
  2786. __clear_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM,
  2787. &update_params->update_flags);
  2788. } else {
  2789. /* configure the new vlan to device */
  2790. __set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
  2791. ramrod_param.vlan_mac_obj = vlan_obj;
  2792. ramrod_param.ramrod_flags = ramrod_flags;
  2793. ramrod_param.user_req.u.vlan.vlan = vlan;
  2794. ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_ADD;
  2795. rc = bnx2x_config_vlan_mac(bp, &ramrod_param);
  2796. if (rc) {
  2797. BNX2X_ERR("failed to configure vlan\n");
  2798. return -EINVAL;
  2799. }
  2800. /* configure default vlan to vf queue and set silent
  2801. * vlan removal (the vf remains unaware of this vlan).
  2802. */
  2803. update_params = &q_params.params.update;
  2804. __set_bit(BNX2X_Q_UPDATE_DEF_VLAN_EN,
  2805. &update_params->update_flags);
  2806. __set_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM,
  2807. &update_params->update_flags);
  2808. update_params->def_vlan = vlan;
  2809. }
  2810. /* Update the Queue state */
  2811. rc = bnx2x_queue_state_change(bp, &q_params);
  2812. if (rc) {
  2813. BNX2X_ERR("Failed to configure default VLAN\n");
  2814. return rc;
  2815. }
  2816. /* clear the flag indicating that this VF needs its vlan
  2817. * (will only be set if the HV configured th Vlan before vf was
  2818. * and we were called because the VF came up later
  2819. */
  2820. vf->cfg_flags &= ~VF_CFG_VLAN;
  2821. bnx2x_unlock_vf_pf_channel(bp, vf, CHANNEL_TLV_PF_SET_VLAN);
  2822. }
  2823. return 0;
  2824. }
  2825. /* crc is the first field in the bulletin board. Compute the crc over the
  2826. * entire bulletin board excluding the crc field itself. Use the length field
  2827. * as the Bulletin Board was posted by a PF with possibly a different version
  2828. * from the vf which will sample it. Therefore, the length is computed by the
  2829. * PF and the used blindly by the VF.
  2830. */
  2831. u32 bnx2x_crc_vf_bulletin(struct bnx2x *bp,
  2832. struct pf_vf_bulletin_content *bulletin)
  2833. {
  2834. return crc32(BULLETIN_CRC_SEED,
  2835. ((u8 *)bulletin) + sizeof(bulletin->crc),
  2836. bulletin->length - sizeof(bulletin->crc));
  2837. }
  2838. /* Check for new posts on the bulletin board */
  2839. enum sample_bulletin_result bnx2x_sample_bulletin(struct bnx2x *bp)
  2840. {
  2841. struct pf_vf_bulletin_content bulletin = bp->pf2vf_bulletin->content;
  2842. int attempts;
  2843. /* bulletin board hasn't changed since last sample */
  2844. if (bp->old_bulletin.version == bulletin.version)
  2845. return PFVF_BULLETIN_UNCHANGED;
  2846. /* validate crc of new bulletin board */
  2847. if (bp->old_bulletin.version != bp->pf2vf_bulletin->content.version) {
  2848. /* sampling structure in mid post may result with corrupted data
  2849. * validate crc to ensure coherency.
  2850. */
  2851. for (attempts = 0; attempts < BULLETIN_ATTEMPTS; attempts++) {
  2852. bulletin = bp->pf2vf_bulletin->content;
  2853. if (bulletin.crc == bnx2x_crc_vf_bulletin(bp,
  2854. &bulletin))
  2855. break;
  2856. BNX2X_ERR("bad crc on bulletin board. Contained %x computed %x\n",
  2857. bulletin.crc,
  2858. bnx2x_crc_vf_bulletin(bp, &bulletin));
  2859. }
  2860. if (attempts >= BULLETIN_ATTEMPTS) {
  2861. BNX2X_ERR("pf to vf bulletin board crc was wrong %d consecutive times. Aborting\n",
  2862. attempts);
  2863. return PFVF_BULLETIN_CRC_ERR;
  2864. }
  2865. }
  2866. /* the mac address in bulletin board is valid and is new */
  2867. if (bulletin.valid_bitmap & 1 << MAC_ADDR_VALID &&
  2868. memcmp(bulletin.mac, bp->old_bulletin.mac, ETH_ALEN)) {
  2869. /* update new mac to net device */
  2870. memcpy(bp->dev->dev_addr, bulletin.mac, ETH_ALEN);
  2871. }
  2872. /* the vlan in bulletin board is valid and is new */
  2873. if (bulletin.valid_bitmap & 1 << VLAN_VALID)
  2874. memcpy(&bulletin.vlan, &bp->old_bulletin.vlan, VLAN_HLEN);
  2875. /* copy new bulletin board to bp */
  2876. bp->old_bulletin = bulletin;
  2877. return PFVF_BULLETIN_UPDATED;
  2878. }
  2879. void bnx2x_timer_sriov(struct bnx2x *bp)
  2880. {
  2881. bnx2x_sample_bulletin(bp);
  2882. /* if channel is down we need to self destruct */
  2883. if (bp->old_bulletin.valid_bitmap & 1 << CHANNEL_DOWN) {
  2884. smp_mb__before_clear_bit();
  2885. set_bit(BNX2X_SP_RTNL_VFPF_CHANNEL_DOWN,
  2886. &bp->sp_rtnl_state);
  2887. smp_mb__after_clear_bit();
  2888. schedule_delayed_work(&bp->sp_rtnl_task, 0);
  2889. }
  2890. }
  2891. void __iomem *bnx2x_vf_doorbells(struct bnx2x *bp)
  2892. {
  2893. /* vf doorbells are embedded within the regview */
  2894. return bp->regview + PXP_VF_ADDR_DB_START;
  2895. }
  2896. int bnx2x_vf_pci_alloc(struct bnx2x *bp)
  2897. {
  2898. mutex_init(&bp->vf2pf_mutex);
  2899. /* allocate vf2pf mailbox for vf to pf channel */
  2900. BNX2X_PCI_ALLOC(bp->vf2pf_mbox, &bp->vf2pf_mbox_mapping,
  2901. sizeof(struct bnx2x_vf_mbx_msg));
  2902. /* allocate pf 2 vf bulletin board */
  2903. BNX2X_PCI_ALLOC(bp->pf2vf_bulletin, &bp->pf2vf_bulletin_mapping,
  2904. sizeof(union pf_vf_bulletin));
  2905. return 0;
  2906. alloc_mem_err:
  2907. BNX2X_PCI_FREE(bp->vf2pf_mbox, bp->vf2pf_mbox_mapping,
  2908. sizeof(struct bnx2x_vf_mbx_msg));
  2909. BNX2X_PCI_FREE(bp->vf2pf_mbox, bp->vf2pf_mbox_mapping,
  2910. sizeof(union pf_vf_bulletin));
  2911. return -ENOMEM;
  2912. }
  2913. int bnx2x_open_epilog(struct bnx2x *bp)
  2914. {
  2915. /* Enable sriov via delayed work. This must be done via delayed work
  2916. * because it causes the probe of the vf devices to be run, which invoke
  2917. * register_netdevice which must have rtnl lock taken. As we are holding
  2918. * the lock right now, that could only work if the probe would not take
  2919. * the lock. However, as the probe of the vf may be called from other
  2920. * contexts as well (such as passthrough to vm fails) it can't assume
  2921. * the lock is being held for it. Using delayed work here allows the
  2922. * probe code to simply take the lock (i.e. wait for it to be released
  2923. * if it is being held). We only want to do this if the number of VFs
  2924. * was set before PF driver was loaded.
  2925. */
  2926. if (IS_SRIOV(bp) && BNX2X_NR_VIRTFN(bp)) {
  2927. smp_mb__before_clear_bit();
  2928. set_bit(BNX2X_SP_RTNL_ENABLE_SRIOV, &bp->sp_rtnl_state);
  2929. smp_mb__after_clear_bit();
  2930. schedule_delayed_work(&bp->sp_rtnl_task, 0);
  2931. }
  2932. return 0;
  2933. }
  2934. void bnx2x_iov_channel_down(struct bnx2x *bp)
  2935. {
  2936. int vf_idx;
  2937. struct pf_vf_bulletin_content *bulletin;
  2938. if (!IS_SRIOV(bp))
  2939. return;
  2940. for_each_vf(bp, vf_idx) {
  2941. /* locate this VFs bulletin board and update the channel down
  2942. * bit
  2943. */
  2944. bulletin = BP_VF_BULLETIN(bp, vf_idx);
  2945. bulletin->valid_bitmap |= 1 << CHANNEL_DOWN;
  2946. /* update vf bulletin board */
  2947. bnx2x_post_vf_bulletin(bp, vf_idx);
  2948. }
  2949. }