qlge_main.c 111 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183
  1. /*
  2. * QLogic qlge NIC HBA Driver
  3. * Copyright (c) 2003-2008 QLogic Corporation
  4. * See LICENSE.qlge for copyright and licensing details.
  5. * Author: Linux qlge network device driver by
  6. * Ron Mercer <ron.mercer@qlogic.com>
  7. */
  8. #include <linux/kernel.h>
  9. #include <linux/init.h>
  10. #include <linux/types.h>
  11. #include <linux/module.h>
  12. #include <linux/list.h>
  13. #include <linux/pci.h>
  14. #include <linux/dma-mapping.h>
  15. #include <linux/pagemap.h>
  16. #include <linux/sched.h>
  17. #include <linux/slab.h>
  18. #include <linux/dmapool.h>
  19. #include <linux/mempool.h>
  20. #include <linux/spinlock.h>
  21. #include <linux/kthread.h>
  22. #include <linux/interrupt.h>
  23. #include <linux/errno.h>
  24. #include <linux/ioport.h>
  25. #include <linux/in.h>
  26. #include <linux/ip.h>
  27. #include <linux/ipv6.h>
  28. #include <net/ipv6.h>
  29. #include <linux/tcp.h>
  30. #include <linux/udp.h>
  31. #include <linux/if_arp.h>
  32. #include <linux/if_ether.h>
  33. #include <linux/netdevice.h>
  34. #include <linux/etherdevice.h>
  35. #include <linux/ethtool.h>
  36. #include <linux/skbuff.h>
  37. #include <linux/rtnetlink.h>
  38. #include <linux/if_vlan.h>
  39. #include <linux/delay.h>
  40. #include <linux/mm.h>
  41. #include <linux/vmalloc.h>
  42. #include <net/ip6_checksum.h>
  43. #include "qlge.h"
  44. char qlge_driver_name[] = DRV_NAME;
  45. const char qlge_driver_version[] = DRV_VERSION;
  46. MODULE_AUTHOR("Ron Mercer <ron.mercer@qlogic.com>");
  47. MODULE_DESCRIPTION(DRV_STRING " ");
  48. MODULE_LICENSE("GPL");
  49. MODULE_VERSION(DRV_VERSION);
  50. static const u32 default_msg =
  51. NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK |
  52. /* NETIF_MSG_TIMER | */
  53. NETIF_MSG_IFDOWN |
  54. NETIF_MSG_IFUP |
  55. NETIF_MSG_RX_ERR |
  56. NETIF_MSG_TX_ERR |
  57. /* NETIF_MSG_TX_QUEUED | */
  58. /* NETIF_MSG_INTR | NETIF_MSG_TX_DONE | NETIF_MSG_RX_STATUS | */
  59. /* NETIF_MSG_PKTDATA | */
  60. NETIF_MSG_HW | NETIF_MSG_WOL | 0;
  61. static int debug = 0x00007fff; /* defaults above */
  62. module_param(debug, int, 0);
  63. MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
  64. #define MSIX_IRQ 0
  65. #define MSI_IRQ 1
  66. #define LEG_IRQ 2
  67. static int irq_type = MSIX_IRQ;
  68. module_param(irq_type, int, MSIX_IRQ);
  69. MODULE_PARM_DESC(irq_type, "0 = MSI-X, 1 = MSI, 2 = Legacy.");
  70. static struct pci_device_id qlge_pci_tbl[] __devinitdata = {
  71. {PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, QLGE_DEVICE_ID_8012)},
  72. {PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, QLGE_DEVICE_ID_8000)},
  73. /* required last entry */
  74. {0,}
  75. };
  76. MODULE_DEVICE_TABLE(pci, qlge_pci_tbl);
  77. /* This hardware semaphore causes exclusive access to
  78. * resources shared between the NIC driver, MPI firmware,
  79. * FCOE firmware and the FC driver.
  80. */
  81. static int ql_sem_trylock(struct ql_adapter *qdev, u32 sem_mask)
  82. {
  83. u32 sem_bits = 0;
  84. switch (sem_mask) {
  85. case SEM_XGMAC0_MASK:
  86. sem_bits = SEM_SET << SEM_XGMAC0_SHIFT;
  87. break;
  88. case SEM_XGMAC1_MASK:
  89. sem_bits = SEM_SET << SEM_XGMAC1_SHIFT;
  90. break;
  91. case SEM_ICB_MASK:
  92. sem_bits = SEM_SET << SEM_ICB_SHIFT;
  93. break;
  94. case SEM_MAC_ADDR_MASK:
  95. sem_bits = SEM_SET << SEM_MAC_ADDR_SHIFT;
  96. break;
  97. case SEM_FLASH_MASK:
  98. sem_bits = SEM_SET << SEM_FLASH_SHIFT;
  99. break;
  100. case SEM_PROBE_MASK:
  101. sem_bits = SEM_SET << SEM_PROBE_SHIFT;
  102. break;
  103. case SEM_RT_IDX_MASK:
  104. sem_bits = SEM_SET << SEM_RT_IDX_SHIFT;
  105. break;
  106. case SEM_PROC_REG_MASK:
  107. sem_bits = SEM_SET << SEM_PROC_REG_SHIFT;
  108. break;
  109. default:
  110. QPRINTK(qdev, PROBE, ALERT, "Bad Semaphore mask!.\n");
  111. return -EINVAL;
  112. }
  113. ql_write32(qdev, SEM, sem_bits | sem_mask);
  114. return !(ql_read32(qdev, SEM) & sem_bits);
  115. }
  116. int ql_sem_spinlock(struct ql_adapter *qdev, u32 sem_mask)
  117. {
  118. unsigned int wait_count = 30;
  119. do {
  120. if (!ql_sem_trylock(qdev, sem_mask))
  121. return 0;
  122. udelay(100);
  123. } while (--wait_count);
  124. return -ETIMEDOUT;
  125. }
  126. void ql_sem_unlock(struct ql_adapter *qdev, u32 sem_mask)
  127. {
  128. ql_write32(qdev, SEM, sem_mask);
  129. ql_read32(qdev, SEM); /* flush */
  130. }
  131. /* This function waits for a specific bit to come ready
  132. * in a given register. It is used mostly by the initialize
  133. * process, but is also used in kernel thread API such as
  134. * netdev->set_multi, netdev->set_mac_address, netdev->vlan_rx_add_vid.
  135. */
  136. int ql_wait_reg_rdy(struct ql_adapter *qdev, u32 reg, u32 bit, u32 err_bit)
  137. {
  138. u32 temp;
  139. int count = UDELAY_COUNT;
  140. while (count) {
  141. temp = ql_read32(qdev, reg);
  142. /* check for errors */
  143. if (temp & err_bit) {
  144. QPRINTK(qdev, PROBE, ALERT,
  145. "register 0x%.08x access error, value = 0x%.08x!.\n",
  146. reg, temp);
  147. return -EIO;
  148. } else if (temp & bit)
  149. return 0;
  150. udelay(UDELAY_DELAY);
  151. count--;
  152. }
  153. QPRINTK(qdev, PROBE, ALERT,
  154. "Timed out waiting for reg %x to come ready.\n", reg);
  155. return -ETIMEDOUT;
  156. }
  157. /* The CFG register is used to download TX and RX control blocks
  158. * to the chip. This function waits for an operation to complete.
  159. */
  160. static int ql_wait_cfg(struct ql_adapter *qdev, u32 bit)
  161. {
  162. int count = UDELAY_COUNT;
  163. u32 temp;
  164. while (count) {
  165. temp = ql_read32(qdev, CFG);
  166. if (temp & CFG_LE)
  167. return -EIO;
  168. if (!(temp & bit))
  169. return 0;
  170. udelay(UDELAY_DELAY);
  171. count--;
  172. }
  173. return -ETIMEDOUT;
  174. }
  175. /* Used to issue init control blocks to hw. Maps control block,
  176. * sets address, triggers download, waits for completion.
  177. */
  178. int ql_write_cfg(struct ql_adapter *qdev, void *ptr, int size, u32 bit,
  179. u16 q_id)
  180. {
  181. u64 map;
  182. int status = 0;
  183. int direction;
  184. u32 mask;
  185. u32 value;
  186. direction =
  187. (bit & (CFG_LRQ | CFG_LR | CFG_LCQ)) ? PCI_DMA_TODEVICE :
  188. PCI_DMA_FROMDEVICE;
  189. map = pci_map_single(qdev->pdev, ptr, size, direction);
  190. if (pci_dma_mapping_error(qdev->pdev, map)) {
  191. QPRINTK(qdev, IFUP, ERR, "Couldn't map DMA area.\n");
  192. return -ENOMEM;
  193. }
  194. status = ql_sem_spinlock(qdev, SEM_ICB_MASK);
  195. if (status)
  196. return status;
  197. status = ql_wait_cfg(qdev, bit);
  198. if (status) {
  199. QPRINTK(qdev, IFUP, ERR,
  200. "Timed out waiting for CFG to come ready.\n");
  201. goto exit;
  202. }
  203. ql_write32(qdev, ICB_L, (u32) map);
  204. ql_write32(qdev, ICB_H, (u32) (map >> 32));
  205. mask = CFG_Q_MASK | (bit << 16);
  206. value = bit | (q_id << CFG_Q_SHIFT);
  207. ql_write32(qdev, CFG, (mask | value));
  208. /*
  209. * Wait for the bit to clear after signaling hw.
  210. */
  211. status = ql_wait_cfg(qdev, bit);
  212. exit:
  213. ql_sem_unlock(qdev, SEM_ICB_MASK); /* does flush too */
  214. pci_unmap_single(qdev->pdev, map, size, direction);
  215. return status;
  216. }
  217. /* Get a specific MAC address from the CAM. Used for debug and reg dump. */
  218. int ql_get_mac_addr_reg(struct ql_adapter *qdev, u32 type, u16 index,
  219. u32 *value)
  220. {
  221. u32 offset = 0;
  222. int status;
  223. switch (type) {
  224. case MAC_ADDR_TYPE_MULTI_MAC:
  225. case MAC_ADDR_TYPE_CAM_MAC:
  226. {
  227. status =
  228. ql_wait_reg_rdy(qdev,
  229. MAC_ADDR_IDX, MAC_ADDR_MW, 0);
  230. if (status)
  231. goto exit;
  232. ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
  233. (index << MAC_ADDR_IDX_SHIFT) | /* index */
  234. MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
  235. status =
  236. ql_wait_reg_rdy(qdev,
  237. MAC_ADDR_IDX, MAC_ADDR_MR, 0);
  238. if (status)
  239. goto exit;
  240. *value++ = ql_read32(qdev, MAC_ADDR_DATA);
  241. status =
  242. ql_wait_reg_rdy(qdev,
  243. MAC_ADDR_IDX, MAC_ADDR_MW, 0);
  244. if (status)
  245. goto exit;
  246. ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
  247. (index << MAC_ADDR_IDX_SHIFT) | /* index */
  248. MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
  249. status =
  250. ql_wait_reg_rdy(qdev,
  251. MAC_ADDR_IDX, MAC_ADDR_MR, 0);
  252. if (status)
  253. goto exit;
  254. *value++ = ql_read32(qdev, MAC_ADDR_DATA);
  255. if (type == MAC_ADDR_TYPE_CAM_MAC) {
  256. status =
  257. ql_wait_reg_rdy(qdev,
  258. MAC_ADDR_IDX, MAC_ADDR_MW, 0);
  259. if (status)
  260. goto exit;
  261. ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
  262. (index << MAC_ADDR_IDX_SHIFT) | /* index */
  263. MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
  264. status =
  265. ql_wait_reg_rdy(qdev, MAC_ADDR_IDX,
  266. MAC_ADDR_MR, 0);
  267. if (status)
  268. goto exit;
  269. *value++ = ql_read32(qdev, MAC_ADDR_DATA);
  270. }
  271. break;
  272. }
  273. case MAC_ADDR_TYPE_VLAN:
  274. case MAC_ADDR_TYPE_MULTI_FLTR:
  275. default:
  276. QPRINTK(qdev, IFUP, CRIT,
  277. "Address type %d not yet supported.\n", type);
  278. status = -EPERM;
  279. }
  280. exit:
  281. return status;
  282. }
  283. /* Set up a MAC, multicast or VLAN address for the
  284. * inbound frame matching.
  285. */
  286. static int ql_set_mac_addr_reg(struct ql_adapter *qdev, u8 *addr, u32 type,
  287. u16 index)
  288. {
  289. u32 offset = 0;
  290. int status = 0;
  291. switch (type) {
  292. case MAC_ADDR_TYPE_MULTI_MAC:
  293. case MAC_ADDR_TYPE_CAM_MAC:
  294. {
  295. u32 cam_output;
  296. u32 upper = (addr[0] << 8) | addr[1];
  297. u32 lower =
  298. (addr[2] << 24) | (addr[3] << 16) | (addr[4] << 8) |
  299. (addr[5]);
  300. QPRINTK(qdev, IFUP, DEBUG,
  301. "Adding %s address %pM"
  302. " at index %d in the CAM.\n",
  303. ((type ==
  304. MAC_ADDR_TYPE_MULTI_MAC) ? "MULTICAST" :
  305. "UNICAST"), addr, index);
  306. status =
  307. ql_wait_reg_rdy(qdev,
  308. MAC_ADDR_IDX, MAC_ADDR_MW, 0);
  309. if (status)
  310. goto exit;
  311. ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
  312. (index << MAC_ADDR_IDX_SHIFT) | /* index */
  313. type); /* type */
  314. ql_write32(qdev, MAC_ADDR_DATA, lower);
  315. status =
  316. ql_wait_reg_rdy(qdev,
  317. MAC_ADDR_IDX, MAC_ADDR_MW, 0);
  318. if (status)
  319. goto exit;
  320. ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
  321. (index << MAC_ADDR_IDX_SHIFT) | /* index */
  322. type); /* type */
  323. ql_write32(qdev, MAC_ADDR_DATA, upper);
  324. status =
  325. ql_wait_reg_rdy(qdev,
  326. MAC_ADDR_IDX, MAC_ADDR_MW, 0);
  327. if (status)
  328. goto exit;
  329. ql_write32(qdev, MAC_ADDR_IDX, (offset) | /* offset */
  330. (index << MAC_ADDR_IDX_SHIFT) | /* index */
  331. type); /* type */
  332. /* This field should also include the queue id
  333. and possibly the function id. Right now we hardcode
  334. the route field to NIC core.
  335. */
  336. if (type == MAC_ADDR_TYPE_CAM_MAC) {
  337. cam_output = (CAM_OUT_ROUTE_NIC |
  338. (qdev->
  339. func << CAM_OUT_FUNC_SHIFT) |
  340. (qdev->
  341. rss_ring_first_cq_id <<
  342. CAM_OUT_CQ_ID_SHIFT));
  343. if (qdev->vlgrp)
  344. cam_output |= CAM_OUT_RV;
  345. /* route to NIC core */
  346. ql_write32(qdev, MAC_ADDR_DATA, cam_output);
  347. }
  348. break;
  349. }
  350. case MAC_ADDR_TYPE_VLAN:
  351. {
  352. u32 enable_bit = *((u32 *) &addr[0]);
  353. /* For VLAN, the addr actually holds a bit that
  354. * either enables or disables the vlan id we are
  355. * addressing. It's either MAC_ADDR_E on or off.
  356. * That's bit-27 we're talking about.
  357. */
  358. QPRINTK(qdev, IFUP, INFO, "%s VLAN ID %d %s the CAM.\n",
  359. (enable_bit ? "Adding" : "Removing"),
  360. index, (enable_bit ? "to" : "from"));
  361. status =
  362. ql_wait_reg_rdy(qdev,
  363. MAC_ADDR_IDX, MAC_ADDR_MW, 0);
  364. if (status)
  365. goto exit;
  366. ql_write32(qdev, MAC_ADDR_IDX, offset | /* offset */
  367. (index << MAC_ADDR_IDX_SHIFT) | /* index */
  368. type | /* type */
  369. enable_bit); /* enable/disable */
  370. break;
  371. }
  372. case MAC_ADDR_TYPE_MULTI_FLTR:
  373. default:
  374. QPRINTK(qdev, IFUP, CRIT,
  375. "Address type %d not yet supported.\n", type);
  376. status = -EPERM;
  377. }
  378. exit:
  379. return status;
  380. }
  381. /* Get a specific frame routing value from the CAM.
  382. * Used for debug and reg dump.
  383. */
  384. int ql_get_routing_reg(struct ql_adapter *qdev, u32 index, u32 *value)
  385. {
  386. int status = 0;
  387. status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MW, 0);
  388. if (status)
  389. goto exit;
  390. ql_write32(qdev, RT_IDX,
  391. RT_IDX_TYPE_NICQ | RT_IDX_RS | (index << RT_IDX_IDX_SHIFT));
  392. status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MR, 0);
  393. if (status)
  394. goto exit;
  395. *value = ql_read32(qdev, RT_DATA);
  396. exit:
  397. return status;
  398. }
  399. /* The NIC function for this chip has 16 routing indexes. Each one can be used
  400. * to route different frame types to various inbound queues. We send broadcast/
  401. * multicast/error frames to the default queue for slow handling,
  402. * and CAM hit/RSS frames to the fast handling queues.
  403. */
  404. static int ql_set_routing_reg(struct ql_adapter *qdev, u32 index, u32 mask,
  405. int enable)
  406. {
  407. int status = -EINVAL; /* Return error if no mask match. */
  408. u32 value = 0;
  409. QPRINTK(qdev, IFUP, DEBUG,
  410. "%s %s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s mask %s the routing reg.\n",
  411. (enable ? "Adding" : "Removing"),
  412. ((index == RT_IDX_ALL_ERR_SLOT) ? "MAC ERROR/ALL ERROR" : ""),
  413. ((index == RT_IDX_IP_CSUM_ERR_SLOT) ? "IP CSUM ERROR" : ""),
  414. ((index ==
  415. RT_IDX_TCP_UDP_CSUM_ERR_SLOT) ? "TCP/UDP CSUM ERROR" : ""),
  416. ((index == RT_IDX_BCAST_SLOT) ? "BROADCAST" : ""),
  417. ((index == RT_IDX_MCAST_MATCH_SLOT) ? "MULTICAST MATCH" : ""),
  418. ((index == RT_IDX_ALLMULTI_SLOT) ? "ALL MULTICAST MATCH" : ""),
  419. ((index == RT_IDX_UNUSED6_SLOT) ? "UNUSED6" : ""),
  420. ((index == RT_IDX_UNUSED7_SLOT) ? "UNUSED7" : ""),
  421. ((index == RT_IDX_RSS_MATCH_SLOT) ? "RSS ALL/IPV4 MATCH" : ""),
  422. ((index == RT_IDX_RSS_IPV6_SLOT) ? "RSS IPV6" : ""),
  423. ((index == RT_IDX_RSS_TCP4_SLOT) ? "RSS TCP4" : ""),
  424. ((index == RT_IDX_RSS_TCP6_SLOT) ? "RSS TCP6" : ""),
  425. ((index == RT_IDX_CAM_HIT_SLOT) ? "CAM HIT" : ""),
  426. ((index == RT_IDX_UNUSED013) ? "UNUSED13" : ""),
  427. ((index == RT_IDX_UNUSED014) ? "UNUSED14" : ""),
  428. ((index == RT_IDX_PROMISCUOUS_SLOT) ? "PROMISCUOUS" : ""),
  429. (enable ? "to" : "from"));
  430. switch (mask) {
  431. case RT_IDX_CAM_HIT:
  432. {
  433. value = RT_IDX_DST_CAM_Q | /* dest */
  434. RT_IDX_TYPE_NICQ | /* type */
  435. (RT_IDX_CAM_HIT_SLOT << RT_IDX_IDX_SHIFT);/* index */
  436. break;
  437. }
  438. case RT_IDX_VALID: /* Promiscuous Mode frames. */
  439. {
  440. value = RT_IDX_DST_DFLT_Q | /* dest */
  441. RT_IDX_TYPE_NICQ | /* type */
  442. (RT_IDX_PROMISCUOUS_SLOT << RT_IDX_IDX_SHIFT);/* index */
  443. break;
  444. }
  445. case RT_IDX_ERR: /* Pass up MAC,IP,TCP/UDP error frames. */
  446. {
  447. value = RT_IDX_DST_DFLT_Q | /* dest */
  448. RT_IDX_TYPE_NICQ | /* type */
  449. (RT_IDX_ALL_ERR_SLOT << RT_IDX_IDX_SHIFT);/* index */
  450. break;
  451. }
  452. case RT_IDX_BCAST: /* Pass up Broadcast frames to default Q. */
  453. {
  454. value = RT_IDX_DST_DFLT_Q | /* dest */
  455. RT_IDX_TYPE_NICQ | /* type */
  456. (RT_IDX_BCAST_SLOT << RT_IDX_IDX_SHIFT);/* index */
  457. break;
  458. }
  459. case RT_IDX_MCAST: /* Pass up All Multicast frames. */
  460. {
  461. value = RT_IDX_DST_CAM_Q | /* dest */
  462. RT_IDX_TYPE_NICQ | /* type */
  463. (RT_IDX_ALLMULTI_SLOT << RT_IDX_IDX_SHIFT);/* index */
  464. break;
  465. }
  466. case RT_IDX_MCAST_MATCH: /* Pass up matched Multicast frames. */
  467. {
  468. value = RT_IDX_DST_CAM_Q | /* dest */
  469. RT_IDX_TYPE_NICQ | /* type */
  470. (RT_IDX_MCAST_MATCH_SLOT << RT_IDX_IDX_SHIFT);/* index */
  471. break;
  472. }
  473. case RT_IDX_RSS_MATCH: /* Pass up matched RSS frames. */
  474. {
  475. value = RT_IDX_DST_RSS | /* dest */
  476. RT_IDX_TYPE_NICQ | /* type */
  477. (RT_IDX_RSS_MATCH_SLOT << RT_IDX_IDX_SHIFT);/* index */
  478. break;
  479. }
  480. case 0: /* Clear the E-bit on an entry. */
  481. {
  482. value = RT_IDX_DST_DFLT_Q | /* dest */
  483. RT_IDX_TYPE_NICQ | /* type */
  484. (index << RT_IDX_IDX_SHIFT);/* index */
  485. break;
  486. }
  487. default:
  488. QPRINTK(qdev, IFUP, ERR, "Mask type %d not yet supported.\n",
  489. mask);
  490. status = -EPERM;
  491. goto exit;
  492. }
  493. if (value) {
  494. status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MW, 0);
  495. if (status)
  496. goto exit;
  497. value |= (enable ? RT_IDX_E : 0);
  498. ql_write32(qdev, RT_IDX, value);
  499. ql_write32(qdev, RT_DATA, enable ? mask : 0);
  500. }
  501. exit:
  502. return status;
  503. }
  504. static void ql_enable_interrupts(struct ql_adapter *qdev)
  505. {
  506. ql_write32(qdev, INTR_EN, (INTR_EN_EI << 16) | INTR_EN_EI);
  507. }
  508. static void ql_disable_interrupts(struct ql_adapter *qdev)
  509. {
  510. ql_write32(qdev, INTR_EN, (INTR_EN_EI << 16));
  511. }
  512. /* If we're running with multiple MSI-X vectors then we enable on the fly.
  513. * Otherwise, we may have multiple outstanding workers and don't want to
  514. * enable until the last one finishes. In this case, the irq_cnt gets
  515. * incremented everytime we queue a worker and decremented everytime
  516. * a worker finishes. Once it hits zero we enable the interrupt.
  517. */
  518. u32 ql_enable_completion_interrupt(struct ql_adapter *qdev, u32 intr)
  519. {
  520. u32 var = 0;
  521. unsigned long hw_flags = 0;
  522. struct intr_context *ctx = qdev->intr_context + intr;
  523. if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags) && intr)) {
  524. /* Always enable if we're MSIX multi interrupts and
  525. * it's not the default (zeroeth) interrupt.
  526. */
  527. ql_write32(qdev, INTR_EN,
  528. ctx->intr_en_mask);
  529. var = ql_read32(qdev, STS);
  530. return var;
  531. }
  532. spin_lock_irqsave(&qdev->hw_lock, hw_flags);
  533. if (atomic_dec_and_test(&ctx->irq_cnt)) {
  534. ql_write32(qdev, INTR_EN,
  535. ctx->intr_en_mask);
  536. var = ql_read32(qdev, STS);
  537. }
  538. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  539. return var;
  540. }
  541. static u32 ql_disable_completion_interrupt(struct ql_adapter *qdev, u32 intr)
  542. {
  543. u32 var = 0;
  544. struct intr_context *ctx;
  545. /* HW disables for us if we're MSIX multi interrupts and
  546. * it's not the default (zeroeth) interrupt.
  547. */
  548. if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags) && intr))
  549. return 0;
  550. ctx = qdev->intr_context + intr;
  551. spin_lock(&qdev->hw_lock);
  552. if (!atomic_read(&ctx->irq_cnt)) {
  553. ql_write32(qdev, INTR_EN,
  554. ctx->intr_dis_mask);
  555. var = ql_read32(qdev, STS);
  556. }
  557. atomic_inc(&ctx->irq_cnt);
  558. spin_unlock(&qdev->hw_lock);
  559. return var;
  560. }
  561. static void ql_enable_all_completion_interrupts(struct ql_adapter *qdev)
  562. {
  563. int i;
  564. for (i = 0; i < qdev->intr_count; i++) {
  565. /* The enable call does a atomic_dec_and_test
  566. * and enables only if the result is zero.
  567. * So we precharge it here.
  568. */
  569. if (unlikely(!test_bit(QL_MSIX_ENABLED, &qdev->flags) ||
  570. i == 0))
  571. atomic_set(&qdev->intr_context[i].irq_cnt, 1);
  572. ql_enable_completion_interrupt(qdev, i);
  573. }
  574. }
  575. static int ql_validate_flash(struct ql_adapter *qdev, u32 size, const char *str)
  576. {
  577. int status, i;
  578. u16 csum = 0;
  579. __le16 *flash = (__le16 *)&qdev->flash;
  580. status = strncmp((char *)&qdev->flash, str, 4);
  581. if (status) {
  582. QPRINTK(qdev, IFUP, ERR, "Invalid flash signature.\n");
  583. return status;
  584. }
  585. for (i = 0; i < size; i++)
  586. csum += le16_to_cpu(*flash++);
  587. if (csum)
  588. QPRINTK(qdev, IFUP, ERR,
  589. "Invalid flash checksum, csum = 0x%.04x.\n", csum);
  590. return csum;
  591. }
  592. static int ql_read_flash_word(struct ql_adapter *qdev, int offset, __le32 *data)
  593. {
  594. int status = 0;
  595. /* wait for reg to come ready */
  596. status = ql_wait_reg_rdy(qdev,
  597. FLASH_ADDR, FLASH_ADDR_RDY, FLASH_ADDR_ERR);
  598. if (status)
  599. goto exit;
  600. /* set up for reg read */
  601. ql_write32(qdev, FLASH_ADDR, FLASH_ADDR_R | offset);
  602. /* wait for reg to come ready */
  603. status = ql_wait_reg_rdy(qdev,
  604. FLASH_ADDR, FLASH_ADDR_RDY, FLASH_ADDR_ERR);
  605. if (status)
  606. goto exit;
  607. /* This data is stored on flash as an array of
  608. * __le32. Since ql_read32() returns cpu endian
  609. * we need to swap it back.
  610. */
  611. *data = cpu_to_le32(ql_read32(qdev, FLASH_DATA));
  612. exit:
  613. return status;
  614. }
  615. static int ql_get_8000_flash_params(struct ql_adapter *qdev)
  616. {
  617. u32 i, size;
  618. int status;
  619. __le32 *p = (__le32 *)&qdev->flash;
  620. u32 offset;
  621. u8 mac_addr[6];
  622. /* Get flash offset for function and adjust
  623. * for dword access.
  624. */
  625. if (!qdev->port)
  626. offset = FUNC0_FLASH_OFFSET / sizeof(u32);
  627. else
  628. offset = FUNC1_FLASH_OFFSET / sizeof(u32);
  629. if (ql_sem_spinlock(qdev, SEM_FLASH_MASK))
  630. return -ETIMEDOUT;
  631. size = sizeof(struct flash_params_8000) / sizeof(u32);
  632. for (i = 0; i < size; i++, p++) {
  633. status = ql_read_flash_word(qdev, i+offset, p);
  634. if (status) {
  635. QPRINTK(qdev, IFUP, ERR, "Error reading flash.\n");
  636. goto exit;
  637. }
  638. }
  639. status = ql_validate_flash(qdev,
  640. sizeof(struct flash_params_8000) / sizeof(u16),
  641. "8000");
  642. if (status) {
  643. QPRINTK(qdev, IFUP, ERR, "Invalid flash.\n");
  644. status = -EINVAL;
  645. goto exit;
  646. }
  647. /* Extract either manufacturer or BOFM modified
  648. * MAC address.
  649. */
  650. if (qdev->flash.flash_params_8000.data_type1 == 2)
  651. memcpy(mac_addr,
  652. qdev->flash.flash_params_8000.mac_addr1,
  653. qdev->ndev->addr_len);
  654. else
  655. memcpy(mac_addr,
  656. qdev->flash.flash_params_8000.mac_addr,
  657. qdev->ndev->addr_len);
  658. if (!is_valid_ether_addr(mac_addr)) {
  659. QPRINTK(qdev, IFUP, ERR, "Invalid MAC address.\n");
  660. status = -EINVAL;
  661. goto exit;
  662. }
  663. memcpy(qdev->ndev->dev_addr,
  664. mac_addr,
  665. qdev->ndev->addr_len);
  666. exit:
  667. ql_sem_unlock(qdev, SEM_FLASH_MASK);
  668. return status;
  669. }
  670. static int ql_get_8012_flash_params(struct ql_adapter *qdev)
  671. {
  672. int i;
  673. int status;
  674. __le32 *p = (__le32 *)&qdev->flash;
  675. u32 offset = 0;
  676. u32 size = sizeof(struct flash_params_8012) / sizeof(u32);
  677. /* Second function's parameters follow the first
  678. * function's.
  679. */
  680. if (qdev->port)
  681. offset = size;
  682. if (ql_sem_spinlock(qdev, SEM_FLASH_MASK))
  683. return -ETIMEDOUT;
  684. for (i = 0; i < size; i++, p++) {
  685. status = ql_read_flash_word(qdev, i+offset, p);
  686. if (status) {
  687. QPRINTK(qdev, IFUP, ERR, "Error reading flash.\n");
  688. goto exit;
  689. }
  690. }
  691. status = ql_validate_flash(qdev,
  692. sizeof(struct flash_params_8012) / sizeof(u16),
  693. "8012");
  694. if (status) {
  695. QPRINTK(qdev, IFUP, ERR, "Invalid flash.\n");
  696. status = -EINVAL;
  697. goto exit;
  698. }
  699. if (!is_valid_ether_addr(qdev->flash.flash_params_8012.mac_addr)) {
  700. status = -EINVAL;
  701. goto exit;
  702. }
  703. memcpy(qdev->ndev->dev_addr,
  704. qdev->flash.flash_params_8012.mac_addr,
  705. qdev->ndev->addr_len);
  706. exit:
  707. ql_sem_unlock(qdev, SEM_FLASH_MASK);
  708. return status;
  709. }
  710. /* xgmac register are located behind the xgmac_addr and xgmac_data
  711. * register pair. Each read/write requires us to wait for the ready
  712. * bit before reading/writing the data.
  713. */
  714. static int ql_write_xgmac_reg(struct ql_adapter *qdev, u32 reg, u32 data)
  715. {
  716. int status;
  717. /* wait for reg to come ready */
  718. status = ql_wait_reg_rdy(qdev,
  719. XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
  720. if (status)
  721. return status;
  722. /* write the data to the data reg */
  723. ql_write32(qdev, XGMAC_DATA, data);
  724. /* trigger the write */
  725. ql_write32(qdev, XGMAC_ADDR, reg);
  726. return status;
  727. }
  728. /* xgmac register are located behind the xgmac_addr and xgmac_data
  729. * register pair. Each read/write requires us to wait for the ready
  730. * bit before reading/writing the data.
  731. */
  732. int ql_read_xgmac_reg(struct ql_adapter *qdev, u32 reg, u32 *data)
  733. {
  734. int status = 0;
  735. /* wait for reg to come ready */
  736. status = ql_wait_reg_rdy(qdev,
  737. XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
  738. if (status)
  739. goto exit;
  740. /* set up for reg read */
  741. ql_write32(qdev, XGMAC_ADDR, reg | XGMAC_ADDR_R);
  742. /* wait for reg to come ready */
  743. status = ql_wait_reg_rdy(qdev,
  744. XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
  745. if (status)
  746. goto exit;
  747. /* get the data */
  748. *data = ql_read32(qdev, XGMAC_DATA);
  749. exit:
  750. return status;
  751. }
  752. /* This is used for reading the 64-bit statistics regs. */
  753. int ql_read_xgmac_reg64(struct ql_adapter *qdev, u32 reg, u64 *data)
  754. {
  755. int status = 0;
  756. u32 hi = 0;
  757. u32 lo = 0;
  758. status = ql_read_xgmac_reg(qdev, reg, &lo);
  759. if (status)
  760. goto exit;
  761. status = ql_read_xgmac_reg(qdev, reg + 4, &hi);
  762. if (status)
  763. goto exit;
  764. *data = (u64) lo | ((u64) hi << 32);
  765. exit:
  766. return status;
  767. }
  768. static int ql_8000_port_initialize(struct ql_adapter *qdev)
  769. {
  770. int status;
  771. /*
  772. * Get MPI firmware version for driver banner
  773. * and ethool info.
  774. */
  775. status = ql_mb_about_fw(qdev);
  776. if (status)
  777. goto exit;
  778. status = ql_mb_get_fw_state(qdev);
  779. if (status)
  780. goto exit;
  781. /* Wake up a worker to get/set the TX/RX frame sizes. */
  782. queue_delayed_work(qdev->workqueue, &qdev->mpi_port_cfg_work, 0);
  783. exit:
  784. return status;
  785. }
  786. /* Take the MAC Core out of reset.
  787. * Enable statistics counting.
  788. * Take the transmitter/receiver out of reset.
  789. * This functionality may be done in the MPI firmware at a
  790. * later date.
  791. */
  792. static int ql_8012_port_initialize(struct ql_adapter *qdev)
  793. {
  794. int status = 0;
  795. u32 data;
  796. if (ql_sem_trylock(qdev, qdev->xg_sem_mask)) {
  797. /* Another function has the semaphore, so
  798. * wait for the port init bit to come ready.
  799. */
  800. QPRINTK(qdev, LINK, INFO,
  801. "Another function has the semaphore, so wait for the port init bit to come ready.\n");
  802. status = ql_wait_reg_rdy(qdev, STS, qdev->port_init, 0);
  803. if (status) {
  804. QPRINTK(qdev, LINK, CRIT,
  805. "Port initialize timed out.\n");
  806. }
  807. return status;
  808. }
  809. QPRINTK(qdev, LINK, INFO, "Got xgmac semaphore!.\n");
  810. /* Set the core reset. */
  811. status = ql_read_xgmac_reg(qdev, GLOBAL_CFG, &data);
  812. if (status)
  813. goto end;
  814. data |= GLOBAL_CFG_RESET;
  815. status = ql_write_xgmac_reg(qdev, GLOBAL_CFG, data);
  816. if (status)
  817. goto end;
  818. /* Clear the core reset and turn on jumbo for receiver. */
  819. data &= ~GLOBAL_CFG_RESET; /* Clear core reset. */
  820. data |= GLOBAL_CFG_JUMBO; /* Turn on jumbo. */
  821. data |= GLOBAL_CFG_TX_STAT_EN;
  822. data |= GLOBAL_CFG_RX_STAT_EN;
  823. status = ql_write_xgmac_reg(qdev, GLOBAL_CFG, data);
  824. if (status)
  825. goto end;
  826. /* Enable transmitter, and clear it's reset. */
  827. status = ql_read_xgmac_reg(qdev, TX_CFG, &data);
  828. if (status)
  829. goto end;
  830. data &= ~TX_CFG_RESET; /* Clear the TX MAC reset. */
  831. data |= TX_CFG_EN; /* Enable the transmitter. */
  832. status = ql_write_xgmac_reg(qdev, TX_CFG, data);
  833. if (status)
  834. goto end;
  835. /* Enable receiver and clear it's reset. */
  836. status = ql_read_xgmac_reg(qdev, RX_CFG, &data);
  837. if (status)
  838. goto end;
  839. data &= ~RX_CFG_RESET; /* Clear the RX MAC reset. */
  840. data |= RX_CFG_EN; /* Enable the receiver. */
  841. status = ql_write_xgmac_reg(qdev, RX_CFG, data);
  842. if (status)
  843. goto end;
  844. /* Turn on jumbo. */
  845. status =
  846. ql_write_xgmac_reg(qdev, MAC_TX_PARAMS, MAC_TX_PARAMS_JUMBO | (0x2580 << 16));
  847. if (status)
  848. goto end;
  849. status =
  850. ql_write_xgmac_reg(qdev, MAC_RX_PARAMS, 0x2580);
  851. if (status)
  852. goto end;
  853. /* Signal to the world that the port is enabled. */
  854. ql_write32(qdev, STS, ((qdev->port_init << 16) | qdev->port_init));
  855. end:
  856. ql_sem_unlock(qdev, qdev->xg_sem_mask);
  857. return status;
  858. }
  859. /* Get the next large buffer. */
  860. static struct bq_desc *ql_get_curr_lbuf(struct rx_ring *rx_ring)
  861. {
  862. struct bq_desc *lbq_desc = &rx_ring->lbq[rx_ring->lbq_curr_idx];
  863. rx_ring->lbq_curr_idx++;
  864. if (rx_ring->lbq_curr_idx == rx_ring->lbq_len)
  865. rx_ring->lbq_curr_idx = 0;
  866. rx_ring->lbq_free_cnt++;
  867. return lbq_desc;
  868. }
  869. /* Get the next small buffer. */
  870. static struct bq_desc *ql_get_curr_sbuf(struct rx_ring *rx_ring)
  871. {
  872. struct bq_desc *sbq_desc = &rx_ring->sbq[rx_ring->sbq_curr_idx];
  873. rx_ring->sbq_curr_idx++;
  874. if (rx_ring->sbq_curr_idx == rx_ring->sbq_len)
  875. rx_ring->sbq_curr_idx = 0;
  876. rx_ring->sbq_free_cnt++;
  877. return sbq_desc;
  878. }
  879. /* Update an rx ring index. */
  880. static void ql_update_cq(struct rx_ring *rx_ring)
  881. {
  882. rx_ring->cnsmr_idx++;
  883. rx_ring->curr_entry++;
  884. if (unlikely(rx_ring->cnsmr_idx == rx_ring->cq_len)) {
  885. rx_ring->cnsmr_idx = 0;
  886. rx_ring->curr_entry = rx_ring->cq_base;
  887. }
  888. }
  889. static void ql_write_cq_idx(struct rx_ring *rx_ring)
  890. {
  891. ql_write_db_reg(rx_ring->cnsmr_idx, rx_ring->cnsmr_idx_db_reg);
  892. }
  893. /* Process (refill) a large buffer queue. */
  894. static void ql_update_lbq(struct ql_adapter *qdev, struct rx_ring *rx_ring)
  895. {
  896. u32 clean_idx = rx_ring->lbq_clean_idx;
  897. u32 start_idx = clean_idx;
  898. struct bq_desc *lbq_desc;
  899. u64 map;
  900. int i;
  901. while (rx_ring->lbq_free_cnt > 16) {
  902. for (i = 0; i < 16; i++) {
  903. QPRINTK(qdev, RX_STATUS, DEBUG,
  904. "lbq: try cleaning clean_idx = %d.\n",
  905. clean_idx);
  906. lbq_desc = &rx_ring->lbq[clean_idx];
  907. if (lbq_desc->p.lbq_page == NULL) {
  908. QPRINTK(qdev, RX_STATUS, DEBUG,
  909. "lbq: getting new page for index %d.\n",
  910. lbq_desc->index);
  911. lbq_desc->p.lbq_page = alloc_page(GFP_ATOMIC);
  912. if (lbq_desc->p.lbq_page == NULL) {
  913. rx_ring->lbq_clean_idx = clean_idx;
  914. QPRINTK(qdev, RX_STATUS, ERR,
  915. "Couldn't get a page.\n");
  916. return;
  917. }
  918. map = pci_map_page(qdev->pdev,
  919. lbq_desc->p.lbq_page,
  920. 0, PAGE_SIZE,
  921. PCI_DMA_FROMDEVICE);
  922. if (pci_dma_mapping_error(qdev->pdev, map)) {
  923. rx_ring->lbq_clean_idx = clean_idx;
  924. put_page(lbq_desc->p.lbq_page);
  925. lbq_desc->p.lbq_page = NULL;
  926. QPRINTK(qdev, RX_STATUS, ERR,
  927. "PCI mapping failed.\n");
  928. return;
  929. }
  930. pci_unmap_addr_set(lbq_desc, mapaddr, map);
  931. pci_unmap_len_set(lbq_desc, maplen, PAGE_SIZE);
  932. *lbq_desc->addr = cpu_to_le64(map);
  933. }
  934. clean_idx++;
  935. if (clean_idx == rx_ring->lbq_len)
  936. clean_idx = 0;
  937. }
  938. rx_ring->lbq_clean_idx = clean_idx;
  939. rx_ring->lbq_prod_idx += 16;
  940. if (rx_ring->lbq_prod_idx == rx_ring->lbq_len)
  941. rx_ring->lbq_prod_idx = 0;
  942. rx_ring->lbq_free_cnt -= 16;
  943. }
  944. if (start_idx != clean_idx) {
  945. QPRINTK(qdev, RX_STATUS, DEBUG,
  946. "lbq: updating prod idx = %d.\n",
  947. rx_ring->lbq_prod_idx);
  948. ql_write_db_reg(rx_ring->lbq_prod_idx,
  949. rx_ring->lbq_prod_idx_db_reg);
  950. }
  951. }
  952. /* Process (refill) a small buffer queue. */
  953. static void ql_update_sbq(struct ql_adapter *qdev, struct rx_ring *rx_ring)
  954. {
  955. u32 clean_idx = rx_ring->sbq_clean_idx;
  956. u32 start_idx = clean_idx;
  957. struct bq_desc *sbq_desc;
  958. u64 map;
  959. int i;
  960. while (rx_ring->sbq_free_cnt > 16) {
  961. for (i = 0; i < 16; i++) {
  962. sbq_desc = &rx_ring->sbq[clean_idx];
  963. QPRINTK(qdev, RX_STATUS, DEBUG,
  964. "sbq: try cleaning clean_idx = %d.\n",
  965. clean_idx);
  966. if (sbq_desc->p.skb == NULL) {
  967. QPRINTK(qdev, RX_STATUS, DEBUG,
  968. "sbq: getting new skb for index %d.\n",
  969. sbq_desc->index);
  970. sbq_desc->p.skb =
  971. netdev_alloc_skb(qdev->ndev,
  972. rx_ring->sbq_buf_size);
  973. if (sbq_desc->p.skb == NULL) {
  974. QPRINTK(qdev, PROBE, ERR,
  975. "Couldn't get an skb.\n");
  976. rx_ring->sbq_clean_idx = clean_idx;
  977. return;
  978. }
  979. skb_reserve(sbq_desc->p.skb, QLGE_SB_PAD);
  980. map = pci_map_single(qdev->pdev,
  981. sbq_desc->p.skb->data,
  982. rx_ring->sbq_buf_size /
  983. 2, PCI_DMA_FROMDEVICE);
  984. if (pci_dma_mapping_error(qdev->pdev, map)) {
  985. QPRINTK(qdev, IFUP, ERR, "PCI mapping failed.\n");
  986. rx_ring->sbq_clean_idx = clean_idx;
  987. dev_kfree_skb_any(sbq_desc->p.skb);
  988. sbq_desc->p.skb = NULL;
  989. return;
  990. }
  991. pci_unmap_addr_set(sbq_desc, mapaddr, map);
  992. pci_unmap_len_set(sbq_desc, maplen,
  993. rx_ring->sbq_buf_size / 2);
  994. *sbq_desc->addr = cpu_to_le64(map);
  995. }
  996. clean_idx++;
  997. if (clean_idx == rx_ring->sbq_len)
  998. clean_idx = 0;
  999. }
  1000. rx_ring->sbq_clean_idx = clean_idx;
  1001. rx_ring->sbq_prod_idx += 16;
  1002. if (rx_ring->sbq_prod_idx == rx_ring->sbq_len)
  1003. rx_ring->sbq_prod_idx = 0;
  1004. rx_ring->sbq_free_cnt -= 16;
  1005. }
  1006. if (start_idx != clean_idx) {
  1007. QPRINTK(qdev, RX_STATUS, DEBUG,
  1008. "sbq: updating prod idx = %d.\n",
  1009. rx_ring->sbq_prod_idx);
  1010. ql_write_db_reg(rx_ring->sbq_prod_idx,
  1011. rx_ring->sbq_prod_idx_db_reg);
  1012. }
  1013. }
  1014. static void ql_update_buffer_queues(struct ql_adapter *qdev,
  1015. struct rx_ring *rx_ring)
  1016. {
  1017. ql_update_sbq(qdev, rx_ring);
  1018. ql_update_lbq(qdev, rx_ring);
  1019. }
  1020. /* Unmaps tx buffers. Can be called from send() if a pci mapping
  1021. * fails at some stage, or from the interrupt when a tx completes.
  1022. */
  1023. static void ql_unmap_send(struct ql_adapter *qdev,
  1024. struct tx_ring_desc *tx_ring_desc, int mapped)
  1025. {
  1026. int i;
  1027. for (i = 0; i < mapped; i++) {
  1028. if (i == 0 || (i == 7 && mapped > 7)) {
  1029. /*
  1030. * Unmap the skb->data area, or the
  1031. * external sglist (AKA the Outbound
  1032. * Address List (OAL)).
  1033. * If its the zeroeth element, then it's
  1034. * the skb->data area. If it's the 7th
  1035. * element and there is more than 6 frags,
  1036. * then its an OAL.
  1037. */
  1038. if (i == 7) {
  1039. QPRINTK(qdev, TX_DONE, DEBUG,
  1040. "unmapping OAL area.\n");
  1041. }
  1042. pci_unmap_single(qdev->pdev,
  1043. pci_unmap_addr(&tx_ring_desc->map[i],
  1044. mapaddr),
  1045. pci_unmap_len(&tx_ring_desc->map[i],
  1046. maplen),
  1047. PCI_DMA_TODEVICE);
  1048. } else {
  1049. QPRINTK(qdev, TX_DONE, DEBUG, "unmapping frag %d.\n",
  1050. i);
  1051. pci_unmap_page(qdev->pdev,
  1052. pci_unmap_addr(&tx_ring_desc->map[i],
  1053. mapaddr),
  1054. pci_unmap_len(&tx_ring_desc->map[i],
  1055. maplen), PCI_DMA_TODEVICE);
  1056. }
  1057. }
  1058. }
  1059. /* Map the buffers for this transmit. This will return
  1060. * NETDEV_TX_BUSY or NETDEV_TX_OK based on success.
  1061. */
  1062. static int ql_map_send(struct ql_adapter *qdev,
  1063. struct ob_mac_iocb_req *mac_iocb_ptr,
  1064. struct sk_buff *skb, struct tx_ring_desc *tx_ring_desc)
  1065. {
  1066. int len = skb_headlen(skb);
  1067. dma_addr_t map;
  1068. int frag_idx, err, map_idx = 0;
  1069. struct tx_buf_desc *tbd = mac_iocb_ptr->tbd;
  1070. int frag_cnt = skb_shinfo(skb)->nr_frags;
  1071. if (frag_cnt) {
  1072. QPRINTK(qdev, TX_QUEUED, DEBUG, "frag_cnt = %d.\n", frag_cnt);
  1073. }
  1074. /*
  1075. * Map the skb buffer first.
  1076. */
  1077. map = pci_map_single(qdev->pdev, skb->data, len, PCI_DMA_TODEVICE);
  1078. err = pci_dma_mapping_error(qdev->pdev, map);
  1079. if (err) {
  1080. QPRINTK(qdev, TX_QUEUED, ERR,
  1081. "PCI mapping failed with error: %d\n", err);
  1082. return NETDEV_TX_BUSY;
  1083. }
  1084. tbd->len = cpu_to_le32(len);
  1085. tbd->addr = cpu_to_le64(map);
  1086. pci_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr, map);
  1087. pci_unmap_len_set(&tx_ring_desc->map[map_idx], maplen, len);
  1088. map_idx++;
  1089. /*
  1090. * This loop fills the remainder of the 8 address descriptors
  1091. * in the IOCB. If there are more than 7 fragments, then the
  1092. * eighth address desc will point to an external list (OAL).
  1093. * When this happens, the remainder of the frags will be stored
  1094. * in this list.
  1095. */
  1096. for (frag_idx = 0; frag_idx < frag_cnt; frag_idx++, map_idx++) {
  1097. skb_frag_t *frag = &skb_shinfo(skb)->frags[frag_idx];
  1098. tbd++;
  1099. if (frag_idx == 6 && frag_cnt > 7) {
  1100. /* Let's tack on an sglist.
  1101. * Our control block will now
  1102. * look like this:
  1103. * iocb->seg[0] = skb->data
  1104. * iocb->seg[1] = frag[0]
  1105. * iocb->seg[2] = frag[1]
  1106. * iocb->seg[3] = frag[2]
  1107. * iocb->seg[4] = frag[3]
  1108. * iocb->seg[5] = frag[4]
  1109. * iocb->seg[6] = frag[5]
  1110. * iocb->seg[7] = ptr to OAL (external sglist)
  1111. * oal->seg[0] = frag[6]
  1112. * oal->seg[1] = frag[7]
  1113. * oal->seg[2] = frag[8]
  1114. * oal->seg[3] = frag[9]
  1115. * oal->seg[4] = frag[10]
  1116. * etc...
  1117. */
  1118. /* Tack on the OAL in the eighth segment of IOCB. */
  1119. map = pci_map_single(qdev->pdev, &tx_ring_desc->oal,
  1120. sizeof(struct oal),
  1121. PCI_DMA_TODEVICE);
  1122. err = pci_dma_mapping_error(qdev->pdev, map);
  1123. if (err) {
  1124. QPRINTK(qdev, TX_QUEUED, ERR,
  1125. "PCI mapping outbound address list with error: %d\n",
  1126. err);
  1127. goto map_error;
  1128. }
  1129. tbd->addr = cpu_to_le64(map);
  1130. /*
  1131. * The length is the number of fragments
  1132. * that remain to be mapped times the length
  1133. * of our sglist (OAL).
  1134. */
  1135. tbd->len =
  1136. cpu_to_le32((sizeof(struct tx_buf_desc) *
  1137. (frag_cnt - frag_idx)) | TX_DESC_C);
  1138. pci_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr,
  1139. map);
  1140. pci_unmap_len_set(&tx_ring_desc->map[map_idx], maplen,
  1141. sizeof(struct oal));
  1142. tbd = (struct tx_buf_desc *)&tx_ring_desc->oal;
  1143. map_idx++;
  1144. }
  1145. map =
  1146. pci_map_page(qdev->pdev, frag->page,
  1147. frag->page_offset, frag->size,
  1148. PCI_DMA_TODEVICE);
  1149. err = pci_dma_mapping_error(qdev->pdev, map);
  1150. if (err) {
  1151. QPRINTK(qdev, TX_QUEUED, ERR,
  1152. "PCI mapping frags failed with error: %d.\n",
  1153. err);
  1154. goto map_error;
  1155. }
  1156. tbd->addr = cpu_to_le64(map);
  1157. tbd->len = cpu_to_le32(frag->size);
  1158. pci_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr, map);
  1159. pci_unmap_len_set(&tx_ring_desc->map[map_idx], maplen,
  1160. frag->size);
  1161. }
  1162. /* Save the number of segments we've mapped. */
  1163. tx_ring_desc->map_cnt = map_idx;
  1164. /* Terminate the last segment. */
  1165. tbd->len = cpu_to_le32(le32_to_cpu(tbd->len) | TX_DESC_E);
  1166. return NETDEV_TX_OK;
  1167. map_error:
  1168. /*
  1169. * If the first frag mapping failed, then i will be zero.
  1170. * This causes the unmap of the skb->data area. Otherwise
  1171. * we pass in the number of frags that mapped successfully
  1172. * so they can be umapped.
  1173. */
  1174. ql_unmap_send(qdev, tx_ring_desc, map_idx);
  1175. return NETDEV_TX_BUSY;
  1176. }
  1177. static void ql_realign_skb(struct sk_buff *skb, int len)
  1178. {
  1179. void *temp_addr = skb->data;
  1180. /* Undo the skb_reserve(skb,32) we did before
  1181. * giving to hardware, and realign data on
  1182. * a 2-byte boundary.
  1183. */
  1184. skb->data -= QLGE_SB_PAD - NET_IP_ALIGN;
  1185. skb->tail -= QLGE_SB_PAD - NET_IP_ALIGN;
  1186. skb_copy_to_linear_data(skb, temp_addr,
  1187. (unsigned int)len);
  1188. }
  1189. /*
  1190. * This function builds an skb for the given inbound
  1191. * completion. It will be rewritten for readability in the near
  1192. * future, but for not it works well.
  1193. */
  1194. static struct sk_buff *ql_build_rx_skb(struct ql_adapter *qdev,
  1195. struct rx_ring *rx_ring,
  1196. struct ib_mac_iocb_rsp *ib_mac_rsp)
  1197. {
  1198. struct bq_desc *lbq_desc;
  1199. struct bq_desc *sbq_desc;
  1200. struct sk_buff *skb = NULL;
  1201. u32 length = le32_to_cpu(ib_mac_rsp->data_len);
  1202. u32 hdr_len = le32_to_cpu(ib_mac_rsp->hdr_len);
  1203. /*
  1204. * Handle the header buffer if present.
  1205. */
  1206. if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HV &&
  1207. ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
  1208. QPRINTK(qdev, RX_STATUS, DEBUG, "Header of %d bytes in small buffer.\n", hdr_len);
  1209. /*
  1210. * Headers fit nicely into a small buffer.
  1211. */
  1212. sbq_desc = ql_get_curr_sbuf(rx_ring);
  1213. pci_unmap_single(qdev->pdev,
  1214. pci_unmap_addr(sbq_desc, mapaddr),
  1215. pci_unmap_len(sbq_desc, maplen),
  1216. PCI_DMA_FROMDEVICE);
  1217. skb = sbq_desc->p.skb;
  1218. ql_realign_skb(skb, hdr_len);
  1219. skb_put(skb, hdr_len);
  1220. sbq_desc->p.skb = NULL;
  1221. }
  1222. /*
  1223. * Handle the data buffer(s).
  1224. */
  1225. if (unlikely(!length)) { /* Is there data too? */
  1226. QPRINTK(qdev, RX_STATUS, DEBUG,
  1227. "No Data buffer in this packet.\n");
  1228. return skb;
  1229. }
  1230. if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DS) {
  1231. if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
  1232. QPRINTK(qdev, RX_STATUS, DEBUG,
  1233. "Headers in small, data of %d bytes in small, combine them.\n", length);
  1234. /*
  1235. * Data is less than small buffer size so it's
  1236. * stuffed in a small buffer.
  1237. * For this case we append the data
  1238. * from the "data" small buffer to the "header" small
  1239. * buffer.
  1240. */
  1241. sbq_desc = ql_get_curr_sbuf(rx_ring);
  1242. pci_dma_sync_single_for_cpu(qdev->pdev,
  1243. pci_unmap_addr
  1244. (sbq_desc, mapaddr),
  1245. pci_unmap_len
  1246. (sbq_desc, maplen),
  1247. PCI_DMA_FROMDEVICE);
  1248. memcpy(skb_put(skb, length),
  1249. sbq_desc->p.skb->data, length);
  1250. pci_dma_sync_single_for_device(qdev->pdev,
  1251. pci_unmap_addr
  1252. (sbq_desc,
  1253. mapaddr),
  1254. pci_unmap_len
  1255. (sbq_desc,
  1256. maplen),
  1257. PCI_DMA_FROMDEVICE);
  1258. } else {
  1259. QPRINTK(qdev, RX_STATUS, DEBUG,
  1260. "%d bytes in a single small buffer.\n", length);
  1261. sbq_desc = ql_get_curr_sbuf(rx_ring);
  1262. skb = sbq_desc->p.skb;
  1263. ql_realign_skb(skb, length);
  1264. skb_put(skb, length);
  1265. pci_unmap_single(qdev->pdev,
  1266. pci_unmap_addr(sbq_desc,
  1267. mapaddr),
  1268. pci_unmap_len(sbq_desc,
  1269. maplen),
  1270. PCI_DMA_FROMDEVICE);
  1271. sbq_desc->p.skb = NULL;
  1272. }
  1273. } else if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DL) {
  1274. if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
  1275. QPRINTK(qdev, RX_STATUS, DEBUG,
  1276. "Header in small, %d bytes in large. Chain large to small!\n", length);
  1277. /*
  1278. * The data is in a single large buffer. We
  1279. * chain it to the header buffer's skb and let
  1280. * it rip.
  1281. */
  1282. lbq_desc = ql_get_curr_lbuf(rx_ring);
  1283. pci_unmap_page(qdev->pdev,
  1284. pci_unmap_addr(lbq_desc,
  1285. mapaddr),
  1286. pci_unmap_len(lbq_desc, maplen),
  1287. PCI_DMA_FROMDEVICE);
  1288. QPRINTK(qdev, RX_STATUS, DEBUG,
  1289. "Chaining page to skb.\n");
  1290. skb_fill_page_desc(skb, 0, lbq_desc->p.lbq_page,
  1291. 0, length);
  1292. skb->len += length;
  1293. skb->data_len += length;
  1294. skb->truesize += length;
  1295. lbq_desc->p.lbq_page = NULL;
  1296. } else {
  1297. /*
  1298. * The headers and data are in a single large buffer. We
  1299. * copy it to a new skb and let it go. This can happen with
  1300. * jumbo mtu on a non-TCP/UDP frame.
  1301. */
  1302. lbq_desc = ql_get_curr_lbuf(rx_ring);
  1303. skb = netdev_alloc_skb(qdev->ndev, length);
  1304. if (skb == NULL) {
  1305. QPRINTK(qdev, PROBE, DEBUG,
  1306. "No skb available, drop the packet.\n");
  1307. return NULL;
  1308. }
  1309. pci_unmap_page(qdev->pdev,
  1310. pci_unmap_addr(lbq_desc,
  1311. mapaddr),
  1312. pci_unmap_len(lbq_desc, maplen),
  1313. PCI_DMA_FROMDEVICE);
  1314. skb_reserve(skb, NET_IP_ALIGN);
  1315. QPRINTK(qdev, RX_STATUS, DEBUG,
  1316. "%d bytes of headers and data in large. Chain page to new skb and pull tail.\n", length);
  1317. skb_fill_page_desc(skb, 0, lbq_desc->p.lbq_page,
  1318. 0, length);
  1319. skb->len += length;
  1320. skb->data_len += length;
  1321. skb->truesize += length;
  1322. length -= length;
  1323. lbq_desc->p.lbq_page = NULL;
  1324. __pskb_pull_tail(skb,
  1325. (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) ?
  1326. VLAN_ETH_HLEN : ETH_HLEN);
  1327. }
  1328. } else {
  1329. /*
  1330. * The data is in a chain of large buffers
  1331. * pointed to by a small buffer. We loop
  1332. * thru and chain them to the our small header
  1333. * buffer's skb.
  1334. * frags: There are 18 max frags and our small
  1335. * buffer will hold 32 of them. The thing is,
  1336. * we'll use 3 max for our 9000 byte jumbo
  1337. * frames. If the MTU goes up we could
  1338. * eventually be in trouble.
  1339. */
  1340. int size, offset, i = 0;
  1341. __le64 *bq, bq_array[8];
  1342. sbq_desc = ql_get_curr_sbuf(rx_ring);
  1343. pci_unmap_single(qdev->pdev,
  1344. pci_unmap_addr(sbq_desc, mapaddr),
  1345. pci_unmap_len(sbq_desc, maplen),
  1346. PCI_DMA_FROMDEVICE);
  1347. if (!(ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS)) {
  1348. /*
  1349. * This is an non TCP/UDP IP frame, so
  1350. * the headers aren't split into a small
  1351. * buffer. We have to use the small buffer
  1352. * that contains our sg list as our skb to
  1353. * send upstairs. Copy the sg list here to
  1354. * a local buffer and use it to find the
  1355. * pages to chain.
  1356. */
  1357. QPRINTK(qdev, RX_STATUS, DEBUG,
  1358. "%d bytes of headers & data in chain of large.\n", length);
  1359. skb = sbq_desc->p.skb;
  1360. bq = &bq_array[0];
  1361. memcpy(bq, skb->data, sizeof(bq_array));
  1362. sbq_desc->p.skb = NULL;
  1363. skb_reserve(skb, NET_IP_ALIGN);
  1364. } else {
  1365. QPRINTK(qdev, RX_STATUS, DEBUG,
  1366. "Headers in small, %d bytes of data in chain of large.\n", length);
  1367. bq = (__le64 *)sbq_desc->p.skb->data;
  1368. }
  1369. while (length > 0) {
  1370. lbq_desc = ql_get_curr_lbuf(rx_ring);
  1371. pci_unmap_page(qdev->pdev,
  1372. pci_unmap_addr(lbq_desc,
  1373. mapaddr),
  1374. pci_unmap_len(lbq_desc,
  1375. maplen),
  1376. PCI_DMA_FROMDEVICE);
  1377. size = (length < PAGE_SIZE) ? length : PAGE_SIZE;
  1378. offset = 0;
  1379. QPRINTK(qdev, RX_STATUS, DEBUG,
  1380. "Adding page %d to skb for %d bytes.\n",
  1381. i, size);
  1382. skb_fill_page_desc(skb, i, lbq_desc->p.lbq_page,
  1383. offset, size);
  1384. skb->len += size;
  1385. skb->data_len += size;
  1386. skb->truesize += size;
  1387. length -= size;
  1388. lbq_desc->p.lbq_page = NULL;
  1389. bq++;
  1390. i++;
  1391. }
  1392. __pskb_pull_tail(skb, (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) ?
  1393. VLAN_ETH_HLEN : ETH_HLEN);
  1394. }
  1395. return skb;
  1396. }
  1397. /* Process an inbound completion from an rx ring. */
  1398. static void ql_process_mac_rx_intr(struct ql_adapter *qdev,
  1399. struct rx_ring *rx_ring,
  1400. struct ib_mac_iocb_rsp *ib_mac_rsp)
  1401. {
  1402. struct net_device *ndev = qdev->ndev;
  1403. struct sk_buff *skb = NULL;
  1404. u16 vlan_id = (le16_to_cpu(ib_mac_rsp->vlan_id) &
  1405. IB_MAC_IOCB_RSP_VLAN_MASK)
  1406. QL_DUMP_IB_MAC_RSP(ib_mac_rsp);
  1407. skb = ql_build_rx_skb(qdev, rx_ring, ib_mac_rsp);
  1408. if (unlikely(!skb)) {
  1409. QPRINTK(qdev, RX_STATUS, DEBUG,
  1410. "No skb available, drop packet.\n");
  1411. return;
  1412. }
  1413. /* Frame error, so drop the packet. */
  1414. if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_ERR_MASK) {
  1415. QPRINTK(qdev, DRV, ERR, "Receive error, flags2 = 0x%x\n",
  1416. ib_mac_rsp->flags2);
  1417. dev_kfree_skb_any(skb);
  1418. return;
  1419. }
  1420. /* The max framesize filter on this chip is set higher than
  1421. * MTU since FCoE uses 2k frames.
  1422. */
  1423. if (skb->len > ndev->mtu + ETH_HLEN) {
  1424. dev_kfree_skb_any(skb);
  1425. return;
  1426. }
  1427. prefetch(skb->data);
  1428. skb->dev = ndev;
  1429. if (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) {
  1430. QPRINTK(qdev, RX_STATUS, DEBUG, "%s%s%s Multicast.\n",
  1431. (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
  1432. IB_MAC_IOCB_RSP_M_HASH ? "Hash" : "",
  1433. (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
  1434. IB_MAC_IOCB_RSP_M_REG ? "Registered" : "",
  1435. (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
  1436. IB_MAC_IOCB_RSP_M_PROM ? "Promiscuous" : "");
  1437. }
  1438. if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_P) {
  1439. QPRINTK(qdev, RX_STATUS, DEBUG, "Promiscuous Packet.\n");
  1440. }
  1441. skb->protocol = eth_type_trans(skb, ndev);
  1442. skb->ip_summed = CHECKSUM_NONE;
  1443. /* If rx checksum is on, and there are no
  1444. * csum or frame errors.
  1445. */
  1446. if (qdev->rx_csum &&
  1447. !(ib_mac_rsp->flags1 & IB_MAC_CSUM_ERR_MASK)) {
  1448. /* TCP frame. */
  1449. if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_T) {
  1450. QPRINTK(qdev, RX_STATUS, DEBUG,
  1451. "TCP checksum done!\n");
  1452. skb->ip_summed = CHECKSUM_UNNECESSARY;
  1453. } else if ((ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_U) &&
  1454. (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_V4)) {
  1455. /* Unfragmented ipv4 UDP frame. */
  1456. struct iphdr *iph = (struct iphdr *) skb->data;
  1457. if (!(iph->frag_off &
  1458. cpu_to_be16(IP_MF|IP_OFFSET))) {
  1459. skb->ip_summed = CHECKSUM_UNNECESSARY;
  1460. QPRINTK(qdev, RX_STATUS, DEBUG,
  1461. "TCP checksum done!\n");
  1462. }
  1463. }
  1464. }
  1465. qdev->stats.rx_packets++;
  1466. qdev->stats.rx_bytes += skb->len;
  1467. skb_record_rx_queue(skb,
  1468. rx_ring->cq_id - qdev->rss_ring_first_cq_id);
  1469. if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
  1470. if (qdev->vlgrp &&
  1471. (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) &&
  1472. (vlan_id != 0))
  1473. vlan_gro_receive(&rx_ring->napi, qdev->vlgrp,
  1474. vlan_id, skb);
  1475. else
  1476. napi_gro_receive(&rx_ring->napi, skb);
  1477. } else {
  1478. if (qdev->vlgrp &&
  1479. (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) &&
  1480. (vlan_id != 0))
  1481. vlan_hwaccel_receive_skb(skb, qdev->vlgrp, vlan_id);
  1482. else
  1483. netif_receive_skb(skb);
  1484. }
  1485. }
  1486. /* Process an outbound completion from an rx ring. */
  1487. static void ql_process_mac_tx_intr(struct ql_adapter *qdev,
  1488. struct ob_mac_iocb_rsp *mac_rsp)
  1489. {
  1490. struct tx_ring *tx_ring;
  1491. struct tx_ring_desc *tx_ring_desc;
  1492. QL_DUMP_OB_MAC_RSP(mac_rsp);
  1493. tx_ring = &qdev->tx_ring[mac_rsp->txq_idx];
  1494. tx_ring_desc = &tx_ring->q[mac_rsp->tid];
  1495. ql_unmap_send(qdev, tx_ring_desc, tx_ring_desc->map_cnt);
  1496. qdev->stats.tx_bytes += tx_ring_desc->map_cnt;
  1497. qdev->stats.tx_packets++;
  1498. dev_kfree_skb(tx_ring_desc->skb);
  1499. tx_ring_desc->skb = NULL;
  1500. if (unlikely(mac_rsp->flags1 & (OB_MAC_IOCB_RSP_E |
  1501. OB_MAC_IOCB_RSP_S |
  1502. OB_MAC_IOCB_RSP_L |
  1503. OB_MAC_IOCB_RSP_P | OB_MAC_IOCB_RSP_B))) {
  1504. if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_E) {
  1505. QPRINTK(qdev, TX_DONE, WARNING,
  1506. "Total descriptor length did not match transfer length.\n");
  1507. }
  1508. if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_S) {
  1509. QPRINTK(qdev, TX_DONE, WARNING,
  1510. "Frame too short to be legal, not sent.\n");
  1511. }
  1512. if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_L) {
  1513. QPRINTK(qdev, TX_DONE, WARNING,
  1514. "Frame too long, but sent anyway.\n");
  1515. }
  1516. if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_B) {
  1517. QPRINTK(qdev, TX_DONE, WARNING,
  1518. "PCI backplane error. Frame not sent.\n");
  1519. }
  1520. }
  1521. atomic_inc(&tx_ring->tx_count);
  1522. }
  1523. /* Fire up a handler to reset the MPI processor. */
  1524. void ql_queue_fw_error(struct ql_adapter *qdev)
  1525. {
  1526. netif_carrier_off(qdev->ndev);
  1527. queue_delayed_work(qdev->workqueue, &qdev->mpi_reset_work, 0);
  1528. }
  1529. void ql_queue_asic_error(struct ql_adapter *qdev)
  1530. {
  1531. netif_carrier_off(qdev->ndev);
  1532. ql_disable_interrupts(qdev);
  1533. /* Clear adapter up bit to signal the recovery
  1534. * process that it shouldn't kill the reset worker
  1535. * thread
  1536. */
  1537. clear_bit(QL_ADAPTER_UP, &qdev->flags);
  1538. queue_delayed_work(qdev->workqueue, &qdev->asic_reset_work, 0);
  1539. }
  1540. static void ql_process_chip_ae_intr(struct ql_adapter *qdev,
  1541. struct ib_ae_iocb_rsp *ib_ae_rsp)
  1542. {
  1543. switch (ib_ae_rsp->event) {
  1544. case MGMT_ERR_EVENT:
  1545. QPRINTK(qdev, RX_ERR, ERR,
  1546. "Management Processor Fatal Error.\n");
  1547. ql_queue_fw_error(qdev);
  1548. return;
  1549. case CAM_LOOKUP_ERR_EVENT:
  1550. QPRINTK(qdev, LINK, ERR,
  1551. "Multiple CAM hits lookup occurred.\n");
  1552. QPRINTK(qdev, DRV, ERR, "This event shouldn't occur.\n");
  1553. ql_queue_asic_error(qdev);
  1554. return;
  1555. case SOFT_ECC_ERROR_EVENT:
  1556. QPRINTK(qdev, RX_ERR, ERR, "Soft ECC error detected.\n");
  1557. ql_queue_asic_error(qdev);
  1558. break;
  1559. case PCI_ERR_ANON_BUF_RD:
  1560. QPRINTK(qdev, RX_ERR, ERR,
  1561. "PCI error occurred when reading anonymous buffers from rx_ring %d.\n",
  1562. ib_ae_rsp->q_id);
  1563. ql_queue_asic_error(qdev);
  1564. break;
  1565. default:
  1566. QPRINTK(qdev, DRV, ERR, "Unexpected event %d.\n",
  1567. ib_ae_rsp->event);
  1568. ql_queue_asic_error(qdev);
  1569. break;
  1570. }
  1571. }
  1572. static int ql_clean_outbound_rx_ring(struct rx_ring *rx_ring)
  1573. {
  1574. struct ql_adapter *qdev = rx_ring->qdev;
  1575. u32 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
  1576. struct ob_mac_iocb_rsp *net_rsp = NULL;
  1577. int count = 0;
  1578. struct tx_ring *tx_ring;
  1579. /* While there are entries in the completion queue. */
  1580. while (prod != rx_ring->cnsmr_idx) {
  1581. QPRINTK(qdev, RX_STATUS, DEBUG,
  1582. "cq_id = %d, prod = %d, cnsmr = %d.\n.", rx_ring->cq_id,
  1583. prod, rx_ring->cnsmr_idx);
  1584. net_rsp = (struct ob_mac_iocb_rsp *)rx_ring->curr_entry;
  1585. rmb();
  1586. switch (net_rsp->opcode) {
  1587. case OPCODE_OB_MAC_TSO_IOCB:
  1588. case OPCODE_OB_MAC_IOCB:
  1589. ql_process_mac_tx_intr(qdev, net_rsp);
  1590. break;
  1591. default:
  1592. QPRINTK(qdev, RX_STATUS, DEBUG,
  1593. "Hit default case, not handled! dropping the packet, opcode = %x.\n",
  1594. net_rsp->opcode);
  1595. }
  1596. count++;
  1597. ql_update_cq(rx_ring);
  1598. prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
  1599. }
  1600. ql_write_cq_idx(rx_ring);
  1601. tx_ring = &qdev->tx_ring[net_rsp->txq_idx];
  1602. if (__netif_subqueue_stopped(qdev->ndev, tx_ring->wq_id) &&
  1603. net_rsp != NULL) {
  1604. if (atomic_read(&tx_ring->queue_stopped) &&
  1605. (atomic_read(&tx_ring->tx_count) > (tx_ring->wq_len / 4)))
  1606. /*
  1607. * The queue got stopped because the tx_ring was full.
  1608. * Wake it up, because it's now at least 25% empty.
  1609. */
  1610. netif_wake_subqueue(qdev->ndev, tx_ring->wq_id);
  1611. }
  1612. return count;
  1613. }
  1614. static int ql_clean_inbound_rx_ring(struct rx_ring *rx_ring, int budget)
  1615. {
  1616. struct ql_adapter *qdev = rx_ring->qdev;
  1617. u32 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
  1618. struct ql_net_rsp_iocb *net_rsp;
  1619. int count = 0;
  1620. /* While there are entries in the completion queue. */
  1621. while (prod != rx_ring->cnsmr_idx) {
  1622. QPRINTK(qdev, RX_STATUS, DEBUG,
  1623. "cq_id = %d, prod = %d, cnsmr = %d.\n.", rx_ring->cq_id,
  1624. prod, rx_ring->cnsmr_idx);
  1625. net_rsp = rx_ring->curr_entry;
  1626. rmb();
  1627. switch (net_rsp->opcode) {
  1628. case OPCODE_IB_MAC_IOCB:
  1629. ql_process_mac_rx_intr(qdev, rx_ring,
  1630. (struct ib_mac_iocb_rsp *)
  1631. net_rsp);
  1632. break;
  1633. case OPCODE_IB_AE_IOCB:
  1634. ql_process_chip_ae_intr(qdev, (struct ib_ae_iocb_rsp *)
  1635. net_rsp);
  1636. break;
  1637. default:
  1638. {
  1639. QPRINTK(qdev, RX_STATUS, DEBUG,
  1640. "Hit default case, not handled! dropping the packet, opcode = %x.\n",
  1641. net_rsp->opcode);
  1642. }
  1643. }
  1644. count++;
  1645. ql_update_cq(rx_ring);
  1646. prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
  1647. if (count == budget)
  1648. break;
  1649. }
  1650. ql_update_buffer_queues(qdev, rx_ring);
  1651. ql_write_cq_idx(rx_ring);
  1652. return count;
  1653. }
  1654. static int ql_napi_poll_msix(struct napi_struct *napi, int budget)
  1655. {
  1656. struct rx_ring *rx_ring = container_of(napi, struct rx_ring, napi);
  1657. struct ql_adapter *qdev = rx_ring->qdev;
  1658. int work_done = ql_clean_inbound_rx_ring(rx_ring, budget);
  1659. QPRINTK(qdev, RX_STATUS, DEBUG, "Enter, NAPI POLL cq_id = %d.\n",
  1660. rx_ring->cq_id);
  1661. if (work_done < budget) {
  1662. napi_complete(napi);
  1663. ql_enable_completion_interrupt(qdev, rx_ring->irq);
  1664. }
  1665. return work_done;
  1666. }
  1667. static void ql_vlan_rx_register(struct net_device *ndev, struct vlan_group *grp)
  1668. {
  1669. struct ql_adapter *qdev = netdev_priv(ndev);
  1670. qdev->vlgrp = grp;
  1671. if (grp) {
  1672. QPRINTK(qdev, IFUP, DEBUG, "Turning on VLAN in NIC_RCV_CFG.\n");
  1673. ql_write32(qdev, NIC_RCV_CFG, NIC_RCV_CFG_VLAN_MASK |
  1674. NIC_RCV_CFG_VLAN_MATCH_AND_NON);
  1675. } else {
  1676. QPRINTK(qdev, IFUP, DEBUG,
  1677. "Turning off VLAN in NIC_RCV_CFG.\n");
  1678. ql_write32(qdev, NIC_RCV_CFG, NIC_RCV_CFG_VLAN_MASK);
  1679. }
  1680. }
  1681. static void ql_vlan_rx_add_vid(struct net_device *ndev, u16 vid)
  1682. {
  1683. struct ql_adapter *qdev = netdev_priv(ndev);
  1684. u32 enable_bit = MAC_ADDR_E;
  1685. int status;
  1686. status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
  1687. if (status)
  1688. return;
  1689. spin_lock(&qdev->hw_lock);
  1690. if (ql_set_mac_addr_reg
  1691. (qdev, (u8 *) &enable_bit, MAC_ADDR_TYPE_VLAN, vid)) {
  1692. QPRINTK(qdev, IFUP, ERR, "Failed to init vlan address.\n");
  1693. }
  1694. spin_unlock(&qdev->hw_lock);
  1695. ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
  1696. }
  1697. static void ql_vlan_rx_kill_vid(struct net_device *ndev, u16 vid)
  1698. {
  1699. struct ql_adapter *qdev = netdev_priv(ndev);
  1700. u32 enable_bit = 0;
  1701. int status;
  1702. status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
  1703. if (status)
  1704. return;
  1705. spin_lock(&qdev->hw_lock);
  1706. if (ql_set_mac_addr_reg
  1707. (qdev, (u8 *) &enable_bit, MAC_ADDR_TYPE_VLAN, vid)) {
  1708. QPRINTK(qdev, IFUP, ERR, "Failed to clear vlan address.\n");
  1709. }
  1710. spin_unlock(&qdev->hw_lock);
  1711. ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
  1712. }
  1713. /* Worker thread to process a given rx_ring that is dedicated
  1714. * to outbound completions.
  1715. */
  1716. static void ql_tx_clean(struct work_struct *work)
  1717. {
  1718. struct rx_ring *rx_ring =
  1719. container_of(work, struct rx_ring, rx_work.work);
  1720. ql_clean_outbound_rx_ring(rx_ring);
  1721. ql_enable_completion_interrupt(rx_ring->qdev, rx_ring->irq);
  1722. }
  1723. /* Worker thread to process a given rx_ring that is dedicated
  1724. * to inbound completions.
  1725. */
  1726. static void ql_rx_clean(struct work_struct *work)
  1727. {
  1728. struct rx_ring *rx_ring =
  1729. container_of(work, struct rx_ring, rx_work.work);
  1730. ql_clean_inbound_rx_ring(rx_ring, 64);
  1731. ql_enable_completion_interrupt(rx_ring->qdev, rx_ring->irq);
  1732. }
  1733. /* MSI-X Multiple Vector Interrupt Handler for outbound completions. */
  1734. static irqreturn_t qlge_msix_tx_isr(int irq, void *dev_id)
  1735. {
  1736. struct rx_ring *rx_ring = dev_id;
  1737. queue_delayed_work_on(rx_ring->cpu, rx_ring->qdev->q_workqueue,
  1738. &rx_ring->rx_work, 0);
  1739. return IRQ_HANDLED;
  1740. }
  1741. /* MSI-X Multiple Vector Interrupt Handler for inbound completions. */
  1742. static irqreturn_t qlge_msix_rx_isr(int irq, void *dev_id)
  1743. {
  1744. struct rx_ring *rx_ring = dev_id;
  1745. napi_schedule(&rx_ring->napi);
  1746. return IRQ_HANDLED;
  1747. }
  1748. /* This handles a fatal error, MPI activity, and the default
  1749. * rx_ring in an MSI-X multiple vector environment.
  1750. * In MSI/Legacy environment it also process the rest of
  1751. * the rx_rings.
  1752. */
  1753. static irqreturn_t qlge_isr(int irq, void *dev_id)
  1754. {
  1755. struct rx_ring *rx_ring = dev_id;
  1756. struct ql_adapter *qdev = rx_ring->qdev;
  1757. struct intr_context *intr_context = &qdev->intr_context[0];
  1758. u32 var;
  1759. int i;
  1760. int work_done = 0;
  1761. spin_lock(&qdev->hw_lock);
  1762. if (atomic_read(&qdev->intr_context[0].irq_cnt)) {
  1763. QPRINTK(qdev, INTR, DEBUG, "Shared Interrupt, Not ours!\n");
  1764. spin_unlock(&qdev->hw_lock);
  1765. return IRQ_NONE;
  1766. }
  1767. spin_unlock(&qdev->hw_lock);
  1768. var = ql_disable_completion_interrupt(qdev, intr_context->intr);
  1769. /*
  1770. * Check for fatal error.
  1771. */
  1772. if (var & STS_FE) {
  1773. ql_queue_asic_error(qdev);
  1774. QPRINTK(qdev, INTR, ERR, "Got fatal error, STS = %x.\n", var);
  1775. var = ql_read32(qdev, ERR_STS);
  1776. QPRINTK(qdev, INTR, ERR,
  1777. "Resetting chip. Error Status Register = 0x%x\n", var);
  1778. return IRQ_HANDLED;
  1779. }
  1780. /*
  1781. * Check MPI processor activity.
  1782. */
  1783. if (var & STS_PI) {
  1784. /*
  1785. * We've got an async event or mailbox completion.
  1786. * Handle it and clear the source of the interrupt.
  1787. */
  1788. QPRINTK(qdev, INTR, ERR, "Got MPI processor interrupt.\n");
  1789. ql_disable_completion_interrupt(qdev, intr_context->intr);
  1790. queue_delayed_work_on(smp_processor_id(), qdev->workqueue,
  1791. &qdev->mpi_work, 0);
  1792. work_done++;
  1793. }
  1794. /*
  1795. * Check the default queue and wake handler if active.
  1796. */
  1797. rx_ring = &qdev->rx_ring[0];
  1798. if (ql_read_sh_reg(rx_ring->prod_idx_sh_reg) != rx_ring->cnsmr_idx) {
  1799. QPRINTK(qdev, INTR, INFO, "Waking handler for rx_ring[0].\n");
  1800. ql_disable_completion_interrupt(qdev, intr_context->intr);
  1801. queue_delayed_work_on(smp_processor_id(), qdev->q_workqueue,
  1802. &rx_ring->rx_work, 0);
  1803. work_done++;
  1804. }
  1805. if (!test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
  1806. /*
  1807. * Start the DPC for each active queue.
  1808. */
  1809. for (i = 1; i < qdev->rx_ring_count; i++) {
  1810. rx_ring = &qdev->rx_ring[i];
  1811. if (ql_read_sh_reg(rx_ring->prod_idx_sh_reg) !=
  1812. rx_ring->cnsmr_idx) {
  1813. QPRINTK(qdev, INTR, INFO,
  1814. "Waking handler for rx_ring[%d].\n", i);
  1815. ql_disable_completion_interrupt(qdev,
  1816. intr_context->
  1817. intr);
  1818. if (i < qdev->rss_ring_first_cq_id)
  1819. queue_delayed_work_on(rx_ring->cpu,
  1820. qdev->q_workqueue,
  1821. &rx_ring->rx_work,
  1822. 0);
  1823. else
  1824. napi_schedule(&rx_ring->napi);
  1825. work_done++;
  1826. }
  1827. }
  1828. }
  1829. ql_enable_completion_interrupt(qdev, intr_context->intr);
  1830. return work_done ? IRQ_HANDLED : IRQ_NONE;
  1831. }
  1832. static int ql_tso(struct sk_buff *skb, struct ob_mac_tso_iocb_req *mac_iocb_ptr)
  1833. {
  1834. if (skb_is_gso(skb)) {
  1835. int err;
  1836. if (skb_header_cloned(skb)) {
  1837. err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
  1838. if (err)
  1839. return err;
  1840. }
  1841. mac_iocb_ptr->opcode = OPCODE_OB_MAC_TSO_IOCB;
  1842. mac_iocb_ptr->flags3 |= OB_MAC_TSO_IOCB_IC;
  1843. mac_iocb_ptr->frame_len = cpu_to_le32((u32) skb->len);
  1844. mac_iocb_ptr->total_hdrs_len =
  1845. cpu_to_le16(skb_transport_offset(skb) + tcp_hdrlen(skb));
  1846. mac_iocb_ptr->net_trans_offset =
  1847. cpu_to_le16(skb_network_offset(skb) |
  1848. skb_transport_offset(skb)
  1849. << OB_MAC_TRANSPORT_HDR_SHIFT);
  1850. mac_iocb_ptr->mss = cpu_to_le16(skb_shinfo(skb)->gso_size);
  1851. mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_LSO;
  1852. if (likely(skb->protocol == htons(ETH_P_IP))) {
  1853. struct iphdr *iph = ip_hdr(skb);
  1854. iph->check = 0;
  1855. mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP4;
  1856. tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
  1857. iph->daddr, 0,
  1858. IPPROTO_TCP,
  1859. 0);
  1860. } else if (skb->protocol == htons(ETH_P_IPV6)) {
  1861. mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP6;
  1862. tcp_hdr(skb)->check =
  1863. ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
  1864. &ipv6_hdr(skb)->daddr,
  1865. 0, IPPROTO_TCP, 0);
  1866. }
  1867. return 1;
  1868. }
  1869. return 0;
  1870. }
  1871. static void ql_hw_csum_setup(struct sk_buff *skb,
  1872. struct ob_mac_tso_iocb_req *mac_iocb_ptr)
  1873. {
  1874. int len;
  1875. struct iphdr *iph = ip_hdr(skb);
  1876. __sum16 *check;
  1877. mac_iocb_ptr->opcode = OPCODE_OB_MAC_TSO_IOCB;
  1878. mac_iocb_ptr->frame_len = cpu_to_le32((u32) skb->len);
  1879. mac_iocb_ptr->net_trans_offset =
  1880. cpu_to_le16(skb_network_offset(skb) |
  1881. skb_transport_offset(skb) << OB_MAC_TRANSPORT_HDR_SHIFT);
  1882. mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP4;
  1883. len = (ntohs(iph->tot_len) - (iph->ihl << 2));
  1884. if (likely(iph->protocol == IPPROTO_TCP)) {
  1885. check = &(tcp_hdr(skb)->check);
  1886. mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_TC;
  1887. mac_iocb_ptr->total_hdrs_len =
  1888. cpu_to_le16(skb_transport_offset(skb) +
  1889. (tcp_hdr(skb)->doff << 2));
  1890. } else {
  1891. check = &(udp_hdr(skb)->check);
  1892. mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_UC;
  1893. mac_iocb_ptr->total_hdrs_len =
  1894. cpu_to_le16(skb_transport_offset(skb) +
  1895. sizeof(struct udphdr));
  1896. }
  1897. *check = ~csum_tcpudp_magic(iph->saddr,
  1898. iph->daddr, len, iph->protocol, 0);
  1899. }
  1900. static int qlge_send(struct sk_buff *skb, struct net_device *ndev)
  1901. {
  1902. struct tx_ring_desc *tx_ring_desc;
  1903. struct ob_mac_iocb_req *mac_iocb_ptr;
  1904. struct ql_adapter *qdev = netdev_priv(ndev);
  1905. int tso;
  1906. struct tx_ring *tx_ring;
  1907. u32 tx_ring_idx = (u32) skb->queue_mapping;
  1908. tx_ring = &qdev->tx_ring[tx_ring_idx];
  1909. if (skb_padto(skb, ETH_ZLEN))
  1910. return NETDEV_TX_OK;
  1911. if (unlikely(atomic_read(&tx_ring->tx_count) < 2)) {
  1912. QPRINTK(qdev, TX_QUEUED, INFO,
  1913. "%s: shutting down tx queue %d du to lack of resources.\n",
  1914. __func__, tx_ring_idx);
  1915. netif_stop_subqueue(ndev, tx_ring->wq_id);
  1916. atomic_inc(&tx_ring->queue_stopped);
  1917. return NETDEV_TX_BUSY;
  1918. }
  1919. tx_ring_desc = &tx_ring->q[tx_ring->prod_idx];
  1920. mac_iocb_ptr = tx_ring_desc->queue_entry;
  1921. memset((void *)mac_iocb_ptr, 0, sizeof(mac_iocb_ptr));
  1922. mac_iocb_ptr->opcode = OPCODE_OB_MAC_IOCB;
  1923. mac_iocb_ptr->tid = tx_ring_desc->index;
  1924. /* We use the upper 32-bits to store the tx queue for this IO.
  1925. * When we get the completion we can use it to establish the context.
  1926. */
  1927. mac_iocb_ptr->txq_idx = tx_ring_idx;
  1928. tx_ring_desc->skb = skb;
  1929. mac_iocb_ptr->frame_len = cpu_to_le16((u16) skb->len);
  1930. if (qdev->vlgrp && vlan_tx_tag_present(skb)) {
  1931. QPRINTK(qdev, TX_QUEUED, DEBUG, "Adding a vlan tag %d.\n",
  1932. vlan_tx_tag_get(skb));
  1933. mac_iocb_ptr->flags3 |= OB_MAC_IOCB_V;
  1934. mac_iocb_ptr->vlan_tci = cpu_to_le16(vlan_tx_tag_get(skb));
  1935. }
  1936. tso = ql_tso(skb, (struct ob_mac_tso_iocb_req *)mac_iocb_ptr);
  1937. if (tso < 0) {
  1938. dev_kfree_skb_any(skb);
  1939. return NETDEV_TX_OK;
  1940. } else if (unlikely(!tso) && (skb->ip_summed == CHECKSUM_PARTIAL)) {
  1941. ql_hw_csum_setup(skb,
  1942. (struct ob_mac_tso_iocb_req *)mac_iocb_ptr);
  1943. }
  1944. if (ql_map_send(qdev, mac_iocb_ptr, skb, tx_ring_desc) !=
  1945. NETDEV_TX_OK) {
  1946. QPRINTK(qdev, TX_QUEUED, ERR,
  1947. "Could not map the segments.\n");
  1948. return NETDEV_TX_BUSY;
  1949. }
  1950. QL_DUMP_OB_MAC_IOCB(mac_iocb_ptr);
  1951. tx_ring->prod_idx++;
  1952. if (tx_ring->prod_idx == tx_ring->wq_len)
  1953. tx_ring->prod_idx = 0;
  1954. wmb();
  1955. ql_write_db_reg(tx_ring->prod_idx, tx_ring->prod_idx_db_reg);
  1956. QPRINTK(qdev, TX_QUEUED, DEBUG, "tx queued, slot %d, len %d\n",
  1957. tx_ring->prod_idx, skb->len);
  1958. atomic_dec(&tx_ring->tx_count);
  1959. return NETDEV_TX_OK;
  1960. }
  1961. static void ql_free_shadow_space(struct ql_adapter *qdev)
  1962. {
  1963. if (qdev->rx_ring_shadow_reg_area) {
  1964. pci_free_consistent(qdev->pdev,
  1965. PAGE_SIZE,
  1966. qdev->rx_ring_shadow_reg_area,
  1967. qdev->rx_ring_shadow_reg_dma);
  1968. qdev->rx_ring_shadow_reg_area = NULL;
  1969. }
  1970. if (qdev->tx_ring_shadow_reg_area) {
  1971. pci_free_consistent(qdev->pdev,
  1972. PAGE_SIZE,
  1973. qdev->tx_ring_shadow_reg_area,
  1974. qdev->tx_ring_shadow_reg_dma);
  1975. qdev->tx_ring_shadow_reg_area = NULL;
  1976. }
  1977. }
  1978. static int ql_alloc_shadow_space(struct ql_adapter *qdev)
  1979. {
  1980. qdev->rx_ring_shadow_reg_area =
  1981. pci_alloc_consistent(qdev->pdev,
  1982. PAGE_SIZE, &qdev->rx_ring_shadow_reg_dma);
  1983. if (qdev->rx_ring_shadow_reg_area == NULL) {
  1984. QPRINTK(qdev, IFUP, ERR,
  1985. "Allocation of RX shadow space failed.\n");
  1986. return -ENOMEM;
  1987. }
  1988. memset(qdev->rx_ring_shadow_reg_area, 0, PAGE_SIZE);
  1989. qdev->tx_ring_shadow_reg_area =
  1990. pci_alloc_consistent(qdev->pdev, PAGE_SIZE,
  1991. &qdev->tx_ring_shadow_reg_dma);
  1992. if (qdev->tx_ring_shadow_reg_area == NULL) {
  1993. QPRINTK(qdev, IFUP, ERR,
  1994. "Allocation of TX shadow space failed.\n");
  1995. goto err_wqp_sh_area;
  1996. }
  1997. memset(qdev->tx_ring_shadow_reg_area, 0, PAGE_SIZE);
  1998. return 0;
  1999. err_wqp_sh_area:
  2000. pci_free_consistent(qdev->pdev,
  2001. PAGE_SIZE,
  2002. qdev->rx_ring_shadow_reg_area,
  2003. qdev->rx_ring_shadow_reg_dma);
  2004. return -ENOMEM;
  2005. }
  2006. static void ql_init_tx_ring(struct ql_adapter *qdev, struct tx_ring *tx_ring)
  2007. {
  2008. struct tx_ring_desc *tx_ring_desc;
  2009. int i;
  2010. struct ob_mac_iocb_req *mac_iocb_ptr;
  2011. mac_iocb_ptr = tx_ring->wq_base;
  2012. tx_ring_desc = tx_ring->q;
  2013. for (i = 0; i < tx_ring->wq_len; i++) {
  2014. tx_ring_desc->index = i;
  2015. tx_ring_desc->skb = NULL;
  2016. tx_ring_desc->queue_entry = mac_iocb_ptr;
  2017. mac_iocb_ptr++;
  2018. tx_ring_desc++;
  2019. }
  2020. atomic_set(&tx_ring->tx_count, tx_ring->wq_len);
  2021. atomic_set(&tx_ring->queue_stopped, 0);
  2022. }
  2023. static void ql_free_tx_resources(struct ql_adapter *qdev,
  2024. struct tx_ring *tx_ring)
  2025. {
  2026. if (tx_ring->wq_base) {
  2027. pci_free_consistent(qdev->pdev, tx_ring->wq_size,
  2028. tx_ring->wq_base, tx_ring->wq_base_dma);
  2029. tx_ring->wq_base = NULL;
  2030. }
  2031. kfree(tx_ring->q);
  2032. tx_ring->q = NULL;
  2033. }
  2034. static int ql_alloc_tx_resources(struct ql_adapter *qdev,
  2035. struct tx_ring *tx_ring)
  2036. {
  2037. tx_ring->wq_base =
  2038. pci_alloc_consistent(qdev->pdev, tx_ring->wq_size,
  2039. &tx_ring->wq_base_dma);
  2040. if ((tx_ring->wq_base == NULL)
  2041. || tx_ring->wq_base_dma & WQ_ADDR_ALIGN) {
  2042. QPRINTK(qdev, IFUP, ERR, "tx_ring alloc failed.\n");
  2043. return -ENOMEM;
  2044. }
  2045. tx_ring->q =
  2046. kmalloc(tx_ring->wq_len * sizeof(struct tx_ring_desc), GFP_KERNEL);
  2047. if (tx_ring->q == NULL)
  2048. goto err;
  2049. return 0;
  2050. err:
  2051. pci_free_consistent(qdev->pdev, tx_ring->wq_size,
  2052. tx_ring->wq_base, tx_ring->wq_base_dma);
  2053. return -ENOMEM;
  2054. }
  2055. static void ql_free_lbq_buffers(struct ql_adapter *qdev, struct rx_ring *rx_ring)
  2056. {
  2057. int i;
  2058. struct bq_desc *lbq_desc;
  2059. for (i = 0; i < rx_ring->lbq_len; i++) {
  2060. lbq_desc = &rx_ring->lbq[i];
  2061. if (lbq_desc->p.lbq_page) {
  2062. pci_unmap_page(qdev->pdev,
  2063. pci_unmap_addr(lbq_desc, mapaddr),
  2064. pci_unmap_len(lbq_desc, maplen),
  2065. PCI_DMA_FROMDEVICE);
  2066. put_page(lbq_desc->p.lbq_page);
  2067. lbq_desc->p.lbq_page = NULL;
  2068. }
  2069. }
  2070. }
  2071. static void ql_free_sbq_buffers(struct ql_adapter *qdev, struct rx_ring *rx_ring)
  2072. {
  2073. int i;
  2074. struct bq_desc *sbq_desc;
  2075. for (i = 0; i < rx_ring->sbq_len; i++) {
  2076. sbq_desc = &rx_ring->sbq[i];
  2077. if (sbq_desc == NULL) {
  2078. QPRINTK(qdev, IFUP, ERR, "sbq_desc %d is NULL.\n", i);
  2079. return;
  2080. }
  2081. if (sbq_desc->p.skb) {
  2082. pci_unmap_single(qdev->pdev,
  2083. pci_unmap_addr(sbq_desc, mapaddr),
  2084. pci_unmap_len(sbq_desc, maplen),
  2085. PCI_DMA_FROMDEVICE);
  2086. dev_kfree_skb(sbq_desc->p.skb);
  2087. sbq_desc->p.skb = NULL;
  2088. }
  2089. }
  2090. }
  2091. /* Free all large and small rx buffers associated
  2092. * with the completion queues for this device.
  2093. */
  2094. static void ql_free_rx_buffers(struct ql_adapter *qdev)
  2095. {
  2096. int i;
  2097. struct rx_ring *rx_ring;
  2098. for (i = 0; i < qdev->rx_ring_count; i++) {
  2099. rx_ring = &qdev->rx_ring[i];
  2100. if (rx_ring->lbq)
  2101. ql_free_lbq_buffers(qdev, rx_ring);
  2102. if (rx_ring->sbq)
  2103. ql_free_sbq_buffers(qdev, rx_ring);
  2104. }
  2105. }
  2106. static void ql_alloc_rx_buffers(struct ql_adapter *qdev)
  2107. {
  2108. struct rx_ring *rx_ring;
  2109. int i;
  2110. for (i = 0; i < qdev->rx_ring_count; i++) {
  2111. rx_ring = &qdev->rx_ring[i];
  2112. if (rx_ring->type != TX_Q)
  2113. ql_update_buffer_queues(qdev, rx_ring);
  2114. }
  2115. }
  2116. static void ql_init_lbq_ring(struct ql_adapter *qdev,
  2117. struct rx_ring *rx_ring)
  2118. {
  2119. int i;
  2120. struct bq_desc *lbq_desc;
  2121. __le64 *bq = rx_ring->lbq_base;
  2122. memset(rx_ring->lbq, 0, rx_ring->lbq_len * sizeof(struct bq_desc));
  2123. for (i = 0; i < rx_ring->lbq_len; i++) {
  2124. lbq_desc = &rx_ring->lbq[i];
  2125. memset(lbq_desc, 0, sizeof(*lbq_desc));
  2126. lbq_desc->index = i;
  2127. lbq_desc->addr = bq;
  2128. bq++;
  2129. }
  2130. }
  2131. static void ql_init_sbq_ring(struct ql_adapter *qdev,
  2132. struct rx_ring *rx_ring)
  2133. {
  2134. int i;
  2135. struct bq_desc *sbq_desc;
  2136. __le64 *bq = rx_ring->sbq_base;
  2137. memset(rx_ring->sbq, 0, rx_ring->sbq_len * sizeof(struct bq_desc));
  2138. for (i = 0; i < rx_ring->sbq_len; i++) {
  2139. sbq_desc = &rx_ring->sbq[i];
  2140. memset(sbq_desc, 0, sizeof(*sbq_desc));
  2141. sbq_desc->index = i;
  2142. sbq_desc->addr = bq;
  2143. bq++;
  2144. }
  2145. }
  2146. static void ql_free_rx_resources(struct ql_adapter *qdev,
  2147. struct rx_ring *rx_ring)
  2148. {
  2149. /* Free the small buffer queue. */
  2150. if (rx_ring->sbq_base) {
  2151. pci_free_consistent(qdev->pdev,
  2152. rx_ring->sbq_size,
  2153. rx_ring->sbq_base, rx_ring->sbq_base_dma);
  2154. rx_ring->sbq_base = NULL;
  2155. }
  2156. /* Free the small buffer queue control blocks. */
  2157. kfree(rx_ring->sbq);
  2158. rx_ring->sbq = NULL;
  2159. /* Free the large buffer queue. */
  2160. if (rx_ring->lbq_base) {
  2161. pci_free_consistent(qdev->pdev,
  2162. rx_ring->lbq_size,
  2163. rx_ring->lbq_base, rx_ring->lbq_base_dma);
  2164. rx_ring->lbq_base = NULL;
  2165. }
  2166. /* Free the large buffer queue control blocks. */
  2167. kfree(rx_ring->lbq);
  2168. rx_ring->lbq = NULL;
  2169. /* Free the rx queue. */
  2170. if (rx_ring->cq_base) {
  2171. pci_free_consistent(qdev->pdev,
  2172. rx_ring->cq_size,
  2173. rx_ring->cq_base, rx_ring->cq_base_dma);
  2174. rx_ring->cq_base = NULL;
  2175. }
  2176. }
  2177. /* Allocate queues and buffers for this completions queue based
  2178. * on the values in the parameter structure. */
  2179. static int ql_alloc_rx_resources(struct ql_adapter *qdev,
  2180. struct rx_ring *rx_ring)
  2181. {
  2182. /*
  2183. * Allocate the completion queue for this rx_ring.
  2184. */
  2185. rx_ring->cq_base =
  2186. pci_alloc_consistent(qdev->pdev, rx_ring->cq_size,
  2187. &rx_ring->cq_base_dma);
  2188. if (rx_ring->cq_base == NULL) {
  2189. QPRINTK(qdev, IFUP, ERR, "rx_ring alloc failed.\n");
  2190. return -ENOMEM;
  2191. }
  2192. if (rx_ring->sbq_len) {
  2193. /*
  2194. * Allocate small buffer queue.
  2195. */
  2196. rx_ring->sbq_base =
  2197. pci_alloc_consistent(qdev->pdev, rx_ring->sbq_size,
  2198. &rx_ring->sbq_base_dma);
  2199. if (rx_ring->sbq_base == NULL) {
  2200. QPRINTK(qdev, IFUP, ERR,
  2201. "Small buffer queue allocation failed.\n");
  2202. goto err_mem;
  2203. }
  2204. /*
  2205. * Allocate small buffer queue control blocks.
  2206. */
  2207. rx_ring->sbq =
  2208. kmalloc(rx_ring->sbq_len * sizeof(struct bq_desc),
  2209. GFP_KERNEL);
  2210. if (rx_ring->sbq == NULL) {
  2211. QPRINTK(qdev, IFUP, ERR,
  2212. "Small buffer queue control block allocation failed.\n");
  2213. goto err_mem;
  2214. }
  2215. ql_init_sbq_ring(qdev, rx_ring);
  2216. }
  2217. if (rx_ring->lbq_len) {
  2218. /*
  2219. * Allocate large buffer queue.
  2220. */
  2221. rx_ring->lbq_base =
  2222. pci_alloc_consistent(qdev->pdev, rx_ring->lbq_size,
  2223. &rx_ring->lbq_base_dma);
  2224. if (rx_ring->lbq_base == NULL) {
  2225. QPRINTK(qdev, IFUP, ERR,
  2226. "Large buffer queue allocation failed.\n");
  2227. goto err_mem;
  2228. }
  2229. /*
  2230. * Allocate large buffer queue control blocks.
  2231. */
  2232. rx_ring->lbq =
  2233. kmalloc(rx_ring->lbq_len * sizeof(struct bq_desc),
  2234. GFP_KERNEL);
  2235. if (rx_ring->lbq == NULL) {
  2236. QPRINTK(qdev, IFUP, ERR,
  2237. "Large buffer queue control block allocation failed.\n");
  2238. goto err_mem;
  2239. }
  2240. ql_init_lbq_ring(qdev, rx_ring);
  2241. }
  2242. return 0;
  2243. err_mem:
  2244. ql_free_rx_resources(qdev, rx_ring);
  2245. return -ENOMEM;
  2246. }
  2247. static void ql_tx_ring_clean(struct ql_adapter *qdev)
  2248. {
  2249. struct tx_ring *tx_ring;
  2250. struct tx_ring_desc *tx_ring_desc;
  2251. int i, j;
  2252. /*
  2253. * Loop through all queues and free
  2254. * any resources.
  2255. */
  2256. for (j = 0; j < qdev->tx_ring_count; j++) {
  2257. tx_ring = &qdev->tx_ring[j];
  2258. for (i = 0; i < tx_ring->wq_len; i++) {
  2259. tx_ring_desc = &tx_ring->q[i];
  2260. if (tx_ring_desc && tx_ring_desc->skb) {
  2261. QPRINTK(qdev, IFDOWN, ERR,
  2262. "Freeing lost SKB %p, from queue %d, index %d.\n",
  2263. tx_ring_desc->skb, j,
  2264. tx_ring_desc->index);
  2265. ql_unmap_send(qdev, tx_ring_desc,
  2266. tx_ring_desc->map_cnt);
  2267. dev_kfree_skb(tx_ring_desc->skb);
  2268. tx_ring_desc->skb = NULL;
  2269. }
  2270. }
  2271. }
  2272. }
  2273. static void ql_free_mem_resources(struct ql_adapter *qdev)
  2274. {
  2275. int i;
  2276. for (i = 0; i < qdev->tx_ring_count; i++)
  2277. ql_free_tx_resources(qdev, &qdev->tx_ring[i]);
  2278. for (i = 0; i < qdev->rx_ring_count; i++)
  2279. ql_free_rx_resources(qdev, &qdev->rx_ring[i]);
  2280. ql_free_shadow_space(qdev);
  2281. }
  2282. static int ql_alloc_mem_resources(struct ql_adapter *qdev)
  2283. {
  2284. int i;
  2285. /* Allocate space for our shadow registers and such. */
  2286. if (ql_alloc_shadow_space(qdev))
  2287. return -ENOMEM;
  2288. for (i = 0; i < qdev->rx_ring_count; i++) {
  2289. if (ql_alloc_rx_resources(qdev, &qdev->rx_ring[i]) != 0) {
  2290. QPRINTK(qdev, IFUP, ERR,
  2291. "RX resource allocation failed.\n");
  2292. goto err_mem;
  2293. }
  2294. }
  2295. /* Allocate tx queue resources */
  2296. for (i = 0; i < qdev->tx_ring_count; i++) {
  2297. if (ql_alloc_tx_resources(qdev, &qdev->tx_ring[i]) != 0) {
  2298. QPRINTK(qdev, IFUP, ERR,
  2299. "TX resource allocation failed.\n");
  2300. goto err_mem;
  2301. }
  2302. }
  2303. return 0;
  2304. err_mem:
  2305. ql_free_mem_resources(qdev);
  2306. return -ENOMEM;
  2307. }
  2308. /* Set up the rx ring control block and pass it to the chip.
  2309. * The control block is defined as
  2310. * "Completion Queue Initialization Control Block", or cqicb.
  2311. */
  2312. static int ql_start_rx_ring(struct ql_adapter *qdev, struct rx_ring *rx_ring)
  2313. {
  2314. struct cqicb *cqicb = &rx_ring->cqicb;
  2315. void *shadow_reg = qdev->rx_ring_shadow_reg_area +
  2316. (rx_ring->cq_id * RX_RING_SHADOW_SPACE);
  2317. u64 shadow_reg_dma = qdev->rx_ring_shadow_reg_dma +
  2318. (rx_ring->cq_id * RX_RING_SHADOW_SPACE);
  2319. void __iomem *doorbell_area =
  2320. qdev->doorbell_area + (DB_PAGE_SIZE * (128 + rx_ring->cq_id));
  2321. int err = 0;
  2322. u16 bq_len;
  2323. u64 tmp;
  2324. __le64 *base_indirect_ptr;
  2325. int page_entries;
  2326. /* Set up the shadow registers for this ring. */
  2327. rx_ring->prod_idx_sh_reg = shadow_reg;
  2328. rx_ring->prod_idx_sh_reg_dma = shadow_reg_dma;
  2329. shadow_reg += sizeof(u64);
  2330. shadow_reg_dma += sizeof(u64);
  2331. rx_ring->lbq_base_indirect = shadow_reg;
  2332. rx_ring->lbq_base_indirect_dma = shadow_reg_dma;
  2333. shadow_reg += (sizeof(u64) * MAX_DB_PAGES_PER_BQ(rx_ring->lbq_len));
  2334. shadow_reg_dma += (sizeof(u64) * MAX_DB_PAGES_PER_BQ(rx_ring->lbq_len));
  2335. rx_ring->sbq_base_indirect = shadow_reg;
  2336. rx_ring->sbq_base_indirect_dma = shadow_reg_dma;
  2337. /* PCI doorbell mem area + 0x00 for consumer index register */
  2338. rx_ring->cnsmr_idx_db_reg = (u32 __iomem *) doorbell_area;
  2339. rx_ring->cnsmr_idx = 0;
  2340. rx_ring->curr_entry = rx_ring->cq_base;
  2341. /* PCI doorbell mem area + 0x04 for valid register */
  2342. rx_ring->valid_db_reg = doorbell_area + 0x04;
  2343. /* PCI doorbell mem area + 0x18 for large buffer consumer */
  2344. rx_ring->lbq_prod_idx_db_reg = (u32 __iomem *) (doorbell_area + 0x18);
  2345. /* PCI doorbell mem area + 0x1c */
  2346. rx_ring->sbq_prod_idx_db_reg = (u32 __iomem *) (doorbell_area + 0x1c);
  2347. memset((void *)cqicb, 0, sizeof(struct cqicb));
  2348. cqicb->msix_vect = rx_ring->irq;
  2349. bq_len = (rx_ring->cq_len == 65536) ? 0 : (u16) rx_ring->cq_len;
  2350. cqicb->len = cpu_to_le16(bq_len | LEN_V | LEN_CPP_CONT);
  2351. cqicb->addr = cpu_to_le64(rx_ring->cq_base_dma);
  2352. cqicb->prod_idx_addr = cpu_to_le64(rx_ring->prod_idx_sh_reg_dma);
  2353. /*
  2354. * Set up the control block load flags.
  2355. */
  2356. cqicb->flags = FLAGS_LC | /* Load queue base address */
  2357. FLAGS_LV | /* Load MSI-X vector */
  2358. FLAGS_LI; /* Load irq delay values */
  2359. if (rx_ring->lbq_len) {
  2360. cqicb->flags |= FLAGS_LL; /* Load lbq values */
  2361. tmp = (u64)rx_ring->lbq_base_dma;;
  2362. base_indirect_ptr = (__le64 *) rx_ring->lbq_base_indirect;
  2363. page_entries = 0;
  2364. do {
  2365. *base_indirect_ptr = cpu_to_le64(tmp);
  2366. tmp += DB_PAGE_SIZE;
  2367. base_indirect_ptr++;
  2368. page_entries++;
  2369. } while (page_entries < MAX_DB_PAGES_PER_BQ(rx_ring->lbq_len));
  2370. cqicb->lbq_addr =
  2371. cpu_to_le64(rx_ring->lbq_base_indirect_dma);
  2372. bq_len = (rx_ring->lbq_buf_size == 65536) ? 0 :
  2373. (u16) rx_ring->lbq_buf_size;
  2374. cqicb->lbq_buf_size = cpu_to_le16(bq_len);
  2375. bq_len = (rx_ring->lbq_len == 65536) ? 0 :
  2376. (u16) rx_ring->lbq_len;
  2377. cqicb->lbq_len = cpu_to_le16(bq_len);
  2378. rx_ring->lbq_prod_idx = 0;
  2379. rx_ring->lbq_curr_idx = 0;
  2380. rx_ring->lbq_clean_idx = 0;
  2381. rx_ring->lbq_free_cnt = rx_ring->lbq_len;
  2382. }
  2383. if (rx_ring->sbq_len) {
  2384. cqicb->flags |= FLAGS_LS; /* Load sbq values */
  2385. tmp = (u64)rx_ring->sbq_base_dma;;
  2386. base_indirect_ptr = (__le64 *) rx_ring->sbq_base_indirect;
  2387. page_entries = 0;
  2388. do {
  2389. *base_indirect_ptr = cpu_to_le64(tmp);
  2390. tmp += DB_PAGE_SIZE;
  2391. base_indirect_ptr++;
  2392. page_entries++;
  2393. } while (page_entries < MAX_DB_PAGES_PER_BQ(rx_ring->sbq_len));
  2394. cqicb->sbq_addr =
  2395. cpu_to_le64(rx_ring->sbq_base_indirect_dma);
  2396. cqicb->sbq_buf_size =
  2397. cpu_to_le16((u16)(rx_ring->sbq_buf_size/2));
  2398. bq_len = (rx_ring->sbq_len == 65536) ? 0 :
  2399. (u16) rx_ring->sbq_len;
  2400. cqicb->sbq_len = cpu_to_le16(bq_len);
  2401. rx_ring->sbq_prod_idx = 0;
  2402. rx_ring->sbq_curr_idx = 0;
  2403. rx_ring->sbq_clean_idx = 0;
  2404. rx_ring->sbq_free_cnt = rx_ring->sbq_len;
  2405. }
  2406. switch (rx_ring->type) {
  2407. case TX_Q:
  2408. /* If there's only one interrupt, then we use
  2409. * worker threads to process the outbound
  2410. * completion handling rx_rings. We do this so
  2411. * they can be run on multiple CPUs. There is
  2412. * room to play with this more where we would only
  2413. * run in a worker if there are more than x number
  2414. * of outbound completions on the queue and more
  2415. * than one queue active. Some threshold that
  2416. * would indicate a benefit in spite of the cost
  2417. * of a context switch.
  2418. * If there's more than one interrupt, then the
  2419. * outbound completions are processed in the ISR.
  2420. */
  2421. if (!test_bit(QL_MSIX_ENABLED, &qdev->flags))
  2422. INIT_DELAYED_WORK(&rx_ring->rx_work, ql_tx_clean);
  2423. else {
  2424. /* With all debug warnings on we see a WARN_ON message
  2425. * when we free the skb in the interrupt context.
  2426. */
  2427. INIT_DELAYED_WORK(&rx_ring->rx_work, ql_tx_clean);
  2428. }
  2429. cqicb->irq_delay = cpu_to_le16(qdev->tx_coalesce_usecs);
  2430. cqicb->pkt_delay = cpu_to_le16(qdev->tx_max_coalesced_frames);
  2431. break;
  2432. case DEFAULT_Q:
  2433. INIT_DELAYED_WORK(&rx_ring->rx_work, ql_rx_clean);
  2434. cqicb->irq_delay = 0;
  2435. cqicb->pkt_delay = 0;
  2436. break;
  2437. case RX_Q:
  2438. /* Inbound completion handling rx_rings run in
  2439. * separate NAPI contexts.
  2440. */
  2441. netif_napi_add(qdev->ndev, &rx_ring->napi, ql_napi_poll_msix,
  2442. 64);
  2443. cqicb->irq_delay = cpu_to_le16(qdev->rx_coalesce_usecs);
  2444. cqicb->pkt_delay = cpu_to_le16(qdev->rx_max_coalesced_frames);
  2445. break;
  2446. default:
  2447. QPRINTK(qdev, IFUP, DEBUG, "Invalid rx_ring->type = %d.\n",
  2448. rx_ring->type);
  2449. }
  2450. QPRINTK(qdev, IFUP, DEBUG, "Initializing rx work queue.\n");
  2451. err = ql_write_cfg(qdev, cqicb, sizeof(struct cqicb),
  2452. CFG_LCQ, rx_ring->cq_id);
  2453. if (err) {
  2454. QPRINTK(qdev, IFUP, ERR, "Failed to load CQICB.\n");
  2455. return err;
  2456. }
  2457. return err;
  2458. }
  2459. static int ql_start_tx_ring(struct ql_adapter *qdev, struct tx_ring *tx_ring)
  2460. {
  2461. struct wqicb *wqicb = (struct wqicb *)tx_ring;
  2462. void __iomem *doorbell_area =
  2463. qdev->doorbell_area + (DB_PAGE_SIZE * tx_ring->wq_id);
  2464. void *shadow_reg = qdev->tx_ring_shadow_reg_area +
  2465. (tx_ring->wq_id * sizeof(u64));
  2466. u64 shadow_reg_dma = qdev->tx_ring_shadow_reg_dma +
  2467. (tx_ring->wq_id * sizeof(u64));
  2468. int err = 0;
  2469. /*
  2470. * Assign doorbell registers for this tx_ring.
  2471. */
  2472. /* TX PCI doorbell mem area for tx producer index */
  2473. tx_ring->prod_idx_db_reg = (u32 __iomem *) doorbell_area;
  2474. tx_ring->prod_idx = 0;
  2475. /* TX PCI doorbell mem area + 0x04 */
  2476. tx_ring->valid_db_reg = doorbell_area + 0x04;
  2477. /*
  2478. * Assign shadow registers for this tx_ring.
  2479. */
  2480. tx_ring->cnsmr_idx_sh_reg = shadow_reg;
  2481. tx_ring->cnsmr_idx_sh_reg_dma = shadow_reg_dma;
  2482. wqicb->len = cpu_to_le16(tx_ring->wq_len | Q_LEN_V | Q_LEN_CPP_CONT);
  2483. wqicb->flags = cpu_to_le16(Q_FLAGS_LC |
  2484. Q_FLAGS_LB | Q_FLAGS_LI | Q_FLAGS_LO);
  2485. wqicb->cq_id_rss = cpu_to_le16(tx_ring->cq_id);
  2486. wqicb->rid = 0;
  2487. wqicb->addr = cpu_to_le64(tx_ring->wq_base_dma);
  2488. wqicb->cnsmr_idx_addr = cpu_to_le64(tx_ring->cnsmr_idx_sh_reg_dma);
  2489. ql_init_tx_ring(qdev, tx_ring);
  2490. err = ql_write_cfg(qdev, wqicb, sizeof(wqicb), CFG_LRQ,
  2491. (u16) tx_ring->wq_id);
  2492. if (err) {
  2493. QPRINTK(qdev, IFUP, ERR, "Failed to load tx_ring.\n");
  2494. return err;
  2495. }
  2496. QPRINTK(qdev, IFUP, DEBUG, "Successfully loaded WQICB.\n");
  2497. return err;
  2498. }
  2499. static void ql_disable_msix(struct ql_adapter *qdev)
  2500. {
  2501. if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
  2502. pci_disable_msix(qdev->pdev);
  2503. clear_bit(QL_MSIX_ENABLED, &qdev->flags);
  2504. kfree(qdev->msi_x_entry);
  2505. qdev->msi_x_entry = NULL;
  2506. } else if (test_bit(QL_MSI_ENABLED, &qdev->flags)) {
  2507. pci_disable_msi(qdev->pdev);
  2508. clear_bit(QL_MSI_ENABLED, &qdev->flags);
  2509. }
  2510. }
  2511. static void ql_enable_msix(struct ql_adapter *qdev)
  2512. {
  2513. int i;
  2514. qdev->intr_count = 1;
  2515. /* Get the MSIX vectors. */
  2516. if (irq_type == MSIX_IRQ) {
  2517. /* Try to alloc space for the msix struct,
  2518. * if it fails then go to MSI/legacy.
  2519. */
  2520. qdev->msi_x_entry = kcalloc(qdev->rx_ring_count,
  2521. sizeof(struct msix_entry),
  2522. GFP_KERNEL);
  2523. if (!qdev->msi_x_entry) {
  2524. irq_type = MSI_IRQ;
  2525. goto msi;
  2526. }
  2527. for (i = 0; i < qdev->rx_ring_count; i++)
  2528. qdev->msi_x_entry[i].entry = i;
  2529. if (!pci_enable_msix
  2530. (qdev->pdev, qdev->msi_x_entry, qdev->rx_ring_count)) {
  2531. set_bit(QL_MSIX_ENABLED, &qdev->flags);
  2532. qdev->intr_count = qdev->rx_ring_count;
  2533. QPRINTK(qdev, IFUP, DEBUG,
  2534. "MSI-X Enabled, got %d vectors.\n",
  2535. qdev->intr_count);
  2536. return;
  2537. } else {
  2538. kfree(qdev->msi_x_entry);
  2539. qdev->msi_x_entry = NULL;
  2540. QPRINTK(qdev, IFUP, WARNING,
  2541. "MSI-X Enable failed, trying MSI.\n");
  2542. irq_type = MSI_IRQ;
  2543. }
  2544. }
  2545. msi:
  2546. if (irq_type == MSI_IRQ) {
  2547. if (!pci_enable_msi(qdev->pdev)) {
  2548. set_bit(QL_MSI_ENABLED, &qdev->flags);
  2549. QPRINTK(qdev, IFUP, INFO,
  2550. "Running with MSI interrupts.\n");
  2551. return;
  2552. }
  2553. }
  2554. irq_type = LEG_IRQ;
  2555. QPRINTK(qdev, IFUP, DEBUG, "Running with legacy interrupts.\n");
  2556. }
  2557. /*
  2558. * Here we build the intr_context structures based on
  2559. * our rx_ring count and intr vector count.
  2560. * The intr_context structure is used to hook each vector
  2561. * to possibly different handlers.
  2562. */
  2563. static void ql_resolve_queues_to_irqs(struct ql_adapter *qdev)
  2564. {
  2565. int i = 0;
  2566. struct intr_context *intr_context = &qdev->intr_context[0];
  2567. ql_enable_msix(qdev);
  2568. if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags))) {
  2569. /* Each rx_ring has it's
  2570. * own intr_context since we have separate
  2571. * vectors for each queue.
  2572. * This only true when MSI-X is enabled.
  2573. */
  2574. for (i = 0; i < qdev->intr_count; i++, intr_context++) {
  2575. qdev->rx_ring[i].irq = i;
  2576. intr_context->intr = i;
  2577. intr_context->qdev = qdev;
  2578. /*
  2579. * We set up each vectors enable/disable/read bits so
  2580. * there's no bit/mask calculations in the critical path.
  2581. */
  2582. intr_context->intr_en_mask =
  2583. INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
  2584. INTR_EN_TYPE_ENABLE | INTR_EN_IHD_MASK | INTR_EN_IHD
  2585. | i;
  2586. intr_context->intr_dis_mask =
  2587. INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
  2588. INTR_EN_TYPE_DISABLE | INTR_EN_IHD_MASK |
  2589. INTR_EN_IHD | i;
  2590. intr_context->intr_read_mask =
  2591. INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
  2592. INTR_EN_TYPE_READ | INTR_EN_IHD_MASK | INTR_EN_IHD |
  2593. i;
  2594. if (i == 0) {
  2595. /*
  2596. * Default queue handles bcast/mcast plus
  2597. * async events. Needs buffers.
  2598. */
  2599. intr_context->handler = qlge_isr;
  2600. sprintf(intr_context->name, "%s-default-queue",
  2601. qdev->ndev->name);
  2602. } else if (i < qdev->rss_ring_first_cq_id) {
  2603. /*
  2604. * Outbound queue is for outbound completions only.
  2605. */
  2606. intr_context->handler = qlge_msix_tx_isr;
  2607. sprintf(intr_context->name, "%s-tx-%d",
  2608. qdev->ndev->name, i);
  2609. } else {
  2610. /*
  2611. * Inbound queues handle unicast frames only.
  2612. */
  2613. intr_context->handler = qlge_msix_rx_isr;
  2614. sprintf(intr_context->name, "%s-rx-%d",
  2615. qdev->ndev->name, i);
  2616. }
  2617. }
  2618. } else {
  2619. /*
  2620. * All rx_rings use the same intr_context since
  2621. * there is only one vector.
  2622. */
  2623. intr_context->intr = 0;
  2624. intr_context->qdev = qdev;
  2625. /*
  2626. * We set up each vectors enable/disable/read bits so
  2627. * there's no bit/mask calculations in the critical path.
  2628. */
  2629. intr_context->intr_en_mask =
  2630. INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK | INTR_EN_TYPE_ENABLE;
  2631. intr_context->intr_dis_mask =
  2632. INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
  2633. INTR_EN_TYPE_DISABLE;
  2634. intr_context->intr_read_mask =
  2635. INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK | INTR_EN_TYPE_READ;
  2636. /*
  2637. * Single interrupt means one handler for all rings.
  2638. */
  2639. intr_context->handler = qlge_isr;
  2640. sprintf(intr_context->name, "%s-single_irq", qdev->ndev->name);
  2641. for (i = 0; i < qdev->rx_ring_count; i++)
  2642. qdev->rx_ring[i].irq = 0;
  2643. }
  2644. }
  2645. static void ql_free_irq(struct ql_adapter *qdev)
  2646. {
  2647. int i;
  2648. struct intr_context *intr_context = &qdev->intr_context[0];
  2649. for (i = 0; i < qdev->intr_count; i++, intr_context++) {
  2650. if (intr_context->hooked) {
  2651. if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
  2652. free_irq(qdev->msi_x_entry[i].vector,
  2653. &qdev->rx_ring[i]);
  2654. QPRINTK(qdev, IFDOWN, DEBUG,
  2655. "freeing msix interrupt %d.\n", i);
  2656. } else {
  2657. free_irq(qdev->pdev->irq, &qdev->rx_ring[0]);
  2658. QPRINTK(qdev, IFDOWN, DEBUG,
  2659. "freeing msi interrupt %d.\n", i);
  2660. }
  2661. }
  2662. }
  2663. ql_disable_msix(qdev);
  2664. }
  2665. static int ql_request_irq(struct ql_adapter *qdev)
  2666. {
  2667. int i;
  2668. int status = 0;
  2669. struct pci_dev *pdev = qdev->pdev;
  2670. struct intr_context *intr_context = &qdev->intr_context[0];
  2671. ql_resolve_queues_to_irqs(qdev);
  2672. for (i = 0; i < qdev->intr_count; i++, intr_context++) {
  2673. atomic_set(&intr_context->irq_cnt, 0);
  2674. if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
  2675. status = request_irq(qdev->msi_x_entry[i].vector,
  2676. intr_context->handler,
  2677. 0,
  2678. intr_context->name,
  2679. &qdev->rx_ring[i]);
  2680. if (status) {
  2681. QPRINTK(qdev, IFUP, ERR,
  2682. "Failed request for MSIX interrupt %d.\n",
  2683. i);
  2684. goto err_irq;
  2685. } else {
  2686. QPRINTK(qdev, IFUP, DEBUG,
  2687. "Hooked intr %d, queue type %s%s%s, with name %s.\n",
  2688. i,
  2689. qdev->rx_ring[i].type ==
  2690. DEFAULT_Q ? "DEFAULT_Q" : "",
  2691. qdev->rx_ring[i].type ==
  2692. TX_Q ? "TX_Q" : "",
  2693. qdev->rx_ring[i].type ==
  2694. RX_Q ? "RX_Q" : "", intr_context->name);
  2695. }
  2696. } else {
  2697. QPRINTK(qdev, IFUP, DEBUG,
  2698. "trying msi or legacy interrupts.\n");
  2699. QPRINTK(qdev, IFUP, DEBUG,
  2700. "%s: irq = %d.\n", __func__, pdev->irq);
  2701. QPRINTK(qdev, IFUP, DEBUG,
  2702. "%s: context->name = %s.\n", __func__,
  2703. intr_context->name);
  2704. QPRINTK(qdev, IFUP, DEBUG,
  2705. "%s: dev_id = 0x%p.\n", __func__,
  2706. &qdev->rx_ring[0]);
  2707. status =
  2708. request_irq(pdev->irq, qlge_isr,
  2709. test_bit(QL_MSI_ENABLED,
  2710. &qdev->
  2711. flags) ? 0 : IRQF_SHARED,
  2712. intr_context->name, &qdev->rx_ring[0]);
  2713. if (status)
  2714. goto err_irq;
  2715. QPRINTK(qdev, IFUP, ERR,
  2716. "Hooked intr %d, queue type %s%s%s, with name %s.\n",
  2717. i,
  2718. qdev->rx_ring[0].type ==
  2719. DEFAULT_Q ? "DEFAULT_Q" : "",
  2720. qdev->rx_ring[0].type == TX_Q ? "TX_Q" : "",
  2721. qdev->rx_ring[0].type == RX_Q ? "RX_Q" : "",
  2722. intr_context->name);
  2723. }
  2724. intr_context->hooked = 1;
  2725. }
  2726. return status;
  2727. err_irq:
  2728. QPRINTK(qdev, IFUP, ERR, "Failed to get the interrupts!!!/n");
  2729. ql_free_irq(qdev);
  2730. return status;
  2731. }
  2732. static int ql_start_rss(struct ql_adapter *qdev)
  2733. {
  2734. struct ricb *ricb = &qdev->ricb;
  2735. int status = 0;
  2736. int i;
  2737. u8 *hash_id = (u8 *) ricb->hash_cq_id;
  2738. memset((void *)ricb, 0, sizeof(ricb));
  2739. ricb->base_cq = qdev->rss_ring_first_cq_id | RSS_L4K;
  2740. ricb->flags =
  2741. (RSS_L6K | RSS_LI | RSS_LB | RSS_LM | RSS_RI4 | RSS_RI6 | RSS_RT4 |
  2742. RSS_RT6);
  2743. ricb->mask = cpu_to_le16(qdev->rss_ring_count - 1);
  2744. /*
  2745. * Fill out the Indirection Table.
  2746. */
  2747. for (i = 0; i < 256; i++)
  2748. hash_id[i] = i & (qdev->rss_ring_count - 1);
  2749. /*
  2750. * Random values for the IPv6 and IPv4 Hash Keys.
  2751. */
  2752. get_random_bytes((void *)&ricb->ipv6_hash_key[0], 40);
  2753. get_random_bytes((void *)&ricb->ipv4_hash_key[0], 16);
  2754. QPRINTK(qdev, IFUP, DEBUG, "Initializing RSS.\n");
  2755. status = ql_write_cfg(qdev, ricb, sizeof(ricb), CFG_LR, 0);
  2756. if (status) {
  2757. QPRINTK(qdev, IFUP, ERR, "Failed to load RICB.\n");
  2758. return status;
  2759. }
  2760. QPRINTK(qdev, IFUP, DEBUG, "Successfully loaded RICB.\n");
  2761. return status;
  2762. }
  2763. static int ql_clear_routing_entries(struct ql_adapter *qdev)
  2764. {
  2765. int i, status = 0;
  2766. status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK);
  2767. if (status)
  2768. return status;
  2769. /* Clear all the entries in the routing table. */
  2770. for (i = 0; i < 16; i++) {
  2771. status = ql_set_routing_reg(qdev, i, 0, 0);
  2772. if (status) {
  2773. QPRINTK(qdev, IFUP, ERR,
  2774. "Failed to init routing register for CAM "
  2775. "packets.\n");
  2776. break;
  2777. }
  2778. }
  2779. ql_sem_unlock(qdev, SEM_RT_IDX_MASK);
  2780. return status;
  2781. }
  2782. /* Initialize the frame-to-queue routing. */
  2783. static int ql_route_initialize(struct ql_adapter *qdev)
  2784. {
  2785. int status = 0;
  2786. status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK);
  2787. if (status)
  2788. return status;
  2789. /* Clear all the entries in the routing table. */
  2790. status = ql_clear_routing_entries(qdev);
  2791. if (status)
  2792. goto exit;
  2793. status = ql_set_routing_reg(qdev, RT_IDX_ALL_ERR_SLOT, RT_IDX_ERR, 1);
  2794. if (status) {
  2795. QPRINTK(qdev, IFUP, ERR,
  2796. "Failed to init routing register for error packets.\n");
  2797. goto exit;
  2798. }
  2799. status = ql_set_routing_reg(qdev, RT_IDX_BCAST_SLOT, RT_IDX_BCAST, 1);
  2800. if (status) {
  2801. QPRINTK(qdev, IFUP, ERR,
  2802. "Failed to init routing register for broadcast packets.\n");
  2803. goto exit;
  2804. }
  2805. /* If we have more than one inbound queue, then turn on RSS in the
  2806. * routing block.
  2807. */
  2808. if (qdev->rss_ring_count > 1) {
  2809. status = ql_set_routing_reg(qdev, RT_IDX_RSS_MATCH_SLOT,
  2810. RT_IDX_RSS_MATCH, 1);
  2811. if (status) {
  2812. QPRINTK(qdev, IFUP, ERR,
  2813. "Failed to init routing register for MATCH RSS packets.\n");
  2814. goto exit;
  2815. }
  2816. }
  2817. status = ql_set_routing_reg(qdev, RT_IDX_CAM_HIT_SLOT,
  2818. RT_IDX_CAM_HIT, 1);
  2819. if (status)
  2820. QPRINTK(qdev, IFUP, ERR,
  2821. "Failed to init routing register for CAM packets.\n");
  2822. exit:
  2823. ql_sem_unlock(qdev, SEM_RT_IDX_MASK);
  2824. return status;
  2825. }
  2826. int ql_cam_route_initialize(struct ql_adapter *qdev)
  2827. {
  2828. int status;
  2829. status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
  2830. if (status)
  2831. return status;
  2832. status = ql_set_mac_addr_reg(qdev, (u8 *) qdev->ndev->perm_addr,
  2833. MAC_ADDR_TYPE_CAM_MAC, qdev->func * MAX_CQ);
  2834. ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
  2835. if (status) {
  2836. QPRINTK(qdev, IFUP, ERR, "Failed to init mac address.\n");
  2837. return status;
  2838. }
  2839. status = ql_route_initialize(qdev);
  2840. if (status)
  2841. QPRINTK(qdev, IFUP, ERR, "Failed to init routing table.\n");
  2842. return status;
  2843. }
  2844. static int ql_adapter_initialize(struct ql_adapter *qdev)
  2845. {
  2846. u32 value, mask;
  2847. int i;
  2848. int status = 0;
  2849. /*
  2850. * Set up the System register to halt on errors.
  2851. */
  2852. value = SYS_EFE | SYS_FAE;
  2853. mask = value << 16;
  2854. ql_write32(qdev, SYS, mask | value);
  2855. /* Set the default queue, and VLAN behavior. */
  2856. value = NIC_RCV_CFG_DFQ | NIC_RCV_CFG_RV;
  2857. mask = NIC_RCV_CFG_DFQ_MASK | (NIC_RCV_CFG_RV << 16);
  2858. ql_write32(qdev, NIC_RCV_CFG, (mask | value));
  2859. /* Set the MPI interrupt to enabled. */
  2860. ql_write32(qdev, INTR_MASK, (INTR_MASK_PI << 16) | INTR_MASK_PI);
  2861. /* Enable the function, set pagesize, enable error checking. */
  2862. value = FSC_FE | FSC_EPC_INBOUND | FSC_EPC_OUTBOUND |
  2863. FSC_EC | FSC_VM_PAGE_4K | FSC_SH;
  2864. /* Set/clear header splitting. */
  2865. mask = FSC_VM_PAGESIZE_MASK |
  2866. FSC_DBL_MASK | FSC_DBRST_MASK | (value << 16);
  2867. ql_write32(qdev, FSC, mask | value);
  2868. ql_write32(qdev, SPLT_HDR, SPLT_HDR_EP |
  2869. min(SMALL_BUFFER_SIZE, MAX_SPLIT_SIZE));
  2870. /* Start up the rx queues. */
  2871. for (i = 0; i < qdev->rx_ring_count; i++) {
  2872. status = ql_start_rx_ring(qdev, &qdev->rx_ring[i]);
  2873. if (status) {
  2874. QPRINTK(qdev, IFUP, ERR,
  2875. "Failed to start rx ring[%d].\n", i);
  2876. return status;
  2877. }
  2878. }
  2879. /* If there is more than one inbound completion queue
  2880. * then download a RICB to configure RSS.
  2881. */
  2882. if (qdev->rss_ring_count > 1) {
  2883. status = ql_start_rss(qdev);
  2884. if (status) {
  2885. QPRINTK(qdev, IFUP, ERR, "Failed to start RSS.\n");
  2886. return status;
  2887. }
  2888. }
  2889. /* Start up the tx queues. */
  2890. for (i = 0; i < qdev->tx_ring_count; i++) {
  2891. status = ql_start_tx_ring(qdev, &qdev->tx_ring[i]);
  2892. if (status) {
  2893. QPRINTK(qdev, IFUP, ERR,
  2894. "Failed to start tx ring[%d].\n", i);
  2895. return status;
  2896. }
  2897. }
  2898. /* Initialize the port and set the max framesize. */
  2899. status = qdev->nic_ops->port_initialize(qdev);
  2900. if (status) {
  2901. QPRINTK(qdev, IFUP, ERR, "Failed to start port.\n");
  2902. return status;
  2903. }
  2904. /* Set up the MAC address and frame routing filter. */
  2905. status = ql_cam_route_initialize(qdev);
  2906. if (status) {
  2907. QPRINTK(qdev, IFUP, ERR,
  2908. "Failed to init CAM/Routing tables.\n");
  2909. return status;
  2910. }
  2911. /* Start NAPI for the RSS queues. */
  2912. for (i = qdev->rss_ring_first_cq_id; i < qdev->rx_ring_count; i++) {
  2913. QPRINTK(qdev, IFUP, DEBUG, "Enabling NAPI for rx_ring[%d].\n",
  2914. i);
  2915. napi_enable(&qdev->rx_ring[i].napi);
  2916. }
  2917. return status;
  2918. }
  2919. /* Issue soft reset to chip. */
  2920. static int ql_adapter_reset(struct ql_adapter *qdev)
  2921. {
  2922. u32 value;
  2923. int status = 0;
  2924. unsigned long end_jiffies;
  2925. /* Clear all the entries in the routing table. */
  2926. status = ql_clear_routing_entries(qdev);
  2927. if (status) {
  2928. QPRINTK(qdev, IFUP, ERR, "Failed to clear routing bits.\n");
  2929. return status;
  2930. }
  2931. end_jiffies = jiffies +
  2932. max((unsigned long)1, usecs_to_jiffies(30));
  2933. ql_write32(qdev, RST_FO, (RST_FO_FR << 16) | RST_FO_FR);
  2934. do {
  2935. value = ql_read32(qdev, RST_FO);
  2936. if ((value & RST_FO_FR) == 0)
  2937. break;
  2938. cpu_relax();
  2939. } while (time_before(jiffies, end_jiffies));
  2940. if (value & RST_FO_FR) {
  2941. QPRINTK(qdev, IFDOWN, ERR,
  2942. "ETIMEDOUT!!! errored out of resetting the chip!\n");
  2943. status = -ETIMEDOUT;
  2944. }
  2945. return status;
  2946. }
  2947. static void ql_display_dev_info(struct net_device *ndev)
  2948. {
  2949. struct ql_adapter *qdev = (struct ql_adapter *)netdev_priv(ndev);
  2950. QPRINTK(qdev, PROBE, INFO,
  2951. "Function #%d, Port %d, NIC Roll %d, NIC Rev = %d, "
  2952. "XG Roll = %d, XG Rev = %d.\n",
  2953. qdev->func,
  2954. qdev->port,
  2955. qdev->chip_rev_id & 0x0000000f,
  2956. qdev->chip_rev_id >> 4 & 0x0000000f,
  2957. qdev->chip_rev_id >> 8 & 0x0000000f,
  2958. qdev->chip_rev_id >> 12 & 0x0000000f);
  2959. QPRINTK(qdev, PROBE, INFO, "MAC address %pM\n", ndev->dev_addr);
  2960. }
  2961. static int ql_adapter_down(struct ql_adapter *qdev)
  2962. {
  2963. int i, status = 0;
  2964. struct rx_ring *rx_ring;
  2965. netif_carrier_off(qdev->ndev);
  2966. /* Don't kill the reset worker thread if we
  2967. * are in the process of recovery.
  2968. */
  2969. if (test_bit(QL_ADAPTER_UP, &qdev->flags))
  2970. cancel_delayed_work_sync(&qdev->asic_reset_work);
  2971. cancel_delayed_work_sync(&qdev->mpi_reset_work);
  2972. cancel_delayed_work_sync(&qdev->mpi_work);
  2973. cancel_delayed_work_sync(&qdev->mpi_idc_work);
  2974. cancel_delayed_work_sync(&qdev->mpi_port_cfg_work);
  2975. /* The default queue at index 0 is always processed in
  2976. * a workqueue.
  2977. */
  2978. cancel_delayed_work_sync(&qdev->rx_ring[0].rx_work);
  2979. /* The rest of the rx_rings are processed in
  2980. * a workqueue only if it's a single interrupt
  2981. * environment (MSI/Legacy).
  2982. */
  2983. for (i = 1; i < qdev->rx_ring_count; i++) {
  2984. rx_ring = &qdev->rx_ring[i];
  2985. /* Only the RSS rings use NAPI on multi irq
  2986. * environment. Outbound completion processing
  2987. * is done in interrupt context.
  2988. */
  2989. if (i >= qdev->rss_ring_first_cq_id) {
  2990. napi_disable(&rx_ring->napi);
  2991. } else {
  2992. cancel_delayed_work_sync(&rx_ring->rx_work);
  2993. }
  2994. }
  2995. clear_bit(QL_ADAPTER_UP, &qdev->flags);
  2996. ql_disable_interrupts(qdev);
  2997. ql_tx_ring_clean(qdev);
  2998. /* Call netif_napi_del() from common point.
  2999. */
  3000. for (i = qdev->rss_ring_first_cq_id; i < qdev->rx_ring_count; i++)
  3001. netif_napi_del(&qdev->rx_ring[i].napi);
  3002. ql_free_rx_buffers(qdev);
  3003. spin_lock(&qdev->hw_lock);
  3004. status = ql_adapter_reset(qdev);
  3005. if (status)
  3006. QPRINTK(qdev, IFDOWN, ERR, "reset(func #%d) FAILED!\n",
  3007. qdev->func);
  3008. spin_unlock(&qdev->hw_lock);
  3009. return status;
  3010. }
  3011. static int ql_adapter_up(struct ql_adapter *qdev)
  3012. {
  3013. int err = 0;
  3014. err = ql_adapter_initialize(qdev);
  3015. if (err) {
  3016. QPRINTK(qdev, IFUP, INFO, "Unable to initialize adapter.\n");
  3017. goto err_init;
  3018. }
  3019. set_bit(QL_ADAPTER_UP, &qdev->flags);
  3020. ql_alloc_rx_buffers(qdev);
  3021. /* If the port is initialized and the
  3022. * link is up the turn on the carrier.
  3023. */
  3024. if ((ql_read32(qdev, STS) & qdev->port_init) &&
  3025. (ql_read32(qdev, STS) & qdev->port_link_up))
  3026. netif_carrier_on(qdev->ndev);
  3027. ql_enable_interrupts(qdev);
  3028. ql_enable_all_completion_interrupts(qdev);
  3029. netif_tx_start_all_queues(qdev->ndev);
  3030. return 0;
  3031. err_init:
  3032. ql_adapter_reset(qdev);
  3033. return err;
  3034. }
  3035. static void ql_release_adapter_resources(struct ql_adapter *qdev)
  3036. {
  3037. ql_free_mem_resources(qdev);
  3038. ql_free_irq(qdev);
  3039. }
  3040. static int ql_get_adapter_resources(struct ql_adapter *qdev)
  3041. {
  3042. int status = 0;
  3043. if (ql_alloc_mem_resources(qdev)) {
  3044. QPRINTK(qdev, IFUP, ERR, "Unable to allocate memory.\n");
  3045. return -ENOMEM;
  3046. }
  3047. status = ql_request_irq(qdev);
  3048. if (status)
  3049. goto err_irq;
  3050. return status;
  3051. err_irq:
  3052. ql_free_mem_resources(qdev);
  3053. return status;
  3054. }
  3055. static int qlge_close(struct net_device *ndev)
  3056. {
  3057. struct ql_adapter *qdev = netdev_priv(ndev);
  3058. /*
  3059. * Wait for device to recover from a reset.
  3060. * (Rarely happens, but possible.)
  3061. */
  3062. while (!test_bit(QL_ADAPTER_UP, &qdev->flags))
  3063. msleep(1);
  3064. ql_adapter_down(qdev);
  3065. ql_release_adapter_resources(qdev);
  3066. return 0;
  3067. }
  3068. static int ql_configure_rings(struct ql_adapter *qdev)
  3069. {
  3070. int i;
  3071. struct rx_ring *rx_ring;
  3072. struct tx_ring *tx_ring;
  3073. int cpu_cnt = num_online_cpus();
  3074. /*
  3075. * For each processor present we allocate one
  3076. * rx_ring for outbound completions, and one
  3077. * rx_ring for inbound completions. Plus there is
  3078. * always the one default queue. For the CPU
  3079. * counts we end up with the following rx_rings:
  3080. * rx_ring count =
  3081. * one default queue +
  3082. * (CPU count * outbound completion rx_ring) +
  3083. * (CPU count * inbound (RSS) completion rx_ring)
  3084. * To keep it simple we limit the total number of
  3085. * queues to < 32, so we truncate CPU to 8.
  3086. * This limitation can be removed when requested.
  3087. */
  3088. if (cpu_cnt > MAX_CPUS)
  3089. cpu_cnt = MAX_CPUS;
  3090. /*
  3091. * rx_ring[0] is always the default queue.
  3092. */
  3093. /* Allocate outbound completion ring for each CPU. */
  3094. qdev->tx_ring_count = cpu_cnt;
  3095. /* Allocate inbound completion (RSS) ring for each CPU. */
  3096. qdev->rss_ring_count = cpu_cnt;
  3097. /* cq_id for the first inbound ring handler. */
  3098. qdev->rss_ring_first_cq_id = cpu_cnt + 1;
  3099. /*
  3100. * qdev->rx_ring_count:
  3101. * Total number of rx_rings. This includes the one
  3102. * default queue, a number of outbound completion
  3103. * handler rx_rings, and the number of inbound
  3104. * completion handler rx_rings.
  3105. */
  3106. qdev->rx_ring_count = qdev->tx_ring_count + qdev->rss_ring_count + 1;
  3107. for (i = 0; i < qdev->tx_ring_count; i++) {
  3108. tx_ring = &qdev->tx_ring[i];
  3109. memset((void *)tx_ring, 0, sizeof(tx_ring));
  3110. tx_ring->qdev = qdev;
  3111. tx_ring->wq_id = i;
  3112. tx_ring->wq_len = qdev->tx_ring_size;
  3113. tx_ring->wq_size =
  3114. tx_ring->wq_len * sizeof(struct ob_mac_iocb_req);
  3115. /*
  3116. * The completion queue ID for the tx rings start
  3117. * immediately after the default Q ID, which is zero.
  3118. */
  3119. tx_ring->cq_id = i + 1;
  3120. }
  3121. for (i = 0; i < qdev->rx_ring_count; i++) {
  3122. rx_ring = &qdev->rx_ring[i];
  3123. memset((void *)rx_ring, 0, sizeof(rx_ring));
  3124. rx_ring->qdev = qdev;
  3125. rx_ring->cq_id = i;
  3126. rx_ring->cpu = i % cpu_cnt; /* CPU to run handler on. */
  3127. if (i == 0) { /* Default queue at index 0. */
  3128. /*
  3129. * Default queue handles bcast/mcast plus
  3130. * async events. Needs buffers.
  3131. */
  3132. rx_ring->cq_len = qdev->rx_ring_size;
  3133. rx_ring->cq_size =
  3134. rx_ring->cq_len * sizeof(struct ql_net_rsp_iocb);
  3135. rx_ring->lbq_len = NUM_LARGE_BUFFERS;
  3136. rx_ring->lbq_size =
  3137. rx_ring->lbq_len * sizeof(__le64);
  3138. rx_ring->lbq_buf_size = LARGE_BUFFER_SIZE;
  3139. rx_ring->sbq_len = NUM_SMALL_BUFFERS;
  3140. rx_ring->sbq_size =
  3141. rx_ring->sbq_len * sizeof(__le64);
  3142. rx_ring->sbq_buf_size = SMALL_BUFFER_SIZE * 2;
  3143. rx_ring->type = DEFAULT_Q;
  3144. } else if (i < qdev->rss_ring_first_cq_id) {
  3145. /*
  3146. * Outbound queue handles outbound completions only.
  3147. */
  3148. /* outbound cq is same size as tx_ring it services. */
  3149. rx_ring->cq_len = qdev->tx_ring_size;
  3150. rx_ring->cq_size =
  3151. rx_ring->cq_len * sizeof(struct ql_net_rsp_iocb);
  3152. rx_ring->lbq_len = 0;
  3153. rx_ring->lbq_size = 0;
  3154. rx_ring->lbq_buf_size = 0;
  3155. rx_ring->sbq_len = 0;
  3156. rx_ring->sbq_size = 0;
  3157. rx_ring->sbq_buf_size = 0;
  3158. rx_ring->type = TX_Q;
  3159. } else { /* Inbound completions (RSS) queues */
  3160. /*
  3161. * Inbound queues handle unicast frames only.
  3162. */
  3163. rx_ring->cq_len = qdev->rx_ring_size;
  3164. rx_ring->cq_size =
  3165. rx_ring->cq_len * sizeof(struct ql_net_rsp_iocb);
  3166. rx_ring->lbq_len = NUM_LARGE_BUFFERS;
  3167. rx_ring->lbq_size =
  3168. rx_ring->lbq_len * sizeof(__le64);
  3169. rx_ring->lbq_buf_size = LARGE_BUFFER_SIZE;
  3170. rx_ring->sbq_len = NUM_SMALL_BUFFERS;
  3171. rx_ring->sbq_size =
  3172. rx_ring->sbq_len * sizeof(__le64);
  3173. rx_ring->sbq_buf_size = SMALL_BUFFER_SIZE * 2;
  3174. rx_ring->type = RX_Q;
  3175. }
  3176. }
  3177. return 0;
  3178. }
  3179. static int qlge_open(struct net_device *ndev)
  3180. {
  3181. int err = 0;
  3182. struct ql_adapter *qdev = netdev_priv(ndev);
  3183. err = ql_configure_rings(qdev);
  3184. if (err)
  3185. return err;
  3186. err = ql_get_adapter_resources(qdev);
  3187. if (err)
  3188. goto error_up;
  3189. err = ql_adapter_up(qdev);
  3190. if (err)
  3191. goto error_up;
  3192. return err;
  3193. error_up:
  3194. ql_release_adapter_resources(qdev);
  3195. return err;
  3196. }
  3197. static int qlge_change_mtu(struct net_device *ndev, int new_mtu)
  3198. {
  3199. struct ql_adapter *qdev = netdev_priv(ndev);
  3200. if (ndev->mtu == 1500 && new_mtu == 9000) {
  3201. QPRINTK(qdev, IFUP, ERR, "Changing to jumbo MTU.\n");
  3202. queue_delayed_work(qdev->workqueue,
  3203. &qdev->mpi_port_cfg_work, 0);
  3204. } else if (ndev->mtu == 9000 && new_mtu == 1500) {
  3205. QPRINTK(qdev, IFUP, ERR, "Changing to normal MTU.\n");
  3206. } else if ((ndev->mtu == 1500 && new_mtu == 1500) ||
  3207. (ndev->mtu == 9000 && new_mtu == 9000)) {
  3208. return 0;
  3209. } else
  3210. return -EINVAL;
  3211. ndev->mtu = new_mtu;
  3212. return 0;
  3213. }
  3214. static struct net_device_stats *qlge_get_stats(struct net_device
  3215. *ndev)
  3216. {
  3217. struct ql_adapter *qdev = netdev_priv(ndev);
  3218. return &qdev->stats;
  3219. }
  3220. static void qlge_set_multicast_list(struct net_device *ndev)
  3221. {
  3222. struct ql_adapter *qdev = (struct ql_adapter *)netdev_priv(ndev);
  3223. struct dev_mc_list *mc_ptr;
  3224. int i, status;
  3225. status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK);
  3226. if (status)
  3227. return;
  3228. spin_lock(&qdev->hw_lock);
  3229. /*
  3230. * Set or clear promiscuous mode if a
  3231. * transition is taking place.
  3232. */
  3233. if (ndev->flags & IFF_PROMISC) {
  3234. if (!test_bit(QL_PROMISCUOUS, &qdev->flags)) {
  3235. if (ql_set_routing_reg
  3236. (qdev, RT_IDX_PROMISCUOUS_SLOT, RT_IDX_VALID, 1)) {
  3237. QPRINTK(qdev, HW, ERR,
  3238. "Failed to set promiscous mode.\n");
  3239. } else {
  3240. set_bit(QL_PROMISCUOUS, &qdev->flags);
  3241. }
  3242. }
  3243. } else {
  3244. if (test_bit(QL_PROMISCUOUS, &qdev->flags)) {
  3245. if (ql_set_routing_reg
  3246. (qdev, RT_IDX_PROMISCUOUS_SLOT, RT_IDX_VALID, 0)) {
  3247. QPRINTK(qdev, HW, ERR,
  3248. "Failed to clear promiscous mode.\n");
  3249. } else {
  3250. clear_bit(QL_PROMISCUOUS, &qdev->flags);
  3251. }
  3252. }
  3253. }
  3254. /*
  3255. * Set or clear all multicast mode if a
  3256. * transition is taking place.
  3257. */
  3258. if ((ndev->flags & IFF_ALLMULTI) ||
  3259. (ndev->mc_count > MAX_MULTICAST_ENTRIES)) {
  3260. if (!test_bit(QL_ALLMULTI, &qdev->flags)) {
  3261. if (ql_set_routing_reg
  3262. (qdev, RT_IDX_ALLMULTI_SLOT, RT_IDX_MCAST, 1)) {
  3263. QPRINTK(qdev, HW, ERR,
  3264. "Failed to set all-multi mode.\n");
  3265. } else {
  3266. set_bit(QL_ALLMULTI, &qdev->flags);
  3267. }
  3268. }
  3269. } else {
  3270. if (test_bit(QL_ALLMULTI, &qdev->flags)) {
  3271. if (ql_set_routing_reg
  3272. (qdev, RT_IDX_ALLMULTI_SLOT, RT_IDX_MCAST, 0)) {
  3273. QPRINTK(qdev, HW, ERR,
  3274. "Failed to clear all-multi mode.\n");
  3275. } else {
  3276. clear_bit(QL_ALLMULTI, &qdev->flags);
  3277. }
  3278. }
  3279. }
  3280. if (ndev->mc_count) {
  3281. status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
  3282. if (status)
  3283. goto exit;
  3284. for (i = 0, mc_ptr = ndev->mc_list; mc_ptr;
  3285. i++, mc_ptr = mc_ptr->next)
  3286. if (ql_set_mac_addr_reg(qdev, (u8 *) mc_ptr->dmi_addr,
  3287. MAC_ADDR_TYPE_MULTI_MAC, i)) {
  3288. QPRINTK(qdev, HW, ERR,
  3289. "Failed to loadmulticast address.\n");
  3290. ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
  3291. goto exit;
  3292. }
  3293. ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
  3294. if (ql_set_routing_reg
  3295. (qdev, RT_IDX_MCAST_MATCH_SLOT, RT_IDX_MCAST_MATCH, 1)) {
  3296. QPRINTK(qdev, HW, ERR,
  3297. "Failed to set multicast match mode.\n");
  3298. } else {
  3299. set_bit(QL_ALLMULTI, &qdev->flags);
  3300. }
  3301. }
  3302. exit:
  3303. spin_unlock(&qdev->hw_lock);
  3304. ql_sem_unlock(qdev, SEM_RT_IDX_MASK);
  3305. }
  3306. static int qlge_set_mac_address(struct net_device *ndev, void *p)
  3307. {
  3308. struct ql_adapter *qdev = (struct ql_adapter *)netdev_priv(ndev);
  3309. struct sockaddr *addr = p;
  3310. int status;
  3311. if (netif_running(ndev))
  3312. return -EBUSY;
  3313. if (!is_valid_ether_addr(addr->sa_data))
  3314. return -EADDRNOTAVAIL;
  3315. memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len);
  3316. status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
  3317. if (status)
  3318. return status;
  3319. spin_lock(&qdev->hw_lock);
  3320. status = ql_set_mac_addr_reg(qdev, (u8 *) ndev->dev_addr,
  3321. MAC_ADDR_TYPE_CAM_MAC, qdev->func * MAX_CQ);
  3322. spin_unlock(&qdev->hw_lock);
  3323. if (status)
  3324. QPRINTK(qdev, HW, ERR, "Failed to load MAC address.\n");
  3325. ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
  3326. return status;
  3327. }
  3328. static void qlge_tx_timeout(struct net_device *ndev)
  3329. {
  3330. struct ql_adapter *qdev = (struct ql_adapter *)netdev_priv(ndev);
  3331. ql_queue_asic_error(qdev);
  3332. }
  3333. static void ql_asic_reset_work(struct work_struct *work)
  3334. {
  3335. struct ql_adapter *qdev =
  3336. container_of(work, struct ql_adapter, asic_reset_work.work);
  3337. int status;
  3338. status = ql_adapter_down(qdev);
  3339. if (status)
  3340. goto error;
  3341. status = ql_adapter_up(qdev);
  3342. if (status)
  3343. goto error;
  3344. return;
  3345. error:
  3346. QPRINTK(qdev, IFUP, ALERT,
  3347. "Driver up/down cycle failed, closing device\n");
  3348. rtnl_lock();
  3349. set_bit(QL_ADAPTER_UP, &qdev->flags);
  3350. dev_close(qdev->ndev);
  3351. rtnl_unlock();
  3352. }
  3353. static struct nic_operations qla8012_nic_ops = {
  3354. .get_flash = ql_get_8012_flash_params,
  3355. .port_initialize = ql_8012_port_initialize,
  3356. };
  3357. static struct nic_operations qla8000_nic_ops = {
  3358. .get_flash = ql_get_8000_flash_params,
  3359. .port_initialize = ql_8000_port_initialize,
  3360. };
  3361. /* Find the pcie function number for the other NIC
  3362. * on this chip. Since both NIC functions share a
  3363. * common firmware we have the lowest enabled function
  3364. * do any common work. Examples would be resetting
  3365. * after a fatal firmware error, or doing a firmware
  3366. * coredump.
  3367. */
  3368. static int ql_get_alt_pcie_func(struct ql_adapter *qdev)
  3369. {
  3370. int status = 0;
  3371. u32 temp;
  3372. u32 nic_func1, nic_func2;
  3373. status = ql_read_mpi_reg(qdev, MPI_TEST_FUNC_PORT_CFG,
  3374. &temp);
  3375. if (status)
  3376. return status;
  3377. nic_func1 = ((temp >> MPI_TEST_NIC1_FUNC_SHIFT) &
  3378. MPI_TEST_NIC_FUNC_MASK);
  3379. nic_func2 = ((temp >> MPI_TEST_NIC2_FUNC_SHIFT) &
  3380. MPI_TEST_NIC_FUNC_MASK);
  3381. if (qdev->func == nic_func1)
  3382. qdev->alt_func = nic_func2;
  3383. else if (qdev->func == nic_func2)
  3384. qdev->alt_func = nic_func1;
  3385. else
  3386. status = -EIO;
  3387. return status;
  3388. }
  3389. static int ql_get_board_info(struct ql_adapter *qdev)
  3390. {
  3391. int status;
  3392. qdev->func =
  3393. (ql_read32(qdev, STS) & STS_FUNC_ID_MASK) >> STS_FUNC_ID_SHIFT;
  3394. if (qdev->func > 3)
  3395. return -EIO;
  3396. status = ql_get_alt_pcie_func(qdev);
  3397. if (status)
  3398. return status;
  3399. qdev->port = (qdev->func < qdev->alt_func) ? 0 : 1;
  3400. if (qdev->port) {
  3401. qdev->xg_sem_mask = SEM_XGMAC1_MASK;
  3402. qdev->port_link_up = STS_PL1;
  3403. qdev->port_init = STS_PI1;
  3404. qdev->mailbox_in = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC2_MBI;
  3405. qdev->mailbox_out = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC2_MBO;
  3406. } else {
  3407. qdev->xg_sem_mask = SEM_XGMAC0_MASK;
  3408. qdev->port_link_up = STS_PL0;
  3409. qdev->port_init = STS_PI0;
  3410. qdev->mailbox_in = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC0_MBI;
  3411. qdev->mailbox_out = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC0_MBO;
  3412. }
  3413. qdev->chip_rev_id = ql_read32(qdev, REV_ID);
  3414. qdev->device_id = qdev->pdev->device;
  3415. if (qdev->device_id == QLGE_DEVICE_ID_8012)
  3416. qdev->nic_ops = &qla8012_nic_ops;
  3417. else if (qdev->device_id == QLGE_DEVICE_ID_8000)
  3418. qdev->nic_ops = &qla8000_nic_ops;
  3419. return status;
  3420. }
  3421. static void ql_release_all(struct pci_dev *pdev)
  3422. {
  3423. struct net_device *ndev = pci_get_drvdata(pdev);
  3424. struct ql_adapter *qdev = netdev_priv(ndev);
  3425. if (qdev->workqueue) {
  3426. destroy_workqueue(qdev->workqueue);
  3427. qdev->workqueue = NULL;
  3428. }
  3429. if (qdev->q_workqueue) {
  3430. destroy_workqueue(qdev->q_workqueue);
  3431. qdev->q_workqueue = NULL;
  3432. }
  3433. if (qdev->reg_base)
  3434. iounmap(qdev->reg_base);
  3435. if (qdev->doorbell_area)
  3436. iounmap(qdev->doorbell_area);
  3437. pci_release_regions(pdev);
  3438. pci_set_drvdata(pdev, NULL);
  3439. }
  3440. static int __devinit ql_init_device(struct pci_dev *pdev,
  3441. struct net_device *ndev, int cards_found)
  3442. {
  3443. struct ql_adapter *qdev = netdev_priv(ndev);
  3444. int pos, err = 0;
  3445. u16 val16;
  3446. memset((void *)qdev, 0, sizeof(qdev));
  3447. err = pci_enable_device(pdev);
  3448. if (err) {
  3449. dev_err(&pdev->dev, "PCI device enable failed.\n");
  3450. return err;
  3451. }
  3452. pos = pci_find_capability(pdev, PCI_CAP_ID_EXP);
  3453. if (pos <= 0) {
  3454. dev_err(&pdev->dev, PFX "Cannot find PCI Express capability, "
  3455. "aborting.\n");
  3456. goto err_out;
  3457. } else {
  3458. pci_read_config_word(pdev, pos + PCI_EXP_DEVCTL, &val16);
  3459. val16 &= ~PCI_EXP_DEVCTL_NOSNOOP_EN;
  3460. val16 |= (PCI_EXP_DEVCTL_CERE |
  3461. PCI_EXP_DEVCTL_NFERE |
  3462. PCI_EXP_DEVCTL_FERE | PCI_EXP_DEVCTL_URRE);
  3463. pci_write_config_word(pdev, pos + PCI_EXP_DEVCTL, val16);
  3464. }
  3465. err = pci_request_regions(pdev, DRV_NAME);
  3466. if (err) {
  3467. dev_err(&pdev->dev, "PCI region request failed.\n");
  3468. goto err_out;
  3469. }
  3470. pci_set_master(pdev);
  3471. if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
  3472. set_bit(QL_DMA64, &qdev->flags);
  3473. err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
  3474. } else {
  3475. err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
  3476. if (!err)
  3477. err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
  3478. }
  3479. if (err) {
  3480. dev_err(&pdev->dev, "No usable DMA configuration.\n");
  3481. goto err_out;
  3482. }
  3483. pci_set_drvdata(pdev, ndev);
  3484. qdev->reg_base =
  3485. ioremap_nocache(pci_resource_start(pdev, 1),
  3486. pci_resource_len(pdev, 1));
  3487. if (!qdev->reg_base) {
  3488. dev_err(&pdev->dev, "Register mapping failed.\n");
  3489. err = -ENOMEM;
  3490. goto err_out;
  3491. }
  3492. qdev->doorbell_area_size = pci_resource_len(pdev, 3);
  3493. qdev->doorbell_area =
  3494. ioremap_nocache(pci_resource_start(pdev, 3),
  3495. pci_resource_len(pdev, 3));
  3496. if (!qdev->doorbell_area) {
  3497. dev_err(&pdev->dev, "Doorbell register mapping failed.\n");
  3498. err = -ENOMEM;
  3499. goto err_out;
  3500. }
  3501. qdev->ndev = ndev;
  3502. qdev->pdev = pdev;
  3503. err = ql_get_board_info(qdev);
  3504. if (err) {
  3505. dev_err(&pdev->dev, "Register access failed.\n");
  3506. err = -EIO;
  3507. goto err_out;
  3508. }
  3509. qdev->msg_enable = netif_msg_init(debug, default_msg);
  3510. spin_lock_init(&qdev->hw_lock);
  3511. spin_lock_init(&qdev->stats_lock);
  3512. /* make sure the EEPROM is good */
  3513. err = qdev->nic_ops->get_flash(qdev);
  3514. if (err) {
  3515. dev_err(&pdev->dev, "Invalid FLASH.\n");
  3516. goto err_out;
  3517. }
  3518. memcpy(ndev->perm_addr, ndev->dev_addr, ndev->addr_len);
  3519. /* Set up the default ring sizes. */
  3520. qdev->tx_ring_size = NUM_TX_RING_ENTRIES;
  3521. qdev->rx_ring_size = NUM_RX_RING_ENTRIES;
  3522. /* Set up the coalescing parameters. */
  3523. qdev->rx_coalesce_usecs = DFLT_COALESCE_WAIT;
  3524. qdev->tx_coalesce_usecs = DFLT_COALESCE_WAIT;
  3525. qdev->rx_max_coalesced_frames = DFLT_INTER_FRAME_WAIT;
  3526. qdev->tx_max_coalesced_frames = DFLT_INTER_FRAME_WAIT;
  3527. /*
  3528. * Set up the operating parameters.
  3529. */
  3530. qdev->rx_csum = 1;
  3531. qdev->q_workqueue = create_workqueue(ndev->name);
  3532. qdev->workqueue = create_singlethread_workqueue(ndev->name);
  3533. INIT_DELAYED_WORK(&qdev->asic_reset_work, ql_asic_reset_work);
  3534. INIT_DELAYED_WORK(&qdev->mpi_reset_work, ql_mpi_reset_work);
  3535. INIT_DELAYED_WORK(&qdev->mpi_work, ql_mpi_work);
  3536. INIT_DELAYED_WORK(&qdev->mpi_port_cfg_work, ql_mpi_port_cfg_work);
  3537. INIT_DELAYED_WORK(&qdev->mpi_idc_work, ql_mpi_idc_work);
  3538. mutex_init(&qdev->mpi_mutex);
  3539. init_completion(&qdev->ide_completion);
  3540. if (!cards_found) {
  3541. dev_info(&pdev->dev, "%s\n", DRV_STRING);
  3542. dev_info(&pdev->dev, "Driver name: %s, Version: %s.\n",
  3543. DRV_NAME, DRV_VERSION);
  3544. }
  3545. return 0;
  3546. err_out:
  3547. ql_release_all(pdev);
  3548. pci_disable_device(pdev);
  3549. return err;
  3550. }
  3551. static const struct net_device_ops qlge_netdev_ops = {
  3552. .ndo_open = qlge_open,
  3553. .ndo_stop = qlge_close,
  3554. .ndo_start_xmit = qlge_send,
  3555. .ndo_change_mtu = qlge_change_mtu,
  3556. .ndo_get_stats = qlge_get_stats,
  3557. .ndo_set_multicast_list = qlge_set_multicast_list,
  3558. .ndo_set_mac_address = qlge_set_mac_address,
  3559. .ndo_validate_addr = eth_validate_addr,
  3560. .ndo_tx_timeout = qlge_tx_timeout,
  3561. .ndo_vlan_rx_register = ql_vlan_rx_register,
  3562. .ndo_vlan_rx_add_vid = ql_vlan_rx_add_vid,
  3563. .ndo_vlan_rx_kill_vid = ql_vlan_rx_kill_vid,
  3564. };
  3565. static int __devinit qlge_probe(struct pci_dev *pdev,
  3566. const struct pci_device_id *pci_entry)
  3567. {
  3568. struct net_device *ndev = NULL;
  3569. struct ql_adapter *qdev = NULL;
  3570. static int cards_found = 0;
  3571. int err = 0;
  3572. ndev = alloc_etherdev_mq(sizeof(struct ql_adapter),
  3573. min(MAX_CPUS, (int)num_online_cpus()));
  3574. if (!ndev)
  3575. return -ENOMEM;
  3576. err = ql_init_device(pdev, ndev, cards_found);
  3577. if (err < 0) {
  3578. free_netdev(ndev);
  3579. return err;
  3580. }
  3581. qdev = netdev_priv(ndev);
  3582. SET_NETDEV_DEV(ndev, &pdev->dev);
  3583. ndev->features = (0
  3584. | NETIF_F_IP_CSUM
  3585. | NETIF_F_SG
  3586. | NETIF_F_TSO
  3587. | NETIF_F_TSO6
  3588. | NETIF_F_TSO_ECN
  3589. | NETIF_F_HW_VLAN_TX
  3590. | NETIF_F_HW_VLAN_RX | NETIF_F_HW_VLAN_FILTER);
  3591. ndev->features |= NETIF_F_GRO;
  3592. if (test_bit(QL_DMA64, &qdev->flags))
  3593. ndev->features |= NETIF_F_HIGHDMA;
  3594. /*
  3595. * Set up net_device structure.
  3596. */
  3597. ndev->tx_queue_len = qdev->tx_ring_size;
  3598. ndev->irq = pdev->irq;
  3599. ndev->netdev_ops = &qlge_netdev_ops;
  3600. SET_ETHTOOL_OPS(ndev, &qlge_ethtool_ops);
  3601. ndev->watchdog_timeo = 10 * HZ;
  3602. err = register_netdev(ndev);
  3603. if (err) {
  3604. dev_err(&pdev->dev, "net device registration failed.\n");
  3605. ql_release_all(pdev);
  3606. pci_disable_device(pdev);
  3607. return err;
  3608. }
  3609. netif_carrier_off(ndev);
  3610. ql_display_dev_info(ndev);
  3611. cards_found++;
  3612. return 0;
  3613. }
  3614. static void __devexit qlge_remove(struct pci_dev *pdev)
  3615. {
  3616. struct net_device *ndev = pci_get_drvdata(pdev);
  3617. unregister_netdev(ndev);
  3618. ql_release_all(pdev);
  3619. pci_disable_device(pdev);
  3620. free_netdev(ndev);
  3621. }
  3622. /*
  3623. * This callback is called by the PCI subsystem whenever
  3624. * a PCI bus error is detected.
  3625. */
  3626. static pci_ers_result_t qlge_io_error_detected(struct pci_dev *pdev,
  3627. enum pci_channel_state state)
  3628. {
  3629. struct net_device *ndev = pci_get_drvdata(pdev);
  3630. struct ql_adapter *qdev = netdev_priv(ndev);
  3631. if (netif_running(ndev))
  3632. ql_adapter_down(qdev);
  3633. pci_disable_device(pdev);
  3634. /* Request a slot reset. */
  3635. return PCI_ERS_RESULT_NEED_RESET;
  3636. }
  3637. /*
  3638. * This callback is called after the PCI buss has been reset.
  3639. * Basically, this tries to restart the card from scratch.
  3640. * This is a shortened version of the device probe/discovery code,
  3641. * it resembles the first-half of the () routine.
  3642. */
  3643. static pci_ers_result_t qlge_io_slot_reset(struct pci_dev *pdev)
  3644. {
  3645. struct net_device *ndev = pci_get_drvdata(pdev);
  3646. struct ql_adapter *qdev = netdev_priv(ndev);
  3647. if (pci_enable_device(pdev)) {
  3648. QPRINTK(qdev, IFUP, ERR,
  3649. "Cannot re-enable PCI device after reset.\n");
  3650. return PCI_ERS_RESULT_DISCONNECT;
  3651. }
  3652. pci_set_master(pdev);
  3653. netif_carrier_off(ndev);
  3654. ql_adapter_reset(qdev);
  3655. /* Make sure the EEPROM is good */
  3656. memcpy(ndev->perm_addr, ndev->dev_addr, ndev->addr_len);
  3657. if (!is_valid_ether_addr(ndev->perm_addr)) {
  3658. QPRINTK(qdev, IFUP, ERR, "After reset, invalid MAC address.\n");
  3659. return PCI_ERS_RESULT_DISCONNECT;
  3660. }
  3661. return PCI_ERS_RESULT_RECOVERED;
  3662. }
  3663. static void qlge_io_resume(struct pci_dev *pdev)
  3664. {
  3665. struct net_device *ndev = pci_get_drvdata(pdev);
  3666. struct ql_adapter *qdev = netdev_priv(ndev);
  3667. pci_set_master(pdev);
  3668. if (netif_running(ndev)) {
  3669. if (ql_adapter_up(qdev)) {
  3670. QPRINTK(qdev, IFUP, ERR,
  3671. "Device initialization failed after reset.\n");
  3672. return;
  3673. }
  3674. }
  3675. netif_device_attach(ndev);
  3676. }
  3677. static struct pci_error_handlers qlge_err_handler = {
  3678. .error_detected = qlge_io_error_detected,
  3679. .slot_reset = qlge_io_slot_reset,
  3680. .resume = qlge_io_resume,
  3681. };
  3682. static int qlge_suspend(struct pci_dev *pdev, pm_message_t state)
  3683. {
  3684. struct net_device *ndev = pci_get_drvdata(pdev);
  3685. struct ql_adapter *qdev = netdev_priv(ndev);
  3686. int err;
  3687. netif_device_detach(ndev);
  3688. if (netif_running(ndev)) {
  3689. err = ql_adapter_down(qdev);
  3690. if (!err)
  3691. return err;
  3692. }
  3693. err = pci_save_state(pdev);
  3694. if (err)
  3695. return err;
  3696. pci_disable_device(pdev);
  3697. pci_set_power_state(pdev, pci_choose_state(pdev, state));
  3698. return 0;
  3699. }
  3700. #ifdef CONFIG_PM
  3701. static int qlge_resume(struct pci_dev *pdev)
  3702. {
  3703. struct net_device *ndev = pci_get_drvdata(pdev);
  3704. struct ql_adapter *qdev = netdev_priv(ndev);
  3705. int err;
  3706. pci_set_power_state(pdev, PCI_D0);
  3707. pci_restore_state(pdev);
  3708. err = pci_enable_device(pdev);
  3709. if (err) {
  3710. QPRINTK(qdev, IFUP, ERR, "Cannot enable PCI device from suspend\n");
  3711. return err;
  3712. }
  3713. pci_set_master(pdev);
  3714. pci_enable_wake(pdev, PCI_D3hot, 0);
  3715. pci_enable_wake(pdev, PCI_D3cold, 0);
  3716. if (netif_running(ndev)) {
  3717. err = ql_adapter_up(qdev);
  3718. if (err)
  3719. return err;
  3720. }
  3721. netif_device_attach(ndev);
  3722. return 0;
  3723. }
  3724. #endif /* CONFIG_PM */
  3725. static void qlge_shutdown(struct pci_dev *pdev)
  3726. {
  3727. qlge_suspend(pdev, PMSG_SUSPEND);
  3728. }
  3729. static struct pci_driver qlge_driver = {
  3730. .name = DRV_NAME,
  3731. .id_table = qlge_pci_tbl,
  3732. .probe = qlge_probe,
  3733. .remove = __devexit_p(qlge_remove),
  3734. #ifdef CONFIG_PM
  3735. .suspend = qlge_suspend,
  3736. .resume = qlge_resume,
  3737. #endif
  3738. .shutdown = qlge_shutdown,
  3739. .err_handler = &qlge_err_handler
  3740. };
  3741. static int __init qlge_init_module(void)
  3742. {
  3743. return pci_register_driver(&qlge_driver);
  3744. }
  3745. static void __exit qlge_exit(void)
  3746. {
  3747. pci_unregister_driver(&qlge_driver);
  3748. }
  3749. module_init(qlge_init_module);
  3750. module_exit(qlge_exit);