bcm43xx_main.c 107 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965
  1. /*
  2. Broadcom BCM43xx wireless driver
  3. Copyright (c) 2005 Martin Langer <martin-langer@gmx.de>,
  4. Stefano Brivio <st3@riseup.net>
  5. Michael Buesch <mbuesch@freenet.de>
  6. Danny van Dyk <kugelfang@gentoo.org>
  7. Andreas Jaggi <andreas.jaggi@waterwave.ch>
  8. Some parts of the code in this file are derived from the ipw2200
  9. driver Copyright(c) 2003 - 2004 Intel Corporation.
  10. This program is free software; you can redistribute it and/or modify
  11. it under the terms of the GNU General Public License as published by
  12. the Free Software Foundation; either version 2 of the License, or
  13. (at your option) any later version.
  14. This program is distributed in the hope that it will be useful,
  15. but WITHOUT ANY WARRANTY; without even the implied warranty of
  16. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  17. GNU General Public License for more details.
  18. You should have received a copy of the GNU General Public License
  19. along with this program; see the file COPYING. If not, write to
  20. the Free Software Foundation, Inc., 51 Franklin Steet, Fifth Floor,
  21. Boston, MA 02110-1301, USA.
  22. */
  23. #include <linux/delay.h>
  24. #include <linux/init.h>
  25. #include <linux/moduleparam.h>
  26. #include <linux/if_arp.h>
  27. #include <linux/etherdevice.h>
  28. #include <linux/version.h>
  29. #include <linux/firmware.h>
  30. #include <linux/wireless.h>
  31. #include <linux/workqueue.h>
  32. #include <linux/skbuff.h>
  33. #include <linux/dma-mapping.h>
  34. #include <net/iw_handler.h>
  35. #include "bcm43xx.h"
  36. #include "bcm43xx_main.h"
  37. #include "bcm43xx_debugfs.h"
  38. #include "bcm43xx_radio.h"
  39. #include "bcm43xx_phy.h"
  40. #include "bcm43xx_dma.h"
  41. #include "bcm43xx_pio.h"
  42. #include "bcm43xx_power.h"
  43. #include "bcm43xx_wx.h"
  44. #include "bcm43xx_ethtool.h"
  45. #include "bcm43xx_xmit.h"
  46. MODULE_DESCRIPTION("Broadcom BCM43xx wireless driver");
  47. MODULE_AUTHOR("Martin Langer");
  48. MODULE_AUTHOR("Stefano Brivio");
  49. MODULE_AUTHOR("Michael Buesch");
  50. MODULE_LICENSE("GPL");
  51. #ifdef CONFIG_BCM947XX
  52. extern char *nvram_get(char *name);
  53. #endif
  54. #if defined(CONFIG_BCM43XX_DMA) && defined(CONFIG_BCM43XX_PIO)
  55. static int modparam_pio;
  56. module_param_named(pio, modparam_pio, int, 0444);
  57. MODULE_PARM_DESC(pio, "enable(1) / disable(0) PIO mode");
  58. #elif defined(CONFIG_BCM43XX_DMA)
  59. # define modparam_pio 0
  60. #elif defined(CONFIG_BCM43XX_PIO)
  61. # define modparam_pio 1
  62. #endif
  63. static int modparam_bad_frames_preempt;
  64. module_param_named(bad_frames_preempt, modparam_bad_frames_preempt, int, 0444);
  65. MODULE_PARM_DESC(bad_frames_preempt, "enable(1) / disable(0) Bad Frames Preemption");
  66. static int modparam_short_retry = BCM43xx_DEFAULT_SHORT_RETRY_LIMIT;
  67. module_param_named(short_retry, modparam_short_retry, int, 0444);
  68. MODULE_PARM_DESC(short_retry, "Short-Retry-Limit (0 - 15)");
  69. static int modparam_long_retry = BCM43xx_DEFAULT_LONG_RETRY_LIMIT;
  70. module_param_named(long_retry, modparam_long_retry, int, 0444);
  71. MODULE_PARM_DESC(long_retry, "Long-Retry-Limit (0 - 15)");
  72. static int modparam_locale = -1;
  73. module_param_named(locale, modparam_locale, int, 0444);
  74. MODULE_PARM_DESC(country, "Select LocaleCode 0-11 (For travelers)");
  75. static int modparam_noleds;
  76. module_param_named(noleds, modparam_noleds, int, 0444);
  77. MODULE_PARM_DESC(noleds, "Turn off all LED activity");
  78. #ifdef CONFIG_BCM43XX_DEBUG
  79. static char modparam_fwpostfix[64];
  80. module_param_string(fwpostfix, modparam_fwpostfix, 64, 0444);
  81. MODULE_PARM_DESC(fwpostfix, "Postfix for .fw files. Useful for debugging.");
  82. #else
  83. # define modparam_fwpostfix ""
  84. #endif /* CONFIG_BCM43XX_DEBUG*/
  85. /* If you want to debug with just a single device, enable this,
  86. * where the string is the pci device ID (as given by the kernel's
  87. * pci_name function) of the device to be used.
  88. */
  89. //#define DEBUG_SINGLE_DEVICE_ONLY "0001:11:00.0"
  90. /* If you want to enable printing of each MMIO access, enable this. */
  91. //#define DEBUG_ENABLE_MMIO_PRINT
  92. /* If you want to enable printing of MMIO access within
  93. * ucode/pcm upload, initvals write, enable this.
  94. */
  95. //#define DEBUG_ENABLE_UCODE_MMIO_PRINT
  96. /* If you want to enable printing of PCI Config Space access, enable this */
  97. //#define DEBUG_ENABLE_PCILOG
  98. /* Detailed list maintained at:
  99. * http://openfacts.berlios.de/index-en.phtml?title=Bcm43xxDevices
  100. */
  101. static struct pci_device_id bcm43xx_pci_tbl[] = {
  102. /* Broadcom 4303 802.11b */
  103. { PCI_VENDOR_ID_BROADCOM, 0x4301, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 },
  104. /* Broadcom 4307 802.11b */
  105. { PCI_VENDOR_ID_BROADCOM, 0x4307, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 },
  106. /* Broadcom 4318 802.11b/g */
  107. { PCI_VENDOR_ID_BROADCOM, 0x4318, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 },
  108. /* Broadcom 4306 802.11b/g */
  109. { PCI_VENDOR_ID_BROADCOM, 0x4320, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 },
  110. /* Broadcom 4306 802.11a */
  111. // { PCI_VENDOR_ID_BROADCOM, 0x4321, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 },
  112. /* Broadcom 4309 802.11a/b/g */
  113. { PCI_VENDOR_ID_BROADCOM, 0x4324, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 },
  114. /* Broadcom 43XG 802.11b/g */
  115. { PCI_VENDOR_ID_BROADCOM, 0x4325, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 },
  116. #ifdef CONFIG_BCM947XX
  117. /* SB bus on BCM947xx */
  118. { PCI_VENDOR_ID_BROADCOM, 0x0800, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 },
  119. #endif
  120. { 0 },
  121. };
  122. MODULE_DEVICE_TABLE(pci, bcm43xx_pci_tbl);
  123. static void bcm43xx_ram_write(struct bcm43xx_private *bcm, u16 offset, u32 val)
  124. {
  125. u32 status;
  126. status = bcm43xx_read32(bcm, BCM43xx_MMIO_STATUS_BITFIELD);
  127. if (!(status & BCM43xx_SBF_XFER_REG_BYTESWAP))
  128. val = swab32(val);
  129. bcm43xx_write32(bcm, BCM43xx_MMIO_RAM_CONTROL, offset);
  130. mmiowb();
  131. bcm43xx_write32(bcm, BCM43xx_MMIO_RAM_DATA, val);
  132. }
  133. static inline
  134. void bcm43xx_shm_control_word(struct bcm43xx_private *bcm,
  135. u16 routing, u16 offset)
  136. {
  137. u32 control;
  138. /* "offset" is the WORD offset. */
  139. control = routing;
  140. control <<= 16;
  141. control |= offset;
  142. bcm43xx_write32(bcm, BCM43xx_MMIO_SHM_CONTROL, control);
  143. }
  144. u32 bcm43xx_shm_read32(struct bcm43xx_private *bcm,
  145. u16 routing, u16 offset)
  146. {
  147. u32 ret;
  148. if (routing == BCM43xx_SHM_SHARED) {
  149. if (offset & 0x0003) {
  150. /* Unaligned access */
  151. bcm43xx_shm_control_word(bcm, routing, offset >> 2);
  152. ret = bcm43xx_read16(bcm, BCM43xx_MMIO_SHM_DATA_UNALIGNED);
  153. ret <<= 16;
  154. bcm43xx_shm_control_word(bcm, routing, (offset >> 2) + 1);
  155. ret |= bcm43xx_read16(bcm, BCM43xx_MMIO_SHM_DATA);
  156. return ret;
  157. }
  158. offset >>= 2;
  159. }
  160. bcm43xx_shm_control_word(bcm, routing, offset);
  161. ret = bcm43xx_read32(bcm, BCM43xx_MMIO_SHM_DATA);
  162. return ret;
  163. }
  164. u16 bcm43xx_shm_read16(struct bcm43xx_private *bcm,
  165. u16 routing, u16 offset)
  166. {
  167. u16 ret;
  168. if (routing == BCM43xx_SHM_SHARED) {
  169. if (offset & 0x0003) {
  170. /* Unaligned access */
  171. bcm43xx_shm_control_word(bcm, routing, offset >> 2);
  172. ret = bcm43xx_read16(bcm, BCM43xx_MMIO_SHM_DATA_UNALIGNED);
  173. return ret;
  174. }
  175. offset >>= 2;
  176. }
  177. bcm43xx_shm_control_word(bcm, routing, offset);
  178. ret = bcm43xx_read16(bcm, BCM43xx_MMIO_SHM_DATA);
  179. return ret;
  180. }
  181. void bcm43xx_shm_write32(struct bcm43xx_private *bcm,
  182. u16 routing, u16 offset,
  183. u32 value)
  184. {
  185. if (routing == BCM43xx_SHM_SHARED) {
  186. if (offset & 0x0003) {
  187. /* Unaligned access */
  188. bcm43xx_shm_control_word(bcm, routing, offset >> 2);
  189. mmiowb();
  190. bcm43xx_write16(bcm, BCM43xx_MMIO_SHM_DATA_UNALIGNED,
  191. (value >> 16) & 0xffff);
  192. mmiowb();
  193. bcm43xx_shm_control_word(bcm, routing, (offset >> 2) + 1);
  194. mmiowb();
  195. bcm43xx_write16(bcm, BCM43xx_MMIO_SHM_DATA,
  196. value & 0xffff);
  197. return;
  198. }
  199. offset >>= 2;
  200. }
  201. bcm43xx_shm_control_word(bcm, routing, offset);
  202. mmiowb();
  203. bcm43xx_write32(bcm, BCM43xx_MMIO_SHM_DATA, value);
  204. }
  205. void bcm43xx_shm_write16(struct bcm43xx_private *bcm,
  206. u16 routing, u16 offset,
  207. u16 value)
  208. {
  209. if (routing == BCM43xx_SHM_SHARED) {
  210. if (offset & 0x0003) {
  211. /* Unaligned access */
  212. bcm43xx_shm_control_word(bcm, routing, offset >> 2);
  213. mmiowb();
  214. bcm43xx_write16(bcm, BCM43xx_MMIO_SHM_DATA_UNALIGNED,
  215. value);
  216. return;
  217. }
  218. offset >>= 2;
  219. }
  220. bcm43xx_shm_control_word(bcm, routing, offset);
  221. mmiowb();
  222. bcm43xx_write16(bcm, BCM43xx_MMIO_SHM_DATA, value);
  223. }
  224. void bcm43xx_tsf_read(struct bcm43xx_private *bcm, u64 *tsf)
  225. {
  226. /* We need to be careful. As we read the TSF from multiple
  227. * registers, we should take care of register overflows.
  228. * In theory, the whole tsf read process should be atomic.
  229. * We try to be atomic here, by restaring the read process,
  230. * if any of the high registers changed (overflew).
  231. */
  232. if (bcm->current_core->rev >= 3) {
  233. u32 low, high, high2;
  234. do {
  235. high = bcm43xx_read32(bcm, BCM43xx_MMIO_REV3PLUS_TSF_HIGH);
  236. low = bcm43xx_read32(bcm, BCM43xx_MMIO_REV3PLUS_TSF_LOW);
  237. high2 = bcm43xx_read32(bcm, BCM43xx_MMIO_REV3PLUS_TSF_HIGH);
  238. } while (unlikely(high != high2));
  239. *tsf = high;
  240. *tsf <<= 32;
  241. *tsf |= low;
  242. } else {
  243. u64 tmp;
  244. u16 v0, v1, v2, v3;
  245. u16 test1, test2, test3;
  246. do {
  247. v3 = bcm43xx_read16(bcm, BCM43xx_MMIO_TSF_3);
  248. v2 = bcm43xx_read16(bcm, BCM43xx_MMIO_TSF_2);
  249. v1 = bcm43xx_read16(bcm, BCM43xx_MMIO_TSF_1);
  250. v0 = bcm43xx_read16(bcm, BCM43xx_MMIO_TSF_0);
  251. test3 = bcm43xx_read16(bcm, BCM43xx_MMIO_TSF_3);
  252. test2 = bcm43xx_read16(bcm, BCM43xx_MMIO_TSF_2);
  253. test1 = bcm43xx_read16(bcm, BCM43xx_MMIO_TSF_1);
  254. } while (v3 != test3 || v2 != test2 || v1 != test1);
  255. *tsf = v3;
  256. *tsf <<= 48;
  257. tmp = v2;
  258. tmp <<= 32;
  259. *tsf |= tmp;
  260. tmp = v1;
  261. tmp <<= 16;
  262. *tsf |= tmp;
  263. *tsf |= v0;
  264. }
  265. }
  266. void bcm43xx_tsf_write(struct bcm43xx_private *bcm, u64 tsf)
  267. {
  268. u32 status;
  269. status = bcm43xx_read32(bcm, BCM43xx_MMIO_STATUS_BITFIELD);
  270. status |= BCM43xx_SBF_TIME_UPDATE;
  271. bcm43xx_write32(bcm, BCM43xx_MMIO_STATUS_BITFIELD, status);
  272. mmiowb();
  273. /* Be careful with the in-progress timer.
  274. * First zero out the low register, so we have a full
  275. * register-overflow duration to complete the operation.
  276. */
  277. if (bcm->current_core->rev >= 3) {
  278. u32 lo = (tsf & 0x00000000FFFFFFFFULL);
  279. u32 hi = (tsf & 0xFFFFFFFF00000000ULL) >> 32;
  280. bcm43xx_write32(bcm, BCM43xx_MMIO_REV3PLUS_TSF_LOW, 0);
  281. mmiowb();
  282. bcm43xx_write32(bcm, BCM43xx_MMIO_REV3PLUS_TSF_HIGH, hi);
  283. mmiowb();
  284. bcm43xx_write32(bcm, BCM43xx_MMIO_REV3PLUS_TSF_LOW, lo);
  285. } else {
  286. u16 v0 = (tsf & 0x000000000000FFFFULL);
  287. u16 v1 = (tsf & 0x00000000FFFF0000ULL) >> 16;
  288. u16 v2 = (tsf & 0x0000FFFF00000000ULL) >> 32;
  289. u16 v3 = (tsf & 0xFFFF000000000000ULL) >> 48;
  290. bcm43xx_write16(bcm, BCM43xx_MMIO_TSF_0, 0);
  291. mmiowb();
  292. bcm43xx_write16(bcm, BCM43xx_MMIO_TSF_3, v3);
  293. mmiowb();
  294. bcm43xx_write16(bcm, BCM43xx_MMIO_TSF_2, v2);
  295. mmiowb();
  296. bcm43xx_write16(bcm, BCM43xx_MMIO_TSF_1, v1);
  297. mmiowb();
  298. bcm43xx_write16(bcm, BCM43xx_MMIO_TSF_0, v0);
  299. }
  300. status = bcm43xx_read32(bcm, BCM43xx_MMIO_STATUS_BITFIELD);
  301. status &= ~BCM43xx_SBF_TIME_UPDATE;
  302. bcm43xx_write32(bcm, BCM43xx_MMIO_STATUS_BITFIELD, status);
  303. }
  304. static
  305. void bcm43xx_macfilter_set(struct bcm43xx_private *bcm,
  306. u16 offset,
  307. const u8 *mac)
  308. {
  309. u16 data;
  310. offset |= 0x0020;
  311. bcm43xx_write16(bcm, BCM43xx_MMIO_MACFILTER_CONTROL, offset);
  312. data = mac[0];
  313. data |= mac[1] << 8;
  314. bcm43xx_write16(bcm, BCM43xx_MMIO_MACFILTER_DATA, data);
  315. data = mac[2];
  316. data |= mac[3] << 8;
  317. bcm43xx_write16(bcm, BCM43xx_MMIO_MACFILTER_DATA, data);
  318. data = mac[4];
  319. data |= mac[5] << 8;
  320. bcm43xx_write16(bcm, BCM43xx_MMIO_MACFILTER_DATA, data);
  321. }
  322. static void bcm43xx_macfilter_clear(struct bcm43xx_private *bcm,
  323. u16 offset)
  324. {
  325. const u8 zero_addr[ETH_ALEN] = { 0 };
  326. bcm43xx_macfilter_set(bcm, offset, zero_addr);
  327. }
  328. static void bcm43xx_write_mac_bssid_templates(struct bcm43xx_private *bcm)
  329. {
  330. const u8 *mac = (const u8 *)(bcm->net_dev->dev_addr);
  331. const u8 *bssid = (const u8 *)(bcm->ieee->bssid);
  332. u8 mac_bssid[ETH_ALEN * 2];
  333. int i;
  334. memcpy(mac_bssid, mac, ETH_ALEN);
  335. memcpy(mac_bssid + ETH_ALEN, bssid, ETH_ALEN);
  336. /* Write our MAC address and BSSID to template ram */
  337. for (i = 0; i < ARRAY_SIZE(mac_bssid); i += sizeof(u32))
  338. bcm43xx_ram_write(bcm, 0x20 + i, *((u32 *)(mac_bssid + i)));
  339. for (i = 0; i < ARRAY_SIZE(mac_bssid); i += sizeof(u32))
  340. bcm43xx_ram_write(bcm, 0x78 + i, *((u32 *)(mac_bssid + i)));
  341. for (i = 0; i < ARRAY_SIZE(mac_bssid); i += sizeof(u32))
  342. bcm43xx_ram_write(bcm, 0x478 + i, *((u32 *)(mac_bssid + i)));
  343. }
  344. //FIXME: Well, we should probably call them from somewhere.
  345. #if 0
  346. static void bcm43xx_set_slot_time(struct bcm43xx_private *bcm, u16 slot_time)
  347. {
  348. /* slot_time is in usec. */
  349. if (bcm43xx_current_phy(bcm)->type != BCM43xx_PHYTYPE_G)
  350. return;
  351. bcm43xx_write16(bcm, 0x684, 510 + slot_time);
  352. bcm43xx_shm_write16(bcm, BCM43xx_SHM_SHARED, 0x0010, slot_time);
  353. }
  354. static void bcm43xx_short_slot_timing_enable(struct bcm43xx_private *bcm)
  355. {
  356. bcm43xx_set_slot_time(bcm, 9);
  357. }
  358. static void bcm43xx_short_slot_timing_disable(struct bcm43xx_private *bcm)
  359. {
  360. bcm43xx_set_slot_time(bcm, 20);
  361. }
  362. #endif
  363. /* FIXME: To get the MAC-filter working, we need to implement the
  364. * following functions (and rename them :)
  365. */
  366. #if 0
  367. static void bcm43xx_disassociate(struct bcm43xx_private *bcm)
  368. {
  369. bcm43xx_mac_suspend(bcm);
  370. bcm43xx_macfilter_clear(bcm, BCM43xx_MACFILTER_ASSOC);
  371. bcm43xx_ram_write(bcm, 0x0026, 0x0000);
  372. bcm43xx_ram_write(bcm, 0x0028, 0x0000);
  373. bcm43xx_ram_write(bcm, 0x007E, 0x0000);
  374. bcm43xx_ram_write(bcm, 0x0080, 0x0000);
  375. bcm43xx_ram_write(bcm, 0x047E, 0x0000);
  376. bcm43xx_ram_write(bcm, 0x0480, 0x0000);
  377. if (bcm->current_core->rev < 3) {
  378. bcm43xx_write16(bcm, 0x0610, 0x8000);
  379. bcm43xx_write16(bcm, 0x060E, 0x0000);
  380. } else
  381. bcm43xx_write32(bcm, 0x0188, 0x80000000);
  382. bcm43xx_shm_write32(bcm, BCM43xx_SHM_WIRELESS, 0x0004, 0x000003ff);
  383. if (bcm43xx_current_phy(bcm)->type == BCM43xx_PHYTYPE_G &&
  384. ieee80211_is_ofdm_rate(bcm->softmac->txrates.default_rate))
  385. bcm43xx_short_slot_timing_enable(bcm);
  386. bcm43xx_mac_enable(bcm);
  387. }
  388. static void bcm43xx_associate(struct bcm43xx_private *bcm,
  389. const u8 *mac)
  390. {
  391. memcpy(bcm->ieee->bssid, mac, ETH_ALEN);
  392. bcm43xx_mac_suspend(bcm);
  393. bcm43xx_macfilter_set(bcm, BCM43xx_MACFILTER_ASSOC, mac);
  394. bcm43xx_write_mac_bssid_templates(bcm);
  395. bcm43xx_mac_enable(bcm);
  396. }
  397. #endif
  398. /* Enable a Generic IRQ. "mask" is the mask of which IRQs to enable.
  399. * Returns the _previously_ enabled IRQ mask.
  400. */
  401. static inline u32 bcm43xx_interrupt_enable(struct bcm43xx_private *bcm, u32 mask)
  402. {
  403. u32 old_mask;
  404. old_mask = bcm43xx_read32(bcm, BCM43xx_MMIO_GEN_IRQ_MASK);
  405. bcm43xx_write32(bcm, BCM43xx_MMIO_GEN_IRQ_MASK, old_mask | mask);
  406. return old_mask;
  407. }
  408. /* Disable a Generic IRQ. "mask" is the mask of which IRQs to disable.
  409. * Returns the _previously_ enabled IRQ mask.
  410. */
  411. static inline u32 bcm43xx_interrupt_disable(struct bcm43xx_private *bcm, u32 mask)
  412. {
  413. u32 old_mask;
  414. old_mask = bcm43xx_read32(bcm, BCM43xx_MMIO_GEN_IRQ_MASK);
  415. bcm43xx_write32(bcm, BCM43xx_MMIO_GEN_IRQ_MASK, old_mask & ~mask);
  416. return old_mask;
  417. }
  418. /* Make sure we don't receive more data from the device. */
  419. static int bcm43xx_disable_interrupts_sync(struct bcm43xx_private *bcm, u32 *oldstate)
  420. {
  421. u32 old;
  422. unsigned long flags;
  423. bcm43xx_lock_mmio(bcm, flags);
  424. if (bcm43xx_is_initializing(bcm) || bcm->shutting_down) {
  425. bcm43xx_unlock_mmio(bcm, flags);
  426. return -EBUSY;
  427. }
  428. old = bcm43xx_interrupt_disable(bcm, BCM43xx_IRQ_ALL);
  429. tasklet_disable(&bcm->isr_tasklet);
  430. bcm43xx_unlock_mmio(bcm, flags);
  431. if (oldstate)
  432. *oldstate = old;
  433. return 0;
  434. }
  435. static int bcm43xx_read_radioinfo(struct bcm43xx_private *bcm)
  436. {
  437. struct bcm43xx_radioinfo *radio = bcm43xx_current_radio(bcm);
  438. struct bcm43xx_phyinfo *phy = bcm43xx_current_phy(bcm);
  439. u32 radio_id;
  440. u16 manufact;
  441. u16 version;
  442. u8 revision;
  443. s8 i;
  444. if (bcm->chip_id == 0x4317) {
  445. if (bcm->chip_rev == 0x00)
  446. radio_id = 0x3205017F;
  447. else if (bcm->chip_rev == 0x01)
  448. radio_id = 0x4205017F;
  449. else
  450. radio_id = 0x5205017F;
  451. } else {
  452. bcm43xx_write16(bcm, BCM43xx_MMIO_RADIO_CONTROL, BCM43xx_RADIOCTL_ID);
  453. radio_id = bcm43xx_read16(bcm, BCM43xx_MMIO_RADIO_DATA_HIGH);
  454. radio_id <<= 16;
  455. bcm43xx_write16(bcm, BCM43xx_MMIO_RADIO_CONTROL, BCM43xx_RADIOCTL_ID);
  456. radio_id |= bcm43xx_read16(bcm, BCM43xx_MMIO_RADIO_DATA_LOW);
  457. }
  458. manufact = (radio_id & 0x00000FFF);
  459. version = (radio_id & 0x0FFFF000) >> 12;
  460. revision = (radio_id & 0xF0000000) >> 28;
  461. dprintk(KERN_INFO PFX "Detected Radio: ID: %x (Manuf: %x Ver: %x Rev: %x)\n",
  462. radio_id, manufact, version, revision);
  463. switch (phy->type) {
  464. case BCM43xx_PHYTYPE_A:
  465. if ((version != 0x2060) || (revision != 1) || (manufact != 0x17f))
  466. goto err_unsupported_radio;
  467. break;
  468. case BCM43xx_PHYTYPE_B:
  469. if ((version & 0xFFF0) != 0x2050)
  470. goto err_unsupported_radio;
  471. break;
  472. case BCM43xx_PHYTYPE_G:
  473. if (version != 0x2050)
  474. goto err_unsupported_radio;
  475. break;
  476. }
  477. radio->manufact = manufact;
  478. radio->version = version;
  479. radio->revision = revision;
  480. /* Set default attenuation values. */
  481. radio->baseband_atten = bcm43xx_default_baseband_attenuation(bcm);
  482. radio->radio_atten = bcm43xx_default_radio_attenuation(bcm);
  483. radio->txctl1 = bcm43xx_default_txctl1(bcm);
  484. if (phy->type == BCM43xx_PHYTYPE_A)
  485. radio->txpower_desired = bcm->sprom.maxpower_aphy;
  486. else
  487. radio->txpower_desired = bcm->sprom.maxpower_bgphy;
  488. /* Initialize the in-memory nrssi Lookup Table. */
  489. for (i = 0; i < 64; i++)
  490. radio->nrssi_lt[i] = i;
  491. return 0;
  492. err_unsupported_radio:
  493. printk(KERN_ERR PFX "Unsupported Radio connected to the PHY!\n");
  494. return -ENODEV;
  495. }
  496. static const char * bcm43xx_locale_iso(u8 locale)
  497. {
  498. /* ISO 3166-1 country codes.
  499. * Note that there aren't ISO 3166-1 codes for
  500. * all or locales. (Not all locales are countries)
  501. */
  502. switch (locale) {
  503. case BCM43xx_LOCALE_WORLD:
  504. case BCM43xx_LOCALE_ALL:
  505. return "XX";
  506. case BCM43xx_LOCALE_THAILAND:
  507. return "TH";
  508. case BCM43xx_LOCALE_ISRAEL:
  509. return "IL";
  510. case BCM43xx_LOCALE_JORDAN:
  511. return "JO";
  512. case BCM43xx_LOCALE_CHINA:
  513. return "CN";
  514. case BCM43xx_LOCALE_JAPAN:
  515. case BCM43xx_LOCALE_JAPAN_HIGH:
  516. return "JP";
  517. case BCM43xx_LOCALE_USA_CANADA_ANZ:
  518. case BCM43xx_LOCALE_USA_LOW:
  519. return "US";
  520. case BCM43xx_LOCALE_EUROPE:
  521. return "EU";
  522. case BCM43xx_LOCALE_NONE:
  523. return " ";
  524. }
  525. assert(0);
  526. return " ";
  527. }
  528. static const char * bcm43xx_locale_string(u8 locale)
  529. {
  530. switch (locale) {
  531. case BCM43xx_LOCALE_WORLD:
  532. return "World";
  533. case BCM43xx_LOCALE_THAILAND:
  534. return "Thailand";
  535. case BCM43xx_LOCALE_ISRAEL:
  536. return "Israel";
  537. case BCM43xx_LOCALE_JORDAN:
  538. return "Jordan";
  539. case BCM43xx_LOCALE_CHINA:
  540. return "China";
  541. case BCM43xx_LOCALE_JAPAN:
  542. return "Japan";
  543. case BCM43xx_LOCALE_USA_CANADA_ANZ:
  544. return "USA/Canada/ANZ";
  545. case BCM43xx_LOCALE_EUROPE:
  546. return "Europe";
  547. case BCM43xx_LOCALE_USA_LOW:
  548. return "USAlow";
  549. case BCM43xx_LOCALE_JAPAN_HIGH:
  550. return "JapanHigh";
  551. case BCM43xx_LOCALE_ALL:
  552. return "All";
  553. case BCM43xx_LOCALE_NONE:
  554. return "None";
  555. }
  556. assert(0);
  557. return "";
  558. }
  559. static inline u8 bcm43xx_crc8(u8 crc, u8 data)
  560. {
  561. static const u8 t[] = {
  562. 0x00, 0xF7, 0xB9, 0x4E, 0x25, 0xD2, 0x9C, 0x6B,
  563. 0x4A, 0xBD, 0xF3, 0x04, 0x6F, 0x98, 0xD6, 0x21,
  564. 0x94, 0x63, 0x2D, 0xDA, 0xB1, 0x46, 0x08, 0xFF,
  565. 0xDE, 0x29, 0x67, 0x90, 0xFB, 0x0C, 0x42, 0xB5,
  566. 0x7F, 0x88, 0xC6, 0x31, 0x5A, 0xAD, 0xE3, 0x14,
  567. 0x35, 0xC2, 0x8C, 0x7B, 0x10, 0xE7, 0xA9, 0x5E,
  568. 0xEB, 0x1C, 0x52, 0xA5, 0xCE, 0x39, 0x77, 0x80,
  569. 0xA1, 0x56, 0x18, 0xEF, 0x84, 0x73, 0x3D, 0xCA,
  570. 0xFE, 0x09, 0x47, 0xB0, 0xDB, 0x2C, 0x62, 0x95,
  571. 0xB4, 0x43, 0x0D, 0xFA, 0x91, 0x66, 0x28, 0xDF,
  572. 0x6A, 0x9D, 0xD3, 0x24, 0x4F, 0xB8, 0xF6, 0x01,
  573. 0x20, 0xD7, 0x99, 0x6E, 0x05, 0xF2, 0xBC, 0x4B,
  574. 0x81, 0x76, 0x38, 0xCF, 0xA4, 0x53, 0x1D, 0xEA,
  575. 0xCB, 0x3C, 0x72, 0x85, 0xEE, 0x19, 0x57, 0xA0,
  576. 0x15, 0xE2, 0xAC, 0x5B, 0x30, 0xC7, 0x89, 0x7E,
  577. 0x5F, 0xA8, 0xE6, 0x11, 0x7A, 0x8D, 0xC3, 0x34,
  578. 0xAB, 0x5C, 0x12, 0xE5, 0x8E, 0x79, 0x37, 0xC0,
  579. 0xE1, 0x16, 0x58, 0xAF, 0xC4, 0x33, 0x7D, 0x8A,
  580. 0x3F, 0xC8, 0x86, 0x71, 0x1A, 0xED, 0xA3, 0x54,
  581. 0x75, 0x82, 0xCC, 0x3B, 0x50, 0xA7, 0xE9, 0x1E,
  582. 0xD4, 0x23, 0x6D, 0x9A, 0xF1, 0x06, 0x48, 0xBF,
  583. 0x9E, 0x69, 0x27, 0xD0, 0xBB, 0x4C, 0x02, 0xF5,
  584. 0x40, 0xB7, 0xF9, 0x0E, 0x65, 0x92, 0xDC, 0x2B,
  585. 0x0A, 0xFD, 0xB3, 0x44, 0x2F, 0xD8, 0x96, 0x61,
  586. 0x55, 0xA2, 0xEC, 0x1B, 0x70, 0x87, 0xC9, 0x3E,
  587. 0x1F, 0xE8, 0xA6, 0x51, 0x3A, 0xCD, 0x83, 0x74,
  588. 0xC1, 0x36, 0x78, 0x8F, 0xE4, 0x13, 0x5D, 0xAA,
  589. 0x8B, 0x7C, 0x32, 0xC5, 0xAE, 0x59, 0x17, 0xE0,
  590. 0x2A, 0xDD, 0x93, 0x64, 0x0F, 0xF8, 0xB6, 0x41,
  591. 0x60, 0x97, 0xD9, 0x2E, 0x45, 0xB2, 0xFC, 0x0B,
  592. 0xBE, 0x49, 0x07, 0xF0, 0x9B, 0x6C, 0x22, 0xD5,
  593. 0xF4, 0x03, 0x4D, 0xBA, 0xD1, 0x26, 0x68, 0x9F,
  594. };
  595. return t[crc ^ data];
  596. }
  597. static u8 bcm43xx_sprom_crc(const u16 *sprom)
  598. {
  599. int word;
  600. u8 crc = 0xFF;
  601. for (word = 0; word < BCM43xx_SPROM_SIZE - 1; word++) {
  602. crc = bcm43xx_crc8(crc, sprom[word] & 0x00FF);
  603. crc = bcm43xx_crc8(crc, (sprom[word] & 0xFF00) >> 8);
  604. }
  605. crc = bcm43xx_crc8(crc, sprom[BCM43xx_SPROM_VERSION] & 0x00FF);
  606. crc ^= 0xFF;
  607. return crc;
  608. }
  609. int bcm43xx_sprom_read(struct bcm43xx_private *bcm, u16 *sprom)
  610. {
  611. int i;
  612. u8 crc, expected_crc;
  613. for (i = 0; i < BCM43xx_SPROM_SIZE; i++)
  614. sprom[i] = bcm43xx_read16(bcm, BCM43xx_SPROM_BASE + (i * 2));
  615. /* CRC-8 check. */
  616. crc = bcm43xx_sprom_crc(sprom);
  617. expected_crc = (sprom[BCM43xx_SPROM_VERSION] & 0xFF00) >> 8;
  618. if (crc != expected_crc) {
  619. printk(KERN_WARNING PFX "WARNING: Invalid SPROM checksum "
  620. "(0x%02X, expected: 0x%02X)\n",
  621. crc, expected_crc);
  622. return -EINVAL;
  623. }
  624. return 0;
  625. }
  626. int bcm43xx_sprom_write(struct bcm43xx_private *bcm, const u16 *sprom)
  627. {
  628. int i, err;
  629. u8 crc, expected_crc;
  630. u32 spromctl;
  631. /* CRC-8 validation of the input data. */
  632. crc = bcm43xx_sprom_crc(sprom);
  633. expected_crc = (sprom[BCM43xx_SPROM_VERSION] & 0xFF00) >> 8;
  634. if (crc != expected_crc) {
  635. printk(KERN_ERR PFX "SPROM input data: Invalid CRC\n");
  636. return -EINVAL;
  637. }
  638. printk(KERN_INFO PFX "Writing SPROM. Do NOT turn off the power! Please stand by...\n");
  639. err = bcm43xx_pci_read_config32(bcm, BCM43xx_PCICFG_SPROMCTL, &spromctl);
  640. if (err)
  641. goto err_ctlreg;
  642. spromctl |= 0x10; /* SPROM WRITE enable. */
  643. bcm43xx_pci_write_config32(bcm, BCM43xx_PCICFG_SPROMCTL, spromctl);
  644. if (err)
  645. goto err_ctlreg;
  646. /* We must burn lots of CPU cycles here, but that does not
  647. * really matter as one does not write the SPROM every other minute...
  648. */
  649. printk(KERN_INFO PFX "[ 0%%");
  650. mdelay(500);
  651. for (i = 0; i < BCM43xx_SPROM_SIZE; i++) {
  652. if (i == 16)
  653. printk("25%%");
  654. else if (i == 32)
  655. printk("50%%");
  656. else if (i == 48)
  657. printk("75%%");
  658. else if (i % 2)
  659. printk(".");
  660. bcm43xx_write16(bcm, BCM43xx_SPROM_BASE + (i * 2), sprom[i]);
  661. mmiowb();
  662. mdelay(20);
  663. }
  664. spromctl &= ~0x10; /* SPROM WRITE enable. */
  665. bcm43xx_pci_write_config32(bcm, BCM43xx_PCICFG_SPROMCTL, spromctl);
  666. if (err)
  667. goto err_ctlreg;
  668. mdelay(500);
  669. printk("100%% ]\n");
  670. printk(KERN_INFO PFX "SPROM written.\n");
  671. bcm43xx_controller_restart(bcm, "SPROM update");
  672. return 0;
  673. err_ctlreg:
  674. printk(KERN_ERR PFX "Could not access SPROM control register.\n");
  675. return -ENODEV;
  676. }
  677. static int bcm43xx_sprom_extract(struct bcm43xx_private *bcm)
  678. {
  679. u16 value;
  680. u16 *sprom;
  681. #ifdef CONFIG_BCM947XX
  682. char *c;
  683. #endif
  684. sprom = kzalloc(BCM43xx_SPROM_SIZE * sizeof(u16),
  685. GFP_KERNEL);
  686. if (!sprom) {
  687. printk(KERN_ERR PFX "sprom_extract OOM\n");
  688. return -ENOMEM;
  689. }
  690. #ifdef CONFIG_BCM947XX
  691. sprom[BCM43xx_SPROM_BOARDFLAGS2] = atoi(nvram_get("boardflags2"));
  692. sprom[BCM43xx_SPROM_BOARDFLAGS] = atoi(nvram_get("boardflags"));
  693. if ((c = nvram_get("il0macaddr")) != NULL)
  694. e_aton(c, (char *) &(sprom[BCM43xx_SPROM_IL0MACADDR]));
  695. if ((c = nvram_get("et1macaddr")) != NULL)
  696. e_aton(c, (char *) &(sprom[BCM43xx_SPROM_ET1MACADDR]));
  697. sprom[BCM43xx_SPROM_PA0B0] = atoi(nvram_get("pa0b0"));
  698. sprom[BCM43xx_SPROM_PA0B1] = atoi(nvram_get("pa0b1"));
  699. sprom[BCM43xx_SPROM_PA0B2] = atoi(nvram_get("pa0b2"));
  700. sprom[BCM43xx_SPROM_PA1B0] = atoi(nvram_get("pa1b0"));
  701. sprom[BCM43xx_SPROM_PA1B1] = atoi(nvram_get("pa1b1"));
  702. sprom[BCM43xx_SPROM_PA1B2] = atoi(nvram_get("pa1b2"));
  703. sprom[BCM43xx_SPROM_BOARDREV] = atoi(nvram_get("boardrev"));
  704. #else
  705. bcm43xx_sprom_read(bcm, sprom);
  706. #endif
  707. /* boardflags2 */
  708. value = sprom[BCM43xx_SPROM_BOARDFLAGS2];
  709. bcm->sprom.boardflags2 = value;
  710. /* il0macaddr */
  711. value = sprom[BCM43xx_SPROM_IL0MACADDR + 0];
  712. *(((u16 *)bcm->sprom.il0macaddr) + 0) = cpu_to_be16(value);
  713. value = sprom[BCM43xx_SPROM_IL0MACADDR + 1];
  714. *(((u16 *)bcm->sprom.il0macaddr) + 1) = cpu_to_be16(value);
  715. value = sprom[BCM43xx_SPROM_IL0MACADDR + 2];
  716. *(((u16 *)bcm->sprom.il0macaddr) + 2) = cpu_to_be16(value);
  717. /* et0macaddr */
  718. value = sprom[BCM43xx_SPROM_ET0MACADDR + 0];
  719. *(((u16 *)bcm->sprom.et0macaddr) + 0) = cpu_to_be16(value);
  720. value = sprom[BCM43xx_SPROM_ET0MACADDR + 1];
  721. *(((u16 *)bcm->sprom.et0macaddr) + 1) = cpu_to_be16(value);
  722. value = sprom[BCM43xx_SPROM_ET0MACADDR + 2];
  723. *(((u16 *)bcm->sprom.et0macaddr) + 2) = cpu_to_be16(value);
  724. /* et1macaddr */
  725. value = sprom[BCM43xx_SPROM_ET1MACADDR + 0];
  726. *(((u16 *)bcm->sprom.et1macaddr) + 0) = cpu_to_be16(value);
  727. value = sprom[BCM43xx_SPROM_ET1MACADDR + 1];
  728. *(((u16 *)bcm->sprom.et1macaddr) + 1) = cpu_to_be16(value);
  729. value = sprom[BCM43xx_SPROM_ET1MACADDR + 2];
  730. *(((u16 *)bcm->sprom.et1macaddr) + 2) = cpu_to_be16(value);
  731. /* ethernet phy settings */
  732. value = sprom[BCM43xx_SPROM_ETHPHY];
  733. bcm->sprom.et0phyaddr = (value & 0x001F);
  734. bcm->sprom.et1phyaddr = (value & 0x03E0) >> 5;
  735. bcm->sprom.et0mdcport = (value & (1 << 14)) >> 14;
  736. bcm->sprom.et1mdcport = (value & (1 << 15)) >> 15;
  737. /* boardrev, antennas, locale */
  738. value = sprom[BCM43xx_SPROM_BOARDREV];
  739. bcm->sprom.boardrev = (value & 0x00FF);
  740. bcm->sprom.locale = (value & 0x0F00) >> 8;
  741. bcm->sprom.antennas_aphy = (value & 0x3000) >> 12;
  742. bcm->sprom.antennas_bgphy = (value & 0xC000) >> 14;
  743. if (modparam_locale != -1) {
  744. if (modparam_locale >= 0 && modparam_locale <= 11) {
  745. bcm->sprom.locale = modparam_locale;
  746. printk(KERN_WARNING PFX "Operating with modified "
  747. "LocaleCode %u (%s)\n",
  748. bcm->sprom.locale,
  749. bcm43xx_locale_string(bcm->sprom.locale));
  750. } else {
  751. printk(KERN_WARNING PFX "Module parameter \"locale\" "
  752. "invalid value. (0 - 11)\n");
  753. }
  754. }
  755. /* pa0b* */
  756. value = sprom[BCM43xx_SPROM_PA0B0];
  757. bcm->sprom.pa0b0 = value;
  758. value = sprom[BCM43xx_SPROM_PA0B1];
  759. bcm->sprom.pa0b1 = value;
  760. value = sprom[BCM43xx_SPROM_PA0B2];
  761. bcm->sprom.pa0b2 = value;
  762. /* wl0gpio* */
  763. value = sprom[BCM43xx_SPROM_WL0GPIO0];
  764. if (value == 0x0000)
  765. value = 0xFFFF;
  766. bcm->sprom.wl0gpio0 = value & 0x00FF;
  767. bcm->sprom.wl0gpio1 = (value & 0xFF00) >> 8;
  768. value = sprom[BCM43xx_SPROM_WL0GPIO2];
  769. if (value == 0x0000)
  770. value = 0xFFFF;
  771. bcm->sprom.wl0gpio2 = value & 0x00FF;
  772. bcm->sprom.wl0gpio3 = (value & 0xFF00) >> 8;
  773. /* maxpower */
  774. value = sprom[BCM43xx_SPROM_MAXPWR];
  775. bcm->sprom.maxpower_aphy = (value & 0xFF00) >> 8;
  776. bcm->sprom.maxpower_bgphy = value & 0x00FF;
  777. /* pa1b* */
  778. value = sprom[BCM43xx_SPROM_PA1B0];
  779. bcm->sprom.pa1b0 = value;
  780. value = sprom[BCM43xx_SPROM_PA1B1];
  781. bcm->sprom.pa1b1 = value;
  782. value = sprom[BCM43xx_SPROM_PA1B2];
  783. bcm->sprom.pa1b2 = value;
  784. /* idle tssi target */
  785. value = sprom[BCM43xx_SPROM_IDL_TSSI_TGT];
  786. bcm->sprom.idle_tssi_tgt_aphy = value & 0x00FF;
  787. bcm->sprom.idle_tssi_tgt_bgphy = (value & 0xFF00) >> 8;
  788. /* boardflags */
  789. value = sprom[BCM43xx_SPROM_BOARDFLAGS];
  790. if (value == 0xFFFF)
  791. value = 0x0000;
  792. bcm->sprom.boardflags = value;
  793. /* boardflags workarounds */
  794. if (bcm->board_vendor == PCI_VENDOR_ID_DELL &&
  795. bcm->chip_id == 0x4301 &&
  796. bcm->board_revision == 0x74)
  797. bcm->sprom.boardflags |= BCM43xx_BFL_BTCOEXIST;
  798. if (bcm->board_vendor == PCI_VENDOR_ID_APPLE &&
  799. bcm->board_type == 0x4E &&
  800. bcm->board_revision > 0x40)
  801. bcm->sprom.boardflags |= BCM43xx_BFL_PACTRL;
  802. /* antenna gain */
  803. value = sprom[BCM43xx_SPROM_ANTENNA_GAIN];
  804. if (value == 0x0000 || value == 0xFFFF)
  805. value = 0x0202;
  806. /* convert values to Q5.2 */
  807. bcm->sprom.antennagain_aphy = ((value & 0xFF00) >> 8) * 4;
  808. bcm->sprom.antennagain_bgphy = (value & 0x00FF) * 4;
  809. kfree(sprom);
  810. return 0;
  811. }
  812. static void bcm43xx_geo_init(struct bcm43xx_private *bcm)
  813. {
  814. struct ieee80211_geo geo;
  815. struct ieee80211_channel *chan;
  816. int have_a = 0, have_bg = 0;
  817. int i;
  818. u8 channel;
  819. struct bcm43xx_phyinfo *phy;
  820. const char *iso_country;
  821. memset(&geo, 0, sizeof(geo));
  822. for (i = 0; i < bcm->nr_80211_available; i++) {
  823. phy = &(bcm->core_80211_ext[i].phy);
  824. switch (phy->type) {
  825. case BCM43xx_PHYTYPE_B:
  826. case BCM43xx_PHYTYPE_G:
  827. have_bg = 1;
  828. break;
  829. case BCM43xx_PHYTYPE_A:
  830. have_a = 1;
  831. break;
  832. default:
  833. assert(0);
  834. }
  835. }
  836. iso_country = bcm43xx_locale_iso(bcm->sprom.locale);
  837. if (have_a) {
  838. for (i = 0, channel = 0; channel < 201; channel++) {
  839. chan = &geo.a[i++];
  840. chan->freq = bcm43xx_channel_to_freq_a(channel);
  841. chan->channel = channel;
  842. }
  843. geo.a_channels = i;
  844. }
  845. if (have_bg) {
  846. for (i = 0, channel = 1; channel < 15; channel++) {
  847. chan = &geo.bg[i++];
  848. chan->freq = bcm43xx_channel_to_freq_bg(channel);
  849. chan->channel = channel;
  850. }
  851. geo.bg_channels = i;
  852. }
  853. memcpy(geo.name, iso_country, 2);
  854. if (0 /*TODO: Outdoor use only */)
  855. geo.name[2] = 'O';
  856. else if (0 /*TODO: Indoor use only */)
  857. geo.name[2] = 'I';
  858. else
  859. geo.name[2] = ' ';
  860. geo.name[3] = '\0';
  861. ieee80211_set_geo(bcm->ieee, &geo);
  862. }
  863. /* DummyTransmission function, as documented on
  864. * http://bcm-specs.sipsolutions.net/DummyTransmission
  865. */
  866. void bcm43xx_dummy_transmission(struct bcm43xx_private *bcm)
  867. {
  868. struct bcm43xx_phyinfo *phy = bcm43xx_current_phy(bcm);
  869. struct bcm43xx_radioinfo *radio = bcm43xx_current_radio(bcm);
  870. unsigned int i, max_loop;
  871. u16 value = 0;
  872. u32 buffer[5] = {
  873. 0x00000000,
  874. 0x0000D400,
  875. 0x00000000,
  876. 0x00000001,
  877. 0x00000000,
  878. };
  879. switch (phy->type) {
  880. case BCM43xx_PHYTYPE_A:
  881. max_loop = 0x1E;
  882. buffer[0] = 0xCC010200;
  883. break;
  884. case BCM43xx_PHYTYPE_B:
  885. case BCM43xx_PHYTYPE_G:
  886. max_loop = 0xFA;
  887. buffer[0] = 0x6E840B00;
  888. break;
  889. default:
  890. assert(0);
  891. return;
  892. }
  893. for (i = 0; i < 5; i++)
  894. bcm43xx_ram_write(bcm, i * 4, buffer[i]);
  895. bcm43xx_read32(bcm, BCM43xx_MMIO_STATUS_BITFIELD); /* dummy read */
  896. bcm43xx_write16(bcm, 0x0568, 0x0000);
  897. bcm43xx_write16(bcm, 0x07C0, 0x0000);
  898. bcm43xx_write16(bcm, 0x050C, ((phy->type == BCM43xx_PHYTYPE_A) ? 1 : 0));
  899. bcm43xx_write16(bcm, 0x0508, 0x0000);
  900. bcm43xx_write16(bcm, 0x050A, 0x0000);
  901. bcm43xx_write16(bcm, 0x054C, 0x0000);
  902. bcm43xx_write16(bcm, 0x056A, 0x0014);
  903. bcm43xx_write16(bcm, 0x0568, 0x0826);
  904. bcm43xx_write16(bcm, 0x0500, 0x0000);
  905. bcm43xx_write16(bcm, 0x0502, 0x0030);
  906. if (radio->version == 0x2050 && radio->revision <= 0x5)
  907. bcm43xx_radio_write16(bcm, 0x0051, 0x0017);
  908. for (i = 0x00; i < max_loop; i++) {
  909. value = bcm43xx_read16(bcm, 0x050E);
  910. if (value & 0x0080)
  911. break;
  912. udelay(10);
  913. }
  914. for (i = 0x00; i < 0x0A; i++) {
  915. value = bcm43xx_read16(bcm, 0x050E);
  916. if (value & 0x0400)
  917. break;
  918. udelay(10);
  919. }
  920. for (i = 0x00; i < 0x0A; i++) {
  921. value = bcm43xx_read16(bcm, 0x0690);
  922. if (!(value & 0x0100))
  923. break;
  924. udelay(10);
  925. }
  926. if (radio->version == 0x2050 && radio->revision <= 0x5)
  927. bcm43xx_radio_write16(bcm, 0x0051, 0x0037);
  928. }
  929. static void key_write(struct bcm43xx_private *bcm,
  930. u8 index, u8 algorithm, const u16 *key)
  931. {
  932. unsigned int i, basic_wep = 0;
  933. u32 offset;
  934. u16 value;
  935. /* Write associated key information */
  936. bcm43xx_shm_write16(bcm, BCM43xx_SHM_SHARED, 0x100 + (index * 2),
  937. ((index << 4) | (algorithm & 0x0F)));
  938. /* The first 4 WEP keys need extra love */
  939. if (((algorithm == BCM43xx_SEC_ALGO_WEP) ||
  940. (algorithm == BCM43xx_SEC_ALGO_WEP104)) && (index < 4))
  941. basic_wep = 1;
  942. /* Write key payload, 8 little endian words */
  943. offset = bcm->security_offset + (index * BCM43xx_SEC_KEYSIZE);
  944. for (i = 0; i < (BCM43xx_SEC_KEYSIZE / sizeof(u16)); i++) {
  945. value = cpu_to_le16(key[i]);
  946. bcm43xx_shm_write16(bcm, BCM43xx_SHM_SHARED,
  947. offset + (i * 2), value);
  948. if (!basic_wep)
  949. continue;
  950. bcm43xx_shm_write16(bcm, BCM43xx_SHM_SHARED,
  951. offset + (i * 2) + 4 * BCM43xx_SEC_KEYSIZE,
  952. value);
  953. }
  954. }
  955. static void keymac_write(struct bcm43xx_private *bcm,
  956. u8 index, const u32 *addr)
  957. {
  958. /* for keys 0-3 there is no associated mac address */
  959. if (index < 4)
  960. return;
  961. index -= 4;
  962. if (bcm->current_core->rev >= 5) {
  963. bcm43xx_shm_write32(bcm,
  964. BCM43xx_SHM_HWMAC,
  965. index * 2,
  966. cpu_to_be32(*addr));
  967. bcm43xx_shm_write16(bcm,
  968. BCM43xx_SHM_HWMAC,
  969. (index * 2) + 1,
  970. cpu_to_be16(*((u16 *)(addr + 1))));
  971. } else {
  972. if (index < 8) {
  973. TODO(); /* Put them in the macaddress filter */
  974. } else {
  975. TODO();
  976. /* Put them BCM43xx_SHM_SHARED, stating index 0x0120.
  977. Keep in mind to update the count of keymacs in 0x003E as well! */
  978. }
  979. }
  980. }
  981. static int bcm43xx_key_write(struct bcm43xx_private *bcm,
  982. u8 index, u8 algorithm,
  983. const u8 *_key, int key_len,
  984. const u8 *mac_addr)
  985. {
  986. u8 key[BCM43xx_SEC_KEYSIZE] = { 0 };
  987. if (index >= ARRAY_SIZE(bcm->key))
  988. return -EINVAL;
  989. if (key_len > ARRAY_SIZE(key))
  990. return -EINVAL;
  991. if (algorithm < 1 || algorithm > 5)
  992. return -EINVAL;
  993. memcpy(key, _key, key_len);
  994. key_write(bcm, index, algorithm, (const u16 *)key);
  995. keymac_write(bcm, index, (const u32 *)mac_addr);
  996. bcm->key[index].algorithm = algorithm;
  997. return 0;
  998. }
  999. static void bcm43xx_clear_keys(struct bcm43xx_private *bcm)
  1000. {
  1001. static const u32 zero_mac[2] = { 0 };
  1002. unsigned int i,j, nr_keys = 54;
  1003. u16 offset;
  1004. if (bcm->current_core->rev < 5)
  1005. nr_keys = 16;
  1006. assert(nr_keys <= ARRAY_SIZE(bcm->key));
  1007. for (i = 0; i < nr_keys; i++) {
  1008. bcm->key[i].enabled = 0;
  1009. /* returns for i < 4 immediately */
  1010. keymac_write(bcm, i, zero_mac);
  1011. bcm43xx_shm_write16(bcm, BCM43xx_SHM_SHARED,
  1012. 0x100 + (i * 2), 0x0000);
  1013. for (j = 0; j < 8; j++) {
  1014. offset = bcm->security_offset + (j * 4) + (i * BCM43xx_SEC_KEYSIZE);
  1015. bcm43xx_shm_write16(bcm, BCM43xx_SHM_SHARED,
  1016. offset, 0x0000);
  1017. }
  1018. }
  1019. dprintk(KERN_INFO PFX "Keys cleared\n");
  1020. }
  1021. /* Lowlevel core-switch function. This is only to be used in
  1022. * bcm43xx_switch_core() and bcm43xx_probe_cores()
  1023. */
  1024. static int _switch_core(struct bcm43xx_private *bcm, int core)
  1025. {
  1026. int err;
  1027. int attempts = 0;
  1028. u32 current_core;
  1029. assert(core >= 0);
  1030. while (1) {
  1031. err = bcm43xx_pci_write_config32(bcm, BCM43xx_PCICFG_ACTIVE_CORE,
  1032. (core * 0x1000) + 0x18000000);
  1033. if (unlikely(err))
  1034. goto error;
  1035. err = bcm43xx_pci_read_config32(bcm, BCM43xx_PCICFG_ACTIVE_CORE,
  1036. &current_core);
  1037. if (unlikely(err))
  1038. goto error;
  1039. current_core = (current_core - 0x18000000) / 0x1000;
  1040. if (current_core == core)
  1041. break;
  1042. if (unlikely(attempts++ > BCM43xx_SWITCH_CORE_MAX_RETRIES))
  1043. goto error;
  1044. udelay(10);
  1045. }
  1046. #ifdef CONFIG_BCM947XX
  1047. if (bcm->pci_dev->bus->number == 0)
  1048. bcm->current_core_offset = 0x1000 * core;
  1049. else
  1050. bcm->current_core_offset = 0;
  1051. #endif
  1052. return 0;
  1053. error:
  1054. printk(KERN_ERR PFX "Failed to switch to core %d\n", core);
  1055. return -ENODEV;
  1056. }
  1057. int bcm43xx_switch_core(struct bcm43xx_private *bcm, struct bcm43xx_coreinfo *new_core)
  1058. {
  1059. int err;
  1060. if (unlikely(!new_core))
  1061. return 0;
  1062. if (!new_core->available)
  1063. return -ENODEV;
  1064. if (bcm->current_core == new_core)
  1065. return 0;
  1066. err = _switch_core(bcm, new_core->index);
  1067. if (unlikely(err))
  1068. goto out;
  1069. bcm->current_core = new_core;
  1070. bcm->current_80211_core_idx = -1;
  1071. if (new_core->id == BCM43xx_COREID_80211)
  1072. bcm->current_80211_core_idx = (int)(new_core - &(bcm->core_80211[0]));
  1073. out:
  1074. return err;
  1075. }
  1076. static int bcm43xx_core_enabled(struct bcm43xx_private *bcm)
  1077. {
  1078. u32 value;
  1079. value = bcm43xx_read32(bcm, BCM43xx_CIR_SBTMSTATELOW);
  1080. value &= BCM43xx_SBTMSTATELOW_CLOCK | BCM43xx_SBTMSTATELOW_RESET
  1081. | BCM43xx_SBTMSTATELOW_REJECT;
  1082. return (value == BCM43xx_SBTMSTATELOW_CLOCK);
  1083. }
  1084. /* disable current core */
  1085. static int bcm43xx_core_disable(struct bcm43xx_private *bcm, u32 core_flags)
  1086. {
  1087. u32 sbtmstatelow;
  1088. u32 sbtmstatehigh;
  1089. int i;
  1090. /* fetch sbtmstatelow from core information registers */
  1091. sbtmstatelow = bcm43xx_read32(bcm, BCM43xx_CIR_SBTMSTATELOW);
  1092. /* core is already in reset */
  1093. if (sbtmstatelow & BCM43xx_SBTMSTATELOW_RESET)
  1094. goto out;
  1095. if (sbtmstatelow & BCM43xx_SBTMSTATELOW_CLOCK) {
  1096. sbtmstatelow = BCM43xx_SBTMSTATELOW_CLOCK |
  1097. BCM43xx_SBTMSTATELOW_REJECT;
  1098. bcm43xx_write32(bcm, BCM43xx_CIR_SBTMSTATELOW, sbtmstatelow);
  1099. for (i = 0; i < 1000; i++) {
  1100. sbtmstatelow = bcm43xx_read32(bcm, BCM43xx_CIR_SBTMSTATELOW);
  1101. if (sbtmstatelow & BCM43xx_SBTMSTATELOW_REJECT) {
  1102. i = -1;
  1103. break;
  1104. }
  1105. udelay(10);
  1106. }
  1107. if (i != -1) {
  1108. printk(KERN_ERR PFX "Error: core_disable() REJECT timeout!\n");
  1109. return -EBUSY;
  1110. }
  1111. for (i = 0; i < 1000; i++) {
  1112. sbtmstatehigh = bcm43xx_read32(bcm, BCM43xx_CIR_SBTMSTATEHIGH);
  1113. if (!(sbtmstatehigh & BCM43xx_SBTMSTATEHIGH_BUSY)) {
  1114. i = -1;
  1115. break;
  1116. }
  1117. udelay(10);
  1118. }
  1119. if (i != -1) {
  1120. printk(KERN_ERR PFX "Error: core_disable() BUSY timeout!\n");
  1121. return -EBUSY;
  1122. }
  1123. sbtmstatelow = BCM43xx_SBTMSTATELOW_FORCE_GATE_CLOCK |
  1124. BCM43xx_SBTMSTATELOW_REJECT |
  1125. BCM43xx_SBTMSTATELOW_RESET |
  1126. BCM43xx_SBTMSTATELOW_CLOCK |
  1127. core_flags;
  1128. bcm43xx_write32(bcm, BCM43xx_CIR_SBTMSTATELOW, sbtmstatelow);
  1129. udelay(10);
  1130. }
  1131. sbtmstatelow = BCM43xx_SBTMSTATELOW_RESET |
  1132. BCM43xx_SBTMSTATELOW_REJECT |
  1133. core_flags;
  1134. bcm43xx_write32(bcm, BCM43xx_CIR_SBTMSTATELOW, sbtmstatelow);
  1135. out:
  1136. bcm->current_core->enabled = 0;
  1137. return 0;
  1138. }
  1139. /* enable (reset) current core */
  1140. static int bcm43xx_core_enable(struct bcm43xx_private *bcm, u32 core_flags)
  1141. {
  1142. u32 sbtmstatelow;
  1143. u32 sbtmstatehigh;
  1144. u32 sbimstate;
  1145. int err;
  1146. err = bcm43xx_core_disable(bcm, core_flags);
  1147. if (err)
  1148. goto out;
  1149. sbtmstatelow = BCM43xx_SBTMSTATELOW_CLOCK |
  1150. BCM43xx_SBTMSTATELOW_RESET |
  1151. BCM43xx_SBTMSTATELOW_FORCE_GATE_CLOCK |
  1152. core_flags;
  1153. bcm43xx_write32(bcm, BCM43xx_CIR_SBTMSTATELOW, sbtmstatelow);
  1154. udelay(1);
  1155. sbtmstatehigh = bcm43xx_read32(bcm, BCM43xx_CIR_SBTMSTATEHIGH);
  1156. if (sbtmstatehigh & BCM43xx_SBTMSTATEHIGH_SERROR) {
  1157. sbtmstatehigh = 0x00000000;
  1158. bcm43xx_write32(bcm, BCM43xx_CIR_SBTMSTATEHIGH, sbtmstatehigh);
  1159. }
  1160. sbimstate = bcm43xx_read32(bcm, BCM43xx_CIR_SBIMSTATE);
  1161. if (sbimstate & (BCM43xx_SBIMSTATE_IB_ERROR | BCM43xx_SBIMSTATE_TIMEOUT)) {
  1162. sbimstate &= ~(BCM43xx_SBIMSTATE_IB_ERROR | BCM43xx_SBIMSTATE_TIMEOUT);
  1163. bcm43xx_write32(bcm, BCM43xx_CIR_SBIMSTATE, sbimstate);
  1164. }
  1165. sbtmstatelow = BCM43xx_SBTMSTATELOW_CLOCK |
  1166. BCM43xx_SBTMSTATELOW_FORCE_GATE_CLOCK |
  1167. core_flags;
  1168. bcm43xx_write32(bcm, BCM43xx_CIR_SBTMSTATELOW, sbtmstatelow);
  1169. udelay(1);
  1170. sbtmstatelow = BCM43xx_SBTMSTATELOW_CLOCK | core_flags;
  1171. bcm43xx_write32(bcm, BCM43xx_CIR_SBTMSTATELOW, sbtmstatelow);
  1172. udelay(1);
  1173. bcm->current_core->enabled = 1;
  1174. assert(err == 0);
  1175. out:
  1176. return err;
  1177. }
  1178. /* http://bcm-specs.sipsolutions.net/80211CoreReset */
  1179. void bcm43xx_wireless_core_reset(struct bcm43xx_private *bcm, int connect_phy)
  1180. {
  1181. u32 flags = 0x00040000;
  1182. if ((bcm43xx_core_enabled(bcm)) &&
  1183. !bcm43xx_using_pio(bcm)) {
  1184. //FIXME: Do we _really_ want #ifndef CONFIG_BCM947XX here?
  1185. #ifndef CONFIG_BCM947XX
  1186. /* reset all used DMA controllers. */
  1187. bcm43xx_dmacontroller_tx_reset(bcm, BCM43xx_MMIO_DMA1_BASE);
  1188. bcm43xx_dmacontroller_tx_reset(bcm, BCM43xx_MMIO_DMA2_BASE);
  1189. bcm43xx_dmacontroller_tx_reset(bcm, BCM43xx_MMIO_DMA3_BASE);
  1190. bcm43xx_dmacontroller_tx_reset(bcm, BCM43xx_MMIO_DMA4_BASE);
  1191. bcm43xx_dmacontroller_rx_reset(bcm, BCM43xx_MMIO_DMA1_BASE);
  1192. if (bcm->current_core->rev < 5)
  1193. bcm43xx_dmacontroller_rx_reset(bcm, BCM43xx_MMIO_DMA4_BASE);
  1194. #endif
  1195. }
  1196. if (bcm->shutting_down) {
  1197. bcm43xx_write32(bcm, BCM43xx_MMIO_STATUS_BITFIELD,
  1198. bcm43xx_read32(bcm, BCM43xx_MMIO_STATUS_BITFIELD)
  1199. & ~(BCM43xx_SBF_MAC_ENABLED | 0x00000002));
  1200. } else {
  1201. if (connect_phy)
  1202. flags |= 0x20000000;
  1203. bcm43xx_phy_connect(bcm, connect_phy);
  1204. bcm43xx_core_enable(bcm, flags);
  1205. bcm43xx_write16(bcm, 0x03E6, 0x0000);
  1206. bcm43xx_write32(bcm, BCM43xx_MMIO_STATUS_BITFIELD,
  1207. bcm43xx_read32(bcm, BCM43xx_MMIO_STATUS_BITFIELD)
  1208. | BCM43xx_SBF_400);
  1209. }
  1210. }
  1211. static void bcm43xx_wireless_core_disable(struct bcm43xx_private *bcm)
  1212. {
  1213. bcm43xx_radio_turn_off(bcm);
  1214. bcm43xx_write16(bcm, 0x03E6, 0x00F4);
  1215. bcm43xx_core_disable(bcm, 0);
  1216. }
  1217. /* Mark the current 80211 core inactive.
  1218. * "active_80211_core" is the other 80211 core, which is used.
  1219. */
  1220. static int bcm43xx_wireless_core_mark_inactive(struct bcm43xx_private *bcm,
  1221. struct bcm43xx_coreinfo *active_80211_core)
  1222. {
  1223. u32 sbtmstatelow;
  1224. struct bcm43xx_coreinfo *old_core;
  1225. int err = 0;
  1226. bcm43xx_interrupt_disable(bcm, BCM43xx_IRQ_ALL);
  1227. bcm43xx_radio_turn_off(bcm);
  1228. sbtmstatelow = bcm43xx_read32(bcm, BCM43xx_CIR_SBTMSTATELOW);
  1229. sbtmstatelow &= ~0x200a0000;
  1230. sbtmstatelow |= 0xa0000;
  1231. bcm43xx_write32(bcm, BCM43xx_CIR_SBTMSTATELOW, sbtmstatelow);
  1232. udelay(1);
  1233. sbtmstatelow = bcm43xx_read32(bcm, BCM43xx_CIR_SBTMSTATELOW);
  1234. sbtmstatelow &= ~0xa0000;
  1235. sbtmstatelow |= 0x80000;
  1236. bcm43xx_write32(bcm, BCM43xx_CIR_SBTMSTATELOW, sbtmstatelow);
  1237. udelay(1);
  1238. if (bcm43xx_current_phy(bcm)->type == BCM43xx_PHYTYPE_G) {
  1239. old_core = bcm->current_core;
  1240. err = bcm43xx_switch_core(bcm, active_80211_core);
  1241. if (err)
  1242. goto out;
  1243. sbtmstatelow = bcm43xx_read32(bcm, BCM43xx_CIR_SBTMSTATELOW);
  1244. sbtmstatelow &= ~0x20000000;
  1245. sbtmstatelow |= 0x20000000;
  1246. bcm43xx_write32(bcm, BCM43xx_CIR_SBTMSTATELOW, sbtmstatelow);
  1247. err = bcm43xx_switch_core(bcm, old_core);
  1248. }
  1249. out:
  1250. return err;
  1251. }
  1252. static void handle_irq_transmit_status(struct bcm43xx_private *bcm)
  1253. {
  1254. u32 v0, v1;
  1255. u16 tmp;
  1256. struct bcm43xx_xmitstatus stat;
  1257. while (1) {
  1258. v0 = bcm43xx_read32(bcm, BCM43xx_MMIO_XMITSTAT_0);
  1259. if (!v0)
  1260. break;
  1261. v1 = bcm43xx_read32(bcm, BCM43xx_MMIO_XMITSTAT_1);
  1262. stat.cookie = (v0 >> 16) & 0x0000FFFF;
  1263. tmp = (u16)((v0 & 0xFFF0) | ((v0 & 0xF) >> 1));
  1264. stat.flags = tmp & 0xFF;
  1265. stat.cnt1 = (tmp & 0x0F00) >> 8;
  1266. stat.cnt2 = (tmp & 0xF000) >> 12;
  1267. stat.seq = (u16)(v1 & 0xFFFF);
  1268. stat.unknown = (u16)((v1 >> 16) & 0xFF);
  1269. bcm43xx_debugfs_log_txstat(bcm, &stat);
  1270. if (stat.flags & BCM43xx_TXSTAT_FLAG_IGNORE)
  1271. continue;
  1272. if (!(stat.flags & BCM43xx_TXSTAT_FLAG_ACK)) {
  1273. //TODO: packet was not acked (was lost)
  1274. }
  1275. //TODO: There are more (unknown) flags to test. see bcm43xx_main.h
  1276. if (bcm43xx_using_pio(bcm))
  1277. bcm43xx_pio_handle_xmitstatus(bcm, &stat);
  1278. else
  1279. bcm43xx_dma_handle_xmitstatus(bcm, &stat);
  1280. }
  1281. }
  1282. static void bcm43xx_generate_noise_sample(struct bcm43xx_private *bcm)
  1283. {
  1284. bcm43xx_shm_write16(bcm, BCM43xx_SHM_SHARED, 0x408, 0x7F7F);
  1285. bcm43xx_shm_write16(bcm, BCM43xx_SHM_SHARED, 0x40A, 0x7F7F);
  1286. bcm43xx_write32(bcm, BCM43xx_MMIO_STATUS2_BITFIELD,
  1287. bcm43xx_read32(bcm, BCM43xx_MMIO_STATUS2_BITFIELD) | (1 << 4));
  1288. assert(bcm->noisecalc.core_at_start == bcm->current_core);
  1289. assert(bcm->noisecalc.channel_at_start == bcm43xx_current_radio(bcm)->channel);
  1290. }
  1291. static void bcm43xx_calculate_link_quality(struct bcm43xx_private *bcm)
  1292. {
  1293. /* Top half of Link Quality calculation. */
  1294. if (bcm->noisecalc.calculation_running)
  1295. return;
  1296. bcm->noisecalc.core_at_start = bcm->current_core;
  1297. bcm->noisecalc.channel_at_start = bcm43xx_current_radio(bcm)->channel;
  1298. bcm->noisecalc.calculation_running = 1;
  1299. bcm->noisecalc.nr_samples = 0;
  1300. bcm43xx_generate_noise_sample(bcm);
  1301. }
  1302. static void handle_irq_noise(struct bcm43xx_private *bcm)
  1303. {
  1304. struct bcm43xx_radioinfo *radio = bcm43xx_current_radio(bcm);
  1305. u16 tmp;
  1306. u8 noise[4];
  1307. u8 i, j;
  1308. s32 average;
  1309. /* Bottom half of Link Quality calculation. */
  1310. assert(bcm->noisecalc.calculation_running);
  1311. if (bcm->noisecalc.core_at_start != bcm->current_core ||
  1312. bcm->noisecalc.channel_at_start != radio->channel)
  1313. goto drop_calculation;
  1314. tmp = bcm43xx_shm_read16(bcm, BCM43xx_SHM_SHARED, 0x408);
  1315. noise[0] = (tmp & 0x00FF);
  1316. noise[1] = (tmp & 0xFF00) >> 8;
  1317. tmp = bcm43xx_shm_read16(bcm, BCM43xx_SHM_SHARED, 0x40A);
  1318. noise[2] = (tmp & 0x00FF);
  1319. noise[3] = (tmp & 0xFF00) >> 8;
  1320. if (noise[0] == 0x7F || noise[1] == 0x7F ||
  1321. noise[2] == 0x7F || noise[3] == 0x7F)
  1322. goto generate_new;
  1323. /* Get the noise samples. */
  1324. assert(bcm->noisecalc.nr_samples <= 8);
  1325. i = bcm->noisecalc.nr_samples;
  1326. noise[0] = limit_value(noise[0], 0, ARRAY_SIZE(radio->nrssi_lt) - 1);
  1327. noise[1] = limit_value(noise[1], 0, ARRAY_SIZE(radio->nrssi_lt) - 1);
  1328. noise[2] = limit_value(noise[2], 0, ARRAY_SIZE(radio->nrssi_lt) - 1);
  1329. noise[3] = limit_value(noise[3], 0, ARRAY_SIZE(radio->nrssi_lt) - 1);
  1330. bcm->noisecalc.samples[i][0] = radio->nrssi_lt[noise[0]];
  1331. bcm->noisecalc.samples[i][1] = radio->nrssi_lt[noise[1]];
  1332. bcm->noisecalc.samples[i][2] = radio->nrssi_lt[noise[2]];
  1333. bcm->noisecalc.samples[i][3] = radio->nrssi_lt[noise[3]];
  1334. bcm->noisecalc.nr_samples++;
  1335. if (bcm->noisecalc.nr_samples == 8) {
  1336. /* Calculate the Link Quality by the noise samples. */
  1337. average = 0;
  1338. for (i = 0; i < 8; i++) {
  1339. for (j = 0; j < 4; j++)
  1340. average += bcm->noisecalc.samples[i][j];
  1341. }
  1342. average /= (8 * 4);
  1343. average *= 125;
  1344. average += 64;
  1345. average /= 128;
  1346. tmp = bcm43xx_shm_read16(bcm, BCM43xx_SHM_SHARED, 0x40C);
  1347. tmp = (tmp / 128) & 0x1F;
  1348. if (tmp >= 8)
  1349. average += 2;
  1350. else
  1351. average -= 25;
  1352. if (tmp == 8)
  1353. average -= 72;
  1354. else
  1355. average -= 48;
  1356. /* FIXME: This is wrong, but people want fancy stats. well... */
  1357. bcm->stats.noise = average;
  1358. if (average > -65)
  1359. bcm->stats.link_quality = 0;
  1360. else if (average > -75)
  1361. bcm->stats.link_quality = 1;
  1362. else if (average > -85)
  1363. bcm->stats.link_quality = 2;
  1364. else
  1365. bcm->stats.link_quality = 3;
  1366. // dprintk(KERN_INFO PFX "Link Quality: %u (avg was %d)\n", bcm->stats.link_quality, average);
  1367. drop_calculation:
  1368. bcm->noisecalc.calculation_running = 0;
  1369. return;
  1370. }
  1371. generate_new:
  1372. bcm43xx_generate_noise_sample(bcm);
  1373. }
  1374. static void handle_irq_ps(struct bcm43xx_private *bcm)
  1375. {
  1376. if (bcm->ieee->iw_mode == IW_MODE_MASTER) {
  1377. ///TODO: PS TBTT
  1378. } else {
  1379. if (1/*FIXME: the last PSpoll frame was sent successfully */)
  1380. bcm43xx_power_saving_ctl_bits(bcm, -1, -1);
  1381. }
  1382. if (bcm->ieee->iw_mode == IW_MODE_ADHOC)
  1383. bcm->reg124_set_0x4 = 1;
  1384. //FIXME else set to false?
  1385. }
  1386. static void handle_irq_reg124(struct bcm43xx_private *bcm)
  1387. {
  1388. if (!bcm->reg124_set_0x4)
  1389. return;
  1390. bcm43xx_write32(bcm, BCM43xx_MMIO_STATUS2_BITFIELD,
  1391. bcm43xx_read32(bcm, BCM43xx_MMIO_STATUS2_BITFIELD)
  1392. | 0x4);
  1393. //FIXME: reset reg124_set_0x4 to false?
  1394. }
  1395. static void handle_irq_pmq(struct bcm43xx_private *bcm)
  1396. {
  1397. u32 tmp;
  1398. //TODO: AP mode.
  1399. while (1) {
  1400. tmp = bcm43xx_read32(bcm, BCM43xx_MMIO_PS_STATUS);
  1401. if (!(tmp & 0x00000008))
  1402. break;
  1403. }
  1404. /* 16bit write is odd, but correct. */
  1405. bcm43xx_write16(bcm, BCM43xx_MMIO_PS_STATUS, 0x0002);
  1406. }
  1407. static void bcm43xx_generate_beacon_template(struct bcm43xx_private *bcm,
  1408. u16 ram_offset, u16 shm_size_offset)
  1409. {
  1410. u32 value;
  1411. u16 size = 0;
  1412. /* Timestamp. */
  1413. //FIXME: assumption: The chip sets the timestamp
  1414. value = 0;
  1415. bcm43xx_ram_write(bcm, ram_offset++, value);
  1416. bcm43xx_ram_write(bcm, ram_offset++, value);
  1417. size += 8;
  1418. /* Beacon Interval / Capability Information */
  1419. value = 0x0000;//FIXME: Which interval?
  1420. value |= (1 << 0) << 16; /* ESS */
  1421. value |= (1 << 2) << 16; /* CF Pollable */ //FIXME?
  1422. value |= (1 << 3) << 16; /* CF Poll Request */ //FIXME?
  1423. if (!bcm->ieee->open_wep)
  1424. value |= (1 << 4) << 16; /* Privacy */
  1425. bcm43xx_ram_write(bcm, ram_offset++, value);
  1426. size += 4;
  1427. /* SSID */
  1428. //TODO
  1429. /* FH Parameter Set */
  1430. //TODO
  1431. /* DS Parameter Set */
  1432. //TODO
  1433. /* CF Parameter Set */
  1434. //TODO
  1435. /* TIM */
  1436. //TODO
  1437. bcm43xx_shm_write16(bcm, BCM43xx_SHM_SHARED, shm_size_offset, size);
  1438. }
  1439. static void handle_irq_beacon(struct bcm43xx_private *bcm)
  1440. {
  1441. u32 status;
  1442. bcm->irq_savedstate &= ~BCM43xx_IRQ_BEACON;
  1443. status = bcm43xx_read32(bcm, BCM43xx_MMIO_STATUS2_BITFIELD);
  1444. if ((status & 0x1) && (status & 0x2)) {
  1445. /* ACK beacon IRQ. */
  1446. bcm43xx_write32(bcm, BCM43xx_MMIO_GEN_IRQ_REASON,
  1447. BCM43xx_IRQ_BEACON);
  1448. bcm->irq_savedstate |= BCM43xx_IRQ_BEACON;
  1449. return;
  1450. }
  1451. if (!(status & 0x1)) {
  1452. bcm43xx_generate_beacon_template(bcm, 0x68, 0x18);
  1453. status |= 0x1;
  1454. bcm43xx_write32(bcm, BCM43xx_MMIO_STATUS2_BITFIELD, status);
  1455. }
  1456. if (!(status & 0x2)) {
  1457. bcm43xx_generate_beacon_template(bcm, 0x468, 0x1A);
  1458. status |= 0x2;
  1459. bcm43xx_write32(bcm, BCM43xx_MMIO_STATUS2_BITFIELD, status);
  1460. }
  1461. }
  1462. /* Interrupt handler bottom-half */
  1463. static void bcm43xx_interrupt_tasklet(struct bcm43xx_private *bcm)
  1464. {
  1465. u32 reason;
  1466. u32 dma_reason[4];
  1467. int activity = 0;
  1468. unsigned long flags;
  1469. #ifdef CONFIG_BCM43XX_DEBUG
  1470. u32 _handled = 0x00000000;
  1471. # define bcmirq_handled(irq) do { _handled |= (irq); } while (0)
  1472. #else
  1473. # define bcmirq_handled(irq) do { /* nothing */ } while (0)
  1474. #endif /* CONFIG_BCM43XX_DEBUG*/
  1475. bcm43xx_lock_mmio(bcm, flags);
  1476. reason = bcm->irq_reason;
  1477. dma_reason[0] = bcm->dma_reason[0];
  1478. dma_reason[1] = bcm->dma_reason[1];
  1479. dma_reason[2] = bcm->dma_reason[2];
  1480. dma_reason[3] = bcm->dma_reason[3];
  1481. if (unlikely(reason & BCM43xx_IRQ_XMIT_ERROR)) {
  1482. /* TX error. We get this when Template Ram is written in wrong endianess
  1483. * in dummy_tx(). We also get this if something is wrong with the TX header
  1484. * on DMA or PIO queues.
  1485. * Maybe we get this in other error conditions, too.
  1486. */
  1487. printkl(KERN_ERR PFX "FATAL ERROR: BCM43xx_IRQ_XMIT_ERROR\n");
  1488. bcmirq_handled(BCM43xx_IRQ_XMIT_ERROR);
  1489. }
  1490. if (unlikely((dma_reason[0] & BCM43xx_DMAIRQ_FATALMASK) |
  1491. (dma_reason[1] & BCM43xx_DMAIRQ_FATALMASK) |
  1492. (dma_reason[2] & BCM43xx_DMAIRQ_FATALMASK) |
  1493. (dma_reason[3] & BCM43xx_DMAIRQ_FATALMASK))) {
  1494. printkl(KERN_ERR PFX "FATAL ERROR: Fatal DMA error: "
  1495. "0x%08X, 0x%08X, 0x%08X, 0x%08X\n",
  1496. dma_reason[0], dma_reason[1],
  1497. dma_reason[2], dma_reason[3]);
  1498. bcm43xx_controller_restart(bcm, "DMA error");
  1499. bcm43xx_unlock_mmio(bcm, flags);
  1500. return;
  1501. }
  1502. if (unlikely((dma_reason[0] & BCM43xx_DMAIRQ_NONFATALMASK) |
  1503. (dma_reason[1] & BCM43xx_DMAIRQ_NONFATALMASK) |
  1504. (dma_reason[2] & BCM43xx_DMAIRQ_NONFATALMASK) |
  1505. (dma_reason[3] & BCM43xx_DMAIRQ_NONFATALMASK))) {
  1506. printkl(KERN_ERR PFX "DMA error: "
  1507. "0x%08X, 0x%08X, 0x%08X, 0x%08X\n",
  1508. dma_reason[0], dma_reason[1],
  1509. dma_reason[2], dma_reason[3]);
  1510. }
  1511. if (reason & BCM43xx_IRQ_PS) {
  1512. handle_irq_ps(bcm);
  1513. bcmirq_handled(BCM43xx_IRQ_PS);
  1514. }
  1515. if (reason & BCM43xx_IRQ_REG124) {
  1516. handle_irq_reg124(bcm);
  1517. bcmirq_handled(BCM43xx_IRQ_REG124);
  1518. }
  1519. if (reason & BCM43xx_IRQ_BEACON) {
  1520. if (bcm->ieee->iw_mode == IW_MODE_MASTER)
  1521. handle_irq_beacon(bcm);
  1522. bcmirq_handled(BCM43xx_IRQ_BEACON);
  1523. }
  1524. if (reason & BCM43xx_IRQ_PMQ) {
  1525. handle_irq_pmq(bcm);
  1526. bcmirq_handled(BCM43xx_IRQ_PMQ);
  1527. }
  1528. if (reason & BCM43xx_IRQ_SCAN) {
  1529. /*TODO*/
  1530. //bcmirq_handled(BCM43xx_IRQ_SCAN);
  1531. }
  1532. if (reason & BCM43xx_IRQ_NOISE) {
  1533. handle_irq_noise(bcm);
  1534. bcmirq_handled(BCM43xx_IRQ_NOISE);
  1535. }
  1536. /* Check the DMA reason registers for received data. */
  1537. assert(!(dma_reason[1] & BCM43xx_DMAIRQ_RX_DONE));
  1538. assert(!(dma_reason[2] & BCM43xx_DMAIRQ_RX_DONE));
  1539. if (dma_reason[0] & BCM43xx_DMAIRQ_RX_DONE) {
  1540. if (bcm43xx_using_pio(bcm))
  1541. bcm43xx_pio_rx(bcm43xx_current_pio(bcm)->queue0);
  1542. else
  1543. bcm43xx_dma_rx(bcm43xx_current_dma(bcm)->rx_ring0);
  1544. /* We intentionally don't set "activity" to 1, here. */
  1545. }
  1546. if (dma_reason[3] & BCM43xx_DMAIRQ_RX_DONE) {
  1547. if (bcm43xx_using_pio(bcm))
  1548. bcm43xx_pio_rx(bcm43xx_current_pio(bcm)->queue3);
  1549. else
  1550. bcm43xx_dma_rx(bcm43xx_current_dma(bcm)->rx_ring1);
  1551. activity = 1;
  1552. }
  1553. bcmirq_handled(BCM43xx_IRQ_RX);
  1554. if (reason & BCM43xx_IRQ_XMIT_STATUS) {
  1555. handle_irq_transmit_status(bcm);
  1556. activity = 1;
  1557. //TODO: In AP mode, this also causes sending of powersave responses.
  1558. bcmirq_handled(BCM43xx_IRQ_XMIT_STATUS);
  1559. }
  1560. /* IRQ_PIO_WORKAROUND is handled in the top-half. */
  1561. bcmirq_handled(BCM43xx_IRQ_PIO_WORKAROUND);
  1562. #ifdef CONFIG_BCM43XX_DEBUG
  1563. if (unlikely(reason & ~_handled)) {
  1564. printkl(KERN_WARNING PFX
  1565. "Unhandled IRQ! Reason: 0x%08x, Unhandled: 0x%08x, "
  1566. "DMA: 0x%08x, 0x%08x, 0x%08x, 0x%08x\n",
  1567. reason, (reason & ~_handled),
  1568. dma_reason[0], dma_reason[1],
  1569. dma_reason[2], dma_reason[3]);
  1570. }
  1571. #endif
  1572. #undef bcmirq_handled
  1573. if (!modparam_noleds)
  1574. bcm43xx_leds_update(bcm, activity);
  1575. bcm43xx_interrupt_enable(bcm, bcm->irq_savedstate);
  1576. bcm43xx_unlock_mmio(bcm, flags);
  1577. }
  1578. static void pio_irq_workaround(struct bcm43xx_private *bcm,
  1579. u16 base, int queueidx)
  1580. {
  1581. u16 rxctl;
  1582. rxctl = bcm43xx_read16(bcm, base + BCM43xx_PIO_RXCTL);
  1583. if (rxctl & BCM43xx_PIO_RXCTL_DATAAVAILABLE)
  1584. bcm->dma_reason[queueidx] |= BCM43xx_DMAIRQ_RX_DONE;
  1585. else
  1586. bcm->dma_reason[queueidx] &= ~BCM43xx_DMAIRQ_RX_DONE;
  1587. }
  1588. static void bcm43xx_interrupt_ack(struct bcm43xx_private *bcm, u32 reason)
  1589. {
  1590. if (bcm43xx_using_pio(bcm) &&
  1591. (bcm->current_core->rev < 3) &&
  1592. (!(reason & BCM43xx_IRQ_PIO_WORKAROUND))) {
  1593. /* Apply a PIO specific workaround to the dma_reasons */
  1594. pio_irq_workaround(bcm, BCM43xx_MMIO_PIO1_BASE, 0);
  1595. pio_irq_workaround(bcm, BCM43xx_MMIO_PIO2_BASE, 1);
  1596. pio_irq_workaround(bcm, BCM43xx_MMIO_PIO3_BASE, 2);
  1597. pio_irq_workaround(bcm, BCM43xx_MMIO_PIO4_BASE, 3);
  1598. }
  1599. bcm43xx_write32(bcm, BCM43xx_MMIO_GEN_IRQ_REASON, reason);
  1600. bcm43xx_write32(bcm, BCM43xx_MMIO_DMA1_REASON,
  1601. bcm->dma_reason[0]);
  1602. bcm43xx_write32(bcm, BCM43xx_MMIO_DMA2_REASON,
  1603. bcm->dma_reason[1]);
  1604. bcm43xx_write32(bcm, BCM43xx_MMIO_DMA3_REASON,
  1605. bcm->dma_reason[2]);
  1606. bcm43xx_write32(bcm, BCM43xx_MMIO_DMA4_REASON,
  1607. bcm->dma_reason[3]);
  1608. }
  1609. /* Interrupt handler top-half */
  1610. static irqreturn_t bcm43xx_interrupt_handler(int irq, void *dev_id, struct pt_regs *regs)
  1611. {
  1612. irqreturn_t ret = IRQ_HANDLED;
  1613. struct bcm43xx_private *bcm = dev_id;
  1614. u32 reason;
  1615. if (!bcm)
  1616. return IRQ_NONE;
  1617. spin_lock(&bcm->_lock);
  1618. reason = bcm43xx_read32(bcm, BCM43xx_MMIO_GEN_IRQ_REASON);
  1619. if (reason == 0xffffffff) {
  1620. /* irq not for us (shared irq) */
  1621. ret = IRQ_NONE;
  1622. goto out;
  1623. }
  1624. reason &= bcm43xx_read32(bcm, BCM43xx_MMIO_GEN_IRQ_MASK);
  1625. if (!reason)
  1626. goto out;
  1627. bcm->dma_reason[0] = bcm43xx_read32(bcm, BCM43xx_MMIO_DMA1_REASON)
  1628. & 0x0001dc00;
  1629. bcm->dma_reason[1] = bcm43xx_read32(bcm, BCM43xx_MMIO_DMA2_REASON)
  1630. & 0x0000dc00;
  1631. bcm->dma_reason[2] = bcm43xx_read32(bcm, BCM43xx_MMIO_DMA3_REASON)
  1632. & 0x0000dc00;
  1633. bcm->dma_reason[3] = bcm43xx_read32(bcm, BCM43xx_MMIO_DMA4_REASON)
  1634. & 0x0001dc00;
  1635. bcm43xx_interrupt_ack(bcm, reason);
  1636. /* Only accept IRQs, if we are initialized properly.
  1637. * This avoids an RX race while initializing.
  1638. * We should probably not enable IRQs before we are initialized
  1639. * completely, but some careful work is needed to fix this. I think it
  1640. * is best to stay with this cheap workaround for now... .
  1641. */
  1642. if (likely(bcm->initialized)) {
  1643. /* disable all IRQs. They are enabled again in the bottom half. */
  1644. bcm->irq_savedstate = bcm43xx_interrupt_disable(bcm, BCM43xx_IRQ_ALL);
  1645. /* save the reason code and call our bottom half. */
  1646. bcm->irq_reason = reason;
  1647. tasklet_schedule(&bcm->isr_tasklet);
  1648. }
  1649. out:
  1650. mmiowb();
  1651. spin_unlock(&bcm->_lock);
  1652. return ret;
  1653. }
  1654. static void bcm43xx_release_firmware(struct bcm43xx_private *bcm, int force)
  1655. {
  1656. if (bcm->firmware_norelease && !force)
  1657. return; /* Suspending or controller reset. */
  1658. release_firmware(bcm->ucode);
  1659. bcm->ucode = NULL;
  1660. release_firmware(bcm->pcm);
  1661. bcm->pcm = NULL;
  1662. release_firmware(bcm->initvals0);
  1663. bcm->initvals0 = NULL;
  1664. release_firmware(bcm->initvals1);
  1665. bcm->initvals1 = NULL;
  1666. }
  1667. static int bcm43xx_request_firmware(struct bcm43xx_private *bcm)
  1668. {
  1669. struct bcm43xx_phyinfo *phy = bcm43xx_current_phy(bcm);
  1670. u8 rev = bcm->current_core->rev;
  1671. int err = 0;
  1672. int nr;
  1673. char buf[22 + sizeof(modparam_fwpostfix) - 1] = { 0 };
  1674. if (!bcm->ucode) {
  1675. snprintf(buf, ARRAY_SIZE(buf), "bcm43xx_microcode%d%s.fw",
  1676. (rev >= 5 ? 5 : rev),
  1677. modparam_fwpostfix);
  1678. err = request_firmware(&bcm->ucode, buf, &bcm->pci_dev->dev);
  1679. if (err) {
  1680. printk(KERN_ERR PFX
  1681. "Error: Microcode \"%s\" not available or load failed.\n",
  1682. buf);
  1683. goto error;
  1684. }
  1685. }
  1686. if (!bcm->pcm) {
  1687. snprintf(buf, ARRAY_SIZE(buf),
  1688. "bcm43xx_pcm%d%s.fw",
  1689. (rev < 5 ? 4 : 5),
  1690. modparam_fwpostfix);
  1691. err = request_firmware(&bcm->pcm, buf, &bcm->pci_dev->dev);
  1692. if (err) {
  1693. printk(KERN_ERR PFX
  1694. "Error: PCM \"%s\" not available or load failed.\n",
  1695. buf);
  1696. goto error;
  1697. }
  1698. }
  1699. if (!bcm->initvals0) {
  1700. if (rev == 2 || rev == 4) {
  1701. switch (phy->type) {
  1702. case BCM43xx_PHYTYPE_A:
  1703. nr = 3;
  1704. break;
  1705. case BCM43xx_PHYTYPE_B:
  1706. case BCM43xx_PHYTYPE_G:
  1707. nr = 1;
  1708. break;
  1709. default:
  1710. goto err_noinitval;
  1711. }
  1712. } else if (rev >= 5) {
  1713. switch (phy->type) {
  1714. case BCM43xx_PHYTYPE_A:
  1715. nr = 7;
  1716. break;
  1717. case BCM43xx_PHYTYPE_B:
  1718. case BCM43xx_PHYTYPE_G:
  1719. nr = 5;
  1720. break;
  1721. default:
  1722. goto err_noinitval;
  1723. }
  1724. } else
  1725. goto err_noinitval;
  1726. snprintf(buf, ARRAY_SIZE(buf), "bcm43xx_initval%02d%s.fw",
  1727. nr, modparam_fwpostfix);
  1728. err = request_firmware(&bcm->initvals0, buf, &bcm->pci_dev->dev);
  1729. if (err) {
  1730. printk(KERN_ERR PFX
  1731. "Error: InitVals \"%s\" not available or load failed.\n",
  1732. buf);
  1733. goto error;
  1734. }
  1735. if (bcm->initvals0->size % sizeof(struct bcm43xx_initval)) {
  1736. printk(KERN_ERR PFX "InitVals fileformat error.\n");
  1737. goto error;
  1738. }
  1739. }
  1740. if (!bcm->initvals1) {
  1741. if (rev >= 5) {
  1742. u32 sbtmstatehigh;
  1743. switch (phy->type) {
  1744. case BCM43xx_PHYTYPE_A:
  1745. sbtmstatehigh = bcm43xx_read32(bcm, BCM43xx_CIR_SBTMSTATEHIGH);
  1746. if (sbtmstatehigh & 0x00010000)
  1747. nr = 9;
  1748. else
  1749. nr = 10;
  1750. break;
  1751. case BCM43xx_PHYTYPE_B:
  1752. case BCM43xx_PHYTYPE_G:
  1753. nr = 6;
  1754. break;
  1755. default:
  1756. goto err_noinitval;
  1757. }
  1758. snprintf(buf, ARRAY_SIZE(buf), "bcm43xx_initval%02d%s.fw",
  1759. nr, modparam_fwpostfix);
  1760. err = request_firmware(&bcm->initvals1, buf, &bcm->pci_dev->dev);
  1761. if (err) {
  1762. printk(KERN_ERR PFX
  1763. "Error: InitVals \"%s\" not available or load failed.\n",
  1764. buf);
  1765. goto error;
  1766. }
  1767. if (bcm->initvals1->size % sizeof(struct bcm43xx_initval)) {
  1768. printk(KERN_ERR PFX "InitVals fileformat error.\n");
  1769. goto error;
  1770. }
  1771. }
  1772. }
  1773. out:
  1774. return err;
  1775. error:
  1776. bcm43xx_release_firmware(bcm, 1);
  1777. goto out;
  1778. err_noinitval:
  1779. printk(KERN_ERR PFX "Error: No InitVals available!\n");
  1780. err = -ENOENT;
  1781. goto error;
  1782. }
  1783. static void bcm43xx_upload_microcode(struct bcm43xx_private *bcm)
  1784. {
  1785. const u32 *data;
  1786. unsigned int i, len;
  1787. /* Upload Microcode. */
  1788. data = (u32 *)(bcm->ucode->data);
  1789. len = bcm->ucode->size / sizeof(u32);
  1790. bcm43xx_shm_control_word(bcm, BCM43xx_SHM_UCODE, 0x0000);
  1791. for (i = 0; i < len; i++) {
  1792. bcm43xx_write32(bcm, BCM43xx_MMIO_SHM_DATA,
  1793. be32_to_cpu(data[i]));
  1794. udelay(10);
  1795. }
  1796. /* Upload PCM data. */
  1797. data = (u32 *)(bcm->pcm->data);
  1798. len = bcm->pcm->size / sizeof(u32);
  1799. bcm43xx_shm_control_word(bcm, BCM43xx_SHM_PCM, 0x01ea);
  1800. bcm43xx_write32(bcm, BCM43xx_MMIO_SHM_DATA, 0x00004000);
  1801. bcm43xx_shm_control_word(bcm, BCM43xx_SHM_PCM, 0x01eb);
  1802. for (i = 0; i < len; i++) {
  1803. bcm43xx_write32(bcm, BCM43xx_MMIO_SHM_DATA,
  1804. be32_to_cpu(data[i]));
  1805. udelay(10);
  1806. }
  1807. }
  1808. static int bcm43xx_write_initvals(struct bcm43xx_private *bcm,
  1809. const struct bcm43xx_initval *data,
  1810. const unsigned int len)
  1811. {
  1812. u16 offset, size;
  1813. u32 value;
  1814. unsigned int i;
  1815. for (i = 0; i < len; i++) {
  1816. offset = be16_to_cpu(data[i].offset);
  1817. size = be16_to_cpu(data[i].size);
  1818. value = be32_to_cpu(data[i].value);
  1819. if (unlikely(offset >= 0x1000))
  1820. goto err_format;
  1821. if (size == 2) {
  1822. if (unlikely(value & 0xFFFF0000))
  1823. goto err_format;
  1824. bcm43xx_write16(bcm, offset, (u16)value);
  1825. } else if (size == 4) {
  1826. bcm43xx_write32(bcm, offset, value);
  1827. } else
  1828. goto err_format;
  1829. }
  1830. return 0;
  1831. err_format:
  1832. printk(KERN_ERR PFX "InitVals (bcm43xx_initvalXX.fw) file-format error. "
  1833. "Please fix your bcm43xx firmware files.\n");
  1834. return -EPROTO;
  1835. }
  1836. static int bcm43xx_upload_initvals(struct bcm43xx_private *bcm)
  1837. {
  1838. int err;
  1839. err = bcm43xx_write_initvals(bcm, (struct bcm43xx_initval *)bcm->initvals0->data,
  1840. bcm->initvals0->size / sizeof(struct bcm43xx_initval));
  1841. if (err)
  1842. goto out;
  1843. if (bcm->initvals1) {
  1844. err = bcm43xx_write_initvals(bcm, (struct bcm43xx_initval *)bcm->initvals1->data,
  1845. bcm->initvals1->size / sizeof(struct bcm43xx_initval));
  1846. if (err)
  1847. goto out;
  1848. }
  1849. out:
  1850. return err;
  1851. }
  1852. static int bcm43xx_initialize_irq(struct bcm43xx_private *bcm)
  1853. {
  1854. int res;
  1855. unsigned int i;
  1856. u32 data;
  1857. bcm->irq = bcm->pci_dev->irq;
  1858. #ifdef CONFIG_BCM947XX
  1859. if (bcm->pci_dev->bus->number == 0) {
  1860. struct pci_dev *d = NULL;
  1861. /* FIXME: we will probably need more device IDs here... */
  1862. d = pci_find_device(PCI_VENDOR_ID_BROADCOM, 0x4324, NULL);
  1863. if (d != NULL) {
  1864. bcm->irq = d->irq;
  1865. }
  1866. }
  1867. #endif
  1868. res = request_irq(bcm->irq, bcm43xx_interrupt_handler,
  1869. SA_SHIRQ, KBUILD_MODNAME, bcm);
  1870. if (res) {
  1871. printk(KERN_ERR PFX "Cannot register IRQ%d\n", bcm->irq);
  1872. return -ENODEV;
  1873. }
  1874. bcm43xx_write32(bcm, BCM43xx_MMIO_GEN_IRQ_REASON, 0xffffffff);
  1875. bcm43xx_write32(bcm, BCM43xx_MMIO_STATUS_BITFIELD, 0x00020402);
  1876. i = 0;
  1877. while (1) {
  1878. data = bcm43xx_read32(bcm, BCM43xx_MMIO_GEN_IRQ_REASON);
  1879. if (data == BCM43xx_IRQ_READY)
  1880. break;
  1881. i++;
  1882. if (i >= BCM43xx_IRQWAIT_MAX_RETRIES) {
  1883. printk(KERN_ERR PFX "Card IRQ register not responding. "
  1884. "Giving up.\n");
  1885. free_irq(bcm->irq, bcm);
  1886. return -ENODEV;
  1887. }
  1888. udelay(10);
  1889. }
  1890. // dummy read
  1891. bcm43xx_read32(bcm, BCM43xx_MMIO_GEN_IRQ_REASON);
  1892. return 0;
  1893. }
  1894. /* Switch to the core used to write the GPIO register.
  1895. * This is either the ChipCommon, or the PCI core.
  1896. */
  1897. static int switch_to_gpio_core(struct bcm43xx_private *bcm)
  1898. {
  1899. int err;
  1900. /* Where to find the GPIO register depends on the chipset.
  1901. * If it has a ChipCommon, its register at offset 0x6c is the GPIO
  1902. * control register. Otherwise the register at offset 0x6c in the
  1903. * PCI core is the GPIO control register.
  1904. */
  1905. err = bcm43xx_switch_core(bcm, &bcm->core_chipcommon);
  1906. if (err == -ENODEV) {
  1907. err = bcm43xx_switch_core(bcm, &bcm->core_pci);
  1908. if (unlikely(err == -ENODEV)) {
  1909. printk(KERN_ERR PFX "gpio error: "
  1910. "Neither ChipCommon nor PCI core available!\n");
  1911. }
  1912. }
  1913. return err;
  1914. }
  1915. /* Initialize the GPIOs
  1916. * http://bcm-specs.sipsolutions.net/GPIO
  1917. */
  1918. static int bcm43xx_gpio_init(struct bcm43xx_private *bcm)
  1919. {
  1920. struct bcm43xx_coreinfo *old_core;
  1921. int err;
  1922. u32 mask, set;
  1923. bcm43xx_write32(bcm, BCM43xx_MMIO_STATUS_BITFIELD,
  1924. bcm43xx_read32(bcm, BCM43xx_MMIO_STATUS_BITFIELD)
  1925. & 0xFFFF3FFF);
  1926. bcm43xx_leds_switch_all(bcm, 0);
  1927. bcm43xx_write16(bcm, BCM43xx_MMIO_GPIO_MASK,
  1928. bcm43xx_read16(bcm, BCM43xx_MMIO_GPIO_MASK) | 0x000F);
  1929. mask = 0x0000001F;
  1930. set = 0x0000000F;
  1931. if (bcm->chip_id == 0x4301) {
  1932. mask |= 0x0060;
  1933. set |= 0x0060;
  1934. }
  1935. if (0 /* FIXME: conditional unknown */) {
  1936. bcm43xx_write16(bcm, BCM43xx_MMIO_GPIO_MASK,
  1937. bcm43xx_read16(bcm, BCM43xx_MMIO_GPIO_MASK)
  1938. | 0x0100);
  1939. mask |= 0x0180;
  1940. set |= 0x0180;
  1941. }
  1942. if (bcm->sprom.boardflags & BCM43xx_BFL_PACTRL) {
  1943. bcm43xx_write16(bcm, BCM43xx_MMIO_GPIO_MASK,
  1944. bcm43xx_read16(bcm, BCM43xx_MMIO_GPIO_MASK)
  1945. | 0x0200);
  1946. mask |= 0x0200;
  1947. set |= 0x0200;
  1948. }
  1949. if (bcm->current_core->rev >= 2)
  1950. mask |= 0x0010; /* FIXME: This is redundant. */
  1951. old_core = bcm->current_core;
  1952. err = switch_to_gpio_core(bcm);
  1953. if (err)
  1954. goto out;
  1955. bcm43xx_write32(bcm, BCM43xx_GPIO_CONTROL,
  1956. (bcm43xx_read32(bcm, BCM43xx_GPIO_CONTROL) & mask) | set);
  1957. err = bcm43xx_switch_core(bcm, old_core);
  1958. out:
  1959. return err;
  1960. }
  1961. /* Turn off all GPIO stuff. Call this on module unload, for example. */
  1962. static int bcm43xx_gpio_cleanup(struct bcm43xx_private *bcm)
  1963. {
  1964. struct bcm43xx_coreinfo *old_core;
  1965. int err;
  1966. old_core = bcm->current_core;
  1967. err = switch_to_gpio_core(bcm);
  1968. if (err)
  1969. return err;
  1970. bcm43xx_write32(bcm, BCM43xx_GPIO_CONTROL, 0x00000000);
  1971. err = bcm43xx_switch_core(bcm, old_core);
  1972. assert(err == 0);
  1973. return 0;
  1974. }
  1975. /* http://bcm-specs.sipsolutions.net/EnableMac */
  1976. void bcm43xx_mac_enable(struct bcm43xx_private *bcm)
  1977. {
  1978. bcm43xx_write32(bcm, BCM43xx_MMIO_STATUS_BITFIELD,
  1979. bcm43xx_read32(bcm, BCM43xx_MMIO_STATUS_BITFIELD)
  1980. | BCM43xx_SBF_MAC_ENABLED);
  1981. bcm43xx_write32(bcm, BCM43xx_MMIO_GEN_IRQ_REASON, BCM43xx_IRQ_READY);
  1982. bcm43xx_read32(bcm, BCM43xx_MMIO_STATUS_BITFIELD); /* dummy read */
  1983. bcm43xx_read32(bcm, BCM43xx_MMIO_GEN_IRQ_REASON); /* dummy read */
  1984. bcm43xx_power_saving_ctl_bits(bcm, -1, -1);
  1985. }
  1986. /* http://bcm-specs.sipsolutions.net/SuspendMAC */
  1987. void bcm43xx_mac_suspend(struct bcm43xx_private *bcm)
  1988. {
  1989. int i;
  1990. u32 tmp;
  1991. bcm43xx_power_saving_ctl_bits(bcm, -1, 1);
  1992. bcm43xx_write32(bcm, BCM43xx_MMIO_STATUS_BITFIELD,
  1993. bcm43xx_read32(bcm, BCM43xx_MMIO_STATUS_BITFIELD)
  1994. & ~BCM43xx_SBF_MAC_ENABLED);
  1995. bcm43xx_read32(bcm, BCM43xx_MMIO_GEN_IRQ_REASON); /* dummy read */
  1996. for (i = 100000; i; i--) {
  1997. tmp = bcm43xx_read32(bcm, BCM43xx_MMIO_GEN_IRQ_REASON);
  1998. if (tmp & BCM43xx_IRQ_READY)
  1999. return;
  2000. udelay(10);
  2001. }
  2002. printkl(KERN_ERR PFX "MAC suspend failed\n");
  2003. }
  2004. void bcm43xx_set_iwmode(struct bcm43xx_private *bcm,
  2005. int iw_mode)
  2006. {
  2007. unsigned long flags;
  2008. struct net_device *net_dev = bcm->net_dev;
  2009. u32 status;
  2010. u16 value;
  2011. spin_lock_irqsave(&bcm->ieee->lock, flags);
  2012. bcm->ieee->iw_mode = iw_mode;
  2013. spin_unlock_irqrestore(&bcm->ieee->lock, flags);
  2014. if (iw_mode == IW_MODE_MONITOR)
  2015. net_dev->type = ARPHRD_IEEE80211;
  2016. else
  2017. net_dev->type = ARPHRD_ETHER;
  2018. status = bcm43xx_read32(bcm, BCM43xx_MMIO_STATUS_BITFIELD);
  2019. /* Reset status to infrastructured mode */
  2020. status &= ~(BCM43xx_SBF_MODE_AP | BCM43xx_SBF_MODE_MONITOR);
  2021. status &= ~BCM43xx_SBF_MODE_PROMISC;
  2022. status |= BCM43xx_SBF_MODE_NOTADHOC;
  2023. /* FIXME: Always enable promisc mode, until we get the MAC filters working correctly. */
  2024. status |= BCM43xx_SBF_MODE_PROMISC;
  2025. switch (iw_mode) {
  2026. case IW_MODE_MONITOR:
  2027. status |= BCM43xx_SBF_MODE_MONITOR;
  2028. status |= BCM43xx_SBF_MODE_PROMISC;
  2029. break;
  2030. case IW_MODE_ADHOC:
  2031. status &= ~BCM43xx_SBF_MODE_NOTADHOC;
  2032. break;
  2033. case IW_MODE_MASTER:
  2034. status |= BCM43xx_SBF_MODE_AP;
  2035. break;
  2036. case IW_MODE_SECOND:
  2037. case IW_MODE_REPEAT:
  2038. TODO(); /* TODO */
  2039. break;
  2040. case IW_MODE_INFRA:
  2041. /* nothing to be done here... */
  2042. break;
  2043. default:
  2044. dprintk(KERN_ERR PFX "Unknown mode in set_iwmode: %d\n", iw_mode);
  2045. }
  2046. if (net_dev->flags & IFF_PROMISC)
  2047. status |= BCM43xx_SBF_MODE_PROMISC;
  2048. bcm43xx_write32(bcm, BCM43xx_MMIO_STATUS_BITFIELD, status);
  2049. value = 0x0002;
  2050. if (iw_mode != IW_MODE_ADHOC && iw_mode != IW_MODE_MASTER) {
  2051. if (bcm->chip_id == 0x4306 && bcm->chip_rev == 3)
  2052. value = 0x0064;
  2053. else
  2054. value = 0x0032;
  2055. }
  2056. bcm43xx_write16(bcm, 0x0612, value);
  2057. }
  2058. /* This is the opposite of bcm43xx_chip_init() */
  2059. static void bcm43xx_chip_cleanup(struct bcm43xx_private *bcm)
  2060. {
  2061. bcm43xx_radio_turn_off(bcm);
  2062. if (!modparam_noleds)
  2063. bcm43xx_leds_exit(bcm);
  2064. bcm43xx_gpio_cleanup(bcm);
  2065. free_irq(bcm->irq, bcm);
  2066. bcm43xx_release_firmware(bcm, 0);
  2067. }
  2068. /* Initialize the chip
  2069. * http://bcm-specs.sipsolutions.net/ChipInit
  2070. */
  2071. static int bcm43xx_chip_init(struct bcm43xx_private *bcm)
  2072. {
  2073. struct bcm43xx_radioinfo *radio = bcm43xx_current_radio(bcm);
  2074. struct bcm43xx_phyinfo *phy = bcm43xx_current_phy(bcm);
  2075. int err;
  2076. int tmp;
  2077. u32 value32;
  2078. u16 value16;
  2079. bcm43xx_write32(bcm, BCM43xx_MMIO_STATUS_BITFIELD,
  2080. BCM43xx_SBF_CORE_READY
  2081. | BCM43xx_SBF_400);
  2082. err = bcm43xx_request_firmware(bcm);
  2083. if (err)
  2084. goto out;
  2085. bcm43xx_upload_microcode(bcm);
  2086. err = bcm43xx_initialize_irq(bcm);
  2087. if (err)
  2088. goto err_release_fw;
  2089. err = bcm43xx_gpio_init(bcm);
  2090. if (err)
  2091. goto err_free_irq;
  2092. err = bcm43xx_upload_initvals(bcm);
  2093. if (err)
  2094. goto err_gpio_cleanup;
  2095. bcm43xx_radio_turn_on(bcm);
  2096. bcm43xx_write16(bcm, 0x03E6, 0x0000);
  2097. err = bcm43xx_phy_init(bcm);
  2098. if (err)
  2099. goto err_radio_off;
  2100. /* Select initial Interference Mitigation. */
  2101. tmp = radio->interfmode;
  2102. radio->interfmode = BCM43xx_RADIO_INTERFMODE_NONE;
  2103. bcm43xx_radio_set_interference_mitigation(bcm, tmp);
  2104. bcm43xx_phy_set_antenna_diversity(bcm);
  2105. bcm43xx_radio_set_txantenna(bcm, BCM43xx_RADIO_TXANTENNA_DEFAULT);
  2106. if (phy->type == BCM43xx_PHYTYPE_B) {
  2107. value16 = bcm43xx_read16(bcm, 0x005E);
  2108. value16 |= 0x0004;
  2109. bcm43xx_write16(bcm, 0x005E, value16);
  2110. }
  2111. bcm43xx_write32(bcm, 0x0100, 0x01000000);
  2112. if (bcm->current_core->rev < 5)
  2113. bcm43xx_write32(bcm, 0x010C, 0x01000000);
  2114. value32 = bcm43xx_read32(bcm, BCM43xx_MMIO_STATUS_BITFIELD);
  2115. value32 &= ~ BCM43xx_SBF_MODE_NOTADHOC;
  2116. bcm43xx_write32(bcm, BCM43xx_MMIO_STATUS_BITFIELD, value32);
  2117. value32 = bcm43xx_read32(bcm, BCM43xx_MMIO_STATUS_BITFIELD);
  2118. value32 |= BCM43xx_SBF_MODE_NOTADHOC;
  2119. bcm43xx_write32(bcm, BCM43xx_MMIO_STATUS_BITFIELD, value32);
  2120. value32 = bcm43xx_read32(bcm, BCM43xx_MMIO_STATUS_BITFIELD);
  2121. value32 |= 0x100000;
  2122. bcm43xx_write32(bcm, BCM43xx_MMIO_STATUS_BITFIELD, value32);
  2123. if (bcm43xx_using_pio(bcm)) {
  2124. bcm43xx_write32(bcm, 0x0210, 0x00000100);
  2125. bcm43xx_write32(bcm, 0x0230, 0x00000100);
  2126. bcm43xx_write32(bcm, 0x0250, 0x00000100);
  2127. bcm43xx_write32(bcm, 0x0270, 0x00000100);
  2128. bcm43xx_shm_write16(bcm, BCM43xx_SHM_SHARED, 0x0034, 0x0000);
  2129. }
  2130. /* Probe Response Timeout value */
  2131. /* FIXME: Default to 0, has to be set by ioctl probably... :-/ */
  2132. bcm43xx_shm_write16(bcm, BCM43xx_SHM_SHARED, 0x0074, 0x0000);
  2133. /* Initially set the wireless operation mode. */
  2134. bcm43xx_set_iwmode(bcm, bcm->ieee->iw_mode);
  2135. if (bcm->current_core->rev < 3) {
  2136. bcm43xx_write16(bcm, 0x060E, 0x0000);
  2137. bcm43xx_write16(bcm, 0x0610, 0x8000);
  2138. bcm43xx_write16(bcm, 0x0604, 0x0000);
  2139. bcm43xx_write16(bcm, 0x0606, 0x0200);
  2140. } else {
  2141. bcm43xx_write32(bcm, 0x0188, 0x80000000);
  2142. bcm43xx_write32(bcm, 0x018C, 0x02000000);
  2143. }
  2144. bcm43xx_write32(bcm, BCM43xx_MMIO_GEN_IRQ_REASON, 0x00004000);
  2145. bcm43xx_write32(bcm, BCM43xx_MMIO_DMA1_IRQ_MASK, 0x0001DC00);
  2146. bcm43xx_write32(bcm, BCM43xx_MMIO_DMA2_IRQ_MASK, 0x0000DC00);
  2147. bcm43xx_write32(bcm, BCM43xx_MMIO_DMA3_IRQ_MASK, 0x0000DC00);
  2148. bcm43xx_write32(bcm, BCM43xx_MMIO_DMA4_IRQ_MASK, 0x0001DC00);
  2149. value32 = bcm43xx_read32(bcm, BCM43xx_CIR_SBTMSTATELOW);
  2150. value32 |= 0x00100000;
  2151. bcm43xx_write32(bcm, BCM43xx_CIR_SBTMSTATELOW, value32);
  2152. bcm43xx_write16(bcm, BCM43xx_MMIO_POWERUP_DELAY, bcm43xx_pctl_powerup_delay(bcm));
  2153. assert(err == 0);
  2154. dprintk(KERN_INFO PFX "Chip initialized\n");
  2155. out:
  2156. return err;
  2157. err_radio_off:
  2158. bcm43xx_radio_turn_off(bcm);
  2159. err_gpio_cleanup:
  2160. bcm43xx_gpio_cleanup(bcm);
  2161. err_free_irq:
  2162. free_irq(bcm->irq, bcm);
  2163. err_release_fw:
  2164. bcm43xx_release_firmware(bcm, 1);
  2165. goto out;
  2166. }
  2167. /* Validate chip access
  2168. * http://bcm-specs.sipsolutions.net/ValidateChipAccess */
  2169. static int bcm43xx_validate_chip(struct bcm43xx_private *bcm)
  2170. {
  2171. u32 value;
  2172. u32 shm_backup;
  2173. shm_backup = bcm43xx_shm_read32(bcm, BCM43xx_SHM_SHARED, 0x0000);
  2174. bcm43xx_shm_write32(bcm, BCM43xx_SHM_SHARED, 0x0000, 0xAA5555AA);
  2175. if (bcm43xx_shm_read32(bcm, BCM43xx_SHM_SHARED, 0x0000) != 0xAA5555AA)
  2176. goto error;
  2177. bcm43xx_shm_write32(bcm, BCM43xx_SHM_SHARED, 0x0000, 0x55AAAA55);
  2178. if (bcm43xx_shm_read32(bcm, BCM43xx_SHM_SHARED, 0x0000) != 0x55AAAA55)
  2179. goto error;
  2180. bcm43xx_shm_write32(bcm, BCM43xx_SHM_SHARED, 0x0000, shm_backup);
  2181. value = bcm43xx_read32(bcm, BCM43xx_MMIO_STATUS_BITFIELD);
  2182. if ((value | 0x80000000) != 0x80000400)
  2183. goto error;
  2184. value = bcm43xx_read32(bcm, BCM43xx_MMIO_GEN_IRQ_REASON);
  2185. if (value != 0x00000000)
  2186. goto error;
  2187. return 0;
  2188. error:
  2189. printk(KERN_ERR PFX "Failed to validate the chipaccess\n");
  2190. return -ENODEV;
  2191. }
  2192. static void bcm43xx_init_struct_phyinfo(struct bcm43xx_phyinfo *phy)
  2193. {
  2194. /* Initialize a "phyinfo" structure. The structure is already
  2195. * zeroed out.
  2196. */
  2197. phy->antenna_diversity = 0xFFFF;
  2198. phy->savedpctlreg = 0xFFFF;
  2199. phy->minlowsig[0] = 0xFFFF;
  2200. phy->minlowsig[1] = 0xFFFF;
  2201. spin_lock_init(&phy->lock);
  2202. }
  2203. static void bcm43xx_init_struct_radioinfo(struct bcm43xx_radioinfo *radio)
  2204. {
  2205. /* Initialize a "radioinfo" structure. The structure is already
  2206. * zeroed out.
  2207. */
  2208. radio->interfmode = BCM43xx_RADIO_INTERFMODE_NONE;
  2209. radio->channel = 0xFF;
  2210. radio->initial_channel = 0xFF;
  2211. radio->lofcal = 0xFFFF;
  2212. radio->initval = 0xFFFF;
  2213. radio->nrssi[0] = -1000;
  2214. radio->nrssi[1] = -1000;
  2215. }
  2216. static int bcm43xx_probe_cores(struct bcm43xx_private *bcm)
  2217. {
  2218. int err, i;
  2219. int current_core;
  2220. u32 core_vendor, core_id, core_rev;
  2221. u32 sb_id_hi, chip_id_32 = 0;
  2222. u16 pci_device, chip_id_16;
  2223. u8 core_count;
  2224. memset(&bcm->core_chipcommon, 0, sizeof(struct bcm43xx_coreinfo));
  2225. memset(&bcm->core_pci, 0, sizeof(struct bcm43xx_coreinfo));
  2226. memset(&bcm->core_80211, 0, sizeof(struct bcm43xx_coreinfo)
  2227. * BCM43xx_MAX_80211_CORES);
  2228. memset(&bcm->core_80211_ext, 0, sizeof(struct bcm43xx_coreinfo_80211)
  2229. * BCM43xx_MAX_80211_CORES);
  2230. bcm->current_80211_core_idx = -1;
  2231. bcm->nr_80211_available = 0;
  2232. bcm->current_core = NULL;
  2233. bcm->active_80211_core = NULL;
  2234. /* map core 0 */
  2235. err = _switch_core(bcm, 0);
  2236. if (err)
  2237. goto out;
  2238. /* fetch sb_id_hi from core information registers */
  2239. sb_id_hi = bcm43xx_read32(bcm, BCM43xx_CIR_SB_ID_HI);
  2240. core_id = (sb_id_hi & 0xFFF0) >> 4;
  2241. core_rev = (sb_id_hi & 0xF);
  2242. core_vendor = (sb_id_hi & 0xFFFF0000) >> 16;
  2243. /* if present, chipcommon is always core 0; read the chipid from it */
  2244. if (core_id == BCM43xx_COREID_CHIPCOMMON) {
  2245. chip_id_32 = bcm43xx_read32(bcm, 0);
  2246. chip_id_16 = chip_id_32 & 0xFFFF;
  2247. bcm->core_chipcommon.available = 1;
  2248. bcm->core_chipcommon.id = core_id;
  2249. bcm->core_chipcommon.rev = core_rev;
  2250. bcm->core_chipcommon.index = 0;
  2251. /* While we are at it, also read the capabilities. */
  2252. bcm->chipcommon_capabilities = bcm43xx_read32(bcm, BCM43xx_CHIPCOMMON_CAPABILITIES);
  2253. } else {
  2254. /* without a chipCommon, use a hard coded table. */
  2255. pci_device = bcm->pci_dev->device;
  2256. if (pci_device == 0x4301)
  2257. chip_id_16 = 0x4301;
  2258. else if ((pci_device >= 0x4305) && (pci_device <= 0x4307))
  2259. chip_id_16 = 0x4307;
  2260. else if ((pci_device >= 0x4402) && (pci_device <= 0x4403))
  2261. chip_id_16 = 0x4402;
  2262. else if ((pci_device >= 0x4610) && (pci_device <= 0x4615))
  2263. chip_id_16 = 0x4610;
  2264. else if ((pci_device >= 0x4710) && (pci_device <= 0x4715))
  2265. chip_id_16 = 0x4710;
  2266. #ifdef CONFIG_BCM947XX
  2267. else if ((pci_device >= 0x4320) && (pci_device <= 0x4325))
  2268. chip_id_16 = 0x4309;
  2269. #endif
  2270. else {
  2271. printk(KERN_ERR PFX "Could not determine Chip ID\n");
  2272. return -ENODEV;
  2273. }
  2274. }
  2275. /* ChipCommon with Core Rev >=4 encodes number of cores,
  2276. * otherwise consult hardcoded table */
  2277. if ((core_id == BCM43xx_COREID_CHIPCOMMON) && (core_rev >= 4)) {
  2278. core_count = (chip_id_32 & 0x0F000000) >> 24;
  2279. } else {
  2280. switch (chip_id_16) {
  2281. case 0x4610:
  2282. case 0x4704:
  2283. case 0x4710:
  2284. core_count = 9;
  2285. break;
  2286. case 0x4310:
  2287. core_count = 8;
  2288. break;
  2289. case 0x5365:
  2290. core_count = 7;
  2291. break;
  2292. case 0x4306:
  2293. core_count = 6;
  2294. break;
  2295. case 0x4301:
  2296. case 0x4307:
  2297. core_count = 5;
  2298. break;
  2299. case 0x4402:
  2300. core_count = 3;
  2301. break;
  2302. default:
  2303. /* SOL if we get here */
  2304. assert(0);
  2305. core_count = 1;
  2306. }
  2307. }
  2308. bcm->chip_id = chip_id_16;
  2309. bcm->chip_rev = (chip_id_32 & 0x000f0000) >> 16;
  2310. dprintk(KERN_INFO PFX "Chip ID 0x%x, rev 0x%x\n",
  2311. bcm->chip_id, bcm->chip_rev);
  2312. dprintk(KERN_INFO PFX "Number of cores: %d\n", core_count);
  2313. if (bcm->core_chipcommon.available) {
  2314. dprintk(KERN_INFO PFX "Core 0: ID 0x%x, rev 0x%x, vendor 0x%x, %s\n",
  2315. core_id, core_rev, core_vendor,
  2316. bcm43xx_core_enabled(bcm) ? "enabled" : "disabled");
  2317. }
  2318. if (bcm->core_chipcommon.available)
  2319. current_core = 1;
  2320. else
  2321. current_core = 0;
  2322. for ( ; current_core < core_count; current_core++) {
  2323. struct bcm43xx_coreinfo *core;
  2324. struct bcm43xx_coreinfo_80211 *ext_80211;
  2325. err = _switch_core(bcm, current_core);
  2326. if (err)
  2327. goto out;
  2328. /* Gather information */
  2329. /* fetch sb_id_hi from core information registers */
  2330. sb_id_hi = bcm43xx_read32(bcm, BCM43xx_CIR_SB_ID_HI);
  2331. /* extract core_id, core_rev, core_vendor */
  2332. core_id = (sb_id_hi & 0xFFF0) >> 4;
  2333. core_rev = (sb_id_hi & 0xF);
  2334. core_vendor = (sb_id_hi & 0xFFFF0000) >> 16;
  2335. dprintk(KERN_INFO PFX "Core %d: ID 0x%x, rev 0x%x, vendor 0x%x, %s\n",
  2336. current_core, core_id, core_rev, core_vendor,
  2337. bcm43xx_core_enabled(bcm) ? "enabled" : "disabled" );
  2338. core = NULL;
  2339. switch (core_id) {
  2340. case BCM43xx_COREID_PCI:
  2341. core = &bcm->core_pci;
  2342. if (core->available) {
  2343. printk(KERN_WARNING PFX "Multiple PCI cores found.\n");
  2344. continue;
  2345. }
  2346. break;
  2347. case BCM43xx_COREID_80211:
  2348. for (i = 0; i < BCM43xx_MAX_80211_CORES; i++) {
  2349. core = &(bcm->core_80211[i]);
  2350. ext_80211 = &(bcm->core_80211_ext[i]);
  2351. if (!core->available)
  2352. break;
  2353. core = NULL;
  2354. }
  2355. if (!core) {
  2356. printk(KERN_WARNING PFX "More than %d cores of type 802.11 found.\n",
  2357. BCM43xx_MAX_80211_CORES);
  2358. continue;
  2359. }
  2360. if (i != 0) {
  2361. /* More than one 80211 core is only supported
  2362. * by special chips.
  2363. * There are chips with two 80211 cores, but with
  2364. * dangling pins on the second core. Be careful
  2365. * and ignore these cores here.
  2366. */
  2367. if (bcm->pci_dev->device != 0x4324) {
  2368. dprintk(KERN_INFO PFX "Ignoring additional 802.11 core.\n");
  2369. continue;
  2370. }
  2371. }
  2372. switch (core_rev) {
  2373. case 2:
  2374. case 4:
  2375. case 5:
  2376. case 6:
  2377. case 7:
  2378. case 9:
  2379. break;
  2380. default:
  2381. printk(KERN_ERR PFX "Error: Unsupported 80211 core revision %u\n",
  2382. core_rev);
  2383. err = -ENODEV;
  2384. goto out;
  2385. }
  2386. bcm->nr_80211_available++;
  2387. bcm43xx_init_struct_phyinfo(&ext_80211->phy);
  2388. bcm43xx_init_struct_radioinfo(&ext_80211->radio);
  2389. break;
  2390. case BCM43xx_COREID_CHIPCOMMON:
  2391. printk(KERN_WARNING PFX "Multiple CHIPCOMMON cores found.\n");
  2392. break;
  2393. }
  2394. if (core) {
  2395. core->available = 1;
  2396. core->id = core_id;
  2397. core->rev = core_rev;
  2398. core->index = current_core;
  2399. }
  2400. }
  2401. if (!bcm->core_80211[0].available) {
  2402. printk(KERN_ERR PFX "Error: No 80211 core found!\n");
  2403. err = -ENODEV;
  2404. goto out;
  2405. }
  2406. err = bcm43xx_switch_core(bcm, &bcm->core_80211[0]);
  2407. assert(err == 0);
  2408. out:
  2409. return err;
  2410. }
  2411. static void bcm43xx_gen_bssid(struct bcm43xx_private *bcm)
  2412. {
  2413. const u8 *mac = (const u8*)(bcm->net_dev->dev_addr);
  2414. u8 *bssid = bcm->ieee->bssid;
  2415. switch (bcm->ieee->iw_mode) {
  2416. case IW_MODE_ADHOC:
  2417. random_ether_addr(bssid);
  2418. break;
  2419. case IW_MODE_MASTER:
  2420. case IW_MODE_INFRA:
  2421. case IW_MODE_REPEAT:
  2422. case IW_MODE_SECOND:
  2423. case IW_MODE_MONITOR:
  2424. memcpy(bssid, mac, ETH_ALEN);
  2425. break;
  2426. default:
  2427. assert(0);
  2428. }
  2429. }
  2430. static void bcm43xx_rate_memory_write(struct bcm43xx_private *bcm,
  2431. u16 rate,
  2432. int is_ofdm)
  2433. {
  2434. u16 offset;
  2435. if (is_ofdm) {
  2436. offset = 0x480;
  2437. offset += (bcm43xx_plcp_get_ratecode_ofdm(rate) & 0x000F) * 2;
  2438. }
  2439. else {
  2440. offset = 0x4C0;
  2441. offset += (bcm43xx_plcp_get_ratecode_cck(rate) & 0x000F) * 2;
  2442. }
  2443. bcm43xx_shm_write16(bcm, BCM43xx_SHM_SHARED, offset + 0x20,
  2444. bcm43xx_shm_read16(bcm, BCM43xx_SHM_SHARED, offset));
  2445. }
  2446. static void bcm43xx_rate_memory_init(struct bcm43xx_private *bcm)
  2447. {
  2448. switch (bcm43xx_current_phy(bcm)->type) {
  2449. case BCM43xx_PHYTYPE_A:
  2450. case BCM43xx_PHYTYPE_G:
  2451. bcm43xx_rate_memory_write(bcm, IEEE80211_OFDM_RATE_6MB, 1);
  2452. bcm43xx_rate_memory_write(bcm, IEEE80211_OFDM_RATE_12MB, 1);
  2453. bcm43xx_rate_memory_write(bcm, IEEE80211_OFDM_RATE_18MB, 1);
  2454. bcm43xx_rate_memory_write(bcm, IEEE80211_OFDM_RATE_24MB, 1);
  2455. bcm43xx_rate_memory_write(bcm, IEEE80211_OFDM_RATE_36MB, 1);
  2456. bcm43xx_rate_memory_write(bcm, IEEE80211_OFDM_RATE_48MB, 1);
  2457. bcm43xx_rate_memory_write(bcm, IEEE80211_OFDM_RATE_54MB, 1);
  2458. case BCM43xx_PHYTYPE_B:
  2459. bcm43xx_rate_memory_write(bcm, IEEE80211_CCK_RATE_1MB, 0);
  2460. bcm43xx_rate_memory_write(bcm, IEEE80211_CCK_RATE_2MB, 0);
  2461. bcm43xx_rate_memory_write(bcm, IEEE80211_CCK_RATE_5MB, 0);
  2462. bcm43xx_rate_memory_write(bcm, IEEE80211_CCK_RATE_11MB, 0);
  2463. break;
  2464. default:
  2465. assert(0);
  2466. }
  2467. }
  2468. static void bcm43xx_wireless_core_cleanup(struct bcm43xx_private *bcm)
  2469. {
  2470. bcm43xx_chip_cleanup(bcm);
  2471. bcm43xx_pio_free(bcm);
  2472. bcm43xx_dma_free(bcm);
  2473. bcm->current_core->initialized = 0;
  2474. }
  2475. /* http://bcm-specs.sipsolutions.net/80211Init */
  2476. static int bcm43xx_wireless_core_init(struct bcm43xx_private *bcm)
  2477. {
  2478. struct bcm43xx_phyinfo *phy = bcm43xx_current_phy(bcm);
  2479. struct bcm43xx_radioinfo *radio = bcm43xx_current_radio(bcm);
  2480. u32 ucodeflags;
  2481. int err;
  2482. u32 sbimconfiglow;
  2483. u8 limit;
  2484. if (bcm->chip_rev < 5) {
  2485. sbimconfiglow = bcm43xx_read32(bcm, BCM43xx_CIR_SBIMCONFIGLOW);
  2486. sbimconfiglow &= ~ BCM43xx_SBIMCONFIGLOW_REQUEST_TOUT_MASK;
  2487. sbimconfiglow &= ~ BCM43xx_SBIMCONFIGLOW_SERVICE_TOUT_MASK;
  2488. if (bcm->bustype == BCM43xx_BUSTYPE_PCI)
  2489. sbimconfiglow |= 0x32;
  2490. else if (bcm->bustype == BCM43xx_BUSTYPE_SB)
  2491. sbimconfiglow |= 0x53;
  2492. else
  2493. assert(0);
  2494. bcm43xx_write32(bcm, BCM43xx_CIR_SBIMCONFIGLOW, sbimconfiglow);
  2495. }
  2496. bcm43xx_phy_calibrate(bcm);
  2497. err = bcm43xx_chip_init(bcm);
  2498. if (err)
  2499. goto out;
  2500. bcm43xx_shm_write16(bcm, BCM43xx_SHM_SHARED, 0x0016, bcm->current_core->rev);
  2501. ucodeflags = bcm43xx_shm_read32(bcm, BCM43xx_SHM_SHARED, BCM43xx_UCODEFLAGS_OFFSET);
  2502. if (0 /*FIXME: which condition has to be used here? */)
  2503. ucodeflags |= 0x00000010;
  2504. /* HW decryption needs to be set now */
  2505. ucodeflags |= 0x40000000;
  2506. if (phy->type == BCM43xx_PHYTYPE_G) {
  2507. ucodeflags |= BCM43xx_UCODEFLAG_UNKBGPHY;
  2508. if (phy->rev == 1)
  2509. ucodeflags |= BCM43xx_UCODEFLAG_UNKGPHY;
  2510. if (bcm->sprom.boardflags & BCM43xx_BFL_PACTRL)
  2511. ucodeflags |= BCM43xx_UCODEFLAG_UNKPACTRL;
  2512. } else if (phy->type == BCM43xx_PHYTYPE_B) {
  2513. ucodeflags |= BCM43xx_UCODEFLAG_UNKBGPHY;
  2514. if (phy->rev >= 2 && radio->version == 0x2050)
  2515. ucodeflags &= ~BCM43xx_UCODEFLAG_UNKGPHY;
  2516. }
  2517. if (ucodeflags != bcm43xx_shm_read32(bcm, BCM43xx_SHM_SHARED,
  2518. BCM43xx_UCODEFLAGS_OFFSET)) {
  2519. bcm43xx_shm_write32(bcm, BCM43xx_SHM_SHARED,
  2520. BCM43xx_UCODEFLAGS_OFFSET, ucodeflags);
  2521. }
  2522. /* Short/Long Retry Limit.
  2523. * The retry-limit is a 4-bit counter. Enforce this to avoid overflowing
  2524. * the chip-internal counter.
  2525. */
  2526. limit = limit_value(modparam_short_retry, 0, 0xF);
  2527. bcm43xx_shm_write32(bcm, BCM43xx_SHM_WIRELESS, 0x0006, limit);
  2528. limit = limit_value(modparam_long_retry, 0, 0xF);
  2529. bcm43xx_shm_write32(bcm, BCM43xx_SHM_WIRELESS, 0x0007, limit);
  2530. bcm43xx_shm_write16(bcm, BCM43xx_SHM_SHARED, 0x0044, 3);
  2531. bcm43xx_shm_write16(bcm, BCM43xx_SHM_SHARED, 0x0046, 2);
  2532. bcm43xx_rate_memory_init(bcm);
  2533. /* Minimum Contention Window */
  2534. if (phy->type == BCM43xx_PHYTYPE_B)
  2535. bcm43xx_shm_write32(bcm, BCM43xx_SHM_WIRELESS, 0x0003, 0x0000001f);
  2536. else
  2537. bcm43xx_shm_write32(bcm, BCM43xx_SHM_WIRELESS, 0x0003, 0x0000000f);
  2538. /* Maximum Contention Window */
  2539. bcm43xx_shm_write32(bcm, BCM43xx_SHM_WIRELESS, 0x0004, 0x000003ff);
  2540. bcm43xx_gen_bssid(bcm);
  2541. bcm43xx_write_mac_bssid_templates(bcm);
  2542. if (bcm->current_core->rev >= 5)
  2543. bcm43xx_write16(bcm, 0x043C, 0x000C);
  2544. if (bcm43xx_using_pio(bcm))
  2545. err = bcm43xx_pio_init(bcm);
  2546. else
  2547. err = bcm43xx_dma_init(bcm);
  2548. if (err)
  2549. goto err_chip_cleanup;
  2550. bcm43xx_write16(bcm, 0x0612, 0x0050);
  2551. bcm43xx_shm_write16(bcm, BCM43xx_SHM_SHARED, 0x0416, 0x0050);
  2552. bcm43xx_shm_write16(bcm, BCM43xx_SHM_SHARED, 0x0414, 0x01F4);
  2553. bcm43xx_mac_enable(bcm);
  2554. bcm43xx_interrupt_enable(bcm, bcm->irq_savedstate);
  2555. bcm->current_core->initialized = 1;
  2556. out:
  2557. return err;
  2558. err_chip_cleanup:
  2559. bcm43xx_chip_cleanup(bcm);
  2560. goto out;
  2561. }
  2562. static int bcm43xx_chipset_attach(struct bcm43xx_private *bcm)
  2563. {
  2564. int err;
  2565. u16 pci_status;
  2566. err = bcm43xx_pctl_set_crystal(bcm, 1);
  2567. if (err)
  2568. goto out;
  2569. bcm43xx_pci_read_config16(bcm, PCI_STATUS, &pci_status);
  2570. bcm43xx_pci_write_config16(bcm, PCI_STATUS, pci_status & ~PCI_STATUS_SIG_TARGET_ABORT);
  2571. out:
  2572. return err;
  2573. }
  2574. static void bcm43xx_chipset_detach(struct bcm43xx_private *bcm)
  2575. {
  2576. bcm43xx_pctl_set_clock(bcm, BCM43xx_PCTL_CLK_SLOW);
  2577. bcm43xx_pctl_set_crystal(bcm, 0);
  2578. }
  2579. static void bcm43xx_pcicore_broadcast_value(struct bcm43xx_private *bcm,
  2580. u32 address,
  2581. u32 data)
  2582. {
  2583. bcm43xx_write32(bcm, BCM43xx_PCICORE_BCAST_ADDR, address);
  2584. bcm43xx_write32(bcm, BCM43xx_PCICORE_BCAST_DATA, data);
  2585. }
  2586. static int bcm43xx_pcicore_commit_settings(struct bcm43xx_private *bcm)
  2587. {
  2588. int err;
  2589. struct bcm43xx_coreinfo *old_core;
  2590. old_core = bcm->current_core;
  2591. err = bcm43xx_switch_core(bcm, &bcm->core_pci);
  2592. if (err)
  2593. goto out;
  2594. bcm43xx_pcicore_broadcast_value(bcm, 0xfd8, 0x00000000);
  2595. bcm43xx_switch_core(bcm, old_core);
  2596. assert(err == 0);
  2597. out:
  2598. return err;
  2599. }
  2600. /* Make an I/O Core usable. "core_mask" is the bitmask of the cores to enable.
  2601. * To enable core 0, pass a core_mask of 1<<0
  2602. */
  2603. static int bcm43xx_setup_backplane_pci_connection(struct bcm43xx_private *bcm,
  2604. u32 core_mask)
  2605. {
  2606. u32 backplane_flag_nr;
  2607. u32 value;
  2608. struct bcm43xx_coreinfo *old_core;
  2609. int err = 0;
  2610. value = bcm43xx_read32(bcm, BCM43xx_CIR_SBTPSFLAG);
  2611. backplane_flag_nr = value & BCM43xx_BACKPLANE_FLAG_NR_MASK;
  2612. old_core = bcm->current_core;
  2613. err = bcm43xx_switch_core(bcm, &bcm->core_pci);
  2614. if (err)
  2615. goto out;
  2616. if (bcm->core_pci.rev < 6) {
  2617. value = bcm43xx_read32(bcm, BCM43xx_CIR_SBINTVEC);
  2618. value |= (1 << backplane_flag_nr);
  2619. bcm43xx_write32(bcm, BCM43xx_CIR_SBINTVEC, value);
  2620. } else {
  2621. err = bcm43xx_pci_read_config32(bcm, BCM43xx_PCICFG_ICR, &value);
  2622. if (err) {
  2623. printk(KERN_ERR PFX "Error: ICR setup failure!\n");
  2624. goto out_switch_back;
  2625. }
  2626. value |= core_mask << 8;
  2627. err = bcm43xx_pci_write_config32(bcm, BCM43xx_PCICFG_ICR, value);
  2628. if (err) {
  2629. printk(KERN_ERR PFX "Error: ICR setup failure!\n");
  2630. goto out_switch_back;
  2631. }
  2632. }
  2633. value = bcm43xx_read32(bcm, BCM43xx_PCICORE_SBTOPCI2);
  2634. value |= BCM43xx_SBTOPCI2_PREFETCH | BCM43xx_SBTOPCI2_BURST;
  2635. bcm43xx_write32(bcm, BCM43xx_PCICORE_SBTOPCI2, value);
  2636. if (bcm->core_pci.rev < 5) {
  2637. value = bcm43xx_read32(bcm, BCM43xx_CIR_SBIMCONFIGLOW);
  2638. value |= (2 << BCM43xx_SBIMCONFIGLOW_SERVICE_TOUT_SHIFT)
  2639. & BCM43xx_SBIMCONFIGLOW_SERVICE_TOUT_MASK;
  2640. value |= (3 << BCM43xx_SBIMCONFIGLOW_REQUEST_TOUT_SHIFT)
  2641. & BCM43xx_SBIMCONFIGLOW_REQUEST_TOUT_MASK;
  2642. bcm43xx_write32(bcm, BCM43xx_CIR_SBIMCONFIGLOW, value);
  2643. err = bcm43xx_pcicore_commit_settings(bcm);
  2644. assert(err == 0);
  2645. }
  2646. out_switch_back:
  2647. err = bcm43xx_switch_core(bcm, old_core);
  2648. out:
  2649. return err;
  2650. }
  2651. static void bcm43xx_softmac_init(struct bcm43xx_private *bcm)
  2652. {
  2653. ieee80211softmac_start(bcm->net_dev);
  2654. }
  2655. static void bcm43xx_periodic_every120sec(struct bcm43xx_private *bcm)
  2656. {
  2657. struct bcm43xx_phyinfo *phy = bcm43xx_current_phy(bcm);
  2658. if (phy->type != BCM43xx_PHYTYPE_G || phy->rev < 2)
  2659. return;
  2660. bcm43xx_mac_suspend(bcm);
  2661. bcm43xx_phy_lo_g_measure(bcm);
  2662. bcm43xx_mac_enable(bcm);
  2663. }
  2664. static void bcm43xx_periodic_every60sec(struct bcm43xx_private *bcm)
  2665. {
  2666. bcm43xx_phy_lo_mark_all_unused(bcm);
  2667. if (bcm->sprom.boardflags & BCM43xx_BFL_RSSI) {
  2668. bcm43xx_mac_suspend(bcm);
  2669. bcm43xx_calc_nrssi_slope(bcm);
  2670. bcm43xx_mac_enable(bcm);
  2671. }
  2672. }
  2673. static void bcm43xx_periodic_every30sec(struct bcm43xx_private *bcm)
  2674. {
  2675. /* Update device statistics. */
  2676. bcm43xx_calculate_link_quality(bcm);
  2677. }
  2678. static void bcm43xx_periodic_every15sec(struct bcm43xx_private *bcm)
  2679. {
  2680. struct bcm43xx_phyinfo *phy = bcm43xx_current_phy(bcm);
  2681. struct bcm43xx_radioinfo *radio = bcm43xx_current_radio(bcm);
  2682. if (phy->type == BCM43xx_PHYTYPE_G) {
  2683. //TODO: update_aci_moving_average
  2684. if (radio->aci_enable && radio->aci_wlan_automatic) {
  2685. bcm43xx_mac_suspend(bcm);
  2686. if (!radio->aci_enable && 1 /*TODO: not scanning? */) {
  2687. if (0 /*TODO: bunch of conditions*/) {
  2688. bcm43xx_radio_set_interference_mitigation(bcm,
  2689. BCM43xx_RADIO_INTERFMODE_MANUALWLAN);
  2690. }
  2691. } else if (1/*TODO*/) {
  2692. /*
  2693. if ((aci_average > 1000) && !(bcm43xx_radio_aci_scan(bcm))) {
  2694. bcm43xx_radio_set_interference_mitigation(bcm,
  2695. BCM43xx_RADIO_INTERFMODE_NONE);
  2696. }
  2697. */
  2698. }
  2699. bcm43xx_mac_enable(bcm);
  2700. } else if (radio->interfmode == BCM43xx_RADIO_INTERFMODE_NONWLAN &&
  2701. phy->rev == 1) {
  2702. //TODO: implement rev1 workaround
  2703. }
  2704. }
  2705. bcm43xx_phy_xmitpower(bcm); //FIXME: unless scanning?
  2706. //TODO for APHY (temperature?)
  2707. }
  2708. static void bcm43xx_periodic_task_handler(unsigned long d)
  2709. {
  2710. struct bcm43xx_private *bcm = (struct bcm43xx_private *)d;
  2711. unsigned long flags;
  2712. unsigned int state;
  2713. bcm43xx_lock_mmio(bcm, flags);
  2714. assert(bcm->initialized);
  2715. state = bcm->periodic_state;
  2716. if (state % 8 == 0)
  2717. bcm43xx_periodic_every120sec(bcm);
  2718. if (state % 4 == 0)
  2719. bcm43xx_periodic_every60sec(bcm);
  2720. if (state % 2 == 0)
  2721. bcm43xx_periodic_every30sec(bcm);
  2722. bcm43xx_periodic_every15sec(bcm);
  2723. bcm->periodic_state = state + 1;
  2724. mod_timer(&bcm->periodic_tasks, jiffies + (HZ * 15));
  2725. bcm43xx_unlock_mmio(bcm, flags);
  2726. }
  2727. static void bcm43xx_periodic_tasks_delete(struct bcm43xx_private *bcm)
  2728. {
  2729. del_timer_sync(&bcm->periodic_tasks);
  2730. }
  2731. static void bcm43xx_periodic_tasks_setup(struct bcm43xx_private *bcm)
  2732. {
  2733. struct timer_list *timer = &(bcm->periodic_tasks);
  2734. assert(bcm->initialized);
  2735. setup_timer(timer,
  2736. bcm43xx_periodic_task_handler,
  2737. (unsigned long)bcm);
  2738. timer->expires = jiffies;
  2739. add_timer(timer);
  2740. }
  2741. static void bcm43xx_security_init(struct bcm43xx_private *bcm)
  2742. {
  2743. bcm->security_offset = bcm43xx_shm_read16(bcm, BCM43xx_SHM_SHARED,
  2744. 0x0056) * 2;
  2745. bcm43xx_clear_keys(bcm);
  2746. }
  2747. /* This is the opposite of bcm43xx_init_board() */
  2748. static void bcm43xx_free_board(struct bcm43xx_private *bcm)
  2749. {
  2750. int i, err;
  2751. unsigned long flags;
  2752. bcm43xx_sysfs_unregister(bcm);
  2753. bcm43xx_periodic_tasks_delete(bcm);
  2754. bcm43xx_lock(bcm, flags);
  2755. bcm->initialized = 0;
  2756. bcm->shutting_down = 1;
  2757. bcm43xx_unlock(bcm, flags);
  2758. for (i = 0; i < BCM43xx_MAX_80211_CORES; i++) {
  2759. if (!bcm->core_80211[i].available)
  2760. continue;
  2761. if (!bcm->core_80211[i].initialized)
  2762. continue;
  2763. err = bcm43xx_switch_core(bcm, &bcm->core_80211[i]);
  2764. assert(err == 0);
  2765. bcm43xx_wireless_core_cleanup(bcm);
  2766. }
  2767. bcm43xx_pctl_set_crystal(bcm, 0);
  2768. bcm43xx_lock(bcm, flags);
  2769. bcm->shutting_down = 0;
  2770. bcm43xx_unlock(bcm, flags);
  2771. }
  2772. static int bcm43xx_init_board(struct bcm43xx_private *bcm)
  2773. {
  2774. int i, err;
  2775. int connect_phy;
  2776. unsigned long flags;
  2777. might_sleep();
  2778. bcm43xx_lock(bcm, flags);
  2779. bcm->initialized = 0;
  2780. bcm->shutting_down = 0;
  2781. bcm43xx_unlock(bcm, flags);
  2782. err = bcm43xx_pctl_set_crystal(bcm, 1);
  2783. if (err)
  2784. goto out;
  2785. err = bcm43xx_pctl_init(bcm);
  2786. if (err)
  2787. goto err_crystal_off;
  2788. err = bcm43xx_pctl_set_clock(bcm, BCM43xx_PCTL_CLK_FAST);
  2789. if (err)
  2790. goto err_crystal_off;
  2791. tasklet_enable(&bcm->isr_tasklet);
  2792. for (i = 0; i < bcm->nr_80211_available; i++) {
  2793. err = bcm43xx_switch_core(bcm, &bcm->core_80211[i]);
  2794. assert(err != -ENODEV);
  2795. if (err)
  2796. goto err_80211_unwind;
  2797. /* Enable the selected wireless core.
  2798. * Connect PHY only on the first core.
  2799. */
  2800. if (!bcm43xx_core_enabled(bcm)) {
  2801. if (bcm->nr_80211_available == 1) {
  2802. connect_phy = bcm43xx_current_phy(bcm)->connected;
  2803. } else {
  2804. if (i == 0)
  2805. connect_phy = 1;
  2806. else
  2807. connect_phy = 0;
  2808. }
  2809. bcm43xx_wireless_core_reset(bcm, connect_phy);
  2810. }
  2811. if (i != 0)
  2812. bcm43xx_wireless_core_mark_inactive(bcm, &bcm->core_80211[0]);
  2813. err = bcm43xx_wireless_core_init(bcm);
  2814. if (err)
  2815. goto err_80211_unwind;
  2816. if (i != 0) {
  2817. bcm43xx_mac_suspend(bcm);
  2818. bcm43xx_interrupt_disable(bcm, BCM43xx_IRQ_ALL);
  2819. bcm43xx_radio_turn_off(bcm);
  2820. }
  2821. }
  2822. bcm->active_80211_core = &bcm->core_80211[0];
  2823. if (bcm->nr_80211_available >= 2) {
  2824. bcm43xx_switch_core(bcm, &bcm->core_80211[0]);
  2825. bcm43xx_mac_enable(bcm);
  2826. }
  2827. bcm43xx_macfilter_clear(bcm, BCM43xx_MACFILTER_ASSOC);
  2828. bcm43xx_macfilter_set(bcm, BCM43xx_MACFILTER_SELF, (u8 *)(bcm->net_dev->dev_addr));
  2829. dprintk(KERN_INFO PFX "80211 cores initialized\n");
  2830. bcm43xx_security_init(bcm);
  2831. bcm43xx_softmac_init(bcm);
  2832. bcm43xx_pctl_set_clock(bcm, BCM43xx_PCTL_CLK_DYNAMIC);
  2833. if (bcm43xx_current_radio(bcm)->initial_channel != 0xFF) {
  2834. bcm43xx_mac_suspend(bcm);
  2835. bcm43xx_radio_selectchannel(bcm, bcm43xx_current_radio(bcm)->initial_channel, 0);
  2836. bcm43xx_mac_enable(bcm);
  2837. }
  2838. /* Initialization of the board is done. Flag it as such. */
  2839. bcm43xx_lock(bcm, flags);
  2840. bcm->initialized = 1;
  2841. bcm43xx_unlock(bcm, flags);
  2842. bcm43xx_periodic_tasks_setup(bcm);
  2843. bcm43xx_sysfs_register(bcm);
  2844. //FIXME: check for bcm43xx_sysfs_register failure. This function is a bit messy regarding unwinding, though...
  2845. assert(err == 0);
  2846. out:
  2847. return err;
  2848. err_80211_unwind:
  2849. tasklet_disable(&bcm->isr_tasklet);
  2850. /* unwind all 80211 initialization */
  2851. for (i = 0; i < bcm->nr_80211_available; i++) {
  2852. if (!bcm->core_80211[i].initialized)
  2853. continue;
  2854. bcm43xx_interrupt_disable(bcm, BCM43xx_IRQ_ALL);
  2855. bcm43xx_wireless_core_cleanup(bcm);
  2856. }
  2857. err_crystal_off:
  2858. bcm43xx_pctl_set_crystal(bcm, 0);
  2859. goto out;
  2860. }
  2861. static void bcm43xx_detach_board(struct bcm43xx_private *bcm)
  2862. {
  2863. struct pci_dev *pci_dev = bcm->pci_dev;
  2864. int i;
  2865. bcm43xx_chipset_detach(bcm);
  2866. /* Do _not_ access the chip, after it is detached. */
  2867. iounmap(bcm->mmio_addr);
  2868. pci_release_regions(pci_dev);
  2869. pci_disable_device(pci_dev);
  2870. /* Free allocated structures/fields */
  2871. for (i = 0; i < BCM43xx_MAX_80211_CORES; i++) {
  2872. kfree(bcm->core_80211_ext[i].phy._lo_pairs);
  2873. if (bcm->core_80211_ext[i].phy.dyn_tssi_tbl)
  2874. kfree(bcm->core_80211_ext[i].phy.tssi2dbm);
  2875. }
  2876. }
  2877. static int bcm43xx_read_phyinfo(struct bcm43xx_private *bcm)
  2878. {
  2879. struct bcm43xx_phyinfo *phy = bcm43xx_current_phy(bcm);
  2880. u16 value;
  2881. u8 phy_version;
  2882. u8 phy_type;
  2883. u8 phy_rev;
  2884. int phy_rev_ok = 1;
  2885. void *p;
  2886. value = bcm43xx_read16(bcm, BCM43xx_MMIO_PHY_VER);
  2887. phy_version = (value & 0xF000) >> 12;
  2888. phy_type = (value & 0x0F00) >> 8;
  2889. phy_rev = (value & 0x000F);
  2890. dprintk(KERN_INFO PFX "Detected PHY: Version: %x, Type %x, Revision %x\n",
  2891. phy_version, phy_type, phy_rev);
  2892. switch (phy_type) {
  2893. case BCM43xx_PHYTYPE_A:
  2894. if (phy_rev >= 4)
  2895. phy_rev_ok = 0;
  2896. /*FIXME: We need to switch the ieee->modulation, etc.. flags,
  2897. * if we switch 80211 cores after init is done.
  2898. * As we do not implement on the fly switching between
  2899. * wireless cores, I will leave this as a future task.
  2900. */
  2901. bcm->ieee->modulation = IEEE80211_OFDM_MODULATION;
  2902. bcm->ieee->mode = IEEE_A;
  2903. bcm->ieee->freq_band = IEEE80211_52GHZ_BAND |
  2904. IEEE80211_24GHZ_BAND;
  2905. break;
  2906. case BCM43xx_PHYTYPE_B:
  2907. if (phy_rev != 2 && phy_rev != 4 && phy_rev != 6 && phy_rev != 7)
  2908. phy_rev_ok = 0;
  2909. bcm->ieee->modulation = IEEE80211_CCK_MODULATION;
  2910. bcm->ieee->mode = IEEE_B;
  2911. bcm->ieee->freq_band = IEEE80211_24GHZ_BAND;
  2912. break;
  2913. case BCM43xx_PHYTYPE_G:
  2914. if (phy_rev > 7)
  2915. phy_rev_ok = 0;
  2916. bcm->ieee->modulation = IEEE80211_OFDM_MODULATION |
  2917. IEEE80211_CCK_MODULATION;
  2918. bcm->ieee->mode = IEEE_G;
  2919. bcm->ieee->freq_band = IEEE80211_24GHZ_BAND;
  2920. break;
  2921. default:
  2922. printk(KERN_ERR PFX "Error: Unknown PHY Type %x\n",
  2923. phy_type);
  2924. return -ENODEV;
  2925. };
  2926. if (!phy_rev_ok) {
  2927. printk(KERN_WARNING PFX "Invalid PHY Revision %x\n",
  2928. phy_rev);
  2929. }
  2930. phy->version = phy_version;
  2931. phy->type = phy_type;
  2932. phy->rev = phy_rev;
  2933. if ((phy_type == BCM43xx_PHYTYPE_B) || (phy_type == BCM43xx_PHYTYPE_G)) {
  2934. p = kzalloc(sizeof(struct bcm43xx_lopair) * BCM43xx_LO_COUNT,
  2935. GFP_KERNEL);
  2936. if (!p)
  2937. return -ENOMEM;
  2938. phy->_lo_pairs = p;
  2939. }
  2940. return 0;
  2941. }
  2942. static int bcm43xx_attach_board(struct bcm43xx_private *bcm)
  2943. {
  2944. struct pci_dev *pci_dev = bcm->pci_dev;
  2945. struct net_device *net_dev = bcm->net_dev;
  2946. int err;
  2947. int i;
  2948. unsigned long mmio_start, mmio_flags, mmio_len;
  2949. u32 coremask;
  2950. err = pci_enable_device(pci_dev);
  2951. if (err) {
  2952. printk(KERN_ERR PFX "unable to wake up pci device (%i)\n", err);
  2953. goto out;
  2954. }
  2955. mmio_start = pci_resource_start(pci_dev, 0);
  2956. mmio_flags = pci_resource_flags(pci_dev, 0);
  2957. mmio_len = pci_resource_len(pci_dev, 0);
  2958. if (!(mmio_flags & IORESOURCE_MEM)) {
  2959. printk(KERN_ERR PFX
  2960. "%s, region #0 not an MMIO resource, aborting\n",
  2961. pci_name(pci_dev));
  2962. err = -ENODEV;
  2963. goto err_pci_disable;
  2964. }
  2965. err = pci_request_regions(pci_dev, KBUILD_MODNAME);
  2966. if (err) {
  2967. printk(KERN_ERR PFX
  2968. "could not access PCI resources (%i)\n", err);
  2969. goto err_pci_disable;
  2970. }
  2971. /* enable PCI bus-mastering */
  2972. pci_set_master(pci_dev);
  2973. bcm->mmio_addr = ioremap(mmio_start, mmio_len);
  2974. if (!bcm->mmio_addr) {
  2975. printk(KERN_ERR PFX "%s: cannot remap MMIO, aborting\n",
  2976. pci_name(pci_dev));
  2977. err = -EIO;
  2978. goto err_pci_release;
  2979. }
  2980. bcm->mmio_len = mmio_len;
  2981. net_dev->base_addr = (unsigned long)bcm->mmio_addr;
  2982. bcm43xx_pci_read_config16(bcm, PCI_SUBSYSTEM_VENDOR_ID,
  2983. &bcm->board_vendor);
  2984. bcm43xx_pci_read_config16(bcm, PCI_SUBSYSTEM_ID,
  2985. &bcm->board_type);
  2986. bcm43xx_pci_read_config16(bcm, PCI_REVISION_ID,
  2987. &bcm->board_revision);
  2988. err = bcm43xx_chipset_attach(bcm);
  2989. if (err)
  2990. goto err_iounmap;
  2991. err = bcm43xx_pctl_init(bcm);
  2992. if (err)
  2993. goto err_chipset_detach;
  2994. err = bcm43xx_probe_cores(bcm);
  2995. if (err)
  2996. goto err_chipset_detach;
  2997. /* Attach all IO cores to the backplane. */
  2998. coremask = 0;
  2999. for (i = 0; i < bcm->nr_80211_available; i++)
  3000. coremask |= (1 << bcm->core_80211[i].index);
  3001. //FIXME: Also attach some non80211 cores?
  3002. err = bcm43xx_setup_backplane_pci_connection(bcm, coremask);
  3003. if (err) {
  3004. printk(KERN_ERR PFX "Backplane->PCI connection failed!\n");
  3005. goto err_chipset_detach;
  3006. }
  3007. err = bcm43xx_sprom_extract(bcm);
  3008. if (err)
  3009. goto err_chipset_detach;
  3010. err = bcm43xx_leds_init(bcm);
  3011. if (err)
  3012. goto err_chipset_detach;
  3013. for (i = 0; i < bcm->nr_80211_available; i++) {
  3014. err = bcm43xx_switch_core(bcm, &bcm->core_80211[i]);
  3015. assert(err != -ENODEV);
  3016. if (err)
  3017. goto err_80211_unwind;
  3018. /* Enable the selected wireless core.
  3019. * Connect PHY only on the first core.
  3020. */
  3021. bcm43xx_wireless_core_reset(bcm, (i == 0));
  3022. err = bcm43xx_read_phyinfo(bcm);
  3023. if (err && (i == 0))
  3024. goto err_80211_unwind;
  3025. err = bcm43xx_read_radioinfo(bcm);
  3026. if (err && (i == 0))
  3027. goto err_80211_unwind;
  3028. err = bcm43xx_validate_chip(bcm);
  3029. if (err && (i == 0))
  3030. goto err_80211_unwind;
  3031. bcm43xx_radio_turn_off(bcm);
  3032. err = bcm43xx_phy_init_tssi2dbm_table(bcm);
  3033. if (err)
  3034. goto err_80211_unwind;
  3035. bcm43xx_wireless_core_disable(bcm);
  3036. }
  3037. bcm43xx_pctl_set_crystal(bcm, 0);
  3038. /* Set the MAC address in the networking subsystem */
  3039. if (bcm43xx_current_phy(bcm)->type == BCM43xx_PHYTYPE_A)
  3040. memcpy(bcm->net_dev->dev_addr, bcm->sprom.et1macaddr, 6);
  3041. else
  3042. memcpy(bcm->net_dev->dev_addr, bcm->sprom.il0macaddr, 6);
  3043. bcm43xx_geo_init(bcm);
  3044. snprintf(bcm->nick, IW_ESSID_MAX_SIZE,
  3045. "Broadcom %04X", bcm->chip_id);
  3046. assert(err == 0);
  3047. out:
  3048. return err;
  3049. err_80211_unwind:
  3050. for (i = 0; i < BCM43xx_MAX_80211_CORES; i++) {
  3051. kfree(bcm->core_80211_ext[i].phy._lo_pairs);
  3052. if (bcm->core_80211_ext[i].phy.dyn_tssi_tbl)
  3053. kfree(bcm->core_80211_ext[i].phy.tssi2dbm);
  3054. }
  3055. err_chipset_detach:
  3056. bcm43xx_chipset_detach(bcm);
  3057. err_iounmap:
  3058. iounmap(bcm->mmio_addr);
  3059. err_pci_release:
  3060. pci_release_regions(pci_dev);
  3061. err_pci_disable:
  3062. pci_disable_device(pci_dev);
  3063. goto out;
  3064. }
  3065. /* Do the Hardware IO operations to send the txb */
  3066. static inline int bcm43xx_tx(struct bcm43xx_private *bcm,
  3067. struct ieee80211_txb *txb)
  3068. {
  3069. int err = -ENODEV;
  3070. if (bcm43xx_using_pio(bcm))
  3071. err = bcm43xx_pio_tx(bcm, txb);
  3072. else
  3073. err = bcm43xx_dma_tx(bcm, txb);
  3074. return err;
  3075. }
  3076. static void bcm43xx_ieee80211_set_chan(struct net_device *net_dev,
  3077. u8 channel)
  3078. {
  3079. struct bcm43xx_private *bcm = bcm43xx_priv(net_dev);
  3080. unsigned long flags;
  3081. bcm43xx_lock_mmio(bcm, flags);
  3082. bcm43xx_mac_suspend(bcm);
  3083. bcm43xx_radio_selectchannel(bcm, channel, 0);
  3084. bcm43xx_mac_enable(bcm);
  3085. bcm43xx_unlock_mmio(bcm, flags);
  3086. }
  3087. /* set_security() callback in struct ieee80211_device */
  3088. static void bcm43xx_ieee80211_set_security(struct net_device *net_dev,
  3089. struct ieee80211_security *sec)
  3090. {
  3091. struct bcm43xx_private *bcm = bcm43xx_priv(net_dev);
  3092. struct ieee80211_security *secinfo = &bcm->ieee->sec;
  3093. unsigned long flags;
  3094. int keyidx;
  3095. dprintk(KERN_INFO PFX "set security called\n");
  3096. bcm43xx_lock_mmio(bcm, flags);
  3097. for (keyidx = 0; keyidx<WEP_KEYS; keyidx++)
  3098. if (sec->flags & (1<<keyidx)) {
  3099. secinfo->encode_alg[keyidx] = sec->encode_alg[keyidx];
  3100. secinfo->key_sizes[keyidx] = sec->key_sizes[keyidx];
  3101. memcpy(secinfo->keys[keyidx], sec->keys[keyidx], SCM_KEY_LEN);
  3102. }
  3103. if (sec->flags & SEC_ACTIVE_KEY) {
  3104. secinfo->active_key = sec->active_key;
  3105. dprintk(KERN_INFO PFX " .active_key = %d\n", sec->active_key);
  3106. }
  3107. if (sec->flags & SEC_UNICAST_GROUP) {
  3108. secinfo->unicast_uses_group = sec->unicast_uses_group;
  3109. dprintk(KERN_INFO PFX " .unicast_uses_group = %d\n", sec->unicast_uses_group);
  3110. }
  3111. if (sec->flags & SEC_LEVEL) {
  3112. secinfo->level = sec->level;
  3113. dprintk(KERN_INFO PFX " .level = %d\n", sec->level);
  3114. }
  3115. if (sec->flags & SEC_ENABLED) {
  3116. secinfo->enabled = sec->enabled;
  3117. dprintk(KERN_INFO PFX " .enabled = %d\n", sec->enabled);
  3118. }
  3119. if (sec->flags & SEC_ENCRYPT) {
  3120. secinfo->encrypt = sec->encrypt;
  3121. dprintk(KERN_INFO PFX " .encrypt = %d\n", sec->encrypt);
  3122. }
  3123. if (bcm->initialized && !bcm->ieee->host_encrypt) {
  3124. if (secinfo->enabled) {
  3125. /* upload WEP keys to hardware */
  3126. char null_address[6] = { 0 };
  3127. u8 algorithm = 0;
  3128. for (keyidx = 0; keyidx<WEP_KEYS; keyidx++) {
  3129. if (!(sec->flags & (1<<keyidx)))
  3130. continue;
  3131. switch (sec->encode_alg[keyidx]) {
  3132. case SEC_ALG_NONE: algorithm = BCM43xx_SEC_ALGO_NONE; break;
  3133. case SEC_ALG_WEP:
  3134. algorithm = BCM43xx_SEC_ALGO_WEP;
  3135. if (secinfo->key_sizes[keyidx] == 13)
  3136. algorithm = BCM43xx_SEC_ALGO_WEP104;
  3137. break;
  3138. case SEC_ALG_TKIP:
  3139. FIXME();
  3140. algorithm = BCM43xx_SEC_ALGO_TKIP;
  3141. break;
  3142. case SEC_ALG_CCMP:
  3143. FIXME();
  3144. algorithm = BCM43xx_SEC_ALGO_AES;
  3145. break;
  3146. default:
  3147. assert(0);
  3148. break;
  3149. }
  3150. bcm43xx_key_write(bcm, keyidx, algorithm, sec->keys[keyidx], secinfo->key_sizes[keyidx], &null_address[0]);
  3151. bcm->key[keyidx].enabled = 1;
  3152. bcm->key[keyidx].algorithm = algorithm;
  3153. }
  3154. } else
  3155. bcm43xx_clear_keys(bcm);
  3156. }
  3157. bcm43xx_unlock_mmio(bcm, flags);
  3158. }
  3159. /* hard_start_xmit() callback in struct ieee80211_device */
  3160. static int bcm43xx_ieee80211_hard_start_xmit(struct ieee80211_txb *txb,
  3161. struct net_device *net_dev,
  3162. int pri)
  3163. {
  3164. struct bcm43xx_private *bcm = bcm43xx_priv(net_dev);
  3165. int err = -ENODEV;
  3166. unsigned long flags;
  3167. bcm43xx_lock_mmio(bcm, flags);
  3168. if (likely(bcm->initialized))
  3169. err = bcm43xx_tx(bcm, txb);
  3170. bcm43xx_unlock_mmio(bcm, flags);
  3171. return err;
  3172. }
  3173. static struct net_device_stats * bcm43xx_net_get_stats(struct net_device *net_dev)
  3174. {
  3175. return &(bcm43xx_priv(net_dev)->ieee->stats);
  3176. }
  3177. static void bcm43xx_net_tx_timeout(struct net_device *net_dev)
  3178. {
  3179. struct bcm43xx_private *bcm = bcm43xx_priv(net_dev);
  3180. unsigned long flags;
  3181. bcm43xx_lock_mmio(bcm, flags);
  3182. bcm43xx_controller_restart(bcm, "TX timeout");
  3183. bcm43xx_unlock_mmio(bcm, flags);
  3184. }
  3185. #ifdef CONFIG_NET_POLL_CONTROLLER
  3186. static void bcm43xx_net_poll_controller(struct net_device *net_dev)
  3187. {
  3188. struct bcm43xx_private *bcm = bcm43xx_priv(net_dev);
  3189. unsigned long flags;
  3190. local_irq_save(flags);
  3191. bcm43xx_interrupt_handler(bcm->irq, bcm, NULL);
  3192. local_irq_restore(flags);
  3193. }
  3194. #endif /* CONFIG_NET_POLL_CONTROLLER */
  3195. static int bcm43xx_net_open(struct net_device *net_dev)
  3196. {
  3197. struct bcm43xx_private *bcm = bcm43xx_priv(net_dev);
  3198. return bcm43xx_init_board(bcm);
  3199. }
  3200. static int bcm43xx_net_stop(struct net_device *net_dev)
  3201. {
  3202. struct bcm43xx_private *bcm = bcm43xx_priv(net_dev);
  3203. ieee80211softmac_stop(net_dev);
  3204. bcm43xx_disable_interrupts_sync(bcm, NULL);
  3205. bcm43xx_free_board(bcm);
  3206. return 0;
  3207. }
  3208. static int bcm43xx_init_private(struct bcm43xx_private *bcm,
  3209. struct net_device *net_dev,
  3210. struct pci_dev *pci_dev)
  3211. {
  3212. int err;
  3213. bcm->ieee = netdev_priv(net_dev);
  3214. bcm->softmac = ieee80211_priv(net_dev);
  3215. bcm->softmac->set_channel = bcm43xx_ieee80211_set_chan;
  3216. bcm->irq_savedstate = BCM43xx_IRQ_INITIAL;
  3217. bcm->pci_dev = pci_dev;
  3218. bcm->net_dev = net_dev;
  3219. bcm->bad_frames_preempt = modparam_bad_frames_preempt;
  3220. spin_lock_init(&bcm->_lock);
  3221. tasklet_init(&bcm->isr_tasklet,
  3222. (void (*)(unsigned long))bcm43xx_interrupt_tasklet,
  3223. (unsigned long)bcm);
  3224. tasklet_disable_nosync(&bcm->isr_tasklet);
  3225. if (modparam_pio) {
  3226. bcm->__using_pio = 1;
  3227. } else {
  3228. err = pci_set_dma_mask(pci_dev, DMA_30BIT_MASK);
  3229. err |= pci_set_consistent_dma_mask(pci_dev, DMA_30BIT_MASK);
  3230. if (err) {
  3231. #ifdef CONFIG_BCM43XX_PIO
  3232. printk(KERN_WARNING PFX "DMA not supported. Falling back to PIO.\n");
  3233. bcm->__using_pio = 1;
  3234. #else
  3235. printk(KERN_ERR PFX "FATAL: DMA not supported and PIO not configured. "
  3236. "Recompile the driver with PIO support, please.\n");
  3237. return -ENODEV;
  3238. #endif /* CONFIG_BCM43XX_PIO */
  3239. }
  3240. }
  3241. bcm->rts_threshold = BCM43xx_DEFAULT_RTS_THRESHOLD;
  3242. /* default to sw encryption for now */
  3243. bcm->ieee->host_build_iv = 0;
  3244. bcm->ieee->host_encrypt = 1;
  3245. bcm->ieee->host_decrypt = 1;
  3246. bcm->ieee->iw_mode = BCM43xx_INITIAL_IWMODE;
  3247. bcm->ieee->tx_headroom = sizeof(struct bcm43xx_txhdr);
  3248. bcm->ieee->set_security = bcm43xx_ieee80211_set_security;
  3249. bcm->ieee->hard_start_xmit = bcm43xx_ieee80211_hard_start_xmit;
  3250. return 0;
  3251. }
  3252. static int __devinit bcm43xx_init_one(struct pci_dev *pdev,
  3253. const struct pci_device_id *ent)
  3254. {
  3255. struct net_device *net_dev;
  3256. struct bcm43xx_private *bcm;
  3257. int err;
  3258. #ifdef CONFIG_BCM947XX
  3259. if ((pdev->bus->number == 0) && (pdev->device != 0x0800))
  3260. return -ENODEV;
  3261. #endif
  3262. #ifdef DEBUG_SINGLE_DEVICE_ONLY
  3263. if (strcmp(pci_name(pdev), DEBUG_SINGLE_DEVICE_ONLY))
  3264. return -ENODEV;
  3265. #endif
  3266. net_dev = alloc_ieee80211softmac(sizeof(*bcm));
  3267. if (!net_dev) {
  3268. printk(KERN_ERR PFX
  3269. "could not allocate ieee80211 device %s\n",
  3270. pci_name(pdev));
  3271. err = -ENOMEM;
  3272. goto out;
  3273. }
  3274. /* initialize the net_device struct */
  3275. SET_MODULE_OWNER(net_dev);
  3276. SET_NETDEV_DEV(net_dev, &pdev->dev);
  3277. net_dev->open = bcm43xx_net_open;
  3278. net_dev->stop = bcm43xx_net_stop;
  3279. net_dev->get_stats = bcm43xx_net_get_stats;
  3280. net_dev->tx_timeout = bcm43xx_net_tx_timeout;
  3281. #ifdef CONFIG_NET_POLL_CONTROLLER
  3282. net_dev->poll_controller = bcm43xx_net_poll_controller;
  3283. #endif
  3284. net_dev->wireless_handlers = &bcm43xx_wx_handlers_def;
  3285. net_dev->irq = pdev->irq;
  3286. SET_ETHTOOL_OPS(net_dev, &bcm43xx_ethtool_ops);
  3287. /* initialize the bcm43xx_private struct */
  3288. bcm = bcm43xx_priv(net_dev);
  3289. memset(bcm, 0, sizeof(*bcm));
  3290. err = bcm43xx_init_private(bcm, net_dev, pdev);
  3291. if (err)
  3292. goto err_free_netdev;
  3293. pci_set_drvdata(pdev, net_dev);
  3294. err = bcm43xx_attach_board(bcm);
  3295. if (err)
  3296. goto err_free_netdev;
  3297. err = register_netdev(net_dev);
  3298. if (err) {
  3299. printk(KERN_ERR PFX "Cannot register net device, "
  3300. "aborting.\n");
  3301. err = -ENOMEM;
  3302. goto err_detach_board;
  3303. }
  3304. bcm43xx_debugfs_add_device(bcm);
  3305. assert(err == 0);
  3306. out:
  3307. return err;
  3308. err_detach_board:
  3309. bcm43xx_detach_board(bcm);
  3310. err_free_netdev:
  3311. free_ieee80211softmac(net_dev);
  3312. goto out;
  3313. }
  3314. static void __devexit bcm43xx_remove_one(struct pci_dev *pdev)
  3315. {
  3316. struct net_device *net_dev = pci_get_drvdata(pdev);
  3317. struct bcm43xx_private *bcm = bcm43xx_priv(net_dev);
  3318. bcm43xx_debugfs_remove_device(bcm);
  3319. unregister_netdev(net_dev);
  3320. bcm43xx_detach_board(bcm);
  3321. assert(bcm->ucode == NULL);
  3322. free_ieee80211softmac(net_dev);
  3323. }
  3324. /* Hard-reset the chip. Do not call this directly.
  3325. * Use bcm43xx_controller_restart()
  3326. */
  3327. static void bcm43xx_chip_reset(void *_bcm)
  3328. {
  3329. struct bcm43xx_private *bcm = _bcm;
  3330. struct net_device *net_dev = bcm->net_dev;
  3331. struct pci_dev *pci_dev = bcm->pci_dev;
  3332. int err;
  3333. int was_initialized = bcm->initialized;
  3334. netif_stop_queue(bcm->net_dev);
  3335. tasklet_disable(&bcm->isr_tasklet);
  3336. bcm->firmware_norelease = 1;
  3337. if (was_initialized)
  3338. bcm43xx_free_board(bcm);
  3339. bcm->firmware_norelease = 0;
  3340. bcm43xx_detach_board(bcm);
  3341. err = bcm43xx_init_private(bcm, net_dev, pci_dev);
  3342. if (err)
  3343. goto failure;
  3344. err = bcm43xx_attach_board(bcm);
  3345. if (err)
  3346. goto failure;
  3347. if (was_initialized) {
  3348. err = bcm43xx_init_board(bcm);
  3349. if (err)
  3350. goto failure;
  3351. }
  3352. netif_wake_queue(bcm->net_dev);
  3353. printk(KERN_INFO PFX "Controller restarted\n");
  3354. return;
  3355. failure:
  3356. printk(KERN_ERR PFX "Controller restart failed\n");
  3357. }
  3358. /* Hard-reset the chip.
  3359. * This can be called from interrupt or process context.
  3360. * Make sure to _not_ re-enable device interrupts after this has been called.
  3361. */
  3362. void bcm43xx_controller_restart(struct bcm43xx_private *bcm, const char *reason)
  3363. {
  3364. bcm43xx_interrupt_disable(bcm, BCM43xx_IRQ_ALL);
  3365. bcm43xx_read32(bcm, BCM43xx_MMIO_STATUS_BITFIELD); /* dummy read */
  3366. printk(KERN_ERR PFX "Controller RESET (%s) ...\n", reason);
  3367. INIT_WORK(&bcm->restart_work, bcm43xx_chip_reset, bcm);
  3368. schedule_work(&bcm->restart_work);
  3369. }
  3370. #ifdef CONFIG_PM
  3371. static int bcm43xx_suspend(struct pci_dev *pdev, pm_message_t state)
  3372. {
  3373. struct net_device *net_dev = pci_get_drvdata(pdev);
  3374. struct bcm43xx_private *bcm = bcm43xx_priv(net_dev);
  3375. unsigned long flags;
  3376. int try_to_shutdown = 0, err;
  3377. dprintk(KERN_INFO PFX "Suspending...\n");
  3378. bcm43xx_lock(bcm, flags);
  3379. bcm->was_initialized = bcm->initialized;
  3380. if (bcm->initialized)
  3381. try_to_shutdown = 1;
  3382. bcm43xx_unlock(bcm, flags);
  3383. netif_device_detach(net_dev);
  3384. if (try_to_shutdown) {
  3385. ieee80211softmac_stop(net_dev);
  3386. err = bcm43xx_disable_interrupts_sync(bcm, &bcm->irq_savedstate);
  3387. if (unlikely(err)) {
  3388. dprintk(KERN_ERR PFX "Suspend failed.\n");
  3389. return -EAGAIN;
  3390. }
  3391. bcm->firmware_norelease = 1;
  3392. bcm43xx_free_board(bcm);
  3393. bcm->firmware_norelease = 0;
  3394. }
  3395. bcm43xx_chipset_detach(bcm);
  3396. pci_save_state(pdev);
  3397. pci_disable_device(pdev);
  3398. pci_set_power_state(pdev, pci_choose_state(pdev, state));
  3399. dprintk(KERN_INFO PFX "Device suspended.\n");
  3400. return 0;
  3401. }
  3402. static int bcm43xx_resume(struct pci_dev *pdev)
  3403. {
  3404. struct net_device *net_dev = pci_get_drvdata(pdev);
  3405. struct bcm43xx_private *bcm = bcm43xx_priv(net_dev);
  3406. int err = 0;
  3407. dprintk(KERN_INFO PFX "Resuming...\n");
  3408. pci_set_power_state(pdev, 0);
  3409. pci_enable_device(pdev);
  3410. pci_restore_state(pdev);
  3411. bcm43xx_chipset_attach(bcm);
  3412. if (bcm->was_initialized) {
  3413. bcm->irq_savedstate = BCM43xx_IRQ_INITIAL;
  3414. err = bcm43xx_init_board(bcm);
  3415. }
  3416. if (err) {
  3417. printk(KERN_ERR PFX "Resume failed!\n");
  3418. return err;
  3419. }
  3420. netif_device_attach(net_dev);
  3421. /*FIXME: This should be handled by softmac instead. */
  3422. schedule_work(&bcm->softmac->associnfo.work);
  3423. dprintk(KERN_INFO PFX "Device resumed.\n");
  3424. return 0;
  3425. }
  3426. #endif /* CONFIG_PM */
  3427. static struct pci_driver bcm43xx_pci_driver = {
  3428. .name = KBUILD_MODNAME,
  3429. .id_table = bcm43xx_pci_tbl,
  3430. .probe = bcm43xx_init_one,
  3431. .remove = __devexit_p(bcm43xx_remove_one),
  3432. #ifdef CONFIG_PM
  3433. .suspend = bcm43xx_suspend,
  3434. .resume = bcm43xx_resume,
  3435. #endif /* CONFIG_PM */
  3436. };
  3437. static int __init bcm43xx_init(void)
  3438. {
  3439. printk(KERN_INFO KBUILD_MODNAME " driver\n");
  3440. bcm43xx_debugfs_init();
  3441. return pci_register_driver(&bcm43xx_pci_driver);
  3442. }
  3443. static void __exit bcm43xx_exit(void)
  3444. {
  3445. pci_unregister_driver(&bcm43xx_pci_driver);
  3446. bcm43xx_debugfs_exit();
  3447. }
  3448. module_init(bcm43xx_init)
  3449. module_exit(bcm43xx_exit)