intel_display.c 225 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096809780988099810081018102810381048105810681078108810981108111811281138114811581168117811881198120812181228123812481258126812781288129813081318132813381348135813681378138813981408141814281438144814581468147814881498150815181528153815481558156815781588159816081618162816381648165816681678168816981708171817281738174817581768177817881798180818181828183818481858186818781888189819081918192819381948195819681978198819982008201820282038204820582068207820882098210821182128213821482158216821782188219822082218222822382248225822682278228822982308231823282338234823582368237823882398240824182428243824482458246824782488249825082518252825382548255825682578258825982608261826282638264826582668267826882698270827182728273827482758276827782788279828082818282828382848285828682878288828982908291829282938294829582968297829882998300830183028303830483058306830783088309831083118312831383148315831683178318831983208321832283238324832583268327832883298330833183328333833483358336833783388339834083418342834383448345834683478348834983508351835283538354835583568357835883598360836183628363836483658366836783688369837083718372837383748375837683778378837983808381838283838384838583868387838883898390839183928393839483958396839783988399840084018402840384048405840684078408840984108411841284138414841584168417841884198420842184228423842484258426842784288429843084318432843384348435843684378438843984408441844284438444844584468447844884498450
  1. /*
  2. * Copyright © 2006-2007 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
  21. * DEALINGS IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Eric Anholt <eric@anholt.net>
  25. */
  26. #include <linux/dmi.h>
  27. #include <linux/module.h>
  28. #include <linux/input.h>
  29. #include <linux/i2c.h>
  30. #include <linux/kernel.h>
  31. #include <linux/slab.h>
  32. #include <linux/vgaarb.h>
  33. #include <drm/drm_edid.h>
  34. #include "drmP.h"
  35. #include "intel_drv.h"
  36. #include "i915_drm.h"
  37. #include "i915_drv.h"
  38. #include "i915_trace.h"
  39. #include "drm_dp_helper.h"
  40. #include "drm_crtc_helper.h"
  41. #include <linux/dma_remapping.h>
  42. #define HAS_eDP (intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
  43. bool intel_pipe_has_type(struct drm_crtc *crtc, int type);
  44. static void intel_increase_pllclock(struct drm_crtc *crtc);
  45. static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
  46. typedef struct {
  47. /* given values */
  48. int n;
  49. int m1, m2;
  50. int p1, p2;
  51. /* derived values */
  52. int dot;
  53. int vco;
  54. int m;
  55. int p;
  56. } intel_clock_t;
  57. typedef struct {
  58. int min, max;
  59. } intel_range_t;
  60. typedef struct {
  61. int dot_limit;
  62. int p2_slow, p2_fast;
  63. } intel_p2_t;
  64. #define INTEL_P2_NUM 2
  65. typedef struct intel_limit intel_limit_t;
  66. struct intel_limit {
  67. intel_range_t dot, vco, n, m, m1, m2, p, p1;
  68. intel_p2_t p2;
  69. bool (* find_pll)(const intel_limit_t *, struct drm_crtc *,
  70. int, int, intel_clock_t *, intel_clock_t *);
  71. };
  72. /* FDI */
  73. #define IRONLAKE_FDI_FREQ 2700000 /* in kHz for mode->clock */
  74. static bool
  75. intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
  76. int target, int refclk, intel_clock_t *match_clock,
  77. intel_clock_t *best_clock);
  78. static bool
  79. intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
  80. int target, int refclk, intel_clock_t *match_clock,
  81. intel_clock_t *best_clock);
  82. static bool
  83. intel_find_pll_g4x_dp(const intel_limit_t *, struct drm_crtc *crtc,
  84. int target, int refclk, intel_clock_t *match_clock,
  85. intel_clock_t *best_clock);
  86. static bool
  87. intel_find_pll_ironlake_dp(const intel_limit_t *, struct drm_crtc *crtc,
  88. int target, int refclk, intel_clock_t *match_clock,
  89. intel_clock_t *best_clock);
  90. static bool
  91. intel_vlv_find_best_pll(const intel_limit_t *limit, struct drm_crtc *crtc,
  92. int target, int refclk, intel_clock_t *match_clock,
  93. intel_clock_t *best_clock);
  94. static inline u32 /* units of 100MHz */
  95. intel_fdi_link_freq(struct drm_device *dev)
  96. {
  97. if (IS_GEN5(dev)) {
  98. struct drm_i915_private *dev_priv = dev->dev_private;
  99. return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
  100. } else
  101. return 27;
  102. }
  103. static const intel_limit_t intel_limits_i8xx_dvo = {
  104. .dot = { .min = 25000, .max = 350000 },
  105. .vco = { .min = 930000, .max = 1400000 },
  106. .n = { .min = 3, .max = 16 },
  107. .m = { .min = 96, .max = 140 },
  108. .m1 = { .min = 18, .max = 26 },
  109. .m2 = { .min = 6, .max = 16 },
  110. .p = { .min = 4, .max = 128 },
  111. .p1 = { .min = 2, .max = 33 },
  112. .p2 = { .dot_limit = 165000,
  113. .p2_slow = 4, .p2_fast = 2 },
  114. .find_pll = intel_find_best_PLL,
  115. };
  116. static const intel_limit_t intel_limits_i8xx_lvds = {
  117. .dot = { .min = 25000, .max = 350000 },
  118. .vco = { .min = 930000, .max = 1400000 },
  119. .n = { .min = 3, .max = 16 },
  120. .m = { .min = 96, .max = 140 },
  121. .m1 = { .min = 18, .max = 26 },
  122. .m2 = { .min = 6, .max = 16 },
  123. .p = { .min = 4, .max = 128 },
  124. .p1 = { .min = 1, .max = 6 },
  125. .p2 = { .dot_limit = 165000,
  126. .p2_slow = 14, .p2_fast = 7 },
  127. .find_pll = intel_find_best_PLL,
  128. };
  129. static const intel_limit_t intel_limits_i9xx_sdvo = {
  130. .dot = { .min = 20000, .max = 400000 },
  131. .vco = { .min = 1400000, .max = 2800000 },
  132. .n = { .min = 1, .max = 6 },
  133. .m = { .min = 70, .max = 120 },
  134. .m1 = { .min = 10, .max = 22 },
  135. .m2 = { .min = 5, .max = 9 },
  136. .p = { .min = 5, .max = 80 },
  137. .p1 = { .min = 1, .max = 8 },
  138. .p2 = { .dot_limit = 200000,
  139. .p2_slow = 10, .p2_fast = 5 },
  140. .find_pll = intel_find_best_PLL,
  141. };
  142. static const intel_limit_t intel_limits_i9xx_lvds = {
  143. .dot = { .min = 20000, .max = 400000 },
  144. .vco = { .min = 1400000, .max = 2800000 },
  145. .n = { .min = 1, .max = 6 },
  146. .m = { .min = 70, .max = 120 },
  147. .m1 = { .min = 10, .max = 22 },
  148. .m2 = { .min = 5, .max = 9 },
  149. .p = { .min = 7, .max = 98 },
  150. .p1 = { .min = 1, .max = 8 },
  151. .p2 = { .dot_limit = 112000,
  152. .p2_slow = 14, .p2_fast = 7 },
  153. .find_pll = intel_find_best_PLL,
  154. };
  155. static const intel_limit_t intel_limits_g4x_sdvo = {
  156. .dot = { .min = 25000, .max = 270000 },
  157. .vco = { .min = 1750000, .max = 3500000},
  158. .n = { .min = 1, .max = 4 },
  159. .m = { .min = 104, .max = 138 },
  160. .m1 = { .min = 17, .max = 23 },
  161. .m2 = { .min = 5, .max = 11 },
  162. .p = { .min = 10, .max = 30 },
  163. .p1 = { .min = 1, .max = 3},
  164. .p2 = { .dot_limit = 270000,
  165. .p2_slow = 10,
  166. .p2_fast = 10
  167. },
  168. .find_pll = intel_g4x_find_best_PLL,
  169. };
  170. static const intel_limit_t intel_limits_g4x_hdmi = {
  171. .dot = { .min = 22000, .max = 400000 },
  172. .vco = { .min = 1750000, .max = 3500000},
  173. .n = { .min = 1, .max = 4 },
  174. .m = { .min = 104, .max = 138 },
  175. .m1 = { .min = 16, .max = 23 },
  176. .m2 = { .min = 5, .max = 11 },
  177. .p = { .min = 5, .max = 80 },
  178. .p1 = { .min = 1, .max = 8},
  179. .p2 = { .dot_limit = 165000,
  180. .p2_slow = 10, .p2_fast = 5 },
  181. .find_pll = intel_g4x_find_best_PLL,
  182. };
  183. static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
  184. .dot = { .min = 20000, .max = 115000 },
  185. .vco = { .min = 1750000, .max = 3500000 },
  186. .n = { .min = 1, .max = 3 },
  187. .m = { .min = 104, .max = 138 },
  188. .m1 = { .min = 17, .max = 23 },
  189. .m2 = { .min = 5, .max = 11 },
  190. .p = { .min = 28, .max = 112 },
  191. .p1 = { .min = 2, .max = 8 },
  192. .p2 = { .dot_limit = 0,
  193. .p2_slow = 14, .p2_fast = 14
  194. },
  195. .find_pll = intel_g4x_find_best_PLL,
  196. };
  197. static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
  198. .dot = { .min = 80000, .max = 224000 },
  199. .vco = { .min = 1750000, .max = 3500000 },
  200. .n = { .min = 1, .max = 3 },
  201. .m = { .min = 104, .max = 138 },
  202. .m1 = { .min = 17, .max = 23 },
  203. .m2 = { .min = 5, .max = 11 },
  204. .p = { .min = 14, .max = 42 },
  205. .p1 = { .min = 2, .max = 6 },
  206. .p2 = { .dot_limit = 0,
  207. .p2_slow = 7, .p2_fast = 7
  208. },
  209. .find_pll = intel_g4x_find_best_PLL,
  210. };
  211. static const intel_limit_t intel_limits_g4x_display_port = {
  212. .dot = { .min = 161670, .max = 227000 },
  213. .vco = { .min = 1750000, .max = 3500000},
  214. .n = { .min = 1, .max = 2 },
  215. .m = { .min = 97, .max = 108 },
  216. .m1 = { .min = 0x10, .max = 0x12 },
  217. .m2 = { .min = 0x05, .max = 0x06 },
  218. .p = { .min = 10, .max = 20 },
  219. .p1 = { .min = 1, .max = 2},
  220. .p2 = { .dot_limit = 0,
  221. .p2_slow = 10, .p2_fast = 10 },
  222. .find_pll = intel_find_pll_g4x_dp,
  223. };
  224. static const intel_limit_t intel_limits_pineview_sdvo = {
  225. .dot = { .min = 20000, .max = 400000},
  226. .vco = { .min = 1700000, .max = 3500000 },
  227. /* Pineview's Ncounter is a ring counter */
  228. .n = { .min = 3, .max = 6 },
  229. .m = { .min = 2, .max = 256 },
  230. /* Pineview only has one combined m divider, which we treat as m2. */
  231. .m1 = { .min = 0, .max = 0 },
  232. .m2 = { .min = 0, .max = 254 },
  233. .p = { .min = 5, .max = 80 },
  234. .p1 = { .min = 1, .max = 8 },
  235. .p2 = { .dot_limit = 200000,
  236. .p2_slow = 10, .p2_fast = 5 },
  237. .find_pll = intel_find_best_PLL,
  238. };
  239. static const intel_limit_t intel_limits_pineview_lvds = {
  240. .dot = { .min = 20000, .max = 400000 },
  241. .vco = { .min = 1700000, .max = 3500000 },
  242. .n = { .min = 3, .max = 6 },
  243. .m = { .min = 2, .max = 256 },
  244. .m1 = { .min = 0, .max = 0 },
  245. .m2 = { .min = 0, .max = 254 },
  246. .p = { .min = 7, .max = 112 },
  247. .p1 = { .min = 1, .max = 8 },
  248. .p2 = { .dot_limit = 112000,
  249. .p2_slow = 14, .p2_fast = 14 },
  250. .find_pll = intel_find_best_PLL,
  251. };
  252. /* Ironlake / Sandybridge
  253. *
  254. * We calculate clock using (register_value + 2) for N/M1/M2, so here
  255. * the range value for them is (actual_value - 2).
  256. */
  257. static const intel_limit_t intel_limits_ironlake_dac = {
  258. .dot = { .min = 25000, .max = 350000 },
  259. .vco = { .min = 1760000, .max = 3510000 },
  260. .n = { .min = 1, .max = 5 },
  261. .m = { .min = 79, .max = 127 },
  262. .m1 = { .min = 12, .max = 22 },
  263. .m2 = { .min = 5, .max = 9 },
  264. .p = { .min = 5, .max = 80 },
  265. .p1 = { .min = 1, .max = 8 },
  266. .p2 = { .dot_limit = 225000,
  267. .p2_slow = 10, .p2_fast = 5 },
  268. .find_pll = intel_g4x_find_best_PLL,
  269. };
  270. static const intel_limit_t intel_limits_ironlake_single_lvds = {
  271. .dot = { .min = 25000, .max = 350000 },
  272. .vco = { .min = 1760000, .max = 3510000 },
  273. .n = { .min = 1, .max = 3 },
  274. .m = { .min = 79, .max = 118 },
  275. .m1 = { .min = 12, .max = 22 },
  276. .m2 = { .min = 5, .max = 9 },
  277. .p = { .min = 28, .max = 112 },
  278. .p1 = { .min = 2, .max = 8 },
  279. .p2 = { .dot_limit = 225000,
  280. .p2_slow = 14, .p2_fast = 14 },
  281. .find_pll = intel_g4x_find_best_PLL,
  282. };
  283. static const intel_limit_t intel_limits_ironlake_dual_lvds = {
  284. .dot = { .min = 25000, .max = 350000 },
  285. .vco = { .min = 1760000, .max = 3510000 },
  286. .n = { .min = 1, .max = 3 },
  287. .m = { .min = 79, .max = 127 },
  288. .m1 = { .min = 12, .max = 22 },
  289. .m2 = { .min = 5, .max = 9 },
  290. .p = { .min = 14, .max = 56 },
  291. .p1 = { .min = 2, .max = 8 },
  292. .p2 = { .dot_limit = 225000,
  293. .p2_slow = 7, .p2_fast = 7 },
  294. .find_pll = intel_g4x_find_best_PLL,
  295. };
  296. /* LVDS 100mhz refclk limits. */
  297. static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
  298. .dot = { .min = 25000, .max = 350000 },
  299. .vco = { .min = 1760000, .max = 3510000 },
  300. .n = { .min = 1, .max = 2 },
  301. .m = { .min = 79, .max = 126 },
  302. .m1 = { .min = 12, .max = 22 },
  303. .m2 = { .min = 5, .max = 9 },
  304. .p = { .min = 28, .max = 112 },
  305. .p1 = { .min = 2, .max = 8 },
  306. .p2 = { .dot_limit = 225000,
  307. .p2_slow = 14, .p2_fast = 14 },
  308. .find_pll = intel_g4x_find_best_PLL,
  309. };
  310. static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
  311. .dot = { .min = 25000, .max = 350000 },
  312. .vco = { .min = 1760000, .max = 3510000 },
  313. .n = { .min = 1, .max = 3 },
  314. .m = { .min = 79, .max = 126 },
  315. .m1 = { .min = 12, .max = 22 },
  316. .m2 = { .min = 5, .max = 9 },
  317. .p = { .min = 14, .max = 42 },
  318. .p1 = { .min = 2, .max = 6 },
  319. .p2 = { .dot_limit = 225000,
  320. .p2_slow = 7, .p2_fast = 7 },
  321. .find_pll = intel_g4x_find_best_PLL,
  322. };
  323. static const intel_limit_t intel_limits_ironlake_display_port = {
  324. .dot = { .min = 25000, .max = 350000 },
  325. .vco = { .min = 1760000, .max = 3510000},
  326. .n = { .min = 1, .max = 2 },
  327. .m = { .min = 81, .max = 90 },
  328. .m1 = { .min = 12, .max = 22 },
  329. .m2 = { .min = 5, .max = 9 },
  330. .p = { .min = 10, .max = 20 },
  331. .p1 = { .min = 1, .max = 2},
  332. .p2 = { .dot_limit = 0,
  333. .p2_slow = 10, .p2_fast = 10 },
  334. .find_pll = intel_find_pll_ironlake_dp,
  335. };
  336. static const intel_limit_t intel_limits_vlv_dac = {
  337. .dot = { .min = 25000, .max = 270000 },
  338. .vco = { .min = 4000000, .max = 6000000 },
  339. .n = { .min = 1, .max = 7 },
  340. .m = { .min = 22, .max = 450 }, /* guess */
  341. .m1 = { .min = 2, .max = 3 },
  342. .m2 = { .min = 11, .max = 156 },
  343. .p = { .min = 10, .max = 30 },
  344. .p1 = { .min = 2, .max = 3 },
  345. .p2 = { .dot_limit = 270000,
  346. .p2_slow = 2, .p2_fast = 20 },
  347. .find_pll = intel_vlv_find_best_pll,
  348. };
  349. static const intel_limit_t intel_limits_vlv_hdmi = {
  350. .dot = { .min = 20000, .max = 165000 },
  351. .vco = { .min = 5994000, .max = 4000000 },
  352. .n = { .min = 1, .max = 7 },
  353. .m = { .min = 60, .max = 300 }, /* guess */
  354. .m1 = { .min = 2, .max = 3 },
  355. .m2 = { .min = 11, .max = 156 },
  356. .p = { .min = 10, .max = 30 },
  357. .p1 = { .min = 2, .max = 3 },
  358. .p2 = { .dot_limit = 270000,
  359. .p2_slow = 2, .p2_fast = 20 },
  360. .find_pll = intel_vlv_find_best_pll,
  361. };
  362. static const intel_limit_t intel_limits_vlv_dp = {
  363. .dot = { .min = 162000, .max = 270000 },
  364. .vco = { .min = 5994000, .max = 4000000 },
  365. .n = { .min = 1, .max = 7 },
  366. .m = { .min = 60, .max = 300 }, /* guess */
  367. .m1 = { .min = 2, .max = 3 },
  368. .m2 = { .min = 11, .max = 156 },
  369. .p = { .min = 10, .max = 30 },
  370. .p1 = { .min = 2, .max = 3 },
  371. .p2 = { .dot_limit = 270000,
  372. .p2_slow = 2, .p2_fast = 20 },
  373. .find_pll = intel_vlv_find_best_pll,
  374. };
  375. u32 intel_dpio_read(struct drm_i915_private *dev_priv, int reg)
  376. {
  377. unsigned long flags;
  378. u32 val = 0;
  379. spin_lock_irqsave(&dev_priv->dpio_lock, flags);
  380. if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100)) {
  381. DRM_ERROR("DPIO idle wait timed out\n");
  382. goto out_unlock;
  383. }
  384. I915_WRITE(DPIO_REG, reg);
  385. I915_WRITE(DPIO_PKT, DPIO_RID | DPIO_OP_READ | DPIO_PORTID |
  386. DPIO_BYTE);
  387. if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100)) {
  388. DRM_ERROR("DPIO read wait timed out\n");
  389. goto out_unlock;
  390. }
  391. val = I915_READ(DPIO_DATA);
  392. out_unlock:
  393. spin_unlock_irqrestore(&dev_priv->dpio_lock, flags);
  394. return val;
  395. }
  396. static void intel_dpio_write(struct drm_i915_private *dev_priv, int reg,
  397. u32 val)
  398. {
  399. unsigned long flags;
  400. spin_lock_irqsave(&dev_priv->dpio_lock, flags);
  401. if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100)) {
  402. DRM_ERROR("DPIO idle wait timed out\n");
  403. goto out_unlock;
  404. }
  405. I915_WRITE(DPIO_DATA, val);
  406. I915_WRITE(DPIO_REG, reg);
  407. I915_WRITE(DPIO_PKT, DPIO_RID | DPIO_OP_WRITE | DPIO_PORTID |
  408. DPIO_BYTE);
  409. if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100))
  410. DRM_ERROR("DPIO write wait timed out\n");
  411. out_unlock:
  412. spin_unlock_irqrestore(&dev_priv->dpio_lock, flags);
  413. }
  414. static void vlv_init_dpio(struct drm_device *dev)
  415. {
  416. struct drm_i915_private *dev_priv = dev->dev_private;
  417. /* Reset the DPIO config */
  418. I915_WRITE(DPIO_CTL, 0);
  419. POSTING_READ(DPIO_CTL);
  420. I915_WRITE(DPIO_CTL, 1);
  421. POSTING_READ(DPIO_CTL);
  422. }
  423. static int intel_dual_link_lvds_callback(const struct dmi_system_id *id)
  424. {
  425. DRM_INFO("Forcing lvds to dual link mode on %s\n", id->ident);
  426. return 1;
  427. }
  428. static const struct dmi_system_id intel_dual_link_lvds[] = {
  429. {
  430. .callback = intel_dual_link_lvds_callback,
  431. .ident = "Apple MacBook Pro (Core i5/i7 Series)",
  432. .matches = {
  433. DMI_MATCH(DMI_SYS_VENDOR, "Apple Inc."),
  434. DMI_MATCH(DMI_PRODUCT_NAME, "MacBookPro8,2"),
  435. },
  436. },
  437. { } /* terminating entry */
  438. };
  439. static bool is_dual_link_lvds(struct drm_i915_private *dev_priv,
  440. unsigned int reg)
  441. {
  442. unsigned int val;
  443. /* use the module option value if specified */
  444. if (i915_lvds_channel_mode > 0)
  445. return i915_lvds_channel_mode == 2;
  446. if (dmi_check_system(intel_dual_link_lvds))
  447. return true;
  448. if (dev_priv->lvds_val)
  449. val = dev_priv->lvds_val;
  450. else {
  451. /* BIOS should set the proper LVDS register value at boot, but
  452. * in reality, it doesn't set the value when the lid is closed;
  453. * we need to check "the value to be set" in VBT when LVDS
  454. * register is uninitialized.
  455. */
  456. val = I915_READ(reg);
  457. if (!(val & ~(LVDS_PIPE_MASK | LVDS_DETECTED)))
  458. val = dev_priv->bios_lvds_val;
  459. dev_priv->lvds_val = val;
  460. }
  461. return (val & LVDS_CLKB_POWER_MASK) == LVDS_CLKB_POWER_UP;
  462. }
  463. static const intel_limit_t *intel_ironlake_limit(struct drm_crtc *crtc,
  464. int refclk)
  465. {
  466. struct drm_device *dev = crtc->dev;
  467. struct drm_i915_private *dev_priv = dev->dev_private;
  468. const intel_limit_t *limit;
  469. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  470. if (is_dual_link_lvds(dev_priv, PCH_LVDS)) {
  471. /* LVDS dual channel */
  472. if (refclk == 100000)
  473. limit = &intel_limits_ironlake_dual_lvds_100m;
  474. else
  475. limit = &intel_limits_ironlake_dual_lvds;
  476. } else {
  477. if (refclk == 100000)
  478. limit = &intel_limits_ironlake_single_lvds_100m;
  479. else
  480. limit = &intel_limits_ironlake_single_lvds;
  481. }
  482. } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
  483. HAS_eDP)
  484. limit = &intel_limits_ironlake_display_port;
  485. else
  486. limit = &intel_limits_ironlake_dac;
  487. return limit;
  488. }
  489. static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
  490. {
  491. struct drm_device *dev = crtc->dev;
  492. struct drm_i915_private *dev_priv = dev->dev_private;
  493. const intel_limit_t *limit;
  494. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  495. if (is_dual_link_lvds(dev_priv, LVDS))
  496. /* LVDS with dual channel */
  497. limit = &intel_limits_g4x_dual_channel_lvds;
  498. else
  499. /* LVDS with dual channel */
  500. limit = &intel_limits_g4x_single_channel_lvds;
  501. } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
  502. intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
  503. limit = &intel_limits_g4x_hdmi;
  504. } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
  505. limit = &intel_limits_g4x_sdvo;
  506. } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
  507. limit = &intel_limits_g4x_display_port;
  508. } else /* The option is for other outputs */
  509. limit = &intel_limits_i9xx_sdvo;
  510. return limit;
  511. }
  512. static const intel_limit_t *intel_limit(struct drm_crtc *crtc, int refclk)
  513. {
  514. struct drm_device *dev = crtc->dev;
  515. const intel_limit_t *limit;
  516. if (HAS_PCH_SPLIT(dev))
  517. limit = intel_ironlake_limit(crtc, refclk);
  518. else if (IS_G4X(dev)) {
  519. limit = intel_g4x_limit(crtc);
  520. } else if (IS_PINEVIEW(dev)) {
  521. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
  522. limit = &intel_limits_pineview_lvds;
  523. else
  524. limit = &intel_limits_pineview_sdvo;
  525. } else if (IS_VALLEYVIEW(dev)) {
  526. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG))
  527. limit = &intel_limits_vlv_dac;
  528. else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI))
  529. limit = &intel_limits_vlv_hdmi;
  530. else
  531. limit = &intel_limits_vlv_dp;
  532. } else if (!IS_GEN2(dev)) {
  533. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
  534. limit = &intel_limits_i9xx_lvds;
  535. else
  536. limit = &intel_limits_i9xx_sdvo;
  537. } else {
  538. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
  539. limit = &intel_limits_i8xx_lvds;
  540. else
  541. limit = &intel_limits_i8xx_dvo;
  542. }
  543. return limit;
  544. }
  545. /* m1 is reserved as 0 in Pineview, n is a ring counter */
  546. static void pineview_clock(int refclk, intel_clock_t *clock)
  547. {
  548. clock->m = clock->m2 + 2;
  549. clock->p = clock->p1 * clock->p2;
  550. clock->vco = refclk * clock->m / clock->n;
  551. clock->dot = clock->vco / clock->p;
  552. }
  553. static void intel_clock(struct drm_device *dev, int refclk, intel_clock_t *clock)
  554. {
  555. if (IS_PINEVIEW(dev)) {
  556. pineview_clock(refclk, clock);
  557. return;
  558. }
  559. clock->m = 5 * (clock->m1 + 2) + (clock->m2 + 2);
  560. clock->p = clock->p1 * clock->p2;
  561. clock->vco = refclk * clock->m / (clock->n + 2);
  562. clock->dot = clock->vco / clock->p;
  563. }
  564. /**
  565. * Returns whether any output on the specified pipe is of the specified type
  566. */
  567. bool intel_pipe_has_type(struct drm_crtc *crtc, int type)
  568. {
  569. struct drm_device *dev = crtc->dev;
  570. struct intel_encoder *encoder;
  571. for_each_encoder_on_crtc(dev, crtc, encoder)
  572. if (encoder->type == type)
  573. return true;
  574. return false;
  575. }
  576. #define INTELPllInvalid(s) do { /* DRM_DEBUG(s); */ return false; } while (0)
  577. /**
  578. * Returns whether the given set of divisors are valid for a given refclk with
  579. * the given connectors.
  580. */
  581. static bool intel_PLL_is_valid(struct drm_device *dev,
  582. const intel_limit_t *limit,
  583. const intel_clock_t *clock)
  584. {
  585. if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
  586. INTELPllInvalid("p1 out of range\n");
  587. if (clock->p < limit->p.min || limit->p.max < clock->p)
  588. INTELPllInvalid("p out of range\n");
  589. if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
  590. INTELPllInvalid("m2 out of range\n");
  591. if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
  592. INTELPllInvalid("m1 out of range\n");
  593. if (clock->m1 <= clock->m2 && !IS_PINEVIEW(dev))
  594. INTELPllInvalid("m1 <= m2\n");
  595. if (clock->m < limit->m.min || limit->m.max < clock->m)
  596. INTELPllInvalid("m out of range\n");
  597. if (clock->n < limit->n.min || limit->n.max < clock->n)
  598. INTELPllInvalid("n out of range\n");
  599. if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
  600. INTELPllInvalid("vco out of range\n");
  601. /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
  602. * connector, etc., rather than just a single range.
  603. */
  604. if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
  605. INTELPllInvalid("dot out of range\n");
  606. return true;
  607. }
  608. static bool
  609. intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
  610. int target, int refclk, intel_clock_t *match_clock,
  611. intel_clock_t *best_clock)
  612. {
  613. struct drm_device *dev = crtc->dev;
  614. struct drm_i915_private *dev_priv = dev->dev_private;
  615. intel_clock_t clock;
  616. int err = target;
  617. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
  618. (I915_READ(LVDS)) != 0) {
  619. /*
  620. * For LVDS, if the panel is on, just rely on its current
  621. * settings for dual-channel. We haven't figured out how to
  622. * reliably set up different single/dual channel state, if we
  623. * even can.
  624. */
  625. if (is_dual_link_lvds(dev_priv, LVDS))
  626. clock.p2 = limit->p2.p2_fast;
  627. else
  628. clock.p2 = limit->p2.p2_slow;
  629. } else {
  630. if (target < limit->p2.dot_limit)
  631. clock.p2 = limit->p2.p2_slow;
  632. else
  633. clock.p2 = limit->p2.p2_fast;
  634. }
  635. memset(best_clock, 0, sizeof(*best_clock));
  636. for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
  637. clock.m1++) {
  638. for (clock.m2 = limit->m2.min;
  639. clock.m2 <= limit->m2.max; clock.m2++) {
  640. /* m1 is always 0 in Pineview */
  641. if (clock.m2 >= clock.m1 && !IS_PINEVIEW(dev))
  642. break;
  643. for (clock.n = limit->n.min;
  644. clock.n <= limit->n.max; clock.n++) {
  645. for (clock.p1 = limit->p1.min;
  646. clock.p1 <= limit->p1.max; clock.p1++) {
  647. int this_err;
  648. intel_clock(dev, refclk, &clock);
  649. if (!intel_PLL_is_valid(dev, limit,
  650. &clock))
  651. continue;
  652. if (match_clock &&
  653. clock.p != match_clock->p)
  654. continue;
  655. this_err = abs(clock.dot - target);
  656. if (this_err < err) {
  657. *best_clock = clock;
  658. err = this_err;
  659. }
  660. }
  661. }
  662. }
  663. }
  664. return (err != target);
  665. }
  666. static bool
  667. intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
  668. int target, int refclk, intel_clock_t *match_clock,
  669. intel_clock_t *best_clock)
  670. {
  671. struct drm_device *dev = crtc->dev;
  672. struct drm_i915_private *dev_priv = dev->dev_private;
  673. intel_clock_t clock;
  674. int max_n;
  675. bool found;
  676. /* approximately equals target * 0.00585 */
  677. int err_most = (target >> 8) + (target >> 9);
  678. found = false;
  679. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  680. int lvds_reg;
  681. if (HAS_PCH_SPLIT(dev))
  682. lvds_reg = PCH_LVDS;
  683. else
  684. lvds_reg = LVDS;
  685. if ((I915_READ(lvds_reg) & LVDS_CLKB_POWER_MASK) ==
  686. LVDS_CLKB_POWER_UP)
  687. clock.p2 = limit->p2.p2_fast;
  688. else
  689. clock.p2 = limit->p2.p2_slow;
  690. } else {
  691. if (target < limit->p2.dot_limit)
  692. clock.p2 = limit->p2.p2_slow;
  693. else
  694. clock.p2 = limit->p2.p2_fast;
  695. }
  696. memset(best_clock, 0, sizeof(*best_clock));
  697. max_n = limit->n.max;
  698. /* based on hardware requirement, prefer smaller n to precision */
  699. for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
  700. /* based on hardware requirement, prefere larger m1,m2 */
  701. for (clock.m1 = limit->m1.max;
  702. clock.m1 >= limit->m1.min; clock.m1--) {
  703. for (clock.m2 = limit->m2.max;
  704. clock.m2 >= limit->m2.min; clock.m2--) {
  705. for (clock.p1 = limit->p1.max;
  706. clock.p1 >= limit->p1.min; clock.p1--) {
  707. int this_err;
  708. intel_clock(dev, refclk, &clock);
  709. if (!intel_PLL_is_valid(dev, limit,
  710. &clock))
  711. continue;
  712. if (match_clock &&
  713. clock.p != match_clock->p)
  714. continue;
  715. this_err = abs(clock.dot - target);
  716. if (this_err < err_most) {
  717. *best_clock = clock;
  718. err_most = this_err;
  719. max_n = clock.n;
  720. found = true;
  721. }
  722. }
  723. }
  724. }
  725. }
  726. return found;
  727. }
  728. static bool
  729. intel_find_pll_ironlake_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
  730. int target, int refclk, intel_clock_t *match_clock,
  731. intel_clock_t *best_clock)
  732. {
  733. struct drm_device *dev = crtc->dev;
  734. intel_clock_t clock;
  735. if (target < 200000) {
  736. clock.n = 1;
  737. clock.p1 = 2;
  738. clock.p2 = 10;
  739. clock.m1 = 12;
  740. clock.m2 = 9;
  741. } else {
  742. clock.n = 2;
  743. clock.p1 = 1;
  744. clock.p2 = 10;
  745. clock.m1 = 14;
  746. clock.m2 = 8;
  747. }
  748. intel_clock(dev, refclk, &clock);
  749. memcpy(best_clock, &clock, sizeof(intel_clock_t));
  750. return true;
  751. }
  752. /* DisplayPort has only two frequencies, 162MHz and 270MHz */
  753. static bool
  754. intel_find_pll_g4x_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
  755. int target, int refclk, intel_clock_t *match_clock,
  756. intel_clock_t *best_clock)
  757. {
  758. intel_clock_t clock;
  759. if (target < 200000) {
  760. clock.p1 = 2;
  761. clock.p2 = 10;
  762. clock.n = 2;
  763. clock.m1 = 23;
  764. clock.m2 = 8;
  765. } else {
  766. clock.p1 = 1;
  767. clock.p2 = 10;
  768. clock.n = 1;
  769. clock.m1 = 14;
  770. clock.m2 = 2;
  771. }
  772. clock.m = 5 * (clock.m1 + 2) + (clock.m2 + 2);
  773. clock.p = (clock.p1 * clock.p2);
  774. clock.dot = 96000 * clock.m / (clock.n + 2) / clock.p;
  775. clock.vco = 0;
  776. memcpy(best_clock, &clock, sizeof(intel_clock_t));
  777. return true;
  778. }
  779. static bool
  780. intel_vlv_find_best_pll(const intel_limit_t *limit, struct drm_crtc *crtc,
  781. int target, int refclk, intel_clock_t *match_clock,
  782. intel_clock_t *best_clock)
  783. {
  784. u32 p1, p2, m1, m2, vco, bestn, bestm1, bestm2, bestp1, bestp2;
  785. u32 m, n, fastclk;
  786. u32 updrate, minupdate, fracbits, p;
  787. unsigned long bestppm, ppm, absppm;
  788. int dotclk, flag;
  789. flag = 0;
  790. dotclk = target * 1000;
  791. bestppm = 1000000;
  792. ppm = absppm = 0;
  793. fastclk = dotclk / (2*100);
  794. updrate = 0;
  795. minupdate = 19200;
  796. fracbits = 1;
  797. n = p = p1 = p2 = m = m1 = m2 = vco = bestn = 0;
  798. bestm1 = bestm2 = bestp1 = bestp2 = 0;
  799. /* based on hardware requirement, prefer smaller n to precision */
  800. for (n = limit->n.min; n <= ((refclk) / minupdate); n++) {
  801. updrate = refclk / n;
  802. for (p1 = limit->p1.max; p1 > limit->p1.min; p1--) {
  803. for (p2 = limit->p2.p2_fast+1; p2 > 0; p2--) {
  804. if (p2 > 10)
  805. p2 = p2 - 1;
  806. p = p1 * p2;
  807. /* based on hardware requirement, prefer bigger m1,m2 values */
  808. for (m1 = limit->m1.min; m1 <= limit->m1.max; m1++) {
  809. m2 = (((2*(fastclk * p * n / m1 )) +
  810. refclk) / (2*refclk));
  811. m = m1 * m2;
  812. vco = updrate * m;
  813. if (vco >= limit->vco.min && vco < limit->vco.max) {
  814. ppm = 1000000 * ((vco / p) - fastclk) / fastclk;
  815. absppm = (ppm > 0) ? ppm : (-ppm);
  816. if (absppm < 100 && ((p1 * p2) > (bestp1 * bestp2))) {
  817. bestppm = 0;
  818. flag = 1;
  819. }
  820. if (absppm < bestppm - 10) {
  821. bestppm = absppm;
  822. flag = 1;
  823. }
  824. if (flag) {
  825. bestn = n;
  826. bestm1 = m1;
  827. bestm2 = m2;
  828. bestp1 = p1;
  829. bestp2 = p2;
  830. flag = 0;
  831. }
  832. }
  833. }
  834. }
  835. }
  836. }
  837. best_clock->n = bestn;
  838. best_clock->m1 = bestm1;
  839. best_clock->m2 = bestm2;
  840. best_clock->p1 = bestp1;
  841. best_clock->p2 = bestp2;
  842. return true;
  843. }
  844. static void ironlake_wait_for_vblank(struct drm_device *dev, int pipe)
  845. {
  846. struct drm_i915_private *dev_priv = dev->dev_private;
  847. u32 frame, frame_reg = PIPEFRAME(pipe);
  848. frame = I915_READ(frame_reg);
  849. if (wait_for(I915_READ_NOTRACE(frame_reg) != frame, 50))
  850. DRM_DEBUG_KMS("vblank wait timed out\n");
  851. }
  852. /**
  853. * intel_wait_for_vblank - wait for vblank on a given pipe
  854. * @dev: drm device
  855. * @pipe: pipe to wait for
  856. *
  857. * Wait for vblank to occur on a given pipe. Needed for various bits of
  858. * mode setting code.
  859. */
  860. void intel_wait_for_vblank(struct drm_device *dev, int pipe)
  861. {
  862. struct drm_i915_private *dev_priv = dev->dev_private;
  863. int pipestat_reg = PIPESTAT(pipe);
  864. if (INTEL_INFO(dev)->gen >= 5) {
  865. ironlake_wait_for_vblank(dev, pipe);
  866. return;
  867. }
  868. /* Clear existing vblank status. Note this will clear any other
  869. * sticky status fields as well.
  870. *
  871. * This races with i915_driver_irq_handler() with the result
  872. * that either function could miss a vblank event. Here it is not
  873. * fatal, as we will either wait upon the next vblank interrupt or
  874. * timeout. Generally speaking intel_wait_for_vblank() is only
  875. * called during modeset at which time the GPU should be idle and
  876. * should *not* be performing page flips and thus not waiting on
  877. * vblanks...
  878. * Currently, the result of us stealing a vblank from the irq
  879. * handler is that a single frame will be skipped during swapbuffers.
  880. */
  881. I915_WRITE(pipestat_reg,
  882. I915_READ(pipestat_reg) | PIPE_VBLANK_INTERRUPT_STATUS);
  883. /* Wait for vblank interrupt bit to set */
  884. if (wait_for(I915_READ(pipestat_reg) &
  885. PIPE_VBLANK_INTERRUPT_STATUS,
  886. 50))
  887. DRM_DEBUG_KMS("vblank wait timed out\n");
  888. }
  889. /*
  890. * intel_wait_for_pipe_off - wait for pipe to turn off
  891. * @dev: drm device
  892. * @pipe: pipe to wait for
  893. *
  894. * After disabling a pipe, we can't wait for vblank in the usual way,
  895. * spinning on the vblank interrupt status bit, since we won't actually
  896. * see an interrupt when the pipe is disabled.
  897. *
  898. * On Gen4 and above:
  899. * wait for the pipe register state bit to turn off
  900. *
  901. * Otherwise:
  902. * wait for the display line value to settle (it usually
  903. * ends up stopping at the start of the next frame).
  904. *
  905. */
  906. void intel_wait_for_pipe_off(struct drm_device *dev, int pipe)
  907. {
  908. struct drm_i915_private *dev_priv = dev->dev_private;
  909. if (INTEL_INFO(dev)->gen >= 4) {
  910. int reg = PIPECONF(pipe);
  911. /* Wait for the Pipe State to go off */
  912. if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
  913. 100))
  914. WARN(1, "pipe_off wait timed out\n");
  915. } else {
  916. u32 last_line, line_mask;
  917. int reg = PIPEDSL(pipe);
  918. unsigned long timeout = jiffies + msecs_to_jiffies(100);
  919. if (IS_GEN2(dev))
  920. line_mask = DSL_LINEMASK_GEN2;
  921. else
  922. line_mask = DSL_LINEMASK_GEN3;
  923. /* Wait for the display line to settle */
  924. do {
  925. last_line = I915_READ(reg) & line_mask;
  926. mdelay(5);
  927. } while (((I915_READ(reg) & line_mask) != last_line) &&
  928. time_after(timeout, jiffies));
  929. if (time_after(jiffies, timeout))
  930. WARN(1, "pipe_off wait timed out\n");
  931. }
  932. }
  933. static const char *state_string(bool enabled)
  934. {
  935. return enabled ? "on" : "off";
  936. }
  937. /* Only for pre-ILK configs */
  938. static void assert_pll(struct drm_i915_private *dev_priv,
  939. enum pipe pipe, bool state)
  940. {
  941. int reg;
  942. u32 val;
  943. bool cur_state;
  944. reg = DPLL(pipe);
  945. val = I915_READ(reg);
  946. cur_state = !!(val & DPLL_VCO_ENABLE);
  947. WARN(cur_state != state,
  948. "PLL state assertion failure (expected %s, current %s)\n",
  949. state_string(state), state_string(cur_state));
  950. }
  951. #define assert_pll_enabled(d, p) assert_pll(d, p, true)
  952. #define assert_pll_disabled(d, p) assert_pll(d, p, false)
  953. /* For ILK+ */
  954. static void assert_pch_pll(struct drm_i915_private *dev_priv,
  955. struct intel_pch_pll *pll,
  956. struct intel_crtc *crtc,
  957. bool state)
  958. {
  959. u32 val;
  960. bool cur_state;
  961. if (HAS_PCH_LPT(dev_priv->dev)) {
  962. DRM_DEBUG_DRIVER("LPT detected: skipping PCH PLL test\n");
  963. return;
  964. }
  965. if (WARN (!pll,
  966. "asserting PCH PLL %s with no PLL\n", state_string(state)))
  967. return;
  968. val = I915_READ(pll->pll_reg);
  969. cur_state = !!(val & DPLL_VCO_ENABLE);
  970. WARN(cur_state != state,
  971. "PCH PLL state for reg %x assertion failure (expected %s, current %s), val=%08x\n",
  972. pll->pll_reg, state_string(state), state_string(cur_state), val);
  973. /* Make sure the selected PLL is correctly attached to the transcoder */
  974. if (crtc && HAS_PCH_CPT(dev_priv->dev)) {
  975. u32 pch_dpll;
  976. pch_dpll = I915_READ(PCH_DPLL_SEL);
  977. cur_state = pll->pll_reg == _PCH_DPLL_B;
  978. if (!WARN(((pch_dpll >> (4 * crtc->pipe)) & 1) != cur_state,
  979. "PLL[%d] not attached to this transcoder %d: %08x\n",
  980. cur_state, crtc->pipe, pch_dpll)) {
  981. cur_state = !!(val >> (4*crtc->pipe + 3));
  982. WARN(cur_state != state,
  983. "PLL[%d] not %s on this transcoder %d: %08x\n",
  984. pll->pll_reg == _PCH_DPLL_B,
  985. state_string(state),
  986. crtc->pipe,
  987. val);
  988. }
  989. }
  990. }
  991. #define assert_pch_pll_enabled(d, p, c) assert_pch_pll(d, p, c, true)
  992. #define assert_pch_pll_disabled(d, p, c) assert_pch_pll(d, p, c, false)
  993. static void assert_fdi_tx(struct drm_i915_private *dev_priv,
  994. enum pipe pipe, bool state)
  995. {
  996. int reg;
  997. u32 val;
  998. bool cur_state;
  999. if (IS_HASWELL(dev_priv->dev)) {
  1000. /* On Haswell, DDI is used instead of FDI_TX_CTL */
  1001. reg = DDI_FUNC_CTL(pipe);
  1002. val = I915_READ(reg);
  1003. cur_state = !!(val & PIPE_DDI_FUNC_ENABLE);
  1004. } else {
  1005. reg = FDI_TX_CTL(pipe);
  1006. val = I915_READ(reg);
  1007. cur_state = !!(val & FDI_TX_ENABLE);
  1008. }
  1009. WARN(cur_state != state,
  1010. "FDI TX state assertion failure (expected %s, current %s)\n",
  1011. state_string(state), state_string(cur_state));
  1012. }
  1013. #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
  1014. #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
  1015. static void assert_fdi_rx(struct drm_i915_private *dev_priv,
  1016. enum pipe pipe, bool state)
  1017. {
  1018. int reg;
  1019. u32 val;
  1020. bool cur_state;
  1021. if (IS_HASWELL(dev_priv->dev) && pipe > 0) {
  1022. DRM_ERROR("Attempting to enable FDI_RX on Haswell pipe > 0\n");
  1023. return;
  1024. } else {
  1025. reg = FDI_RX_CTL(pipe);
  1026. val = I915_READ(reg);
  1027. cur_state = !!(val & FDI_RX_ENABLE);
  1028. }
  1029. WARN(cur_state != state,
  1030. "FDI RX state assertion failure (expected %s, current %s)\n",
  1031. state_string(state), state_string(cur_state));
  1032. }
  1033. #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
  1034. #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
  1035. static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
  1036. enum pipe pipe)
  1037. {
  1038. int reg;
  1039. u32 val;
  1040. /* ILK FDI PLL is always enabled */
  1041. if (dev_priv->info->gen == 5)
  1042. return;
  1043. /* On Haswell, DDI ports are responsible for the FDI PLL setup */
  1044. if (IS_HASWELL(dev_priv->dev))
  1045. return;
  1046. reg = FDI_TX_CTL(pipe);
  1047. val = I915_READ(reg);
  1048. WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
  1049. }
  1050. static void assert_fdi_rx_pll_enabled(struct drm_i915_private *dev_priv,
  1051. enum pipe pipe)
  1052. {
  1053. int reg;
  1054. u32 val;
  1055. if (IS_HASWELL(dev_priv->dev) && pipe > 0) {
  1056. DRM_ERROR("Attempting to enable FDI on Haswell with pipe > 0\n");
  1057. return;
  1058. }
  1059. reg = FDI_RX_CTL(pipe);
  1060. val = I915_READ(reg);
  1061. WARN(!(val & FDI_RX_PLL_ENABLE), "FDI RX PLL assertion failure, should be active but is disabled\n");
  1062. }
  1063. static void assert_panel_unlocked(struct drm_i915_private *dev_priv,
  1064. enum pipe pipe)
  1065. {
  1066. int pp_reg, lvds_reg;
  1067. u32 val;
  1068. enum pipe panel_pipe = PIPE_A;
  1069. bool locked = true;
  1070. if (HAS_PCH_SPLIT(dev_priv->dev)) {
  1071. pp_reg = PCH_PP_CONTROL;
  1072. lvds_reg = PCH_LVDS;
  1073. } else {
  1074. pp_reg = PP_CONTROL;
  1075. lvds_reg = LVDS;
  1076. }
  1077. val = I915_READ(pp_reg);
  1078. if (!(val & PANEL_POWER_ON) ||
  1079. ((val & PANEL_UNLOCK_REGS) == PANEL_UNLOCK_REGS))
  1080. locked = false;
  1081. if (I915_READ(lvds_reg) & LVDS_PIPEB_SELECT)
  1082. panel_pipe = PIPE_B;
  1083. WARN(panel_pipe == pipe && locked,
  1084. "panel assertion failure, pipe %c regs locked\n",
  1085. pipe_name(pipe));
  1086. }
  1087. void assert_pipe(struct drm_i915_private *dev_priv,
  1088. enum pipe pipe, bool state)
  1089. {
  1090. int reg;
  1091. u32 val;
  1092. bool cur_state;
  1093. /* if we need the pipe A quirk it must be always on */
  1094. if (pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE)
  1095. state = true;
  1096. reg = PIPECONF(pipe);
  1097. val = I915_READ(reg);
  1098. cur_state = !!(val & PIPECONF_ENABLE);
  1099. WARN(cur_state != state,
  1100. "pipe %c assertion failure (expected %s, current %s)\n",
  1101. pipe_name(pipe), state_string(state), state_string(cur_state));
  1102. }
  1103. static void assert_plane(struct drm_i915_private *dev_priv,
  1104. enum plane plane, bool state)
  1105. {
  1106. int reg;
  1107. u32 val;
  1108. bool cur_state;
  1109. reg = DSPCNTR(plane);
  1110. val = I915_READ(reg);
  1111. cur_state = !!(val & DISPLAY_PLANE_ENABLE);
  1112. WARN(cur_state != state,
  1113. "plane %c assertion failure (expected %s, current %s)\n",
  1114. plane_name(plane), state_string(state), state_string(cur_state));
  1115. }
  1116. #define assert_plane_enabled(d, p) assert_plane(d, p, true)
  1117. #define assert_plane_disabled(d, p) assert_plane(d, p, false)
  1118. static void assert_planes_disabled(struct drm_i915_private *dev_priv,
  1119. enum pipe pipe)
  1120. {
  1121. int reg, i;
  1122. u32 val;
  1123. int cur_pipe;
  1124. /* Planes are fixed to pipes on ILK+ */
  1125. if (HAS_PCH_SPLIT(dev_priv->dev)) {
  1126. reg = DSPCNTR(pipe);
  1127. val = I915_READ(reg);
  1128. WARN((val & DISPLAY_PLANE_ENABLE),
  1129. "plane %c assertion failure, should be disabled but not\n",
  1130. plane_name(pipe));
  1131. return;
  1132. }
  1133. /* Need to check both planes against the pipe */
  1134. for (i = 0; i < 2; i++) {
  1135. reg = DSPCNTR(i);
  1136. val = I915_READ(reg);
  1137. cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
  1138. DISPPLANE_SEL_PIPE_SHIFT;
  1139. WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
  1140. "plane %c assertion failure, should be off on pipe %c but is still active\n",
  1141. plane_name(i), pipe_name(pipe));
  1142. }
  1143. }
  1144. static void assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
  1145. {
  1146. u32 val;
  1147. bool enabled;
  1148. if (HAS_PCH_LPT(dev_priv->dev)) {
  1149. DRM_DEBUG_DRIVER("LPT does not has PCH refclk, skipping check\n");
  1150. return;
  1151. }
  1152. val = I915_READ(PCH_DREF_CONTROL);
  1153. enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
  1154. DREF_SUPERSPREAD_SOURCE_MASK));
  1155. WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
  1156. }
  1157. static void assert_transcoder_disabled(struct drm_i915_private *dev_priv,
  1158. enum pipe pipe)
  1159. {
  1160. int reg;
  1161. u32 val;
  1162. bool enabled;
  1163. reg = TRANSCONF(pipe);
  1164. val = I915_READ(reg);
  1165. enabled = !!(val & TRANS_ENABLE);
  1166. WARN(enabled,
  1167. "transcoder assertion failed, should be off on pipe %c but is still active\n",
  1168. pipe_name(pipe));
  1169. }
  1170. static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
  1171. enum pipe pipe, u32 port_sel, u32 val)
  1172. {
  1173. if ((val & DP_PORT_EN) == 0)
  1174. return false;
  1175. if (HAS_PCH_CPT(dev_priv->dev)) {
  1176. u32 trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
  1177. u32 trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
  1178. if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
  1179. return false;
  1180. } else {
  1181. if ((val & DP_PIPE_MASK) != (pipe << 30))
  1182. return false;
  1183. }
  1184. return true;
  1185. }
  1186. static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
  1187. enum pipe pipe, u32 val)
  1188. {
  1189. if ((val & PORT_ENABLE) == 0)
  1190. return false;
  1191. if (HAS_PCH_CPT(dev_priv->dev)) {
  1192. if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
  1193. return false;
  1194. } else {
  1195. if ((val & TRANSCODER_MASK) != TRANSCODER(pipe))
  1196. return false;
  1197. }
  1198. return true;
  1199. }
  1200. static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
  1201. enum pipe pipe, u32 val)
  1202. {
  1203. if ((val & LVDS_PORT_EN) == 0)
  1204. return false;
  1205. if (HAS_PCH_CPT(dev_priv->dev)) {
  1206. if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
  1207. return false;
  1208. } else {
  1209. if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
  1210. return false;
  1211. }
  1212. return true;
  1213. }
  1214. static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
  1215. enum pipe pipe, u32 val)
  1216. {
  1217. if ((val & ADPA_DAC_ENABLE) == 0)
  1218. return false;
  1219. if (HAS_PCH_CPT(dev_priv->dev)) {
  1220. if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
  1221. return false;
  1222. } else {
  1223. if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
  1224. return false;
  1225. }
  1226. return true;
  1227. }
  1228. static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
  1229. enum pipe pipe, int reg, u32 port_sel)
  1230. {
  1231. u32 val = I915_READ(reg);
  1232. WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
  1233. "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
  1234. reg, pipe_name(pipe));
  1235. WARN(HAS_PCH_IBX(dev_priv->dev) && (val & SDVO_PIPE_B_SELECT),
  1236. "IBX PCH dp port still using transcoder B\n");
  1237. }
  1238. static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
  1239. enum pipe pipe, int reg)
  1240. {
  1241. u32 val = I915_READ(reg);
  1242. WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
  1243. "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
  1244. reg, pipe_name(pipe));
  1245. WARN(HAS_PCH_IBX(dev_priv->dev) && (val & SDVO_PIPE_B_SELECT),
  1246. "IBX PCH hdmi port still using transcoder B\n");
  1247. }
  1248. static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
  1249. enum pipe pipe)
  1250. {
  1251. int reg;
  1252. u32 val;
  1253. assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
  1254. assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
  1255. assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
  1256. reg = PCH_ADPA;
  1257. val = I915_READ(reg);
  1258. WARN(adpa_pipe_enabled(dev_priv, pipe, val),
  1259. "PCH VGA enabled on transcoder %c, should be disabled\n",
  1260. pipe_name(pipe));
  1261. reg = PCH_LVDS;
  1262. val = I915_READ(reg);
  1263. WARN(lvds_pipe_enabled(dev_priv, pipe, val),
  1264. "PCH LVDS enabled on transcoder %c, should be disabled\n",
  1265. pipe_name(pipe));
  1266. assert_pch_hdmi_disabled(dev_priv, pipe, HDMIB);
  1267. assert_pch_hdmi_disabled(dev_priv, pipe, HDMIC);
  1268. assert_pch_hdmi_disabled(dev_priv, pipe, HDMID);
  1269. }
  1270. /**
  1271. * intel_enable_pll - enable a PLL
  1272. * @dev_priv: i915 private structure
  1273. * @pipe: pipe PLL to enable
  1274. *
  1275. * Enable @pipe's PLL so we can start pumping pixels from a plane. Check to
  1276. * make sure the PLL reg is writable first though, since the panel write
  1277. * protect mechanism may be enabled.
  1278. *
  1279. * Note! This is for pre-ILK only.
  1280. *
  1281. * Unfortunately needed by dvo_ns2501 since the dvo depends on it running.
  1282. */
  1283. static void intel_enable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
  1284. {
  1285. int reg;
  1286. u32 val;
  1287. /* No really, not for ILK+ */
  1288. BUG_ON(!IS_VALLEYVIEW(dev_priv->dev) && dev_priv->info->gen >= 5);
  1289. /* PLL is protected by panel, make sure we can write it */
  1290. if (IS_MOBILE(dev_priv->dev) && !IS_I830(dev_priv->dev))
  1291. assert_panel_unlocked(dev_priv, pipe);
  1292. reg = DPLL(pipe);
  1293. val = I915_READ(reg);
  1294. val |= DPLL_VCO_ENABLE;
  1295. /* We do this three times for luck */
  1296. I915_WRITE(reg, val);
  1297. POSTING_READ(reg);
  1298. udelay(150); /* wait for warmup */
  1299. I915_WRITE(reg, val);
  1300. POSTING_READ(reg);
  1301. udelay(150); /* wait for warmup */
  1302. I915_WRITE(reg, val);
  1303. POSTING_READ(reg);
  1304. udelay(150); /* wait for warmup */
  1305. }
  1306. /**
  1307. * intel_disable_pll - disable a PLL
  1308. * @dev_priv: i915 private structure
  1309. * @pipe: pipe PLL to disable
  1310. *
  1311. * Disable the PLL for @pipe, making sure the pipe is off first.
  1312. *
  1313. * Note! This is for pre-ILK only.
  1314. */
  1315. static void intel_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
  1316. {
  1317. int reg;
  1318. u32 val;
  1319. /* Don't disable pipe A or pipe A PLLs if needed */
  1320. if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
  1321. return;
  1322. /* Make sure the pipe isn't still relying on us */
  1323. assert_pipe_disabled(dev_priv, pipe);
  1324. reg = DPLL(pipe);
  1325. val = I915_READ(reg);
  1326. val &= ~DPLL_VCO_ENABLE;
  1327. I915_WRITE(reg, val);
  1328. POSTING_READ(reg);
  1329. }
  1330. /* SBI access */
  1331. static void
  1332. intel_sbi_write(struct drm_i915_private *dev_priv, u16 reg, u32 value)
  1333. {
  1334. unsigned long flags;
  1335. spin_lock_irqsave(&dev_priv->dpio_lock, flags);
  1336. if (wait_for((I915_READ(SBI_CTL_STAT) & SBI_BUSY) == 0,
  1337. 100)) {
  1338. DRM_ERROR("timeout waiting for SBI to become ready\n");
  1339. goto out_unlock;
  1340. }
  1341. I915_WRITE(SBI_ADDR,
  1342. (reg << 16));
  1343. I915_WRITE(SBI_DATA,
  1344. value);
  1345. I915_WRITE(SBI_CTL_STAT,
  1346. SBI_BUSY |
  1347. SBI_CTL_OP_CRWR);
  1348. if (wait_for((I915_READ(SBI_CTL_STAT) & (SBI_BUSY | SBI_RESPONSE_FAIL)) == 0,
  1349. 100)) {
  1350. DRM_ERROR("timeout waiting for SBI to complete write transaction\n");
  1351. goto out_unlock;
  1352. }
  1353. out_unlock:
  1354. spin_unlock_irqrestore(&dev_priv->dpio_lock, flags);
  1355. }
  1356. static u32
  1357. intel_sbi_read(struct drm_i915_private *dev_priv, u16 reg)
  1358. {
  1359. unsigned long flags;
  1360. u32 value = 0;
  1361. spin_lock_irqsave(&dev_priv->dpio_lock, flags);
  1362. if (wait_for((I915_READ(SBI_CTL_STAT) & SBI_BUSY) == 0,
  1363. 100)) {
  1364. DRM_ERROR("timeout waiting for SBI to become ready\n");
  1365. goto out_unlock;
  1366. }
  1367. I915_WRITE(SBI_ADDR,
  1368. (reg << 16));
  1369. I915_WRITE(SBI_CTL_STAT,
  1370. SBI_BUSY |
  1371. SBI_CTL_OP_CRRD);
  1372. if (wait_for((I915_READ(SBI_CTL_STAT) & (SBI_BUSY | SBI_RESPONSE_FAIL)) == 0,
  1373. 100)) {
  1374. DRM_ERROR("timeout waiting for SBI to complete read transaction\n");
  1375. goto out_unlock;
  1376. }
  1377. value = I915_READ(SBI_DATA);
  1378. out_unlock:
  1379. spin_unlock_irqrestore(&dev_priv->dpio_lock, flags);
  1380. return value;
  1381. }
  1382. /**
  1383. * intel_enable_pch_pll - enable PCH PLL
  1384. * @dev_priv: i915 private structure
  1385. * @pipe: pipe PLL to enable
  1386. *
  1387. * The PCH PLL needs to be enabled before the PCH transcoder, since it
  1388. * drives the transcoder clock.
  1389. */
  1390. static void intel_enable_pch_pll(struct intel_crtc *intel_crtc)
  1391. {
  1392. struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
  1393. struct intel_pch_pll *pll;
  1394. int reg;
  1395. u32 val;
  1396. /* PCH PLLs only available on ILK, SNB and IVB */
  1397. BUG_ON(dev_priv->info->gen < 5);
  1398. pll = intel_crtc->pch_pll;
  1399. if (pll == NULL)
  1400. return;
  1401. if (WARN_ON(pll->refcount == 0))
  1402. return;
  1403. DRM_DEBUG_KMS("enable PCH PLL %x (active %d, on? %d)for crtc %d\n",
  1404. pll->pll_reg, pll->active, pll->on,
  1405. intel_crtc->base.base.id);
  1406. /* PCH refclock must be enabled first */
  1407. assert_pch_refclk_enabled(dev_priv);
  1408. if (pll->active++ && pll->on) {
  1409. assert_pch_pll_enabled(dev_priv, pll, NULL);
  1410. return;
  1411. }
  1412. DRM_DEBUG_KMS("enabling PCH PLL %x\n", pll->pll_reg);
  1413. reg = pll->pll_reg;
  1414. val = I915_READ(reg);
  1415. val |= DPLL_VCO_ENABLE;
  1416. I915_WRITE(reg, val);
  1417. POSTING_READ(reg);
  1418. udelay(200);
  1419. pll->on = true;
  1420. }
  1421. static void intel_disable_pch_pll(struct intel_crtc *intel_crtc)
  1422. {
  1423. struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
  1424. struct intel_pch_pll *pll = intel_crtc->pch_pll;
  1425. int reg;
  1426. u32 val;
  1427. /* PCH only available on ILK+ */
  1428. BUG_ON(dev_priv->info->gen < 5);
  1429. if (pll == NULL)
  1430. return;
  1431. if (WARN_ON(pll->refcount == 0))
  1432. return;
  1433. DRM_DEBUG_KMS("disable PCH PLL %x (active %d, on? %d) for crtc %d\n",
  1434. pll->pll_reg, pll->active, pll->on,
  1435. intel_crtc->base.base.id);
  1436. if (WARN_ON(pll->active == 0)) {
  1437. assert_pch_pll_disabled(dev_priv, pll, NULL);
  1438. return;
  1439. }
  1440. if (--pll->active) {
  1441. assert_pch_pll_enabled(dev_priv, pll, NULL);
  1442. return;
  1443. }
  1444. DRM_DEBUG_KMS("disabling PCH PLL %x\n", pll->pll_reg);
  1445. /* Make sure transcoder isn't still depending on us */
  1446. assert_transcoder_disabled(dev_priv, intel_crtc->pipe);
  1447. reg = pll->pll_reg;
  1448. val = I915_READ(reg);
  1449. val &= ~DPLL_VCO_ENABLE;
  1450. I915_WRITE(reg, val);
  1451. POSTING_READ(reg);
  1452. udelay(200);
  1453. pll->on = false;
  1454. }
  1455. static void intel_enable_transcoder(struct drm_i915_private *dev_priv,
  1456. enum pipe pipe)
  1457. {
  1458. int reg;
  1459. u32 val, pipeconf_val;
  1460. struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
  1461. /* PCH only available on ILK+ */
  1462. BUG_ON(dev_priv->info->gen < 5);
  1463. /* Make sure PCH DPLL is enabled */
  1464. assert_pch_pll_enabled(dev_priv,
  1465. to_intel_crtc(crtc)->pch_pll,
  1466. to_intel_crtc(crtc));
  1467. /* FDI must be feeding us bits for PCH ports */
  1468. assert_fdi_tx_enabled(dev_priv, pipe);
  1469. assert_fdi_rx_enabled(dev_priv, pipe);
  1470. if (IS_HASWELL(dev_priv->dev) && pipe > 0) {
  1471. DRM_ERROR("Attempting to enable transcoder on Haswell with pipe > 0\n");
  1472. return;
  1473. }
  1474. reg = TRANSCONF(pipe);
  1475. val = I915_READ(reg);
  1476. pipeconf_val = I915_READ(PIPECONF(pipe));
  1477. if (HAS_PCH_IBX(dev_priv->dev)) {
  1478. /*
  1479. * make the BPC in transcoder be consistent with
  1480. * that in pipeconf reg.
  1481. */
  1482. val &= ~PIPE_BPC_MASK;
  1483. val |= pipeconf_val & PIPE_BPC_MASK;
  1484. }
  1485. val &= ~TRANS_INTERLACE_MASK;
  1486. if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
  1487. if (HAS_PCH_IBX(dev_priv->dev) &&
  1488. intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO))
  1489. val |= TRANS_LEGACY_INTERLACED_ILK;
  1490. else
  1491. val |= TRANS_INTERLACED;
  1492. else
  1493. val |= TRANS_PROGRESSIVE;
  1494. I915_WRITE(reg, val | TRANS_ENABLE);
  1495. if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
  1496. DRM_ERROR("failed to enable transcoder %d\n", pipe);
  1497. }
  1498. static void intel_disable_transcoder(struct drm_i915_private *dev_priv,
  1499. enum pipe pipe)
  1500. {
  1501. int reg;
  1502. u32 val;
  1503. /* FDI relies on the transcoder */
  1504. assert_fdi_tx_disabled(dev_priv, pipe);
  1505. assert_fdi_rx_disabled(dev_priv, pipe);
  1506. /* Ports must be off as well */
  1507. assert_pch_ports_disabled(dev_priv, pipe);
  1508. reg = TRANSCONF(pipe);
  1509. val = I915_READ(reg);
  1510. val &= ~TRANS_ENABLE;
  1511. I915_WRITE(reg, val);
  1512. /* wait for PCH transcoder off, transcoder state */
  1513. if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
  1514. DRM_ERROR("failed to disable transcoder %d\n", pipe);
  1515. }
  1516. /**
  1517. * intel_enable_pipe - enable a pipe, asserting requirements
  1518. * @dev_priv: i915 private structure
  1519. * @pipe: pipe to enable
  1520. * @pch_port: on ILK+, is this pipe driving a PCH port or not
  1521. *
  1522. * Enable @pipe, making sure that various hardware specific requirements
  1523. * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
  1524. *
  1525. * @pipe should be %PIPE_A or %PIPE_B.
  1526. *
  1527. * Will wait until the pipe is actually running (i.e. first vblank) before
  1528. * returning.
  1529. */
  1530. static void intel_enable_pipe(struct drm_i915_private *dev_priv, enum pipe pipe,
  1531. bool pch_port)
  1532. {
  1533. int reg;
  1534. u32 val;
  1535. /*
  1536. * A pipe without a PLL won't actually be able to drive bits from
  1537. * a plane. On ILK+ the pipe PLLs are integrated, so we don't
  1538. * need the check.
  1539. */
  1540. if (!HAS_PCH_SPLIT(dev_priv->dev))
  1541. assert_pll_enabled(dev_priv, pipe);
  1542. else {
  1543. if (pch_port) {
  1544. /* if driving the PCH, we need FDI enabled */
  1545. assert_fdi_rx_pll_enabled(dev_priv, pipe);
  1546. assert_fdi_tx_pll_enabled(dev_priv, pipe);
  1547. }
  1548. /* FIXME: assert CPU port conditions for SNB+ */
  1549. }
  1550. reg = PIPECONF(pipe);
  1551. val = I915_READ(reg);
  1552. if (val & PIPECONF_ENABLE)
  1553. return;
  1554. I915_WRITE(reg, val | PIPECONF_ENABLE);
  1555. intel_wait_for_vblank(dev_priv->dev, pipe);
  1556. }
  1557. /**
  1558. * intel_disable_pipe - disable a pipe, asserting requirements
  1559. * @dev_priv: i915 private structure
  1560. * @pipe: pipe to disable
  1561. *
  1562. * Disable @pipe, making sure that various hardware specific requirements
  1563. * are met, if applicable, e.g. plane disabled, panel fitter off, etc.
  1564. *
  1565. * @pipe should be %PIPE_A or %PIPE_B.
  1566. *
  1567. * Will wait until the pipe has shut down before returning.
  1568. */
  1569. static void intel_disable_pipe(struct drm_i915_private *dev_priv,
  1570. enum pipe pipe)
  1571. {
  1572. int reg;
  1573. u32 val;
  1574. /*
  1575. * Make sure planes won't keep trying to pump pixels to us,
  1576. * or we might hang the display.
  1577. */
  1578. assert_planes_disabled(dev_priv, pipe);
  1579. /* Don't disable pipe A or pipe A PLLs if needed */
  1580. if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
  1581. return;
  1582. reg = PIPECONF(pipe);
  1583. val = I915_READ(reg);
  1584. if ((val & PIPECONF_ENABLE) == 0)
  1585. return;
  1586. I915_WRITE(reg, val & ~PIPECONF_ENABLE);
  1587. intel_wait_for_pipe_off(dev_priv->dev, pipe);
  1588. }
  1589. /*
  1590. * Plane regs are double buffered, going from enabled->disabled needs a
  1591. * trigger in order to latch. The display address reg provides this.
  1592. */
  1593. void intel_flush_display_plane(struct drm_i915_private *dev_priv,
  1594. enum plane plane)
  1595. {
  1596. I915_WRITE(DSPADDR(plane), I915_READ(DSPADDR(plane)));
  1597. I915_WRITE(DSPSURF(plane), I915_READ(DSPSURF(plane)));
  1598. }
  1599. /**
  1600. * intel_enable_plane - enable a display plane on a given pipe
  1601. * @dev_priv: i915 private structure
  1602. * @plane: plane to enable
  1603. * @pipe: pipe being fed
  1604. *
  1605. * Enable @plane on @pipe, making sure that @pipe is running first.
  1606. */
  1607. static void intel_enable_plane(struct drm_i915_private *dev_priv,
  1608. enum plane plane, enum pipe pipe)
  1609. {
  1610. int reg;
  1611. u32 val;
  1612. /* If the pipe isn't enabled, we can't pump pixels and may hang */
  1613. assert_pipe_enabled(dev_priv, pipe);
  1614. reg = DSPCNTR(plane);
  1615. val = I915_READ(reg);
  1616. if (val & DISPLAY_PLANE_ENABLE)
  1617. return;
  1618. I915_WRITE(reg, val | DISPLAY_PLANE_ENABLE);
  1619. intel_flush_display_plane(dev_priv, plane);
  1620. intel_wait_for_vblank(dev_priv->dev, pipe);
  1621. }
  1622. /**
  1623. * intel_disable_plane - disable a display plane
  1624. * @dev_priv: i915 private structure
  1625. * @plane: plane to disable
  1626. * @pipe: pipe consuming the data
  1627. *
  1628. * Disable @plane; should be an independent operation.
  1629. */
  1630. static void intel_disable_plane(struct drm_i915_private *dev_priv,
  1631. enum plane plane, enum pipe pipe)
  1632. {
  1633. int reg;
  1634. u32 val;
  1635. reg = DSPCNTR(plane);
  1636. val = I915_READ(reg);
  1637. if ((val & DISPLAY_PLANE_ENABLE) == 0)
  1638. return;
  1639. I915_WRITE(reg, val & ~DISPLAY_PLANE_ENABLE);
  1640. intel_flush_display_plane(dev_priv, plane);
  1641. intel_wait_for_vblank(dev_priv->dev, pipe);
  1642. }
  1643. static void disable_pch_dp(struct drm_i915_private *dev_priv,
  1644. enum pipe pipe, int reg, u32 port_sel)
  1645. {
  1646. u32 val = I915_READ(reg);
  1647. if (dp_pipe_enabled(dev_priv, pipe, port_sel, val)) {
  1648. DRM_DEBUG_KMS("Disabling pch dp %x on pipe %d\n", reg, pipe);
  1649. I915_WRITE(reg, val & ~DP_PORT_EN);
  1650. }
  1651. }
  1652. static void disable_pch_hdmi(struct drm_i915_private *dev_priv,
  1653. enum pipe pipe, int reg)
  1654. {
  1655. u32 val = I915_READ(reg);
  1656. if (hdmi_pipe_enabled(dev_priv, pipe, val)) {
  1657. DRM_DEBUG_KMS("Disabling pch HDMI %x on pipe %d\n",
  1658. reg, pipe);
  1659. I915_WRITE(reg, val & ~PORT_ENABLE);
  1660. }
  1661. }
  1662. /* Disable any ports connected to this transcoder */
  1663. static void intel_disable_pch_ports(struct drm_i915_private *dev_priv,
  1664. enum pipe pipe)
  1665. {
  1666. u32 reg, val;
  1667. val = I915_READ(PCH_PP_CONTROL);
  1668. I915_WRITE(PCH_PP_CONTROL, val | PANEL_UNLOCK_REGS);
  1669. disable_pch_dp(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
  1670. disable_pch_dp(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
  1671. disable_pch_dp(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
  1672. reg = PCH_ADPA;
  1673. val = I915_READ(reg);
  1674. if (adpa_pipe_enabled(dev_priv, pipe, val))
  1675. I915_WRITE(reg, val & ~ADPA_DAC_ENABLE);
  1676. reg = PCH_LVDS;
  1677. val = I915_READ(reg);
  1678. if (lvds_pipe_enabled(dev_priv, pipe, val)) {
  1679. DRM_DEBUG_KMS("disable lvds on pipe %d val 0x%08x\n", pipe, val);
  1680. I915_WRITE(reg, val & ~LVDS_PORT_EN);
  1681. POSTING_READ(reg);
  1682. udelay(100);
  1683. }
  1684. disable_pch_hdmi(dev_priv, pipe, HDMIB);
  1685. disable_pch_hdmi(dev_priv, pipe, HDMIC);
  1686. disable_pch_hdmi(dev_priv, pipe, HDMID);
  1687. }
  1688. int
  1689. intel_pin_and_fence_fb_obj(struct drm_device *dev,
  1690. struct drm_i915_gem_object *obj,
  1691. struct intel_ring_buffer *pipelined)
  1692. {
  1693. struct drm_i915_private *dev_priv = dev->dev_private;
  1694. u32 alignment;
  1695. int ret;
  1696. switch (obj->tiling_mode) {
  1697. case I915_TILING_NONE:
  1698. if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
  1699. alignment = 128 * 1024;
  1700. else if (INTEL_INFO(dev)->gen >= 4)
  1701. alignment = 4 * 1024;
  1702. else
  1703. alignment = 64 * 1024;
  1704. break;
  1705. case I915_TILING_X:
  1706. /* pin() will align the object as required by fence */
  1707. alignment = 0;
  1708. break;
  1709. case I915_TILING_Y:
  1710. /* FIXME: Is this true? */
  1711. DRM_ERROR("Y tiled not allowed for scan out buffers\n");
  1712. return -EINVAL;
  1713. default:
  1714. BUG();
  1715. }
  1716. dev_priv->mm.interruptible = false;
  1717. ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined);
  1718. if (ret)
  1719. goto err_interruptible;
  1720. /* Install a fence for tiled scan-out. Pre-i965 always needs a
  1721. * fence, whereas 965+ only requires a fence if using
  1722. * framebuffer compression. For simplicity, we always install
  1723. * a fence as the cost is not that onerous.
  1724. */
  1725. ret = i915_gem_object_get_fence(obj);
  1726. if (ret)
  1727. goto err_unpin;
  1728. i915_gem_object_pin_fence(obj);
  1729. dev_priv->mm.interruptible = true;
  1730. return 0;
  1731. err_unpin:
  1732. i915_gem_object_unpin(obj);
  1733. err_interruptible:
  1734. dev_priv->mm.interruptible = true;
  1735. return ret;
  1736. }
  1737. void intel_unpin_fb_obj(struct drm_i915_gem_object *obj)
  1738. {
  1739. i915_gem_object_unpin_fence(obj);
  1740. i915_gem_object_unpin(obj);
  1741. }
  1742. /* Computes the linear offset to the base tile and adjusts x, y. bytes per pixel
  1743. * is assumed to be a power-of-two. */
  1744. static unsigned long gen4_compute_dspaddr_offset_xtiled(int *x, int *y,
  1745. unsigned int bpp,
  1746. unsigned int pitch)
  1747. {
  1748. int tile_rows, tiles;
  1749. tile_rows = *y / 8;
  1750. *y %= 8;
  1751. tiles = *x / (512/bpp);
  1752. *x %= 512/bpp;
  1753. return tile_rows * pitch * 8 + tiles * 4096;
  1754. }
  1755. static int i9xx_update_plane(struct drm_crtc *crtc, struct drm_framebuffer *fb,
  1756. int x, int y)
  1757. {
  1758. struct drm_device *dev = crtc->dev;
  1759. struct drm_i915_private *dev_priv = dev->dev_private;
  1760. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1761. struct intel_framebuffer *intel_fb;
  1762. struct drm_i915_gem_object *obj;
  1763. int plane = intel_crtc->plane;
  1764. unsigned long linear_offset;
  1765. u32 dspcntr;
  1766. u32 reg;
  1767. switch (plane) {
  1768. case 0:
  1769. case 1:
  1770. break;
  1771. default:
  1772. DRM_ERROR("Can't update plane %d in SAREA\n", plane);
  1773. return -EINVAL;
  1774. }
  1775. intel_fb = to_intel_framebuffer(fb);
  1776. obj = intel_fb->obj;
  1777. reg = DSPCNTR(plane);
  1778. dspcntr = I915_READ(reg);
  1779. /* Mask out pixel format bits in case we change it */
  1780. dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
  1781. switch (fb->bits_per_pixel) {
  1782. case 8:
  1783. dspcntr |= DISPPLANE_8BPP;
  1784. break;
  1785. case 16:
  1786. if (fb->depth == 15)
  1787. dspcntr |= DISPPLANE_15_16BPP;
  1788. else
  1789. dspcntr |= DISPPLANE_16BPP;
  1790. break;
  1791. case 24:
  1792. case 32:
  1793. dspcntr |= DISPPLANE_32BPP_NO_ALPHA;
  1794. break;
  1795. default:
  1796. DRM_ERROR("Unknown color depth %d\n", fb->bits_per_pixel);
  1797. return -EINVAL;
  1798. }
  1799. if (INTEL_INFO(dev)->gen >= 4) {
  1800. if (obj->tiling_mode != I915_TILING_NONE)
  1801. dspcntr |= DISPPLANE_TILED;
  1802. else
  1803. dspcntr &= ~DISPPLANE_TILED;
  1804. }
  1805. I915_WRITE(reg, dspcntr);
  1806. linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
  1807. if (INTEL_INFO(dev)->gen >= 4) {
  1808. intel_crtc->dspaddr_offset =
  1809. gen4_compute_dspaddr_offset_xtiled(&x, &y,
  1810. fb->bits_per_pixel / 8,
  1811. fb->pitches[0]);
  1812. linear_offset -= intel_crtc->dspaddr_offset;
  1813. } else {
  1814. intel_crtc->dspaddr_offset = linear_offset;
  1815. }
  1816. DRM_DEBUG_KMS("Writing base %08X %08lX %d %d %d\n",
  1817. obj->gtt_offset, linear_offset, x, y, fb->pitches[0]);
  1818. I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
  1819. if (INTEL_INFO(dev)->gen >= 4) {
  1820. I915_MODIFY_DISPBASE(DSPSURF(plane),
  1821. obj->gtt_offset + intel_crtc->dspaddr_offset);
  1822. I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
  1823. I915_WRITE(DSPLINOFF(plane), linear_offset);
  1824. } else
  1825. I915_WRITE(DSPADDR(plane), obj->gtt_offset + linear_offset);
  1826. POSTING_READ(reg);
  1827. return 0;
  1828. }
  1829. static int ironlake_update_plane(struct drm_crtc *crtc,
  1830. struct drm_framebuffer *fb, int x, int y)
  1831. {
  1832. struct drm_device *dev = crtc->dev;
  1833. struct drm_i915_private *dev_priv = dev->dev_private;
  1834. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1835. struct intel_framebuffer *intel_fb;
  1836. struct drm_i915_gem_object *obj;
  1837. int plane = intel_crtc->plane;
  1838. unsigned long linear_offset;
  1839. u32 dspcntr;
  1840. u32 reg;
  1841. switch (plane) {
  1842. case 0:
  1843. case 1:
  1844. case 2:
  1845. break;
  1846. default:
  1847. DRM_ERROR("Can't update plane %d in SAREA\n", plane);
  1848. return -EINVAL;
  1849. }
  1850. intel_fb = to_intel_framebuffer(fb);
  1851. obj = intel_fb->obj;
  1852. reg = DSPCNTR(plane);
  1853. dspcntr = I915_READ(reg);
  1854. /* Mask out pixel format bits in case we change it */
  1855. dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
  1856. switch (fb->bits_per_pixel) {
  1857. case 8:
  1858. dspcntr |= DISPPLANE_8BPP;
  1859. break;
  1860. case 16:
  1861. if (fb->depth != 16)
  1862. return -EINVAL;
  1863. dspcntr |= DISPPLANE_16BPP;
  1864. break;
  1865. case 24:
  1866. case 32:
  1867. if (fb->depth == 24)
  1868. dspcntr |= DISPPLANE_32BPP_NO_ALPHA;
  1869. else if (fb->depth == 30)
  1870. dspcntr |= DISPPLANE_32BPP_30BIT_NO_ALPHA;
  1871. else
  1872. return -EINVAL;
  1873. break;
  1874. default:
  1875. DRM_ERROR("Unknown color depth %d\n", fb->bits_per_pixel);
  1876. return -EINVAL;
  1877. }
  1878. if (obj->tiling_mode != I915_TILING_NONE)
  1879. dspcntr |= DISPPLANE_TILED;
  1880. else
  1881. dspcntr &= ~DISPPLANE_TILED;
  1882. /* must disable */
  1883. dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
  1884. I915_WRITE(reg, dspcntr);
  1885. linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
  1886. intel_crtc->dspaddr_offset =
  1887. gen4_compute_dspaddr_offset_xtiled(&x, &y,
  1888. fb->bits_per_pixel / 8,
  1889. fb->pitches[0]);
  1890. linear_offset -= intel_crtc->dspaddr_offset;
  1891. DRM_DEBUG_KMS("Writing base %08X %08lX %d %d %d\n",
  1892. obj->gtt_offset, linear_offset, x, y, fb->pitches[0]);
  1893. I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
  1894. I915_MODIFY_DISPBASE(DSPSURF(plane),
  1895. obj->gtt_offset + intel_crtc->dspaddr_offset);
  1896. I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
  1897. I915_WRITE(DSPLINOFF(plane), linear_offset);
  1898. POSTING_READ(reg);
  1899. return 0;
  1900. }
  1901. /* Assume fb object is pinned & idle & fenced and just update base pointers */
  1902. static int
  1903. intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
  1904. int x, int y, enum mode_set_atomic state)
  1905. {
  1906. struct drm_device *dev = crtc->dev;
  1907. struct drm_i915_private *dev_priv = dev->dev_private;
  1908. if (dev_priv->display.disable_fbc)
  1909. dev_priv->display.disable_fbc(dev);
  1910. intel_increase_pllclock(crtc);
  1911. return dev_priv->display.update_plane(crtc, fb, x, y);
  1912. }
  1913. static int
  1914. intel_finish_fb(struct drm_framebuffer *old_fb)
  1915. {
  1916. struct drm_i915_gem_object *obj = to_intel_framebuffer(old_fb)->obj;
  1917. struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
  1918. bool was_interruptible = dev_priv->mm.interruptible;
  1919. int ret;
  1920. wait_event(dev_priv->pending_flip_queue,
  1921. atomic_read(&dev_priv->mm.wedged) ||
  1922. atomic_read(&obj->pending_flip) == 0);
  1923. /* Big Hammer, we also need to ensure that any pending
  1924. * MI_WAIT_FOR_EVENT inside a user batch buffer on the
  1925. * current scanout is retired before unpinning the old
  1926. * framebuffer.
  1927. *
  1928. * This should only fail upon a hung GPU, in which case we
  1929. * can safely continue.
  1930. */
  1931. dev_priv->mm.interruptible = false;
  1932. ret = i915_gem_object_finish_gpu(obj);
  1933. dev_priv->mm.interruptible = was_interruptible;
  1934. return ret;
  1935. }
  1936. static int
  1937. intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
  1938. struct drm_framebuffer *fb)
  1939. {
  1940. struct drm_device *dev = crtc->dev;
  1941. struct drm_i915_private *dev_priv = dev->dev_private;
  1942. struct drm_i915_master_private *master_priv;
  1943. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1944. struct drm_framebuffer *old_fb;
  1945. int ret;
  1946. /* no fb bound */
  1947. if (!fb) {
  1948. DRM_ERROR("No FB bound\n");
  1949. return 0;
  1950. }
  1951. if(intel_crtc->plane > dev_priv->num_pipe) {
  1952. DRM_ERROR("no plane for crtc: plane %d, num_pipes %d\n",
  1953. intel_crtc->plane,
  1954. dev_priv->num_pipe);
  1955. return -EINVAL;
  1956. }
  1957. mutex_lock(&dev->struct_mutex);
  1958. ret = intel_pin_and_fence_fb_obj(dev,
  1959. to_intel_framebuffer(fb)->obj,
  1960. NULL);
  1961. if (ret != 0) {
  1962. mutex_unlock(&dev->struct_mutex);
  1963. DRM_ERROR("pin & fence failed\n");
  1964. return ret;
  1965. }
  1966. if (crtc->fb)
  1967. intel_finish_fb(crtc->fb);
  1968. ret = dev_priv->display.update_plane(crtc, fb, x, y);
  1969. if (ret) {
  1970. intel_unpin_fb_obj(to_intel_framebuffer(fb)->obj);
  1971. mutex_unlock(&dev->struct_mutex);
  1972. DRM_ERROR("failed to update base address\n");
  1973. return ret;
  1974. }
  1975. old_fb = crtc->fb;
  1976. crtc->fb = fb;
  1977. if (old_fb) {
  1978. intel_wait_for_vblank(dev, intel_crtc->pipe);
  1979. intel_unpin_fb_obj(to_intel_framebuffer(old_fb)->obj);
  1980. }
  1981. intel_update_fbc(dev);
  1982. mutex_unlock(&dev->struct_mutex);
  1983. if (!dev->primary->master)
  1984. return 0;
  1985. master_priv = dev->primary->master->driver_priv;
  1986. if (!master_priv->sarea_priv)
  1987. return 0;
  1988. if (intel_crtc->pipe) {
  1989. master_priv->sarea_priv->pipeB_x = x;
  1990. master_priv->sarea_priv->pipeB_y = y;
  1991. } else {
  1992. master_priv->sarea_priv->pipeA_x = x;
  1993. master_priv->sarea_priv->pipeA_y = y;
  1994. }
  1995. return 0;
  1996. }
  1997. static void ironlake_set_pll_edp(struct drm_crtc *crtc, int clock)
  1998. {
  1999. struct drm_device *dev = crtc->dev;
  2000. struct drm_i915_private *dev_priv = dev->dev_private;
  2001. u32 dpa_ctl;
  2002. DRM_DEBUG_KMS("eDP PLL enable for clock %d\n", clock);
  2003. dpa_ctl = I915_READ(DP_A);
  2004. dpa_ctl &= ~DP_PLL_FREQ_MASK;
  2005. if (clock < 200000) {
  2006. u32 temp;
  2007. dpa_ctl |= DP_PLL_FREQ_160MHZ;
  2008. /* workaround for 160Mhz:
  2009. 1) program 0x4600c bits 15:0 = 0x8124
  2010. 2) program 0x46010 bit 0 = 1
  2011. 3) program 0x46034 bit 24 = 1
  2012. 4) program 0x64000 bit 14 = 1
  2013. */
  2014. temp = I915_READ(0x4600c);
  2015. temp &= 0xffff0000;
  2016. I915_WRITE(0x4600c, temp | 0x8124);
  2017. temp = I915_READ(0x46010);
  2018. I915_WRITE(0x46010, temp | 1);
  2019. temp = I915_READ(0x46034);
  2020. I915_WRITE(0x46034, temp | (1 << 24));
  2021. } else {
  2022. dpa_ctl |= DP_PLL_FREQ_270MHZ;
  2023. }
  2024. I915_WRITE(DP_A, dpa_ctl);
  2025. POSTING_READ(DP_A);
  2026. udelay(500);
  2027. }
  2028. static void intel_fdi_normal_train(struct drm_crtc *crtc)
  2029. {
  2030. struct drm_device *dev = crtc->dev;
  2031. struct drm_i915_private *dev_priv = dev->dev_private;
  2032. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2033. int pipe = intel_crtc->pipe;
  2034. u32 reg, temp;
  2035. /* enable normal train */
  2036. reg = FDI_TX_CTL(pipe);
  2037. temp = I915_READ(reg);
  2038. if (IS_IVYBRIDGE(dev)) {
  2039. temp &= ~FDI_LINK_TRAIN_NONE_IVB;
  2040. temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
  2041. } else {
  2042. temp &= ~FDI_LINK_TRAIN_NONE;
  2043. temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
  2044. }
  2045. I915_WRITE(reg, temp);
  2046. reg = FDI_RX_CTL(pipe);
  2047. temp = I915_READ(reg);
  2048. if (HAS_PCH_CPT(dev)) {
  2049. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  2050. temp |= FDI_LINK_TRAIN_NORMAL_CPT;
  2051. } else {
  2052. temp &= ~FDI_LINK_TRAIN_NONE;
  2053. temp |= FDI_LINK_TRAIN_NONE;
  2054. }
  2055. I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
  2056. /* wait one idle pattern time */
  2057. POSTING_READ(reg);
  2058. udelay(1000);
  2059. /* IVB wants error correction enabled */
  2060. if (IS_IVYBRIDGE(dev))
  2061. I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
  2062. FDI_FE_ERRC_ENABLE);
  2063. }
  2064. static void cpt_phase_pointer_enable(struct drm_device *dev, int pipe)
  2065. {
  2066. struct drm_i915_private *dev_priv = dev->dev_private;
  2067. u32 flags = I915_READ(SOUTH_CHICKEN1);
  2068. flags |= FDI_PHASE_SYNC_OVR(pipe);
  2069. I915_WRITE(SOUTH_CHICKEN1, flags); /* once to unlock... */
  2070. flags |= FDI_PHASE_SYNC_EN(pipe);
  2071. I915_WRITE(SOUTH_CHICKEN1, flags); /* then again to enable */
  2072. POSTING_READ(SOUTH_CHICKEN1);
  2073. }
  2074. /* The FDI link training functions for ILK/Ibexpeak. */
  2075. static void ironlake_fdi_link_train(struct drm_crtc *crtc)
  2076. {
  2077. struct drm_device *dev = crtc->dev;
  2078. struct drm_i915_private *dev_priv = dev->dev_private;
  2079. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2080. int pipe = intel_crtc->pipe;
  2081. int plane = intel_crtc->plane;
  2082. u32 reg, temp, tries;
  2083. /* FDI needs bits from pipe & plane first */
  2084. assert_pipe_enabled(dev_priv, pipe);
  2085. assert_plane_enabled(dev_priv, plane);
  2086. /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
  2087. for train result */
  2088. reg = FDI_RX_IMR(pipe);
  2089. temp = I915_READ(reg);
  2090. temp &= ~FDI_RX_SYMBOL_LOCK;
  2091. temp &= ~FDI_RX_BIT_LOCK;
  2092. I915_WRITE(reg, temp);
  2093. I915_READ(reg);
  2094. udelay(150);
  2095. /* enable CPU FDI TX and PCH FDI RX */
  2096. reg = FDI_TX_CTL(pipe);
  2097. temp = I915_READ(reg);
  2098. temp &= ~(7 << 19);
  2099. temp |= (intel_crtc->fdi_lanes - 1) << 19;
  2100. temp &= ~FDI_LINK_TRAIN_NONE;
  2101. temp |= FDI_LINK_TRAIN_PATTERN_1;
  2102. I915_WRITE(reg, temp | FDI_TX_ENABLE);
  2103. reg = FDI_RX_CTL(pipe);
  2104. temp = I915_READ(reg);
  2105. temp &= ~FDI_LINK_TRAIN_NONE;
  2106. temp |= FDI_LINK_TRAIN_PATTERN_1;
  2107. I915_WRITE(reg, temp | FDI_RX_ENABLE);
  2108. POSTING_READ(reg);
  2109. udelay(150);
  2110. /* Ironlake workaround, enable clock pointer after FDI enable*/
  2111. if (HAS_PCH_IBX(dev)) {
  2112. I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
  2113. I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
  2114. FDI_RX_PHASE_SYNC_POINTER_EN);
  2115. }
  2116. reg = FDI_RX_IIR(pipe);
  2117. for (tries = 0; tries < 5; tries++) {
  2118. temp = I915_READ(reg);
  2119. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2120. if ((temp & FDI_RX_BIT_LOCK)) {
  2121. DRM_DEBUG_KMS("FDI train 1 done.\n");
  2122. I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
  2123. break;
  2124. }
  2125. }
  2126. if (tries == 5)
  2127. DRM_ERROR("FDI train 1 fail!\n");
  2128. /* Train 2 */
  2129. reg = FDI_TX_CTL(pipe);
  2130. temp = I915_READ(reg);
  2131. temp &= ~FDI_LINK_TRAIN_NONE;
  2132. temp |= FDI_LINK_TRAIN_PATTERN_2;
  2133. I915_WRITE(reg, temp);
  2134. reg = FDI_RX_CTL(pipe);
  2135. temp = I915_READ(reg);
  2136. temp &= ~FDI_LINK_TRAIN_NONE;
  2137. temp |= FDI_LINK_TRAIN_PATTERN_2;
  2138. I915_WRITE(reg, temp);
  2139. POSTING_READ(reg);
  2140. udelay(150);
  2141. reg = FDI_RX_IIR(pipe);
  2142. for (tries = 0; tries < 5; tries++) {
  2143. temp = I915_READ(reg);
  2144. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2145. if (temp & FDI_RX_SYMBOL_LOCK) {
  2146. I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
  2147. DRM_DEBUG_KMS("FDI train 2 done.\n");
  2148. break;
  2149. }
  2150. }
  2151. if (tries == 5)
  2152. DRM_ERROR("FDI train 2 fail!\n");
  2153. DRM_DEBUG_KMS("FDI train done\n");
  2154. }
  2155. static const int snb_b_fdi_train_param[] = {
  2156. FDI_LINK_TRAIN_400MV_0DB_SNB_B,
  2157. FDI_LINK_TRAIN_400MV_6DB_SNB_B,
  2158. FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
  2159. FDI_LINK_TRAIN_800MV_0DB_SNB_B,
  2160. };
  2161. /* The FDI link training functions for SNB/Cougarpoint. */
  2162. static void gen6_fdi_link_train(struct drm_crtc *crtc)
  2163. {
  2164. struct drm_device *dev = crtc->dev;
  2165. struct drm_i915_private *dev_priv = dev->dev_private;
  2166. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2167. int pipe = intel_crtc->pipe;
  2168. u32 reg, temp, i, retry;
  2169. /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
  2170. for train result */
  2171. reg = FDI_RX_IMR(pipe);
  2172. temp = I915_READ(reg);
  2173. temp &= ~FDI_RX_SYMBOL_LOCK;
  2174. temp &= ~FDI_RX_BIT_LOCK;
  2175. I915_WRITE(reg, temp);
  2176. POSTING_READ(reg);
  2177. udelay(150);
  2178. /* enable CPU FDI TX and PCH FDI RX */
  2179. reg = FDI_TX_CTL(pipe);
  2180. temp = I915_READ(reg);
  2181. temp &= ~(7 << 19);
  2182. temp |= (intel_crtc->fdi_lanes - 1) << 19;
  2183. temp &= ~FDI_LINK_TRAIN_NONE;
  2184. temp |= FDI_LINK_TRAIN_PATTERN_1;
  2185. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2186. /* SNB-B */
  2187. temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
  2188. I915_WRITE(reg, temp | FDI_TX_ENABLE);
  2189. reg = FDI_RX_CTL(pipe);
  2190. temp = I915_READ(reg);
  2191. if (HAS_PCH_CPT(dev)) {
  2192. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  2193. temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
  2194. } else {
  2195. temp &= ~FDI_LINK_TRAIN_NONE;
  2196. temp |= FDI_LINK_TRAIN_PATTERN_1;
  2197. }
  2198. I915_WRITE(reg, temp | FDI_RX_ENABLE);
  2199. POSTING_READ(reg);
  2200. udelay(150);
  2201. if (HAS_PCH_CPT(dev))
  2202. cpt_phase_pointer_enable(dev, pipe);
  2203. for (i = 0; i < 4; i++) {
  2204. reg = FDI_TX_CTL(pipe);
  2205. temp = I915_READ(reg);
  2206. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2207. temp |= snb_b_fdi_train_param[i];
  2208. I915_WRITE(reg, temp);
  2209. POSTING_READ(reg);
  2210. udelay(500);
  2211. for (retry = 0; retry < 5; retry++) {
  2212. reg = FDI_RX_IIR(pipe);
  2213. temp = I915_READ(reg);
  2214. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2215. if (temp & FDI_RX_BIT_LOCK) {
  2216. I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
  2217. DRM_DEBUG_KMS("FDI train 1 done.\n");
  2218. break;
  2219. }
  2220. udelay(50);
  2221. }
  2222. if (retry < 5)
  2223. break;
  2224. }
  2225. if (i == 4)
  2226. DRM_ERROR("FDI train 1 fail!\n");
  2227. /* Train 2 */
  2228. reg = FDI_TX_CTL(pipe);
  2229. temp = I915_READ(reg);
  2230. temp &= ~FDI_LINK_TRAIN_NONE;
  2231. temp |= FDI_LINK_TRAIN_PATTERN_2;
  2232. if (IS_GEN6(dev)) {
  2233. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2234. /* SNB-B */
  2235. temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
  2236. }
  2237. I915_WRITE(reg, temp);
  2238. reg = FDI_RX_CTL(pipe);
  2239. temp = I915_READ(reg);
  2240. if (HAS_PCH_CPT(dev)) {
  2241. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  2242. temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
  2243. } else {
  2244. temp &= ~FDI_LINK_TRAIN_NONE;
  2245. temp |= FDI_LINK_TRAIN_PATTERN_2;
  2246. }
  2247. I915_WRITE(reg, temp);
  2248. POSTING_READ(reg);
  2249. udelay(150);
  2250. for (i = 0; i < 4; i++) {
  2251. reg = FDI_TX_CTL(pipe);
  2252. temp = I915_READ(reg);
  2253. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2254. temp |= snb_b_fdi_train_param[i];
  2255. I915_WRITE(reg, temp);
  2256. POSTING_READ(reg);
  2257. udelay(500);
  2258. for (retry = 0; retry < 5; retry++) {
  2259. reg = FDI_RX_IIR(pipe);
  2260. temp = I915_READ(reg);
  2261. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2262. if (temp & FDI_RX_SYMBOL_LOCK) {
  2263. I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
  2264. DRM_DEBUG_KMS("FDI train 2 done.\n");
  2265. break;
  2266. }
  2267. udelay(50);
  2268. }
  2269. if (retry < 5)
  2270. break;
  2271. }
  2272. if (i == 4)
  2273. DRM_ERROR("FDI train 2 fail!\n");
  2274. DRM_DEBUG_KMS("FDI train done.\n");
  2275. }
  2276. /* Manual link training for Ivy Bridge A0 parts */
  2277. static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
  2278. {
  2279. struct drm_device *dev = crtc->dev;
  2280. struct drm_i915_private *dev_priv = dev->dev_private;
  2281. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2282. int pipe = intel_crtc->pipe;
  2283. u32 reg, temp, i;
  2284. /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
  2285. for train result */
  2286. reg = FDI_RX_IMR(pipe);
  2287. temp = I915_READ(reg);
  2288. temp &= ~FDI_RX_SYMBOL_LOCK;
  2289. temp &= ~FDI_RX_BIT_LOCK;
  2290. I915_WRITE(reg, temp);
  2291. POSTING_READ(reg);
  2292. udelay(150);
  2293. /* enable CPU FDI TX and PCH FDI RX */
  2294. reg = FDI_TX_CTL(pipe);
  2295. temp = I915_READ(reg);
  2296. temp &= ~(7 << 19);
  2297. temp |= (intel_crtc->fdi_lanes - 1) << 19;
  2298. temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
  2299. temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
  2300. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2301. temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
  2302. temp |= FDI_COMPOSITE_SYNC;
  2303. I915_WRITE(reg, temp | FDI_TX_ENABLE);
  2304. reg = FDI_RX_CTL(pipe);
  2305. temp = I915_READ(reg);
  2306. temp &= ~FDI_LINK_TRAIN_AUTO;
  2307. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  2308. temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
  2309. temp |= FDI_COMPOSITE_SYNC;
  2310. I915_WRITE(reg, temp | FDI_RX_ENABLE);
  2311. POSTING_READ(reg);
  2312. udelay(150);
  2313. if (HAS_PCH_CPT(dev))
  2314. cpt_phase_pointer_enable(dev, pipe);
  2315. for (i = 0; i < 4; i++) {
  2316. reg = FDI_TX_CTL(pipe);
  2317. temp = I915_READ(reg);
  2318. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2319. temp |= snb_b_fdi_train_param[i];
  2320. I915_WRITE(reg, temp);
  2321. POSTING_READ(reg);
  2322. udelay(500);
  2323. reg = FDI_RX_IIR(pipe);
  2324. temp = I915_READ(reg);
  2325. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2326. if (temp & FDI_RX_BIT_LOCK ||
  2327. (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
  2328. I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
  2329. DRM_DEBUG_KMS("FDI train 1 done.\n");
  2330. break;
  2331. }
  2332. }
  2333. if (i == 4)
  2334. DRM_ERROR("FDI train 1 fail!\n");
  2335. /* Train 2 */
  2336. reg = FDI_TX_CTL(pipe);
  2337. temp = I915_READ(reg);
  2338. temp &= ~FDI_LINK_TRAIN_NONE_IVB;
  2339. temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
  2340. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2341. temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
  2342. I915_WRITE(reg, temp);
  2343. reg = FDI_RX_CTL(pipe);
  2344. temp = I915_READ(reg);
  2345. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  2346. temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
  2347. I915_WRITE(reg, temp);
  2348. POSTING_READ(reg);
  2349. udelay(150);
  2350. for (i = 0; i < 4; i++) {
  2351. reg = FDI_TX_CTL(pipe);
  2352. temp = I915_READ(reg);
  2353. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2354. temp |= snb_b_fdi_train_param[i];
  2355. I915_WRITE(reg, temp);
  2356. POSTING_READ(reg);
  2357. udelay(500);
  2358. reg = FDI_RX_IIR(pipe);
  2359. temp = I915_READ(reg);
  2360. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2361. if (temp & FDI_RX_SYMBOL_LOCK) {
  2362. I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
  2363. DRM_DEBUG_KMS("FDI train 2 done.\n");
  2364. break;
  2365. }
  2366. }
  2367. if (i == 4)
  2368. DRM_ERROR("FDI train 2 fail!\n");
  2369. DRM_DEBUG_KMS("FDI train done.\n");
  2370. }
  2371. static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
  2372. {
  2373. struct drm_device *dev = intel_crtc->base.dev;
  2374. struct drm_i915_private *dev_priv = dev->dev_private;
  2375. int pipe = intel_crtc->pipe;
  2376. u32 reg, temp;
  2377. /* Write the TU size bits so error detection works */
  2378. I915_WRITE(FDI_RX_TUSIZE1(pipe),
  2379. I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
  2380. /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
  2381. reg = FDI_RX_CTL(pipe);
  2382. temp = I915_READ(reg);
  2383. temp &= ~((0x7 << 19) | (0x7 << 16));
  2384. temp |= (intel_crtc->fdi_lanes - 1) << 19;
  2385. temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
  2386. I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
  2387. POSTING_READ(reg);
  2388. udelay(200);
  2389. /* Switch from Rawclk to PCDclk */
  2390. temp = I915_READ(reg);
  2391. I915_WRITE(reg, temp | FDI_PCDCLK);
  2392. POSTING_READ(reg);
  2393. udelay(200);
  2394. /* On Haswell, the PLL configuration for ports and pipes is handled
  2395. * separately, as part of DDI setup */
  2396. if (!IS_HASWELL(dev)) {
  2397. /* Enable CPU FDI TX PLL, always on for Ironlake */
  2398. reg = FDI_TX_CTL(pipe);
  2399. temp = I915_READ(reg);
  2400. if ((temp & FDI_TX_PLL_ENABLE) == 0) {
  2401. I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
  2402. POSTING_READ(reg);
  2403. udelay(100);
  2404. }
  2405. }
  2406. }
  2407. static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
  2408. {
  2409. struct drm_device *dev = intel_crtc->base.dev;
  2410. struct drm_i915_private *dev_priv = dev->dev_private;
  2411. int pipe = intel_crtc->pipe;
  2412. u32 reg, temp;
  2413. /* Switch from PCDclk to Rawclk */
  2414. reg = FDI_RX_CTL(pipe);
  2415. temp = I915_READ(reg);
  2416. I915_WRITE(reg, temp & ~FDI_PCDCLK);
  2417. /* Disable CPU FDI TX PLL */
  2418. reg = FDI_TX_CTL(pipe);
  2419. temp = I915_READ(reg);
  2420. I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
  2421. POSTING_READ(reg);
  2422. udelay(100);
  2423. reg = FDI_RX_CTL(pipe);
  2424. temp = I915_READ(reg);
  2425. I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
  2426. /* Wait for the clocks to turn off. */
  2427. POSTING_READ(reg);
  2428. udelay(100);
  2429. }
  2430. static void cpt_phase_pointer_disable(struct drm_device *dev, int pipe)
  2431. {
  2432. struct drm_i915_private *dev_priv = dev->dev_private;
  2433. u32 flags = I915_READ(SOUTH_CHICKEN1);
  2434. flags &= ~(FDI_PHASE_SYNC_EN(pipe));
  2435. I915_WRITE(SOUTH_CHICKEN1, flags); /* once to disable... */
  2436. flags &= ~(FDI_PHASE_SYNC_OVR(pipe));
  2437. I915_WRITE(SOUTH_CHICKEN1, flags); /* then again to lock */
  2438. POSTING_READ(SOUTH_CHICKEN1);
  2439. }
  2440. static void ironlake_fdi_disable(struct drm_crtc *crtc)
  2441. {
  2442. struct drm_device *dev = crtc->dev;
  2443. struct drm_i915_private *dev_priv = dev->dev_private;
  2444. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2445. int pipe = intel_crtc->pipe;
  2446. u32 reg, temp;
  2447. /* disable CPU FDI tx and PCH FDI rx */
  2448. reg = FDI_TX_CTL(pipe);
  2449. temp = I915_READ(reg);
  2450. I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
  2451. POSTING_READ(reg);
  2452. reg = FDI_RX_CTL(pipe);
  2453. temp = I915_READ(reg);
  2454. temp &= ~(0x7 << 16);
  2455. temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
  2456. I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
  2457. POSTING_READ(reg);
  2458. udelay(100);
  2459. /* Ironlake workaround, disable clock pointer after downing FDI */
  2460. if (HAS_PCH_IBX(dev)) {
  2461. I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
  2462. I915_WRITE(FDI_RX_CHICKEN(pipe),
  2463. I915_READ(FDI_RX_CHICKEN(pipe) &
  2464. ~FDI_RX_PHASE_SYNC_POINTER_EN));
  2465. } else if (HAS_PCH_CPT(dev)) {
  2466. cpt_phase_pointer_disable(dev, pipe);
  2467. }
  2468. /* still set train pattern 1 */
  2469. reg = FDI_TX_CTL(pipe);
  2470. temp = I915_READ(reg);
  2471. temp &= ~FDI_LINK_TRAIN_NONE;
  2472. temp |= FDI_LINK_TRAIN_PATTERN_1;
  2473. I915_WRITE(reg, temp);
  2474. reg = FDI_RX_CTL(pipe);
  2475. temp = I915_READ(reg);
  2476. if (HAS_PCH_CPT(dev)) {
  2477. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  2478. temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
  2479. } else {
  2480. temp &= ~FDI_LINK_TRAIN_NONE;
  2481. temp |= FDI_LINK_TRAIN_PATTERN_1;
  2482. }
  2483. /* BPC in FDI rx is consistent with that in PIPECONF */
  2484. temp &= ~(0x07 << 16);
  2485. temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
  2486. I915_WRITE(reg, temp);
  2487. POSTING_READ(reg);
  2488. udelay(100);
  2489. }
  2490. static void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
  2491. {
  2492. struct drm_device *dev = crtc->dev;
  2493. if (crtc->fb == NULL)
  2494. return;
  2495. mutex_lock(&dev->struct_mutex);
  2496. intel_finish_fb(crtc->fb);
  2497. mutex_unlock(&dev->struct_mutex);
  2498. }
  2499. static bool intel_crtc_driving_pch(struct drm_crtc *crtc)
  2500. {
  2501. struct drm_device *dev = crtc->dev;
  2502. struct intel_encoder *intel_encoder;
  2503. /*
  2504. * If there's a non-PCH eDP on this crtc, it must be DP_A, and that
  2505. * must be driven by its own crtc; no sharing is possible.
  2506. */
  2507. for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
  2508. /* On Haswell, LPT PCH handles the VGA connection via FDI, and Haswell
  2509. * CPU handles all others */
  2510. if (IS_HASWELL(dev)) {
  2511. /* It is still unclear how this will work on PPT, so throw up a warning */
  2512. WARN_ON(!HAS_PCH_LPT(dev));
  2513. if (intel_encoder->type == INTEL_OUTPUT_ANALOG) {
  2514. DRM_DEBUG_KMS("Haswell detected DAC encoder, assuming is PCH\n");
  2515. return true;
  2516. } else {
  2517. DRM_DEBUG_KMS("Haswell detected encoder %d, assuming is CPU\n",
  2518. intel_encoder->type);
  2519. return false;
  2520. }
  2521. }
  2522. switch (intel_encoder->type) {
  2523. case INTEL_OUTPUT_EDP:
  2524. if (!intel_encoder_is_pch_edp(&intel_encoder->base))
  2525. return false;
  2526. continue;
  2527. }
  2528. }
  2529. return true;
  2530. }
  2531. /* Program iCLKIP clock to the desired frequency */
  2532. static void lpt_program_iclkip(struct drm_crtc *crtc)
  2533. {
  2534. struct drm_device *dev = crtc->dev;
  2535. struct drm_i915_private *dev_priv = dev->dev_private;
  2536. u32 divsel, phaseinc, auxdiv, phasedir = 0;
  2537. u32 temp;
  2538. /* It is necessary to ungate the pixclk gate prior to programming
  2539. * the divisors, and gate it back when it is done.
  2540. */
  2541. I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
  2542. /* Disable SSCCTL */
  2543. intel_sbi_write(dev_priv, SBI_SSCCTL6,
  2544. intel_sbi_read(dev_priv, SBI_SSCCTL6) |
  2545. SBI_SSCCTL_DISABLE);
  2546. /* 20MHz is a corner case which is out of range for the 7-bit divisor */
  2547. if (crtc->mode.clock == 20000) {
  2548. auxdiv = 1;
  2549. divsel = 0x41;
  2550. phaseinc = 0x20;
  2551. } else {
  2552. /* The iCLK virtual clock root frequency is in MHz,
  2553. * but the crtc->mode.clock in in KHz. To get the divisors,
  2554. * it is necessary to divide one by another, so we
  2555. * convert the virtual clock precision to KHz here for higher
  2556. * precision.
  2557. */
  2558. u32 iclk_virtual_root_freq = 172800 * 1000;
  2559. u32 iclk_pi_range = 64;
  2560. u32 desired_divisor, msb_divisor_value, pi_value;
  2561. desired_divisor = (iclk_virtual_root_freq / crtc->mode.clock);
  2562. msb_divisor_value = desired_divisor / iclk_pi_range;
  2563. pi_value = desired_divisor % iclk_pi_range;
  2564. auxdiv = 0;
  2565. divsel = msb_divisor_value - 2;
  2566. phaseinc = pi_value;
  2567. }
  2568. /* This should not happen with any sane values */
  2569. WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
  2570. ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
  2571. WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
  2572. ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
  2573. DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
  2574. crtc->mode.clock,
  2575. auxdiv,
  2576. divsel,
  2577. phasedir,
  2578. phaseinc);
  2579. /* Program SSCDIVINTPHASE6 */
  2580. temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6);
  2581. temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
  2582. temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
  2583. temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
  2584. temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
  2585. temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
  2586. temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
  2587. intel_sbi_write(dev_priv,
  2588. SBI_SSCDIVINTPHASE6,
  2589. temp);
  2590. /* Program SSCAUXDIV */
  2591. temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6);
  2592. temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
  2593. temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
  2594. intel_sbi_write(dev_priv,
  2595. SBI_SSCAUXDIV6,
  2596. temp);
  2597. /* Enable modulator and associated divider */
  2598. temp = intel_sbi_read(dev_priv, SBI_SSCCTL6);
  2599. temp &= ~SBI_SSCCTL_DISABLE;
  2600. intel_sbi_write(dev_priv,
  2601. SBI_SSCCTL6,
  2602. temp);
  2603. /* Wait for initialization time */
  2604. udelay(24);
  2605. I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
  2606. }
  2607. /*
  2608. * Enable PCH resources required for PCH ports:
  2609. * - PCH PLLs
  2610. * - FDI training & RX/TX
  2611. * - update transcoder timings
  2612. * - DP transcoding bits
  2613. * - transcoder
  2614. */
  2615. static void ironlake_pch_enable(struct drm_crtc *crtc)
  2616. {
  2617. struct drm_device *dev = crtc->dev;
  2618. struct drm_i915_private *dev_priv = dev->dev_private;
  2619. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2620. int pipe = intel_crtc->pipe;
  2621. u32 reg, temp;
  2622. assert_transcoder_disabled(dev_priv, pipe);
  2623. /* For PCH output, training FDI link */
  2624. dev_priv->display.fdi_link_train(crtc);
  2625. intel_enable_pch_pll(intel_crtc);
  2626. if (HAS_PCH_LPT(dev)) {
  2627. DRM_DEBUG_KMS("LPT detected: programming iCLKIP\n");
  2628. lpt_program_iclkip(crtc);
  2629. } else if (HAS_PCH_CPT(dev)) {
  2630. u32 sel;
  2631. temp = I915_READ(PCH_DPLL_SEL);
  2632. switch (pipe) {
  2633. default:
  2634. case 0:
  2635. temp |= TRANSA_DPLL_ENABLE;
  2636. sel = TRANSA_DPLLB_SEL;
  2637. break;
  2638. case 1:
  2639. temp |= TRANSB_DPLL_ENABLE;
  2640. sel = TRANSB_DPLLB_SEL;
  2641. break;
  2642. case 2:
  2643. temp |= TRANSC_DPLL_ENABLE;
  2644. sel = TRANSC_DPLLB_SEL;
  2645. break;
  2646. }
  2647. if (intel_crtc->pch_pll->pll_reg == _PCH_DPLL_B)
  2648. temp |= sel;
  2649. else
  2650. temp &= ~sel;
  2651. I915_WRITE(PCH_DPLL_SEL, temp);
  2652. }
  2653. /* set transcoder timing, panel must allow it */
  2654. assert_panel_unlocked(dev_priv, pipe);
  2655. I915_WRITE(TRANS_HTOTAL(pipe), I915_READ(HTOTAL(pipe)));
  2656. I915_WRITE(TRANS_HBLANK(pipe), I915_READ(HBLANK(pipe)));
  2657. I915_WRITE(TRANS_HSYNC(pipe), I915_READ(HSYNC(pipe)));
  2658. I915_WRITE(TRANS_VTOTAL(pipe), I915_READ(VTOTAL(pipe)));
  2659. I915_WRITE(TRANS_VBLANK(pipe), I915_READ(VBLANK(pipe)));
  2660. I915_WRITE(TRANS_VSYNC(pipe), I915_READ(VSYNC(pipe)));
  2661. I915_WRITE(TRANS_VSYNCSHIFT(pipe), I915_READ(VSYNCSHIFT(pipe)));
  2662. if (!IS_HASWELL(dev))
  2663. intel_fdi_normal_train(crtc);
  2664. /* For PCH DP, enable TRANS_DP_CTL */
  2665. if (HAS_PCH_CPT(dev) &&
  2666. (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
  2667. intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
  2668. u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) >> 5;
  2669. reg = TRANS_DP_CTL(pipe);
  2670. temp = I915_READ(reg);
  2671. temp &= ~(TRANS_DP_PORT_SEL_MASK |
  2672. TRANS_DP_SYNC_MASK |
  2673. TRANS_DP_BPC_MASK);
  2674. temp |= (TRANS_DP_OUTPUT_ENABLE |
  2675. TRANS_DP_ENH_FRAMING);
  2676. temp |= bpc << 9; /* same format but at 11:9 */
  2677. if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
  2678. temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
  2679. if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
  2680. temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
  2681. switch (intel_trans_dp_port_sel(crtc)) {
  2682. case PCH_DP_B:
  2683. temp |= TRANS_DP_PORT_SEL_B;
  2684. break;
  2685. case PCH_DP_C:
  2686. temp |= TRANS_DP_PORT_SEL_C;
  2687. break;
  2688. case PCH_DP_D:
  2689. temp |= TRANS_DP_PORT_SEL_D;
  2690. break;
  2691. default:
  2692. DRM_DEBUG_KMS("Wrong PCH DP port return. Guess port B\n");
  2693. temp |= TRANS_DP_PORT_SEL_B;
  2694. break;
  2695. }
  2696. I915_WRITE(reg, temp);
  2697. }
  2698. intel_enable_transcoder(dev_priv, pipe);
  2699. }
  2700. static void intel_put_pch_pll(struct intel_crtc *intel_crtc)
  2701. {
  2702. struct intel_pch_pll *pll = intel_crtc->pch_pll;
  2703. if (pll == NULL)
  2704. return;
  2705. if (pll->refcount == 0) {
  2706. WARN(1, "bad PCH PLL refcount\n");
  2707. return;
  2708. }
  2709. --pll->refcount;
  2710. intel_crtc->pch_pll = NULL;
  2711. }
  2712. static struct intel_pch_pll *intel_get_pch_pll(struct intel_crtc *intel_crtc, u32 dpll, u32 fp)
  2713. {
  2714. struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
  2715. struct intel_pch_pll *pll;
  2716. int i;
  2717. pll = intel_crtc->pch_pll;
  2718. if (pll) {
  2719. DRM_DEBUG_KMS("CRTC:%d reusing existing PCH PLL %x\n",
  2720. intel_crtc->base.base.id, pll->pll_reg);
  2721. goto prepare;
  2722. }
  2723. if (HAS_PCH_IBX(dev_priv->dev)) {
  2724. /* Ironlake PCH has a fixed PLL->PCH pipe mapping. */
  2725. i = intel_crtc->pipe;
  2726. pll = &dev_priv->pch_plls[i];
  2727. DRM_DEBUG_KMS("CRTC:%d using pre-allocated PCH PLL %x\n",
  2728. intel_crtc->base.base.id, pll->pll_reg);
  2729. goto found;
  2730. }
  2731. for (i = 0; i < dev_priv->num_pch_pll; i++) {
  2732. pll = &dev_priv->pch_plls[i];
  2733. /* Only want to check enabled timings first */
  2734. if (pll->refcount == 0)
  2735. continue;
  2736. if (dpll == (I915_READ(pll->pll_reg) & 0x7fffffff) &&
  2737. fp == I915_READ(pll->fp0_reg)) {
  2738. DRM_DEBUG_KMS("CRTC:%d sharing existing PCH PLL %x (refcount %d, ative %d)\n",
  2739. intel_crtc->base.base.id,
  2740. pll->pll_reg, pll->refcount, pll->active);
  2741. goto found;
  2742. }
  2743. }
  2744. /* Ok no matching timings, maybe there's a free one? */
  2745. for (i = 0; i < dev_priv->num_pch_pll; i++) {
  2746. pll = &dev_priv->pch_plls[i];
  2747. if (pll->refcount == 0) {
  2748. DRM_DEBUG_KMS("CRTC:%d allocated PCH PLL %x\n",
  2749. intel_crtc->base.base.id, pll->pll_reg);
  2750. goto found;
  2751. }
  2752. }
  2753. return NULL;
  2754. found:
  2755. intel_crtc->pch_pll = pll;
  2756. pll->refcount++;
  2757. DRM_DEBUG_DRIVER("using pll %d for pipe %d\n", i, intel_crtc->pipe);
  2758. prepare: /* separate function? */
  2759. DRM_DEBUG_DRIVER("switching PLL %x off\n", pll->pll_reg);
  2760. /* Wait for the clocks to stabilize before rewriting the regs */
  2761. I915_WRITE(pll->pll_reg, dpll & ~DPLL_VCO_ENABLE);
  2762. POSTING_READ(pll->pll_reg);
  2763. udelay(150);
  2764. I915_WRITE(pll->fp0_reg, fp);
  2765. I915_WRITE(pll->pll_reg, dpll & ~DPLL_VCO_ENABLE);
  2766. pll->on = false;
  2767. return pll;
  2768. }
  2769. void intel_cpt_verify_modeset(struct drm_device *dev, int pipe)
  2770. {
  2771. struct drm_i915_private *dev_priv = dev->dev_private;
  2772. int dslreg = PIPEDSL(pipe), tc2reg = TRANS_CHICKEN2(pipe);
  2773. u32 temp;
  2774. temp = I915_READ(dslreg);
  2775. udelay(500);
  2776. if (wait_for(I915_READ(dslreg) != temp, 5)) {
  2777. /* Without this, mode sets may fail silently on FDI */
  2778. I915_WRITE(tc2reg, TRANS_AUTOTRAIN_GEN_STALL_DIS);
  2779. udelay(250);
  2780. I915_WRITE(tc2reg, 0);
  2781. if (wait_for(I915_READ(dslreg) != temp, 5))
  2782. DRM_ERROR("mode set failed: pipe %d stuck\n", pipe);
  2783. }
  2784. }
  2785. static void ironlake_crtc_enable(struct drm_crtc *crtc)
  2786. {
  2787. struct drm_device *dev = crtc->dev;
  2788. struct drm_i915_private *dev_priv = dev->dev_private;
  2789. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2790. struct intel_encoder *encoder;
  2791. int pipe = intel_crtc->pipe;
  2792. int plane = intel_crtc->plane;
  2793. u32 temp;
  2794. bool is_pch_port;
  2795. WARN_ON(!crtc->enabled);
  2796. if (intel_crtc->active)
  2797. return;
  2798. intel_crtc->active = true;
  2799. intel_update_watermarks(dev);
  2800. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  2801. temp = I915_READ(PCH_LVDS);
  2802. if ((temp & LVDS_PORT_EN) == 0)
  2803. I915_WRITE(PCH_LVDS, temp | LVDS_PORT_EN);
  2804. }
  2805. is_pch_port = intel_crtc_driving_pch(crtc);
  2806. if (is_pch_port)
  2807. ironlake_fdi_pll_enable(intel_crtc);
  2808. else
  2809. ironlake_fdi_disable(crtc);
  2810. /* Enable panel fitting for LVDS */
  2811. if (dev_priv->pch_pf_size &&
  2812. (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) || HAS_eDP)) {
  2813. /* Force use of hard-coded filter coefficients
  2814. * as some pre-programmed values are broken,
  2815. * e.g. x201.
  2816. */
  2817. I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
  2818. I915_WRITE(PF_WIN_POS(pipe), dev_priv->pch_pf_pos);
  2819. I915_WRITE(PF_WIN_SZ(pipe), dev_priv->pch_pf_size);
  2820. }
  2821. /*
  2822. * On ILK+ LUT must be loaded before the pipe is running but with
  2823. * clocks enabled
  2824. */
  2825. intel_crtc_load_lut(crtc);
  2826. intel_enable_pipe(dev_priv, pipe, is_pch_port);
  2827. intel_enable_plane(dev_priv, plane, pipe);
  2828. if (is_pch_port)
  2829. ironlake_pch_enable(crtc);
  2830. mutex_lock(&dev->struct_mutex);
  2831. intel_update_fbc(dev);
  2832. mutex_unlock(&dev->struct_mutex);
  2833. intel_crtc_update_cursor(crtc, true);
  2834. for_each_encoder_on_crtc(dev, crtc, encoder)
  2835. encoder->enable(encoder);
  2836. if (HAS_PCH_CPT(dev))
  2837. intel_cpt_verify_modeset(dev, intel_crtc->pipe);
  2838. }
  2839. static void ironlake_crtc_disable(struct drm_crtc *crtc)
  2840. {
  2841. struct drm_device *dev = crtc->dev;
  2842. struct drm_i915_private *dev_priv = dev->dev_private;
  2843. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2844. struct intel_encoder *encoder;
  2845. int pipe = intel_crtc->pipe;
  2846. int plane = intel_crtc->plane;
  2847. u32 reg, temp;
  2848. if (!intel_crtc->active)
  2849. return;
  2850. for_each_encoder_on_crtc(dev, crtc, encoder)
  2851. encoder->disable(encoder);
  2852. intel_crtc_wait_for_pending_flips(crtc);
  2853. drm_vblank_off(dev, pipe);
  2854. intel_crtc_update_cursor(crtc, false);
  2855. intel_disable_plane(dev_priv, plane, pipe);
  2856. if (dev_priv->cfb_plane == plane)
  2857. intel_disable_fbc(dev);
  2858. intel_disable_pipe(dev_priv, pipe);
  2859. /* Disable PF */
  2860. I915_WRITE(PF_CTL(pipe), 0);
  2861. I915_WRITE(PF_WIN_SZ(pipe), 0);
  2862. ironlake_fdi_disable(crtc);
  2863. /* This is a horrible layering violation; we should be doing this in
  2864. * the connector/encoder ->prepare instead, but we don't always have
  2865. * enough information there about the config to know whether it will
  2866. * actually be necessary or just cause undesired flicker.
  2867. */
  2868. intel_disable_pch_ports(dev_priv, pipe);
  2869. intel_disable_transcoder(dev_priv, pipe);
  2870. if (HAS_PCH_CPT(dev)) {
  2871. /* disable TRANS_DP_CTL */
  2872. reg = TRANS_DP_CTL(pipe);
  2873. temp = I915_READ(reg);
  2874. temp &= ~(TRANS_DP_OUTPUT_ENABLE | TRANS_DP_PORT_SEL_MASK);
  2875. temp |= TRANS_DP_PORT_SEL_NONE;
  2876. I915_WRITE(reg, temp);
  2877. /* disable DPLL_SEL */
  2878. temp = I915_READ(PCH_DPLL_SEL);
  2879. switch (pipe) {
  2880. case 0:
  2881. temp &= ~(TRANSA_DPLL_ENABLE | TRANSA_DPLLB_SEL);
  2882. break;
  2883. case 1:
  2884. temp &= ~(TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL);
  2885. break;
  2886. case 2:
  2887. /* C shares PLL A or B */
  2888. temp &= ~(TRANSC_DPLL_ENABLE | TRANSC_DPLLB_SEL);
  2889. break;
  2890. default:
  2891. BUG(); /* wtf */
  2892. }
  2893. I915_WRITE(PCH_DPLL_SEL, temp);
  2894. }
  2895. /* disable PCH DPLL */
  2896. intel_disable_pch_pll(intel_crtc);
  2897. ironlake_fdi_pll_disable(intel_crtc);
  2898. intel_crtc->active = false;
  2899. intel_update_watermarks(dev);
  2900. mutex_lock(&dev->struct_mutex);
  2901. intel_update_fbc(dev);
  2902. mutex_unlock(&dev->struct_mutex);
  2903. }
  2904. static void ironlake_crtc_off(struct drm_crtc *crtc)
  2905. {
  2906. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2907. intel_put_pch_pll(intel_crtc);
  2908. }
  2909. static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
  2910. {
  2911. if (!enable && intel_crtc->overlay) {
  2912. struct drm_device *dev = intel_crtc->base.dev;
  2913. struct drm_i915_private *dev_priv = dev->dev_private;
  2914. mutex_lock(&dev->struct_mutex);
  2915. dev_priv->mm.interruptible = false;
  2916. (void) intel_overlay_switch_off(intel_crtc->overlay);
  2917. dev_priv->mm.interruptible = true;
  2918. mutex_unlock(&dev->struct_mutex);
  2919. }
  2920. /* Let userspace switch the overlay on again. In most cases userspace
  2921. * has to recompute where to put it anyway.
  2922. */
  2923. }
  2924. static void i9xx_crtc_enable(struct drm_crtc *crtc)
  2925. {
  2926. struct drm_device *dev = crtc->dev;
  2927. struct drm_i915_private *dev_priv = dev->dev_private;
  2928. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2929. struct intel_encoder *encoder;
  2930. int pipe = intel_crtc->pipe;
  2931. int plane = intel_crtc->plane;
  2932. WARN_ON(!crtc->enabled);
  2933. if (intel_crtc->active)
  2934. return;
  2935. intel_crtc->active = true;
  2936. intel_update_watermarks(dev);
  2937. intel_enable_pll(dev_priv, pipe);
  2938. intel_enable_pipe(dev_priv, pipe, false);
  2939. intel_enable_plane(dev_priv, plane, pipe);
  2940. intel_crtc_load_lut(crtc);
  2941. intel_update_fbc(dev);
  2942. /* Give the overlay scaler a chance to enable if it's on this pipe */
  2943. intel_crtc_dpms_overlay(intel_crtc, true);
  2944. intel_crtc_update_cursor(crtc, true);
  2945. for_each_encoder_on_crtc(dev, crtc, encoder)
  2946. encoder->enable(encoder);
  2947. }
  2948. static void i9xx_crtc_disable(struct drm_crtc *crtc)
  2949. {
  2950. struct drm_device *dev = crtc->dev;
  2951. struct drm_i915_private *dev_priv = dev->dev_private;
  2952. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2953. struct intel_encoder *encoder;
  2954. int pipe = intel_crtc->pipe;
  2955. int plane = intel_crtc->plane;
  2956. if (!intel_crtc->active)
  2957. return;
  2958. for_each_encoder_on_crtc(dev, crtc, encoder)
  2959. encoder->disable(encoder);
  2960. /* Give the overlay scaler a chance to disable if it's on this pipe */
  2961. intel_crtc_wait_for_pending_flips(crtc);
  2962. drm_vblank_off(dev, pipe);
  2963. intel_crtc_dpms_overlay(intel_crtc, false);
  2964. intel_crtc_update_cursor(crtc, false);
  2965. if (dev_priv->cfb_plane == plane)
  2966. intel_disable_fbc(dev);
  2967. intel_disable_plane(dev_priv, plane, pipe);
  2968. intel_disable_pipe(dev_priv, pipe);
  2969. intel_disable_pll(dev_priv, pipe);
  2970. intel_crtc->active = false;
  2971. intel_update_fbc(dev);
  2972. intel_update_watermarks(dev);
  2973. }
  2974. static void i9xx_crtc_off(struct drm_crtc *crtc)
  2975. {
  2976. }
  2977. static void intel_crtc_update_sarea(struct drm_crtc *crtc,
  2978. bool enabled)
  2979. {
  2980. struct drm_device *dev = crtc->dev;
  2981. struct drm_i915_master_private *master_priv;
  2982. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2983. int pipe = intel_crtc->pipe;
  2984. if (!dev->primary->master)
  2985. return;
  2986. master_priv = dev->primary->master->driver_priv;
  2987. if (!master_priv->sarea_priv)
  2988. return;
  2989. switch (pipe) {
  2990. case 0:
  2991. master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
  2992. master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
  2993. break;
  2994. case 1:
  2995. master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
  2996. master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
  2997. break;
  2998. default:
  2999. DRM_ERROR("Can't update pipe %c in SAREA\n", pipe_name(pipe));
  3000. break;
  3001. }
  3002. }
  3003. /**
  3004. * Sets the power management mode of the pipe and plane.
  3005. */
  3006. void intel_crtc_update_dpms(struct drm_crtc *crtc)
  3007. {
  3008. struct drm_device *dev = crtc->dev;
  3009. struct drm_i915_private *dev_priv = dev->dev_private;
  3010. struct intel_encoder *intel_encoder;
  3011. bool enable = false;
  3012. for_each_encoder_on_crtc(dev, crtc, intel_encoder)
  3013. enable |= intel_encoder->connectors_active;
  3014. if (enable)
  3015. dev_priv->display.crtc_enable(crtc);
  3016. else
  3017. dev_priv->display.crtc_disable(crtc);
  3018. intel_crtc_update_sarea(crtc, enable);
  3019. }
  3020. static void intel_crtc_noop(struct drm_crtc *crtc)
  3021. {
  3022. }
  3023. static void intel_crtc_disable(struct drm_crtc *crtc)
  3024. {
  3025. struct drm_device *dev = crtc->dev;
  3026. struct drm_connector *connector;
  3027. struct drm_i915_private *dev_priv = dev->dev_private;
  3028. /* crtc should still be enabled when we disable it. */
  3029. WARN_ON(!crtc->enabled);
  3030. dev_priv->display.crtc_disable(crtc);
  3031. intel_crtc_update_sarea(crtc, false);
  3032. dev_priv->display.off(crtc);
  3033. assert_plane_disabled(dev->dev_private, to_intel_crtc(crtc)->plane);
  3034. assert_pipe_disabled(dev->dev_private, to_intel_crtc(crtc)->pipe);
  3035. if (crtc->fb) {
  3036. mutex_lock(&dev->struct_mutex);
  3037. intel_unpin_fb_obj(to_intel_framebuffer(crtc->fb)->obj);
  3038. mutex_unlock(&dev->struct_mutex);
  3039. crtc->fb = NULL;
  3040. }
  3041. /* Update computed state. */
  3042. list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
  3043. if (!connector->encoder || !connector->encoder->crtc)
  3044. continue;
  3045. if (connector->encoder->crtc != crtc)
  3046. continue;
  3047. connector->dpms = DRM_MODE_DPMS_OFF;
  3048. to_intel_encoder(connector->encoder)->connectors_active = false;
  3049. }
  3050. }
  3051. void intel_modeset_disable(struct drm_device *dev)
  3052. {
  3053. struct drm_crtc *crtc;
  3054. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  3055. if (crtc->enabled)
  3056. intel_crtc_disable(crtc);
  3057. }
  3058. }
  3059. void intel_encoder_noop(struct drm_encoder *encoder)
  3060. {
  3061. }
  3062. void intel_encoder_destroy(struct drm_encoder *encoder)
  3063. {
  3064. struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
  3065. drm_encoder_cleanup(encoder);
  3066. kfree(intel_encoder);
  3067. }
  3068. /* Simple dpms helper for encodres with just one connector, no cloning and only
  3069. * one kind of off state. It clamps all !ON modes to fully OFF and changes the
  3070. * state of the entire output pipe. */
  3071. void intel_encoder_dpms(struct intel_encoder *encoder, int mode)
  3072. {
  3073. if (mode == DRM_MODE_DPMS_ON) {
  3074. encoder->connectors_active = true;
  3075. intel_crtc_update_dpms(encoder->base.crtc);
  3076. } else {
  3077. encoder->connectors_active = false;
  3078. intel_crtc_update_dpms(encoder->base.crtc);
  3079. }
  3080. }
  3081. /* Cross check the actual hw state with our own modeset state tracking (and it's
  3082. * internal consistency). */
  3083. void intel_connector_check_state(struct intel_connector *connector)
  3084. {
  3085. if (connector->get_hw_state(connector)) {
  3086. struct intel_encoder *encoder = connector->encoder;
  3087. struct drm_crtc *crtc;
  3088. bool encoder_enabled;
  3089. enum pipe pipe;
  3090. DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
  3091. connector->base.base.id,
  3092. drm_get_connector_name(&connector->base));
  3093. WARN(connector->base.dpms == DRM_MODE_DPMS_OFF,
  3094. "wrong connector dpms state\n");
  3095. WARN(connector->base.encoder != &encoder->base,
  3096. "active connector not linked to encoder\n");
  3097. WARN(!encoder->connectors_active,
  3098. "encoder->connectors_active not set\n");
  3099. encoder_enabled = encoder->get_hw_state(encoder, &pipe);
  3100. WARN(!encoder_enabled, "encoder not enabled\n");
  3101. if (WARN_ON(!encoder->base.crtc))
  3102. return;
  3103. crtc = encoder->base.crtc;
  3104. WARN(!crtc->enabled, "crtc not enabled\n");
  3105. WARN(!to_intel_crtc(crtc)->active, "crtc not active\n");
  3106. WARN(pipe != to_intel_crtc(crtc)->pipe,
  3107. "encoder active on the wrong pipe\n");
  3108. }
  3109. }
  3110. /* Even simpler default implementation, if there's really no special case to
  3111. * consider. */
  3112. void intel_connector_dpms(struct drm_connector *connector, int mode)
  3113. {
  3114. struct intel_encoder *encoder = intel_attached_encoder(connector);
  3115. /* All the simple cases only support two dpms states. */
  3116. if (mode != DRM_MODE_DPMS_ON)
  3117. mode = DRM_MODE_DPMS_OFF;
  3118. if (mode == connector->dpms)
  3119. return;
  3120. connector->dpms = mode;
  3121. /* Only need to change hw state when actually enabled */
  3122. if (encoder->base.crtc)
  3123. intel_encoder_dpms(encoder, mode);
  3124. else
  3125. WARN_ON(encoder->connectors_active != false);
  3126. intel_connector_check_state(to_intel_connector(connector));
  3127. }
  3128. /* Simple connector->get_hw_state implementation for encoders that support only
  3129. * one connector and no cloning and hence the encoder state determines the state
  3130. * of the connector. */
  3131. bool intel_connector_get_hw_state(struct intel_connector *connector)
  3132. {
  3133. enum pipe pipe = 0;
  3134. struct intel_encoder *encoder = connector->encoder;
  3135. return encoder->get_hw_state(encoder, &pipe);
  3136. }
  3137. static bool intel_crtc_mode_fixup(struct drm_crtc *crtc,
  3138. const struct drm_display_mode *mode,
  3139. struct drm_display_mode *adjusted_mode)
  3140. {
  3141. struct drm_device *dev = crtc->dev;
  3142. if (HAS_PCH_SPLIT(dev)) {
  3143. /* FDI link clock is fixed at 2.7G */
  3144. if (mode->clock * 3 > IRONLAKE_FDI_FREQ * 4)
  3145. return false;
  3146. }
  3147. /* All interlaced capable intel hw wants timings in frames. Note though
  3148. * that intel_lvds_mode_fixup does some funny tricks with the crtc
  3149. * timings, so we need to be careful not to clobber these.*/
  3150. if (!(adjusted_mode->private_flags & INTEL_MODE_CRTC_TIMINGS_SET))
  3151. drm_mode_set_crtcinfo(adjusted_mode, 0);
  3152. return true;
  3153. }
  3154. static int valleyview_get_display_clock_speed(struct drm_device *dev)
  3155. {
  3156. return 400000; /* FIXME */
  3157. }
  3158. static int i945_get_display_clock_speed(struct drm_device *dev)
  3159. {
  3160. return 400000;
  3161. }
  3162. static int i915_get_display_clock_speed(struct drm_device *dev)
  3163. {
  3164. return 333000;
  3165. }
  3166. static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
  3167. {
  3168. return 200000;
  3169. }
  3170. static int i915gm_get_display_clock_speed(struct drm_device *dev)
  3171. {
  3172. u16 gcfgc = 0;
  3173. pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
  3174. if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
  3175. return 133000;
  3176. else {
  3177. switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
  3178. case GC_DISPLAY_CLOCK_333_MHZ:
  3179. return 333000;
  3180. default:
  3181. case GC_DISPLAY_CLOCK_190_200_MHZ:
  3182. return 190000;
  3183. }
  3184. }
  3185. }
  3186. static int i865_get_display_clock_speed(struct drm_device *dev)
  3187. {
  3188. return 266000;
  3189. }
  3190. static int i855_get_display_clock_speed(struct drm_device *dev)
  3191. {
  3192. u16 hpllcc = 0;
  3193. /* Assume that the hardware is in the high speed state. This
  3194. * should be the default.
  3195. */
  3196. switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
  3197. case GC_CLOCK_133_200:
  3198. case GC_CLOCK_100_200:
  3199. return 200000;
  3200. case GC_CLOCK_166_250:
  3201. return 250000;
  3202. case GC_CLOCK_100_133:
  3203. return 133000;
  3204. }
  3205. /* Shouldn't happen */
  3206. return 0;
  3207. }
  3208. static int i830_get_display_clock_speed(struct drm_device *dev)
  3209. {
  3210. return 133000;
  3211. }
  3212. struct fdi_m_n {
  3213. u32 tu;
  3214. u32 gmch_m;
  3215. u32 gmch_n;
  3216. u32 link_m;
  3217. u32 link_n;
  3218. };
  3219. static void
  3220. fdi_reduce_ratio(u32 *num, u32 *den)
  3221. {
  3222. while (*num > 0xffffff || *den > 0xffffff) {
  3223. *num >>= 1;
  3224. *den >>= 1;
  3225. }
  3226. }
  3227. static void
  3228. ironlake_compute_m_n(int bits_per_pixel, int nlanes, int pixel_clock,
  3229. int link_clock, struct fdi_m_n *m_n)
  3230. {
  3231. m_n->tu = 64; /* default size */
  3232. /* BUG_ON(pixel_clock > INT_MAX / 36); */
  3233. m_n->gmch_m = bits_per_pixel * pixel_clock;
  3234. m_n->gmch_n = link_clock * nlanes * 8;
  3235. fdi_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
  3236. m_n->link_m = pixel_clock;
  3237. m_n->link_n = link_clock;
  3238. fdi_reduce_ratio(&m_n->link_m, &m_n->link_n);
  3239. }
  3240. static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
  3241. {
  3242. if (i915_panel_use_ssc >= 0)
  3243. return i915_panel_use_ssc != 0;
  3244. return dev_priv->lvds_use_ssc
  3245. && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
  3246. }
  3247. /**
  3248. * intel_choose_pipe_bpp_dither - figure out what color depth the pipe should send
  3249. * @crtc: CRTC structure
  3250. * @mode: requested mode
  3251. *
  3252. * A pipe may be connected to one or more outputs. Based on the depth of the
  3253. * attached framebuffer, choose a good color depth to use on the pipe.
  3254. *
  3255. * If possible, match the pipe depth to the fb depth. In some cases, this
  3256. * isn't ideal, because the connected output supports a lesser or restricted
  3257. * set of depths. Resolve that here:
  3258. * LVDS typically supports only 6bpc, so clamp down in that case
  3259. * HDMI supports only 8bpc or 12bpc, so clamp to 8bpc with dither for 10bpc
  3260. * Displays may support a restricted set as well, check EDID and clamp as
  3261. * appropriate.
  3262. * DP may want to dither down to 6bpc to fit larger modes
  3263. *
  3264. * RETURNS:
  3265. * Dithering requirement (i.e. false if display bpc and pipe bpc match,
  3266. * true if they don't match).
  3267. */
  3268. static bool intel_choose_pipe_bpp_dither(struct drm_crtc *crtc,
  3269. struct drm_framebuffer *fb,
  3270. unsigned int *pipe_bpp,
  3271. struct drm_display_mode *mode)
  3272. {
  3273. struct drm_device *dev = crtc->dev;
  3274. struct drm_i915_private *dev_priv = dev->dev_private;
  3275. struct drm_connector *connector;
  3276. struct intel_encoder *intel_encoder;
  3277. unsigned int display_bpc = UINT_MAX, bpc;
  3278. /* Walk the encoders & connectors on this crtc, get min bpc */
  3279. for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
  3280. if (intel_encoder->type == INTEL_OUTPUT_LVDS) {
  3281. unsigned int lvds_bpc;
  3282. if ((I915_READ(PCH_LVDS) & LVDS_A3_POWER_MASK) ==
  3283. LVDS_A3_POWER_UP)
  3284. lvds_bpc = 8;
  3285. else
  3286. lvds_bpc = 6;
  3287. if (lvds_bpc < display_bpc) {
  3288. DRM_DEBUG_KMS("clamping display bpc (was %d) to LVDS (%d)\n", display_bpc, lvds_bpc);
  3289. display_bpc = lvds_bpc;
  3290. }
  3291. continue;
  3292. }
  3293. /* Not one of the known troublemakers, check the EDID */
  3294. list_for_each_entry(connector, &dev->mode_config.connector_list,
  3295. head) {
  3296. if (connector->encoder != &intel_encoder->base)
  3297. continue;
  3298. /* Don't use an invalid EDID bpc value */
  3299. if (connector->display_info.bpc &&
  3300. connector->display_info.bpc < display_bpc) {
  3301. DRM_DEBUG_KMS("clamping display bpc (was %d) to EDID reported max of %d\n", display_bpc, connector->display_info.bpc);
  3302. display_bpc = connector->display_info.bpc;
  3303. }
  3304. }
  3305. /*
  3306. * HDMI is either 12 or 8, so if the display lets 10bpc sneak
  3307. * through, clamp it down. (Note: >12bpc will be caught below.)
  3308. */
  3309. if (intel_encoder->type == INTEL_OUTPUT_HDMI) {
  3310. if (display_bpc > 8 && display_bpc < 12) {
  3311. DRM_DEBUG_KMS("forcing bpc to 12 for HDMI\n");
  3312. display_bpc = 12;
  3313. } else {
  3314. DRM_DEBUG_KMS("forcing bpc to 8 for HDMI\n");
  3315. display_bpc = 8;
  3316. }
  3317. }
  3318. }
  3319. if (mode->private_flags & INTEL_MODE_DP_FORCE_6BPC) {
  3320. DRM_DEBUG_KMS("Dithering DP to 6bpc\n");
  3321. display_bpc = 6;
  3322. }
  3323. /*
  3324. * We could just drive the pipe at the highest bpc all the time and
  3325. * enable dithering as needed, but that costs bandwidth. So choose
  3326. * the minimum value that expresses the full color range of the fb but
  3327. * also stays within the max display bpc discovered above.
  3328. */
  3329. switch (fb->depth) {
  3330. case 8:
  3331. bpc = 8; /* since we go through a colormap */
  3332. break;
  3333. case 15:
  3334. case 16:
  3335. bpc = 6; /* min is 18bpp */
  3336. break;
  3337. case 24:
  3338. bpc = 8;
  3339. break;
  3340. case 30:
  3341. bpc = 10;
  3342. break;
  3343. case 48:
  3344. bpc = 12;
  3345. break;
  3346. default:
  3347. DRM_DEBUG("unsupported depth, assuming 24 bits\n");
  3348. bpc = min((unsigned int)8, display_bpc);
  3349. break;
  3350. }
  3351. display_bpc = min(display_bpc, bpc);
  3352. DRM_DEBUG_KMS("setting pipe bpc to %d (max display bpc %d)\n",
  3353. bpc, display_bpc);
  3354. *pipe_bpp = display_bpc * 3;
  3355. return display_bpc != bpc;
  3356. }
  3357. static int vlv_get_refclk(struct drm_crtc *crtc)
  3358. {
  3359. struct drm_device *dev = crtc->dev;
  3360. struct drm_i915_private *dev_priv = dev->dev_private;
  3361. int refclk = 27000; /* for DP & HDMI */
  3362. return 100000; /* only one validated so far */
  3363. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
  3364. refclk = 96000;
  3365. } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  3366. if (intel_panel_use_ssc(dev_priv))
  3367. refclk = 100000;
  3368. else
  3369. refclk = 96000;
  3370. } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP)) {
  3371. refclk = 100000;
  3372. }
  3373. return refclk;
  3374. }
  3375. static int i9xx_get_refclk(struct drm_crtc *crtc, int num_connectors)
  3376. {
  3377. struct drm_device *dev = crtc->dev;
  3378. struct drm_i915_private *dev_priv = dev->dev_private;
  3379. int refclk;
  3380. if (IS_VALLEYVIEW(dev)) {
  3381. refclk = vlv_get_refclk(crtc);
  3382. } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
  3383. intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
  3384. refclk = dev_priv->lvds_ssc_freq * 1000;
  3385. DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
  3386. refclk / 1000);
  3387. } else if (!IS_GEN2(dev)) {
  3388. refclk = 96000;
  3389. } else {
  3390. refclk = 48000;
  3391. }
  3392. return refclk;
  3393. }
  3394. static void i9xx_adjust_sdvo_tv_clock(struct drm_display_mode *adjusted_mode,
  3395. intel_clock_t *clock)
  3396. {
  3397. /* SDVO TV has fixed PLL values depend on its clock range,
  3398. this mirrors vbios setting. */
  3399. if (adjusted_mode->clock >= 100000
  3400. && adjusted_mode->clock < 140500) {
  3401. clock->p1 = 2;
  3402. clock->p2 = 10;
  3403. clock->n = 3;
  3404. clock->m1 = 16;
  3405. clock->m2 = 8;
  3406. } else if (adjusted_mode->clock >= 140500
  3407. && adjusted_mode->clock <= 200000) {
  3408. clock->p1 = 1;
  3409. clock->p2 = 10;
  3410. clock->n = 6;
  3411. clock->m1 = 12;
  3412. clock->m2 = 8;
  3413. }
  3414. }
  3415. static void i9xx_update_pll_dividers(struct drm_crtc *crtc,
  3416. intel_clock_t *clock,
  3417. intel_clock_t *reduced_clock)
  3418. {
  3419. struct drm_device *dev = crtc->dev;
  3420. struct drm_i915_private *dev_priv = dev->dev_private;
  3421. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3422. int pipe = intel_crtc->pipe;
  3423. u32 fp, fp2 = 0;
  3424. if (IS_PINEVIEW(dev)) {
  3425. fp = (1 << clock->n) << 16 | clock->m1 << 8 | clock->m2;
  3426. if (reduced_clock)
  3427. fp2 = (1 << reduced_clock->n) << 16 |
  3428. reduced_clock->m1 << 8 | reduced_clock->m2;
  3429. } else {
  3430. fp = clock->n << 16 | clock->m1 << 8 | clock->m2;
  3431. if (reduced_clock)
  3432. fp2 = reduced_clock->n << 16 | reduced_clock->m1 << 8 |
  3433. reduced_clock->m2;
  3434. }
  3435. I915_WRITE(FP0(pipe), fp);
  3436. intel_crtc->lowfreq_avail = false;
  3437. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
  3438. reduced_clock && i915_powersave) {
  3439. I915_WRITE(FP1(pipe), fp2);
  3440. intel_crtc->lowfreq_avail = true;
  3441. } else {
  3442. I915_WRITE(FP1(pipe), fp);
  3443. }
  3444. }
  3445. static void intel_update_lvds(struct drm_crtc *crtc, intel_clock_t *clock,
  3446. struct drm_display_mode *adjusted_mode)
  3447. {
  3448. struct drm_device *dev = crtc->dev;
  3449. struct drm_i915_private *dev_priv = dev->dev_private;
  3450. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3451. int pipe = intel_crtc->pipe;
  3452. u32 temp;
  3453. temp = I915_READ(LVDS);
  3454. temp |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
  3455. if (pipe == 1) {
  3456. temp |= LVDS_PIPEB_SELECT;
  3457. } else {
  3458. temp &= ~LVDS_PIPEB_SELECT;
  3459. }
  3460. /* set the corresponsding LVDS_BORDER bit */
  3461. temp |= dev_priv->lvds_border_bits;
  3462. /* Set the B0-B3 data pairs corresponding to whether we're going to
  3463. * set the DPLLs for dual-channel mode or not.
  3464. */
  3465. if (clock->p2 == 7)
  3466. temp |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
  3467. else
  3468. temp &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
  3469. /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
  3470. * appropriately here, but we need to look more thoroughly into how
  3471. * panels behave in the two modes.
  3472. */
  3473. /* set the dithering flag on LVDS as needed */
  3474. if (INTEL_INFO(dev)->gen >= 4) {
  3475. if (dev_priv->lvds_dither)
  3476. temp |= LVDS_ENABLE_DITHER;
  3477. else
  3478. temp &= ~LVDS_ENABLE_DITHER;
  3479. }
  3480. temp &= ~(LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY);
  3481. if (adjusted_mode->flags & DRM_MODE_FLAG_NHSYNC)
  3482. temp |= LVDS_HSYNC_POLARITY;
  3483. if (adjusted_mode->flags & DRM_MODE_FLAG_NVSYNC)
  3484. temp |= LVDS_VSYNC_POLARITY;
  3485. I915_WRITE(LVDS, temp);
  3486. }
  3487. static void vlv_update_pll(struct drm_crtc *crtc,
  3488. struct drm_display_mode *mode,
  3489. struct drm_display_mode *adjusted_mode,
  3490. intel_clock_t *clock, intel_clock_t *reduced_clock,
  3491. int refclk, int num_connectors)
  3492. {
  3493. struct drm_device *dev = crtc->dev;
  3494. struct drm_i915_private *dev_priv = dev->dev_private;
  3495. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3496. int pipe = intel_crtc->pipe;
  3497. u32 dpll, mdiv, pdiv;
  3498. u32 bestn, bestm1, bestm2, bestp1, bestp2;
  3499. bool is_hdmi;
  3500. is_hdmi = intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI);
  3501. bestn = clock->n;
  3502. bestm1 = clock->m1;
  3503. bestm2 = clock->m2;
  3504. bestp1 = clock->p1;
  3505. bestp2 = clock->p2;
  3506. /* Enable DPIO clock input */
  3507. dpll = DPLL_EXT_BUFFER_ENABLE_VLV | DPLL_REFA_CLK_ENABLE_VLV |
  3508. DPLL_VGA_MODE_DIS | DPLL_INTEGRATED_CLOCK_VLV;
  3509. I915_WRITE(DPLL(pipe), dpll);
  3510. POSTING_READ(DPLL(pipe));
  3511. mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
  3512. mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
  3513. mdiv |= ((bestn << DPIO_N_SHIFT));
  3514. mdiv |= (1 << DPIO_POST_DIV_SHIFT);
  3515. mdiv |= (1 << DPIO_K_SHIFT);
  3516. mdiv |= DPIO_ENABLE_CALIBRATION;
  3517. intel_dpio_write(dev_priv, DPIO_DIV(pipe), mdiv);
  3518. intel_dpio_write(dev_priv, DPIO_CORE_CLK(pipe), 0x01000000);
  3519. pdiv = DPIO_REFSEL_OVERRIDE | (5 << DPIO_PLL_MODESEL_SHIFT) |
  3520. (3 << DPIO_BIAS_CURRENT_CTL_SHIFT) | (1<<20) |
  3521. (8 << DPIO_DRIVER_CTL_SHIFT) | (5 << DPIO_CLK_BIAS_CTL_SHIFT);
  3522. intel_dpio_write(dev_priv, DPIO_REFSFR(pipe), pdiv);
  3523. intel_dpio_write(dev_priv, DPIO_LFP_COEFF(pipe), 0x009f0051);
  3524. dpll |= DPLL_VCO_ENABLE;
  3525. I915_WRITE(DPLL(pipe), dpll);
  3526. POSTING_READ(DPLL(pipe));
  3527. if (wait_for(((I915_READ(DPLL(pipe)) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
  3528. DRM_ERROR("DPLL %d failed to lock\n", pipe);
  3529. if (is_hdmi) {
  3530. u32 temp = intel_mode_get_pixel_multiplier(adjusted_mode);
  3531. if (temp > 1)
  3532. temp = (temp - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
  3533. else
  3534. temp = 0;
  3535. I915_WRITE(DPLL_MD(pipe), temp);
  3536. POSTING_READ(DPLL_MD(pipe));
  3537. }
  3538. intel_dpio_write(dev_priv, DPIO_FASTCLK_DISABLE, 0x641); /* ??? */
  3539. }
  3540. static void i9xx_update_pll(struct drm_crtc *crtc,
  3541. struct drm_display_mode *mode,
  3542. struct drm_display_mode *adjusted_mode,
  3543. intel_clock_t *clock, intel_clock_t *reduced_clock,
  3544. int num_connectors)
  3545. {
  3546. struct drm_device *dev = crtc->dev;
  3547. struct drm_i915_private *dev_priv = dev->dev_private;
  3548. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3549. int pipe = intel_crtc->pipe;
  3550. u32 dpll;
  3551. bool is_sdvo;
  3552. is_sdvo = intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO) ||
  3553. intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI);
  3554. dpll = DPLL_VGA_MODE_DIS;
  3555. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
  3556. dpll |= DPLLB_MODE_LVDS;
  3557. else
  3558. dpll |= DPLLB_MODE_DAC_SERIAL;
  3559. if (is_sdvo) {
  3560. int pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
  3561. if (pixel_multiplier > 1) {
  3562. if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
  3563. dpll |= (pixel_multiplier - 1) << SDVO_MULTIPLIER_SHIFT_HIRES;
  3564. }
  3565. dpll |= DPLL_DVO_HIGH_SPEED;
  3566. }
  3567. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT))
  3568. dpll |= DPLL_DVO_HIGH_SPEED;
  3569. /* compute bitmask from p1 value */
  3570. if (IS_PINEVIEW(dev))
  3571. dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
  3572. else {
  3573. dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
  3574. if (IS_G4X(dev) && reduced_clock)
  3575. dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
  3576. }
  3577. switch (clock->p2) {
  3578. case 5:
  3579. dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
  3580. break;
  3581. case 7:
  3582. dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
  3583. break;
  3584. case 10:
  3585. dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
  3586. break;
  3587. case 14:
  3588. dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
  3589. break;
  3590. }
  3591. if (INTEL_INFO(dev)->gen >= 4)
  3592. dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
  3593. if (is_sdvo && intel_pipe_has_type(crtc, INTEL_OUTPUT_TVOUT))
  3594. dpll |= PLL_REF_INPUT_TVCLKINBC;
  3595. else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_TVOUT))
  3596. /* XXX: just matching BIOS for now */
  3597. /* dpll |= PLL_REF_INPUT_TVCLKINBC; */
  3598. dpll |= 3;
  3599. else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
  3600. intel_panel_use_ssc(dev_priv) && num_connectors < 2)
  3601. dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
  3602. else
  3603. dpll |= PLL_REF_INPUT_DREFCLK;
  3604. dpll |= DPLL_VCO_ENABLE;
  3605. I915_WRITE(DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
  3606. POSTING_READ(DPLL(pipe));
  3607. udelay(150);
  3608. /* The LVDS pin pair needs to be on before the DPLLs are enabled.
  3609. * This is an exception to the general rule that mode_set doesn't turn
  3610. * things on.
  3611. */
  3612. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
  3613. intel_update_lvds(crtc, clock, adjusted_mode);
  3614. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT))
  3615. intel_dp_set_m_n(crtc, mode, adjusted_mode);
  3616. I915_WRITE(DPLL(pipe), dpll);
  3617. /* Wait for the clocks to stabilize. */
  3618. POSTING_READ(DPLL(pipe));
  3619. udelay(150);
  3620. if (INTEL_INFO(dev)->gen >= 4) {
  3621. u32 temp = 0;
  3622. if (is_sdvo) {
  3623. temp = intel_mode_get_pixel_multiplier(adjusted_mode);
  3624. if (temp > 1)
  3625. temp = (temp - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
  3626. else
  3627. temp = 0;
  3628. }
  3629. I915_WRITE(DPLL_MD(pipe), temp);
  3630. } else {
  3631. /* The pixel multiplier can only be updated once the
  3632. * DPLL is enabled and the clocks are stable.
  3633. *
  3634. * So write it again.
  3635. */
  3636. I915_WRITE(DPLL(pipe), dpll);
  3637. }
  3638. }
  3639. static void i8xx_update_pll(struct drm_crtc *crtc,
  3640. struct drm_display_mode *adjusted_mode,
  3641. intel_clock_t *clock,
  3642. int num_connectors)
  3643. {
  3644. struct drm_device *dev = crtc->dev;
  3645. struct drm_i915_private *dev_priv = dev->dev_private;
  3646. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3647. int pipe = intel_crtc->pipe;
  3648. u32 dpll;
  3649. dpll = DPLL_VGA_MODE_DIS;
  3650. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  3651. dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
  3652. } else {
  3653. if (clock->p1 == 2)
  3654. dpll |= PLL_P1_DIVIDE_BY_TWO;
  3655. else
  3656. dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
  3657. if (clock->p2 == 4)
  3658. dpll |= PLL_P2_DIVIDE_BY_4;
  3659. }
  3660. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_TVOUT))
  3661. /* XXX: just matching BIOS for now */
  3662. /* dpll |= PLL_REF_INPUT_TVCLKINBC; */
  3663. dpll |= 3;
  3664. else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
  3665. intel_panel_use_ssc(dev_priv) && num_connectors < 2)
  3666. dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
  3667. else
  3668. dpll |= PLL_REF_INPUT_DREFCLK;
  3669. dpll |= DPLL_VCO_ENABLE;
  3670. I915_WRITE(DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
  3671. POSTING_READ(DPLL(pipe));
  3672. udelay(150);
  3673. I915_WRITE(DPLL(pipe), dpll);
  3674. /* Wait for the clocks to stabilize. */
  3675. POSTING_READ(DPLL(pipe));
  3676. udelay(150);
  3677. /* The LVDS pin pair needs to be on before the DPLLs are enabled.
  3678. * This is an exception to the general rule that mode_set doesn't turn
  3679. * things on.
  3680. */
  3681. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
  3682. intel_update_lvds(crtc, clock, adjusted_mode);
  3683. /* The pixel multiplier can only be updated once the
  3684. * DPLL is enabled and the clocks are stable.
  3685. *
  3686. * So write it again.
  3687. */
  3688. I915_WRITE(DPLL(pipe), dpll);
  3689. }
  3690. static int i9xx_crtc_mode_set(struct drm_crtc *crtc,
  3691. struct drm_display_mode *mode,
  3692. struct drm_display_mode *adjusted_mode,
  3693. int x, int y,
  3694. struct drm_framebuffer *fb)
  3695. {
  3696. struct drm_device *dev = crtc->dev;
  3697. struct drm_i915_private *dev_priv = dev->dev_private;
  3698. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3699. int pipe = intel_crtc->pipe;
  3700. int plane = intel_crtc->plane;
  3701. int refclk, num_connectors = 0;
  3702. intel_clock_t clock, reduced_clock;
  3703. u32 dspcntr, pipeconf, vsyncshift;
  3704. bool ok, has_reduced_clock = false, is_sdvo = false;
  3705. bool is_lvds = false, is_tv = false, is_dp = false;
  3706. struct intel_encoder *encoder;
  3707. const intel_limit_t *limit;
  3708. int ret;
  3709. for_each_encoder_on_crtc(dev, crtc, encoder) {
  3710. switch (encoder->type) {
  3711. case INTEL_OUTPUT_LVDS:
  3712. is_lvds = true;
  3713. break;
  3714. case INTEL_OUTPUT_SDVO:
  3715. case INTEL_OUTPUT_HDMI:
  3716. is_sdvo = true;
  3717. if (encoder->needs_tv_clock)
  3718. is_tv = true;
  3719. break;
  3720. case INTEL_OUTPUT_TVOUT:
  3721. is_tv = true;
  3722. break;
  3723. case INTEL_OUTPUT_DISPLAYPORT:
  3724. is_dp = true;
  3725. break;
  3726. }
  3727. num_connectors++;
  3728. }
  3729. refclk = i9xx_get_refclk(crtc, num_connectors);
  3730. /*
  3731. * Returns a set of divisors for the desired target clock with the given
  3732. * refclk, or FALSE. The returned values represent the clock equation:
  3733. * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
  3734. */
  3735. limit = intel_limit(crtc, refclk);
  3736. ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, NULL,
  3737. &clock);
  3738. if (!ok) {
  3739. DRM_ERROR("Couldn't find PLL settings for mode!\n");
  3740. return -EINVAL;
  3741. }
  3742. /* Ensure that the cursor is valid for the new mode before changing... */
  3743. intel_crtc_update_cursor(crtc, true);
  3744. if (is_lvds && dev_priv->lvds_downclock_avail) {
  3745. /*
  3746. * Ensure we match the reduced clock's P to the target clock.
  3747. * If the clocks don't match, we can't switch the display clock
  3748. * by using the FP0/FP1. In such case we will disable the LVDS
  3749. * downclock feature.
  3750. */
  3751. has_reduced_clock = limit->find_pll(limit, crtc,
  3752. dev_priv->lvds_downclock,
  3753. refclk,
  3754. &clock,
  3755. &reduced_clock);
  3756. }
  3757. if (is_sdvo && is_tv)
  3758. i9xx_adjust_sdvo_tv_clock(adjusted_mode, &clock);
  3759. i9xx_update_pll_dividers(crtc, &clock, has_reduced_clock ?
  3760. &reduced_clock : NULL);
  3761. if (IS_GEN2(dev))
  3762. i8xx_update_pll(crtc, adjusted_mode, &clock, num_connectors);
  3763. else if (IS_VALLEYVIEW(dev))
  3764. vlv_update_pll(crtc, mode,adjusted_mode, &clock, NULL,
  3765. refclk, num_connectors);
  3766. else
  3767. i9xx_update_pll(crtc, mode, adjusted_mode, &clock,
  3768. has_reduced_clock ? &reduced_clock : NULL,
  3769. num_connectors);
  3770. /* setup pipeconf */
  3771. pipeconf = I915_READ(PIPECONF(pipe));
  3772. /* Set up the display plane register */
  3773. dspcntr = DISPPLANE_GAMMA_ENABLE;
  3774. if (pipe == 0)
  3775. dspcntr &= ~DISPPLANE_SEL_PIPE_MASK;
  3776. else
  3777. dspcntr |= DISPPLANE_SEL_PIPE_B;
  3778. if (pipe == 0 && INTEL_INFO(dev)->gen < 4) {
  3779. /* Enable pixel doubling when the dot clock is > 90% of the (display)
  3780. * core speed.
  3781. *
  3782. * XXX: No double-wide on 915GM pipe B. Is that the only reason for the
  3783. * pipe == 0 check?
  3784. */
  3785. if (mode->clock >
  3786. dev_priv->display.get_display_clock_speed(dev) * 9 / 10)
  3787. pipeconf |= PIPECONF_DOUBLE_WIDE;
  3788. else
  3789. pipeconf &= ~PIPECONF_DOUBLE_WIDE;
  3790. }
  3791. /* default to 8bpc */
  3792. pipeconf &= ~(PIPECONF_BPP_MASK | PIPECONF_DITHER_EN);
  3793. if (is_dp) {
  3794. if (mode->private_flags & INTEL_MODE_DP_FORCE_6BPC) {
  3795. pipeconf |= PIPECONF_BPP_6 |
  3796. PIPECONF_DITHER_EN |
  3797. PIPECONF_DITHER_TYPE_SP;
  3798. }
  3799. }
  3800. DRM_DEBUG_KMS("Mode for pipe %c:\n", pipe == 0 ? 'A' : 'B');
  3801. drm_mode_debug_printmodeline(mode);
  3802. if (HAS_PIPE_CXSR(dev)) {
  3803. if (intel_crtc->lowfreq_avail) {
  3804. DRM_DEBUG_KMS("enabling CxSR downclocking\n");
  3805. pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
  3806. } else {
  3807. DRM_DEBUG_KMS("disabling CxSR downclocking\n");
  3808. pipeconf &= ~PIPECONF_CXSR_DOWNCLOCK;
  3809. }
  3810. }
  3811. pipeconf &= ~PIPECONF_INTERLACE_MASK;
  3812. if (!IS_GEN2(dev) &&
  3813. adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
  3814. pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
  3815. /* the chip adds 2 halflines automatically */
  3816. adjusted_mode->crtc_vtotal -= 1;
  3817. adjusted_mode->crtc_vblank_end -= 1;
  3818. vsyncshift = adjusted_mode->crtc_hsync_start
  3819. - adjusted_mode->crtc_htotal/2;
  3820. } else {
  3821. pipeconf |= PIPECONF_PROGRESSIVE;
  3822. vsyncshift = 0;
  3823. }
  3824. if (!IS_GEN3(dev))
  3825. I915_WRITE(VSYNCSHIFT(pipe), vsyncshift);
  3826. I915_WRITE(HTOTAL(pipe),
  3827. (adjusted_mode->crtc_hdisplay - 1) |
  3828. ((adjusted_mode->crtc_htotal - 1) << 16));
  3829. I915_WRITE(HBLANK(pipe),
  3830. (adjusted_mode->crtc_hblank_start - 1) |
  3831. ((adjusted_mode->crtc_hblank_end - 1) << 16));
  3832. I915_WRITE(HSYNC(pipe),
  3833. (adjusted_mode->crtc_hsync_start - 1) |
  3834. ((adjusted_mode->crtc_hsync_end - 1) << 16));
  3835. I915_WRITE(VTOTAL(pipe),
  3836. (adjusted_mode->crtc_vdisplay - 1) |
  3837. ((adjusted_mode->crtc_vtotal - 1) << 16));
  3838. I915_WRITE(VBLANK(pipe),
  3839. (adjusted_mode->crtc_vblank_start - 1) |
  3840. ((adjusted_mode->crtc_vblank_end - 1) << 16));
  3841. I915_WRITE(VSYNC(pipe),
  3842. (adjusted_mode->crtc_vsync_start - 1) |
  3843. ((adjusted_mode->crtc_vsync_end - 1) << 16));
  3844. /* pipesrc and dspsize control the size that is scaled from,
  3845. * which should always be the user's requested size.
  3846. */
  3847. I915_WRITE(DSPSIZE(plane),
  3848. ((mode->vdisplay - 1) << 16) |
  3849. (mode->hdisplay - 1));
  3850. I915_WRITE(DSPPOS(plane), 0);
  3851. I915_WRITE(PIPESRC(pipe),
  3852. ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
  3853. I915_WRITE(PIPECONF(pipe), pipeconf);
  3854. POSTING_READ(PIPECONF(pipe));
  3855. intel_enable_pipe(dev_priv, pipe, false);
  3856. intel_wait_for_vblank(dev, pipe);
  3857. I915_WRITE(DSPCNTR(plane), dspcntr);
  3858. POSTING_READ(DSPCNTR(plane));
  3859. ret = intel_pipe_set_base(crtc, x, y, fb);
  3860. intel_update_watermarks(dev);
  3861. return ret;
  3862. }
  3863. /*
  3864. * Initialize reference clocks when the driver loads
  3865. */
  3866. void ironlake_init_pch_refclk(struct drm_device *dev)
  3867. {
  3868. struct drm_i915_private *dev_priv = dev->dev_private;
  3869. struct drm_mode_config *mode_config = &dev->mode_config;
  3870. struct intel_encoder *encoder;
  3871. u32 temp;
  3872. bool has_lvds = false;
  3873. bool has_cpu_edp = false;
  3874. bool has_pch_edp = false;
  3875. bool has_panel = false;
  3876. bool has_ck505 = false;
  3877. bool can_ssc = false;
  3878. /* We need to take the global config into account */
  3879. list_for_each_entry(encoder, &mode_config->encoder_list,
  3880. base.head) {
  3881. switch (encoder->type) {
  3882. case INTEL_OUTPUT_LVDS:
  3883. has_panel = true;
  3884. has_lvds = true;
  3885. break;
  3886. case INTEL_OUTPUT_EDP:
  3887. has_panel = true;
  3888. if (intel_encoder_is_pch_edp(&encoder->base))
  3889. has_pch_edp = true;
  3890. else
  3891. has_cpu_edp = true;
  3892. break;
  3893. }
  3894. }
  3895. if (HAS_PCH_IBX(dev)) {
  3896. has_ck505 = dev_priv->display_clock_mode;
  3897. can_ssc = has_ck505;
  3898. } else {
  3899. has_ck505 = false;
  3900. can_ssc = true;
  3901. }
  3902. DRM_DEBUG_KMS("has_panel %d has_lvds %d has_pch_edp %d has_cpu_edp %d has_ck505 %d\n",
  3903. has_panel, has_lvds, has_pch_edp, has_cpu_edp,
  3904. has_ck505);
  3905. /* Ironlake: try to setup display ref clock before DPLL
  3906. * enabling. This is only under driver's control after
  3907. * PCH B stepping, previous chipset stepping should be
  3908. * ignoring this setting.
  3909. */
  3910. temp = I915_READ(PCH_DREF_CONTROL);
  3911. /* Always enable nonspread source */
  3912. temp &= ~DREF_NONSPREAD_SOURCE_MASK;
  3913. if (has_ck505)
  3914. temp |= DREF_NONSPREAD_CK505_ENABLE;
  3915. else
  3916. temp |= DREF_NONSPREAD_SOURCE_ENABLE;
  3917. if (has_panel) {
  3918. temp &= ~DREF_SSC_SOURCE_MASK;
  3919. temp |= DREF_SSC_SOURCE_ENABLE;
  3920. /* SSC must be turned on before enabling the CPU output */
  3921. if (intel_panel_use_ssc(dev_priv) && can_ssc) {
  3922. DRM_DEBUG_KMS("Using SSC on panel\n");
  3923. temp |= DREF_SSC1_ENABLE;
  3924. } else
  3925. temp &= ~DREF_SSC1_ENABLE;
  3926. /* Get SSC going before enabling the outputs */
  3927. I915_WRITE(PCH_DREF_CONTROL, temp);
  3928. POSTING_READ(PCH_DREF_CONTROL);
  3929. udelay(200);
  3930. temp &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
  3931. /* Enable CPU source on CPU attached eDP */
  3932. if (has_cpu_edp) {
  3933. if (intel_panel_use_ssc(dev_priv) && can_ssc) {
  3934. DRM_DEBUG_KMS("Using SSC on eDP\n");
  3935. temp |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
  3936. }
  3937. else
  3938. temp |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
  3939. } else
  3940. temp |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
  3941. I915_WRITE(PCH_DREF_CONTROL, temp);
  3942. POSTING_READ(PCH_DREF_CONTROL);
  3943. udelay(200);
  3944. } else {
  3945. DRM_DEBUG_KMS("Disabling SSC entirely\n");
  3946. temp &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
  3947. /* Turn off CPU output */
  3948. temp |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
  3949. I915_WRITE(PCH_DREF_CONTROL, temp);
  3950. POSTING_READ(PCH_DREF_CONTROL);
  3951. udelay(200);
  3952. /* Turn off the SSC source */
  3953. temp &= ~DREF_SSC_SOURCE_MASK;
  3954. temp |= DREF_SSC_SOURCE_DISABLE;
  3955. /* Turn off SSC1 */
  3956. temp &= ~ DREF_SSC1_ENABLE;
  3957. I915_WRITE(PCH_DREF_CONTROL, temp);
  3958. POSTING_READ(PCH_DREF_CONTROL);
  3959. udelay(200);
  3960. }
  3961. }
  3962. static int ironlake_get_refclk(struct drm_crtc *crtc)
  3963. {
  3964. struct drm_device *dev = crtc->dev;
  3965. struct drm_i915_private *dev_priv = dev->dev_private;
  3966. struct intel_encoder *encoder;
  3967. struct intel_encoder *edp_encoder = NULL;
  3968. int num_connectors = 0;
  3969. bool is_lvds = false;
  3970. for_each_encoder_on_crtc(dev, crtc, encoder) {
  3971. switch (encoder->type) {
  3972. case INTEL_OUTPUT_LVDS:
  3973. is_lvds = true;
  3974. break;
  3975. case INTEL_OUTPUT_EDP:
  3976. edp_encoder = encoder;
  3977. break;
  3978. }
  3979. num_connectors++;
  3980. }
  3981. if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
  3982. DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
  3983. dev_priv->lvds_ssc_freq);
  3984. return dev_priv->lvds_ssc_freq * 1000;
  3985. }
  3986. return 120000;
  3987. }
  3988. static int ironlake_crtc_mode_set(struct drm_crtc *crtc,
  3989. struct drm_display_mode *mode,
  3990. struct drm_display_mode *adjusted_mode,
  3991. int x, int y,
  3992. struct drm_framebuffer *fb)
  3993. {
  3994. struct drm_device *dev = crtc->dev;
  3995. struct drm_i915_private *dev_priv = dev->dev_private;
  3996. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3997. int pipe = intel_crtc->pipe;
  3998. int plane = intel_crtc->plane;
  3999. int refclk, num_connectors = 0;
  4000. intel_clock_t clock, reduced_clock;
  4001. u32 dpll, fp = 0, fp2 = 0, dspcntr, pipeconf;
  4002. bool ok, has_reduced_clock = false, is_sdvo = false;
  4003. bool is_crt = false, is_lvds = false, is_tv = false, is_dp = false;
  4004. struct intel_encoder *encoder, *edp_encoder = NULL;
  4005. const intel_limit_t *limit;
  4006. int ret;
  4007. struct fdi_m_n m_n = {0};
  4008. u32 temp;
  4009. int target_clock, pixel_multiplier, lane, link_bw, factor;
  4010. unsigned int pipe_bpp;
  4011. bool dither;
  4012. bool is_cpu_edp = false, is_pch_edp = false;
  4013. for_each_encoder_on_crtc(dev, crtc, encoder) {
  4014. switch (encoder->type) {
  4015. case INTEL_OUTPUT_LVDS:
  4016. is_lvds = true;
  4017. break;
  4018. case INTEL_OUTPUT_SDVO:
  4019. case INTEL_OUTPUT_HDMI:
  4020. is_sdvo = true;
  4021. if (encoder->needs_tv_clock)
  4022. is_tv = true;
  4023. break;
  4024. case INTEL_OUTPUT_TVOUT:
  4025. is_tv = true;
  4026. break;
  4027. case INTEL_OUTPUT_ANALOG:
  4028. is_crt = true;
  4029. break;
  4030. case INTEL_OUTPUT_DISPLAYPORT:
  4031. is_dp = true;
  4032. break;
  4033. case INTEL_OUTPUT_EDP:
  4034. is_dp = true;
  4035. if (intel_encoder_is_pch_edp(&encoder->base))
  4036. is_pch_edp = true;
  4037. else
  4038. is_cpu_edp = true;
  4039. edp_encoder = encoder;
  4040. break;
  4041. }
  4042. num_connectors++;
  4043. }
  4044. refclk = ironlake_get_refclk(crtc);
  4045. /*
  4046. * Returns a set of divisors for the desired target clock with the given
  4047. * refclk, or FALSE. The returned values represent the clock equation:
  4048. * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
  4049. */
  4050. limit = intel_limit(crtc, refclk);
  4051. ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, NULL,
  4052. &clock);
  4053. if (!ok) {
  4054. DRM_ERROR("Couldn't find PLL settings for mode!\n");
  4055. return -EINVAL;
  4056. }
  4057. /* Ensure that the cursor is valid for the new mode before changing... */
  4058. intel_crtc_update_cursor(crtc, true);
  4059. if (is_lvds && dev_priv->lvds_downclock_avail) {
  4060. /*
  4061. * Ensure we match the reduced clock's P to the target clock.
  4062. * If the clocks don't match, we can't switch the display clock
  4063. * by using the FP0/FP1. In such case we will disable the LVDS
  4064. * downclock feature.
  4065. */
  4066. has_reduced_clock = limit->find_pll(limit, crtc,
  4067. dev_priv->lvds_downclock,
  4068. refclk,
  4069. &clock,
  4070. &reduced_clock);
  4071. }
  4072. if (is_sdvo && is_tv)
  4073. i9xx_adjust_sdvo_tv_clock(adjusted_mode, &clock);
  4074. /* FDI link */
  4075. pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
  4076. lane = 0;
  4077. /* CPU eDP doesn't require FDI link, so just set DP M/N
  4078. according to current link config */
  4079. if (is_cpu_edp) {
  4080. intel_edp_link_config(edp_encoder, &lane, &link_bw);
  4081. } else {
  4082. /* FDI is a binary signal running at ~2.7GHz, encoding
  4083. * each output octet as 10 bits. The actual frequency
  4084. * is stored as a divider into a 100MHz clock, and the
  4085. * mode pixel clock is stored in units of 1KHz.
  4086. * Hence the bw of each lane in terms of the mode signal
  4087. * is:
  4088. */
  4089. link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
  4090. }
  4091. /* [e]DP over FDI requires target mode clock instead of link clock. */
  4092. if (edp_encoder)
  4093. target_clock = intel_edp_target_clock(edp_encoder, mode);
  4094. else if (is_dp)
  4095. target_clock = mode->clock;
  4096. else
  4097. target_clock = adjusted_mode->clock;
  4098. /* determine panel color depth */
  4099. temp = I915_READ(PIPECONF(pipe));
  4100. temp &= ~PIPE_BPC_MASK;
  4101. dither = intel_choose_pipe_bpp_dither(crtc, fb, &pipe_bpp, mode);
  4102. switch (pipe_bpp) {
  4103. case 18:
  4104. temp |= PIPE_6BPC;
  4105. break;
  4106. case 24:
  4107. temp |= PIPE_8BPC;
  4108. break;
  4109. case 30:
  4110. temp |= PIPE_10BPC;
  4111. break;
  4112. case 36:
  4113. temp |= PIPE_12BPC;
  4114. break;
  4115. default:
  4116. WARN(1, "intel_choose_pipe_bpp returned invalid value %d\n",
  4117. pipe_bpp);
  4118. temp |= PIPE_8BPC;
  4119. pipe_bpp = 24;
  4120. break;
  4121. }
  4122. intel_crtc->bpp = pipe_bpp;
  4123. I915_WRITE(PIPECONF(pipe), temp);
  4124. if (!lane) {
  4125. /*
  4126. * Account for spread spectrum to avoid
  4127. * oversubscribing the link. Max center spread
  4128. * is 2.5%; use 5% for safety's sake.
  4129. */
  4130. u32 bps = target_clock * intel_crtc->bpp * 21 / 20;
  4131. lane = bps / (link_bw * 8) + 1;
  4132. }
  4133. intel_crtc->fdi_lanes = lane;
  4134. if (pixel_multiplier > 1)
  4135. link_bw *= pixel_multiplier;
  4136. ironlake_compute_m_n(intel_crtc->bpp, lane, target_clock, link_bw,
  4137. &m_n);
  4138. fp = clock.n << 16 | clock.m1 << 8 | clock.m2;
  4139. if (has_reduced_clock)
  4140. fp2 = reduced_clock.n << 16 | reduced_clock.m1 << 8 |
  4141. reduced_clock.m2;
  4142. /* Enable autotuning of the PLL clock (if permissible) */
  4143. factor = 21;
  4144. if (is_lvds) {
  4145. if ((intel_panel_use_ssc(dev_priv) &&
  4146. dev_priv->lvds_ssc_freq == 100) ||
  4147. (I915_READ(PCH_LVDS) & LVDS_CLKB_POWER_MASK) == LVDS_CLKB_POWER_UP)
  4148. factor = 25;
  4149. } else if (is_sdvo && is_tv)
  4150. factor = 20;
  4151. if (clock.m < factor * clock.n)
  4152. fp |= FP_CB_TUNE;
  4153. dpll = 0;
  4154. if (is_lvds)
  4155. dpll |= DPLLB_MODE_LVDS;
  4156. else
  4157. dpll |= DPLLB_MODE_DAC_SERIAL;
  4158. if (is_sdvo) {
  4159. int pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
  4160. if (pixel_multiplier > 1) {
  4161. dpll |= (pixel_multiplier - 1) << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
  4162. }
  4163. dpll |= DPLL_DVO_HIGH_SPEED;
  4164. }
  4165. if (is_dp && !is_cpu_edp)
  4166. dpll |= DPLL_DVO_HIGH_SPEED;
  4167. /* compute bitmask from p1 value */
  4168. dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
  4169. /* also FPA1 */
  4170. dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
  4171. switch (clock.p2) {
  4172. case 5:
  4173. dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
  4174. break;
  4175. case 7:
  4176. dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
  4177. break;
  4178. case 10:
  4179. dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
  4180. break;
  4181. case 14:
  4182. dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
  4183. break;
  4184. }
  4185. if (is_sdvo && is_tv)
  4186. dpll |= PLL_REF_INPUT_TVCLKINBC;
  4187. else if (is_tv)
  4188. /* XXX: just matching BIOS for now */
  4189. /* dpll |= PLL_REF_INPUT_TVCLKINBC; */
  4190. dpll |= 3;
  4191. else if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
  4192. dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
  4193. else
  4194. dpll |= PLL_REF_INPUT_DREFCLK;
  4195. /* setup pipeconf */
  4196. pipeconf = I915_READ(PIPECONF(pipe));
  4197. /* Set up the display plane register */
  4198. dspcntr = DISPPLANE_GAMMA_ENABLE;
  4199. DRM_DEBUG_KMS("Mode for pipe %d:\n", pipe);
  4200. drm_mode_debug_printmodeline(mode);
  4201. /* CPU eDP is the only output that doesn't need a PCH PLL of its own on
  4202. * pre-Haswell/LPT generation */
  4203. if (HAS_PCH_LPT(dev)) {
  4204. DRM_DEBUG_KMS("LPT detected: no PLL for pipe %d necessary\n",
  4205. pipe);
  4206. } else if (!is_cpu_edp) {
  4207. struct intel_pch_pll *pll;
  4208. pll = intel_get_pch_pll(intel_crtc, dpll, fp);
  4209. if (pll == NULL) {
  4210. DRM_DEBUG_DRIVER("failed to find PLL for pipe %d\n",
  4211. pipe);
  4212. return -EINVAL;
  4213. }
  4214. } else
  4215. intel_put_pch_pll(intel_crtc);
  4216. /* The LVDS pin pair needs to be on before the DPLLs are enabled.
  4217. * This is an exception to the general rule that mode_set doesn't turn
  4218. * things on.
  4219. */
  4220. if (is_lvds) {
  4221. temp = I915_READ(PCH_LVDS);
  4222. temp |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
  4223. if (HAS_PCH_CPT(dev)) {
  4224. temp &= ~PORT_TRANS_SEL_MASK;
  4225. temp |= PORT_TRANS_SEL_CPT(pipe);
  4226. } else {
  4227. if (pipe == 1)
  4228. temp |= LVDS_PIPEB_SELECT;
  4229. else
  4230. temp &= ~LVDS_PIPEB_SELECT;
  4231. }
  4232. /* set the corresponsding LVDS_BORDER bit */
  4233. temp |= dev_priv->lvds_border_bits;
  4234. /* Set the B0-B3 data pairs corresponding to whether we're going to
  4235. * set the DPLLs for dual-channel mode or not.
  4236. */
  4237. if (clock.p2 == 7)
  4238. temp |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
  4239. else
  4240. temp &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
  4241. /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
  4242. * appropriately here, but we need to look more thoroughly into how
  4243. * panels behave in the two modes.
  4244. */
  4245. temp &= ~(LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY);
  4246. if (adjusted_mode->flags & DRM_MODE_FLAG_NHSYNC)
  4247. temp |= LVDS_HSYNC_POLARITY;
  4248. if (adjusted_mode->flags & DRM_MODE_FLAG_NVSYNC)
  4249. temp |= LVDS_VSYNC_POLARITY;
  4250. I915_WRITE(PCH_LVDS, temp);
  4251. }
  4252. pipeconf &= ~PIPECONF_DITHER_EN;
  4253. pipeconf &= ~PIPECONF_DITHER_TYPE_MASK;
  4254. if ((is_lvds && dev_priv->lvds_dither) || dither) {
  4255. pipeconf |= PIPECONF_DITHER_EN;
  4256. pipeconf |= PIPECONF_DITHER_TYPE_SP;
  4257. }
  4258. if (is_dp && !is_cpu_edp) {
  4259. intel_dp_set_m_n(crtc, mode, adjusted_mode);
  4260. } else {
  4261. /* For non-DP output, clear any trans DP clock recovery setting.*/
  4262. I915_WRITE(TRANSDATA_M1(pipe), 0);
  4263. I915_WRITE(TRANSDATA_N1(pipe), 0);
  4264. I915_WRITE(TRANSDPLINK_M1(pipe), 0);
  4265. I915_WRITE(TRANSDPLINK_N1(pipe), 0);
  4266. }
  4267. if (intel_crtc->pch_pll) {
  4268. I915_WRITE(intel_crtc->pch_pll->pll_reg, dpll);
  4269. /* Wait for the clocks to stabilize. */
  4270. POSTING_READ(intel_crtc->pch_pll->pll_reg);
  4271. udelay(150);
  4272. /* The pixel multiplier can only be updated once the
  4273. * DPLL is enabled and the clocks are stable.
  4274. *
  4275. * So write it again.
  4276. */
  4277. I915_WRITE(intel_crtc->pch_pll->pll_reg, dpll);
  4278. }
  4279. intel_crtc->lowfreq_avail = false;
  4280. if (intel_crtc->pch_pll) {
  4281. if (is_lvds && has_reduced_clock && i915_powersave) {
  4282. I915_WRITE(intel_crtc->pch_pll->fp1_reg, fp2);
  4283. intel_crtc->lowfreq_avail = true;
  4284. } else {
  4285. I915_WRITE(intel_crtc->pch_pll->fp1_reg, fp);
  4286. }
  4287. }
  4288. pipeconf &= ~PIPECONF_INTERLACE_MASK;
  4289. if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
  4290. pipeconf |= PIPECONF_INTERLACED_ILK;
  4291. /* the chip adds 2 halflines automatically */
  4292. adjusted_mode->crtc_vtotal -= 1;
  4293. adjusted_mode->crtc_vblank_end -= 1;
  4294. I915_WRITE(VSYNCSHIFT(pipe),
  4295. adjusted_mode->crtc_hsync_start
  4296. - adjusted_mode->crtc_htotal/2);
  4297. } else {
  4298. pipeconf |= PIPECONF_PROGRESSIVE;
  4299. I915_WRITE(VSYNCSHIFT(pipe), 0);
  4300. }
  4301. I915_WRITE(HTOTAL(pipe),
  4302. (adjusted_mode->crtc_hdisplay - 1) |
  4303. ((adjusted_mode->crtc_htotal - 1) << 16));
  4304. I915_WRITE(HBLANK(pipe),
  4305. (adjusted_mode->crtc_hblank_start - 1) |
  4306. ((adjusted_mode->crtc_hblank_end - 1) << 16));
  4307. I915_WRITE(HSYNC(pipe),
  4308. (adjusted_mode->crtc_hsync_start - 1) |
  4309. ((adjusted_mode->crtc_hsync_end - 1) << 16));
  4310. I915_WRITE(VTOTAL(pipe),
  4311. (adjusted_mode->crtc_vdisplay - 1) |
  4312. ((adjusted_mode->crtc_vtotal - 1) << 16));
  4313. I915_WRITE(VBLANK(pipe),
  4314. (adjusted_mode->crtc_vblank_start - 1) |
  4315. ((adjusted_mode->crtc_vblank_end - 1) << 16));
  4316. I915_WRITE(VSYNC(pipe),
  4317. (adjusted_mode->crtc_vsync_start - 1) |
  4318. ((adjusted_mode->crtc_vsync_end - 1) << 16));
  4319. /* pipesrc controls the size that is scaled from, which should
  4320. * always be the user's requested size.
  4321. */
  4322. I915_WRITE(PIPESRC(pipe),
  4323. ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
  4324. I915_WRITE(PIPE_DATA_M1(pipe), TU_SIZE(m_n.tu) | m_n.gmch_m);
  4325. I915_WRITE(PIPE_DATA_N1(pipe), m_n.gmch_n);
  4326. I915_WRITE(PIPE_LINK_M1(pipe), m_n.link_m);
  4327. I915_WRITE(PIPE_LINK_N1(pipe), m_n.link_n);
  4328. if (is_cpu_edp)
  4329. ironlake_set_pll_edp(crtc, adjusted_mode->clock);
  4330. I915_WRITE(PIPECONF(pipe), pipeconf);
  4331. POSTING_READ(PIPECONF(pipe));
  4332. intel_wait_for_vblank(dev, pipe);
  4333. I915_WRITE(DSPCNTR(plane), dspcntr);
  4334. POSTING_READ(DSPCNTR(plane));
  4335. ret = intel_pipe_set_base(crtc, x, y, fb);
  4336. intel_update_watermarks(dev);
  4337. intel_update_linetime_watermarks(dev, pipe, adjusted_mode);
  4338. return ret;
  4339. }
  4340. static int intel_crtc_mode_set(struct drm_crtc *crtc,
  4341. struct drm_display_mode *mode,
  4342. struct drm_display_mode *adjusted_mode,
  4343. int x, int y,
  4344. struct drm_framebuffer *fb)
  4345. {
  4346. struct drm_device *dev = crtc->dev;
  4347. struct drm_i915_private *dev_priv = dev->dev_private;
  4348. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4349. int pipe = intel_crtc->pipe;
  4350. int ret;
  4351. drm_vblank_pre_modeset(dev, pipe);
  4352. ret = dev_priv->display.crtc_mode_set(crtc, mode, adjusted_mode,
  4353. x, y, fb);
  4354. drm_vblank_post_modeset(dev, pipe);
  4355. return ret;
  4356. }
  4357. static bool intel_eld_uptodate(struct drm_connector *connector,
  4358. int reg_eldv, uint32_t bits_eldv,
  4359. int reg_elda, uint32_t bits_elda,
  4360. int reg_edid)
  4361. {
  4362. struct drm_i915_private *dev_priv = connector->dev->dev_private;
  4363. uint8_t *eld = connector->eld;
  4364. uint32_t i;
  4365. i = I915_READ(reg_eldv);
  4366. i &= bits_eldv;
  4367. if (!eld[0])
  4368. return !i;
  4369. if (!i)
  4370. return false;
  4371. i = I915_READ(reg_elda);
  4372. i &= ~bits_elda;
  4373. I915_WRITE(reg_elda, i);
  4374. for (i = 0; i < eld[2]; i++)
  4375. if (I915_READ(reg_edid) != *((uint32_t *)eld + i))
  4376. return false;
  4377. return true;
  4378. }
  4379. static void g4x_write_eld(struct drm_connector *connector,
  4380. struct drm_crtc *crtc)
  4381. {
  4382. struct drm_i915_private *dev_priv = connector->dev->dev_private;
  4383. uint8_t *eld = connector->eld;
  4384. uint32_t eldv;
  4385. uint32_t len;
  4386. uint32_t i;
  4387. i = I915_READ(G4X_AUD_VID_DID);
  4388. if (i == INTEL_AUDIO_DEVBLC || i == INTEL_AUDIO_DEVCL)
  4389. eldv = G4X_ELDV_DEVCL_DEVBLC;
  4390. else
  4391. eldv = G4X_ELDV_DEVCTG;
  4392. if (intel_eld_uptodate(connector,
  4393. G4X_AUD_CNTL_ST, eldv,
  4394. G4X_AUD_CNTL_ST, G4X_ELD_ADDR,
  4395. G4X_HDMIW_HDMIEDID))
  4396. return;
  4397. i = I915_READ(G4X_AUD_CNTL_ST);
  4398. i &= ~(eldv | G4X_ELD_ADDR);
  4399. len = (i >> 9) & 0x1f; /* ELD buffer size */
  4400. I915_WRITE(G4X_AUD_CNTL_ST, i);
  4401. if (!eld[0])
  4402. return;
  4403. len = min_t(uint8_t, eld[2], len);
  4404. DRM_DEBUG_DRIVER("ELD size %d\n", len);
  4405. for (i = 0; i < len; i++)
  4406. I915_WRITE(G4X_HDMIW_HDMIEDID, *((uint32_t *)eld + i));
  4407. i = I915_READ(G4X_AUD_CNTL_ST);
  4408. i |= eldv;
  4409. I915_WRITE(G4X_AUD_CNTL_ST, i);
  4410. }
  4411. static void haswell_write_eld(struct drm_connector *connector,
  4412. struct drm_crtc *crtc)
  4413. {
  4414. struct drm_i915_private *dev_priv = connector->dev->dev_private;
  4415. uint8_t *eld = connector->eld;
  4416. struct drm_device *dev = crtc->dev;
  4417. uint32_t eldv;
  4418. uint32_t i;
  4419. int len;
  4420. int pipe = to_intel_crtc(crtc)->pipe;
  4421. int tmp;
  4422. int hdmiw_hdmiedid = HSW_AUD_EDID_DATA(pipe);
  4423. int aud_cntl_st = HSW_AUD_DIP_ELD_CTRL(pipe);
  4424. int aud_config = HSW_AUD_CFG(pipe);
  4425. int aud_cntrl_st2 = HSW_AUD_PIN_ELD_CP_VLD;
  4426. DRM_DEBUG_DRIVER("HDMI: Haswell Audio initialize....\n");
  4427. /* Audio output enable */
  4428. DRM_DEBUG_DRIVER("HDMI audio: enable codec\n");
  4429. tmp = I915_READ(aud_cntrl_st2);
  4430. tmp |= (AUDIO_OUTPUT_ENABLE_A << (pipe * 4));
  4431. I915_WRITE(aud_cntrl_st2, tmp);
  4432. /* Wait for 1 vertical blank */
  4433. intel_wait_for_vblank(dev, pipe);
  4434. /* Set ELD valid state */
  4435. tmp = I915_READ(aud_cntrl_st2);
  4436. DRM_DEBUG_DRIVER("HDMI audio: pin eld vld status=0x%8x\n", tmp);
  4437. tmp |= (AUDIO_ELD_VALID_A << (pipe * 4));
  4438. I915_WRITE(aud_cntrl_st2, tmp);
  4439. tmp = I915_READ(aud_cntrl_st2);
  4440. DRM_DEBUG_DRIVER("HDMI audio: eld vld status=0x%8x\n", tmp);
  4441. /* Enable HDMI mode */
  4442. tmp = I915_READ(aud_config);
  4443. DRM_DEBUG_DRIVER("HDMI audio: audio conf: 0x%8x\n", tmp);
  4444. /* clear N_programing_enable and N_value_index */
  4445. tmp &= ~(AUD_CONFIG_N_VALUE_INDEX | AUD_CONFIG_N_PROG_ENABLE);
  4446. I915_WRITE(aud_config, tmp);
  4447. DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
  4448. eldv = AUDIO_ELD_VALID_A << (pipe * 4);
  4449. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
  4450. DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
  4451. eld[5] |= (1 << 2); /* Conn_Type, 0x1 = DisplayPort */
  4452. I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
  4453. } else
  4454. I915_WRITE(aud_config, 0);
  4455. if (intel_eld_uptodate(connector,
  4456. aud_cntrl_st2, eldv,
  4457. aud_cntl_st, IBX_ELD_ADDRESS,
  4458. hdmiw_hdmiedid))
  4459. return;
  4460. i = I915_READ(aud_cntrl_st2);
  4461. i &= ~eldv;
  4462. I915_WRITE(aud_cntrl_st2, i);
  4463. if (!eld[0])
  4464. return;
  4465. i = I915_READ(aud_cntl_st);
  4466. i &= ~IBX_ELD_ADDRESS;
  4467. I915_WRITE(aud_cntl_st, i);
  4468. i = (i >> 29) & DIP_PORT_SEL_MASK; /* DIP_Port_Select, 0x1 = PortB */
  4469. DRM_DEBUG_DRIVER("port num:%d\n", i);
  4470. len = min_t(uint8_t, eld[2], 21); /* 84 bytes of hw ELD buffer */
  4471. DRM_DEBUG_DRIVER("ELD size %d\n", len);
  4472. for (i = 0; i < len; i++)
  4473. I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
  4474. i = I915_READ(aud_cntrl_st2);
  4475. i |= eldv;
  4476. I915_WRITE(aud_cntrl_st2, i);
  4477. }
  4478. static void ironlake_write_eld(struct drm_connector *connector,
  4479. struct drm_crtc *crtc)
  4480. {
  4481. struct drm_i915_private *dev_priv = connector->dev->dev_private;
  4482. uint8_t *eld = connector->eld;
  4483. uint32_t eldv;
  4484. uint32_t i;
  4485. int len;
  4486. int hdmiw_hdmiedid;
  4487. int aud_config;
  4488. int aud_cntl_st;
  4489. int aud_cntrl_st2;
  4490. int pipe = to_intel_crtc(crtc)->pipe;
  4491. if (HAS_PCH_IBX(connector->dev)) {
  4492. hdmiw_hdmiedid = IBX_HDMIW_HDMIEDID(pipe);
  4493. aud_config = IBX_AUD_CFG(pipe);
  4494. aud_cntl_st = IBX_AUD_CNTL_ST(pipe);
  4495. aud_cntrl_st2 = IBX_AUD_CNTL_ST2;
  4496. } else {
  4497. hdmiw_hdmiedid = CPT_HDMIW_HDMIEDID(pipe);
  4498. aud_config = CPT_AUD_CFG(pipe);
  4499. aud_cntl_st = CPT_AUD_CNTL_ST(pipe);
  4500. aud_cntrl_st2 = CPT_AUD_CNTRL_ST2;
  4501. }
  4502. DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
  4503. i = I915_READ(aud_cntl_st);
  4504. i = (i >> 29) & DIP_PORT_SEL_MASK; /* DIP_Port_Select, 0x1 = PortB */
  4505. if (!i) {
  4506. DRM_DEBUG_DRIVER("Audio directed to unknown port\n");
  4507. /* operate blindly on all ports */
  4508. eldv = IBX_ELD_VALIDB;
  4509. eldv |= IBX_ELD_VALIDB << 4;
  4510. eldv |= IBX_ELD_VALIDB << 8;
  4511. } else {
  4512. DRM_DEBUG_DRIVER("ELD on port %c\n", 'A' + i);
  4513. eldv = IBX_ELD_VALIDB << ((i - 1) * 4);
  4514. }
  4515. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
  4516. DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
  4517. eld[5] |= (1 << 2); /* Conn_Type, 0x1 = DisplayPort */
  4518. I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
  4519. } else
  4520. I915_WRITE(aud_config, 0);
  4521. if (intel_eld_uptodate(connector,
  4522. aud_cntrl_st2, eldv,
  4523. aud_cntl_st, IBX_ELD_ADDRESS,
  4524. hdmiw_hdmiedid))
  4525. return;
  4526. i = I915_READ(aud_cntrl_st2);
  4527. i &= ~eldv;
  4528. I915_WRITE(aud_cntrl_st2, i);
  4529. if (!eld[0])
  4530. return;
  4531. i = I915_READ(aud_cntl_st);
  4532. i &= ~IBX_ELD_ADDRESS;
  4533. I915_WRITE(aud_cntl_st, i);
  4534. len = min_t(uint8_t, eld[2], 21); /* 84 bytes of hw ELD buffer */
  4535. DRM_DEBUG_DRIVER("ELD size %d\n", len);
  4536. for (i = 0; i < len; i++)
  4537. I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
  4538. i = I915_READ(aud_cntrl_st2);
  4539. i |= eldv;
  4540. I915_WRITE(aud_cntrl_st2, i);
  4541. }
  4542. void intel_write_eld(struct drm_encoder *encoder,
  4543. struct drm_display_mode *mode)
  4544. {
  4545. struct drm_crtc *crtc = encoder->crtc;
  4546. struct drm_connector *connector;
  4547. struct drm_device *dev = encoder->dev;
  4548. struct drm_i915_private *dev_priv = dev->dev_private;
  4549. connector = drm_select_eld(encoder, mode);
  4550. if (!connector)
  4551. return;
  4552. DRM_DEBUG_DRIVER("ELD on [CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
  4553. connector->base.id,
  4554. drm_get_connector_name(connector),
  4555. connector->encoder->base.id,
  4556. drm_get_encoder_name(connector->encoder));
  4557. connector->eld[6] = drm_av_sync_delay(connector, mode) / 2;
  4558. if (dev_priv->display.write_eld)
  4559. dev_priv->display.write_eld(connector, crtc);
  4560. }
  4561. /** Loads the palette/gamma unit for the CRTC with the prepared values */
  4562. void intel_crtc_load_lut(struct drm_crtc *crtc)
  4563. {
  4564. struct drm_device *dev = crtc->dev;
  4565. struct drm_i915_private *dev_priv = dev->dev_private;
  4566. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4567. int palreg = PALETTE(intel_crtc->pipe);
  4568. int i;
  4569. /* The clocks have to be on to load the palette. */
  4570. if (!crtc->enabled || !intel_crtc->active)
  4571. return;
  4572. /* use legacy palette for Ironlake */
  4573. if (HAS_PCH_SPLIT(dev))
  4574. palreg = LGC_PALETTE(intel_crtc->pipe);
  4575. for (i = 0; i < 256; i++) {
  4576. I915_WRITE(palreg + 4 * i,
  4577. (intel_crtc->lut_r[i] << 16) |
  4578. (intel_crtc->lut_g[i] << 8) |
  4579. intel_crtc->lut_b[i]);
  4580. }
  4581. }
  4582. static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
  4583. {
  4584. struct drm_device *dev = crtc->dev;
  4585. struct drm_i915_private *dev_priv = dev->dev_private;
  4586. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4587. bool visible = base != 0;
  4588. u32 cntl;
  4589. if (intel_crtc->cursor_visible == visible)
  4590. return;
  4591. cntl = I915_READ(_CURACNTR);
  4592. if (visible) {
  4593. /* On these chipsets we can only modify the base whilst
  4594. * the cursor is disabled.
  4595. */
  4596. I915_WRITE(_CURABASE, base);
  4597. cntl &= ~(CURSOR_FORMAT_MASK);
  4598. /* XXX width must be 64, stride 256 => 0x00 << 28 */
  4599. cntl |= CURSOR_ENABLE |
  4600. CURSOR_GAMMA_ENABLE |
  4601. CURSOR_FORMAT_ARGB;
  4602. } else
  4603. cntl &= ~(CURSOR_ENABLE | CURSOR_GAMMA_ENABLE);
  4604. I915_WRITE(_CURACNTR, cntl);
  4605. intel_crtc->cursor_visible = visible;
  4606. }
  4607. static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
  4608. {
  4609. struct drm_device *dev = crtc->dev;
  4610. struct drm_i915_private *dev_priv = dev->dev_private;
  4611. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4612. int pipe = intel_crtc->pipe;
  4613. bool visible = base != 0;
  4614. if (intel_crtc->cursor_visible != visible) {
  4615. uint32_t cntl = I915_READ(CURCNTR(pipe));
  4616. if (base) {
  4617. cntl &= ~(CURSOR_MODE | MCURSOR_PIPE_SELECT);
  4618. cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
  4619. cntl |= pipe << 28; /* Connect to correct pipe */
  4620. } else {
  4621. cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
  4622. cntl |= CURSOR_MODE_DISABLE;
  4623. }
  4624. I915_WRITE(CURCNTR(pipe), cntl);
  4625. intel_crtc->cursor_visible = visible;
  4626. }
  4627. /* and commit changes on next vblank */
  4628. I915_WRITE(CURBASE(pipe), base);
  4629. }
  4630. static void ivb_update_cursor(struct drm_crtc *crtc, u32 base)
  4631. {
  4632. struct drm_device *dev = crtc->dev;
  4633. struct drm_i915_private *dev_priv = dev->dev_private;
  4634. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4635. int pipe = intel_crtc->pipe;
  4636. bool visible = base != 0;
  4637. if (intel_crtc->cursor_visible != visible) {
  4638. uint32_t cntl = I915_READ(CURCNTR_IVB(pipe));
  4639. if (base) {
  4640. cntl &= ~CURSOR_MODE;
  4641. cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
  4642. } else {
  4643. cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
  4644. cntl |= CURSOR_MODE_DISABLE;
  4645. }
  4646. I915_WRITE(CURCNTR_IVB(pipe), cntl);
  4647. intel_crtc->cursor_visible = visible;
  4648. }
  4649. /* and commit changes on next vblank */
  4650. I915_WRITE(CURBASE_IVB(pipe), base);
  4651. }
  4652. /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
  4653. static void intel_crtc_update_cursor(struct drm_crtc *crtc,
  4654. bool on)
  4655. {
  4656. struct drm_device *dev = crtc->dev;
  4657. struct drm_i915_private *dev_priv = dev->dev_private;
  4658. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4659. int pipe = intel_crtc->pipe;
  4660. int x = intel_crtc->cursor_x;
  4661. int y = intel_crtc->cursor_y;
  4662. u32 base, pos;
  4663. bool visible;
  4664. pos = 0;
  4665. if (on && crtc->enabled && crtc->fb) {
  4666. base = intel_crtc->cursor_addr;
  4667. if (x > (int) crtc->fb->width)
  4668. base = 0;
  4669. if (y > (int) crtc->fb->height)
  4670. base = 0;
  4671. } else
  4672. base = 0;
  4673. if (x < 0) {
  4674. if (x + intel_crtc->cursor_width < 0)
  4675. base = 0;
  4676. pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
  4677. x = -x;
  4678. }
  4679. pos |= x << CURSOR_X_SHIFT;
  4680. if (y < 0) {
  4681. if (y + intel_crtc->cursor_height < 0)
  4682. base = 0;
  4683. pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
  4684. y = -y;
  4685. }
  4686. pos |= y << CURSOR_Y_SHIFT;
  4687. visible = base != 0;
  4688. if (!visible && !intel_crtc->cursor_visible)
  4689. return;
  4690. if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) {
  4691. I915_WRITE(CURPOS_IVB(pipe), pos);
  4692. ivb_update_cursor(crtc, base);
  4693. } else {
  4694. I915_WRITE(CURPOS(pipe), pos);
  4695. if (IS_845G(dev) || IS_I865G(dev))
  4696. i845_update_cursor(crtc, base);
  4697. else
  4698. i9xx_update_cursor(crtc, base);
  4699. }
  4700. }
  4701. static int intel_crtc_cursor_set(struct drm_crtc *crtc,
  4702. struct drm_file *file,
  4703. uint32_t handle,
  4704. uint32_t width, uint32_t height)
  4705. {
  4706. struct drm_device *dev = crtc->dev;
  4707. struct drm_i915_private *dev_priv = dev->dev_private;
  4708. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4709. struct drm_i915_gem_object *obj;
  4710. uint32_t addr;
  4711. int ret;
  4712. /* if we want to turn off the cursor ignore width and height */
  4713. if (!handle) {
  4714. DRM_DEBUG_KMS("cursor off\n");
  4715. addr = 0;
  4716. obj = NULL;
  4717. mutex_lock(&dev->struct_mutex);
  4718. goto finish;
  4719. }
  4720. /* Currently we only support 64x64 cursors */
  4721. if (width != 64 || height != 64) {
  4722. DRM_ERROR("we currently only support 64x64 cursors\n");
  4723. return -EINVAL;
  4724. }
  4725. obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
  4726. if (&obj->base == NULL)
  4727. return -ENOENT;
  4728. if (obj->base.size < width * height * 4) {
  4729. DRM_ERROR("buffer is to small\n");
  4730. ret = -ENOMEM;
  4731. goto fail;
  4732. }
  4733. /* we only need to pin inside GTT if cursor is non-phy */
  4734. mutex_lock(&dev->struct_mutex);
  4735. if (!dev_priv->info->cursor_needs_physical) {
  4736. if (obj->tiling_mode) {
  4737. DRM_ERROR("cursor cannot be tiled\n");
  4738. ret = -EINVAL;
  4739. goto fail_locked;
  4740. }
  4741. ret = i915_gem_object_pin_to_display_plane(obj, 0, NULL);
  4742. if (ret) {
  4743. DRM_ERROR("failed to move cursor bo into the GTT\n");
  4744. goto fail_locked;
  4745. }
  4746. ret = i915_gem_object_put_fence(obj);
  4747. if (ret) {
  4748. DRM_ERROR("failed to release fence for cursor");
  4749. goto fail_unpin;
  4750. }
  4751. addr = obj->gtt_offset;
  4752. } else {
  4753. int align = IS_I830(dev) ? 16 * 1024 : 256;
  4754. ret = i915_gem_attach_phys_object(dev, obj,
  4755. (intel_crtc->pipe == 0) ? I915_GEM_PHYS_CURSOR_0 : I915_GEM_PHYS_CURSOR_1,
  4756. align);
  4757. if (ret) {
  4758. DRM_ERROR("failed to attach phys object\n");
  4759. goto fail_locked;
  4760. }
  4761. addr = obj->phys_obj->handle->busaddr;
  4762. }
  4763. if (IS_GEN2(dev))
  4764. I915_WRITE(CURSIZE, (height << 12) | width);
  4765. finish:
  4766. if (intel_crtc->cursor_bo) {
  4767. if (dev_priv->info->cursor_needs_physical) {
  4768. if (intel_crtc->cursor_bo != obj)
  4769. i915_gem_detach_phys_object(dev, intel_crtc->cursor_bo);
  4770. } else
  4771. i915_gem_object_unpin(intel_crtc->cursor_bo);
  4772. drm_gem_object_unreference(&intel_crtc->cursor_bo->base);
  4773. }
  4774. mutex_unlock(&dev->struct_mutex);
  4775. intel_crtc->cursor_addr = addr;
  4776. intel_crtc->cursor_bo = obj;
  4777. intel_crtc->cursor_width = width;
  4778. intel_crtc->cursor_height = height;
  4779. intel_crtc_update_cursor(crtc, true);
  4780. return 0;
  4781. fail_unpin:
  4782. i915_gem_object_unpin(obj);
  4783. fail_locked:
  4784. mutex_unlock(&dev->struct_mutex);
  4785. fail:
  4786. drm_gem_object_unreference_unlocked(&obj->base);
  4787. return ret;
  4788. }
  4789. static int intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
  4790. {
  4791. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4792. intel_crtc->cursor_x = x;
  4793. intel_crtc->cursor_y = y;
  4794. intel_crtc_update_cursor(crtc, true);
  4795. return 0;
  4796. }
  4797. /** Sets the color ramps on behalf of RandR */
  4798. void intel_crtc_fb_gamma_set(struct drm_crtc *crtc, u16 red, u16 green,
  4799. u16 blue, int regno)
  4800. {
  4801. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4802. intel_crtc->lut_r[regno] = red >> 8;
  4803. intel_crtc->lut_g[regno] = green >> 8;
  4804. intel_crtc->lut_b[regno] = blue >> 8;
  4805. }
  4806. void intel_crtc_fb_gamma_get(struct drm_crtc *crtc, u16 *red, u16 *green,
  4807. u16 *blue, int regno)
  4808. {
  4809. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4810. *red = intel_crtc->lut_r[regno] << 8;
  4811. *green = intel_crtc->lut_g[regno] << 8;
  4812. *blue = intel_crtc->lut_b[regno] << 8;
  4813. }
  4814. static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
  4815. u16 *blue, uint32_t start, uint32_t size)
  4816. {
  4817. int end = (start + size > 256) ? 256 : start + size, i;
  4818. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4819. for (i = start; i < end; i++) {
  4820. intel_crtc->lut_r[i] = red[i] >> 8;
  4821. intel_crtc->lut_g[i] = green[i] >> 8;
  4822. intel_crtc->lut_b[i] = blue[i] >> 8;
  4823. }
  4824. intel_crtc_load_lut(crtc);
  4825. }
  4826. /**
  4827. * Get a pipe with a simple mode set on it for doing load-based monitor
  4828. * detection.
  4829. *
  4830. * It will be up to the load-detect code to adjust the pipe as appropriate for
  4831. * its requirements. The pipe will be connected to no other encoders.
  4832. *
  4833. * Currently this code will only succeed if there is a pipe with no encoders
  4834. * configured for it. In the future, it could choose to temporarily disable
  4835. * some outputs to free up a pipe for its use.
  4836. *
  4837. * \return crtc, or NULL if no pipes are available.
  4838. */
  4839. /* VESA 640x480x72Hz mode to set on the pipe */
  4840. static struct drm_display_mode load_detect_mode = {
  4841. DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
  4842. 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
  4843. };
  4844. static struct drm_framebuffer *
  4845. intel_framebuffer_create(struct drm_device *dev,
  4846. struct drm_mode_fb_cmd2 *mode_cmd,
  4847. struct drm_i915_gem_object *obj)
  4848. {
  4849. struct intel_framebuffer *intel_fb;
  4850. int ret;
  4851. intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
  4852. if (!intel_fb) {
  4853. drm_gem_object_unreference_unlocked(&obj->base);
  4854. return ERR_PTR(-ENOMEM);
  4855. }
  4856. ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
  4857. if (ret) {
  4858. drm_gem_object_unreference_unlocked(&obj->base);
  4859. kfree(intel_fb);
  4860. return ERR_PTR(ret);
  4861. }
  4862. return &intel_fb->base;
  4863. }
  4864. static u32
  4865. intel_framebuffer_pitch_for_width(int width, int bpp)
  4866. {
  4867. u32 pitch = DIV_ROUND_UP(width * bpp, 8);
  4868. return ALIGN(pitch, 64);
  4869. }
  4870. static u32
  4871. intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
  4872. {
  4873. u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
  4874. return ALIGN(pitch * mode->vdisplay, PAGE_SIZE);
  4875. }
  4876. static struct drm_framebuffer *
  4877. intel_framebuffer_create_for_mode(struct drm_device *dev,
  4878. struct drm_display_mode *mode,
  4879. int depth, int bpp)
  4880. {
  4881. struct drm_i915_gem_object *obj;
  4882. struct drm_mode_fb_cmd2 mode_cmd;
  4883. obj = i915_gem_alloc_object(dev,
  4884. intel_framebuffer_size_for_mode(mode, bpp));
  4885. if (obj == NULL)
  4886. return ERR_PTR(-ENOMEM);
  4887. mode_cmd.width = mode->hdisplay;
  4888. mode_cmd.height = mode->vdisplay;
  4889. mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
  4890. bpp);
  4891. mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
  4892. return intel_framebuffer_create(dev, &mode_cmd, obj);
  4893. }
  4894. static struct drm_framebuffer *
  4895. mode_fits_in_fbdev(struct drm_device *dev,
  4896. struct drm_display_mode *mode)
  4897. {
  4898. struct drm_i915_private *dev_priv = dev->dev_private;
  4899. struct drm_i915_gem_object *obj;
  4900. struct drm_framebuffer *fb;
  4901. if (dev_priv->fbdev == NULL)
  4902. return NULL;
  4903. obj = dev_priv->fbdev->ifb.obj;
  4904. if (obj == NULL)
  4905. return NULL;
  4906. fb = &dev_priv->fbdev->ifb.base;
  4907. if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
  4908. fb->bits_per_pixel))
  4909. return NULL;
  4910. if (obj->base.size < mode->vdisplay * fb->pitches[0])
  4911. return NULL;
  4912. return fb;
  4913. }
  4914. bool intel_get_load_detect_pipe(struct drm_connector *connector,
  4915. struct drm_display_mode *mode,
  4916. struct intel_load_detect_pipe *old)
  4917. {
  4918. struct intel_crtc *intel_crtc;
  4919. struct intel_encoder *intel_encoder =
  4920. intel_attached_encoder(connector);
  4921. struct drm_crtc *possible_crtc;
  4922. struct drm_encoder *encoder = &intel_encoder->base;
  4923. struct drm_crtc *crtc = NULL;
  4924. struct drm_device *dev = encoder->dev;
  4925. struct drm_framebuffer *fb;
  4926. int i = -1;
  4927. DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
  4928. connector->base.id, drm_get_connector_name(connector),
  4929. encoder->base.id, drm_get_encoder_name(encoder));
  4930. /*
  4931. * Algorithm gets a little messy:
  4932. *
  4933. * - if the connector already has an assigned crtc, use it (but make
  4934. * sure it's on first)
  4935. *
  4936. * - try to find the first unused crtc that can drive this connector,
  4937. * and use that if we find one
  4938. */
  4939. /* See if we already have a CRTC for this connector */
  4940. if (encoder->crtc) {
  4941. crtc = encoder->crtc;
  4942. old->dpms_mode = connector->dpms;
  4943. old->load_detect_temp = false;
  4944. /* Make sure the crtc and connector are running */
  4945. if (connector->dpms != DRM_MODE_DPMS_ON)
  4946. connector->funcs->dpms(connector, DRM_MODE_DPMS_ON);
  4947. return true;
  4948. }
  4949. /* Find an unused one (if possible) */
  4950. list_for_each_entry(possible_crtc, &dev->mode_config.crtc_list, head) {
  4951. i++;
  4952. if (!(encoder->possible_crtcs & (1 << i)))
  4953. continue;
  4954. if (!possible_crtc->enabled) {
  4955. crtc = possible_crtc;
  4956. break;
  4957. }
  4958. }
  4959. /*
  4960. * If we didn't find an unused CRTC, don't use any.
  4961. */
  4962. if (!crtc) {
  4963. DRM_DEBUG_KMS("no pipe available for load-detect\n");
  4964. return false;
  4965. }
  4966. intel_encoder->new_crtc = to_intel_crtc(crtc);
  4967. to_intel_connector(connector)->new_encoder = intel_encoder;
  4968. intel_crtc = to_intel_crtc(crtc);
  4969. old->dpms_mode = connector->dpms;
  4970. old->load_detect_temp = true;
  4971. old->release_fb = NULL;
  4972. if (!mode)
  4973. mode = &load_detect_mode;
  4974. /* We need a framebuffer large enough to accommodate all accesses
  4975. * that the plane may generate whilst we perform load detection.
  4976. * We can not rely on the fbcon either being present (we get called
  4977. * during its initialisation to detect all boot displays, or it may
  4978. * not even exist) or that it is large enough to satisfy the
  4979. * requested mode.
  4980. */
  4981. fb = mode_fits_in_fbdev(dev, mode);
  4982. if (fb == NULL) {
  4983. DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
  4984. fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
  4985. old->release_fb = fb;
  4986. } else
  4987. DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
  4988. if (IS_ERR(fb)) {
  4989. DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
  4990. goto fail;
  4991. }
  4992. if (!intel_set_mode(crtc, mode, 0, 0, fb)) {
  4993. DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
  4994. if (old->release_fb)
  4995. old->release_fb->funcs->destroy(old->release_fb);
  4996. goto fail;
  4997. }
  4998. /* let the connector get through one full cycle before testing */
  4999. intel_wait_for_vblank(dev, intel_crtc->pipe);
  5000. return true;
  5001. fail:
  5002. connector->encoder = NULL;
  5003. encoder->crtc = NULL;
  5004. return false;
  5005. }
  5006. void intel_release_load_detect_pipe(struct drm_connector *connector,
  5007. struct intel_load_detect_pipe *old)
  5008. {
  5009. struct intel_encoder *intel_encoder =
  5010. intel_attached_encoder(connector);
  5011. struct drm_encoder *encoder = &intel_encoder->base;
  5012. DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
  5013. connector->base.id, drm_get_connector_name(connector),
  5014. encoder->base.id, drm_get_encoder_name(encoder));
  5015. if (old->load_detect_temp) {
  5016. struct drm_crtc *crtc = encoder->crtc;
  5017. to_intel_connector(connector)->new_encoder = NULL;
  5018. intel_encoder->new_crtc = NULL;
  5019. intel_set_mode(crtc, NULL, 0, 0, NULL);
  5020. if (old->release_fb)
  5021. old->release_fb->funcs->destroy(old->release_fb);
  5022. return;
  5023. }
  5024. /* Switch crtc and encoder back off if necessary */
  5025. if (old->dpms_mode != DRM_MODE_DPMS_ON)
  5026. connector->funcs->dpms(connector, old->dpms_mode);
  5027. }
  5028. /* Returns the clock of the currently programmed mode of the given pipe. */
  5029. static int intel_crtc_clock_get(struct drm_device *dev, struct drm_crtc *crtc)
  5030. {
  5031. struct drm_i915_private *dev_priv = dev->dev_private;
  5032. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5033. int pipe = intel_crtc->pipe;
  5034. u32 dpll = I915_READ(DPLL(pipe));
  5035. u32 fp;
  5036. intel_clock_t clock;
  5037. if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
  5038. fp = I915_READ(FP0(pipe));
  5039. else
  5040. fp = I915_READ(FP1(pipe));
  5041. clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
  5042. if (IS_PINEVIEW(dev)) {
  5043. clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
  5044. clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
  5045. } else {
  5046. clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
  5047. clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
  5048. }
  5049. if (!IS_GEN2(dev)) {
  5050. if (IS_PINEVIEW(dev))
  5051. clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
  5052. DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
  5053. else
  5054. clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
  5055. DPLL_FPA01_P1_POST_DIV_SHIFT);
  5056. switch (dpll & DPLL_MODE_MASK) {
  5057. case DPLLB_MODE_DAC_SERIAL:
  5058. clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
  5059. 5 : 10;
  5060. break;
  5061. case DPLLB_MODE_LVDS:
  5062. clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
  5063. 7 : 14;
  5064. break;
  5065. default:
  5066. DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
  5067. "mode\n", (int)(dpll & DPLL_MODE_MASK));
  5068. return 0;
  5069. }
  5070. /* XXX: Handle the 100Mhz refclk */
  5071. intel_clock(dev, 96000, &clock);
  5072. } else {
  5073. bool is_lvds = (pipe == 1) && (I915_READ(LVDS) & LVDS_PORT_EN);
  5074. if (is_lvds) {
  5075. clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
  5076. DPLL_FPA01_P1_POST_DIV_SHIFT);
  5077. clock.p2 = 14;
  5078. if ((dpll & PLL_REF_INPUT_MASK) ==
  5079. PLLB_REF_INPUT_SPREADSPECTRUMIN) {
  5080. /* XXX: might not be 66MHz */
  5081. intel_clock(dev, 66000, &clock);
  5082. } else
  5083. intel_clock(dev, 48000, &clock);
  5084. } else {
  5085. if (dpll & PLL_P1_DIVIDE_BY_TWO)
  5086. clock.p1 = 2;
  5087. else {
  5088. clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
  5089. DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
  5090. }
  5091. if (dpll & PLL_P2_DIVIDE_BY_4)
  5092. clock.p2 = 4;
  5093. else
  5094. clock.p2 = 2;
  5095. intel_clock(dev, 48000, &clock);
  5096. }
  5097. }
  5098. /* XXX: It would be nice to validate the clocks, but we can't reuse
  5099. * i830PllIsValid() because it relies on the xf86_config connector
  5100. * configuration being accurate, which it isn't necessarily.
  5101. */
  5102. return clock.dot;
  5103. }
  5104. /** Returns the currently programmed mode of the given pipe. */
  5105. struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
  5106. struct drm_crtc *crtc)
  5107. {
  5108. struct drm_i915_private *dev_priv = dev->dev_private;
  5109. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5110. int pipe = intel_crtc->pipe;
  5111. struct drm_display_mode *mode;
  5112. int htot = I915_READ(HTOTAL(pipe));
  5113. int hsync = I915_READ(HSYNC(pipe));
  5114. int vtot = I915_READ(VTOTAL(pipe));
  5115. int vsync = I915_READ(VSYNC(pipe));
  5116. mode = kzalloc(sizeof(*mode), GFP_KERNEL);
  5117. if (!mode)
  5118. return NULL;
  5119. mode->clock = intel_crtc_clock_get(dev, crtc);
  5120. mode->hdisplay = (htot & 0xffff) + 1;
  5121. mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
  5122. mode->hsync_start = (hsync & 0xffff) + 1;
  5123. mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
  5124. mode->vdisplay = (vtot & 0xffff) + 1;
  5125. mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
  5126. mode->vsync_start = (vsync & 0xffff) + 1;
  5127. mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
  5128. drm_mode_set_name(mode);
  5129. return mode;
  5130. }
  5131. static void intel_increase_pllclock(struct drm_crtc *crtc)
  5132. {
  5133. struct drm_device *dev = crtc->dev;
  5134. drm_i915_private_t *dev_priv = dev->dev_private;
  5135. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5136. int pipe = intel_crtc->pipe;
  5137. int dpll_reg = DPLL(pipe);
  5138. int dpll;
  5139. if (HAS_PCH_SPLIT(dev))
  5140. return;
  5141. if (!dev_priv->lvds_downclock_avail)
  5142. return;
  5143. dpll = I915_READ(dpll_reg);
  5144. if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) {
  5145. DRM_DEBUG_DRIVER("upclocking LVDS\n");
  5146. assert_panel_unlocked(dev_priv, pipe);
  5147. dpll &= ~DISPLAY_RATE_SELECT_FPA1;
  5148. I915_WRITE(dpll_reg, dpll);
  5149. intel_wait_for_vblank(dev, pipe);
  5150. dpll = I915_READ(dpll_reg);
  5151. if (dpll & DISPLAY_RATE_SELECT_FPA1)
  5152. DRM_DEBUG_DRIVER("failed to upclock LVDS!\n");
  5153. }
  5154. }
  5155. static void intel_decrease_pllclock(struct drm_crtc *crtc)
  5156. {
  5157. struct drm_device *dev = crtc->dev;
  5158. drm_i915_private_t *dev_priv = dev->dev_private;
  5159. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5160. if (HAS_PCH_SPLIT(dev))
  5161. return;
  5162. if (!dev_priv->lvds_downclock_avail)
  5163. return;
  5164. /*
  5165. * Since this is called by a timer, we should never get here in
  5166. * the manual case.
  5167. */
  5168. if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
  5169. int pipe = intel_crtc->pipe;
  5170. int dpll_reg = DPLL(pipe);
  5171. int dpll;
  5172. DRM_DEBUG_DRIVER("downclocking LVDS\n");
  5173. assert_panel_unlocked(dev_priv, pipe);
  5174. dpll = I915_READ(dpll_reg);
  5175. dpll |= DISPLAY_RATE_SELECT_FPA1;
  5176. I915_WRITE(dpll_reg, dpll);
  5177. intel_wait_for_vblank(dev, pipe);
  5178. dpll = I915_READ(dpll_reg);
  5179. if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
  5180. DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
  5181. }
  5182. }
  5183. void intel_mark_busy(struct drm_device *dev)
  5184. {
  5185. i915_update_gfx_val(dev->dev_private);
  5186. }
  5187. void intel_mark_idle(struct drm_device *dev)
  5188. {
  5189. }
  5190. void intel_mark_fb_busy(struct drm_i915_gem_object *obj)
  5191. {
  5192. struct drm_device *dev = obj->base.dev;
  5193. struct drm_crtc *crtc;
  5194. if (!i915_powersave)
  5195. return;
  5196. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  5197. if (!crtc->fb)
  5198. continue;
  5199. if (to_intel_framebuffer(crtc->fb)->obj == obj)
  5200. intel_increase_pllclock(crtc);
  5201. }
  5202. }
  5203. void intel_mark_fb_idle(struct drm_i915_gem_object *obj)
  5204. {
  5205. struct drm_device *dev = obj->base.dev;
  5206. struct drm_crtc *crtc;
  5207. if (!i915_powersave)
  5208. return;
  5209. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  5210. if (!crtc->fb)
  5211. continue;
  5212. if (to_intel_framebuffer(crtc->fb)->obj == obj)
  5213. intel_decrease_pllclock(crtc);
  5214. }
  5215. }
  5216. static void intel_crtc_destroy(struct drm_crtc *crtc)
  5217. {
  5218. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5219. struct drm_device *dev = crtc->dev;
  5220. struct intel_unpin_work *work;
  5221. unsigned long flags;
  5222. spin_lock_irqsave(&dev->event_lock, flags);
  5223. work = intel_crtc->unpin_work;
  5224. intel_crtc->unpin_work = NULL;
  5225. spin_unlock_irqrestore(&dev->event_lock, flags);
  5226. if (work) {
  5227. cancel_work_sync(&work->work);
  5228. kfree(work);
  5229. }
  5230. drm_crtc_cleanup(crtc);
  5231. kfree(intel_crtc);
  5232. }
  5233. static void intel_unpin_work_fn(struct work_struct *__work)
  5234. {
  5235. struct intel_unpin_work *work =
  5236. container_of(__work, struct intel_unpin_work, work);
  5237. mutex_lock(&work->dev->struct_mutex);
  5238. intel_unpin_fb_obj(work->old_fb_obj);
  5239. drm_gem_object_unreference(&work->pending_flip_obj->base);
  5240. drm_gem_object_unreference(&work->old_fb_obj->base);
  5241. intel_update_fbc(work->dev);
  5242. mutex_unlock(&work->dev->struct_mutex);
  5243. kfree(work);
  5244. }
  5245. static void do_intel_finish_page_flip(struct drm_device *dev,
  5246. struct drm_crtc *crtc)
  5247. {
  5248. drm_i915_private_t *dev_priv = dev->dev_private;
  5249. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5250. struct intel_unpin_work *work;
  5251. struct drm_i915_gem_object *obj;
  5252. struct drm_pending_vblank_event *e;
  5253. struct timeval tnow, tvbl;
  5254. unsigned long flags;
  5255. /* Ignore early vblank irqs */
  5256. if (intel_crtc == NULL)
  5257. return;
  5258. do_gettimeofday(&tnow);
  5259. spin_lock_irqsave(&dev->event_lock, flags);
  5260. work = intel_crtc->unpin_work;
  5261. if (work == NULL || !work->pending) {
  5262. spin_unlock_irqrestore(&dev->event_lock, flags);
  5263. return;
  5264. }
  5265. intel_crtc->unpin_work = NULL;
  5266. if (work->event) {
  5267. e = work->event;
  5268. e->event.sequence = drm_vblank_count_and_time(dev, intel_crtc->pipe, &tvbl);
  5269. /* Called before vblank count and timestamps have
  5270. * been updated for the vblank interval of flip
  5271. * completion? Need to increment vblank count and
  5272. * add one videorefresh duration to returned timestamp
  5273. * to account for this. We assume this happened if we
  5274. * get called over 0.9 frame durations after the last
  5275. * timestamped vblank.
  5276. *
  5277. * This calculation can not be used with vrefresh rates
  5278. * below 5Hz (10Hz to be on the safe side) without
  5279. * promoting to 64 integers.
  5280. */
  5281. if (10 * (timeval_to_ns(&tnow) - timeval_to_ns(&tvbl)) >
  5282. 9 * crtc->framedur_ns) {
  5283. e->event.sequence++;
  5284. tvbl = ns_to_timeval(timeval_to_ns(&tvbl) +
  5285. crtc->framedur_ns);
  5286. }
  5287. e->event.tv_sec = tvbl.tv_sec;
  5288. e->event.tv_usec = tvbl.tv_usec;
  5289. list_add_tail(&e->base.link,
  5290. &e->base.file_priv->event_list);
  5291. wake_up_interruptible(&e->base.file_priv->event_wait);
  5292. }
  5293. drm_vblank_put(dev, intel_crtc->pipe);
  5294. spin_unlock_irqrestore(&dev->event_lock, flags);
  5295. obj = work->old_fb_obj;
  5296. atomic_clear_mask(1 << intel_crtc->plane,
  5297. &obj->pending_flip.counter);
  5298. if (atomic_read(&obj->pending_flip) == 0)
  5299. wake_up(&dev_priv->pending_flip_queue);
  5300. schedule_work(&work->work);
  5301. trace_i915_flip_complete(intel_crtc->plane, work->pending_flip_obj);
  5302. }
  5303. void intel_finish_page_flip(struct drm_device *dev, int pipe)
  5304. {
  5305. drm_i915_private_t *dev_priv = dev->dev_private;
  5306. struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
  5307. do_intel_finish_page_flip(dev, crtc);
  5308. }
  5309. void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
  5310. {
  5311. drm_i915_private_t *dev_priv = dev->dev_private;
  5312. struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
  5313. do_intel_finish_page_flip(dev, crtc);
  5314. }
  5315. void intel_prepare_page_flip(struct drm_device *dev, int plane)
  5316. {
  5317. drm_i915_private_t *dev_priv = dev->dev_private;
  5318. struct intel_crtc *intel_crtc =
  5319. to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
  5320. unsigned long flags;
  5321. spin_lock_irqsave(&dev->event_lock, flags);
  5322. if (intel_crtc->unpin_work) {
  5323. if ((++intel_crtc->unpin_work->pending) > 1)
  5324. DRM_ERROR("Prepared flip multiple times\n");
  5325. } else {
  5326. DRM_DEBUG_DRIVER("preparing flip with no unpin work?\n");
  5327. }
  5328. spin_unlock_irqrestore(&dev->event_lock, flags);
  5329. }
  5330. static int intel_gen2_queue_flip(struct drm_device *dev,
  5331. struct drm_crtc *crtc,
  5332. struct drm_framebuffer *fb,
  5333. struct drm_i915_gem_object *obj)
  5334. {
  5335. struct drm_i915_private *dev_priv = dev->dev_private;
  5336. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5337. u32 flip_mask;
  5338. struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
  5339. int ret;
  5340. ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
  5341. if (ret)
  5342. goto err;
  5343. ret = intel_ring_begin(ring, 6);
  5344. if (ret)
  5345. goto err_unpin;
  5346. /* Can't queue multiple flips, so wait for the previous
  5347. * one to finish before executing the next.
  5348. */
  5349. if (intel_crtc->plane)
  5350. flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
  5351. else
  5352. flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
  5353. intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
  5354. intel_ring_emit(ring, MI_NOOP);
  5355. intel_ring_emit(ring, MI_DISPLAY_FLIP |
  5356. MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
  5357. intel_ring_emit(ring, fb->pitches[0]);
  5358. intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
  5359. intel_ring_emit(ring, 0); /* aux display base address, unused */
  5360. intel_ring_advance(ring);
  5361. return 0;
  5362. err_unpin:
  5363. intel_unpin_fb_obj(obj);
  5364. err:
  5365. return ret;
  5366. }
  5367. static int intel_gen3_queue_flip(struct drm_device *dev,
  5368. struct drm_crtc *crtc,
  5369. struct drm_framebuffer *fb,
  5370. struct drm_i915_gem_object *obj)
  5371. {
  5372. struct drm_i915_private *dev_priv = dev->dev_private;
  5373. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5374. u32 flip_mask;
  5375. struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
  5376. int ret;
  5377. ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
  5378. if (ret)
  5379. goto err;
  5380. ret = intel_ring_begin(ring, 6);
  5381. if (ret)
  5382. goto err_unpin;
  5383. if (intel_crtc->plane)
  5384. flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
  5385. else
  5386. flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
  5387. intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
  5388. intel_ring_emit(ring, MI_NOOP);
  5389. intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
  5390. MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
  5391. intel_ring_emit(ring, fb->pitches[0]);
  5392. intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
  5393. intel_ring_emit(ring, MI_NOOP);
  5394. intel_ring_advance(ring);
  5395. return 0;
  5396. err_unpin:
  5397. intel_unpin_fb_obj(obj);
  5398. err:
  5399. return ret;
  5400. }
  5401. static int intel_gen4_queue_flip(struct drm_device *dev,
  5402. struct drm_crtc *crtc,
  5403. struct drm_framebuffer *fb,
  5404. struct drm_i915_gem_object *obj)
  5405. {
  5406. struct drm_i915_private *dev_priv = dev->dev_private;
  5407. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5408. uint32_t pf, pipesrc;
  5409. struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
  5410. int ret;
  5411. ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
  5412. if (ret)
  5413. goto err;
  5414. ret = intel_ring_begin(ring, 4);
  5415. if (ret)
  5416. goto err_unpin;
  5417. /* i965+ uses the linear or tiled offsets from the
  5418. * Display Registers (which do not change across a page-flip)
  5419. * so we need only reprogram the base address.
  5420. */
  5421. intel_ring_emit(ring, MI_DISPLAY_FLIP |
  5422. MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
  5423. intel_ring_emit(ring, fb->pitches[0]);
  5424. intel_ring_emit(ring,
  5425. (obj->gtt_offset + intel_crtc->dspaddr_offset) |
  5426. obj->tiling_mode);
  5427. /* XXX Enabling the panel-fitter across page-flip is so far
  5428. * untested on non-native modes, so ignore it for now.
  5429. * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
  5430. */
  5431. pf = 0;
  5432. pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
  5433. intel_ring_emit(ring, pf | pipesrc);
  5434. intel_ring_advance(ring);
  5435. return 0;
  5436. err_unpin:
  5437. intel_unpin_fb_obj(obj);
  5438. err:
  5439. return ret;
  5440. }
  5441. static int intel_gen6_queue_flip(struct drm_device *dev,
  5442. struct drm_crtc *crtc,
  5443. struct drm_framebuffer *fb,
  5444. struct drm_i915_gem_object *obj)
  5445. {
  5446. struct drm_i915_private *dev_priv = dev->dev_private;
  5447. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5448. struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
  5449. uint32_t pf, pipesrc;
  5450. int ret;
  5451. ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
  5452. if (ret)
  5453. goto err;
  5454. ret = intel_ring_begin(ring, 4);
  5455. if (ret)
  5456. goto err_unpin;
  5457. intel_ring_emit(ring, MI_DISPLAY_FLIP |
  5458. MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
  5459. intel_ring_emit(ring, fb->pitches[0] | obj->tiling_mode);
  5460. intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
  5461. /* Contrary to the suggestions in the documentation,
  5462. * "Enable Panel Fitter" does not seem to be required when page
  5463. * flipping with a non-native mode, and worse causes a normal
  5464. * modeset to fail.
  5465. * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
  5466. */
  5467. pf = 0;
  5468. pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
  5469. intel_ring_emit(ring, pf | pipesrc);
  5470. intel_ring_advance(ring);
  5471. return 0;
  5472. err_unpin:
  5473. intel_unpin_fb_obj(obj);
  5474. err:
  5475. return ret;
  5476. }
  5477. /*
  5478. * On gen7 we currently use the blit ring because (in early silicon at least)
  5479. * the render ring doesn't give us interrpts for page flip completion, which
  5480. * means clients will hang after the first flip is queued. Fortunately the
  5481. * blit ring generates interrupts properly, so use it instead.
  5482. */
  5483. static int intel_gen7_queue_flip(struct drm_device *dev,
  5484. struct drm_crtc *crtc,
  5485. struct drm_framebuffer *fb,
  5486. struct drm_i915_gem_object *obj)
  5487. {
  5488. struct drm_i915_private *dev_priv = dev->dev_private;
  5489. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5490. struct intel_ring_buffer *ring = &dev_priv->ring[BCS];
  5491. uint32_t plane_bit = 0;
  5492. int ret;
  5493. ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
  5494. if (ret)
  5495. goto err;
  5496. switch(intel_crtc->plane) {
  5497. case PLANE_A:
  5498. plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
  5499. break;
  5500. case PLANE_B:
  5501. plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
  5502. break;
  5503. case PLANE_C:
  5504. plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
  5505. break;
  5506. default:
  5507. WARN_ONCE(1, "unknown plane in flip command\n");
  5508. ret = -ENODEV;
  5509. goto err_unpin;
  5510. }
  5511. ret = intel_ring_begin(ring, 4);
  5512. if (ret)
  5513. goto err_unpin;
  5514. intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
  5515. intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
  5516. intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
  5517. intel_ring_emit(ring, (MI_NOOP));
  5518. intel_ring_advance(ring);
  5519. return 0;
  5520. err_unpin:
  5521. intel_unpin_fb_obj(obj);
  5522. err:
  5523. return ret;
  5524. }
  5525. static int intel_default_queue_flip(struct drm_device *dev,
  5526. struct drm_crtc *crtc,
  5527. struct drm_framebuffer *fb,
  5528. struct drm_i915_gem_object *obj)
  5529. {
  5530. return -ENODEV;
  5531. }
  5532. static int intel_crtc_page_flip(struct drm_crtc *crtc,
  5533. struct drm_framebuffer *fb,
  5534. struct drm_pending_vblank_event *event)
  5535. {
  5536. struct drm_device *dev = crtc->dev;
  5537. struct drm_i915_private *dev_priv = dev->dev_private;
  5538. struct intel_framebuffer *intel_fb;
  5539. struct drm_i915_gem_object *obj;
  5540. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5541. struct intel_unpin_work *work;
  5542. unsigned long flags;
  5543. int ret;
  5544. /* Can't change pixel format via MI display flips. */
  5545. if (fb->pixel_format != crtc->fb->pixel_format)
  5546. return -EINVAL;
  5547. /*
  5548. * TILEOFF/LINOFF registers can't be changed via MI display flips.
  5549. * Note that pitch changes could also affect these register.
  5550. */
  5551. if (INTEL_INFO(dev)->gen > 3 &&
  5552. (fb->offsets[0] != crtc->fb->offsets[0] ||
  5553. fb->pitches[0] != crtc->fb->pitches[0]))
  5554. return -EINVAL;
  5555. work = kzalloc(sizeof *work, GFP_KERNEL);
  5556. if (work == NULL)
  5557. return -ENOMEM;
  5558. work->event = event;
  5559. work->dev = crtc->dev;
  5560. intel_fb = to_intel_framebuffer(crtc->fb);
  5561. work->old_fb_obj = intel_fb->obj;
  5562. INIT_WORK(&work->work, intel_unpin_work_fn);
  5563. ret = drm_vblank_get(dev, intel_crtc->pipe);
  5564. if (ret)
  5565. goto free_work;
  5566. /* We borrow the event spin lock for protecting unpin_work */
  5567. spin_lock_irqsave(&dev->event_lock, flags);
  5568. if (intel_crtc->unpin_work) {
  5569. spin_unlock_irqrestore(&dev->event_lock, flags);
  5570. kfree(work);
  5571. drm_vblank_put(dev, intel_crtc->pipe);
  5572. DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
  5573. return -EBUSY;
  5574. }
  5575. intel_crtc->unpin_work = work;
  5576. spin_unlock_irqrestore(&dev->event_lock, flags);
  5577. intel_fb = to_intel_framebuffer(fb);
  5578. obj = intel_fb->obj;
  5579. ret = i915_mutex_lock_interruptible(dev);
  5580. if (ret)
  5581. goto cleanup;
  5582. /* Reference the objects for the scheduled work. */
  5583. drm_gem_object_reference(&work->old_fb_obj->base);
  5584. drm_gem_object_reference(&obj->base);
  5585. crtc->fb = fb;
  5586. work->pending_flip_obj = obj;
  5587. work->enable_stall_check = true;
  5588. /* Block clients from rendering to the new back buffer until
  5589. * the flip occurs and the object is no longer visible.
  5590. */
  5591. atomic_add(1 << intel_crtc->plane, &work->old_fb_obj->pending_flip);
  5592. ret = dev_priv->display.queue_flip(dev, crtc, fb, obj);
  5593. if (ret)
  5594. goto cleanup_pending;
  5595. intel_disable_fbc(dev);
  5596. intel_mark_fb_busy(obj);
  5597. mutex_unlock(&dev->struct_mutex);
  5598. trace_i915_flip_request(intel_crtc->plane, obj);
  5599. return 0;
  5600. cleanup_pending:
  5601. atomic_sub(1 << intel_crtc->plane, &work->old_fb_obj->pending_flip);
  5602. drm_gem_object_unreference(&work->old_fb_obj->base);
  5603. drm_gem_object_unreference(&obj->base);
  5604. mutex_unlock(&dev->struct_mutex);
  5605. cleanup:
  5606. spin_lock_irqsave(&dev->event_lock, flags);
  5607. intel_crtc->unpin_work = NULL;
  5608. spin_unlock_irqrestore(&dev->event_lock, flags);
  5609. drm_vblank_put(dev, intel_crtc->pipe);
  5610. free_work:
  5611. kfree(work);
  5612. return ret;
  5613. }
  5614. static struct drm_crtc_helper_funcs intel_helper_funcs = {
  5615. .mode_set_base_atomic = intel_pipe_set_base_atomic,
  5616. .load_lut = intel_crtc_load_lut,
  5617. .disable = intel_crtc_noop,
  5618. };
  5619. bool intel_encoder_check_is_cloned(struct intel_encoder *encoder)
  5620. {
  5621. struct intel_encoder *other_encoder;
  5622. struct drm_crtc *crtc = &encoder->new_crtc->base;
  5623. if (WARN_ON(!crtc))
  5624. return false;
  5625. list_for_each_entry(other_encoder,
  5626. &crtc->dev->mode_config.encoder_list,
  5627. base.head) {
  5628. if (&other_encoder->new_crtc->base != crtc ||
  5629. encoder == other_encoder)
  5630. continue;
  5631. else
  5632. return true;
  5633. }
  5634. return false;
  5635. }
  5636. static bool intel_encoder_crtc_ok(struct drm_encoder *encoder,
  5637. struct drm_crtc *crtc)
  5638. {
  5639. struct drm_device *dev;
  5640. struct drm_crtc *tmp;
  5641. int crtc_mask = 1;
  5642. WARN(!crtc, "checking null crtc?\n");
  5643. dev = crtc->dev;
  5644. list_for_each_entry(tmp, &dev->mode_config.crtc_list, head) {
  5645. if (tmp == crtc)
  5646. break;
  5647. crtc_mask <<= 1;
  5648. }
  5649. if (encoder->possible_crtcs & crtc_mask)
  5650. return true;
  5651. return false;
  5652. }
  5653. /**
  5654. * intel_modeset_update_staged_output_state
  5655. *
  5656. * Updates the staged output configuration state, e.g. after we've read out the
  5657. * current hw state.
  5658. */
  5659. static void intel_modeset_update_staged_output_state(struct drm_device *dev)
  5660. {
  5661. struct intel_encoder *encoder;
  5662. struct intel_connector *connector;
  5663. list_for_each_entry(connector, &dev->mode_config.connector_list,
  5664. base.head) {
  5665. connector->new_encoder =
  5666. to_intel_encoder(connector->base.encoder);
  5667. }
  5668. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  5669. base.head) {
  5670. encoder->new_crtc =
  5671. to_intel_crtc(encoder->base.crtc);
  5672. }
  5673. }
  5674. /**
  5675. * intel_modeset_commit_output_state
  5676. *
  5677. * This function copies the stage display pipe configuration to the real one.
  5678. */
  5679. static void intel_modeset_commit_output_state(struct drm_device *dev)
  5680. {
  5681. struct intel_encoder *encoder;
  5682. struct intel_connector *connector;
  5683. list_for_each_entry(connector, &dev->mode_config.connector_list,
  5684. base.head) {
  5685. connector->base.encoder = &connector->new_encoder->base;
  5686. }
  5687. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  5688. base.head) {
  5689. encoder->base.crtc = &encoder->new_crtc->base;
  5690. }
  5691. }
  5692. static struct drm_display_mode *
  5693. intel_modeset_adjusted_mode(struct drm_crtc *crtc,
  5694. struct drm_display_mode *mode)
  5695. {
  5696. struct drm_device *dev = crtc->dev;
  5697. struct drm_display_mode *adjusted_mode;
  5698. struct drm_encoder_helper_funcs *encoder_funcs;
  5699. struct intel_encoder *encoder;
  5700. adjusted_mode = drm_mode_duplicate(dev, mode);
  5701. if (!adjusted_mode)
  5702. return ERR_PTR(-ENOMEM);
  5703. /* Pass our mode to the connectors and the CRTC to give them a chance to
  5704. * adjust it according to limitations or connector properties, and also
  5705. * a chance to reject the mode entirely.
  5706. */
  5707. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  5708. base.head) {
  5709. if (&encoder->new_crtc->base != crtc)
  5710. continue;
  5711. encoder_funcs = encoder->base.helper_private;
  5712. if (!(encoder_funcs->mode_fixup(&encoder->base, mode,
  5713. adjusted_mode))) {
  5714. DRM_DEBUG_KMS("Encoder fixup failed\n");
  5715. goto fail;
  5716. }
  5717. }
  5718. if (!(intel_crtc_mode_fixup(crtc, mode, adjusted_mode))) {
  5719. DRM_DEBUG_KMS("CRTC fixup failed\n");
  5720. goto fail;
  5721. }
  5722. DRM_DEBUG_KMS("[CRTC:%d]\n", crtc->base.id);
  5723. return adjusted_mode;
  5724. fail:
  5725. drm_mode_destroy(dev, adjusted_mode);
  5726. return ERR_PTR(-EINVAL);
  5727. }
  5728. /* Computes which crtcs are affected and sets the relevant bits in the mask. For
  5729. * simplicity we use the crtc's pipe number (because it's easier to obtain). */
  5730. static void
  5731. intel_modeset_affected_pipes(struct drm_crtc *crtc, unsigned *modeset_pipes,
  5732. unsigned *prepare_pipes, unsigned *disable_pipes)
  5733. {
  5734. struct intel_crtc *intel_crtc;
  5735. struct drm_device *dev = crtc->dev;
  5736. struct intel_encoder *encoder;
  5737. struct intel_connector *connector;
  5738. struct drm_crtc *tmp_crtc;
  5739. *disable_pipes = *modeset_pipes = *prepare_pipes = 0;
  5740. /* Check which crtcs have changed outputs connected to them, these need
  5741. * to be part of the prepare_pipes mask. We don't (yet) support global
  5742. * modeset across multiple crtcs, so modeset_pipes will only have one
  5743. * bit set at most. */
  5744. list_for_each_entry(connector, &dev->mode_config.connector_list,
  5745. base.head) {
  5746. if (connector->base.encoder == &connector->new_encoder->base)
  5747. continue;
  5748. if (connector->base.encoder) {
  5749. tmp_crtc = connector->base.encoder->crtc;
  5750. *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
  5751. }
  5752. if (connector->new_encoder)
  5753. *prepare_pipes |=
  5754. 1 << connector->new_encoder->new_crtc->pipe;
  5755. }
  5756. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  5757. base.head) {
  5758. if (encoder->base.crtc == &encoder->new_crtc->base)
  5759. continue;
  5760. if (encoder->base.crtc) {
  5761. tmp_crtc = encoder->base.crtc;
  5762. *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
  5763. }
  5764. if (encoder->new_crtc)
  5765. *prepare_pipes |= 1 << encoder->new_crtc->pipe;
  5766. }
  5767. /* Check for any pipes that will be fully disabled ... */
  5768. list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
  5769. base.head) {
  5770. bool used = false;
  5771. /* Don't try to disable disabled crtcs. */
  5772. if (!intel_crtc->base.enabled)
  5773. continue;
  5774. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  5775. base.head) {
  5776. if (encoder->new_crtc == intel_crtc)
  5777. used = true;
  5778. }
  5779. if (!used)
  5780. *disable_pipes |= 1 << intel_crtc->pipe;
  5781. }
  5782. /* set_mode is also used to update properties on life display pipes. */
  5783. intel_crtc = to_intel_crtc(crtc);
  5784. if (crtc->enabled)
  5785. *prepare_pipes |= 1 << intel_crtc->pipe;
  5786. /* We only support modeset on one single crtc, hence we need to do that
  5787. * only for the passed in crtc iff we change anything else than just
  5788. * disable crtcs.
  5789. *
  5790. * This is actually not true, to be fully compatible with the old crtc
  5791. * helper we automatically disable _any_ output (i.e. doesn't need to be
  5792. * connected to the crtc we're modesetting on) if it's disconnected.
  5793. * Which is a rather nutty api (since changed the output configuration
  5794. * without userspace's explicit request can lead to confusion), but
  5795. * alas. Hence we currently need to modeset on all pipes we prepare. */
  5796. if (*prepare_pipes)
  5797. *modeset_pipes = *prepare_pipes;
  5798. /* ... and mask these out. */
  5799. *modeset_pipes &= ~(*disable_pipes);
  5800. *prepare_pipes &= ~(*disable_pipes);
  5801. }
  5802. static bool intel_crtc_in_use(struct drm_crtc *crtc)
  5803. {
  5804. struct drm_encoder *encoder;
  5805. struct drm_device *dev = crtc->dev;
  5806. list_for_each_entry(encoder, &dev->mode_config.encoder_list, head)
  5807. if (encoder->crtc == crtc)
  5808. return true;
  5809. return false;
  5810. }
  5811. static void
  5812. intel_modeset_update_state(struct drm_device *dev, unsigned prepare_pipes)
  5813. {
  5814. struct intel_encoder *intel_encoder;
  5815. struct intel_crtc *intel_crtc;
  5816. struct drm_connector *connector;
  5817. list_for_each_entry(intel_encoder, &dev->mode_config.encoder_list,
  5818. base.head) {
  5819. if (!intel_encoder->base.crtc)
  5820. continue;
  5821. intel_crtc = to_intel_crtc(intel_encoder->base.crtc);
  5822. if (prepare_pipes & (1 << intel_crtc->pipe))
  5823. intel_encoder->connectors_active = false;
  5824. }
  5825. intel_modeset_commit_output_state(dev);
  5826. /* Update computed state. */
  5827. list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
  5828. base.head) {
  5829. intel_crtc->base.enabled = intel_crtc_in_use(&intel_crtc->base);
  5830. }
  5831. list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
  5832. if (!connector->encoder || !connector->encoder->crtc)
  5833. continue;
  5834. intel_crtc = to_intel_crtc(connector->encoder->crtc);
  5835. if (prepare_pipes & (1 << intel_crtc->pipe)) {
  5836. connector->dpms = DRM_MODE_DPMS_ON;
  5837. intel_encoder = to_intel_encoder(connector->encoder);
  5838. intel_encoder->connectors_active = true;
  5839. }
  5840. }
  5841. }
  5842. #define for_each_intel_crtc_masked(dev, mask, intel_crtc) \
  5843. list_for_each_entry((intel_crtc), \
  5844. &(dev)->mode_config.crtc_list, \
  5845. base.head) \
  5846. if (mask & (1 <<(intel_crtc)->pipe)) \
  5847. static void
  5848. intel_modeset_check_state(struct drm_device *dev)
  5849. {
  5850. struct intel_crtc *crtc;
  5851. struct intel_encoder *encoder;
  5852. struct intel_connector *connector;
  5853. list_for_each_entry(connector, &dev->mode_config.connector_list,
  5854. base.head) {
  5855. /* This also checks the encoder/connector hw state with the
  5856. * ->get_hw_state callbacks. */
  5857. intel_connector_check_state(connector);
  5858. WARN(&connector->new_encoder->base != connector->base.encoder,
  5859. "connector's staged encoder doesn't match current encoder\n");
  5860. }
  5861. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  5862. base.head) {
  5863. bool enabled = false;
  5864. bool active = false;
  5865. enum pipe pipe, tracked_pipe;
  5866. DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
  5867. encoder->base.base.id,
  5868. drm_get_encoder_name(&encoder->base));
  5869. WARN(&encoder->new_crtc->base != encoder->base.crtc,
  5870. "encoder's stage crtc doesn't match current crtc\n");
  5871. WARN(encoder->connectors_active && !encoder->base.crtc,
  5872. "encoder's active_connectors set, but no crtc\n");
  5873. list_for_each_entry(connector, &dev->mode_config.connector_list,
  5874. base.head) {
  5875. if (connector->base.encoder != &encoder->base)
  5876. continue;
  5877. enabled = true;
  5878. if (connector->base.dpms != DRM_MODE_DPMS_OFF)
  5879. active = true;
  5880. }
  5881. WARN(!!encoder->base.crtc != enabled,
  5882. "encoder's enabled state mismatch "
  5883. "(expected %i, found %i)\n",
  5884. !!encoder->base.crtc, enabled);
  5885. WARN(active && !encoder->base.crtc,
  5886. "active encoder with no crtc\n");
  5887. WARN(encoder->connectors_active != active,
  5888. "encoder's computed active state doesn't match tracked active state "
  5889. "(expected %i, found %i)\n", active, encoder->connectors_active);
  5890. active = encoder->get_hw_state(encoder, &pipe);
  5891. WARN(active != encoder->connectors_active,
  5892. "encoder's hw state doesn't match sw tracking "
  5893. "(expected %i, found %i)\n",
  5894. encoder->connectors_active, active);
  5895. if (!encoder->base.crtc)
  5896. continue;
  5897. tracked_pipe = to_intel_crtc(encoder->base.crtc)->pipe;
  5898. WARN(active && pipe != tracked_pipe,
  5899. "active encoder's pipe doesn't match"
  5900. "(expected %i, found %i)\n",
  5901. tracked_pipe, pipe);
  5902. }
  5903. list_for_each_entry(crtc, &dev->mode_config.crtc_list,
  5904. base.head) {
  5905. bool enabled = false;
  5906. bool active = false;
  5907. DRM_DEBUG_KMS("[CRTC:%d]\n",
  5908. crtc->base.base.id);
  5909. WARN(crtc->active && !crtc->base.enabled,
  5910. "active crtc, but not enabled in sw tracking\n");
  5911. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  5912. base.head) {
  5913. if (encoder->base.crtc != &crtc->base)
  5914. continue;
  5915. enabled = true;
  5916. if (encoder->connectors_active)
  5917. active = true;
  5918. }
  5919. WARN(active != crtc->active,
  5920. "crtc's computed active state doesn't match tracked active state "
  5921. "(expected %i, found %i)\n", active, crtc->active);
  5922. WARN(enabled != crtc->base.enabled,
  5923. "crtc's computed enabled state doesn't match tracked enabled state "
  5924. "(expected %i, found %i)\n", enabled, crtc->base.enabled);
  5925. assert_pipe(dev->dev_private, crtc->pipe, crtc->active);
  5926. }
  5927. }
  5928. bool intel_set_mode(struct drm_crtc *crtc,
  5929. struct drm_display_mode *mode,
  5930. int x, int y, struct drm_framebuffer *fb)
  5931. {
  5932. struct drm_device *dev = crtc->dev;
  5933. drm_i915_private_t *dev_priv = dev->dev_private;
  5934. struct drm_display_mode *adjusted_mode, saved_mode, saved_hwmode;
  5935. struct drm_encoder_helper_funcs *encoder_funcs;
  5936. struct drm_encoder *encoder;
  5937. struct intel_crtc *intel_crtc;
  5938. unsigned disable_pipes, prepare_pipes, modeset_pipes;
  5939. bool ret = true;
  5940. intel_modeset_affected_pipes(crtc, &modeset_pipes,
  5941. &prepare_pipes, &disable_pipes);
  5942. DRM_DEBUG_KMS("set mode pipe masks: modeset: %x, prepare: %x, disable: %x\n",
  5943. modeset_pipes, prepare_pipes, disable_pipes);
  5944. for_each_intel_crtc_masked(dev, disable_pipes, intel_crtc)
  5945. intel_crtc_disable(&intel_crtc->base);
  5946. saved_hwmode = crtc->hwmode;
  5947. saved_mode = crtc->mode;
  5948. /* Hack: Because we don't (yet) support global modeset on multiple
  5949. * crtcs, we don't keep track of the new mode for more than one crtc.
  5950. * Hence simply check whether any bit is set in modeset_pipes in all the
  5951. * pieces of code that are not yet converted to deal with mutliple crtcs
  5952. * changing their mode at the same time. */
  5953. adjusted_mode = NULL;
  5954. if (modeset_pipes) {
  5955. adjusted_mode = intel_modeset_adjusted_mode(crtc, mode);
  5956. if (IS_ERR(adjusted_mode)) {
  5957. return false;
  5958. }
  5959. }
  5960. for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
  5961. if (intel_crtc->base.enabled)
  5962. dev_priv->display.crtc_disable(&intel_crtc->base);
  5963. }
  5964. if (modeset_pipes) {
  5965. crtc->mode = *mode;
  5966. crtc->x = x;
  5967. crtc->y = y;
  5968. }
  5969. /* Only after disabling all output pipelines that will be changed can we
  5970. * update the the output configuration. */
  5971. intel_modeset_update_state(dev, prepare_pipes);
  5972. /* Set up the DPLL and any encoders state that needs to adjust or depend
  5973. * on the DPLL.
  5974. */
  5975. for_each_intel_crtc_masked(dev, modeset_pipes, intel_crtc) {
  5976. ret = !intel_crtc_mode_set(&intel_crtc->base,
  5977. mode, adjusted_mode,
  5978. x, y, fb);
  5979. if (!ret)
  5980. goto done;
  5981. list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
  5982. if (encoder->crtc != &intel_crtc->base)
  5983. continue;
  5984. DRM_DEBUG_KMS("[ENCODER:%d:%s] set [MODE:%d:%s]\n",
  5985. encoder->base.id, drm_get_encoder_name(encoder),
  5986. mode->base.id, mode->name);
  5987. encoder_funcs = encoder->helper_private;
  5988. encoder_funcs->mode_set(encoder, mode, adjusted_mode);
  5989. }
  5990. }
  5991. /* Now enable the clocks, plane, pipe, and connectors that we set up. */
  5992. for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc)
  5993. dev_priv->display.crtc_enable(&intel_crtc->base);
  5994. if (modeset_pipes) {
  5995. /* Store real post-adjustment hardware mode. */
  5996. crtc->hwmode = *adjusted_mode;
  5997. /* Calculate and store various constants which
  5998. * are later needed by vblank and swap-completion
  5999. * timestamping. They are derived from true hwmode.
  6000. */
  6001. drm_calc_timestamping_constants(crtc);
  6002. }
  6003. /* FIXME: add subpixel order */
  6004. done:
  6005. drm_mode_destroy(dev, adjusted_mode);
  6006. if (!ret && crtc->enabled) {
  6007. crtc->hwmode = saved_hwmode;
  6008. crtc->mode = saved_mode;
  6009. } else {
  6010. intel_modeset_check_state(dev);
  6011. }
  6012. return ret;
  6013. }
  6014. #undef for_each_intel_crtc_masked
  6015. static void intel_set_config_free(struct intel_set_config *config)
  6016. {
  6017. if (!config)
  6018. return;
  6019. kfree(config->save_connector_encoders);
  6020. kfree(config->save_encoder_crtcs);
  6021. kfree(config);
  6022. }
  6023. static int intel_set_config_save_state(struct drm_device *dev,
  6024. struct intel_set_config *config)
  6025. {
  6026. struct drm_encoder *encoder;
  6027. struct drm_connector *connector;
  6028. int count;
  6029. config->save_encoder_crtcs =
  6030. kcalloc(dev->mode_config.num_encoder,
  6031. sizeof(struct drm_crtc *), GFP_KERNEL);
  6032. if (!config->save_encoder_crtcs)
  6033. return -ENOMEM;
  6034. config->save_connector_encoders =
  6035. kcalloc(dev->mode_config.num_connector,
  6036. sizeof(struct drm_encoder *), GFP_KERNEL);
  6037. if (!config->save_connector_encoders)
  6038. return -ENOMEM;
  6039. /* Copy data. Note that driver private data is not affected.
  6040. * Should anything bad happen only the expected state is
  6041. * restored, not the drivers personal bookkeeping.
  6042. */
  6043. count = 0;
  6044. list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
  6045. config->save_encoder_crtcs[count++] = encoder->crtc;
  6046. }
  6047. count = 0;
  6048. list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
  6049. config->save_connector_encoders[count++] = connector->encoder;
  6050. }
  6051. return 0;
  6052. }
  6053. static void intel_set_config_restore_state(struct drm_device *dev,
  6054. struct intel_set_config *config)
  6055. {
  6056. struct intel_encoder *encoder;
  6057. struct intel_connector *connector;
  6058. int count;
  6059. count = 0;
  6060. list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
  6061. encoder->new_crtc =
  6062. to_intel_crtc(config->save_encoder_crtcs[count++]);
  6063. }
  6064. count = 0;
  6065. list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) {
  6066. connector->new_encoder =
  6067. to_intel_encoder(config->save_connector_encoders[count++]);
  6068. }
  6069. }
  6070. static void
  6071. intel_set_config_compute_mode_changes(struct drm_mode_set *set,
  6072. struct intel_set_config *config)
  6073. {
  6074. /* We should be able to check here if the fb has the same properties
  6075. * and then just flip_or_move it */
  6076. if (set->crtc->fb != set->fb) {
  6077. /* If we have no fb then treat it as a full mode set */
  6078. if (set->crtc->fb == NULL) {
  6079. DRM_DEBUG_KMS("crtc has no fb, full mode set\n");
  6080. config->mode_changed = true;
  6081. } else if (set->fb == NULL) {
  6082. config->mode_changed = true;
  6083. } else if (set->fb->depth != set->crtc->fb->depth) {
  6084. config->mode_changed = true;
  6085. } else if (set->fb->bits_per_pixel !=
  6086. set->crtc->fb->bits_per_pixel) {
  6087. config->mode_changed = true;
  6088. } else
  6089. config->fb_changed = true;
  6090. }
  6091. if (set->fb && (set->x != set->crtc->x || set->y != set->crtc->y))
  6092. config->fb_changed = true;
  6093. if (set->mode && !drm_mode_equal(set->mode, &set->crtc->mode)) {
  6094. DRM_DEBUG_KMS("modes are different, full mode set\n");
  6095. drm_mode_debug_printmodeline(&set->crtc->mode);
  6096. drm_mode_debug_printmodeline(set->mode);
  6097. config->mode_changed = true;
  6098. }
  6099. }
  6100. static int
  6101. intel_modeset_stage_output_state(struct drm_device *dev,
  6102. struct drm_mode_set *set,
  6103. struct intel_set_config *config)
  6104. {
  6105. struct drm_crtc *new_crtc;
  6106. struct intel_connector *connector;
  6107. struct intel_encoder *encoder;
  6108. int count, ro;
  6109. /* The upper layers ensure that we either disabl a crtc or have a list
  6110. * of connectors. For paranoia, double-check this. */
  6111. WARN_ON(!set->fb && (set->num_connectors != 0));
  6112. WARN_ON(set->fb && (set->num_connectors == 0));
  6113. count = 0;
  6114. list_for_each_entry(connector, &dev->mode_config.connector_list,
  6115. base.head) {
  6116. /* Otherwise traverse passed in connector list and get encoders
  6117. * for them. */
  6118. for (ro = 0; ro < set->num_connectors; ro++) {
  6119. if (set->connectors[ro] == &connector->base) {
  6120. connector->new_encoder = connector->encoder;
  6121. break;
  6122. }
  6123. }
  6124. /* If we disable the crtc, disable all its connectors. Also, if
  6125. * the connector is on the changing crtc but not on the new
  6126. * connector list, disable it. */
  6127. if ((!set->fb || ro == set->num_connectors) &&
  6128. connector->base.encoder &&
  6129. connector->base.encoder->crtc == set->crtc) {
  6130. connector->new_encoder = NULL;
  6131. DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [NOCRTC]\n",
  6132. connector->base.base.id,
  6133. drm_get_connector_name(&connector->base));
  6134. }
  6135. if (&connector->new_encoder->base != connector->base.encoder) {
  6136. DRM_DEBUG_KMS("encoder changed, full mode switch\n");
  6137. config->mode_changed = true;
  6138. }
  6139. /* Disable all disconnected encoders. */
  6140. if (connector->base.status == connector_status_disconnected)
  6141. connector->new_encoder = NULL;
  6142. }
  6143. /* connector->new_encoder is now updated for all connectors. */
  6144. /* Update crtc of enabled connectors. */
  6145. count = 0;
  6146. list_for_each_entry(connector, &dev->mode_config.connector_list,
  6147. base.head) {
  6148. if (!connector->new_encoder)
  6149. continue;
  6150. new_crtc = connector->new_encoder->base.crtc;
  6151. for (ro = 0; ro < set->num_connectors; ro++) {
  6152. if (set->connectors[ro] == &connector->base)
  6153. new_crtc = set->crtc;
  6154. }
  6155. /* Make sure the new CRTC will work with the encoder */
  6156. if (!intel_encoder_crtc_ok(&connector->new_encoder->base,
  6157. new_crtc)) {
  6158. return -EINVAL;
  6159. }
  6160. connector->encoder->new_crtc = to_intel_crtc(new_crtc);
  6161. DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [CRTC:%d]\n",
  6162. connector->base.base.id,
  6163. drm_get_connector_name(&connector->base),
  6164. new_crtc->base.id);
  6165. }
  6166. /* Check for any encoders that needs to be disabled. */
  6167. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  6168. base.head) {
  6169. list_for_each_entry(connector,
  6170. &dev->mode_config.connector_list,
  6171. base.head) {
  6172. if (connector->new_encoder == encoder) {
  6173. WARN_ON(!connector->new_encoder->new_crtc);
  6174. goto next_encoder;
  6175. }
  6176. }
  6177. encoder->new_crtc = NULL;
  6178. next_encoder:
  6179. /* Only now check for crtc changes so we don't miss encoders
  6180. * that will be disabled. */
  6181. if (&encoder->new_crtc->base != encoder->base.crtc) {
  6182. DRM_DEBUG_KMS("crtc changed, full mode switch\n");
  6183. config->mode_changed = true;
  6184. }
  6185. }
  6186. /* Now we've also updated encoder->new_crtc for all encoders. */
  6187. return 0;
  6188. }
  6189. static int intel_crtc_set_config(struct drm_mode_set *set)
  6190. {
  6191. struct drm_device *dev;
  6192. struct drm_mode_set save_set;
  6193. struct intel_set_config *config;
  6194. int ret;
  6195. int i;
  6196. BUG_ON(!set);
  6197. BUG_ON(!set->crtc);
  6198. BUG_ON(!set->crtc->helper_private);
  6199. if (!set->mode)
  6200. set->fb = NULL;
  6201. /* The fb helper likes to play gross jokes with ->mode_set_config.
  6202. * Unfortunately the crtc helper doesn't do much at all for this case,
  6203. * so we have to cope with this madness until the fb helper is fixed up. */
  6204. if (set->fb && set->num_connectors == 0)
  6205. return 0;
  6206. if (set->fb) {
  6207. DRM_DEBUG_KMS("[CRTC:%d] [FB:%d] #connectors=%d (x y) (%i %i)\n",
  6208. set->crtc->base.id, set->fb->base.id,
  6209. (int)set->num_connectors, set->x, set->y);
  6210. } else {
  6211. DRM_DEBUG_KMS("[CRTC:%d] [NOFB]\n", set->crtc->base.id);
  6212. }
  6213. dev = set->crtc->dev;
  6214. ret = -ENOMEM;
  6215. config = kzalloc(sizeof(*config), GFP_KERNEL);
  6216. if (!config)
  6217. goto out_config;
  6218. ret = intel_set_config_save_state(dev, config);
  6219. if (ret)
  6220. goto out_config;
  6221. save_set.crtc = set->crtc;
  6222. save_set.mode = &set->crtc->mode;
  6223. save_set.x = set->crtc->x;
  6224. save_set.y = set->crtc->y;
  6225. save_set.fb = set->crtc->fb;
  6226. /* Compute whether we need a full modeset, only an fb base update or no
  6227. * change at all. In the future we might also check whether only the
  6228. * mode changed, e.g. for LVDS where we only change the panel fitter in
  6229. * such cases. */
  6230. intel_set_config_compute_mode_changes(set, config);
  6231. ret = intel_modeset_stage_output_state(dev, set, config);
  6232. if (ret)
  6233. goto fail;
  6234. if (config->mode_changed) {
  6235. if (set->mode) {
  6236. DRM_DEBUG_KMS("attempting to set mode from"
  6237. " userspace\n");
  6238. drm_mode_debug_printmodeline(set->mode);
  6239. }
  6240. if (!intel_set_mode(set->crtc, set->mode,
  6241. set->x, set->y, set->fb)) {
  6242. DRM_ERROR("failed to set mode on [CRTC:%d]\n",
  6243. set->crtc->base.id);
  6244. ret = -EINVAL;
  6245. goto fail;
  6246. }
  6247. if (set->crtc->enabled) {
  6248. DRM_DEBUG_KMS("Setting connector DPMS state to on\n");
  6249. for (i = 0; i < set->num_connectors; i++) {
  6250. DRM_DEBUG_KMS("\t[CONNECTOR:%d:%s] set DPMS on\n", set->connectors[i]->base.id,
  6251. drm_get_connector_name(set->connectors[i]));
  6252. set->connectors[i]->funcs->dpms(set->connectors[i], DRM_MODE_DPMS_ON);
  6253. }
  6254. }
  6255. } else if (config->fb_changed) {
  6256. ret = intel_pipe_set_base(set->crtc,
  6257. set->x, set->y, set->fb);
  6258. }
  6259. intel_set_config_free(config);
  6260. return 0;
  6261. fail:
  6262. intel_set_config_restore_state(dev, config);
  6263. /* Try to restore the config */
  6264. if (config->mode_changed &&
  6265. !intel_set_mode(save_set.crtc, save_set.mode,
  6266. save_set.x, save_set.y, save_set.fb))
  6267. DRM_ERROR("failed to restore config after modeset failure\n");
  6268. out_config:
  6269. intel_set_config_free(config);
  6270. return ret;
  6271. }
  6272. static const struct drm_crtc_funcs intel_crtc_funcs = {
  6273. .cursor_set = intel_crtc_cursor_set,
  6274. .cursor_move = intel_crtc_cursor_move,
  6275. .gamma_set = intel_crtc_gamma_set,
  6276. .set_config = intel_crtc_set_config,
  6277. .destroy = intel_crtc_destroy,
  6278. .page_flip = intel_crtc_page_flip,
  6279. };
  6280. static void intel_pch_pll_init(struct drm_device *dev)
  6281. {
  6282. drm_i915_private_t *dev_priv = dev->dev_private;
  6283. int i;
  6284. if (dev_priv->num_pch_pll == 0) {
  6285. DRM_DEBUG_KMS("No PCH PLLs on this hardware, skipping initialisation\n");
  6286. return;
  6287. }
  6288. for (i = 0; i < dev_priv->num_pch_pll; i++) {
  6289. dev_priv->pch_plls[i].pll_reg = _PCH_DPLL(i);
  6290. dev_priv->pch_plls[i].fp0_reg = _PCH_FP0(i);
  6291. dev_priv->pch_plls[i].fp1_reg = _PCH_FP1(i);
  6292. }
  6293. }
  6294. static void intel_crtc_init(struct drm_device *dev, int pipe)
  6295. {
  6296. drm_i915_private_t *dev_priv = dev->dev_private;
  6297. struct intel_crtc *intel_crtc;
  6298. int i;
  6299. intel_crtc = kzalloc(sizeof(struct intel_crtc) + (INTELFB_CONN_LIMIT * sizeof(struct drm_connector *)), GFP_KERNEL);
  6300. if (intel_crtc == NULL)
  6301. return;
  6302. drm_crtc_init(dev, &intel_crtc->base, &intel_crtc_funcs);
  6303. drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
  6304. for (i = 0; i < 256; i++) {
  6305. intel_crtc->lut_r[i] = i;
  6306. intel_crtc->lut_g[i] = i;
  6307. intel_crtc->lut_b[i] = i;
  6308. }
  6309. /* Swap pipes & planes for FBC on pre-965 */
  6310. intel_crtc->pipe = pipe;
  6311. intel_crtc->plane = pipe;
  6312. if (IS_MOBILE(dev) && IS_GEN3(dev)) {
  6313. DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
  6314. intel_crtc->plane = !pipe;
  6315. }
  6316. BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
  6317. dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
  6318. dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
  6319. dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
  6320. intel_crtc->bpp = 24; /* default for pre-Ironlake */
  6321. drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
  6322. }
  6323. int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
  6324. struct drm_file *file)
  6325. {
  6326. struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
  6327. struct drm_mode_object *drmmode_obj;
  6328. struct intel_crtc *crtc;
  6329. if (!drm_core_check_feature(dev, DRIVER_MODESET))
  6330. return -ENODEV;
  6331. drmmode_obj = drm_mode_object_find(dev, pipe_from_crtc_id->crtc_id,
  6332. DRM_MODE_OBJECT_CRTC);
  6333. if (!drmmode_obj) {
  6334. DRM_ERROR("no such CRTC id\n");
  6335. return -EINVAL;
  6336. }
  6337. crtc = to_intel_crtc(obj_to_crtc(drmmode_obj));
  6338. pipe_from_crtc_id->pipe = crtc->pipe;
  6339. return 0;
  6340. }
  6341. static int intel_encoder_clones(struct intel_encoder *encoder)
  6342. {
  6343. struct drm_device *dev = encoder->base.dev;
  6344. struct intel_encoder *source_encoder;
  6345. int index_mask = 0;
  6346. int entry = 0;
  6347. list_for_each_entry(source_encoder,
  6348. &dev->mode_config.encoder_list, base.head) {
  6349. if (encoder == source_encoder)
  6350. index_mask |= (1 << entry);
  6351. /* Intel hw has only one MUX where enocoders could be cloned. */
  6352. if (encoder->cloneable && source_encoder->cloneable)
  6353. index_mask |= (1 << entry);
  6354. entry++;
  6355. }
  6356. return index_mask;
  6357. }
  6358. static bool has_edp_a(struct drm_device *dev)
  6359. {
  6360. struct drm_i915_private *dev_priv = dev->dev_private;
  6361. if (!IS_MOBILE(dev))
  6362. return false;
  6363. if ((I915_READ(DP_A) & DP_DETECTED) == 0)
  6364. return false;
  6365. if (IS_GEN5(dev) &&
  6366. (I915_READ(ILK_DISPLAY_CHICKEN_FUSES) & ILK_eDP_A_DISABLE))
  6367. return false;
  6368. return true;
  6369. }
  6370. static void intel_setup_outputs(struct drm_device *dev)
  6371. {
  6372. struct drm_i915_private *dev_priv = dev->dev_private;
  6373. struct intel_encoder *encoder;
  6374. bool dpd_is_edp = false;
  6375. bool has_lvds;
  6376. has_lvds = intel_lvds_init(dev);
  6377. if (!has_lvds && !HAS_PCH_SPLIT(dev)) {
  6378. /* disable the panel fitter on everything but LVDS */
  6379. I915_WRITE(PFIT_CONTROL, 0);
  6380. }
  6381. if (HAS_PCH_SPLIT(dev)) {
  6382. dpd_is_edp = intel_dpd_is_edp(dev);
  6383. if (has_edp_a(dev))
  6384. intel_dp_init(dev, DP_A, PORT_A);
  6385. if (dpd_is_edp && (I915_READ(PCH_DP_D) & DP_DETECTED))
  6386. intel_dp_init(dev, PCH_DP_D, PORT_D);
  6387. }
  6388. intel_crt_init(dev);
  6389. if (IS_HASWELL(dev)) {
  6390. int found;
  6391. /* Haswell uses DDI functions to detect digital outputs */
  6392. found = I915_READ(DDI_BUF_CTL_A) & DDI_INIT_DISPLAY_DETECTED;
  6393. /* DDI A only supports eDP */
  6394. if (found)
  6395. intel_ddi_init(dev, PORT_A);
  6396. /* DDI B, C and D detection is indicated by the SFUSE_STRAP
  6397. * register */
  6398. found = I915_READ(SFUSE_STRAP);
  6399. if (found & SFUSE_STRAP_DDIB_DETECTED)
  6400. intel_ddi_init(dev, PORT_B);
  6401. if (found & SFUSE_STRAP_DDIC_DETECTED)
  6402. intel_ddi_init(dev, PORT_C);
  6403. if (found & SFUSE_STRAP_DDID_DETECTED)
  6404. intel_ddi_init(dev, PORT_D);
  6405. } else if (HAS_PCH_SPLIT(dev)) {
  6406. int found;
  6407. if (I915_READ(HDMIB) & PORT_DETECTED) {
  6408. /* PCH SDVOB multiplex with HDMIB */
  6409. found = intel_sdvo_init(dev, PCH_SDVOB, true);
  6410. if (!found)
  6411. intel_hdmi_init(dev, HDMIB, PORT_B);
  6412. if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
  6413. intel_dp_init(dev, PCH_DP_B, PORT_B);
  6414. }
  6415. if (I915_READ(HDMIC) & PORT_DETECTED)
  6416. intel_hdmi_init(dev, HDMIC, PORT_C);
  6417. if (!dpd_is_edp && I915_READ(HDMID) & PORT_DETECTED)
  6418. intel_hdmi_init(dev, HDMID, PORT_D);
  6419. if (I915_READ(PCH_DP_C) & DP_DETECTED)
  6420. intel_dp_init(dev, PCH_DP_C, PORT_C);
  6421. if (!dpd_is_edp && (I915_READ(PCH_DP_D) & DP_DETECTED))
  6422. intel_dp_init(dev, PCH_DP_D, PORT_D);
  6423. } else if (IS_VALLEYVIEW(dev)) {
  6424. int found;
  6425. if (I915_READ(SDVOB) & PORT_DETECTED) {
  6426. /* SDVOB multiplex with HDMIB */
  6427. found = intel_sdvo_init(dev, SDVOB, true);
  6428. if (!found)
  6429. intel_hdmi_init(dev, SDVOB, PORT_B);
  6430. if (!found && (I915_READ(DP_B) & DP_DETECTED))
  6431. intel_dp_init(dev, DP_B, PORT_B);
  6432. }
  6433. if (I915_READ(SDVOC) & PORT_DETECTED)
  6434. intel_hdmi_init(dev, SDVOC, PORT_C);
  6435. /* Shares lanes with HDMI on SDVOC */
  6436. if (I915_READ(DP_C) & DP_DETECTED)
  6437. intel_dp_init(dev, DP_C, PORT_C);
  6438. } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
  6439. bool found = false;
  6440. if (I915_READ(SDVOB) & SDVO_DETECTED) {
  6441. DRM_DEBUG_KMS("probing SDVOB\n");
  6442. found = intel_sdvo_init(dev, SDVOB, true);
  6443. if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
  6444. DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
  6445. intel_hdmi_init(dev, SDVOB, PORT_B);
  6446. }
  6447. if (!found && SUPPORTS_INTEGRATED_DP(dev)) {
  6448. DRM_DEBUG_KMS("probing DP_B\n");
  6449. intel_dp_init(dev, DP_B, PORT_B);
  6450. }
  6451. }
  6452. /* Before G4X SDVOC doesn't have its own detect register */
  6453. if (I915_READ(SDVOB) & SDVO_DETECTED) {
  6454. DRM_DEBUG_KMS("probing SDVOC\n");
  6455. found = intel_sdvo_init(dev, SDVOC, false);
  6456. }
  6457. if (!found && (I915_READ(SDVOC) & SDVO_DETECTED)) {
  6458. if (SUPPORTS_INTEGRATED_HDMI(dev)) {
  6459. DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
  6460. intel_hdmi_init(dev, SDVOC, PORT_C);
  6461. }
  6462. if (SUPPORTS_INTEGRATED_DP(dev)) {
  6463. DRM_DEBUG_KMS("probing DP_C\n");
  6464. intel_dp_init(dev, DP_C, PORT_C);
  6465. }
  6466. }
  6467. if (SUPPORTS_INTEGRATED_DP(dev) &&
  6468. (I915_READ(DP_D) & DP_DETECTED)) {
  6469. DRM_DEBUG_KMS("probing DP_D\n");
  6470. intel_dp_init(dev, DP_D, PORT_D);
  6471. }
  6472. } else if (IS_GEN2(dev))
  6473. intel_dvo_init(dev);
  6474. if (SUPPORTS_TV(dev))
  6475. intel_tv_init(dev);
  6476. list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
  6477. encoder->base.possible_crtcs = encoder->crtc_mask;
  6478. encoder->base.possible_clones =
  6479. intel_encoder_clones(encoder);
  6480. }
  6481. if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
  6482. ironlake_init_pch_refclk(dev);
  6483. }
  6484. static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
  6485. {
  6486. struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
  6487. drm_framebuffer_cleanup(fb);
  6488. drm_gem_object_unreference_unlocked(&intel_fb->obj->base);
  6489. kfree(intel_fb);
  6490. }
  6491. static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
  6492. struct drm_file *file,
  6493. unsigned int *handle)
  6494. {
  6495. struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
  6496. struct drm_i915_gem_object *obj = intel_fb->obj;
  6497. return drm_gem_handle_create(file, &obj->base, handle);
  6498. }
  6499. static const struct drm_framebuffer_funcs intel_fb_funcs = {
  6500. .destroy = intel_user_framebuffer_destroy,
  6501. .create_handle = intel_user_framebuffer_create_handle,
  6502. };
  6503. int intel_framebuffer_init(struct drm_device *dev,
  6504. struct intel_framebuffer *intel_fb,
  6505. struct drm_mode_fb_cmd2 *mode_cmd,
  6506. struct drm_i915_gem_object *obj)
  6507. {
  6508. int ret;
  6509. if (obj->tiling_mode == I915_TILING_Y)
  6510. return -EINVAL;
  6511. if (mode_cmd->pitches[0] & 63)
  6512. return -EINVAL;
  6513. switch (mode_cmd->pixel_format) {
  6514. case DRM_FORMAT_RGB332:
  6515. case DRM_FORMAT_RGB565:
  6516. case DRM_FORMAT_XRGB8888:
  6517. case DRM_FORMAT_XBGR8888:
  6518. case DRM_FORMAT_ARGB8888:
  6519. case DRM_FORMAT_XRGB2101010:
  6520. case DRM_FORMAT_ARGB2101010:
  6521. /* RGB formats are common across chipsets */
  6522. break;
  6523. case DRM_FORMAT_YUYV:
  6524. case DRM_FORMAT_UYVY:
  6525. case DRM_FORMAT_YVYU:
  6526. case DRM_FORMAT_VYUY:
  6527. break;
  6528. default:
  6529. DRM_DEBUG_KMS("unsupported pixel format %u\n",
  6530. mode_cmd->pixel_format);
  6531. return -EINVAL;
  6532. }
  6533. ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
  6534. if (ret) {
  6535. DRM_ERROR("framebuffer init failed %d\n", ret);
  6536. return ret;
  6537. }
  6538. drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
  6539. intel_fb->obj = obj;
  6540. return 0;
  6541. }
  6542. static struct drm_framebuffer *
  6543. intel_user_framebuffer_create(struct drm_device *dev,
  6544. struct drm_file *filp,
  6545. struct drm_mode_fb_cmd2 *mode_cmd)
  6546. {
  6547. struct drm_i915_gem_object *obj;
  6548. obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
  6549. mode_cmd->handles[0]));
  6550. if (&obj->base == NULL)
  6551. return ERR_PTR(-ENOENT);
  6552. return intel_framebuffer_create(dev, mode_cmd, obj);
  6553. }
  6554. static const struct drm_mode_config_funcs intel_mode_funcs = {
  6555. .fb_create = intel_user_framebuffer_create,
  6556. .output_poll_changed = intel_fb_output_poll_changed,
  6557. };
  6558. /* Set up chip specific display functions */
  6559. static void intel_init_display(struct drm_device *dev)
  6560. {
  6561. struct drm_i915_private *dev_priv = dev->dev_private;
  6562. /* We always want a DPMS function */
  6563. if (HAS_PCH_SPLIT(dev)) {
  6564. dev_priv->display.crtc_mode_set = ironlake_crtc_mode_set;
  6565. dev_priv->display.crtc_enable = ironlake_crtc_enable;
  6566. dev_priv->display.crtc_disable = ironlake_crtc_disable;
  6567. dev_priv->display.off = ironlake_crtc_off;
  6568. dev_priv->display.update_plane = ironlake_update_plane;
  6569. } else {
  6570. dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
  6571. dev_priv->display.crtc_enable = i9xx_crtc_enable;
  6572. dev_priv->display.crtc_disable = i9xx_crtc_disable;
  6573. dev_priv->display.off = i9xx_crtc_off;
  6574. dev_priv->display.update_plane = i9xx_update_plane;
  6575. }
  6576. /* Returns the core display clock speed */
  6577. if (IS_VALLEYVIEW(dev))
  6578. dev_priv->display.get_display_clock_speed =
  6579. valleyview_get_display_clock_speed;
  6580. else if (IS_I945G(dev) || (IS_G33(dev) && !IS_PINEVIEW_M(dev)))
  6581. dev_priv->display.get_display_clock_speed =
  6582. i945_get_display_clock_speed;
  6583. else if (IS_I915G(dev))
  6584. dev_priv->display.get_display_clock_speed =
  6585. i915_get_display_clock_speed;
  6586. else if (IS_I945GM(dev) || IS_845G(dev) || IS_PINEVIEW_M(dev))
  6587. dev_priv->display.get_display_clock_speed =
  6588. i9xx_misc_get_display_clock_speed;
  6589. else if (IS_I915GM(dev))
  6590. dev_priv->display.get_display_clock_speed =
  6591. i915gm_get_display_clock_speed;
  6592. else if (IS_I865G(dev))
  6593. dev_priv->display.get_display_clock_speed =
  6594. i865_get_display_clock_speed;
  6595. else if (IS_I85X(dev))
  6596. dev_priv->display.get_display_clock_speed =
  6597. i855_get_display_clock_speed;
  6598. else /* 852, 830 */
  6599. dev_priv->display.get_display_clock_speed =
  6600. i830_get_display_clock_speed;
  6601. if (HAS_PCH_SPLIT(dev)) {
  6602. if (IS_GEN5(dev)) {
  6603. dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
  6604. dev_priv->display.write_eld = ironlake_write_eld;
  6605. } else if (IS_GEN6(dev)) {
  6606. dev_priv->display.fdi_link_train = gen6_fdi_link_train;
  6607. dev_priv->display.write_eld = ironlake_write_eld;
  6608. } else if (IS_IVYBRIDGE(dev)) {
  6609. /* FIXME: detect B0+ stepping and use auto training */
  6610. dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
  6611. dev_priv->display.write_eld = ironlake_write_eld;
  6612. } else if (IS_HASWELL(dev)) {
  6613. dev_priv->display.fdi_link_train = hsw_fdi_link_train;
  6614. dev_priv->display.write_eld = haswell_write_eld;
  6615. } else
  6616. dev_priv->display.update_wm = NULL;
  6617. } else if (IS_G4X(dev)) {
  6618. dev_priv->display.write_eld = g4x_write_eld;
  6619. }
  6620. /* Default just returns -ENODEV to indicate unsupported */
  6621. dev_priv->display.queue_flip = intel_default_queue_flip;
  6622. switch (INTEL_INFO(dev)->gen) {
  6623. case 2:
  6624. dev_priv->display.queue_flip = intel_gen2_queue_flip;
  6625. break;
  6626. case 3:
  6627. dev_priv->display.queue_flip = intel_gen3_queue_flip;
  6628. break;
  6629. case 4:
  6630. case 5:
  6631. dev_priv->display.queue_flip = intel_gen4_queue_flip;
  6632. break;
  6633. case 6:
  6634. dev_priv->display.queue_flip = intel_gen6_queue_flip;
  6635. break;
  6636. case 7:
  6637. dev_priv->display.queue_flip = intel_gen7_queue_flip;
  6638. break;
  6639. }
  6640. }
  6641. /*
  6642. * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
  6643. * resume, or other times. This quirk makes sure that's the case for
  6644. * affected systems.
  6645. */
  6646. static void quirk_pipea_force(struct drm_device *dev)
  6647. {
  6648. struct drm_i915_private *dev_priv = dev->dev_private;
  6649. dev_priv->quirks |= QUIRK_PIPEA_FORCE;
  6650. DRM_INFO("applying pipe a force quirk\n");
  6651. }
  6652. /*
  6653. * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
  6654. */
  6655. static void quirk_ssc_force_disable(struct drm_device *dev)
  6656. {
  6657. struct drm_i915_private *dev_priv = dev->dev_private;
  6658. dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
  6659. DRM_INFO("applying lvds SSC disable quirk\n");
  6660. }
  6661. /*
  6662. * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
  6663. * brightness value
  6664. */
  6665. static void quirk_invert_brightness(struct drm_device *dev)
  6666. {
  6667. struct drm_i915_private *dev_priv = dev->dev_private;
  6668. dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
  6669. DRM_INFO("applying inverted panel brightness quirk\n");
  6670. }
  6671. struct intel_quirk {
  6672. int device;
  6673. int subsystem_vendor;
  6674. int subsystem_device;
  6675. void (*hook)(struct drm_device *dev);
  6676. };
  6677. static struct intel_quirk intel_quirks[] = {
  6678. /* HP Mini needs pipe A force quirk (LP: #322104) */
  6679. { 0x27ae, 0x103c, 0x361a, quirk_pipea_force },
  6680. /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
  6681. { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
  6682. /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
  6683. { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
  6684. /* 855 & before need to leave pipe A & dpll A up */
  6685. { 0x3582, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
  6686. { 0x2562, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
  6687. { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
  6688. /* Lenovo U160 cannot use SSC on LVDS */
  6689. { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
  6690. /* Sony Vaio Y cannot use SSC on LVDS */
  6691. { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
  6692. /* Acer Aspire 5734Z must invert backlight brightness */
  6693. { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
  6694. };
  6695. static void intel_init_quirks(struct drm_device *dev)
  6696. {
  6697. struct pci_dev *d = dev->pdev;
  6698. int i;
  6699. for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
  6700. struct intel_quirk *q = &intel_quirks[i];
  6701. if (d->device == q->device &&
  6702. (d->subsystem_vendor == q->subsystem_vendor ||
  6703. q->subsystem_vendor == PCI_ANY_ID) &&
  6704. (d->subsystem_device == q->subsystem_device ||
  6705. q->subsystem_device == PCI_ANY_ID))
  6706. q->hook(dev);
  6707. }
  6708. }
  6709. /* Disable the VGA plane that we never use */
  6710. static void i915_disable_vga(struct drm_device *dev)
  6711. {
  6712. struct drm_i915_private *dev_priv = dev->dev_private;
  6713. u8 sr1;
  6714. u32 vga_reg;
  6715. if (HAS_PCH_SPLIT(dev))
  6716. vga_reg = CPU_VGACNTRL;
  6717. else
  6718. vga_reg = VGACNTRL;
  6719. vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
  6720. outb(SR01, VGA_SR_INDEX);
  6721. sr1 = inb(VGA_SR_DATA);
  6722. outb(sr1 | 1<<5, VGA_SR_DATA);
  6723. vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
  6724. udelay(300);
  6725. I915_WRITE(vga_reg, VGA_DISP_DISABLE);
  6726. POSTING_READ(vga_reg);
  6727. }
  6728. void intel_modeset_init_hw(struct drm_device *dev)
  6729. {
  6730. /* We attempt to init the necessary power wells early in the initialization
  6731. * time, so the subsystems that expect power to be enabled can work.
  6732. */
  6733. intel_init_power_wells(dev);
  6734. intel_prepare_ddi(dev);
  6735. intel_init_clock_gating(dev);
  6736. mutex_lock(&dev->struct_mutex);
  6737. intel_enable_gt_powersave(dev);
  6738. mutex_unlock(&dev->struct_mutex);
  6739. }
  6740. void intel_modeset_init(struct drm_device *dev)
  6741. {
  6742. struct drm_i915_private *dev_priv = dev->dev_private;
  6743. int i, ret;
  6744. drm_mode_config_init(dev);
  6745. dev->mode_config.min_width = 0;
  6746. dev->mode_config.min_height = 0;
  6747. dev->mode_config.preferred_depth = 24;
  6748. dev->mode_config.prefer_shadow = 1;
  6749. dev->mode_config.funcs = &intel_mode_funcs;
  6750. intel_init_quirks(dev);
  6751. intel_init_pm(dev);
  6752. intel_init_display(dev);
  6753. if (IS_GEN2(dev)) {
  6754. dev->mode_config.max_width = 2048;
  6755. dev->mode_config.max_height = 2048;
  6756. } else if (IS_GEN3(dev)) {
  6757. dev->mode_config.max_width = 4096;
  6758. dev->mode_config.max_height = 4096;
  6759. } else {
  6760. dev->mode_config.max_width = 8192;
  6761. dev->mode_config.max_height = 8192;
  6762. }
  6763. dev->mode_config.fb_base = dev_priv->mm.gtt_base_addr;
  6764. DRM_DEBUG_KMS("%d display pipe%s available.\n",
  6765. dev_priv->num_pipe, dev_priv->num_pipe > 1 ? "s" : "");
  6766. for (i = 0; i < dev_priv->num_pipe; i++) {
  6767. intel_crtc_init(dev, i);
  6768. ret = intel_plane_init(dev, i);
  6769. if (ret)
  6770. DRM_DEBUG_KMS("plane %d init failed: %d\n", i, ret);
  6771. }
  6772. intel_pch_pll_init(dev);
  6773. /* Just disable it once at startup */
  6774. i915_disable_vga(dev);
  6775. intel_setup_outputs(dev);
  6776. }
  6777. static void
  6778. intel_connector_break_all_links(struct intel_connector *connector)
  6779. {
  6780. connector->base.dpms = DRM_MODE_DPMS_OFF;
  6781. connector->base.encoder = NULL;
  6782. connector->encoder->connectors_active = false;
  6783. connector->encoder->base.crtc = NULL;
  6784. }
  6785. static void intel_enable_pipe_a(struct drm_device *dev)
  6786. {
  6787. struct intel_connector *connector;
  6788. struct drm_connector *crt = NULL;
  6789. struct intel_load_detect_pipe load_detect_temp;
  6790. /* We can't just switch on the pipe A, we need to set things up with a
  6791. * proper mode and output configuration. As a gross hack, enable pipe A
  6792. * by enabling the load detect pipe once. */
  6793. list_for_each_entry(connector,
  6794. &dev->mode_config.connector_list,
  6795. base.head) {
  6796. if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
  6797. crt = &connector->base;
  6798. break;
  6799. }
  6800. }
  6801. if (!crt)
  6802. return;
  6803. if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp))
  6804. intel_release_load_detect_pipe(crt, &load_detect_temp);
  6805. }
  6806. static void intel_sanitize_crtc(struct intel_crtc *crtc)
  6807. {
  6808. struct drm_device *dev = crtc->base.dev;
  6809. struct drm_i915_private *dev_priv = dev->dev_private;
  6810. u32 reg, val;
  6811. /* Clear any frame start delays used for debugging left by the BIOS */
  6812. reg = PIPECONF(crtc->pipe);
  6813. I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
  6814. /* We need to sanitize the plane -> pipe mapping first because this will
  6815. * disable the crtc (and hence change the state) if it is wrong. */
  6816. if (!HAS_PCH_SPLIT(dev)) {
  6817. struct intel_connector *connector;
  6818. bool plane;
  6819. reg = DSPCNTR(crtc->plane);
  6820. val = I915_READ(reg);
  6821. if ((val & DISPLAY_PLANE_ENABLE) == 0 &&
  6822. (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
  6823. goto ok;
  6824. DRM_DEBUG_KMS("[CRTC:%d] wrong plane connection detected!\n",
  6825. crtc->base.base.id);
  6826. /* Pipe has the wrong plane attached and the plane is active.
  6827. * Temporarily change the plane mapping and disable everything
  6828. * ... */
  6829. plane = crtc->plane;
  6830. crtc->plane = !plane;
  6831. dev_priv->display.crtc_disable(&crtc->base);
  6832. crtc->plane = plane;
  6833. /* ... and break all links. */
  6834. list_for_each_entry(connector, &dev->mode_config.connector_list,
  6835. base.head) {
  6836. if (connector->encoder->base.crtc != &crtc->base)
  6837. continue;
  6838. intel_connector_break_all_links(connector);
  6839. }
  6840. WARN_ON(crtc->active);
  6841. crtc->base.enabled = false;
  6842. }
  6843. ok:
  6844. if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
  6845. crtc->pipe == PIPE_A && !crtc->active) {
  6846. /* BIOS forgot to enable pipe A, this mostly happens after
  6847. * resume. Force-enable the pipe to fix this, the update_dpms
  6848. * call below we restore the pipe to the right state, but leave
  6849. * the required bits on. */
  6850. intel_enable_pipe_a(dev);
  6851. }
  6852. /* Adjust the state of the output pipe according to whether we
  6853. * have active connectors/encoders. */
  6854. intel_crtc_update_dpms(&crtc->base);
  6855. if (crtc->active != crtc->base.enabled) {
  6856. struct intel_encoder *encoder;
  6857. /* This can happen either due to bugs in the get_hw_state
  6858. * functions or because the pipe is force-enabled due to the
  6859. * pipe A quirk. */
  6860. DRM_DEBUG_KMS("[CRTC:%d] hw state adjusted, was %s, now %s\n",
  6861. crtc->base.base.id,
  6862. crtc->base.enabled ? "enabled" : "disabled",
  6863. crtc->active ? "enabled" : "disabled");
  6864. crtc->base.enabled = crtc->active;
  6865. /* Because we only establish the connector -> encoder ->
  6866. * crtc links if something is active, this means the
  6867. * crtc is now deactivated. Break the links. connector
  6868. * -> encoder links are only establish when things are
  6869. * actually up, hence no need to break them. */
  6870. WARN_ON(crtc->active);
  6871. for_each_encoder_on_crtc(dev, &crtc->base, encoder) {
  6872. WARN_ON(encoder->connectors_active);
  6873. encoder->base.crtc = NULL;
  6874. }
  6875. }
  6876. }
  6877. static void intel_sanitize_encoder(struct intel_encoder *encoder)
  6878. {
  6879. struct intel_connector *connector;
  6880. struct drm_device *dev = encoder->base.dev;
  6881. /* We need to check both for a crtc link (meaning that the
  6882. * encoder is active and trying to read from a pipe) and the
  6883. * pipe itself being active. */
  6884. bool has_active_crtc = encoder->base.crtc &&
  6885. to_intel_crtc(encoder->base.crtc)->active;
  6886. if (encoder->connectors_active && !has_active_crtc) {
  6887. DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
  6888. encoder->base.base.id,
  6889. drm_get_encoder_name(&encoder->base));
  6890. /* Connector is active, but has no active pipe. This is
  6891. * fallout from our resume register restoring. Disable
  6892. * the encoder manually again. */
  6893. if (encoder->base.crtc) {
  6894. DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
  6895. encoder->base.base.id,
  6896. drm_get_encoder_name(&encoder->base));
  6897. encoder->disable(encoder);
  6898. }
  6899. /* Inconsistent output/port/pipe state happens presumably due to
  6900. * a bug in one of the get_hw_state functions. Or someplace else
  6901. * in our code, like the register restore mess on resume. Clamp
  6902. * things to off as a safer default. */
  6903. list_for_each_entry(connector,
  6904. &dev->mode_config.connector_list,
  6905. base.head) {
  6906. if (connector->encoder != encoder)
  6907. continue;
  6908. intel_connector_break_all_links(connector);
  6909. }
  6910. }
  6911. /* Enabled encoders without active connectors will be fixed in
  6912. * the crtc fixup. */
  6913. }
  6914. /* Scan out the current hw modeset state, sanitizes it and maps it into the drm
  6915. * and i915 state tracking structures. */
  6916. void intel_modeset_setup_hw_state(struct drm_device *dev)
  6917. {
  6918. struct drm_i915_private *dev_priv = dev->dev_private;
  6919. enum pipe pipe;
  6920. u32 tmp;
  6921. struct intel_crtc *crtc;
  6922. struct intel_encoder *encoder;
  6923. struct intel_connector *connector;
  6924. for_each_pipe(pipe) {
  6925. crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
  6926. tmp = I915_READ(PIPECONF(pipe));
  6927. if (tmp & PIPECONF_ENABLE)
  6928. crtc->active = true;
  6929. else
  6930. crtc->active = false;
  6931. crtc->base.enabled = crtc->active;
  6932. DRM_DEBUG_KMS("[CRTC:%d] hw state readout: %s\n",
  6933. crtc->base.base.id,
  6934. crtc->active ? "enabled" : "disabled");
  6935. }
  6936. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  6937. base.head) {
  6938. pipe = 0;
  6939. if (encoder->get_hw_state(encoder, &pipe)) {
  6940. encoder->base.crtc =
  6941. dev_priv->pipe_to_crtc_mapping[pipe];
  6942. } else {
  6943. encoder->base.crtc = NULL;
  6944. }
  6945. encoder->connectors_active = false;
  6946. DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe=%i\n",
  6947. encoder->base.base.id,
  6948. drm_get_encoder_name(&encoder->base),
  6949. encoder->base.crtc ? "enabled" : "disabled",
  6950. pipe);
  6951. }
  6952. list_for_each_entry(connector, &dev->mode_config.connector_list,
  6953. base.head) {
  6954. if (connector->get_hw_state(connector)) {
  6955. connector->base.dpms = DRM_MODE_DPMS_ON;
  6956. connector->encoder->connectors_active = true;
  6957. connector->base.encoder = &connector->encoder->base;
  6958. } else {
  6959. connector->base.dpms = DRM_MODE_DPMS_OFF;
  6960. connector->base.encoder = NULL;
  6961. }
  6962. DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
  6963. connector->base.base.id,
  6964. drm_get_connector_name(&connector->base),
  6965. connector->base.encoder ? "enabled" : "disabled");
  6966. }
  6967. /* HW state is read out, now we need to sanitize this mess. */
  6968. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  6969. base.head) {
  6970. intel_sanitize_encoder(encoder);
  6971. }
  6972. for_each_pipe(pipe) {
  6973. crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
  6974. intel_sanitize_crtc(crtc);
  6975. }
  6976. intel_modeset_update_staged_output_state(dev);
  6977. intel_modeset_check_state(dev);
  6978. }
  6979. void intel_modeset_gem_init(struct drm_device *dev)
  6980. {
  6981. intel_modeset_init_hw(dev);
  6982. intel_setup_overlay(dev);
  6983. intel_modeset_setup_hw_state(dev);
  6984. }
  6985. void intel_modeset_cleanup(struct drm_device *dev)
  6986. {
  6987. struct drm_i915_private *dev_priv = dev->dev_private;
  6988. struct drm_crtc *crtc;
  6989. struct intel_crtc *intel_crtc;
  6990. drm_kms_helper_poll_fini(dev);
  6991. mutex_lock(&dev->struct_mutex);
  6992. intel_unregister_dsm_handler();
  6993. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  6994. /* Skip inactive CRTCs */
  6995. if (!crtc->fb)
  6996. continue;
  6997. intel_crtc = to_intel_crtc(crtc);
  6998. intel_increase_pllclock(crtc);
  6999. }
  7000. intel_disable_fbc(dev);
  7001. intel_disable_gt_powersave(dev);
  7002. ironlake_teardown_rc6(dev);
  7003. if (IS_VALLEYVIEW(dev))
  7004. vlv_init_dpio(dev);
  7005. mutex_unlock(&dev->struct_mutex);
  7006. /* Disable the irq before mode object teardown, for the irq might
  7007. * enqueue unpin/hotplug work. */
  7008. drm_irq_uninstall(dev);
  7009. cancel_work_sync(&dev_priv->hotplug_work);
  7010. cancel_work_sync(&dev_priv->rps.work);
  7011. /* flush any delayed tasks or pending work */
  7012. flush_scheduled_work();
  7013. drm_mode_config_cleanup(dev);
  7014. }
  7015. /*
  7016. * Return which encoder is currently attached for connector.
  7017. */
  7018. struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
  7019. {
  7020. return &intel_attached_encoder(connector)->base;
  7021. }
  7022. void intel_connector_attach_encoder(struct intel_connector *connector,
  7023. struct intel_encoder *encoder)
  7024. {
  7025. connector->encoder = encoder;
  7026. drm_mode_connector_attach_encoder(&connector->base,
  7027. &encoder->base);
  7028. }
  7029. /*
  7030. * set vga decode state - true == enable VGA decode
  7031. */
  7032. int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
  7033. {
  7034. struct drm_i915_private *dev_priv = dev->dev_private;
  7035. u16 gmch_ctrl;
  7036. pci_read_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, &gmch_ctrl);
  7037. if (state)
  7038. gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
  7039. else
  7040. gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
  7041. pci_write_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, gmch_ctrl);
  7042. return 0;
  7043. }
  7044. #ifdef CONFIG_DEBUG_FS
  7045. #include <linux/seq_file.h>
  7046. struct intel_display_error_state {
  7047. struct intel_cursor_error_state {
  7048. u32 control;
  7049. u32 position;
  7050. u32 base;
  7051. u32 size;
  7052. } cursor[I915_MAX_PIPES];
  7053. struct intel_pipe_error_state {
  7054. u32 conf;
  7055. u32 source;
  7056. u32 htotal;
  7057. u32 hblank;
  7058. u32 hsync;
  7059. u32 vtotal;
  7060. u32 vblank;
  7061. u32 vsync;
  7062. } pipe[I915_MAX_PIPES];
  7063. struct intel_plane_error_state {
  7064. u32 control;
  7065. u32 stride;
  7066. u32 size;
  7067. u32 pos;
  7068. u32 addr;
  7069. u32 surface;
  7070. u32 tile_offset;
  7071. } plane[I915_MAX_PIPES];
  7072. };
  7073. struct intel_display_error_state *
  7074. intel_display_capture_error_state(struct drm_device *dev)
  7075. {
  7076. drm_i915_private_t *dev_priv = dev->dev_private;
  7077. struct intel_display_error_state *error;
  7078. int i;
  7079. error = kmalloc(sizeof(*error), GFP_ATOMIC);
  7080. if (error == NULL)
  7081. return NULL;
  7082. for_each_pipe(i) {
  7083. error->cursor[i].control = I915_READ(CURCNTR(i));
  7084. error->cursor[i].position = I915_READ(CURPOS(i));
  7085. error->cursor[i].base = I915_READ(CURBASE(i));
  7086. error->plane[i].control = I915_READ(DSPCNTR(i));
  7087. error->plane[i].stride = I915_READ(DSPSTRIDE(i));
  7088. error->plane[i].size = I915_READ(DSPSIZE(i));
  7089. error->plane[i].pos = I915_READ(DSPPOS(i));
  7090. error->plane[i].addr = I915_READ(DSPADDR(i));
  7091. if (INTEL_INFO(dev)->gen >= 4) {
  7092. error->plane[i].surface = I915_READ(DSPSURF(i));
  7093. error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
  7094. }
  7095. error->pipe[i].conf = I915_READ(PIPECONF(i));
  7096. error->pipe[i].source = I915_READ(PIPESRC(i));
  7097. error->pipe[i].htotal = I915_READ(HTOTAL(i));
  7098. error->pipe[i].hblank = I915_READ(HBLANK(i));
  7099. error->pipe[i].hsync = I915_READ(HSYNC(i));
  7100. error->pipe[i].vtotal = I915_READ(VTOTAL(i));
  7101. error->pipe[i].vblank = I915_READ(VBLANK(i));
  7102. error->pipe[i].vsync = I915_READ(VSYNC(i));
  7103. }
  7104. return error;
  7105. }
  7106. void
  7107. intel_display_print_error_state(struct seq_file *m,
  7108. struct drm_device *dev,
  7109. struct intel_display_error_state *error)
  7110. {
  7111. drm_i915_private_t *dev_priv = dev->dev_private;
  7112. int i;
  7113. seq_printf(m, "Num Pipes: %d\n", dev_priv->num_pipe);
  7114. for_each_pipe(i) {
  7115. seq_printf(m, "Pipe [%d]:\n", i);
  7116. seq_printf(m, " CONF: %08x\n", error->pipe[i].conf);
  7117. seq_printf(m, " SRC: %08x\n", error->pipe[i].source);
  7118. seq_printf(m, " HTOTAL: %08x\n", error->pipe[i].htotal);
  7119. seq_printf(m, " HBLANK: %08x\n", error->pipe[i].hblank);
  7120. seq_printf(m, " HSYNC: %08x\n", error->pipe[i].hsync);
  7121. seq_printf(m, " VTOTAL: %08x\n", error->pipe[i].vtotal);
  7122. seq_printf(m, " VBLANK: %08x\n", error->pipe[i].vblank);
  7123. seq_printf(m, " VSYNC: %08x\n", error->pipe[i].vsync);
  7124. seq_printf(m, "Plane [%d]:\n", i);
  7125. seq_printf(m, " CNTR: %08x\n", error->plane[i].control);
  7126. seq_printf(m, " STRIDE: %08x\n", error->plane[i].stride);
  7127. seq_printf(m, " SIZE: %08x\n", error->plane[i].size);
  7128. seq_printf(m, " POS: %08x\n", error->plane[i].pos);
  7129. seq_printf(m, " ADDR: %08x\n", error->plane[i].addr);
  7130. if (INTEL_INFO(dev)->gen >= 4) {
  7131. seq_printf(m, " SURF: %08x\n", error->plane[i].surface);
  7132. seq_printf(m, " TILEOFF: %08x\n", error->plane[i].tile_offset);
  7133. }
  7134. seq_printf(m, "Cursor [%d]:\n", i);
  7135. seq_printf(m, " CNTR: %08x\n", error->cursor[i].control);
  7136. seq_printf(m, " POS: %08x\n", error->cursor[i].position);
  7137. seq_printf(m, " BASE: %08x\n", error->cursor[i].base);
  7138. }
  7139. }
  7140. #endif