cpuset.c 78 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752
  1. /*
  2. * kernel/cpuset.c
  3. *
  4. * Processor and Memory placement constraints for sets of tasks.
  5. *
  6. * Copyright (C) 2003 BULL SA.
  7. * Copyright (C) 2004-2007 Silicon Graphics, Inc.
  8. * Copyright (C) 2006 Google, Inc
  9. *
  10. * Portions derived from Patrick Mochel's sysfs code.
  11. * sysfs is Copyright (c) 2001-3 Patrick Mochel
  12. *
  13. * 2003-10-10 Written by Simon Derr.
  14. * 2003-10-22 Updates by Stephen Hemminger.
  15. * 2004 May-July Rework by Paul Jackson.
  16. * 2006 Rework by Paul Menage to use generic cgroups
  17. * 2008 Rework of the scheduler domains and CPU hotplug handling
  18. * by Max Krasnyansky
  19. *
  20. * This file is subject to the terms and conditions of the GNU General Public
  21. * License. See the file COPYING in the main directory of the Linux
  22. * distribution for more details.
  23. */
  24. #include <linux/cpu.h>
  25. #include <linux/cpumask.h>
  26. #include <linux/cpuset.h>
  27. #include <linux/err.h>
  28. #include <linux/errno.h>
  29. #include <linux/file.h>
  30. #include <linux/fs.h>
  31. #include <linux/init.h>
  32. #include <linux/interrupt.h>
  33. #include <linux/kernel.h>
  34. #include <linux/kmod.h>
  35. #include <linux/list.h>
  36. #include <linux/mempolicy.h>
  37. #include <linux/mm.h>
  38. #include <linux/memory.h>
  39. #include <linux/export.h>
  40. #include <linux/mount.h>
  41. #include <linux/namei.h>
  42. #include <linux/pagemap.h>
  43. #include <linux/proc_fs.h>
  44. #include <linux/rcupdate.h>
  45. #include <linux/sched.h>
  46. #include <linux/seq_file.h>
  47. #include <linux/security.h>
  48. #include <linux/slab.h>
  49. #include <linux/spinlock.h>
  50. #include <linux/stat.h>
  51. #include <linux/string.h>
  52. #include <linux/time.h>
  53. #include <linux/backing-dev.h>
  54. #include <linux/sort.h>
  55. #include <asm/uaccess.h>
  56. #include <linux/atomic.h>
  57. #include <linux/mutex.h>
  58. #include <linux/workqueue.h>
  59. #include <linux/cgroup.h>
  60. #include <linux/wait.h>
  61. /*
  62. * Tracks how many cpusets are currently defined in system.
  63. * When there is only one cpuset (the root cpuset) we can
  64. * short circuit some hooks.
  65. */
  66. int number_of_cpusets __read_mostly;
  67. /* Forward declare cgroup structures */
  68. struct cgroup_subsys cpuset_subsys;
  69. /* See "Frequency meter" comments, below. */
  70. struct fmeter {
  71. int cnt; /* unprocessed events count */
  72. int val; /* most recent output value */
  73. time_t time; /* clock (secs) when val computed */
  74. spinlock_t lock; /* guards read or write of above */
  75. };
  76. struct cpuset {
  77. struct cgroup_subsys_state css;
  78. unsigned long flags; /* "unsigned long" so bitops work */
  79. cpumask_var_t cpus_allowed; /* CPUs allowed to tasks in cpuset */
  80. nodemask_t mems_allowed; /* Memory Nodes allowed to tasks */
  81. /*
  82. * This is old Memory Nodes tasks took on.
  83. *
  84. * - top_cpuset.old_mems_allowed is initialized to mems_allowed.
  85. * - A new cpuset's old_mems_allowed is initialized when some
  86. * task is moved into it.
  87. * - old_mems_allowed is used in cpuset_migrate_mm() when we change
  88. * cpuset.mems_allowed and have tasks' nodemask updated, and
  89. * then old_mems_allowed is updated to mems_allowed.
  90. */
  91. nodemask_t old_mems_allowed;
  92. struct fmeter fmeter; /* memory_pressure filter */
  93. /*
  94. * Tasks are being attached to this cpuset. Used to prevent
  95. * zeroing cpus/mems_allowed between ->can_attach() and ->attach().
  96. */
  97. int attach_in_progress;
  98. /* partition number for rebuild_sched_domains() */
  99. int pn;
  100. /* for custom sched domain */
  101. int relax_domain_level;
  102. };
  103. /* Retrieve the cpuset for a cgroup */
  104. static inline struct cpuset *cgroup_cs(struct cgroup *cgrp)
  105. {
  106. return container_of(cgroup_css(cgrp, cpuset_subsys_id),
  107. struct cpuset, css);
  108. }
  109. /* Retrieve the cpuset for a task */
  110. static inline struct cpuset *task_cs(struct task_struct *task)
  111. {
  112. return container_of(task_css(task, cpuset_subsys_id),
  113. struct cpuset, css);
  114. }
  115. static inline struct cpuset *parent_cs(const struct cpuset *cs)
  116. {
  117. struct cgroup *pcgrp = cs->css.cgroup->parent;
  118. if (pcgrp)
  119. return cgroup_cs(pcgrp);
  120. return NULL;
  121. }
  122. #ifdef CONFIG_NUMA
  123. static inline bool task_has_mempolicy(struct task_struct *task)
  124. {
  125. return task->mempolicy;
  126. }
  127. #else
  128. static inline bool task_has_mempolicy(struct task_struct *task)
  129. {
  130. return false;
  131. }
  132. #endif
  133. /* bits in struct cpuset flags field */
  134. typedef enum {
  135. CS_ONLINE,
  136. CS_CPU_EXCLUSIVE,
  137. CS_MEM_EXCLUSIVE,
  138. CS_MEM_HARDWALL,
  139. CS_MEMORY_MIGRATE,
  140. CS_SCHED_LOAD_BALANCE,
  141. CS_SPREAD_PAGE,
  142. CS_SPREAD_SLAB,
  143. } cpuset_flagbits_t;
  144. /* convenient tests for these bits */
  145. static inline bool is_cpuset_online(const struct cpuset *cs)
  146. {
  147. return test_bit(CS_ONLINE, &cs->flags);
  148. }
  149. static inline int is_cpu_exclusive(const struct cpuset *cs)
  150. {
  151. return test_bit(CS_CPU_EXCLUSIVE, &cs->flags);
  152. }
  153. static inline int is_mem_exclusive(const struct cpuset *cs)
  154. {
  155. return test_bit(CS_MEM_EXCLUSIVE, &cs->flags);
  156. }
  157. static inline int is_mem_hardwall(const struct cpuset *cs)
  158. {
  159. return test_bit(CS_MEM_HARDWALL, &cs->flags);
  160. }
  161. static inline int is_sched_load_balance(const struct cpuset *cs)
  162. {
  163. return test_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
  164. }
  165. static inline int is_memory_migrate(const struct cpuset *cs)
  166. {
  167. return test_bit(CS_MEMORY_MIGRATE, &cs->flags);
  168. }
  169. static inline int is_spread_page(const struct cpuset *cs)
  170. {
  171. return test_bit(CS_SPREAD_PAGE, &cs->flags);
  172. }
  173. static inline int is_spread_slab(const struct cpuset *cs)
  174. {
  175. return test_bit(CS_SPREAD_SLAB, &cs->flags);
  176. }
  177. static struct cpuset top_cpuset = {
  178. .flags = ((1 << CS_ONLINE) | (1 << CS_CPU_EXCLUSIVE) |
  179. (1 << CS_MEM_EXCLUSIVE)),
  180. };
  181. /**
  182. * cpuset_for_each_child - traverse online children of a cpuset
  183. * @child_cs: loop cursor pointing to the current child
  184. * @pos_cgrp: used for iteration
  185. * @parent_cs: target cpuset to walk children of
  186. *
  187. * Walk @child_cs through the online children of @parent_cs. Must be used
  188. * with RCU read locked.
  189. */
  190. #define cpuset_for_each_child(child_cs, pos_cgrp, parent_cs) \
  191. cgroup_for_each_child((pos_cgrp), (parent_cs)->css.cgroup) \
  192. if (is_cpuset_online(((child_cs) = cgroup_cs((pos_cgrp)))))
  193. /**
  194. * cpuset_for_each_descendant_pre - pre-order walk of a cpuset's descendants
  195. * @des_cs: loop cursor pointing to the current descendant
  196. * @pos_cgrp: used for iteration
  197. * @root_cs: target cpuset to walk ancestor of
  198. *
  199. * Walk @des_cs through the online descendants of @root_cs. Must be used
  200. * with RCU read locked. The caller may modify @pos_cgrp by calling
  201. * cgroup_rightmost_descendant() to skip subtree.
  202. */
  203. #define cpuset_for_each_descendant_pre(des_cs, pos_cgrp, root_cs) \
  204. cgroup_for_each_descendant_pre((pos_cgrp), (root_cs)->css.cgroup) \
  205. if (is_cpuset_online(((des_cs) = cgroup_cs((pos_cgrp)))))
  206. /*
  207. * There are two global mutexes guarding cpuset structures - cpuset_mutex
  208. * and callback_mutex. The latter may nest inside the former. We also
  209. * require taking task_lock() when dereferencing a task's cpuset pointer.
  210. * See "The task_lock() exception", at the end of this comment.
  211. *
  212. * A task must hold both mutexes to modify cpusets. If a task holds
  213. * cpuset_mutex, then it blocks others wanting that mutex, ensuring that it
  214. * is the only task able to also acquire callback_mutex and be able to
  215. * modify cpusets. It can perform various checks on the cpuset structure
  216. * first, knowing nothing will change. It can also allocate memory while
  217. * just holding cpuset_mutex. While it is performing these checks, various
  218. * callback routines can briefly acquire callback_mutex to query cpusets.
  219. * Once it is ready to make the changes, it takes callback_mutex, blocking
  220. * everyone else.
  221. *
  222. * Calls to the kernel memory allocator can not be made while holding
  223. * callback_mutex, as that would risk double tripping on callback_mutex
  224. * from one of the callbacks into the cpuset code from within
  225. * __alloc_pages().
  226. *
  227. * If a task is only holding callback_mutex, then it has read-only
  228. * access to cpusets.
  229. *
  230. * Now, the task_struct fields mems_allowed and mempolicy may be changed
  231. * by other task, we use alloc_lock in the task_struct fields to protect
  232. * them.
  233. *
  234. * The cpuset_common_file_read() handlers only hold callback_mutex across
  235. * small pieces of code, such as when reading out possibly multi-word
  236. * cpumasks and nodemasks.
  237. *
  238. * Accessing a task's cpuset should be done in accordance with the
  239. * guidelines for accessing subsystem state in kernel/cgroup.c
  240. */
  241. static DEFINE_MUTEX(cpuset_mutex);
  242. static DEFINE_MUTEX(callback_mutex);
  243. /*
  244. * CPU / memory hotplug is handled asynchronously.
  245. */
  246. static void cpuset_hotplug_workfn(struct work_struct *work);
  247. static DECLARE_WORK(cpuset_hotplug_work, cpuset_hotplug_workfn);
  248. static DECLARE_WAIT_QUEUE_HEAD(cpuset_attach_wq);
  249. /*
  250. * This is ugly, but preserves the userspace API for existing cpuset
  251. * users. If someone tries to mount the "cpuset" filesystem, we
  252. * silently switch it to mount "cgroup" instead
  253. */
  254. static struct dentry *cpuset_mount(struct file_system_type *fs_type,
  255. int flags, const char *unused_dev_name, void *data)
  256. {
  257. struct file_system_type *cgroup_fs = get_fs_type("cgroup");
  258. struct dentry *ret = ERR_PTR(-ENODEV);
  259. if (cgroup_fs) {
  260. char mountopts[] =
  261. "cpuset,noprefix,"
  262. "release_agent=/sbin/cpuset_release_agent";
  263. ret = cgroup_fs->mount(cgroup_fs, flags,
  264. unused_dev_name, mountopts);
  265. put_filesystem(cgroup_fs);
  266. }
  267. return ret;
  268. }
  269. static struct file_system_type cpuset_fs_type = {
  270. .name = "cpuset",
  271. .mount = cpuset_mount,
  272. };
  273. /*
  274. * Return in pmask the portion of a cpusets's cpus_allowed that
  275. * are online. If none are online, walk up the cpuset hierarchy
  276. * until we find one that does have some online cpus. The top
  277. * cpuset always has some cpus online.
  278. *
  279. * One way or another, we guarantee to return some non-empty subset
  280. * of cpu_online_mask.
  281. *
  282. * Call with callback_mutex held.
  283. */
  284. static void guarantee_online_cpus(const struct cpuset *cs,
  285. struct cpumask *pmask)
  286. {
  287. while (!cpumask_intersects(cs->cpus_allowed, cpu_online_mask))
  288. cs = parent_cs(cs);
  289. cpumask_and(pmask, cs->cpus_allowed, cpu_online_mask);
  290. }
  291. /*
  292. * Return in *pmask the portion of a cpusets's mems_allowed that
  293. * are online, with memory. If none are online with memory, walk
  294. * up the cpuset hierarchy until we find one that does have some
  295. * online mems. The top cpuset always has some mems online.
  296. *
  297. * One way or another, we guarantee to return some non-empty subset
  298. * of node_states[N_MEMORY].
  299. *
  300. * Call with callback_mutex held.
  301. */
  302. static void guarantee_online_mems(const struct cpuset *cs, nodemask_t *pmask)
  303. {
  304. while (!nodes_intersects(cs->mems_allowed, node_states[N_MEMORY]))
  305. cs = parent_cs(cs);
  306. nodes_and(*pmask, cs->mems_allowed, node_states[N_MEMORY]);
  307. }
  308. /*
  309. * update task's spread flag if cpuset's page/slab spread flag is set
  310. *
  311. * Called with callback_mutex/cpuset_mutex held
  312. */
  313. static void cpuset_update_task_spread_flag(struct cpuset *cs,
  314. struct task_struct *tsk)
  315. {
  316. if (is_spread_page(cs))
  317. tsk->flags |= PF_SPREAD_PAGE;
  318. else
  319. tsk->flags &= ~PF_SPREAD_PAGE;
  320. if (is_spread_slab(cs))
  321. tsk->flags |= PF_SPREAD_SLAB;
  322. else
  323. tsk->flags &= ~PF_SPREAD_SLAB;
  324. }
  325. /*
  326. * is_cpuset_subset(p, q) - Is cpuset p a subset of cpuset q?
  327. *
  328. * One cpuset is a subset of another if all its allowed CPUs and
  329. * Memory Nodes are a subset of the other, and its exclusive flags
  330. * are only set if the other's are set. Call holding cpuset_mutex.
  331. */
  332. static int is_cpuset_subset(const struct cpuset *p, const struct cpuset *q)
  333. {
  334. return cpumask_subset(p->cpus_allowed, q->cpus_allowed) &&
  335. nodes_subset(p->mems_allowed, q->mems_allowed) &&
  336. is_cpu_exclusive(p) <= is_cpu_exclusive(q) &&
  337. is_mem_exclusive(p) <= is_mem_exclusive(q);
  338. }
  339. /**
  340. * alloc_trial_cpuset - allocate a trial cpuset
  341. * @cs: the cpuset that the trial cpuset duplicates
  342. */
  343. static struct cpuset *alloc_trial_cpuset(const struct cpuset *cs)
  344. {
  345. struct cpuset *trial;
  346. trial = kmemdup(cs, sizeof(*cs), GFP_KERNEL);
  347. if (!trial)
  348. return NULL;
  349. if (!alloc_cpumask_var(&trial->cpus_allowed, GFP_KERNEL)) {
  350. kfree(trial);
  351. return NULL;
  352. }
  353. cpumask_copy(trial->cpus_allowed, cs->cpus_allowed);
  354. return trial;
  355. }
  356. /**
  357. * free_trial_cpuset - free the trial cpuset
  358. * @trial: the trial cpuset to be freed
  359. */
  360. static void free_trial_cpuset(struct cpuset *trial)
  361. {
  362. free_cpumask_var(trial->cpus_allowed);
  363. kfree(trial);
  364. }
  365. /*
  366. * validate_change() - Used to validate that any proposed cpuset change
  367. * follows the structural rules for cpusets.
  368. *
  369. * If we replaced the flag and mask values of the current cpuset
  370. * (cur) with those values in the trial cpuset (trial), would
  371. * our various subset and exclusive rules still be valid? Presumes
  372. * cpuset_mutex held.
  373. *
  374. * 'cur' is the address of an actual, in-use cpuset. Operations
  375. * such as list traversal that depend on the actual address of the
  376. * cpuset in the list must use cur below, not trial.
  377. *
  378. * 'trial' is the address of bulk structure copy of cur, with
  379. * perhaps one or more of the fields cpus_allowed, mems_allowed,
  380. * or flags changed to new, trial values.
  381. *
  382. * Return 0 if valid, -errno if not.
  383. */
  384. static int validate_change(const struct cpuset *cur, const struct cpuset *trial)
  385. {
  386. struct cgroup *cgrp;
  387. struct cpuset *c, *par;
  388. int ret;
  389. rcu_read_lock();
  390. /* Each of our child cpusets must be a subset of us */
  391. ret = -EBUSY;
  392. cpuset_for_each_child(c, cgrp, cur)
  393. if (!is_cpuset_subset(c, trial))
  394. goto out;
  395. /* Remaining checks don't apply to root cpuset */
  396. ret = 0;
  397. if (cur == &top_cpuset)
  398. goto out;
  399. par = parent_cs(cur);
  400. /* We must be a subset of our parent cpuset */
  401. ret = -EACCES;
  402. if (!is_cpuset_subset(trial, par))
  403. goto out;
  404. /*
  405. * If either I or some sibling (!= me) is exclusive, we can't
  406. * overlap
  407. */
  408. ret = -EINVAL;
  409. cpuset_for_each_child(c, cgrp, par) {
  410. if ((is_cpu_exclusive(trial) || is_cpu_exclusive(c)) &&
  411. c != cur &&
  412. cpumask_intersects(trial->cpus_allowed, c->cpus_allowed))
  413. goto out;
  414. if ((is_mem_exclusive(trial) || is_mem_exclusive(c)) &&
  415. c != cur &&
  416. nodes_intersects(trial->mems_allowed, c->mems_allowed))
  417. goto out;
  418. }
  419. /*
  420. * Cpusets with tasks - existing or newly being attached - can't
  421. * have empty cpus_allowed or mems_allowed.
  422. */
  423. ret = -ENOSPC;
  424. if ((cgroup_task_count(cur->css.cgroup) || cur->attach_in_progress) &&
  425. (cpumask_empty(trial->cpus_allowed) &&
  426. nodes_empty(trial->mems_allowed)))
  427. goto out;
  428. ret = 0;
  429. out:
  430. rcu_read_unlock();
  431. return ret;
  432. }
  433. #ifdef CONFIG_SMP
  434. /*
  435. * Helper routine for generate_sched_domains().
  436. * Do cpusets a, b have overlapping cpus_allowed masks?
  437. */
  438. static int cpusets_overlap(struct cpuset *a, struct cpuset *b)
  439. {
  440. return cpumask_intersects(a->cpus_allowed, b->cpus_allowed);
  441. }
  442. static void
  443. update_domain_attr(struct sched_domain_attr *dattr, struct cpuset *c)
  444. {
  445. if (dattr->relax_domain_level < c->relax_domain_level)
  446. dattr->relax_domain_level = c->relax_domain_level;
  447. return;
  448. }
  449. static void update_domain_attr_tree(struct sched_domain_attr *dattr,
  450. struct cpuset *root_cs)
  451. {
  452. struct cpuset *cp;
  453. struct cgroup *pos_cgrp;
  454. rcu_read_lock();
  455. cpuset_for_each_descendant_pre(cp, pos_cgrp, root_cs) {
  456. /* skip the whole subtree if @cp doesn't have any CPU */
  457. if (cpumask_empty(cp->cpus_allowed)) {
  458. pos_cgrp = cgroup_rightmost_descendant(pos_cgrp);
  459. continue;
  460. }
  461. if (is_sched_load_balance(cp))
  462. update_domain_attr(dattr, cp);
  463. }
  464. rcu_read_unlock();
  465. }
  466. /*
  467. * generate_sched_domains()
  468. *
  469. * This function builds a partial partition of the systems CPUs
  470. * A 'partial partition' is a set of non-overlapping subsets whose
  471. * union is a subset of that set.
  472. * The output of this function needs to be passed to kernel/sched/core.c
  473. * partition_sched_domains() routine, which will rebuild the scheduler's
  474. * load balancing domains (sched domains) as specified by that partial
  475. * partition.
  476. *
  477. * See "What is sched_load_balance" in Documentation/cgroups/cpusets.txt
  478. * for a background explanation of this.
  479. *
  480. * Does not return errors, on the theory that the callers of this
  481. * routine would rather not worry about failures to rebuild sched
  482. * domains when operating in the severe memory shortage situations
  483. * that could cause allocation failures below.
  484. *
  485. * Must be called with cpuset_mutex held.
  486. *
  487. * The three key local variables below are:
  488. * q - a linked-list queue of cpuset pointers, used to implement a
  489. * top-down scan of all cpusets. This scan loads a pointer
  490. * to each cpuset marked is_sched_load_balance into the
  491. * array 'csa'. For our purposes, rebuilding the schedulers
  492. * sched domains, we can ignore !is_sched_load_balance cpusets.
  493. * csa - (for CpuSet Array) Array of pointers to all the cpusets
  494. * that need to be load balanced, for convenient iterative
  495. * access by the subsequent code that finds the best partition,
  496. * i.e the set of domains (subsets) of CPUs such that the
  497. * cpus_allowed of every cpuset marked is_sched_load_balance
  498. * is a subset of one of these domains, while there are as
  499. * many such domains as possible, each as small as possible.
  500. * doms - Conversion of 'csa' to an array of cpumasks, for passing to
  501. * the kernel/sched/core.c routine partition_sched_domains() in a
  502. * convenient format, that can be easily compared to the prior
  503. * value to determine what partition elements (sched domains)
  504. * were changed (added or removed.)
  505. *
  506. * Finding the best partition (set of domains):
  507. * The triple nested loops below over i, j, k scan over the
  508. * load balanced cpusets (using the array of cpuset pointers in
  509. * csa[]) looking for pairs of cpusets that have overlapping
  510. * cpus_allowed, but which don't have the same 'pn' partition
  511. * number and gives them in the same partition number. It keeps
  512. * looping on the 'restart' label until it can no longer find
  513. * any such pairs.
  514. *
  515. * The union of the cpus_allowed masks from the set of
  516. * all cpusets having the same 'pn' value then form the one
  517. * element of the partition (one sched domain) to be passed to
  518. * partition_sched_domains().
  519. */
  520. static int generate_sched_domains(cpumask_var_t **domains,
  521. struct sched_domain_attr **attributes)
  522. {
  523. struct cpuset *cp; /* scans q */
  524. struct cpuset **csa; /* array of all cpuset ptrs */
  525. int csn; /* how many cpuset ptrs in csa so far */
  526. int i, j, k; /* indices for partition finding loops */
  527. cpumask_var_t *doms; /* resulting partition; i.e. sched domains */
  528. struct sched_domain_attr *dattr; /* attributes for custom domains */
  529. int ndoms = 0; /* number of sched domains in result */
  530. int nslot; /* next empty doms[] struct cpumask slot */
  531. struct cgroup *pos_cgrp;
  532. doms = NULL;
  533. dattr = NULL;
  534. csa = NULL;
  535. /* Special case for the 99% of systems with one, full, sched domain */
  536. if (is_sched_load_balance(&top_cpuset)) {
  537. ndoms = 1;
  538. doms = alloc_sched_domains(ndoms);
  539. if (!doms)
  540. goto done;
  541. dattr = kmalloc(sizeof(struct sched_domain_attr), GFP_KERNEL);
  542. if (dattr) {
  543. *dattr = SD_ATTR_INIT;
  544. update_domain_attr_tree(dattr, &top_cpuset);
  545. }
  546. cpumask_copy(doms[0], top_cpuset.cpus_allowed);
  547. goto done;
  548. }
  549. csa = kmalloc(number_of_cpusets * sizeof(cp), GFP_KERNEL);
  550. if (!csa)
  551. goto done;
  552. csn = 0;
  553. rcu_read_lock();
  554. cpuset_for_each_descendant_pre(cp, pos_cgrp, &top_cpuset) {
  555. /*
  556. * Continue traversing beyond @cp iff @cp has some CPUs and
  557. * isn't load balancing. The former is obvious. The
  558. * latter: All child cpusets contain a subset of the
  559. * parent's cpus, so just skip them, and then we call
  560. * update_domain_attr_tree() to calc relax_domain_level of
  561. * the corresponding sched domain.
  562. */
  563. if (!cpumask_empty(cp->cpus_allowed) &&
  564. !is_sched_load_balance(cp))
  565. continue;
  566. if (is_sched_load_balance(cp))
  567. csa[csn++] = cp;
  568. /* skip @cp's subtree */
  569. pos_cgrp = cgroup_rightmost_descendant(pos_cgrp);
  570. }
  571. rcu_read_unlock();
  572. for (i = 0; i < csn; i++)
  573. csa[i]->pn = i;
  574. ndoms = csn;
  575. restart:
  576. /* Find the best partition (set of sched domains) */
  577. for (i = 0; i < csn; i++) {
  578. struct cpuset *a = csa[i];
  579. int apn = a->pn;
  580. for (j = 0; j < csn; j++) {
  581. struct cpuset *b = csa[j];
  582. int bpn = b->pn;
  583. if (apn != bpn && cpusets_overlap(a, b)) {
  584. for (k = 0; k < csn; k++) {
  585. struct cpuset *c = csa[k];
  586. if (c->pn == bpn)
  587. c->pn = apn;
  588. }
  589. ndoms--; /* one less element */
  590. goto restart;
  591. }
  592. }
  593. }
  594. /*
  595. * Now we know how many domains to create.
  596. * Convert <csn, csa> to <ndoms, doms> and populate cpu masks.
  597. */
  598. doms = alloc_sched_domains(ndoms);
  599. if (!doms)
  600. goto done;
  601. /*
  602. * The rest of the code, including the scheduler, can deal with
  603. * dattr==NULL case. No need to abort if alloc fails.
  604. */
  605. dattr = kmalloc(ndoms * sizeof(struct sched_domain_attr), GFP_KERNEL);
  606. for (nslot = 0, i = 0; i < csn; i++) {
  607. struct cpuset *a = csa[i];
  608. struct cpumask *dp;
  609. int apn = a->pn;
  610. if (apn < 0) {
  611. /* Skip completed partitions */
  612. continue;
  613. }
  614. dp = doms[nslot];
  615. if (nslot == ndoms) {
  616. static int warnings = 10;
  617. if (warnings) {
  618. printk(KERN_WARNING
  619. "rebuild_sched_domains confused:"
  620. " nslot %d, ndoms %d, csn %d, i %d,"
  621. " apn %d\n",
  622. nslot, ndoms, csn, i, apn);
  623. warnings--;
  624. }
  625. continue;
  626. }
  627. cpumask_clear(dp);
  628. if (dattr)
  629. *(dattr + nslot) = SD_ATTR_INIT;
  630. for (j = i; j < csn; j++) {
  631. struct cpuset *b = csa[j];
  632. if (apn == b->pn) {
  633. cpumask_or(dp, dp, b->cpus_allowed);
  634. if (dattr)
  635. update_domain_attr_tree(dattr + nslot, b);
  636. /* Done with this partition */
  637. b->pn = -1;
  638. }
  639. }
  640. nslot++;
  641. }
  642. BUG_ON(nslot != ndoms);
  643. done:
  644. kfree(csa);
  645. /*
  646. * Fallback to the default domain if kmalloc() failed.
  647. * See comments in partition_sched_domains().
  648. */
  649. if (doms == NULL)
  650. ndoms = 1;
  651. *domains = doms;
  652. *attributes = dattr;
  653. return ndoms;
  654. }
  655. /*
  656. * Rebuild scheduler domains.
  657. *
  658. * If the flag 'sched_load_balance' of any cpuset with non-empty
  659. * 'cpus' changes, or if the 'cpus' allowed changes in any cpuset
  660. * which has that flag enabled, or if any cpuset with a non-empty
  661. * 'cpus' is removed, then call this routine to rebuild the
  662. * scheduler's dynamic sched domains.
  663. *
  664. * Call with cpuset_mutex held. Takes get_online_cpus().
  665. */
  666. static void rebuild_sched_domains_locked(void)
  667. {
  668. struct sched_domain_attr *attr;
  669. cpumask_var_t *doms;
  670. int ndoms;
  671. lockdep_assert_held(&cpuset_mutex);
  672. get_online_cpus();
  673. /*
  674. * We have raced with CPU hotplug. Don't do anything to avoid
  675. * passing doms with offlined cpu to partition_sched_domains().
  676. * Anyways, hotplug work item will rebuild sched domains.
  677. */
  678. if (!cpumask_equal(top_cpuset.cpus_allowed, cpu_active_mask))
  679. goto out;
  680. /* Generate domain masks and attrs */
  681. ndoms = generate_sched_domains(&doms, &attr);
  682. /* Have scheduler rebuild the domains */
  683. partition_sched_domains(ndoms, doms, attr);
  684. out:
  685. put_online_cpus();
  686. }
  687. #else /* !CONFIG_SMP */
  688. static void rebuild_sched_domains_locked(void)
  689. {
  690. }
  691. #endif /* CONFIG_SMP */
  692. void rebuild_sched_domains(void)
  693. {
  694. mutex_lock(&cpuset_mutex);
  695. rebuild_sched_domains_locked();
  696. mutex_unlock(&cpuset_mutex);
  697. }
  698. /*
  699. * effective_cpumask_cpuset - return nearest ancestor with non-empty cpus
  700. * @cs: the cpuset in interest
  701. *
  702. * A cpuset's effective cpumask is the cpumask of the nearest ancestor
  703. * with non-empty cpus. We use effective cpumask whenever:
  704. * - we update tasks' cpus_allowed. (they take on the ancestor's cpumask
  705. * if the cpuset they reside in has no cpus)
  706. * - we want to retrieve task_cs(tsk)'s cpus_allowed.
  707. *
  708. * Called with cpuset_mutex held. cpuset_cpus_allowed_fallback() is an
  709. * exception. See comments there.
  710. */
  711. static struct cpuset *effective_cpumask_cpuset(struct cpuset *cs)
  712. {
  713. while (cpumask_empty(cs->cpus_allowed))
  714. cs = parent_cs(cs);
  715. return cs;
  716. }
  717. /*
  718. * effective_nodemask_cpuset - return nearest ancestor with non-empty mems
  719. * @cs: the cpuset in interest
  720. *
  721. * A cpuset's effective nodemask is the nodemask of the nearest ancestor
  722. * with non-empty memss. We use effective nodemask whenever:
  723. * - we update tasks' mems_allowed. (they take on the ancestor's nodemask
  724. * if the cpuset they reside in has no mems)
  725. * - we want to retrieve task_cs(tsk)'s mems_allowed.
  726. *
  727. * Called with cpuset_mutex held.
  728. */
  729. static struct cpuset *effective_nodemask_cpuset(struct cpuset *cs)
  730. {
  731. while (nodes_empty(cs->mems_allowed))
  732. cs = parent_cs(cs);
  733. return cs;
  734. }
  735. /**
  736. * cpuset_change_cpumask - make a task's cpus_allowed the same as its cpuset's
  737. * @tsk: task to test
  738. * @scan: struct cgroup_scanner containing the cgroup of the task
  739. *
  740. * Called by cgroup_scan_tasks() for each task in a cgroup whose
  741. * cpus_allowed mask needs to be changed.
  742. *
  743. * We don't need to re-check for the cgroup/cpuset membership, since we're
  744. * holding cpuset_mutex at this point.
  745. */
  746. static void cpuset_change_cpumask(struct task_struct *tsk,
  747. struct cgroup_scanner *scan)
  748. {
  749. struct cpuset *cpus_cs;
  750. cpus_cs = effective_cpumask_cpuset(cgroup_cs(scan->cgrp));
  751. set_cpus_allowed_ptr(tsk, cpus_cs->cpus_allowed);
  752. }
  753. /**
  754. * update_tasks_cpumask - Update the cpumasks of tasks in the cpuset.
  755. * @cs: the cpuset in which each task's cpus_allowed mask needs to be changed
  756. * @heap: if NULL, defer allocating heap memory to cgroup_scan_tasks()
  757. *
  758. * Called with cpuset_mutex held
  759. *
  760. * The cgroup_scan_tasks() function will scan all the tasks in a cgroup,
  761. * calling callback functions for each.
  762. *
  763. * No return value. It's guaranteed that cgroup_scan_tasks() always returns 0
  764. * if @heap != NULL.
  765. */
  766. static void update_tasks_cpumask(struct cpuset *cs, struct ptr_heap *heap)
  767. {
  768. struct cgroup_scanner scan;
  769. scan.cgrp = cs->css.cgroup;
  770. scan.test_task = NULL;
  771. scan.process_task = cpuset_change_cpumask;
  772. scan.heap = heap;
  773. cgroup_scan_tasks(&scan);
  774. }
  775. /*
  776. * update_tasks_cpumask_hier - Update the cpumasks of tasks in the hierarchy.
  777. * @root_cs: the root cpuset of the hierarchy
  778. * @update_root: update root cpuset or not?
  779. * @heap: the heap used by cgroup_scan_tasks()
  780. *
  781. * This will update cpumasks of tasks in @root_cs and all other empty cpusets
  782. * which take on cpumask of @root_cs.
  783. *
  784. * Called with cpuset_mutex held
  785. */
  786. static void update_tasks_cpumask_hier(struct cpuset *root_cs,
  787. bool update_root, struct ptr_heap *heap)
  788. {
  789. struct cpuset *cp;
  790. struct cgroup *pos_cgrp;
  791. if (update_root)
  792. update_tasks_cpumask(root_cs, heap);
  793. rcu_read_lock();
  794. cpuset_for_each_descendant_pre(cp, pos_cgrp, root_cs) {
  795. /* skip the whole subtree if @cp have some CPU */
  796. if (!cpumask_empty(cp->cpus_allowed)) {
  797. pos_cgrp = cgroup_rightmost_descendant(pos_cgrp);
  798. continue;
  799. }
  800. if (!css_tryget(&cp->css))
  801. continue;
  802. rcu_read_unlock();
  803. update_tasks_cpumask(cp, heap);
  804. rcu_read_lock();
  805. css_put(&cp->css);
  806. }
  807. rcu_read_unlock();
  808. }
  809. /**
  810. * update_cpumask - update the cpus_allowed mask of a cpuset and all tasks in it
  811. * @cs: the cpuset to consider
  812. * @buf: buffer of cpu numbers written to this cpuset
  813. */
  814. static int update_cpumask(struct cpuset *cs, struct cpuset *trialcs,
  815. const char *buf)
  816. {
  817. struct ptr_heap heap;
  818. int retval;
  819. int is_load_balanced;
  820. /* top_cpuset.cpus_allowed tracks cpu_online_mask; it's read-only */
  821. if (cs == &top_cpuset)
  822. return -EACCES;
  823. /*
  824. * An empty cpus_allowed is ok only if the cpuset has no tasks.
  825. * Since cpulist_parse() fails on an empty mask, we special case
  826. * that parsing. The validate_change() call ensures that cpusets
  827. * with tasks have cpus.
  828. */
  829. if (!*buf) {
  830. cpumask_clear(trialcs->cpus_allowed);
  831. } else {
  832. retval = cpulist_parse(buf, trialcs->cpus_allowed);
  833. if (retval < 0)
  834. return retval;
  835. if (!cpumask_subset(trialcs->cpus_allowed, cpu_active_mask))
  836. return -EINVAL;
  837. }
  838. /* Nothing to do if the cpus didn't change */
  839. if (cpumask_equal(cs->cpus_allowed, trialcs->cpus_allowed))
  840. return 0;
  841. retval = validate_change(cs, trialcs);
  842. if (retval < 0)
  843. return retval;
  844. retval = heap_init(&heap, PAGE_SIZE, GFP_KERNEL, NULL);
  845. if (retval)
  846. return retval;
  847. is_load_balanced = is_sched_load_balance(trialcs);
  848. mutex_lock(&callback_mutex);
  849. cpumask_copy(cs->cpus_allowed, trialcs->cpus_allowed);
  850. mutex_unlock(&callback_mutex);
  851. update_tasks_cpumask_hier(cs, true, &heap);
  852. heap_free(&heap);
  853. if (is_load_balanced)
  854. rebuild_sched_domains_locked();
  855. return 0;
  856. }
  857. /*
  858. * cpuset_migrate_mm
  859. *
  860. * Migrate memory region from one set of nodes to another.
  861. *
  862. * Temporarilly set tasks mems_allowed to target nodes of migration,
  863. * so that the migration code can allocate pages on these nodes.
  864. *
  865. * Call holding cpuset_mutex, so current's cpuset won't change
  866. * during this call, as manage_mutex holds off any cpuset_attach()
  867. * calls. Therefore we don't need to take task_lock around the
  868. * call to guarantee_online_mems(), as we know no one is changing
  869. * our task's cpuset.
  870. *
  871. * While the mm_struct we are migrating is typically from some
  872. * other task, the task_struct mems_allowed that we are hacking
  873. * is for our current task, which must allocate new pages for that
  874. * migrating memory region.
  875. */
  876. static void cpuset_migrate_mm(struct mm_struct *mm, const nodemask_t *from,
  877. const nodemask_t *to)
  878. {
  879. struct task_struct *tsk = current;
  880. struct cpuset *mems_cs;
  881. tsk->mems_allowed = *to;
  882. do_migrate_pages(mm, from, to, MPOL_MF_MOVE_ALL);
  883. mems_cs = effective_nodemask_cpuset(task_cs(tsk));
  884. guarantee_online_mems(mems_cs, &tsk->mems_allowed);
  885. }
  886. /*
  887. * cpuset_change_task_nodemask - change task's mems_allowed and mempolicy
  888. * @tsk: the task to change
  889. * @newmems: new nodes that the task will be set
  890. *
  891. * In order to avoid seeing no nodes if the old and new nodes are disjoint,
  892. * we structure updates as setting all new allowed nodes, then clearing newly
  893. * disallowed ones.
  894. */
  895. static void cpuset_change_task_nodemask(struct task_struct *tsk,
  896. nodemask_t *newmems)
  897. {
  898. bool need_loop;
  899. /*
  900. * Allow tasks that have access to memory reserves because they have
  901. * been OOM killed to get memory anywhere.
  902. */
  903. if (unlikely(test_thread_flag(TIF_MEMDIE)))
  904. return;
  905. if (current->flags & PF_EXITING) /* Let dying task have memory */
  906. return;
  907. task_lock(tsk);
  908. /*
  909. * Determine if a loop is necessary if another thread is doing
  910. * get_mems_allowed(). If at least one node remains unchanged and
  911. * tsk does not have a mempolicy, then an empty nodemask will not be
  912. * possible when mems_allowed is larger than a word.
  913. */
  914. need_loop = task_has_mempolicy(tsk) ||
  915. !nodes_intersects(*newmems, tsk->mems_allowed);
  916. if (need_loop)
  917. write_seqcount_begin(&tsk->mems_allowed_seq);
  918. nodes_or(tsk->mems_allowed, tsk->mems_allowed, *newmems);
  919. mpol_rebind_task(tsk, newmems, MPOL_REBIND_STEP1);
  920. mpol_rebind_task(tsk, newmems, MPOL_REBIND_STEP2);
  921. tsk->mems_allowed = *newmems;
  922. if (need_loop)
  923. write_seqcount_end(&tsk->mems_allowed_seq);
  924. task_unlock(tsk);
  925. }
  926. /*
  927. * Update task's mems_allowed and rebind its mempolicy and vmas' mempolicy
  928. * of it to cpuset's new mems_allowed, and migrate pages to new nodes if
  929. * memory_migrate flag is set. Called with cpuset_mutex held.
  930. */
  931. static void cpuset_change_nodemask(struct task_struct *p,
  932. struct cgroup_scanner *scan)
  933. {
  934. struct cpuset *cs = cgroup_cs(scan->cgrp);
  935. struct mm_struct *mm;
  936. int migrate;
  937. nodemask_t *newmems = scan->data;
  938. cpuset_change_task_nodemask(p, newmems);
  939. mm = get_task_mm(p);
  940. if (!mm)
  941. return;
  942. migrate = is_memory_migrate(cs);
  943. mpol_rebind_mm(mm, &cs->mems_allowed);
  944. if (migrate)
  945. cpuset_migrate_mm(mm, &cs->old_mems_allowed, newmems);
  946. mmput(mm);
  947. }
  948. static void *cpuset_being_rebound;
  949. /**
  950. * update_tasks_nodemask - Update the nodemasks of tasks in the cpuset.
  951. * @cs: the cpuset in which each task's mems_allowed mask needs to be changed
  952. * @heap: if NULL, defer allocating heap memory to cgroup_scan_tasks()
  953. *
  954. * Called with cpuset_mutex held
  955. * No return value. It's guaranteed that cgroup_scan_tasks() always returns 0
  956. * if @heap != NULL.
  957. */
  958. static void update_tasks_nodemask(struct cpuset *cs, struct ptr_heap *heap)
  959. {
  960. static nodemask_t newmems; /* protected by cpuset_mutex */
  961. struct cgroup_scanner scan;
  962. struct cpuset *mems_cs = effective_nodemask_cpuset(cs);
  963. cpuset_being_rebound = cs; /* causes mpol_dup() rebind */
  964. guarantee_online_mems(mems_cs, &newmems);
  965. scan.cgrp = cs->css.cgroup;
  966. scan.test_task = NULL;
  967. scan.process_task = cpuset_change_nodemask;
  968. scan.heap = heap;
  969. scan.data = &newmems;
  970. /*
  971. * The mpol_rebind_mm() call takes mmap_sem, which we couldn't
  972. * take while holding tasklist_lock. Forks can happen - the
  973. * mpol_dup() cpuset_being_rebound check will catch such forks,
  974. * and rebind their vma mempolicies too. Because we still hold
  975. * the global cpuset_mutex, we know that no other rebind effort
  976. * will be contending for the global variable cpuset_being_rebound.
  977. * It's ok if we rebind the same mm twice; mpol_rebind_mm()
  978. * is idempotent. Also migrate pages in each mm to new nodes.
  979. */
  980. cgroup_scan_tasks(&scan);
  981. /*
  982. * All the tasks' nodemasks have been updated, update
  983. * cs->old_mems_allowed.
  984. */
  985. cs->old_mems_allowed = newmems;
  986. /* We're done rebinding vmas to this cpuset's new mems_allowed. */
  987. cpuset_being_rebound = NULL;
  988. }
  989. /*
  990. * update_tasks_nodemask_hier - Update the nodemasks of tasks in the hierarchy.
  991. * @cs: the root cpuset of the hierarchy
  992. * @update_root: update the root cpuset or not?
  993. * @heap: the heap used by cgroup_scan_tasks()
  994. *
  995. * This will update nodemasks of tasks in @root_cs and all other empty cpusets
  996. * which take on nodemask of @root_cs.
  997. *
  998. * Called with cpuset_mutex held
  999. */
  1000. static void update_tasks_nodemask_hier(struct cpuset *root_cs,
  1001. bool update_root, struct ptr_heap *heap)
  1002. {
  1003. struct cpuset *cp;
  1004. struct cgroup *pos_cgrp;
  1005. if (update_root)
  1006. update_tasks_nodemask(root_cs, heap);
  1007. rcu_read_lock();
  1008. cpuset_for_each_descendant_pre(cp, pos_cgrp, root_cs) {
  1009. /* skip the whole subtree if @cp have some CPU */
  1010. if (!nodes_empty(cp->mems_allowed)) {
  1011. pos_cgrp = cgroup_rightmost_descendant(pos_cgrp);
  1012. continue;
  1013. }
  1014. if (!css_tryget(&cp->css))
  1015. continue;
  1016. rcu_read_unlock();
  1017. update_tasks_nodemask(cp, heap);
  1018. rcu_read_lock();
  1019. css_put(&cp->css);
  1020. }
  1021. rcu_read_unlock();
  1022. }
  1023. /*
  1024. * Handle user request to change the 'mems' memory placement
  1025. * of a cpuset. Needs to validate the request, update the
  1026. * cpusets mems_allowed, and for each task in the cpuset,
  1027. * update mems_allowed and rebind task's mempolicy and any vma
  1028. * mempolicies and if the cpuset is marked 'memory_migrate',
  1029. * migrate the tasks pages to the new memory.
  1030. *
  1031. * Call with cpuset_mutex held. May take callback_mutex during call.
  1032. * Will take tasklist_lock, scan tasklist for tasks in cpuset cs,
  1033. * lock each such tasks mm->mmap_sem, scan its vma's and rebind
  1034. * their mempolicies to the cpusets new mems_allowed.
  1035. */
  1036. static int update_nodemask(struct cpuset *cs, struct cpuset *trialcs,
  1037. const char *buf)
  1038. {
  1039. int retval;
  1040. struct ptr_heap heap;
  1041. /*
  1042. * top_cpuset.mems_allowed tracks node_stats[N_MEMORY];
  1043. * it's read-only
  1044. */
  1045. if (cs == &top_cpuset) {
  1046. retval = -EACCES;
  1047. goto done;
  1048. }
  1049. /*
  1050. * An empty mems_allowed is ok iff there are no tasks in the cpuset.
  1051. * Since nodelist_parse() fails on an empty mask, we special case
  1052. * that parsing. The validate_change() call ensures that cpusets
  1053. * with tasks have memory.
  1054. */
  1055. if (!*buf) {
  1056. nodes_clear(trialcs->mems_allowed);
  1057. } else {
  1058. retval = nodelist_parse(buf, trialcs->mems_allowed);
  1059. if (retval < 0)
  1060. goto done;
  1061. if (!nodes_subset(trialcs->mems_allowed,
  1062. node_states[N_MEMORY])) {
  1063. retval = -EINVAL;
  1064. goto done;
  1065. }
  1066. }
  1067. if (nodes_equal(cs->mems_allowed, trialcs->mems_allowed)) {
  1068. retval = 0; /* Too easy - nothing to do */
  1069. goto done;
  1070. }
  1071. retval = validate_change(cs, trialcs);
  1072. if (retval < 0)
  1073. goto done;
  1074. retval = heap_init(&heap, PAGE_SIZE, GFP_KERNEL, NULL);
  1075. if (retval < 0)
  1076. goto done;
  1077. mutex_lock(&callback_mutex);
  1078. cs->mems_allowed = trialcs->mems_allowed;
  1079. mutex_unlock(&callback_mutex);
  1080. update_tasks_nodemask_hier(cs, true, &heap);
  1081. heap_free(&heap);
  1082. done:
  1083. return retval;
  1084. }
  1085. int current_cpuset_is_being_rebound(void)
  1086. {
  1087. return task_cs(current) == cpuset_being_rebound;
  1088. }
  1089. static int update_relax_domain_level(struct cpuset *cs, s64 val)
  1090. {
  1091. #ifdef CONFIG_SMP
  1092. if (val < -1 || val >= sched_domain_level_max)
  1093. return -EINVAL;
  1094. #endif
  1095. if (val != cs->relax_domain_level) {
  1096. cs->relax_domain_level = val;
  1097. if (!cpumask_empty(cs->cpus_allowed) &&
  1098. is_sched_load_balance(cs))
  1099. rebuild_sched_domains_locked();
  1100. }
  1101. return 0;
  1102. }
  1103. /*
  1104. * cpuset_change_flag - make a task's spread flags the same as its cpuset's
  1105. * @tsk: task to be updated
  1106. * @scan: struct cgroup_scanner containing the cgroup of the task
  1107. *
  1108. * Called by cgroup_scan_tasks() for each task in a cgroup.
  1109. *
  1110. * We don't need to re-check for the cgroup/cpuset membership, since we're
  1111. * holding cpuset_mutex at this point.
  1112. */
  1113. static void cpuset_change_flag(struct task_struct *tsk,
  1114. struct cgroup_scanner *scan)
  1115. {
  1116. cpuset_update_task_spread_flag(cgroup_cs(scan->cgrp), tsk);
  1117. }
  1118. /*
  1119. * update_tasks_flags - update the spread flags of tasks in the cpuset.
  1120. * @cs: the cpuset in which each task's spread flags needs to be changed
  1121. * @heap: if NULL, defer allocating heap memory to cgroup_scan_tasks()
  1122. *
  1123. * Called with cpuset_mutex held
  1124. *
  1125. * The cgroup_scan_tasks() function will scan all the tasks in a cgroup,
  1126. * calling callback functions for each.
  1127. *
  1128. * No return value. It's guaranteed that cgroup_scan_tasks() always returns 0
  1129. * if @heap != NULL.
  1130. */
  1131. static void update_tasks_flags(struct cpuset *cs, struct ptr_heap *heap)
  1132. {
  1133. struct cgroup_scanner scan;
  1134. scan.cgrp = cs->css.cgroup;
  1135. scan.test_task = NULL;
  1136. scan.process_task = cpuset_change_flag;
  1137. scan.heap = heap;
  1138. cgroup_scan_tasks(&scan);
  1139. }
  1140. /*
  1141. * update_flag - read a 0 or a 1 in a file and update associated flag
  1142. * bit: the bit to update (see cpuset_flagbits_t)
  1143. * cs: the cpuset to update
  1144. * turning_on: whether the flag is being set or cleared
  1145. *
  1146. * Call with cpuset_mutex held.
  1147. */
  1148. static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs,
  1149. int turning_on)
  1150. {
  1151. struct cpuset *trialcs;
  1152. int balance_flag_changed;
  1153. int spread_flag_changed;
  1154. struct ptr_heap heap;
  1155. int err;
  1156. trialcs = alloc_trial_cpuset(cs);
  1157. if (!trialcs)
  1158. return -ENOMEM;
  1159. if (turning_on)
  1160. set_bit(bit, &trialcs->flags);
  1161. else
  1162. clear_bit(bit, &trialcs->flags);
  1163. err = validate_change(cs, trialcs);
  1164. if (err < 0)
  1165. goto out;
  1166. err = heap_init(&heap, PAGE_SIZE, GFP_KERNEL, NULL);
  1167. if (err < 0)
  1168. goto out;
  1169. balance_flag_changed = (is_sched_load_balance(cs) !=
  1170. is_sched_load_balance(trialcs));
  1171. spread_flag_changed = ((is_spread_slab(cs) != is_spread_slab(trialcs))
  1172. || (is_spread_page(cs) != is_spread_page(trialcs)));
  1173. mutex_lock(&callback_mutex);
  1174. cs->flags = trialcs->flags;
  1175. mutex_unlock(&callback_mutex);
  1176. if (!cpumask_empty(trialcs->cpus_allowed) && balance_flag_changed)
  1177. rebuild_sched_domains_locked();
  1178. if (spread_flag_changed)
  1179. update_tasks_flags(cs, &heap);
  1180. heap_free(&heap);
  1181. out:
  1182. free_trial_cpuset(trialcs);
  1183. return err;
  1184. }
  1185. /*
  1186. * Frequency meter - How fast is some event occurring?
  1187. *
  1188. * These routines manage a digitally filtered, constant time based,
  1189. * event frequency meter. There are four routines:
  1190. * fmeter_init() - initialize a frequency meter.
  1191. * fmeter_markevent() - called each time the event happens.
  1192. * fmeter_getrate() - returns the recent rate of such events.
  1193. * fmeter_update() - internal routine used to update fmeter.
  1194. *
  1195. * A common data structure is passed to each of these routines,
  1196. * which is used to keep track of the state required to manage the
  1197. * frequency meter and its digital filter.
  1198. *
  1199. * The filter works on the number of events marked per unit time.
  1200. * The filter is single-pole low-pass recursive (IIR). The time unit
  1201. * is 1 second. Arithmetic is done using 32-bit integers scaled to
  1202. * simulate 3 decimal digits of precision (multiplied by 1000).
  1203. *
  1204. * With an FM_COEF of 933, and a time base of 1 second, the filter
  1205. * has a half-life of 10 seconds, meaning that if the events quit
  1206. * happening, then the rate returned from the fmeter_getrate()
  1207. * will be cut in half each 10 seconds, until it converges to zero.
  1208. *
  1209. * It is not worth doing a real infinitely recursive filter. If more
  1210. * than FM_MAXTICKS ticks have elapsed since the last filter event,
  1211. * just compute FM_MAXTICKS ticks worth, by which point the level
  1212. * will be stable.
  1213. *
  1214. * Limit the count of unprocessed events to FM_MAXCNT, so as to avoid
  1215. * arithmetic overflow in the fmeter_update() routine.
  1216. *
  1217. * Given the simple 32 bit integer arithmetic used, this meter works
  1218. * best for reporting rates between one per millisecond (msec) and
  1219. * one per 32 (approx) seconds. At constant rates faster than one
  1220. * per msec it maxes out at values just under 1,000,000. At constant
  1221. * rates between one per msec, and one per second it will stabilize
  1222. * to a value N*1000, where N is the rate of events per second.
  1223. * At constant rates between one per second and one per 32 seconds,
  1224. * it will be choppy, moving up on the seconds that have an event,
  1225. * and then decaying until the next event. At rates slower than
  1226. * about one in 32 seconds, it decays all the way back to zero between
  1227. * each event.
  1228. */
  1229. #define FM_COEF 933 /* coefficient for half-life of 10 secs */
  1230. #define FM_MAXTICKS ((time_t)99) /* useless computing more ticks than this */
  1231. #define FM_MAXCNT 1000000 /* limit cnt to avoid overflow */
  1232. #define FM_SCALE 1000 /* faux fixed point scale */
  1233. /* Initialize a frequency meter */
  1234. static void fmeter_init(struct fmeter *fmp)
  1235. {
  1236. fmp->cnt = 0;
  1237. fmp->val = 0;
  1238. fmp->time = 0;
  1239. spin_lock_init(&fmp->lock);
  1240. }
  1241. /* Internal meter update - process cnt events and update value */
  1242. static void fmeter_update(struct fmeter *fmp)
  1243. {
  1244. time_t now = get_seconds();
  1245. time_t ticks = now - fmp->time;
  1246. if (ticks == 0)
  1247. return;
  1248. ticks = min(FM_MAXTICKS, ticks);
  1249. while (ticks-- > 0)
  1250. fmp->val = (FM_COEF * fmp->val) / FM_SCALE;
  1251. fmp->time = now;
  1252. fmp->val += ((FM_SCALE - FM_COEF) * fmp->cnt) / FM_SCALE;
  1253. fmp->cnt = 0;
  1254. }
  1255. /* Process any previous ticks, then bump cnt by one (times scale). */
  1256. static void fmeter_markevent(struct fmeter *fmp)
  1257. {
  1258. spin_lock(&fmp->lock);
  1259. fmeter_update(fmp);
  1260. fmp->cnt = min(FM_MAXCNT, fmp->cnt + FM_SCALE);
  1261. spin_unlock(&fmp->lock);
  1262. }
  1263. /* Process any previous ticks, then return current value. */
  1264. static int fmeter_getrate(struct fmeter *fmp)
  1265. {
  1266. int val;
  1267. spin_lock(&fmp->lock);
  1268. fmeter_update(fmp);
  1269. val = fmp->val;
  1270. spin_unlock(&fmp->lock);
  1271. return val;
  1272. }
  1273. /* Called by cgroups to determine if a cpuset is usable; cpuset_mutex held */
  1274. static int cpuset_can_attach(struct cgroup *cgrp, struct cgroup_taskset *tset)
  1275. {
  1276. struct cpuset *cs = cgroup_cs(cgrp);
  1277. struct task_struct *task;
  1278. int ret;
  1279. mutex_lock(&cpuset_mutex);
  1280. /*
  1281. * We allow to move tasks into an empty cpuset if sane_behavior
  1282. * flag is set.
  1283. */
  1284. ret = -ENOSPC;
  1285. if (!cgroup_sane_behavior(cgrp) &&
  1286. (cpumask_empty(cs->cpus_allowed) || nodes_empty(cs->mems_allowed)))
  1287. goto out_unlock;
  1288. cgroup_taskset_for_each(task, cgrp, tset) {
  1289. /*
  1290. * Kthreads which disallow setaffinity shouldn't be moved
  1291. * to a new cpuset; we don't want to change their cpu
  1292. * affinity and isolating such threads by their set of
  1293. * allowed nodes is unnecessary. Thus, cpusets are not
  1294. * applicable for such threads. This prevents checking for
  1295. * success of set_cpus_allowed_ptr() on all attached tasks
  1296. * before cpus_allowed may be changed.
  1297. */
  1298. ret = -EINVAL;
  1299. if (task->flags & PF_NO_SETAFFINITY)
  1300. goto out_unlock;
  1301. ret = security_task_setscheduler(task);
  1302. if (ret)
  1303. goto out_unlock;
  1304. }
  1305. /*
  1306. * Mark attach is in progress. This makes validate_change() fail
  1307. * changes which zero cpus/mems_allowed.
  1308. */
  1309. cs->attach_in_progress++;
  1310. ret = 0;
  1311. out_unlock:
  1312. mutex_unlock(&cpuset_mutex);
  1313. return ret;
  1314. }
  1315. static void cpuset_cancel_attach(struct cgroup *cgrp,
  1316. struct cgroup_taskset *tset)
  1317. {
  1318. mutex_lock(&cpuset_mutex);
  1319. cgroup_cs(cgrp)->attach_in_progress--;
  1320. mutex_unlock(&cpuset_mutex);
  1321. }
  1322. /*
  1323. * Protected by cpuset_mutex. cpus_attach is used only by cpuset_attach()
  1324. * but we can't allocate it dynamically there. Define it global and
  1325. * allocate from cpuset_init().
  1326. */
  1327. static cpumask_var_t cpus_attach;
  1328. static void cpuset_attach(struct cgroup *cgrp, struct cgroup_taskset *tset)
  1329. {
  1330. /* static buf protected by cpuset_mutex */
  1331. static nodemask_t cpuset_attach_nodemask_to;
  1332. struct mm_struct *mm;
  1333. struct task_struct *task;
  1334. struct task_struct *leader = cgroup_taskset_first(tset);
  1335. struct cgroup *oldcgrp = cgroup_taskset_cur_cgroup(tset);
  1336. struct cpuset *cs = cgroup_cs(cgrp);
  1337. struct cpuset *oldcs = cgroup_cs(oldcgrp);
  1338. struct cpuset *cpus_cs = effective_cpumask_cpuset(cs);
  1339. struct cpuset *mems_cs = effective_nodemask_cpuset(cs);
  1340. mutex_lock(&cpuset_mutex);
  1341. /* prepare for attach */
  1342. if (cs == &top_cpuset)
  1343. cpumask_copy(cpus_attach, cpu_possible_mask);
  1344. else
  1345. guarantee_online_cpus(cpus_cs, cpus_attach);
  1346. guarantee_online_mems(mems_cs, &cpuset_attach_nodemask_to);
  1347. cgroup_taskset_for_each(task, cgrp, tset) {
  1348. /*
  1349. * can_attach beforehand should guarantee that this doesn't
  1350. * fail. TODO: have a better way to handle failure here
  1351. */
  1352. WARN_ON_ONCE(set_cpus_allowed_ptr(task, cpus_attach));
  1353. cpuset_change_task_nodemask(task, &cpuset_attach_nodemask_to);
  1354. cpuset_update_task_spread_flag(cs, task);
  1355. }
  1356. /*
  1357. * Change mm, possibly for multiple threads in a threadgroup. This is
  1358. * expensive and may sleep.
  1359. */
  1360. cpuset_attach_nodemask_to = cs->mems_allowed;
  1361. mm = get_task_mm(leader);
  1362. if (mm) {
  1363. struct cpuset *mems_oldcs = effective_nodemask_cpuset(oldcs);
  1364. mpol_rebind_mm(mm, &cpuset_attach_nodemask_to);
  1365. /*
  1366. * old_mems_allowed is the same with mems_allowed here, except
  1367. * if this task is being moved automatically due to hotplug.
  1368. * In that case @mems_allowed has been updated and is empty,
  1369. * so @old_mems_allowed is the right nodesets that we migrate
  1370. * mm from.
  1371. */
  1372. if (is_memory_migrate(cs)) {
  1373. cpuset_migrate_mm(mm, &mems_oldcs->old_mems_allowed,
  1374. &cpuset_attach_nodemask_to);
  1375. }
  1376. mmput(mm);
  1377. }
  1378. cs->old_mems_allowed = cpuset_attach_nodemask_to;
  1379. cs->attach_in_progress--;
  1380. if (!cs->attach_in_progress)
  1381. wake_up(&cpuset_attach_wq);
  1382. mutex_unlock(&cpuset_mutex);
  1383. }
  1384. /* The various types of files and directories in a cpuset file system */
  1385. typedef enum {
  1386. FILE_MEMORY_MIGRATE,
  1387. FILE_CPULIST,
  1388. FILE_MEMLIST,
  1389. FILE_CPU_EXCLUSIVE,
  1390. FILE_MEM_EXCLUSIVE,
  1391. FILE_MEM_HARDWALL,
  1392. FILE_SCHED_LOAD_BALANCE,
  1393. FILE_SCHED_RELAX_DOMAIN_LEVEL,
  1394. FILE_MEMORY_PRESSURE_ENABLED,
  1395. FILE_MEMORY_PRESSURE,
  1396. FILE_SPREAD_PAGE,
  1397. FILE_SPREAD_SLAB,
  1398. } cpuset_filetype_t;
  1399. static int cpuset_write_u64(struct cgroup *cgrp, struct cftype *cft, u64 val)
  1400. {
  1401. struct cpuset *cs = cgroup_cs(cgrp);
  1402. cpuset_filetype_t type = cft->private;
  1403. int retval = -ENODEV;
  1404. mutex_lock(&cpuset_mutex);
  1405. if (!is_cpuset_online(cs))
  1406. goto out_unlock;
  1407. switch (type) {
  1408. case FILE_CPU_EXCLUSIVE:
  1409. retval = update_flag(CS_CPU_EXCLUSIVE, cs, val);
  1410. break;
  1411. case FILE_MEM_EXCLUSIVE:
  1412. retval = update_flag(CS_MEM_EXCLUSIVE, cs, val);
  1413. break;
  1414. case FILE_MEM_HARDWALL:
  1415. retval = update_flag(CS_MEM_HARDWALL, cs, val);
  1416. break;
  1417. case FILE_SCHED_LOAD_BALANCE:
  1418. retval = update_flag(CS_SCHED_LOAD_BALANCE, cs, val);
  1419. break;
  1420. case FILE_MEMORY_MIGRATE:
  1421. retval = update_flag(CS_MEMORY_MIGRATE, cs, val);
  1422. break;
  1423. case FILE_MEMORY_PRESSURE_ENABLED:
  1424. cpuset_memory_pressure_enabled = !!val;
  1425. break;
  1426. case FILE_MEMORY_PRESSURE:
  1427. retval = -EACCES;
  1428. break;
  1429. case FILE_SPREAD_PAGE:
  1430. retval = update_flag(CS_SPREAD_PAGE, cs, val);
  1431. break;
  1432. case FILE_SPREAD_SLAB:
  1433. retval = update_flag(CS_SPREAD_SLAB, cs, val);
  1434. break;
  1435. default:
  1436. retval = -EINVAL;
  1437. break;
  1438. }
  1439. out_unlock:
  1440. mutex_unlock(&cpuset_mutex);
  1441. return retval;
  1442. }
  1443. static int cpuset_write_s64(struct cgroup *cgrp, struct cftype *cft, s64 val)
  1444. {
  1445. struct cpuset *cs = cgroup_cs(cgrp);
  1446. cpuset_filetype_t type = cft->private;
  1447. int retval = -ENODEV;
  1448. mutex_lock(&cpuset_mutex);
  1449. if (!is_cpuset_online(cs))
  1450. goto out_unlock;
  1451. switch (type) {
  1452. case FILE_SCHED_RELAX_DOMAIN_LEVEL:
  1453. retval = update_relax_domain_level(cs, val);
  1454. break;
  1455. default:
  1456. retval = -EINVAL;
  1457. break;
  1458. }
  1459. out_unlock:
  1460. mutex_unlock(&cpuset_mutex);
  1461. return retval;
  1462. }
  1463. /*
  1464. * Common handling for a write to a "cpus" or "mems" file.
  1465. */
  1466. static int cpuset_write_resmask(struct cgroup *cgrp, struct cftype *cft,
  1467. const char *buf)
  1468. {
  1469. struct cpuset *cs = cgroup_cs(cgrp);
  1470. struct cpuset *trialcs;
  1471. int retval = -ENODEV;
  1472. /*
  1473. * CPU or memory hotunplug may leave @cs w/o any execution
  1474. * resources, in which case the hotplug code asynchronously updates
  1475. * configuration and transfers all tasks to the nearest ancestor
  1476. * which can execute.
  1477. *
  1478. * As writes to "cpus" or "mems" may restore @cs's execution
  1479. * resources, wait for the previously scheduled operations before
  1480. * proceeding, so that we don't end up keep removing tasks added
  1481. * after execution capability is restored.
  1482. */
  1483. flush_work(&cpuset_hotplug_work);
  1484. mutex_lock(&cpuset_mutex);
  1485. if (!is_cpuset_online(cs))
  1486. goto out_unlock;
  1487. trialcs = alloc_trial_cpuset(cs);
  1488. if (!trialcs) {
  1489. retval = -ENOMEM;
  1490. goto out_unlock;
  1491. }
  1492. switch (cft->private) {
  1493. case FILE_CPULIST:
  1494. retval = update_cpumask(cs, trialcs, buf);
  1495. break;
  1496. case FILE_MEMLIST:
  1497. retval = update_nodemask(cs, trialcs, buf);
  1498. break;
  1499. default:
  1500. retval = -EINVAL;
  1501. break;
  1502. }
  1503. free_trial_cpuset(trialcs);
  1504. out_unlock:
  1505. mutex_unlock(&cpuset_mutex);
  1506. return retval;
  1507. }
  1508. /*
  1509. * These ascii lists should be read in a single call, by using a user
  1510. * buffer large enough to hold the entire map. If read in smaller
  1511. * chunks, there is no guarantee of atomicity. Since the display format
  1512. * used, list of ranges of sequential numbers, is variable length,
  1513. * and since these maps can change value dynamically, one could read
  1514. * gibberish by doing partial reads while a list was changing.
  1515. * A single large read to a buffer that crosses a page boundary is
  1516. * ok, because the result being copied to user land is not recomputed
  1517. * across a page fault.
  1518. */
  1519. static size_t cpuset_sprintf_cpulist(char *page, struct cpuset *cs)
  1520. {
  1521. size_t count;
  1522. mutex_lock(&callback_mutex);
  1523. count = cpulist_scnprintf(page, PAGE_SIZE, cs->cpus_allowed);
  1524. mutex_unlock(&callback_mutex);
  1525. return count;
  1526. }
  1527. static size_t cpuset_sprintf_memlist(char *page, struct cpuset *cs)
  1528. {
  1529. size_t count;
  1530. mutex_lock(&callback_mutex);
  1531. count = nodelist_scnprintf(page, PAGE_SIZE, cs->mems_allowed);
  1532. mutex_unlock(&callback_mutex);
  1533. return count;
  1534. }
  1535. static ssize_t cpuset_common_file_read(struct cgroup *cgrp,
  1536. struct cftype *cft,
  1537. struct file *file,
  1538. char __user *buf,
  1539. size_t nbytes, loff_t *ppos)
  1540. {
  1541. struct cpuset *cs = cgroup_cs(cgrp);
  1542. cpuset_filetype_t type = cft->private;
  1543. char *page;
  1544. ssize_t retval = 0;
  1545. char *s;
  1546. if (!(page = (char *)__get_free_page(GFP_TEMPORARY)))
  1547. return -ENOMEM;
  1548. s = page;
  1549. switch (type) {
  1550. case FILE_CPULIST:
  1551. s += cpuset_sprintf_cpulist(s, cs);
  1552. break;
  1553. case FILE_MEMLIST:
  1554. s += cpuset_sprintf_memlist(s, cs);
  1555. break;
  1556. default:
  1557. retval = -EINVAL;
  1558. goto out;
  1559. }
  1560. *s++ = '\n';
  1561. retval = simple_read_from_buffer(buf, nbytes, ppos, page, s - page);
  1562. out:
  1563. free_page((unsigned long)page);
  1564. return retval;
  1565. }
  1566. static u64 cpuset_read_u64(struct cgroup *cgrp, struct cftype *cft)
  1567. {
  1568. struct cpuset *cs = cgroup_cs(cgrp);
  1569. cpuset_filetype_t type = cft->private;
  1570. switch (type) {
  1571. case FILE_CPU_EXCLUSIVE:
  1572. return is_cpu_exclusive(cs);
  1573. case FILE_MEM_EXCLUSIVE:
  1574. return is_mem_exclusive(cs);
  1575. case FILE_MEM_HARDWALL:
  1576. return is_mem_hardwall(cs);
  1577. case FILE_SCHED_LOAD_BALANCE:
  1578. return is_sched_load_balance(cs);
  1579. case FILE_MEMORY_MIGRATE:
  1580. return is_memory_migrate(cs);
  1581. case FILE_MEMORY_PRESSURE_ENABLED:
  1582. return cpuset_memory_pressure_enabled;
  1583. case FILE_MEMORY_PRESSURE:
  1584. return fmeter_getrate(&cs->fmeter);
  1585. case FILE_SPREAD_PAGE:
  1586. return is_spread_page(cs);
  1587. case FILE_SPREAD_SLAB:
  1588. return is_spread_slab(cs);
  1589. default:
  1590. BUG();
  1591. }
  1592. /* Unreachable but makes gcc happy */
  1593. return 0;
  1594. }
  1595. static s64 cpuset_read_s64(struct cgroup *cgrp, struct cftype *cft)
  1596. {
  1597. struct cpuset *cs = cgroup_cs(cgrp);
  1598. cpuset_filetype_t type = cft->private;
  1599. switch (type) {
  1600. case FILE_SCHED_RELAX_DOMAIN_LEVEL:
  1601. return cs->relax_domain_level;
  1602. default:
  1603. BUG();
  1604. }
  1605. /* Unrechable but makes gcc happy */
  1606. return 0;
  1607. }
  1608. /*
  1609. * for the common functions, 'private' gives the type of file
  1610. */
  1611. static struct cftype files[] = {
  1612. {
  1613. .name = "cpus",
  1614. .read = cpuset_common_file_read,
  1615. .write_string = cpuset_write_resmask,
  1616. .max_write_len = (100U + 6 * NR_CPUS),
  1617. .private = FILE_CPULIST,
  1618. },
  1619. {
  1620. .name = "mems",
  1621. .read = cpuset_common_file_read,
  1622. .write_string = cpuset_write_resmask,
  1623. .max_write_len = (100U + 6 * MAX_NUMNODES),
  1624. .private = FILE_MEMLIST,
  1625. },
  1626. {
  1627. .name = "cpu_exclusive",
  1628. .read_u64 = cpuset_read_u64,
  1629. .write_u64 = cpuset_write_u64,
  1630. .private = FILE_CPU_EXCLUSIVE,
  1631. },
  1632. {
  1633. .name = "mem_exclusive",
  1634. .read_u64 = cpuset_read_u64,
  1635. .write_u64 = cpuset_write_u64,
  1636. .private = FILE_MEM_EXCLUSIVE,
  1637. },
  1638. {
  1639. .name = "mem_hardwall",
  1640. .read_u64 = cpuset_read_u64,
  1641. .write_u64 = cpuset_write_u64,
  1642. .private = FILE_MEM_HARDWALL,
  1643. },
  1644. {
  1645. .name = "sched_load_balance",
  1646. .read_u64 = cpuset_read_u64,
  1647. .write_u64 = cpuset_write_u64,
  1648. .private = FILE_SCHED_LOAD_BALANCE,
  1649. },
  1650. {
  1651. .name = "sched_relax_domain_level",
  1652. .read_s64 = cpuset_read_s64,
  1653. .write_s64 = cpuset_write_s64,
  1654. .private = FILE_SCHED_RELAX_DOMAIN_LEVEL,
  1655. },
  1656. {
  1657. .name = "memory_migrate",
  1658. .read_u64 = cpuset_read_u64,
  1659. .write_u64 = cpuset_write_u64,
  1660. .private = FILE_MEMORY_MIGRATE,
  1661. },
  1662. {
  1663. .name = "memory_pressure",
  1664. .read_u64 = cpuset_read_u64,
  1665. .write_u64 = cpuset_write_u64,
  1666. .private = FILE_MEMORY_PRESSURE,
  1667. .mode = S_IRUGO,
  1668. },
  1669. {
  1670. .name = "memory_spread_page",
  1671. .read_u64 = cpuset_read_u64,
  1672. .write_u64 = cpuset_write_u64,
  1673. .private = FILE_SPREAD_PAGE,
  1674. },
  1675. {
  1676. .name = "memory_spread_slab",
  1677. .read_u64 = cpuset_read_u64,
  1678. .write_u64 = cpuset_write_u64,
  1679. .private = FILE_SPREAD_SLAB,
  1680. },
  1681. {
  1682. .name = "memory_pressure_enabled",
  1683. .flags = CFTYPE_ONLY_ON_ROOT,
  1684. .read_u64 = cpuset_read_u64,
  1685. .write_u64 = cpuset_write_u64,
  1686. .private = FILE_MEMORY_PRESSURE_ENABLED,
  1687. },
  1688. { } /* terminate */
  1689. };
  1690. /*
  1691. * cpuset_css_alloc - allocate a cpuset css
  1692. * cgrp: control group that the new cpuset will be part of
  1693. */
  1694. static struct cgroup_subsys_state *cpuset_css_alloc(struct cgroup *cgrp)
  1695. {
  1696. struct cpuset *cs;
  1697. if (!cgrp->parent)
  1698. return &top_cpuset.css;
  1699. cs = kzalloc(sizeof(*cs), GFP_KERNEL);
  1700. if (!cs)
  1701. return ERR_PTR(-ENOMEM);
  1702. if (!alloc_cpumask_var(&cs->cpus_allowed, GFP_KERNEL)) {
  1703. kfree(cs);
  1704. return ERR_PTR(-ENOMEM);
  1705. }
  1706. set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
  1707. cpumask_clear(cs->cpus_allowed);
  1708. nodes_clear(cs->mems_allowed);
  1709. fmeter_init(&cs->fmeter);
  1710. cs->relax_domain_level = -1;
  1711. return &cs->css;
  1712. }
  1713. static int cpuset_css_online(struct cgroup *cgrp)
  1714. {
  1715. struct cpuset *cs = cgroup_cs(cgrp);
  1716. struct cpuset *parent = parent_cs(cs);
  1717. struct cpuset *tmp_cs;
  1718. struct cgroup *pos_cgrp;
  1719. if (!parent)
  1720. return 0;
  1721. mutex_lock(&cpuset_mutex);
  1722. set_bit(CS_ONLINE, &cs->flags);
  1723. if (is_spread_page(parent))
  1724. set_bit(CS_SPREAD_PAGE, &cs->flags);
  1725. if (is_spread_slab(parent))
  1726. set_bit(CS_SPREAD_SLAB, &cs->flags);
  1727. number_of_cpusets++;
  1728. if (!test_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags))
  1729. goto out_unlock;
  1730. /*
  1731. * Clone @parent's configuration if CGRP_CPUSET_CLONE_CHILDREN is
  1732. * set. This flag handling is implemented in cgroup core for
  1733. * histrical reasons - the flag may be specified during mount.
  1734. *
  1735. * Currently, if any sibling cpusets have exclusive cpus or mem, we
  1736. * refuse to clone the configuration - thereby refusing the task to
  1737. * be entered, and as a result refusing the sys_unshare() or
  1738. * clone() which initiated it. If this becomes a problem for some
  1739. * users who wish to allow that scenario, then this could be
  1740. * changed to grant parent->cpus_allowed-sibling_cpus_exclusive
  1741. * (and likewise for mems) to the new cgroup.
  1742. */
  1743. rcu_read_lock();
  1744. cpuset_for_each_child(tmp_cs, pos_cgrp, parent) {
  1745. if (is_mem_exclusive(tmp_cs) || is_cpu_exclusive(tmp_cs)) {
  1746. rcu_read_unlock();
  1747. goto out_unlock;
  1748. }
  1749. }
  1750. rcu_read_unlock();
  1751. mutex_lock(&callback_mutex);
  1752. cs->mems_allowed = parent->mems_allowed;
  1753. cpumask_copy(cs->cpus_allowed, parent->cpus_allowed);
  1754. mutex_unlock(&callback_mutex);
  1755. out_unlock:
  1756. mutex_unlock(&cpuset_mutex);
  1757. return 0;
  1758. }
  1759. /*
  1760. * If the cpuset being removed has its flag 'sched_load_balance'
  1761. * enabled, then simulate turning sched_load_balance off, which
  1762. * will call rebuild_sched_domains_locked().
  1763. */
  1764. static void cpuset_css_offline(struct cgroup *cgrp)
  1765. {
  1766. struct cpuset *cs = cgroup_cs(cgrp);
  1767. mutex_lock(&cpuset_mutex);
  1768. if (is_sched_load_balance(cs))
  1769. update_flag(CS_SCHED_LOAD_BALANCE, cs, 0);
  1770. number_of_cpusets--;
  1771. clear_bit(CS_ONLINE, &cs->flags);
  1772. mutex_unlock(&cpuset_mutex);
  1773. }
  1774. static void cpuset_css_free(struct cgroup *cgrp)
  1775. {
  1776. struct cpuset *cs = cgroup_cs(cgrp);
  1777. free_cpumask_var(cs->cpus_allowed);
  1778. kfree(cs);
  1779. }
  1780. struct cgroup_subsys cpuset_subsys = {
  1781. .name = "cpuset",
  1782. .css_alloc = cpuset_css_alloc,
  1783. .css_online = cpuset_css_online,
  1784. .css_offline = cpuset_css_offline,
  1785. .css_free = cpuset_css_free,
  1786. .can_attach = cpuset_can_attach,
  1787. .cancel_attach = cpuset_cancel_attach,
  1788. .attach = cpuset_attach,
  1789. .subsys_id = cpuset_subsys_id,
  1790. .base_cftypes = files,
  1791. .early_init = 1,
  1792. };
  1793. /**
  1794. * cpuset_init - initialize cpusets at system boot
  1795. *
  1796. * Description: Initialize top_cpuset and the cpuset internal file system,
  1797. **/
  1798. int __init cpuset_init(void)
  1799. {
  1800. int err = 0;
  1801. if (!alloc_cpumask_var(&top_cpuset.cpus_allowed, GFP_KERNEL))
  1802. BUG();
  1803. cpumask_setall(top_cpuset.cpus_allowed);
  1804. nodes_setall(top_cpuset.mems_allowed);
  1805. fmeter_init(&top_cpuset.fmeter);
  1806. set_bit(CS_SCHED_LOAD_BALANCE, &top_cpuset.flags);
  1807. top_cpuset.relax_domain_level = -1;
  1808. err = register_filesystem(&cpuset_fs_type);
  1809. if (err < 0)
  1810. return err;
  1811. if (!alloc_cpumask_var(&cpus_attach, GFP_KERNEL))
  1812. BUG();
  1813. number_of_cpusets = 1;
  1814. return 0;
  1815. }
  1816. /*
  1817. * If CPU and/or memory hotplug handlers, below, unplug any CPUs
  1818. * or memory nodes, we need to walk over the cpuset hierarchy,
  1819. * removing that CPU or node from all cpusets. If this removes the
  1820. * last CPU or node from a cpuset, then move the tasks in the empty
  1821. * cpuset to its next-highest non-empty parent.
  1822. */
  1823. static void remove_tasks_in_empty_cpuset(struct cpuset *cs)
  1824. {
  1825. struct cpuset *parent;
  1826. /*
  1827. * Find its next-highest non-empty parent, (top cpuset
  1828. * has online cpus, so can't be empty).
  1829. */
  1830. parent = parent_cs(cs);
  1831. while (cpumask_empty(parent->cpus_allowed) ||
  1832. nodes_empty(parent->mems_allowed))
  1833. parent = parent_cs(parent);
  1834. if (cgroup_transfer_tasks(parent->css.cgroup, cs->css.cgroup)) {
  1835. rcu_read_lock();
  1836. printk(KERN_ERR "cpuset: failed to transfer tasks out of empty cpuset %s\n",
  1837. cgroup_name(cs->css.cgroup));
  1838. rcu_read_unlock();
  1839. }
  1840. }
  1841. /**
  1842. * cpuset_hotplug_update_tasks - update tasks in a cpuset for hotunplug
  1843. * @cs: cpuset in interest
  1844. *
  1845. * Compare @cs's cpu and mem masks against top_cpuset and if some have gone
  1846. * offline, update @cs accordingly. If @cs ends up with no CPU or memory,
  1847. * all its tasks are moved to the nearest ancestor with both resources.
  1848. */
  1849. static void cpuset_hotplug_update_tasks(struct cpuset *cs)
  1850. {
  1851. static cpumask_t off_cpus;
  1852. static nodemask_t off_mems;
  1853. bool is_empty;
  1854. bool sane = cgroup_sane_behavior(cs->css.cgroup);
  1855. retry:
  1856. wait_event(cpuset_attach_wq, cs->attach_in_progress == 0);
  1857. mutex_lock(&cpuset_mutex);
  1858. /*
  1859. * We have raced with task attaching. We wait until attaching
  1860. * is finished, so we won't attach a task to an empty cpuset.
  1861. */
  1862. if (cs->attach_in_progress) {
  1863. mutex_unlock(&cpuset_mutex);
  1864. goto retry;
  1865. }
  1866. cpumask_andnot(&off_cpus, cs->cpus_allowed, top_cpuset.cpus_allowed);
  1867. nodes_andnot(off_mems, cs->mems_allowed, top_cpuset.mems_allowed);
  1868. mutex_lock(&callback_mutex);
  1869. cpumask_andnot(cs->cpus_allowed, cs->cpus_allowed, &off_cpus);
  1870. mutex_unlock(&callback_mutex);
  1871. /*
  1872. * If sane_behavior flag is set, we need to update tasks' cpumask
  1873. * for empty cpuset to take on ancestor's cpumask. Otherwise, don't
  1874. * call update_tasks_cpumask() if the cpuset becomes empty, as
  1875. * the tasks in it will be migrated to an ancestor.
  1876. */
  1877. if ((sane && cpumask_empty(cs->cpus_allowed)) ||
  1878. (!cpumask_empty(&off_cpus) && !cpumask_empty(cs->cpus_allowed)))
  1879. update_tasks_cpumask(cs, NULL);
  1880. mutex_lock(&callback_mutex);
  1881. nodes_andnot(cs->mems_allowed, cs->mems_allowed, off_mems);
  1882. mutex_unlock(&callback_mutex);
  1883. /*
  1884. * If sane_behavior flag is set, we need to update tasks' nodemask
  1885. * for empty cpuset to take on ancestor's nodemask. Otherwise, don't
  1886. * call update_tasks_nodemask() if the cpuset becomes empty, as
  1887. * the tasks in it will be migratd to an ancestor.
  1888. */
  1889. if ((sane && nodes_empty(cs->mems_allowed)) ||
  1890. (!nodes_empty(off_mems) && !nodes_empty(cs->mems_allowed)))
  1891. update_tasks_nodemask(cs, NULL);
  1892. is_empty = cpumask_empty(cs->cpus_allowed) ||
  1893. nodes_empty(cs->mems_allowed);
  1894. mutex_unlock(&cpuset_mutex);
  1895. /*
  1896. * If sane_behavior flag is set, we'll keep tasks in empty cpusets.
  1897. *
  1898. * Otherwise move tasks to the nearest ancestor with execution
  1899. * resources. This is full cgroup operation which will
  1900. * also call back into cpuset. Should be done outside any lock.
  1901. */
  1902. if (!sane && is_empty)
  1903. remove_tasks_in_empty_cpuset(cs);
  1904. }
  1905. /**
  1906. * cpuset_hotplug_workfn - handle CPU/memory hotunplug for a cpuset
  1907. *
  1908. * This function is called after either CPU or memory configuration has
  1909. * changed and updates cpuset accordingly. The top_cpuset is always
  1910. * synchronized to cpu_active_mask and N_MEMORY, which is necessary in
  1911. * order to make cpusets transparent (of no affect) on systems that are
  1912. * actively using CPU hotplug but making no active use of cpusets.
  1913. *
  1914. * Non-root cpusets are only affected by offlining. If any CPUs or memory
  1915. * nodes have been taken down, cpuset_hotplug_update_tasks() is invoked on
  1916. * all descendants.
  1917. *
  1918. * Note that CPU offlining during suspend is ignored. We don't modify
  1919. * cpusets across suspend/resume cycles at all.
  1920. */
  1921. static void cpuset_hotplug_workfn(struct work_struct *work)
  1922. {
  1923. static cpumask_t new_cpus;
  1924. static nodemask_t new_mems;
  1925. bool cpus_updated, mems_updated;
  1926. mutex_lock(&cpuset_mutex);
  1927. /* fetch the available cpus/mems and find out which changed how */
  1928. cpumask_copy(&new_cpus, cpu_active_mask);
  1929. new_mems = node_states[N_MEMORY];
  1930. cpus_updated = !cpumask_equal(top_cpuset.cpus_allowed, &new_cpus);
  1931. mems_updated = !nodes_equal(top_cpuset.mems_allowed, new_mems);
  1932. /* synchronize cpus_allowed to cpu_active_mask */
  1933. if (cpus_updated) {
  1934. mutex_lock(&callback_mutex);
  1935. cpumask_copy(top_cpuset.cpus_allowed, &new_cpus);
  1936. mutex_unlock(&callback_mutex);
  1937. /* we don't mess with cpumasks of tasks in top_cpuset */
  1938. }
  1939. /* synchronize mems_allowed to N_MEMORY */
  1940. if (mems_updated) {
  1941. mutex_lock(&callback_mutex);
  1942. top_cpuset.mems_allowed = new_mems;
  1943. mutex_unlock(&callback_mutex);
  1944. update_tasks_nodemask(&top_cpuset, NULL);
  1945. }
  1946. mutex_unlock(&cpuset_mutex);
  1947. /* if cpus or mems changed, we need to propagate to descendants */
  1948. if (cpus_updated || mems_updated) {
  1949. struct cpuset *cs;
  1950. struct cgroup *pos_cgrp;
  1951. rcu_read_lock();
  1952. cpuset_for_each_descendant_pre(cs, pos_cgrp, &top_cpuset) {
  1953. if (!css_tryget(&cs->css))
  1954. continue;
  1955. rcu_read_unlock();
  1956. cpuset_hotplug_update_tasks(cs);
  1957. rcu_read_lock();
  1958. css_put(&cs->css);
  1959. }
  1960. rcu_read_unlock();
  1961. }
  1962. /* rebuild sched domains if cpus_allowed has changed */
  1963. if (cpus_updated)
  1964. rebuild_sched_domains();
  1965. }
  1966. void cpuset_update_active_cpus(bool cpu_online)
  1967. {
  1968. /*
  1969. * We're inside cpu hotplug critical region which usually nests
  1970. * inside cgroup synchronization. Bounce actual hotplug processing
  1971. * to a work item to avoid reverse locking order.
  1972. *
  1973. * We still need to do partition_sched_domains() synchronously;
  1974. * otherwise, the scheduler will get confused and put tasks to the
  1975. * dead CPU. Fall back to the default single domain.
  1976. * cpuset_hotplug_workfn() will rebuild it as necessary.
  1977. */
  1978. partition_sched_domains(1, NULL, NULL);
  1979. schedule_work(&cpuset_hotplug_work);
  1980. }
  1981. /*
  1982. * Keep top_cpuset.mems_allowed tracking node_states[N_MEMORY].
  1983. * Call this routine anytime after node_states[N_MEMORY] changes.
  1984. * See cpuset_update_active_cpus() for CPU hotplug handling.
  1985. */
  1986. static int cpuset_track_online_nodes(struct notifier_block *self,
  1987. unsigned long action, void *arg)
  1988. {
  1989. schedule_work(&cpuset_hotplug_work);
  1990. return NOTIFY_OK;
  1991. }
  1992. static struct notifier_block cpuset_track_online_nodes_nb = {
  1993. .notifier_call = cpuset_track_online_nodes,
  1994. .priority = 10, /* ??! */
  1995. };
  1996. /**
  1997. * cpuset_init_smp - initialize cpus_allowed
  1998. *
  1999. * Description: Finish top cpuset after cpu, node maps are initialized
  2000. */
  2001. void __init cpuset_init_smp(void)
  2002. {
  2003. cpumask_copy(top_cpuset.cpus_allowed, cpu_active_mask);
  2004. top_cpuset.mems_allowed = node_states[N_MEMORY];
  2005. top_cpuset.old_mems_allowed = top_cpuset.mems_allowed;
  2006. register_hotmemory_notifier(&cpuset_track_online_nodes_nb);
  2007. }
  2008. /**
  2009. * cpuset_cpus_allowed - return cpus_allowed mask from a tasks cpuset.
  2010. * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed.
  2011. * @pmask: pointer to struct cpumask variable to receive cpus_allowed set.
  2012. *
  2013. * Description: Returns the cpumask_var_t cpus_allowed of the cpuset
  2014. * attached to the specified @tsk. Guaranteed to return some non-empty
  2015. * subset of cpu_online_mask, even if this means going outside the
  2016. * tasks cpuset.
  2017. **/
  2018. void cpuset_cpus_allowed(struct task_struct *tsk, struct cpumask *pmask)
  2019. {
  2020. struct cpuset *cpus_cs;
  2021. mutex_lock(&callback_mutex);
  2022. task_lock(tsk);
  2023. cpus_cs = effective_cpumask_cpuset(task_cs(tsk));
  2024. guarantee_online_cpus(cpus_cs, pmask);
  2025. task_unlock(tsk);
  2026. mutex_unlock(&callback_mutex);
  2027. }
  2028. void cpuset_cpus_allowed_fallback(struct task_struct *tsk)
  2029. {
  2030. const struct cpuset *cpus_cs;
  2031. rcu_read_lock();
  2032. cpus_cs = effective_cpumask_cpuset(task_cs(tsk));
  2033. do_set_cpus_allowed(tsk, cpus_cs->cpus_allowed);
  2034. rcu_read_unlock();
  2035. /*
  2036. * We own tsk->cpus_allowed, nobody can change it under us.
  2037. *
  2038. * But we used cs && cs->cpus_allowed lockless and thus can
  2039. * race with cgroup_attach_task() or update_cpumask() and get
  2040. * the wrong tsk->cpus_allowed. However, both cases imply the
  2041. * subsequent cpuset_change_cpumask()->set_cpus_allowed_ptr()
  2042. * which takes task_rq_lock().
  2043. *
  2044. * If we are called after it dropped the lock we must see all
  2045. * changes in tsk_cs()->cpus_allowed. Otherwise we can temporary
  2046. * set any mask even if it is not right from task_cs() pov,
  2047. * the pending set_cpus_allowed_ptr() will fix things.
  2048. *
  2049. * select_fallback_rq() will fix things ups and set cpu_possible_mask
  2050. * if required.
  2051. */
  2052. }
  2053. void cpuset_init_current_mems_allowed(void)
  2054. {
  2055. nodes_setall(current->mems_allowed);
  2056. }
  2057. /**
  2058. * cpuset_mems_allowed - return mems_allowed mask from a tasks cpuset.
  2059. * @tsk: pointer to task_struct from which to obtain cpuset->mems_allowed.
  2060. *
  2061. * Description: Returns the nodemask_t mems_allowed of the cpuset
  2062. * attached to the specified @tsk. Guaranteed to return some non-empty
  2063. * subset of node_states[N_MEMORY], even if this means going outside the
  2064. * tasks cpuset.
  2065. **/
  2066. nodemask_t cpuset_mems_allowed(struct task_struct *tsk)
  2067. {
  2068. struct cpuset *mems_cs;
  2069. nodemask_t mask;
  2070. mutex_lock(&callback_mutex);
  2071. task_lock(tsk);
  2072. mems_cs = effective_nodemask_cpuset(task_cs(tsk));
  2073. guarantee_online_mems(mems_cs, &mask);
  2074. task_unlock(tsk);
  2075. mutex_unlock(&callback_mutex);
  2076. return mask;
  2077. }
  2078. /**
  2079. * cpuset_nodemask_valid_mems_allowed - check nodemask vs. curremt mems_allowed
  2080. * @nodemask: the nodemask to be checked
  2081. *
  2082. * Are any of the nodes in the nodemask allowed in current->mems_allowed?
  2083. */
  2084. int cpuset_nodemask_valid_mems_allowed(nodemask_t *nodemask)
  2085. {
  2086. return nodes_intersects(*nodemask, current->mems_allowed);
  2087. }
  2088. /*
  2089. * nearest_hardwall_ancestor() - Returns the nearest mem_exclusive or
  2090. * mem_hardwall ancestor to the specified cpuset. Call holding
  2091. * callback_mutex. If no ancestor is mem_exclusive or mem_hardwall
  2092. * (an unusual configuration), then returns the root cpuset.
  2093. */
  2094. static const struct cpuset *nearest_hardwall_ancestor(const struct cpuset *cs)
  2095. {
  2096. while (!(is_mem_exclusive(cs) || is_mem_hardwall(cs)) && parent_cs(cs))
  2097. cs = parent_cs(cs);
  2098. return cs;
  2099. }
  2100. /**
  2101. * cpuset_node_allowed_softwall - Can we allocate on a memory node?
  2102. * @node: is this an allowed node?
  2103. * @gfp_mask: memory allocation flags
  2104. *
  2105. * If we're in interrupt, yes, we can always allocate. If __GFP_THISNODE is
  2106. * set, yes, we can always allocate. If node is in our task's mems_allowed,
  2107. * yes. If it's not a __GFP_HARDWALL request and this node is in the nearest
  2108. * hardwalled cpuset ancestor to this task's cpuset, yes. If the task has been
  2109. * OOM killed and has access to memory reserves as specified by the TIF_MEMDIE
  2110. * flag, yes.
  2111. * Otherwise, no.
  2112. *
  2113. * If __GFP_HARDWALL is set, cpuset_node_allowed_softwall() reduces to
  2114. * cpuset_node_allowed_hardwall(). Otherwise, cpuset_node_allowed_softwall()
  2115. * might sleep, and might allow a node from an enclosing cpuset.
  2116. *
  2117. * cpuset_node_allowed_hardwall() only handles the simpler case of hardwall
  2118. * cpusets, and never sleeps.
  2119. *
  2120. * The __GFP_THISNODE placement logic is really handled elsewhere,
  2121. * by forcibly using a zonelist starting at a specified node, and by
  2122. * (in get_page_from_freelist()) refusing to consider the zones for
  2123. * any node on the zonelist except the first. By the time any such
  2124. * calls get to this routine, we should just shut up and say 'yes'.
  2125. *
  2126. * GFP_USER allocations are marked with the __GFP_HARDWALL bit,
  2127. * and do not allow allocations outside the current tasks cpuset
  2128. * unless the task has been OOM killed as is marked TIF_MEMDIE.
  2129. * GFP_KERNEL allocations are not so marked, so can escape to the
  2130. * nearest enclosing hardwalled ancestor cpuset.
  2131. *
  2132. * Scanning up parent cpusets requires callback_mutex. The
  2133. * __alloc_pages() routine only calls here with __GFP_HARDWALL bit
  2134. * _not_ set if it's a GFP_KERNEL allocation, and all nodes in the
  2135. * current tasks mems_allowed came up empty on the first pass over
  2136. * the zonelist. So only GFP_KERNEL allocations, if all nodes in the
  2137. * cpuset are short of memory, might require taking the callback_mutex
  2138. * mutex.
  2139. *
  2140. * The first call here from mm/page_alloc:get_page_from_freelist()
  2141. * has __GFP_HARDWALL set in gfp_mask, enforcing hardwall cpusets,
  2142. * so no allocation on a node outside the cpuset is allowed (unless
  2143. * in interrupt, of course).
  2144. *
  2145. * The second pass through get_page_from_freelist() doesn't even call
  2146. * here for GFP_ATOMIC calls. For those calls, the __alloc_pages()
  2147. * variable 'wait' is not set, and the bit ALLOC_CPUSET is not set
  2148. * in alloc_flags. That logic and the checks below have the combined
  2149. * affect that:
  2150. * in_interrupt - any node ok (current task context irrelevant)
  2151. * GFP_ATOMIC - any node ok
  2152. * TIF_MEMDIE - any node ok
  2153. * GFP_KERNEL - any node in enclosing hardwalled cpuset ok
  2154. * GFP_USER - only nodes in current tasks mems allowed ok.
  2155. *
  2156. * Rule:
  2157. * Don't call cpuset_node_allowed_softwall if you can't sleep, unless you
  2158. * pass in the __GFP_HARDWALL flag set in gfp_flag, which disables
  2159. * the code that might scan up ancestor cpusets and sleep.
  2160. */
  2161. int __cpuset_node_allowed_softwall(int node, gfp_t gfp_mask)
  2162. {
  2163. const struct cpuset *cs; /* current cpuset ancestors */
  2164. int allowed; /* is allocation in zone z allowed? */
  2165. if (in_interrupt() || (gfp_mask & __GFP_THISNODE))
  2166. return 1;
  2167. might_sleep_if(!(gfp_mask & __GFP_HARDWALL));
  2168. if (node_isset(node, current->mems_allowed))
  2169. return 1;
  2170. /*
  2171. * Allow tasks that have access to memory reserves because they have
  2172. * been OOM killed to get memory anywhere.
  2173. */
  2174. if (unlikely(test_thread_flag(TIF_MEMDIE)))
  2175. return 1;
  2176. if (gfp_mask & __GFP_HARDWALL) /* If hardwall request, stop here */
  2177. return 0;
  2178. if (current->flags & PF_EXITING) /* Let dying task have memory */
  2179. return 1;
  2180. /* Not hardwall and node outside mems_allowed: scan up cpusets */
  2181. mutex_lock(&callback_mutex);
  2182. task_lock(current);
  2183. cs = nearest_hardwall_ancestor(task_cs(current));
  2184. task_unlock(current);
  2185. allowed = node_isset(node, cs->mems_allowed);
  2186. mutex_unlock(&callback_mutex);
  2187. return allowed;
  2188. }
  2189. /*
  2190. * cpuset_node_allowed_hardwall - Can we allocate on a memory node?
  2191. * @node: is this an allowed node?
  2192. * @gfp_mask: memory allocation flags
  2193. *
  2194. * If we're in interrupt, yes, we can always allocate. If __GFP_THISNODE is
  2195. * set, yes, we can always allocate. If node is in our task's mems_allowed,
  2196. * yes. If the task has been OOM killed and has access to memory reserves as
  2197. * specified by the TIF_MEMDIE flag, yes.
  2198. * Otherwise, no.
  2199. *
  2200. * The __GFP_THISNODE placement logic is really handled elsewhere,
  2201. * by forcibly using a zonelist starting at a specified node, and by
  2202. * (in get_page_from_freelist()) refusing to consider the zones for
  2203. * any node on the zonelist except the first. By the time any such
  2204. * calls get to this routine, we should just shut up and say 'yes'.
  2205. *
  2206. * Unlike the cpuset_node_allowed_softwall() variant, above,
  2207. * this variant requires that the node be in the current task's
  2208. * mems_allowed or that we're in interrupt. It does not scan up the
  2209. * cpuset hierarchy for the nearest enclosing mem_exclusive cpuset.
  2210. * It never sleeps.
  2211. */
  2212. int __cpuset_node_allowed_hardwall(int node, gfp_t gfp_mask)
  2213. {
  2214. if (in_interrupt() || (gfp_mask & __GFP_THISNODE))
  2215. return 1;
  2216. if (node_isset(node, current->mems_allowed))
  2217. return 1;
  2218. /*
  2219. * Allow tasks that have access to memory reserves because they have
  2220. * been OOM killed to get memory anywhere.
  2221. */
  2222. if (unlikely(test_thread_flag(TIF_MEMDIE)))
  2223. return 1;
  2224. return 0;
  2225. }
  2226. /**
  2227. * cpuset_mem_spread_node() - On which node to begin search for a file page
  2228. * cpuset_slab_spread_node() - On which node to begin search for a slab page
  2229. *
  2230. * If a task is marked PF_SPREAD_PAGE or PF_SPREAD_SLAB (as for
  2231. * tasks in a cpuset with is_spread_page or is_spread_slab set),
  2232. * and if the memory allocation used cpuset_mem_spread_node()
  2233. * to determine on which node to start looking, as it will for
  2234. * certain page cache or slab cache pages such as used for file
  2235. * system buffers and inode caches, then instead of starting on the
  2236. * local node to look for a free page, rather spread the starting
  2237. * node around the tasks mems_allowed nodes.
  2238. *
  2239. * We don't have to worry about the returned node being offline
  2240. * because "it can't happen", and even if it did, it would be ok.
  2241. *
  2242. * The routines calling guarantee_online_mems() are careful to
  2243. * only set nodes in task->mems_allowed that are online. So it
  2244. * should not be possible for the following code to return an
  2245. * offline node. But if it did, that would be ok, as this routine
  2246. * is not returning the node where the allocation must be, only
  2247. * the node where the search should start. The zonelist passed to
  2248. * __alloc_pages() will include all nodes. If the slab allocator
  2249. * is passed an offline node, it will fall back to the local node.
  2250. * See kmem_cache_alloc_node().
  2251. */
  2252. static int cpuset_spread_node(int *rotor)
  2253. {
  2254. int node;
  2255. node = next_node(*rotor, current->mems_allowed);
  2256. if (node == MAX_NUMNODES)
  2257. node = first_node(current->mems_allowed);
  2258. *rotor = node;
  2259. return node;
  2260. }
  2261. int cpuset_mem_spread_node(void)
  2262. {
  2263. if (current->cpuset_mem_spread_rotor == NUMA_NO_NODE)
  2264. current->cpuset_mem_spread_rotor =
  2265. node_random(&current->mems_allowed);
  2266. return cpuset_spread_node(&current->cpuset_mem_spread_rotor);
  2267. }
  2268. int cpuset_slab_spread_node(void)
  2269. {
  2270. if (current->cpuset_slab_spread_rotor == NUMA_NO_NODE)
  2271. current->cpuset_slab_spread_rotor =
  2272. node_random(&current->mems_allowed);
  2273. return cpuset_spread_node(&current->cpuset_slab_spread_rotor);
  2274. }
  2275. EXPORT_SYMBOL_GPL(cpuset_mem_spread_node);
  2276. /**
  2277. * cpuset_mems_allowed_intersects - Does @tsk1's mems_allowed intersect @tsk2's?
  2278. * @tsk1: pointer to task_struct of some task.
  2279. * @tsk2: pointer to task_struct of some other task.
  2280. *
  2281. * Description: Return true if @tsk1's mems_allowed intersects the
  2282. * mems_allowed of @tsk2. Used by the OOM killer to determine if
  2283. * one of the task's memory usage might impact the memory available
  2284. * to the other.
  2285. **/
  2286. int cpuset_mems_allowed_intersects(const struct task_struct *tsk1,
  2287. const struct task_struct *tsk2)
  2288. {
  2289. return nodes_intersects(tsk1->mems_allowed, tsk2->mems_allowed);
  2290. }
  2291. #define CPUSET_NODELIST_LEN (256)
  2292. /**
  2293. * cpuset_print_task_mems_allowed - prints task's cpuset and mems_allowed
  2294. * @task: pointer to task_struct of some task.
  2295. *
  2296. * Description: Prints @task's name, cpuset name, and cached copy of its
  2297. * mems_allowed to the kernel log. Must hold task_lock(task) to allow
  2298. * dereferencing task_cs(task).
  2299. */
  2300. void cpuset_print_task_mems_allowed(struct task_struct *tsk)
  2301. {
  2302. /* Statically allocated to prevent using excess stack. */
  2303. static char cpuset_nodelist[CPUSET_NODELIST_LEN];
  2304. static DEFINE_SPINLOCK(cpuset_buffer_lock);
  2305. struct cgroup *cgrp = task_cs(tsk)->css.cgroup;
  2306. rcu_read_lock();
  2307. spin_lock(&cpuset_buffer_lock);
  2308. nodelist_scnprintf(cpuset_nodelist, CPUSET_NODELIST_LEN,
  2309. tsk->mems_allowed);
  2310. printk(KERN_INFO "%s cpuset=%s mems_allowed=%s\n",
  2311. tsk->comm, cgroup_name(cgrp), cpuset_nodelist);
  2312. spin_unlock(&cpuset_buffer_lock);
  2313. rcu_read_unlock();
  2314. }
  2315. /*
  2316. * Collection of memory_pressure is suppressed unless
  2317. * this flag is enabled by writing "1" to the special
  2318. * cpuset file 'memory_pressure_enabled' in the root cpuset.
  2319. */
  2320. int cpuset_memory_pressure_enabled __read_mostly;
  2321. /**
  2322. * cpuset_memory_pressure_bump - keep stats of per-cpuset reclaims.
  2323. *
  2324. * Keep a running average of the rate of synchronous (direct)
  2325. * page reclaim efforts initiated by tasks in each cpuset.
  2326. *
  2327. * This represents the rate at which some task in the cpuset
  2328. * ran low on memory on all nodes it was allowed to use, and
  2329. * had to enter the kernels page reclaim code in an effort to
  2330. * create more free memory by tossing clean pages or swapping
  2331. * or writing dirty pages.
  2332. *
  2333. * Display to user space in the per-cpuset read-only file
  2334. * "memory_pressure". Value displayed is an integer
  2335. * representing the recent rate of entry into the synchronous
  2336. * (direct) page reclaim by any task attached to the cpuset.
  2337. **/
  2338. void __cpuset_memory_pressure_bump(void)
  2339. {
  2340. task_lock(current);
  2341. fmeter_markevent(&task_cs(current)->fmeter);
  2342. task_unlock(current);
  2343. }
  2344. #ifdef CONFIG_PROC_PID_CPUSET
  2345. /*
  2346. * proc_cpuset_show()
  2347. * - Print tasks cpuset path into seq_file.
  2348. * - Used for /proc/<pid>/cpuset.
  2349. * - No need to task_lock(tsk) on this tsk->cpuset reference, as it
  2350. * doesn't really matter if tsk->cpuset changes after we read it,
  2351. * and we take cpuset_mutex, keeping cpuset_attach() from changing it
  2352. * anyway.
  2353. */
  2354. int proc_cpuset_show(struct seq_file *m, void *unused_v)
  2355. {
  2356. struct pid *pid;
  2357. struct task_struct *tsk;
  2358. char *buf;
  2359. struct cgroup_subsys_state *css;
  2360. int retval;
  2361. retval = -ENOMEM;
  2362. buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
  2363. if (!buf)
  2364. goto out;
  2365. retval = -ESRCH;
  2366. pid = m->private;
  2367. tsk = get_pid_task(pid, PIDTYPE_PID);
  2368. if (!tsk)
  2369. goto out_free;
  2370. rcu_read_lock();
  2371. css = task_css(tsk, cpuset_subsys_id);
  2372. retval = cgroup_path(css->cgroup, buf, PAGE_SIZE);
  2373. rcu_read_unlock();
  2374. if (retval < 0)
  2375. goto out_put_task;
  2376. seq_puts(m, buf);
  2377. seq_putc(m, '\n');
  2378. out_put_task:
  2379. put_task_struct(tsk);
  2380. out_free:
  2381. kfree(buf);
  2382. out:
  2383. return retval;
  2384. }
  2385. #endif /* CONFIG_PROC_PID_CPUSET */
  2386. /* Display task mems_allowed in /proc/<pid>/status file. */
  2387. void cpuset_task_status_allowed(struct seq_file *m, struct task_struct *task)
  2388. {
  2389. seq_printf(m, "Mems_allowed:\t");
  2390. seq_nodemask(m, &task->mems_allowed);
  2391. seq_printf(m, "\n");
  2392. seq_printf(m, "Mems_allowed_list:\t");
  2393. seq_nodemask_list(m, &task->mems_allowed);
  2394. seq_printf(m, "\n");
  2395. }