cgroup.c 151 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666
  1. /*
  2. * Generic process-grouping system.
  3. *
  4. * Based originally on the cpuset system, extracted by Paul Menage
  5. * Copyright (C) 2006 Google, Inc
  6. *
  7. * Notifications support
  8. * Copyright (C) 2009 Nokia Corporation
  9. * Author: Kirill A. Shutemov
  10. *
  11. * Copyright notices from the original cpuset code:
  12. * --------------------------------------------------
  13. * Copyright (C) 2003 BULL SA.
  14. * Copyright (C) 2004-2006 Silicon Graphics, Inc.
  15. *
  16. * Portions derived from Patrick Mochel's sysfs code.
  17. * sysfs is Copyright (c) 2001-3 Patrick Mochel
  18. *
  19. * 2003-10-10 Written by Simon Derr.
  20. * 2003-10-22 Updates by Stephen Hemminger.
  21. * 2004 May-July Rework by Paul Jackson.
  22. * ---------------------------------------------------
  23. *
  24. * This file is subject to the terms and conditions of the GNU General Public
  25. * License. See the file COPYING in the main directory of the Linux
  26. * distribution for more details.
  27. */
  28. #include <linux/cgroup.h>
  29. #include <linux/cred.h>
  30. #include <linux/ctype.h>
  31. #include <linux/errno.h>
  32. #include <linux/init_task.h>
  33. #include <linux/kernel.h>
  34. #include <linux/list.h>
  35. #include <linux/mm.h>
  36. #include <linux/mutex.h>
  37. #include <linux/mount.h>
  38. #include <linux/pagemap.h>
  39. #include <linux/proc_fs.h>
  40. #include <linux/rcupdate.h>
  41. #include <linux/sched.h>
  42. #include <linux/backing-dev.h>
  43. #include <linux/seq_file.h>
  44. #include <linux/slab.h>
  45. #include <linux/magic.h>
  46. #include <linux/spinlock.h>
  47. #include <linux/string.h>
  48. #include <linux/sort.h>
  49. #include <linux/kmod.h>
  50. #include <linux/module.h>
  51. #include <linux/delayacct.h>
  52. #include <linux/cgroupstats.h>
  53. #include <linux/hashtable.h>
  54. #include <linux/namei.h>
  55. #include <linux/pid_namespace.h>
  56. #include <linux/idr.h>
  57. #include <linux/vmalloc.h> /* TODO: replace with more sophisticated array */
  58. #include <linux/eventfd.h>
  59. #include <linux/poll.h>
  60. #include <linux/flex_array.h> /* used in cgroup_attach_task */
  61. #include <linux/kthread.h>
  62. #include <linux/atomic.h>
  63. /*
  64. * cgroup_mutex is the master lock. Any modification to cgroup or its
  65. * hierarchy must be performed while holding it.
  66. *
  67. * cgroup_root_mutex nests inside cgroup_mutex and should be held to modify
  68. * cgroupfs_root of any cgroup hierarchy - subsys list, flags,
  69. * release_agent_path and so on. Modifying requires both cgroup_mutex and
  70. * cgroup_root_mutex. Readers can acquire either of the two. This is to
  71. * break the following locking order cycle.
  72. *
  73. * A. cgroup_mutex -> cred_guard_mutex -> s_type->i_mutex_key -> namespace_sem
  74. * B. namespace_sem -> cgroup_mutex
  75. *
  76. * B happens only through cgroup_show_options() and using cgroup_root_mutex
  77. * breaks it.
  78. */
  79. #ifdef CONFIG_PROVE_RCU
  80. DEFINE_MUTEX(cgroup_mutex);
  81. EXPORT_SYMBOL_GPL(cgroup_mutex); /* only for lockdep */
  82. #else
  83. static DEFINE_MUTEX(cgroup_mutex);
  84. #endif
  85. static DEFINE_MUTEX(cgroup_root_mutex);
  86. /*
  87. * Generate an array of cgroup subsystem pointers. At boot time, this is
  88. * populated with the built in subsystems, and modular subsystems are
  89. * registered after that. The mutable section of this array is protected by
  90. * cgroup_mutex.
  91. */
  92. #define SUBSYS(_x) [_x ## _subsys_id] = &_x ## _subsys,
  93. #define IS_SUBSYS_ENABLED(option) IS_BUILTIN(option)
  94. static struct cgroup_subsys *cgroup_subsys[CGROUP_SUBSYS_COUNT] = {
  95. #include <linux/cgroup_subsys.h>
  96. };
  97. /*
  98. * The dummy hierarchy, reserved for the subsystems that are otherwise
  99. * unattached - it never has more than a single cgroup, and all tasks are
  100. * part of that cgroup.
  101. */
  102. static struct cgroupfs_root cgroup_dummy_root;
  103. /* dummy_top is a shorthand for the dummy hierarchy's top cgroup */
  104. static struct cgroup * const cgroup_dummy_top = &cgroup_dummy_root.top_cgroup;
  105. /*
  106. * cgroupfs file entry, pointed to from leaf dentry->d_fsdata.
  107. */
  108. struct cfent {
  109. struct list_head node;
  110. struct dentry *dentry;
  111. struct cftype *type;
  112. /* file xattrs */
  113. struct simple_xattrs xattrs;
  114. };
  115. /*
  116. * CSS ID -- ID per subsys's Cgroup Subsys State(CSS). used only when
  117. * cgroup_subsys->use_id != 0.
  118. */
  119. #define CSS_ID_MAX (65535)
  120. struct css_id {
  121. /*
  122. * The css to which this ID points. This pointer is set to valid value
  123. * after cgroup is populated. If cgroup is removed, this will be NULL.
  124. * This pointer is expected to be RCU-safe because destroy()
  125. * is called after synchronize_rcu(). But for safe use, css_tryget()
  126. * should be used for avoiding race.
  127. */
  128. struct cgroup_subsys_state __rcu *css;
  129. /*
  130. * ID of this css.
  131. */
  132. unsigned short id;
  133. /*
  134. * Depth in hierarchy which this ID belongs to.
  135. */
  136. unsigned short depth;
  137. /*
  138. * ID is freed by RCU. (and lookup routine is RCU safe.)
  139. */
  140. struct rcu_head rcu_head;
  141. /*
  142. * Hierarchy of CSS ID belongs to.
  143. */
  144. unsigned short stack[0]; /* Array of Length (depth+1) */
  145. };
  146. /*
  147. * cgroup_event represents events which userspace want to receive.
  148. */
  149. struct cgroup_event {
  150. /*
  151. * Cgroup which the event belongs to.
  152. */
  153. struct cgroup *cgrp;
  154. /*
  155. * Control file which the event associated.
  156. */
  157. struct cftype *cft;
  158. /*
  159. * eventfd to signal userspace about the event.
  160. */
  161. struct eventfd_ctx *eventfd;
  162. /*
  163. * Each of these stored in a list by the cgroup.
  164. */
  165. struct list_head list;
  166. /*
  167. * All fields below needed to unregister event when
  168. * userspace closes eventfd.
  169. */
  170. poll_table pt;
  171. wait_queue_head_t *wqh;
  172. wait_queue_t wait;
  173. struct work_struct remove;
  174. };
  175. /* The list of hierarchy roots */
  176. static LIST_HEAD(cgroup_roots);
  177. static int cgroup_root_count;
  178. /*
  179. * Hierarchy ID allocation and mapping. It follows the same exclusion
  180. * rules as other root ops - both cgroup_mutex and cgroup_root_mutex for
  181. * writes, either for reads.
  182. */
  183. static DEFINE_IDR(cgroup_hierarchy_idr);
  184. static struct cgroup_name root_cgroup_name = { .name = "/" };
  185. /*
  186. * Assign a monotonically increasing serial number to cgroups. It
  187. * guarantees cgroups with bigger numbers are newer than those with smaller
  188. * numbers. Also, as cgroups are always appended to the parent's
  189. * ->children list, it guarantees that sibling cgroups are always sorted in
  190. * the ascending serial number order on the list. Protected by
  191. * cgroup_mutex.
  192. */
  193. static u64 cgroup_serial_nr_next = 1;
  194. /* This flag indicates whether tasks in the fork and exit paths should
  195. * check for fork/exit handlers to call. This avoids us having to do
  196. * extra work in the fork/exit path if none of the subsystems need to
  197. * be called.
  198. */
  199. static int need_forkexit_callback __read_mostly;
  200. static struct cftype cgroup_base_files[];
  201. static void cgroup_offline_fn(struct work_struct *work);
  202. static int cgroup_destroy_locked(struct cgroup *cgrp);
  203. static int cgroup_addrm_files(struct cgroup *cgrp, struct cgroup_subsys *subsys,
  204. struct cftype cfts[], bool is_add);
  205. /* convenient tests for these bits */
  206. static inline bool cgroup_is_dead(const struct cgroup *cgrp)
  207. {
  208. return test_bit(CGRP_DEAD, &cgrp->flags);
  209. }
  210. /**
  211. * cgroup_is_descendant - test ancestry
  212. * @cgrp: the cgroup to be tested
  213. * @ancestor: possible ancestor of @cgrp
  214. *
  215. * Test whether @cgrp is a descendant of @ancestor. It also returns %true
  216. * if @cgrp == @ancestor. This function is safe to call as long as @cgrp
  217. * and @ancestor are accessible.
  218. */
  219. bool cgroup_is_descendant(struct cgroup *cgrp, struct cgroup *ancestor)
  220. {
  221. while (cgrp) {
  222. if (cgrp == ancestor)
  223. return true;
  224. cgrp = cgrp->parent;
  225. }
  226. return false;
  227. }
  228. EXPORT_SYMBOL_GPL(cgroup_is_descendant);
  229. static int cgroup_is_releasable(const struct cgroup *cgrp)
  230. {
  231. const int bits =
  232. (1 << CGRP_RELEASABLE) |
  233. (1 << CGRP_NOTIFY_ON_RELEASE);
  234. return (cgrp->flags & bits) == bits;
  235. }
  236. static int notify_on_release(const struct cgroup *cgrp)
  237. {
  238. return test_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
  239. }
  240. /**
  241. * for_each_subsys - iterate all loaded cgroup subsystems
  242. * @ss: the iteration cursor
  243. * @i: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end
  244. *
  245. * Should be called under cgroup_mutex.
  246. */
  247. #define for_each_subsys(ss, i) \
  248. for ((i) = 0; (i) < CGROUP_SUBSYS_COUNT; (i)++) \
  249. if (({ lockdep_assert_held(&cgroup_mutex); \
  250. !((ss) = cgroup_subsys[i]); })) { } \
  251. else
  252. /**
  253. * for_each_builtin_subsys - iterate all built-in cgroup subsystems
  254. * @ss: the iteration cursor
  255. * @i: the index of @ss, CGROUP_BUILTIN_SUBSYS_COUNT after reaching the end
  256. *
  257. * Bulit-in subsystems are always present and iteration itself doesn't
  258. * require any synchronization.
  259. */
  260. #define for_each_builtin_subsys(ss, i) \
  261. for ((i) = 0; (i) < CGROUP_BUILTIN_SUBSYS_COUNT && \
  262. (((ss) = cgroup_subsys[i]) || true); (i)++)
  263. /* iterate each subsystem attached to a hierarchy */
  264. #define for_each_root_subsys(root, ss) \
  265. list_for_each_entry((ss), &(root)->subsys_list, sibling)
  266. /* iterate across the active hierarchies */
  267. #define for_each_active_root(root) \
  268. list_for_each_entry((root), &cgroup_roots, root_list)
  269. static inline struct cgroup *__d_cgrp(struct dentry *dentry)
  270. {
  271. return dentry->d_fsdata;
  272. }
  273. static inline struct cfent *__d_cfe(struct dentry *dentry)
  274. {
  275. return dentry->d_fsdata;
  276. }
  277. static inline struct cftype *__d_cft(struct dentry *dentry)
  278. {
  279. return __d_cfe(dentry)->type;
  280. }
  281. /**
  282. * cgroup_lock_live_group - take cgroup_mutex and check that cgrp is alive.
  283. * @cgrp: the cgroup to be checked for liveness
  284. *
  285. * On success, returns true; the mutex should be later unlocked. On
  286. * failure returns false with no lock held.
  287. */
  288. static bool cgroup_lock_live_group(struct cgroup *cgrp)
  289. {
  290. mutex_lock(&cgroup_mutex);
  291. if (cgroup_is_dead(cgrp)) {
  292. mutex_unlock(&cgroup_mutex);
  293. return false;
  294. }
  295. return true;
  296. }
  297. /* the list of cgroups eligible for automatic release. Protected by
  298. * release_list_lock */
  299. static LIST_HEAD(release_list);
  300. static DEFINE_RAW_SPINLOCK(release_list_lock);
  301. static void cgroup_release_agent(struct work_struct *work);
  302. static DECLARE_WORK(release_agent_work, cgroup_release_agent);
  303. static void check_for_release(struct cgroup *cgrp);
  304. /*
  305. * A cgroup can be associated with multiple css_sets as different tasks may
  306. * belong to different cgroups on different hierarchies. In the other
  307. * direction, a css_set is naturally associated with multiple cgroups.
  308. * This M:N relationship is represented by the following link structure
  309. * which exists for each association and allows traversing the associations
  310. * from both sides.
  311. */
  312. struct cgrp_cset_link {
  313. /* the cgroup and css_set this link associates */
  314. struct cgroup *cgrp;
  315. struct css_set *cset;
  316. /* list of cgrp_cset_links anchored at cgrp->cset_links */
  317. struct list_head cset_link;
  318. /* list of cgrp_cset_links anchored at css_set->cgrp_links */
  319. struct list_head cgrp_link;
  320. };
  321. /* The default css_set - used by init and its children prior to any
  322. * hierarchies being mounted. It contains a pointer to the root state
  323. * for each subsystem. Also used to anchor the list of css_sets. Not
  324. * reference-counted, to improve performance when child cgroups
  325. * haven't been created.
  326. */
  327. static struct css_set init_css_set;
  328. static struct cgrp_cset_link init_cgrp_cset_link;
  329. static int cgroup_init_idr(struct cgroup_subsys *ss,
  330. struct cgroup_subsys_state *css);
  331. /* css_set_lock protects the list of css_set objects, and the
  332. * chain of tasks off each css_set. Nests outside task->alloc_lock
  333. * due to cgroup_iter_start() */
  334. static DEFINE_RWLOCK(css_set_lock);
  335. static int css_set_count;
  336. /*
  337. * hash table for cgroup groups. This improves the performance to find
  338. * an existing css_set. This hash doesn't (currently) take into
  339. * account cgroups in empty hierarchies.
  340. */
  341. #define CSS_SET_HASH_BITS 7
  342. static DEFINE_HASHTABLE(css_set_table, CSS_SET_HASH_BITS);
  343. static unsigned long css_set_hash(struct cgroup_subsys_state *css[])
  344. {
  345. unsigned long key = 0UL;
  346. struct cgroup_subsys *ss;
  347. int i;
  348. for_each_subsys(ss, i)
  349. key += (unsigned long)css[i];
  350. key = (key >> 16) ^ key;
  351. return key;
  352. }
  353. /* We don't maintain the lists running through each css_set to its
  354. * task until after the first call to cgroup_iter_start(). This
  355. * reduces the fork()/exit() overhead for people who have cgroups
  356. * compiled into their kernel but not actually in use */
  357. static int use_task_css_set_links __read_mostly;
  358. static void __put_css_set(struct css_set *cset, int taskexit)
  359. {
  360. struct cgrp_cset_link *link, *tmp_link;
  361. /*
  362. * Ensure that the refcount doesn't hit zero while any readers
  363. * can see it. Similar to atomic_dec_and_lock(), but for an
  364. * rwlock
  365. */
  366. if (atomic_add_unless(&cset->refcount, -1, 1))
  367. return;
  368. write_lock(&css_set_lock);
  369. if (!atomic_dec_and_test(&cset->refcount)) {
  370. write_unlock(&css_set_lock);
  371. return;
  372. }
  373. /* This css_set is dead. unlink it and release cgroup refcounts */
  374. hash_del(&cset->hlist);
  375. css_set_count--;
  376. list_for_each_entry_safe(link, tmp_link, &cset->cgrp_links, cgrp_link) {
  377. struct cgroup *cgrp = link->cgrp;
  378. list_del(&link->cset_link);
  379. list_del(&link->cgrp_link);
  380. /* @cgrp can't go away while we're holding css_set_lock */
  381. if (list_empty(&cgrp->cset_links) && notify_on_release(cgrp)) {
  382. if (taskexit)
  383. set_bit(CGRP_RELEASABLE, &cgrp->flags);
  384. check_for_release(cgrp);
  385. }
  386. kfree(link);
  387. }
  388. write_unlock(&css_set_lock);
  389. kfree_rcu(cset, rcu_head);
  390. }
  391. /*
  392. * refcounted get/put for css_set objects
  393. */
  394. static inline void get_css_set(struct css_set *cset)
  395. {
  396. atomic_inc(&cset->refcount);
  397. }
  398. static inline void put_css_set(struct css_set *cset)
  399. {
  400. __put_css_set(cset, 0);
  401. }
  402. static inline void put_css_set_taskexit(struct css_set *cset)
  403. {
  404. __put_css_set(cset, 1);
  405. }
  406. /**
  407. * compare_css_sets - helper function for find_existing_css_set().
  408. * @cset: candidate css_set being tested
  409. * @old_cset: existing css_set for a task
  410. * @new_cgrp: cgroup that's being entered by the task
  411. * @template: desired set of css pointers in css_set (pre-calculated)
  412. *
  413. * Returns true if "cset" matches "old_cset" except for the hierarchy
  414. * which "new_cgrp" belongs to, for which it should match "new_cgrp".
  415. */
  416. static bool compare_css_sets(struct css_set *cset,
  417. struct css_set *old_cset,
  418. struct cgroup *new_cgrp,
  419. struct cgroup_subsys_state *template[])
  420. {
  421. struct list_head *l1, *l2;
  422. if (memcmp(template, cset->subsys, sizeof(cset->subsys))) {
  423. /* Not all subsystems matched */
  424. return false;
  425. }
  426. /*
  427. * Compare cgroup pointers in order to distinguish between
  428. * different cgroups in heirarchies with no subsystems. We
  429. * could get by with just this check alone (and skip the
  430. * memcmp above) but on most setups the memcmp check will
  431. * avoid the need for this more expensive check on almost all
  432. * candidates.
  433. */
  434. l1 = &cset->cgrp_links;
  435. l2 = &old_cset->cgrp_links;
  436. while (1) {
  437. struct cgrp_cset_link *link1, *link2;
  438. struct cgroup *cgrp1, *cgrp2;
  439. l1 = l1->next;
  440. l2 = l2->next;
  441. /* See if we reached the end - both lists are equal length. */
  442. if (l1 == &cset->cgrp_links) {
  443. BUG_ON(l2 != &old_cset->cgrp_links);
  444. break;
  445. } else {
  446. BUG_ON(l2 == &old_cset->cgrp_links);
  447. }
  448. /* Locate the cgroups associated with these links. */
  449. link1 = list_entry(l1, struct cgrp_cset_link, cgrp_link);
  450. link2 = list_entry(l2, struct cgrp_cset_link, cgrp_link);
  451. cgrp1 = link1->cgrp;
  452. cgrp2 = link2->cgrp;
  453. /* Hierarchies should be linked in the same order. */
  454. BUG_ON(cgrp1->root != cgrp2->root);
  455. /*
  456. * If this hierarchy is the hierarchy of the cgroup
  457. * that's changing, then we need to check that this
  458. * css_set points to the new cgroup; if it's any other
  459. * hierarchy, then this css_set should point to the
  460. * same cgroup as the old css_set.
  461. */
  462. if (cgrp1->root == new_cgrp->root) {
  463. if (cgrp1 != new_cgrp)
  464. return false;
  465. } else {
  466. if (cgrp1 != cgrp2)
  467. return false;
  468. }
  469. }
  470. return true;
  471. }
  472. /**
  473. * find_existing_css_set - init css array and find the matching css_set
  474. * @old_cset: the css_set that we're using before the cgroup transition
  475. * @cgrp: the cgroup that we're moving into
  476. * @template: out param for the new set of csses, should be clear on entry
  477. */
  478. static struct css_set *find_existing_css_set(struct css_set *old_cset,
  479. struct cgroup *cgrp,
  480. struct cgroup_subsys_state *template[])
  481. {
  482. struct cgroupfs_root *root = cgrp->root;
  483. struct cgroup_subsys *ss;
  484. struct css_set *cset;
  485. unsigned long key;
  486. int i;
  487. /*
  488. * Build the set of subsystem state objects that we want to see in the
  489. * new css_set. while subsystems can change globally, the entries here
  490. * won't change, so no need for locking.
  491. */
  492. for_each_subsys(ss, i) {
  493. if (root->subsys_mask & (1UL << i)) {
  494. /* Subsystem is in this hierarchy. So we want
  495. * the subsystem state from the new
  496. * cgroup */
  497. template[i] = cgrp->subsys[i];
  498. } else {
  499. /* Subsystem is not in this hierarchy, so we
  500. * don't want to change the subsystem state */
  501. template[i] = old_cset->subsys[i];
  502. }
  503. }
  504. key = css_set_hash(template);
  505. hash_for_each_possible(css_set_table, cset, hlist, key) {
  506. if (!compare_css_sets(cset, old_cset, cgrp, template))
  507. continue;
  508. /* This css_set matches what we need */
  509. return cset;
  510. }
  511. /* No existing cgroup group matched */
  512. return NULL;
  513. }
  514. static void free_cgrp_cset_links(struct list_head *links_to_free)
  515. {
  516. struct cgrp_cset_link *link, *tmp_link;
  517. list_for_each_entry_safe(link, tmp_link, links_to_free, cset_link) {
  518. list_del(&link->cset_link);
  519. kfree(link);
  520. }
  521. }
  522. /**
  523. * allocate_cgrp_cset_links - allocate cgrp_cset_links
  524. * @count: the number of links to allocate
  525. * @tmp_links: list_head the allocated links are put on
  526. *
  527. * Allocate @count cgrp_cset_link structures and chain them on @tmp_links
  528. * through ->cset_link. Returns 0 on success or -errno.
  529. */
  530. static int allocate_cgrp_cset_links(int count, struct list_head *tmp_links)
  531. {
  532. struct cgrp_cset_link *link;
  533. int i;
  534. INIT_LIST_HEAD(tmp_links);
  535. for (i = 0; i < count; i++) {
  536. link = kzalloc(sizeof(*link), GFP_KERNEL);
  537. if (!link) {
  538. free_cgrp_cset_links(tmp_links);
  539. return -ENOMEM;
  540. }
  541. list_add(&link->cset_link, tmp_links);
  542. }
  543. return 0;
  544. }
  545. /**
  546. * link_css_set - a helper function to link a css_set to a cgroup
  547. * @tmp_links: cgrp_cset_link objects allocated by allocate_cgrp_cset_links()
  548. * @cset: the css_set to be linked
  549. * @cgrp: the destination cgroup
  550. */
  551. static void link_css_set(struct list_head *tmp_links, struct css_set *cset,
  552. struct cgroup *cgrp)
  553. {
  554. struct cgrp_cset_link *link;
  555. BUG_ON(list_empty(tmp_links));
  556. link = list_first_entry(tmp_links, struct cgrp_cset_link, cset_link);
  557. link->cset = cset;
  558. link->cgrp = cgrp;
  559. list_move(&link->cset_link, &cgrp->cset_links);
  560. /*
  561. * Always add links to the tail of the list so that the list
  562. * is sorted by order of hierarchy creation
  563. */
  564. list_add_tail(&link->cgrp_link, &cset->cgrp_links);
  565. }
  566. /**
  567. * find_css_set - return a new css_set with one cgroup updated
  568. * @old_cset: the baseline css_set
  569. * @cgrp: the cgroup to be updated
  570. *
  571. * Return a new css_set that's equivalent to @old_cset, but with @cgrp
  572. * substituted into the appropriate hierarchy.
  573. */
  574. static struct css_set *find_css_set(struct css_set *old_cset,
  575. struct cgroup *cgrp)
  576. {
  577. struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT] = { };
  578. struct css_set *cset;
  579. struct list_head tmp_links;
  580. struct cgrp_cset_link *link;
  581. unsigned long key;
  582. lockdep_assert_held(&cgroup_mutex);
  583. /* First see if we already have a cgroup group that matches
  584. * the desired set */
  585. read_lock(&css_set_lock);
  586. cset = find_existing_css_set(old_cset, cgrp, template);
  587. if (cset)
  588. get_css_set(cset);
  589. read_unlock(&css_set_lock);
  590. if (cset)
  591. return cset;
  592. cset = kzalloc(sizeof(*cset), GFP_KERNEL);
  593. if (!cset)
  594. return NULL;
  595. /* Allocate all the cgrp_cset_link objects that we'll need */
  596. if (allocate_cgrp_cset_links(cgroup_root_count, &tmp_links) < 0) {
  597. kfree(cset);
  598. return NULL;
  599. }
  600. atomic_set(&cset->refcount, 1);
  601. INIT_LIST_HEAD(&cset->cgrp_links);
  602. INIT_LIST_HEAD(&cset->tasks);
  603. INIT_HLIST_NODE(&cset->hlist);
  604. /* Copy the set of subsystem state objects generated in
  605. * find_existing_css_set() */
  606. memcpy(cset->subsys, template, sizeof(cset->subsys));
  607. write_lock(&css_set_lock);
  608. /* Add reference counts and links from the new css_set. */
  609. list_for_each_entry(link, &old_cset->cgrp_links, cgrp_link) {
  610. struct cgroup *c = link->cgrp;
  611. if (c->root == cgrp->root)
  612. c = cgrp;
  613. link_css_set(&tmp_links, cset, c);
  614. }
  615. BUG_ON(!list_empty(&tmp_links));
  616. css_set_count++;
  617. /* Add this cgroup group to the hash table */
  618. key = css_set_hash(cset->subsys);
  619. hash_add(css_set_table, &cset->hlist, key);
  620. write_unlock(&css_set_lock);
  621. return cset;
  622. }
  623. /*
  624. * Return the cgroup for "task" from the given hierarchy. Must be
  625. * called with cgroup_mutex held.
  626. */
  627. static struct cgroup *task_cgroup_from_root(struct task_struct *task,
  628. struct cgroupfs_root *root)
  629. {
  630. struct css_set *cset;
  631. struct cgroup *res = NULL;
  632. BUG_ON(!mutex_is_locked(&cgroup_mutex));
  633. read_lock(&css_set_lock);
  634. /*
  635. * No need to lock the task - since we hold cgroup_mutex the
  636. * task can't change groups, so the only thing that can happen
  637. * is that it exits and its css is set back to init_css_set.
  638. */
  639. cset = task_css_set(task);
  640. if (cset == &init_css_set) {
  641. res = &root->top_cgroup;
  642. } else {
  643. struct cgrp_cset_link *link;
  644. list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
  645. struct cgroup *c = link->cgrp;
  646. if (c->root == root) {
  647. res = c;
  648. break;
  649. }
  650. }
  651. }
  652. read_unlock(&css_set_lock);
  653. BUG_ON(!res);
  654. return res;
  655. }
  656. /*
  657. * There is one global cgroup mutex. We also require taking
  658. * task_lock() when dereferencing a task's cgroup subsys pointers.
  659. * See "The task_lock() exception", at the end of this comment.
  660. *
  661. * A task must hold cgroup_mutex to modify cgroups.
  662. *
  663. * Any task can increment and decrement the count field without lock.
  664. * So in general, code holding cgroup_mutex can't rely on the count
  665. * field not changing. However, if the count goes to zero, then only
  666. * cgroup_attach_task() can increment it again. Because a count of zero
  667. * means that no tasks are currently attached, therefore there is no
  668. * way a task attached to that cgroup can fork (the other way to
  669. * increment the count). So code holding cgroup_mutex can safely
  670. * assume that if the count is zero, it will stay zero. Similarly, if
  671. * a task holds cgroup_mutex on a cgroup with zero count, it
  672. * knows that the cgroup won't be removed, as cgroup_rmdir()
  673. * needs that mutex.
  674. *
  675. * The fork and exit callbacks cgroup_fork() and cgroup_exit(), don't
  676. * (usually) take cgroup_mutex. These are the two most performance
  677. * critical pieces of code here. The exception occurs on cgroup_exit(),
  678. * when a task in a notify_on_release cgroup exits. Then cgroup_mutex
  679. * is taken, and if the cgroup count is zero, a usermode call made
  680. * to the release agent with the name of the cgroup (path relative to
  681. * the root of cgroup file system) as the argument.
  682. *
  683. * A cgroup can only be deleted if both its 'count' of using tasks
  684. * is zero, and its list of 'children' cgroups is empty. Since all
  685. * tasks in the system use _some_ cgroup, and since there is always at
  686. * least one task in the system (init, pid == 1), therefore, top_cgroup
  687. * always has either children cgroups and/or using tasks. So we don't
  688. * need a special hack to ensure that top_cgroup cannot be deleted.
  689. *
  690. * The task_lock() exception
  691. *
  692. * The need for this exception arises from the action of
  693. * cgroup_attach_task(), which overwrites one task's cgroup pointer with
  694. * another. It does so using cgroup_mutex, however there are
  695. * several performance critical places that need to reference
  696. * task->cgroup without the expense of grabbing a system global
  697. * mutex. Therefore except as noted below, when dereferencing or, as
  698. * in cgroup_attach_task(), modifying a task's cgroup pointer we use
  699. * task_lock(), which acts on a spinlock (task->alloc_lock) already in
  700. * the task_struct routinely used for such matters.
  701. *
  702. * P.S. One more locking exception. RCU is used to guard the
  703. * update of a tasks cgroup pointer by cgroup_attach_task()
  704. */
  705. /*
  706. * A couple of forward declarations required, due to cyclic reference loop:
  707. * cgroup_mkdir -> cgroup_create -> cgroup_populate_dir ->
  708. * cgroup_add_file -> cgroup_create_file -> cgroup_dir_inode_operations
  709. * -> cgroup_mkdir.
  710. */
  711. static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode);
  712. static struct dentry *cgroup_lookup(struct inode *, struct dentry *, unsigned int);
  713. static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry);
  714. static int cgroup_populate_dir(struct cgroup *cgrp, unsigned long subsys_mask);
  715. static const struct inode_operations cgroup_dir_inode_operations;
  716. static const struct file_operations proc_cgroupstats_operations;
  717. static struct backing_dev_info cgroup_backing_dev_info = {
  718. .name = "cgroup",
  719. .capabilities = BDI_CAP_NO_ACCT_AND_WRITEBACK,
  720. };
  721. static int alloc_css_id(struct cgroup_subsys *ss,
  722. struct cgroup *parent, struct cgroup *child);
  723. static struct inode *cgroup_new_inode(umode_t mode, struct super_block *sb)
  724. {
  725. struct inode *inode = new_inode(sb);
  726. if (inode) {
  727. inode->i_ino = get_next_ino();
  728. inode->i_mode = mode;
  729. inode->i_uid = current_fsuid();
  730. inode->i_gid = current_fsgid();
  731. inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
  732. inode->i_mapping->backing_dev_info = &cgroup_backing_dev_info;
  733. }
  734. return inode;
  735. }
  736. static struct cgroup_name *cgroup_alloc_name(struct dentry *dentry)
  737. {
  738. struct cgroup_name *name;
  739. name = kmalloc(sizeof(*name) + dentry->d_name.len + 1, GFP_KERNEL);
  740. if (!name)
  741. return NULL;
  742. strcpy(name->name, dentry->d_name.name);
  743. return name;
  744. }
  745. static void cgroup_free_fn(struct work_struct *work)
  746. {
  747. struct cgroup *cgrp = container_of(work, struct cgroup, destroy_work);
  748. struct cgroup_subsys *ss;
  749. mutex_lock(&cgroup_mutex);
  750. /*
  751. * Release the subsystem state objects.
  752. */
  753. for_each_root_subsys(cgrp->root, ss)
  754. ss->css_free(cgrp);
  755. cgrp->root->number_of_cgroups--;
  756. mutex_unlock(&cgroup_mutex);
  757. /*
  758. * We get a ref to the parent's dentry, and put the ref when
  759. * this cgroup is being freed, so it's guaranteed that the
  760. * parent won't be destroyed before its children.
  761. */
  762. dput(cgrp->parent->dentry);
  763. /*
  764. * Drop the active superblock reference that we took when we
  765. * created the cgroup. This will free cgrp->root, if we are
  766. * holding the last reference to @sb.
  767. */
  768. deactivate_super(cgrp->root->sb);
  769. /*
  770. * if we're getting rid of the cgroup, refcount should ensure
  771. * that there are no pidlists left.
  772. */
  773. BUG_ON(!list_empty(&cgrp->pidlists));
  774. simple_xattrs_free(&cgrp->xattrs);
  775. kfree(rcu_dereference_raw(cgrp->name));
  776. kfree(cgrp);
  777. }
  778. static void cgroup_free_rcu(struct rcu_head *head)
  779. {
  780. struct cgroup *cgrp = container_of(head, struct cgroup, rcu_head);
  781. INIT_WORK(&cgrp->destroy_work, cgroup_free_fn);
  782. schedule_work(&cgrp->destroy_work);
  783. }
  784. static void cgroup_diput(struct dentry *dentry, struct inode *inode)
  785. {
  786. /* is dentry a directory ? if so, kfree() associated cgroup */
  787. if (S_ISDIR(inode->i_mode)) {
  788. struct cgroup *cgrp = dentry->d_fsdata;
  789. BUG_ON(!(cgroup_is_dead(cgrp)));
  790. call_rcu(&cgrp->rcu_head, cgroup_free_rcu);
  791. } else {
  792. struct cfent *cfe = __d_cfe(dentry);
  793. struct cgroup *cgrp = dentry->d_parent->d_fsdata;
  794. WARN_ONCE(!list_empty(&cfe->node) &&
  795. cgrp != &cgrp->root->top_cgroup,
  796. "cfe still linked for %s\n", cfe->type->name);
  797. simple_xattrs_free(&cfe->xattrs);
  798. kfree(cfe);
  799. }
  800. iput(inode);
  801. }
  802. static int cgroup_delete(const struct dentry *d)
  803. {
  804. return 1;
  805. }
  806. static void remove_dir(struct dentry *d)
  807. {
  808. struct dentry *parent = dget(d->d_parent);
  809. d_delete(d);
  810. simple_rmdir(parent->d_inode, d);
  811. dput(parent);
  812. }
  813. static void cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft)
  814. {
  815. struct cfent *cfe;
  816. lockdep_assert_held(&cgrp->dentry->d_inode->i_mutex);
  817. lockdep_assert_held(&cgroup_mutex);
  818. /*
  819. * If we're doing cleanup due to failure of cgroup_create(),
  820. * the corresponding @cfe may not exist.
  821. */
  822. list_for_each_entry(cfe, &cgrp->files, node) {
  823. struct dentry *d = cfe->dentry;
  824. if (cft && cfe->type != cft)
  825. continue;
  826. dget(d);
  827. d_delete(d);
  828. simple_unlink(cgrp->dentry->d_inode, d);
  829. list_del_init(&cfe->node);
  830. dput(d);
  831. break;
  832. }
  833. }
  834. /**
  835. * cgroup_clear_dir - remove subsys files in a cgroup directory
  836. * @cgrp: target cgroup
  837. * @subsys_mask: mask of the subsystem ids whose files should be removed
  838. */
  839. static void cgroup_clear_dir(struct cgroup *cgrp, unsigned long subsys_mask)
  840. {
  841. struct cgroup_subsys *ss;
  842. int i;
  843. for_each_subsys(ss, i) {
  844. struct cftype_set *set;
  845. if (!test_bit(i, &subsys_mask))
  846. continue;
  847. list_for_each_entry(set, &ss->cftsets, node)
  848. cgroup_addrm_files(cgrp, NULL, set->cfts, false);
  849. }
  850. }
  851. /*
  852. * NOTE : the dentry must have been dget()'ed
  853. */
  854. static void cgroup_d_remove_dir(struct dentry *dentry)
  855. {
  856. struct dentry *parent;
  857. parent = dentry->d_parent;
  858. spin_lock(&parent->d_lock);
  859. spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
  860. list_del_init(&dentry->d_u.d_child);
  861. spin_unlock(&dentry->d_lock);
  862. spin_unlock(&parent->d_lock);
  863. remove_dir(dentry);
  864. }
  865. /*
  866. * Call with cgroup_mutex held. Drops reference counts on modules, including
  867. * any duplicate ones that parse_cgroupfs_options took. If this function
  868. * returns an error, no reference counts are touched.
  869. */
  870. static int rebind_subsystems(struct cgroupfs_root *root,
  871. unsigned long added_mask, unsigned removed_mask)
  872. {
  873. struct cgroup *cgrp = &root->top_cgroup;
  874. struct cgroup_subsys *ss;
  875. unsigned long pinned = 0;
  876. int i, ret;
  877. BUG_ON(!mutex_is_locked(&cgroup_mutex));
  878. BUG_ON(!mutex_is_locked(&cgroup_root_mutex));
  879. /* Check that any added subsystems are currently free */
  880. for_each_subsys(ss, i) {
  881. if (!(added_mask & (1 << i)))
  882. continue;
  883. /* is the subsystem mounted elsewhere? */
  884. if (ss->root != &cgroup_dummy_root) {
  885. ret = -EBUSY;
  886. goto out_put;
  887. }
  888. /* pin the module */
  889. if (!try_module_get(ss->module)) {
  890. ret = -ENOENT;
  891. goto out_put;
  892. }
  893. pinned |= 1 << i;
  894. }
  895. /* subsys could be missing if unloaded between parsing and here */
  896. if (added_mask != pinned) {
  897. ret = -ENOENT;
  898. goto out_put;
  899. }
  900. ret = cgroup_populate_dir(cgrp, added_mask);
  901. if (ret)
  902. goto out_put;
  903. /*
  904. * Nothing can fail from this point on. Remove files for the
  905. * removed subsystems and rebind each subsystem.
  906. */
  907. cgroup_clear_dir(cgrp, removed_mask);
  908. for_each_subsys(ss, i) {
  909. unsigned long bit = 1UL << i;
  910. if (bit & added_mask) {
  911. /* We're binding this subsystem to this hierarchy */
  912. BUG_ON(cgrp->subsys[i]);
  913. BUG_ON(!cgroup_dummy_top->subsys[i]);
  914. BUG_ON(cgroup_dummy_top->subsys[i]->cgroup != cgroup_dummy_top);
  915. cgrp->subsys[i] = cgroup_dummy_top->subsys[i];
  916. cgrp->subsys[i]->cgroup = cgrp;
  917. list_move(&ss->sibling, &root->subsys_list);
  918. ss->root = root;
  919. if (ss->bind)
  920. ss->bind(cgrp);
  921. /* refcount was already taken, and we're keeping it */
  922. root->subsys_mask |= bit;
  923. } else if (bit & removed_mask) {
  924. /* We're removing this subsystem */
  925. BUG_ON(cgrp->subsys[i] != cgroup_dummy_top->subsys[i]);
  926. BUG_ON(cgrp->subsys[i]->cgroup != cgrp);
  927. if (ss->bind)
  928. ss->bind(cgroup_dummy_top);
  929. cgroup_dummy_top->subsys[i]->cgroup = cgroup_dummy_top;
  930. cgrp->subsys[i] = NULL;
  931. cgroup_subsys[i]->root = &cgroup_dummy_root;
  932. list_move(&ss->sibling, &cgroup_dummy_root.subsys_list);
  933. /* subsystem is now free - drop reference on module */
  934. module_put(ss->module);
  935. root->subsys_mask &= ~bit;
  936. }
  937. }
  938. /*
  939. * Mark @root has finished binding subsystems. @root->subsys_mask
  940. * now matches the bound subsystems.
  941. */
  942. root->flags |= CGRP_ROOT_SUBSYS_BOUND;
  943. return 0;
  944. out_put:
  945. for_each_subsys(ss, i)
  946. if (pinned & (1 << i))
  947. module_put(ss->module);
  948. return ret;
  949. }
  950. static int cgroup_show_options(struct seq_file *seq, struct dentry *dentry)
  951. {
  952. struct cgroupfs_root *root = dentry->d_sb->s_fs_info;
  953. struct cgroup_subsys *ss;
  954. mutex_lock(&cgroup_root_mutex);
  955. for_each_root_subsys(root, ss)
  956. seq_printf(seq, ",%s", ss->name);
  957. if (root->flags & CGRP_ROOT_SANE_BEHAVIOR)
  958. seq_puts(seq, ",sane_behavior");
  959. if (root->flags & CGRP_ROOT_NOPREFIX)
  960. seq_puts(seq, ",noprefix");
  961. if (root->flags & CGRP_ROOT_XATTR)
  962. seq_puts(seq, ",xattr");
  963. if (strlen(root->release_agent_path))
  964. seq_printf(seq, ",release_agent=%s", root->release_agent_path);
  965. if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->top_cgroup.flags))
  966. seq_puts(seq, ",clone_children");
  967. if (strlen(root->name))
  968. seq_printf(seq, ",name=%s", root->name);
  969. mutex_unlock(&cgroup_root_mutex);
  970. return 0;
  971. }
  972. struct cgroup_sb_opts {
  973. unsigned long subsys_mask;
  974. unsigned long flags;
  975. char *release_agent;
  976. bool cpuset_clone_children;
  977. char *name;
  978. /* User explicitly requested empty subsystem */
  979. bool none;
  980. struct cgroupfs_root *new_root;
  981. };
  982. /*
  983. * Convert a hierarchy specifier into a bitmask of subsystems and
  984. * flags. Call with cgroup_mutex held to protect the cgroup_subsys[]
  985. * array. This function takes refcounts on subsystems to be used, unless it
  986. * returns error, in which case no refcounts are taken.
  987. */
  988. static int parse_cgroupfs_options(char *data, struct cgroup_sb_opts *opts)
  989. {
  990. char *token, *o = data;
  991. bool all_ss = false, one_ss = false;
  992. unsigned long mask = (unsigned long)-1;
  993. struct cgroup_subsys *ss;
  994. int i;
  995. BUG_ON(!mutex_is_locked(&cgroup_mutex));
  996. #ifdef CONFIG_CPUSETS
  997. mask = ~(1UL << cpuset_subsys_id);
  998. #endif
  999. memset(opts, 0, sizeof(*opts));
  1000. while ((token = strsep(&o, ",")) != NULL) {
  1001. if (!*token)
  1002. return -EINVAL;
  1003. if (!strcmp(token, "none")) {
  1004. /* Explicitly have no subsystems */
  1005. opts->none = true;
  1006. continue;
  1007. }
  1008. if (!strcmp(token, "all")) {
  1009. /* Mutually exclusive option 'all' + subsystem name */
  1010. if (one_ss)
  1011. return -EINVAL;
  1012. all_ss = true;
  1013. continue;
  1014. }
  1015. if (!strcmp(token, "__DEVEL__sane_behavior")) {
  1016. opts->flags |= CGRP_ROOT_SANE_BEHAVIOR;
  1017. continue;
  1018. }
  1019. if (!strcmp(token, "noprefix")) {
  1020. opts->flags |= CGRP_ROOT_NOPREFIX;
  1021. continue;
  1022. }
  1023. if (!strcmp(token, "clone_children")) {
  1024. opts->cpuset_clone_children = true;
  1025. continue;
  1026. }
  1027. if (!strcmp(token, "xattr")) {
  1028. opts->flags |= CGRP_ROOT_XATTR;
  1029. continue;
  1030. }
  1031. if (!strncmp(token, "release_agent=", 14)) {
  1032. /* Specifying two release agents is forbidden */
  1033. if (opts->release_agent)
  1034. return -EINVAL;
  1035. opts->release_agent =
  1036. kstrndup(token + 14, PATH_MAX - 1, GFP_KERNEL);
  1037. if (!opts->release_agent)
  1038. return -ENOMEM;
  1039. continue;
  1040. }
  1041. if (!strncmp(token, "name=", 5)) {
  1042. const char *name = token + 5;
  1043. /* Can't specify an empty name */
  1044. if (!strlen(name))
  1045. return -EINVAL;
  1046. /* Must match [\w.-]+ */
  1047. for (i = 0; i < strlen(name); i++) {
  1048. char c = name[i];
  1049. if (isalnum(c))
  1050. continue;
  1051. if ((c == '.') || (c == '-') || (c == '_'))
  1052. continue;
  1053. return -EINVAL;
  1054. }
  1055. /* Specifying two names is forbidden */
  1056. if (opts->name)
  1057. return -EINVAL;
  1058. opts->name = kstrndup(name,
  1059. MAX_CGROUP_ROOT_NAMELEN - 1,
  1060. GFP_KERNEL);
  1061. if (!opts->name)
  1062. return -ENOMEM;
  1063. continue;
  1064. }
  1065. for_each_subsys(ss, i) {
  1066. if (strcmp(token, ss->name))
  1067. continue;
  1068. if (ss->disabled)
  1069. continue;
  1070. /* Mutually exclusive option 'all' + subsystem name */
  1071. if (all_ss)
  1072. return -EINVAL;
  1073. set_bit(i, &opts->subsys_mask);
  1074. one_ss = true;
  1075. break;
  1076. }
  1077. if (i == CGROUP_SUBSYS_COUNT)
  1078. return -ENOENT;
  1079. }
  1080. /*
  1081. * If the 'all' option was specified select all the subsystems,
  1082. * otherwise if 'none', 'name=' and a subsystem name options
  1083. * were not specified, let's default to 'all'
  1084. */
  1085. if (all_ss || (!one_ss && !opts->none && !opts->name))
  1086. for_each_subsys(ss, i)
  1087. if (!ss->disabled)
  1088. set_bit(i, &opts->subsys_mask);
  1089. /* Consistency checks */
  1090. if (opts->flags & CGRP_ROOT_SANE_BEHAVIOR) {
  1091. pr_warning("cgroup: sane_behavior: this is still under development and its behaviors will change, proceed at your own risk\n");
  1092. if (opts->flags & CGRP_ROOT_NOPREFIX) {
  1093. pr_err("cgroup: sane_behavior: noprefix is not allowed\n");
  1094. return -EINVAL;
  1095. }
  1096. if (opts->cpuset_clone_children) {
  1097. pr_err("cgroup: sane_behavior: clone_children is not allowed\n");
  1098. return -EINVAL;
  1099. }
  1100. }
  1101. /*
  1102. * Option noprefix was introduced just for backward compatibility
  1103. * with the old cpuset, so we allow noprefix only if mounting just
  1104. * the cpuset subsystem.
  1105. */
  1106. if ((opts->flags & CGRP_ROOT_NOPREFIX) && (opts->subsys_mask & mask))
  1107. return -EINVAL;
  1108. /* Can't specify "none" and some subsystems */
  1109. if (opts->subsys_mask && opts->none)
  1110. return -EINVAL;
  1111. /*
  1112. * We either have to specify by name or by subsystems. (So all
  1113. * empty hierarchies must have a name).
  1114. */
  1115. if (!opts->subsys_mask && !opts->name)
  1116. return -EINVAL;
  1117. return 0;
  1118. }
  1119. static int cgroup_remount(struct super_block *sb, int *flags, char *data)
  1120. {
  1121. int ret = 0;
  1122. struct cgroupfs_root *root = sb->s_fs_info;
  1123. struct cgroup *cgrp = &root->top_cgroup;
  1124. struct cgroup_sb_opts opts;
  1125. unsigned long added_mask, removed_mask;
  1126. if (root->flags & CGRP_ROOT_SANE_BEHAVIOR) {
  1127. pr_err("cgroup: sane_behavior: remount is not allowed\n");
  1128. return -EINVAL;
  1129. }
  1130. mutex_lock(&cgrp->dentry->d_inode->i_mutex);
  1131. mutex_lock(&cgroup_mutex);
  1132. mutex_lock(&cgroup_root_mutex);
  1133. /* See what subsystems are wanted */
  1134. ret = parse_cgroupfs_options(data, &opts);
  1135. if (ret)
  1136. goto out_unlock;
  1137. if (opts.subsys_mask != root->subsys_mask || opts.release_agent)
  1138. pr_warning("cgroup: option changes via remount are deprecated (pid=%d comm=%s)\n",
  1139. task_tgid_nr(current), current->comm);
  1140. added_mask = opts.subsys_mask & ~root->subsys_mask;
  1141. removed_mask = root->subsys_mask & ~opts.subsys_mask;
  1142. /* Don't allow flags or name to change at remount */
  1143. if (((opts.flags ^ root->flags) & CGRP_ROOT_OPTION_MASK) ||
  1144. (opts.name && strcmp(opts.name, root->name))) {
  1145. pr_err("cgroup: option or name mismatch, new: 0x%lx \"%s\", old: 0x%lx \"%s\"\n",
  1146. opts.flags & CGRP_ROOT_OPTION_MASK, opts.name ?: "",
  1147. root->flags & CGRP_ROOT_OPTION_MASK, root->name);
  1148. ret = -EINVAL;
  1149. goto out_unlock;
  1150. }
  1151. /* remounting is not allowed for populated hierarchies */
  1152. if (root->number_of_cgroups > 1) {
  1153. ret = -EBUSY;
  1154. goto out_unlock;
  1155. }
  1156. ret = rebind_subsystems(root, added_mask, removed_mask);
  1157. if (ret)
  1158. goto out_unlock;
  1159. if (opts.release_agent)
  1160. strcpy(root->release_agent_path, opts.release_agent);
  1161. out_unlock:
  1162. kfree(opts.release_agent);
  1163. kfree(opts.name);
  1164. mutex_unlock(&cgroup_root_mutex);
  1165. mutex_unlock(&cgroup_mutex);
  1166. mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
  1167. return ret;
  1168. }
  1169. static const struct super_operations cgroup_ops = {
  1170. .statfs = simple_statfs,
  1171. .drop_inode = generic_delete_inode,
  1172. .show_options = cgroup_show_options,
  1173. .remount_fs = cgroup_remount,
  1174. };
  1175. static void init_cgroup_housekeeping(struct cgroup *cgrp)
  1176. {
  1177. INIT_LIST_HEAD(&cgrp->sibling);
  1178. INIT_LIST_HEAD(&cgrp->children);
  1179. INIT_LIST_HEAD(&cgrp->files);
  1180. INIT_LIST_HEAD(&cgrp->cset_links);
  1181. INIT_LIST_HEAD(&cgrp->release_list);
  1182. INIT_LIST_HEAD(&cgrp->pidlists);
  1183. mutex_init(&cgrp->pidlist_mutex);
  1184. INIT_LIST_HEAD(&cgrp->event_list);
  1185. spin_lock_init(&cgrp->event_list_lock);
  1186. simple_xattrs_init(&cgrp->xattrs);
  1187. }
  1188. static void init_cgroup_root(struct cgroupfs_root *root)
  1189. {
  1190. struct cgroup *cgrp = &root->top_cgroup;
  1191. INIT_LIST_HEAD(&root->subsys_list);
  1192. INIT_LIST_HEAD(&root->root_list);
  1193. root->number_of_cgroups = 1;
  1194. cgrp->root = root;
  1195. RCU_INIT_POINTER(cgrp->name, &root_cgroup_name);
  1196. init_cgroup_housekeeping(cgrp);
  1197. idr_init(&root->cgroup_idr);
  1198. }
  1199. static int cgroup_init_root_id(struct cgroupfs_root *root, int start, int end)
  1200. {
  1201. int id;
  1202. lockdep_assert_held(&cgroup_mutex);
  1203. lockdep_assert_held(&cgroup_root_mutex);
  1204. id = idr_alloc_cyclic(&cgroup_hierarchy_idr, root, start, end,
  1205. GFP_KERNEL);
  1206. if (id < 0)
  1207. return id;
  1208. root->hierarchy_id = id;
  1209. return 0;
  1210. }
  1211. static void cgroup_exit_root_id(struct cgroupfs_root *root)
  1212. {
  1213. lockdep_assert_held(&cgroup_mutex);
  1214. lockdep_assert_held(&cgroup_root_mutex);
  1215. if (root->hierarchy_id) {
  1216. idr_remove(&cgroup_hierarchy_idr, root->hierarchy_id);
  1217. root->hierarchy_id = 0;
  1218. }
  1219. }
  1220. static int cgroup_test_super(struct super_block *sb, void *data)
  1221. {
  1222. struct cgroup_sb_opts *opts = data;
  1223. struct cgroupfs_root *root = sb->s_fs_info;
  1224. /* If we asked for a name then it must match */
  1225. if (opts->name && strcmp(opts->name, root->name))
  1226. return 0;
  1227. /*
  1228. * If we asked for subsystems (or explicitly for no
  1229. * subsystems) then they must match
  1230. */
  1231. if ((opts->subsys_mask || opts->none)
  1232. && (opts->subsys_mask != root->subsys_mask))
  1233. return 0;
  1234. return 1;
  1235. }
  1236. static struct cgroupfs_root *cgroup_root_from_opts(struct cgroup_sb_opts *opts)
  1237. {
  1238. struct cgroupfs_root *root;
  1239. if (!opts->subsys_mask && !opts->none)
  1240. return NULL;
  1241. root = kzalloc(sizeof(*root), GFP_KERNEL);
  1242. if (!root)
  1243. return ERR_PTR(-ENOMEM);
  1244. init_cgroup_root(root);
  1245. /*
  1246. * We need to set @root->subsys_mask now so that @root can be
  1247. * matched by cgroup_test_super() before it finishes
  1248. * initialization; otherwise, competing mounts with the same
  1249. * options may try to bind the same subsystems instead of waiting
  1250. * for the first one leading to unexpected mount errors.
  1251. * SUBSYS_BOUND will be set once actual binding is complete.
  1252. */
  1253. root->subsys_mask = opts->subsys_mask;
  1254. root->flags = opts->flags;
  1255. if (opts->release_agent)
  1256. strcpy(root->release_agent_path, opts->release_agent);
  1257. if (opts->name)
  1258. strcpy(root->name, opts->name);
  1259. if (opts->cpuset_clone_children)
  1260. set_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->top_cgroup.flags);
  1261. return root;
  1262. }
  1263. static void cgroup_free_root(struct cgroupfs_root *root)
  1264. {
  1265. if (root) {
  1266. /* hierarhcy ID shoulid already have been released */
  1267. WARN_ON_ONCE(root->hierarchy_id);
  1268. idr_destroy(&root->cgroup_idr);
  1269. kfree(root);
  1270. }
  1271. }
  1272. static int cgroup_set_super(struct super_block *sb, void *data)
  1273. {
  1274. int ret;
  1275. struct cgroup_sb_opts *opts = data;
  1276. /* If we don't have a new root, we can't set up a new sb */
  1277. if (!opts->new_root)
  1278. return -EINVAL;
  1279. BUG_ON(!opts->subsys_mask && !opts->none);
  1280. ret = set_anon_super(sb, NULL);
  1281. if (ret)
  1282. return ret;
  1283. sb->s_fs_info = opts->new_root;
  1284. opts->new_root->sb = sb;
  1285. sb->s_blocksize = PAGE_CACHE_SIZE;
  1286. sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
  1287. sb->s_magic = CGROUP_SUPER_MAGIC;
  1288. sb->s_op = &cgroup_ops;
  1289. return 0;
  1290. }
  1291. static int cgroup_get_rootdir(struct super_block *sb)
  1292. {
  1293. static const struct dentry_operations cgroup_dops = {
  1294. .d_iput = cgroup_diput,
  1295. .d_delete = cgroup_delete,
  1296. };
  1297. struct inode *inode =
  1298. cgroup_new_inode(S_IFDIR | S_IRUGO | S_IXUGO | S_IWUSR, sb);
  1299. if (!inode)
  1300. return -ENOMEM;
  1301. inode->i_fop = &simple_dir_operations;
  1302. inode->i_op = &cgroup_dir_inode_operations;
  1303. /* directories start off with i_nlink == 2 (for "." entry) */
  1304. inc_nlink(inode);
  1305. sb->s_root = d_make_root(inode);
  1306. if (!sb->s_root)
  1307. return -ENOMEM;
  1308. /* for everything else we want ->d_op set */
  1309. sb->s_d_op = &cgroup_dops;
  1310. return 0;
  1311. }
  1312. static struct dentry *cgroup_mount(struct file_system_type *fs_type,
  1313. int flags, const char *unused_dev_name,
  1314. void *data)
  1315. {
  1316. struct cgroup_sb_opts opts;
  1317. struct cgroupfs_root *root;
  1318. int ret = 0;
  1319. struct super_block *sb;
  1320. struct cgroupfs_root *new_root;
  1321. struct list_head tmp_links;
  1322. struct inode *inode;
  1323. const struct cred *cred;
  1324. /* First find the desired set of subsystems */
  1325. mutex_lock(&cgroup_mutex);
  1326. ret = parse_cgroupfs_options(data, &opts);
  1327. mutex_unlock(&cgroup_mutex);
  1328. if (ret)
  1329. goto out_err;
  1330. /*
  1331. * Allocate a new cgroup root. We may not need it if we're
  1332. * reusing an existing hierarchy.
  1333. */
  1334. new_root = cgroup_root_from_opts(&opts);
  1335. if (IS_ERR(new_root)) {
  1336. ret = PTR_ERR(new_root);
  1337. goto out_err;
  1338. }
  1339. opts.new_root = new_root;
  1340. /* Locate an existing or new sb for this hierarchy */
  1341. sb = sget(fs_type, cgroup_test_super, cgroup_set_super, 0, &opts);
  1342. if (IS_ERR(sb)) {
  1343. ret = PTR_ERR(sb);
  1344. cgroup_free_root(opts.new_root);
  1345. goto out_err;
  1346. }
  1347. root = sb->s_fs_info;
  1348. BUG_ON(!root);
  1349. if (root == opts.new_root) {
  1350. /* We used the new root structure, so this is a new hierarchy */
  1351. struct cgroup *root_cgrp = &root->top_cgroup;
  1352. struct cgroupfs_root *existing_root;
  1353. int i;
  1354. struct css_set *cset;
  1355. BUG_ON(sb->s_root != NULL);
  1356. ret = cgroup_get_rootdir(sb);
  1357. if (ret)
  1358. goto drop_new_super;
  1359. inode = sb->s_root->d_inode;
  1360. mutex_lock(&inode->i_mutex);
  1361. mutex_lock(&cgroup_mutex);
  1362. mutex_lock(&cgroup_root_mutex);
  1363. root_cgrp->id = idr_alloc(&root->cgroup_idr, root_cgrp,
  1364. 0, 1, GFP_KERNEL);
  1365. if (root_cgrp->id < 0)
  1366. goto unlock_drop;
  1367. /* Check for name clashes with existing mounts */
  1368. ret = -EBUSY;
  1369. if (strlen(root->name))
  1370. for_each_active_root(existing_root)
  1371. if (!strcmp(existing_root->name, root->name))
  1372. goto unlock_drop;
  1373. /*
  1374. * We're accessing css_set_count without locking
  1375. * css_set_lock here, but that's OK - it can only be
  1376. * increased by someone holding cgroup_lock, and
  1377. * that's us. The worst that can happen is that we
  1378. * have some link structures left over
  1379. */
  1380. ret = allocate_cgrp_cset_links(css_set_count, &tmp_links);
  1381. if (ret)
  1382. goto unlock_drop;
  1383. /* ID 0 is reserved for dummy root, 1 for unified hierarchy */
  1384. ret = cgroup_init_root_id(root, 2, 0);
  1385. if (ret)
  1386. goto unlock_drop;
  1387. sb->s_root->d_fsdata = root_cgrp;
  1388. root_cgrp->dentry = sb->s_root;
  1389. /*
  1390. * We're inside get_sb() and will call lookup_one_len() to
  1391. * create the root files, which doesn't work if SELinux is
  1392. * in use. The following cred dancing somehow works around
  1393. * it. See 2ce9738ba ("cgroupfs: use init_cred when
  1394. * populating new cgroupfs mount") for more details.
  1395. */
  1396. cred = override_creds(&init_cred);
  1397. ret = cgroup_addrm_files(root_cgrp, NULL, cgroup_base_files, true);
  1398. if (ret)
  1399. goto rm_base_files;
  1400. ret = rebind_subsystems(root, root->subsys_mask, 0);
  1401. if (ret)
  1402. goto rm_base_files;
  1403. revert_creds(cred);
  1404. /*
  1405. * There must be no failure case after here, since rebinding
  1406. * takes care of subsystems' refcounts, which are explicitly
  1407. * dropped in the failure exit path.
  1408. */
  1409. list_add(&root->root_list, &cgroup_roots);
  1410. cgroup_root_count++;
  1411. /* Link the top cgroup in this hierarchy into all
  1412. * the css_set objects */
  1413. write_lock(&css_set_lock);
  1414. hash_for_each(css_set_table, i, cset, hlist)
  1415. link_css_set(&tmp_links, cset, root_cgrp);
  1416. write_unlock(&css_set_lock);
  1417. free_cgrp_cset_links(&tmp_links);
  1418. BUG_ON(!list_empty(&root_cgrp->children));
  1419. BUG_ON(root->number_of_cgroups != 1);
  1420. mutex_unlock(&cgroup_root_mutex);
  1421. mutex_unlock(&cgroup_mutex);
  1422. mutex_unlock(&inode->i_mutex);
  1423. } else {
  1424. /*
  1425. * We re-used an existing hierarchy - the new root (if
  1426. * any) is not needed
  1427. */
  1428. cgroup_free_root(opts.new_root);
  1429. if ((root->flags ^ opts.flags) & CGRP_ROOT_OPTION_MASK) {
  1430. if ((root->flags | opts.flags) & CGRP_ROOT_SANE_BEHAVIOR) {
  1431. pr_err("cgroup: sane_behavior: new mount options should match the existing superblock\n");
  1432. ret = -EINVAL;
  1433. goto drop_new_super;
  1434. } else {
  1435. pr_warning("cgroup: new mount options do not match the existing superblock, will be ignored\n");
  1436. }
  1437. }
  1438. }
  1439. kfree(opts.release_agent);
  1440. kfree(opts.name);
  1441. return dget(sb->s_root);
  1442. rm_base_files:
  1443. free_cgrp_cset_links(&tmp_links);
  1444. cgroup_addrm_files(&root->top_cgroup, NULL, cgroup_base_files, false);
  1445. revert_creds(cred);
  1446. unlock_drop:
  1447. cgroup_exit_root_id(root);
  1448. mutex_unlock(&cgroup_root_mutex);
  1449. mutex_unlock(&cgroup_mutex);
  1450. mutex_unlock(&inode->i_mutex);
  1451. drop_new_super:
  1452. deactivate_locked_super(sb);
  1453. out_err:
  1454. kfree(opts.release_agent);
  1455. kfree(opts.name);
  1456. return ERR_PTR(ret);
  1457. }
  1458. static void cgroup_kill_sb(struct super_block *sb) {
  1459. struct cgroupfs_root *root = sb->s_fs_info;
  1460. struct cgroup *cgrp = &root->top_cgroup;
  1461. struct cgrp_cset_link *link, *tmp_link;
  1462. int ret;
  1463. BUG_ON(!root);
  1464. BUG_ON(root->number_of_cgroups != 1);
  1465. BUG_ON(!list_empty(&cgrp->children));
  1466. mutex_lock(&cgrp->dentry->d_inode->i_mutex);
  1467. mutex_lock(&cgroup_mutex);
  1468. mutex_lock(&cgroup_root_mutex);
  1469. /* Rebind all subsystems back to the default hierarchy */
  1470. if (root->flags & CGRP_ROOT_SUBSYS_BOUND) {
  1471. ret = rebind_subsystems(root, 0, root->subsys_mask);
  1472. /* Shouldn't be able to fail ... */
  1473. BUG_ON(ret);
  1474. }
  1475. /*
  1476. * Release all the links from cset_links to this hierarchy's
  1477. * root cgroup
  1478. */
  1479. write_lock(&css_set_lock);
  1480. list_for_each_entry_safe(link, tmp_link, &cgrp->cset_links, cset_link) {
  1481. list_del(&link->cset_link);
  1482. list_del(&link->cgrp_link);
  1483. kfree(link);
  1484. }
  1485. write_unlock(&css_set_lock);
  1486. if (!list_empty(&root->root_list)) {
  1487. list_del(&root->root_list);
  1488. cgroup_root_count--;
  1489. }
  1490. cgroup_exit_root_id(root);
  1491. mutex_unlock(&cgroup_root_mutex);
  1492. mutex_unlock(&cgroup_mutex);
  1493. mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
  1494. simple_xattrs_free(&cgrp->xattrs);
  1495. kill_litter_super(sb);
  1496. cgroup_free_root(root);
  1497. }
  1498. static struct file_system_type cgroup_fs_type = {
  1499. .name = "cgroup",
  1500. .mount = cgroup_mount,
  1501. .kill_sb = cgroup_kill_sb,
  1502. };
  1503. static struct kobject *cgroup_kobj;
  1504. /**
  1505. * cgroup_path - generate the path of a cgroup
  1506. * @cgrp: the cgroup in question
  1507. * @buf: the buffer to write the path into
  1508. * @buflen: the length of the buffer
  1509. *
  1510. * Writes path of cgroup into buf. Returns 0 on success, -errno on error.
  1511. *
  1512. * We can't generate cgroup path using dentry->d_name, as accessing
  1513. * dentry->name must be protected by irq-unsafe dentry->d_lock or parent
  1514. * inode's i_mutex, while on the other hand cgroup_path() can be called
  1515. * with some irq-safe spinlocks held.
  1516. */
  1517. int cgroup_path(const struct cgroup *cgrp, char *buf, int buflen)
  1518. {
  1519. int ret = -ENAMETOOLONG;
  1520. char *start;
  1521. if (!cgrp->parent) {
  1522. if (strlcpy(buf, "/", buflen) >= buflen)
  1523. return -ENAMETOOLONG;
  1524. return 0;
  1525. }
  1526. start = buf + buflen - 1;
  1527. *start = '\0';
  1528. rcu_read_lock();
  1529. do {
  1530. const char *name = cgroup_name(cgrp);
  1531. int len;
  1532. len = strlen(name);
  1533. if ((start -= len) < buf)
  1534. goto out;
  1535. memcpy(start, name, len);
  1536. if (--start < buf)
  1537. goto out;
  1538. *start = '/';
  1539. cgrp = cgrp->parent;
  1540. } while (cgrp->parent);
  1541. ret = 0;
  1542. memmove(buf, start, buf + buflen - start);
  1543. out:
  1544. rcu_read_unlock();
  1545. return ret;
  1546. }
  1547. EXPORT_SYMBOL_GPL(cgroup_path);
  1548. /**
  1549. * task_cgroup_path - cgroup path of a task in the first cgroup hierarchy
  1550. * @task: target task
  1551. * @buf: the buffer to write the path into
  1552. * @buflen: the length of the buffer
  1553. *
  1554. * Determine @task's cgroup on the first (the one with the lowest non-zero
  1555. * hierarchy_id) cgroup hierarchy and copy its path into @buf. This
  1556. * function grabs cgroup_mutex and shouldn't be used inside locks used by
  1557. * cgroup controller callbacks.
  1558. *
  1559. * Returns 0 on success, fails with -%ENAMETOOLONG if @buflen is too short.
  1560. */
  1561. int task_cgroup_path(struct task_struct *task, char *buf, size_t buflen)
  1562. {
  1563. struct cgroupfs_root *root;
  1564. struct cgroup *cgrp;
  1565. int hierarchy_id = 1, ret = 0;
  1566. if (buflen < 2)
  1567. return -ENAMETOOLONG;
  1568. mutex_lock(&cgroup_mutex);
  1569. root = idr_get_next(&cgroup_hierarchy_idr, &hierarchy_id);
  1570. if (root) {
  1571. cgrp = task_cgroup_from_root(task, root);
  1572. ret = cgroup_path(cgrp, buf, buflen);
  1573. } else {
  1574. /* if no hierarchy exists, everyone is in "/" */
  1575. memcpy(buf, "/", 2);
  1576. }
  1577. mutex_unlock(&cgroup_mutex);
  1578. return ret;
  1579. }
  1580. EXPORT_SYMBOL_GPL(task_cgroup_path);
  1581. /*
  1582. * Control Group taskset
  1583. */
  1584. struct task_and_cgroup {
  1585. struct task_struct *task;
  1586. struct cgroup *cgrp;
  1587. struct css_set *cset;
  1588. };
  1589. struct cgroup_taskset {
  1590. struct task_and_cgroup single;
  1591. struct flex_array *tc_array;
  1592. int tc_array_len;
  1593. int idx;
  1594. struct cgroup *cur_cgrp;
  1595. };
  1596. /**
  1597. * cgroup_taskset_first - reset taskset and return the first task
  1598. * @tset: taskset of interest
  1599. *
  1600. * @tset iteration is initialized and the first task is returned.
  1601. */
  1602. struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset)
  1603. {
  1604. if (tset->tc_array) {
  1605. tset->idx = 0;
  1606. return cgroup_taskset_next(tset);
  1607. } else {
  1608. tset->cur_cgrp = tset->single.cgrp;
  1609. return tset->single.task;
  1610. }
  1611. }
  1612. EXPORT_SYMBOL_GPL(cgroup_taskset_first);
  1613. /**
  1614. * cgroup_taskset_next - iterate to the next task in taskset
  1615. * @tset: taskset of interest
  1616. *
  1617. * Return the next task in @tset. Iteration must have been initialized
  1618. * with cgroup_taskset_first().
  1619. */
  1620. struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset)
  1621. {
  1622. struct task_and_cgroup *tc;
  1623. if (!tset->tc_array || tset->idx >= tset->tc_array_len)
  1624. return NULL;
  1625. tc = flex_array_get(tset->tc_array, tset->idx++);
  1626. tset->cur_cgrp = tc->cgrp;
  1627. return tc->task;
  1628. }
  1629. EXPORT_SYMBOL_GPL(cgroup_taskset_next);
  1630. /**
  1631. * cgroup_taskset_cur_cgroup - return the matching cgroup for the current task
  1632. * @tset: taskset of interest
  1633. *
  1634. * Return the cgroup for the current (last returned) task of @tset. This
  1635. * function must be preceded by either cgroup_taskset_first() or
  1636. * cgroup_taskset_next().
  1637. */
  1638. struct cgroup *cgroup_taskset_cur_cgroup(struct cgroup_taskset *tset)
  1639. {
  1640. return tset->cur_cgrp;
  1641. }
  1642. EXPORT_SYMBOL_GPL(cgroup_taskset_cur_cgroup);
  1643. /**
  1644. * cgroup_taskset_size - return the number of tasks in taskset
  1645. * @tset: taskset of interest
  1646. */
  1647. int cgroup_taskset_size(struct cgroup_taskset *tset)
  1648. {
  1649. return tset->tc_array ? tset->tc_array_len : 1;
  1650. }
  1651. EXPORT_SYMBOL_GPL(cgroup_taskset_size);
  1652. /*
  1653. * cgroup_task_migrate - move a task from one cgroup to another.
  1654. *
  1655. * Must be called with cgroup_mutex and threadgroup locked.
  1656. */
  1657. static void cgroup_task_migrate(struct cgroup *old_cgrp,
  1658. struct task_struct *tsk,
  1659. struct css_set *new_cset)
  1660. {
  1661. struct css_set *old_cset;
  1662. /*
  1663. * We are synchronized through threadgroup_lock() against PF_EXITING
  1664. * setting such that we can't race against cgroup_exit() changing the
  1665. * css_set to init_css_set and dropping the old one.
  1666. */
  1667. WARN_ON_ONCE(tsk->flags & PF_EXITING);
  1668. old_cset = task_css_set(tsk);
  1669. task_lock(tsk);
  1670. rcu_assign_pointer(tsk->cgroups, new_cset);
  1671. task_unlock(tsk);
  1672. /* Update the css_set linked lists if we're using them */
  1673. write_lock(&css_set_lock);
  1674. if (!list_empty(&tsk->cg_list))
  1675. list_move(&tsk->cg_list, &new_cset->tasks);
  1676. write_unlock(&css_set_lock);
  1677. /*
  1678. * We just gained a reference on old_cset by taking it from the
  1679. * task. As trading it for new_cset is protected by cgroup_mutex,
  1680. * we're safe to drop it here; it will be freed under RCU.
  1681. */
  1682. set_bit(CGRP_RELEASABLE, &old_cgrp->flags);
  1683. put_css_set(old_cset);
  1684. }
  1685. /**
  1686. * cgroup_attach_task - attach a task or a whole threadgroup to a cgroup
  1687. * @cgrp: the cgroup to attach to
  1688. * @tsk: the task or the leader of the threadgroup to be attached
  1689. * @threadgroup: attach the whole threadgroup?
  1690. *
  1691. * Call holding cgroup_mutex and the group_rwsem of the leader. Will take
  1692. * task_lock of @tsk or each thread in the threadgroup individually in turn.
  1693. */
  1694. static int cgroup_attach_task(struct cgroup *cgrp, struct task_struct *tsk,
  1695. bool threadgroup)
  1696. {
  1697. int retval, i, group_size;
  1698. struct cgroup_subsys *ss, *failed_ss = NULL;
  1699. struct cgroupfs_root *root = cgrp->root;
  1700. /* threadgroup list cursor and array */
  1701. struct task_struct *leader = tsk;
  1702. struct task_and_cgroup *tc;
  1703. struct flex_array *group;
  1704. struct cgroup_taskset tset = { };
  1705. /*
  1706. * step 0: in order to do expensive, possibly blocking operations for
  1707. * every thread, we cannot iterate the thread group list, since it needs
  1708. * rcu or tasklist locked. instead, build an array of all threads in the
  1709. * group - group_rwsem prevents new threads from appearing, and if
  1710. * threads exit, this will just be an over-estimate.
  1711. */
  1712. if (threadgroup)
  1713. group_size = get_nr_threads(tsk);
  1714. else
  1715. group_size = 1;
  1716. /* flex_array supports very large thread-groups better than kmalloc. */
  1717. group = flex_array_alloc(sizeof(*tc), group_size, GFP_KERNEL);
  1718. if (!group)
  1719. return -ENOMEM;
  1720. /* pre-allocate to guarantee space while iterating in rcu read-side. */
  1721. retval = flex_array_prealloc(group, 0, group_size, GFP_KERNEL);
  1722. if (retval)
  1723. goto out_free_group_list;
  1724. i = 0;
  1725. /*
  1726. * Prevent freeing of tasks while we take a snapshot. Tasks that are
  1727. * already PF_EXITING could be freed from underneath us unless we
  1728. * take an rcu_read_lock.
  1729. */
  1730. rcu_read_lock();
  1731. do {
  1732. struct task_and_cgroup ent;
  1733. /* @tsk either already exited or can't exit until the end */
  1734. if (tsk->flags & PF_EXITING)
  1735. continue;
  1736. /* as per above, nr_threads may decrease, but not increase. */
  1737. BUG_ON(i >= group_size);
  1738. ent.task = tsk;
  1739. ent.cgrp = task_cgroup_from_root(tsk, root);
  1740. /* nothing to do if this task is already in the cgroup */
  1741. if (ent.cgrp == cgrp)
  1742. continue;
  1743. /*
  1744. * saying GFP_ATOMIC has no effect here because we did prealloc
  1745. * earlier, but it's good form to communicate our expectations.
  1746. */
  1747. retval = flex_array_put(group, i, &ent, GFP_ATOMIC);
  1748. BUG_ON(retval != 0);
  1749. i++;
  1750. if (!threadgroup)
  1751. break;
  1752. } while_each_thread(leader, tsk);
  1753. rcu_read_unlock();
  1754. /* remember the number of threads in the array for later. */
  1755. group_size = i;
  1756. tset.tc_array = group;
  1757. tset.tc_array_len = group_size;
  1758. /* methods shouldn't be called if no task is actually migrating */
  1759. retval = 0;
  1760. if (!group_size)
  1761. goto out_free_group_list;
  1762. /*
  1763. * step 1: check that we can legitimately attach to the cgroup.
  1764. */
  1765. for_each_root_subsys(root, ss) {
  1766. if (ss->can_attach) {
  1767. retval = ss->can_attach(cgrp, &tset);
  1768. if (retval) {
  1769. failed_ss = ss;
  1770. goto out_cancel_attach;
  1771. }
  1772. }
  1773. }
  1774. /*
  1775. * step 2: make sure css_sets exist for all threads to be migrated.
  1776. * we use find_css_set, which allocates a new one if necessary.
  1777. */
  1778. for (i = 0; i < group_size; i++) {
  1779. struct css_set *old_cset;
  1780. tc = flex_array_get(group, i);
  1781. old_cset = task_css_set(tc->task);
  1782. tc->cset = find_css_set(old_cset, cgrp);
  1783. if (!tc->cset) {
  1784. retval = -ENOMEM;
  1785. goto out_put_css_set_refs;
  1786. }
  1787. }
  1788. /*
  1789. * step 3: now that we're guaranteed success wrt the css_sets,
  1790. * proceed to move all tasks to the new cgroup. There are no
  1791. * failure cases after here, so this is the commit point.
  1792. */
  1793. for (i = 0; i < group_size; i++) {
  1794. tc = flex_array_get(group, i);
  1795. cgroup_task_migrate(tc->cgrp, tc->task, tc->cset);
  1796. }
  1797. /* nothing is sensitive to fork() after this point. */
  1798. /*
  1799. * step 4: do subsystem attach callbacks.
  1800. */
  1801. for_each_root_subsys(root, ss) {
  1802. if (ss->attach)
  1803. ss->attach(cgrp, &tset);
  1804. }
  1805. /*
  1806. * step 5: success! and cleanup
  1807. */
  1808. retval = 0;
  1809. out_put_css_set_refs:
  1810. if (retval) {
  1811. for (i = 0; i < group_size; i++) {
  1812. tc = flex_array_get(group, i);
  1813. if (!tc->cset)
  1814. break;
  1815. put_css_set(tc->cset);
  1816. }
  1817. }
  1818. out_cancel_attach:
  1819. if (retval) {
  1820. for_each_root_subsys(root, ss) {
  1821. if (ss == failed_ss)
  1822. break;
  1823. if (ss->cancel_attach)
  1824. ss->cancel_attach(cgrp, &tset);
  1825. }
  1826. }
  1827. out_free_group_list:
  1828. flex_array_free(group);
  1829. return retval;
  1830. }
  1831. /*
  1832. * Find the task_struct of the task to attach by vpid and pass it along to the
  1833. * function to attach either it or all tasks in its threadgroup. Will lock
  1834. * cgroup_mutex and threadgroup; may take task_lock of task.
  1835. */
  1836. static int attach_task_by_pid(struct cgroup *cgrp, u64 pid, bool threadgroup)
  1837. {
  1838. struct task_struct *tsk;
  1839. const struct cred *cred = current_cred(), *tcred;
  1840. int ret;
  1841. if (!cgroup_lock_live_group(cgrp))
  1842. return -ENODEV;
  1843. retry_find_task:
  1844. rcu_read_lock();
  1845. if (pid) {
  1846. tsk = find_task_by_vpid(pid);
  1847. if (!tsk) {
  1848. rcu_read_unlock();
  1849. ret= -ESRCH;
  1850. goto out_unlock_cgroup;
  1851. }
  1852. /*
  1853. * even if we're attaching all tasks in the thread group, we
  1854. * only need to check permissions on one of them.
  1855. */
  1856. tcred = __task_cred(tsk);
  1857. if (!uid_eq(cred->euid, GLOBAL_ROOT_UID) &&
  1858. !uid_eq(cred->euid, tcred->uid) &&
  1859. !uid_eq(cred->euid, tcred->suid)) {
  1860. rcu_read_unlock();
  1861. ret = -EACCES;
  1862. goto out_unlock_cgroup;
  1863. }
  1864. } else
  1865. tsk = current;
  1866. if (threadgroup)
  1867. tsk = tsk->group_leader;
  1868. /*
  1869. * Workqueue threads may acquire PF_NO_SETAFFINITY and become
  1870. * trapped in a cpuset, or RT worker may be born in a cgroup
  1871. * with no rt_runtime allocated. Just say no.
  1872. */
  1873. if (tsk == kthreadd_task || (tsk->flags & PF_NO_SETAFFINITY)) {
  1874. ret = -EINVAL;
  1875. rcu_read_unlock();
  1876. goto out_unlock_cgroup;
  1877. }
  1878. get_task_struct(tsk);
  1879. rcu_read_unlock();
  1880. threadgroup_lock(tsk);
  1881. if (threadgroup) {
  1882. if (!thread_group_leader(tsk)) {
  1883. /*
  1884. * a race with de_thread from another thread's exec()
  1885. * may strip us of our leadership, if this happens,
  1886. * there is no choice but to throw this task away and
  1887. * try again; this is
  1888. * "double-double-toil-and-trouble-check locking".
  1889. */
  1890. threadgroup_unlock(tsk);
  1891. put_task_struct(tsk);
  1892. goto retry_find_task;
  1893. }
  1894. }
  1895. ret = cgroup_attach_task(cgrp, tsk, threadgroup);
  1896. threadgroup_unlock(tsk);
  1897. put_task_struct(tsk);
  1898. out_unlock_cgroup:
  1899. mutex_unlock(&cgroup_mutex);
  1900. return ret;
  1901. }
  1902. /**
  1903. * cgroup_attach_task_all - attach task 'tsk' to all cgroups of task 'from'
  1904. * @from: attach to all cgroups of a given task
  1905. * @tsk: the task to be attached
  1906. */
  1907. int cgroup_attach_task_all(struct task_struct *from, struct task_struct *tsk)
  1908. {
  1909. struct cgroupfs_root *root;
  1910. int retval = 0;
  1911. mutex_lock(&cgroup_mutex);
  1912. for_each_active_root(root) {
  1913. struct cgroup *from_cgrp = task_cgroup_from_root(from, root);
  1914. retval = cgroup_attach_task(from_cgrp, tsk, false);
  1915. if (retval)
  1916. break;
  1917. }
  1918. mutex_unlock(&cgroup_mutex);
  1919. return retval;
  1920. }
  1921. EXPORT_SYMBOL_GPL(cgroup_attach_task_all);
  1922. static int cgroup_tasks_write(struct cgroup *cgrp, struct cftype *cft, u64 pid)
  1923. {
  1924. return attach_task_by_pid(cgrp, pid, false);
  1925. }
  1926. static int cgroup_procs_write(struct cgroup *cgrp, struct cftype *cft, u64 tgid)
  1927. {
  1928. return attach_task_by_pid(cgrp, tgid, true);
  1929. }
  1930. static int cgroup_release_agent_write(struct cgroup *cgrp, struct cftype *cft,
  1931. const char *buffer)
  1932. {
  1933. BUILD_BUG_ON(sizeof(cgrp->root->release_agent_path) < PATH_MAX);
  1934. if (strlen(buffer) >= PATH_MAX)
  1935. return -EINVAL;
  1936. if (!cgroup_lock_live_group(cgrp))
  1937. return -ENODEV;
  1938. mutex_lock(&cgroup_root_mutex);
  1939. strcpy(cgrp->root->release_agent_path, buffer);
  1940. mutex_unlock(&cgroup_root_mutex);
  1941. mutex_unlock(&cgroup_mutex);
  1942. return 0;
  1943. }
  1944. static int cgroup_release_agent_show(struct cgroup *cgrp, struct cftype *cft,
  1945. struct seq_file *seq)
  1946. {
  1947. if (!cgroup_lock_live_group(cgrp))
  1948. return -ENODEV;
  1949. seq_puts(seq, cgrp->root->release_agent_path);
  1950. seq_putc(seq, '\n');
  1951. mutex_unlock(&cgroup_mutex);
  1952. return 0;
  1953. }
  1954. static int cgroup_sane_behavior_show(struct cgroup *cgrp, struct cftype *cft,
  1955. struct seq_file *seq)
  1956. {
  1957. seq_printf(seq, "%d\n", cgroup_sane_behavior(cgrp));
  1958. return 0;
  1959. }
  1960. /* A buffer size big enough for numbers or short strings */
  1961. #define CGROUP_LOCAL_BUFFER_SIZE 64
  1962. static ssize_t cgroup_write_X64(struct cgroup *cgrp, struct cftype *cft,
  1963. struct file *file,
  1964. const char __user *userbuf,
  1965. size_t nbytes, loff_t *unused_ppos)
  1966. {
  1967. char buffer[CGROUP_LOCAL_BUFFER_SIZE];
  1968. int retval = 0;
  1969. char *end;
  1970. if (!nbytes)
  1971. return -EINVAL;
  1972. if (nbytes >= sizeof(buffer))
  1973. return -E2BIG;
  1974. if (copy_from_user(buffer, userbuf, nbytes))
  1975. return -EFAULT;
  1976. buffer[nbytes] = 0; /* nul-terminate */
  1977. if (cft->write_u64) {
  1978. u64 val = simple_strtoull(strstrip(buffer), &end, 0);
  1979. if (*end)
  1980. return -EINVAL;
  1981. retval = cft->write_u64(cgrp, cft, val);
  1982. } else {
  1983. s64 val = simple_strtoll(strstrip(buffer), &end, 0);
  1984. if (*end)
  1985. return -EINVAL;
  1986. retval = cft->write_s64(cgrp, cft, val);
  1987. }
  1988. if (!retval)
  1989. retval = nbytes;
  1990. return retval;
  1991. }
  1992. static ssize_t cgroup_write_string(struct cgroup *cgrp, struct cftype *cft,
  1993. struct file *file,
  1994. const char __user *userbuf,
  1995. size_t nbytes, loff_t *unused_ppos)
  1996. {
  1997. char local_buffer[CGROUP_LOCAL_BUFFER_SIZE];
  1998. int retval = 0;
  1999. size_t max_bytes = cft->max_write_len;
  2000. char *buffer = local_buffer;
  2001. if (!max_bytes)
  2002. max_bytes = sizeof(local_buffer) - 1;
  2003. if (nbytes >= max_bytes)
  2004. return -E2BIG;
  2005. /* Allocate a dynamic buffer if we need one */
  2006. if (nbytes >= sizeof(local_buffer)) {
  2007. buffer = kmalloc(nbytes + 1, GFP_KERNEL);
  2008. if (buffer == NULL)
  2009. return -ENOMEM;
  2010. }
  2011. if (nbytes && copy_from_user(buffer, userbuf, nbytes)) {
  2012. retval = -EFAULT;
  2013. goto out;
  2014. }
  2015. buffer[nbytes] = 0; /* nul-terminate */
  2016. retval = cft->write_string(cgrp, cft, strstrip(buffer));
  2017. if (!retval)
  2018. retval = nbytes;
  2019. out:
  2020. if (buffer != local_buffer)
  2021. kfree(buffer);
  2022. return retval;
  2023. }
  2024. static ssize_t cgroup_file_write(struct file *file, const char __user *buf,
  2025. size_t nbytes, loff_t *ppos)
  2026. {
  2027. struct cftype *cft = __d_cft(file->f_dentry);
  2028. struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
  2029. if (cgroup_is_dead(cgrp))
  2030. return -ENODEV;
  2031. if (cft->write)
  2032. return cft->write(cgrp, cft, file, buf, nbytes, ppos);
  2033. if (cft->write_u64 || cft->write_s64)
  2034. return cgroup_write_X64(cgrp, cft, file, buf, nbytes, ppos);
  2035. if (cft->write_string)
  2036. return cgroup_write_string(cgrp, cft, file, buf, nbytes, ppos);
  2037. if (cft->trigger) {
  2038. int ret = cft->trigger(cgrp, (unsigned int)cft->private);
  2039. return ret ? ret : nbytes;
  2040. }
  2041. return -EINVAL;
  2042. }
  2043. static ssize_t cgroup_read_u64(struct cgroup *cgrp, struct cftype *cft,
  2044. struct file *file,
  2045. char __user *buf, size_t nbytes,
  2046. loff_t *ppos)
  2047. {
  2048. char tmp[CGROUP_LOCAL_BUFFER_SIZE];
  2049. u64 val = cft->read_u64(cgrp, cft);
  2050. int len = sprintf(tmp, "%llu\n", (unsigned long long) val);
  2051. return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
  2052. }
  2053. static ssize_t cgroup_read_s64(struct cgroup *cgrp, struct cftype *cft,
  2054. struct file *file,
  2055. char __user *buf, size_t nbytes,
  2056. loff_t *ppos)
  2057. {
  2058. char tmp[CGROUP_LOCAL_BUFFER_SIZE];
  2059. s64 val = cft->read_s64(cgrp, cft);
  2060. int len = sprintf(tmp, "%lld\n", (long long) val);
  2061. return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
  2062. }
  2063. static ssize_t cgroup_file_read(struct file *file, char __user *buf,
  2064. size_t nbytes, loff_t *ppos)
  2065. {
  2066. struct cftype *cft = __d_cft(file->f_dentry);
  2067. struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
  2068. if (cgroup_is_dead(cgrp))
  2069. return -ENODEV;
  2070. if (cft->read)
  2071. return cft->read(cgrp, cft, file, buf, nbytes, ppos);
  2072. if (cft->read_u64)
  2073. return cgroup_read_u64(cgrp, cft, file, buf, nbytes, ppos);
  2074. if (cft->read_s64)
  2075. return cgroup_read_s64(cgrp, cft, file, buf, nbytes, ppos);
  2076. return -EINVAL;
  2077. }
  2078. /*
  2079. * seqfile ops/methods for returning structured data. Currently just
  2080. * supports string->u64 maps, but can be extended in future.
  2081. */
  2082. static int cgroup_map_add(struct cgroup_map_cb *cb, const char *key, u64 value)
  2083. {
  2084. struct seq_file *sf = cb->state;
  2085. return seq_printf(sf, "%s %llu\n", key, (unsigned long long)value);
  2086. }
  2087. static int cgroup_seqfile_show(struct seq_file *m, void *arg)
  2088. {
  2089. struct cfent *cfe = m->private;
  2090. struct cftype *cft = cfe->type;
  2091. struct cgroup *cgrp = __d_cgrp(cfe->dentry->d_parent);
  2092. if (cft->read_map) {
  2093. struct cgroup_map_cb cb = {
  2094. .fill = cgroup_map_add,
  2095. .state = m,
  2096. };
  2097. return cft->read_map(cgrp, cft, &cb);
  2098. }
  2099. return cft->read_seq_string(cgrp, cft, m);
  2100. }
  2101. static const struct file_operations cgroup_seqfile_operations = {
  2102. .read = seq_read,
  2103. .write = cgroup_file_write,
  2104. .llseek = seq_lseek,
  2105. .release = single_release,
  2106. };
  2107. static int cgroup_file_open(struct inode *inode, struct file *file)
  2108. {
  2109. int err;
  2110. struct cfent *cfe;
  2111. struct cftype *cft;
  2112. err = generic_file_open(inode, file);
  2113. if (err)
  2114. return err;
  2115. cfe = __d_cfe(file->f_dentry);
  2116. cft = cfe->type;
  2117. if (cft->read_map || cft->read_seq_string) {
  2118. file->f_op = &cgroup_seqfile_operations;
  2119. err = single_open(file, cgroup_seqfile_show, cfe);
  2120. } else if (cft->open) {
  2121. err = cft->open(inode, file);
  2122. }
  2123. return err;
  2124. }
  2125. static int cgroup_file_release(struct inode *inode, struct file *file)
  2126. {
  2127. struct cftype *cft = __d_cft(file->f_dentry);
  2128. if (cft->release)
  2129. return cft->release(inode, file);
  2130. return 0;
  2131. }
  2132. /*
  2133. * cgroup_rename - Only allow simple rename of directories in place.
  2134. */
  2135. static int cgroup_rename(struct inode *old_dir, struct dentry *old_dentry,
  2136. struct inode *new_dir, struct dentry *new_dentry)
  2137. {
  2138. int ret;
  2139. struct cgroup_name *name, *old_name;
  2140. struct cgroup *cgrp;
  2141. /*
  2142. * It's convinient to use parent dir's i_mutex to protected
  2143. * cgrp->name.
  2144. */
  2145. lockdep_assert_held(&old_dir->i_mutex);
  2146. if (!S_ISDIR(old_dentry->d_inode->i_mode))
  2147. return -ENOTDIR;
  2148. if (new_dentry->d_inode)
  2149. return -EEXIST;
  2150. if (old_dir != new_dir)
  2151. return -EIO;
  2152. cgrp = __d_cgrp(old_dentry);
  2153. /*
  2154. * This isn't a proper migration and its usefulness is very
  2155. * limited. Disallow if sane_behavior.
  2156. */
  2157. if (cgroup_sane_behavior(cgrp))
  2158. return -EPERM;
  2159. name = cgroup_alloc_name(new_dentry);
  2160. if (!name)
  2161. return -ENOMEM;
  2162. ret = simple_rename(old_dir, old_dentry, new_dir, new_dentry);
  2163. if (ret) {
  2164. kfree(name);
  2165. return ret;
  2166. }
  2167. old_name = rcu_dereference_protected(cgrp->name, true);
  2168. rcu_assign_pointer(cgrp->name, name);
  2169. kfree_rcu(old_name, rcu_head);
  2170. return 0;
  2171. }
  2172. static struct simple_xattrs *__d_xattrs(struct dentry *dentry)
  2173. {
  2174. if (S_ISDIR(dentry->d_inode->i_mode))
  2175. return &__d_cgrp(dentry)->xattrs;
  2176. else
  2177. return &__d_cfe(dentry)->xattrs;
  2178. }
  2179. static inline int xattr_enabled(struct dentry *dentry)
  2180. {
  2181. struct cgroupfs_root *root = dentry->d_sb->s_fs_info;
  2182. return root->flags & CGRP_ROOT_XATTR;
  2183. }
  2184. static bool is_valid_xattr(const char *name)
  2185. {
  2186. if (!strncmp(name, XATTR_TRUSTED_PREFIX, XATTR_TRUSTED_PREFIX_LEN) ||
  2187. !strncmp(name, XATTR_SECURITY_PREFIX, XATTR_SECURITY_PREFIX_LEN))
  2188. return true;
  2189. return false;
  2190. }
  2191. static int cgroup_setxattr(struct dentry *dentry, const char *name,
  2192. const void *val, size_t size, int flags)
  2193. {
  2194. if (!xattr_enabled(dentry))
  2195. return -EOPNOTSUPP;
  2196. if (!is_valid_xattr(name))
  2197. return -EINVAL;
  2198. return simple_xattr_set(__d_xattrs(dentry), name, val, size, flags);
  2199. }
  2200. static int cgroup_removexattr(struct dentry *dentry, const char *name)
  2201. {
  2202. if (!xattr_enabled(dentry))
  2203. return -EOPNOTSUPP;
  2204. if (!is_valid_xattr(name))
  2205. return -EINVAL;
  2206. return simple_xattr_remove(__d_xattrs(dentry), name);
  2207. }
  2208. static ssize_t cgroup_getxattr(struct dentry *dentry, const char *name,
  2209. void *buf, size_t size)
  2210. {
  2211. if (!xattr_enabled(dentry))
  2212. return -EOPNOTSUPP;
  2213. if (!is_valid_xattr(name))
  2214. return -EINVAL;
  2215. return simple_xattr_get(__d_xattrs(dentry), name, buf, size);
  2216. }
  2217. static ssize_t cgroup_listxattr(struct dentry *dentry, char *buf, size_t size)
  2218. {
  2219. if (!xattr_enabled(dentry))
  2220. return -EOPNOTSUPP;
  2221. return simple_xattr_list(__d_xattrs(dentry), buf, size);
  2222. }
  2223. static const struct file_operations cgroup_file_operations = {
  2224. .read = cgroup_file_read,
  2225. .write = cgroup_file_write,
  2226. .llseek = generic_file_llseek,
  2227. .open = cgroup_file_open,
  2228. .release = cgroup_file_release,
  2229. };
  2230. static const struct inode_operations cgroup_file_inode_operations = {
  2231. .setxattr = cgroup_setxattr,
  2232. .getxattr = cgroup_getxattr,
  2233. .listxattr = cgroup_listxattr,
  2234. .removexattr = cgroup_removexattr,
  2235. };
  2236. static const struct inode_operations cgroup_dir_inode_operations = {
  2237. .lookup = cgroup_lookup,
  2238. .mkdir = cgroup_mkdir,
  2239. .rmdir = cgroup_rmdir,
  2240. .rename = cgroup_rename,
  2241. .setxattr = cgroup_setxattr,
  2242. .getxattr = cgroup_getxattr,
  2243. .listxattr = cgroup_listxattr,
  2244. .removexattr = cgroup_removexattr,
  2245. };
  2246. static struct dentry *cgroup_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
  2247. {
  2248. if (dentry->d_name.len > NAME_MAX)
  2249. return ERR_PTR(-ENAMETOOLONG);
  2250. d_add(dentry, NULL);
  2251. return NULL;
  2252. }
  2253. /*
  2254. * Check if a file is a control file
  2255. */
  2256. static inline struct cftype *__file_cft(struct file *file)
  2257. {
  2258. if (file_inode(file)->i_fop != &cgroup_file_operations)
  2259. return ERR_PTR(-EINVAL);
  2260. return __d_cft(file->f_dentry);
  2261. }
  2262. static int cgroup_create_file(struct dentry *dentry, umode_t mode,
  2263. struct super_block *sb)
  2264. {
  2265. struct inode *inode;
  2266. if (!dentry)
  2267. return -ENOENT;
  2268. if (dentry->d_inode)
  2269. return -EEXIST;
  2270. inode = cgroup_new_inode(mode, sb);
  2271. if (!inode)
  2272. return -ENOMEM;
  2273. if (S_ISDIR(mode)) {
  2274. inode->i_op = &cgroup_dir_inode_operations;
  2275. inode->i_fop = &simple_dir_operations;
  2276. /* start off with i_nlink == 2 (for "." entry) */
  2277. inc_nlink(inode);
  2278. inc_nlink(dentry->d_parent->d_inode);
  2279. /*
  2280. * Control reaches here with cgroup_mutex held.
  2281. * @inode->i_mutex should nest outside cgroup_mutex but we
  2282. * want to populate it immediately without releasing
  2283. * cgroup_mutex. As @inode isn't visible to anyone else
  2284. * yet, trylock will always succeed without affecting
  2285. * lockdep checks.
  2286. */
  2287. WARN_ON_ONCE(!mutex_trylock(&inode->i_mutex));
  2288. } else if (S_ISREG(mode)) {
  2289. inode->i_size = 0;
  2290. inode->i_fop = &cgroup_file_operations;
  2291. inode->i_op = &cgroup_file_inode_operations;
  2292. }
  2293. d_instantiate(dentry, inode);
  2294. dget(dentry); /* Extra count - pin the dentry in core */
  2295. return 0;
  2296. }
  2297. /**
  2298. * cgroup_file_mode - deduce file mode of a control file
  2299. * @cft: the control file in question
  2300. *
  2301. * returns cft->mode if ->mode is not 0
  2302. * returns S_IRUGO|S_IWUSR if it has both a read and a write handler
  2303. * returns S_IRUGO if it has only a read handler
  2304. * returns S_IWUSR if it has only a write hander
  2305. */
  2306. static umode_t cgroup_file_mode(const struct cftype *cft)
  2307. {
  2308. umode_t mode = 0;
  2309. if (cft->mode)
  2310. return cft->mode;
  2311. if (cft->read || cft->read_u64 || cft->read_s64 ||
  2312. cft->read_map || cft->read_seq_string)
  2313. mode |= S_IRUGO;
  2314. if (cft->write || cft->write_u64 || cft->write_s64 ||
  2315. cft->write_string || cft->trigger)
  2316. mode |= S_IWUSR;
  2317. return mode;
  2318. }
  2319. static int cgroup_add_file(struct cgroup *cgrp, struct cgroup_subsys *subsys,
  2320. struct cftype *cft)
  2321. {
  2322. struct dentry *dir = cgrp->dentry;
  2323. struct cgroup *parent = __d_cgrp(dir);
  2324. struct dentry *dentry;
  2325. struct cfent *cfe;
  2326. int error;
  2327. umode_t mode;
  2328. char name[MAX_CGROUP_TYPE_NAMELEN + MAX_CFTYPE_NAME + 2] = { 0 };
  2329. if (subsys && !(cgrp->root->flags & CGRP_ROOT_NOPREFIX)) {
  2330. strcpy(name, subsys->name);
  2331. strcat(name, ".");
  2332. }
  2333. strcat(name, cft->name);
  2334. BUG_ON(!mutex_is_locked(&dir->d_inode->i_mutex));
  2335. cfe = kzalloc(sizeof(*cfe), GFP_KERNEL);
  2336. if (!cfe)
  2337. return -ENOMEM;
  2338. dentry = lookup_one_len(name, dir, strlen(name));
  2339. if (IS_ERR(dentry)) {
  2340. error = PTR_ERR(dentry);
  2341. goto out;
  2342. }
  2343. cfe->type = (void *)cft;
  2344. cfe->dentry = dentry;
  2345. dentry->d_fsdata = cfe;
  2346. simple_xattrs_init(&cfe->xattrs);
  2347. mode = cgroup_file_mode(cft);
  2348. error = cgroup_create_file(dentry, mode | S_IFREG, cgrp->root->sb);
  2349. if (!error) {
  2350. list_add_tail(&cfe->node, &parent->files);
  2351. cfe = NULL;
  2352. }
  2353. dput(dentry);
  2354. out:
  2355. kfree(cfe);
  2356. return error;
  2357. }
  2358. /**
  2359. * cgroup_addrm_files - add or remove files to a cgroup directory
  2360. * @cgrp: the target cgroup
  2361. * @subsys: the subsystem of files to be added
  2362. * @cfts: array of cftypes to be added
  2363. * @is_add: whether to add or remove
  2364. *
  2365. * Depending on @is_add, add or remove files defined by @cfts on @cgrp.
  2366. * All @cfts should belong to @subsys. For removals, this function never
  2367. * fails. If addition fails, this function doesn't remove files already
  2368. * added. The caller is responsible for cleaning up.
  2369. */
  2370. static int cgroup_addrm_files(struct cgroup *cgrp, struct cgroup_subsys *subsys,
  2371. struct cftype cfts[], bool is_add)
  2372. {
  2373. struct cftype *cft;
  2374. int ret;
  2375. lockdep_assert_held(&cgrp->dentry->d_inode->i_mutex);
  2376. lockdep_assert_held(&cgroup_mutex);
  2377. for (cft = cfts; cft->name[0] != '\0'; cft++) {
  2378. /* does cft->flags tell us to skip this file on @cgrp? */
  2379. if ((cft->flags & CFTYPE_INSANE) && cgroup_sane_behavior(cgrp))
  2380. continue;
  2381. if ((cft->flags & CFTYPE_NOT_ON_ROOT) && !cgrp->parent)
  2382. continue;
  2383. if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgrp->parent)
  2384. continue;
  2385. if (is_add) {
  2386. ret = cgroup_add_file(cgrp, subsys, cft);
  2387. if (ret) {
  2388. pr_warn("cgroup_addrm_files: failed to add %s, err=%d\n",
  2389. cft->name, ret);
  2390. return ret;
  2391. }
  2392. } else {
  2393. cgroup_rm_file(cgrp, cft);
  2394. }
  2395. }
  2396. return 0;
  2397. }
  2398. static void cgroup_cfts_prepare(void)
  2399. __acquires(&cgroup_mutex)
  2400. {
  2401. /*
  2402. * Thanks to the entanglement with vfs inode locking, we can't walk
  2403. * the existing cgroups under cgroup_mutex and create files.
  2404. * Instead, we use cgroup_for_each_descendant_pre() and drop RCU
  2405. * read lock before calling cgroup_addrm_files().
  2406. */
  2407. mutex_lock(&cgroup_mutex);
  2408. }
  2409. static int cgroup_cfts_commit(struct cgroup_subsys *ss,
  2410. struct cftype *cfts, bool is_add)
  2411. __releases(&cgroup_mutex)
  2412. {
  2413. LIST_HEAD(pending);
  2414. struct cgroup *cgrp, *root = &ss->root->top_cgroup;
  2415. struct super_block *sb = ss->root->sb;
  2416. struct dentry *prev = NULL;
  2417. struct inode *inode;
  2418. u64 update_before;
  2419. int ret = 0;
  2420. /* %NULL @cfts indicates abort and don't bother if @ss isn't attached */
  2421. if (!cfts || ss->root == &cgroup_dummy_root ||
  2422. !atomic_inc_not_zero(&sb->s_active)) {
  2423. mutex_unlock(&cgroup_mutex);
  2424. return 0;
  2425. }
  2426. /*
  2427. * All cgroups which are created after we drop cgroup_mutex will
  2428. * have the updated set of files, so we only need to update the
  2429. * cgroups created before the current @cgroup_serial_nr_next.
  2430. */
  2431. update_before = cgroup_serial_nr_next;
  2432. mutex_unlock(&cgroup_mutex);
  2433. /* @root always needs to be updated */
  2434. inode = root->dentry->d_inode;
  2435. mutex_lock(&inode->i_mutex);
  2436. mutex_lock(&cgroup_mutex);
  2437. ret = cgroup_addrm_files(root, ss, cfts, is_add);
  2438. mutex_unlock(&cgroup_mutex);
  2439. mutex_unlock(&inode->i_mutex);
  2440. if (ret)
  2441. goto out_deact;
  2442. /* add/rm files for all cgroups created before */
  2443. rcu_read_lock();
  2444. cgroup_for_each_descendant_pre(cgrp, root) {
  2445. if (cgroup_is_dead(cgrp))
  2446. continue;
  2447. inode = cgrp->dentry->d_inode;
  2448. dget(cgrp->dentry);
  2449. rcu_read_unlock();
  2450. dput(prev);
  2451. prev = cgrp->dentry;
  2452. mutex_lock(&inode->i_mutex);
  2453. mutex_lock(&cgroup_mutex);
  2454. if (cgrp->serial_nr < update_before && !cgroup_is_dead(cgrp))
  2455. ret = cgroup_addrm_files(cgrp, ss, cfts, is_add);
  2456. mutex_unlock(&cgroup_mutex);
  2457. mutex_unlock(&inode->i_mutex);
  2458. rcu_read_lock();
  2459. if (ret)
  2460. break;
  2461. }
  2462. rcu_read_unlock();
  2463. dput(prev);
  2464. out_deact:
  2465. deactivate_super(sb);
  2466. return ret;
  2467. }
  2468. /**
  2469. * cgroup_add_cftypes - add an array of cftypes to a subsystem
  2470. * @ss: target cgroup subsystem
  2471. * @cfts: zero-length name terminated array of cftypes
  2472. *
  2473. * Register @cfts to @ss. Files described by @cfts are created for all
  2474. * existing cgroups to which @ss is attached and all future cgroups will
  2475. * have them too. This function can be called anytime whether @ss is
  2476. * attached or not.
  2477. *
  2478. * Returns 0 on successful registration, -errno on failure. Note that this
  2479. * function currently returns 0 as long as @cfts registration is successful
  2480. * even if some file creation attempts on existing cgroups fail.
  2481. */
  2482. int cgroup_add_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
  2483. {
  2484. struct cftype_set *set;
  2485. int ret;
  2486. set = kzalloc(sizeof(*set), GFP_KERNEL);
  2487. if (!set)
  2488. return -ENOMEM;
  2489. cgroup_cfts_prepare();
  2490. set->cfts = cfts;
  2491. list_add_tail(&set->node, &ss->cftsets);
  2492. ret = cgroup_cfts_commit(ss, cfts, true);
  2493. if (ret)
  2494. cgroup_rm_cftypes(ss, cfts);
  2495. return ret;
  2496. }
  2497. EXPORT_SYMBOL_GPL(cgroup_add_cftypes);
  2498. /**
  2499. * cgroup_rm_cftypes - remove an array of cftypes from a subsystem
  2500. * @ss: target cgroup subsystem
  2501. * @cfts: zero-length name terminated array of cftypes
  2502. *
  2503. * Unregister @cfts from @ss. Files described by @cfts are removed from
  2504. * all existing cgroups to which @ss is attached and all future cgroups
  2505. * won't have them either. This function can be called anytime whether @ss
  2506. * is attached or not.
  2507. *
  2508. * Returns 0 on successful unregistration, -ENOENT if @cfts is not
  2509. * registered with @ss.
  2510. */
  2511. int cgroup_rm_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
  2512. {
  2513. struct cftype_set *set;
  2514. cgroup_cfts_prepare();
  2515. list_for_each_entry(set, &ss->cftsets, node) {
  2516. if (set->cfts == cfts) {
  2517. list_del(&set->node);
  2518. kfree(set);
  2519. cgroup_cfts_commit(ss, cfts, false);
  2520. return 0;
  2521. }
  2522. }
  2523. cgroup_cfts_commit(ss, NULL, false);
  2524. return -ENOENT;
  2525. }
  2526. /**
  2527. * cgroup_task_count - count the number of tasks in a cgroup.
  2528. * @cgrp: the cgroup in question
  2529. *
  2530. * Return the number of tasks in the cgroup.
  2531. */
  2532. int cgroup_task_count(const struct cgroup *cgrp)
  2533. {
  2534. int count = 0;
  2535. struct cgrp_cset_link *link;
  2536. read_lock(&css_set_lock);
  2537. list_for_each_entry(link, &cgrp->cset_links, cset_link)
  2538. count += atomic_read(&link->cset->refcount);
  2539. read_unlock(&css_set_lock);
  2540. return count;
  2541. }
  2542. /*
  2543. * Advance a list_head iterator. The iterator should be positioned at
  2544. * the start of a css_set
  2545. */
  2546. static void cgroup_advance_iter(struct cgroup *cgrp, struct cgroup_iter *it)
  2547. {
  2548. struct list_head *l = it->cset_link;
  2549. struct cgrp_cset_link *link;
  2550. struct css_set *cset;
  2551. /* Advance to the next non-empty css_set */
  2552. do {
  2553. l = l->next;
  2554. if (l == &cgrp->cset_links) {
  2555. it->cset_link = NULL;
  2556. return;
  2557. }
  2558. link = list_entry(l, struct cgrp_cset_link, cset_link);
  2559. cset = link->cset;
  2560. } while (list_empty(&cset->tasks));
  2561. it->cset_link = l;
  2562. it->task = cset->tasks.next;
  2563. }
  2564. /*
  2565. * To reduce the fork() overhead for systems that are not actually
  2566. * using their cgroups capability, we don't maintain the lists running
  2567. * through each css_set to its tasks until we see the list actually
  2568. * used - in other words after the first call to cgroup_iter_start().
  2569. */
  2570. static void cgroup_enable_task_cg_lists(void)
  2571. {
  2572. struct task_struct *p, *g;
  2573. write_lock(&css_set_lock);
  2574. use_task_css_set_links = 1;
  2575. /*
  2576. * We need tasklist_lock because RCU is not safe against
  2577. * while_each_thread(). Besides, a forking task that has passed
  2578. * cgroup_post_fork() without seeing use_task_css_set_links = 1
  2579. * is not guaranteed to have its child immediately visible in the
  2580. * tasklist if we walk through it with RCU.
  2581. */
  2582. read_lock(&tasklist_lock);
  2583. do_each_thread(g, p) {
  2584. task_lock(p);
  2585. /*
  2586. * We should check if the process is exiting, otherwise
  2587. * it will race with cgroup_exit() in that the list
  2588. * entry won't be deleted though the process has exited.
  2589. */
  2590. if (!(p->flags & PF_EXITING) && list_empty(&p->cg_list))
  2591. list_add(&p->cg_list, &task_css_set(p)->tasks);
  2592. task_unlock(p);
  2593. } while_each_thread(g, p);
  2594. read_unlock(&tasklist_lock);
  2595. write_unlock(&css_set_lock);
  2596. }
  2597. /**
  2598. * cgroup_next_sibling - find the next sibling of a given cgroup
  2599. * @pos: the current cgroup
  2600. *
  2601. * This function returns the next sibling of @pos and should be called
  2602. * under RCU read lock. The only requirement is that @pos is accessible.
  2603. * The next sibling is guaranteed to be returned regardless of @pos's
  2604. * state.
  2605. */
  2606. struct cgroup *cgroup_next_sibling(struct cgroup *pos)
  2607. {
  2608. struct cgroup *next;
  2609. WARN_ON_ONCE(!rcu_read_lock_held());
  2610. /*
  2611. * @pos could already have been removed. Once a cgroup is removed,
  2612. * its ->sibling.next is no longer updated when its next sibling
  2613. * changes. As CGRP_DEAD assertion is serialized and happens
  2614. * before the cgroup is taken off the ->sibling list, if we see it
  2615. * unasserted, it's guaranteed that the next sibling hasn't
  2616. * finished its grace period even if it's already removed, and thus
  2617. * safe to dereference from this RCU critical section. If
  2618. * ->sibling.next is inaccessible, cgroup_is_dead() is guaranteed
  2619. * to be visible as %true here.
  2620. */
  2621. if (likely(!cgroup_is_dead(pos))) {
  2622. next = list_entry_rcu(pos->sibling.next, struct cgroup, sibling);
  2623. if (&next->sibling != &pos->parent->children)
  2624. return next;
  2625. return NULL;
  2626. }
  2627. /*
  2628. * Can't dereference the next pointer. Each cgroup is given a
  2629. * monotonically increasing unique serial number and always
  2630. * appended to the sibling list, so the next one can be found by
  2631. * walking the parent's children until we see a cgroup with higher
  2632. * serial number than @pos's.
  2633. *
  2634. * While this path can be slow, it's taken only when either the
  2635. * current cgroup is removed or iteration and removal race.
  2636. */
  2637. list_for_each_entry_rcu(next, &pos->parent->children, sibling)
  2638. if (next->serial_nr > pos->serial_nr)
  2639. return next;
  2640. return NULL;
  2641. }
  2642. EXPORT_SYMBOL_GPL(cgroup_next_sibling);
  2643. /**
  2644. * cgroup_next_descendant_pre - find the next descendant for pre-order walk
  2645. * @pos: the current position (%NULL to initiate traversal)
  2646. * @cgroup: cgroup whose descendants to walk
  2647. *
  2648. * To be used by cgroup_for_each_descendant_pre(). Find the next
  2649. * descendant to visit for pre-order traversal of @cgroup's descendants.
  2650. *
  2651. * While this function requires RCU read locking, it doesn't require the
  2652. * whole traversal to be contained in a single RCU critical section. This
  2653. * function will return the correct next descendant as long as both @pos
  2654. * and @cgroup are accessible and @pos is a descendant of @cgroup.
  2655. */
  2656. struct cgroup *cgroup_next_descendant_pre(struct cgroup *pos,
  2657. struct cgroup *cgroup)
  2658. {
  2659. struct cgroup *next;
  2660. WARN_ON_ONCE(!rcu_read_lock_held());
  2661. /* if first iteration, pretend we just visited @cgroup */
  2662. if (!pos)
  2663. pos = cgroup;
  2664. /* visit the first child if exists */
  2665. next = list_first_or_null_rcu(&pos->children, struct cgroup, sibling);
  2666. if (next)
  2667. return next;
  2668. /* no child, visit my or the closest ancestor's next sibling */
  2669. while (pos != cgroup) {
  2670. next = cgroup_next_sibling(pos);
  2671. if (next)
  2672. return next;
  2673. pos = pos->parent;
  2674. }
  2675. return NULL;
  2676. }
  2677. EXPORT_SYMBOL_GPL(cgroup_next_descendant_pre);
  2678. /**
  2679. * cgroup_rightmost_descendant - return the rightmost descendant of a cgroup
  2680. * @pos: cgroup of interest
  2681. *
  2682. * Return the rightmost descendant of @pos. If there's no descendant,
  2683. * @pos is returned. This can be used during pre-order traversal to skip
  2684. * subtree of @pos.
  2685. *
  2686. * While this function requires RCU read locking, it doesn't require the
  2687. * whole traversal to be contained in a single RCU critical section. This
  2688. * function will return the correct rightmost descendant as long as @pos is
  2689. * accessible.
  2690. */
  2691. struct cgroup *cgroup_rightmost_descendant(struct cgroup *pos)
  2692. {
  2693. struct cgroup *last, *tmp;
  2694. WARN_ON_ONCE(!rcu_read_lock_held());
  2695. do {
  2696. last = pos;
  2697. /* ->prev isn't RCU safe, walk ->next till the end */
  2698. pos = NULL;
  2699. list_for_each_entry_rcu(tmp, &last->children, sibling)
  2700. pos = tmp;
  2701. } while (pos);
  2702. return last;
  2703. }
  2704. EXPORT_SYMBOL_GPL(cgroup_rightmost_descendant);
  2705. static struct cgroup *cgroup_leftmost_descendant(struct cgroup *pos)
  2706. {
  2707. struct cgroup *last;
  2708. do {
  2709. last = pos;
  2710. pos = list_first_or_null_rcu(&pos->children, struct cgroup,
  2711. sibling);
  2712. } while (pos);
  2713. return last;
  2714. }
  2715. /**
  2716. * cgroup_next_descendant_post - find the next descendant for post-order walk
  2717. * @pos: the current position (%NULL to initiate traversal)
  2718. * @cgroup: cgroup whose descendants to walk
  2719. *
  2720. * To be used by cgroup_for_each_descendant_post(). Find the next
  2721. * descendant to visit for post-order traversal of @cgroup's descendants.
  2722. *
  2723. * While this function requires RCU read locking, it doesn't require the
  2724. * whole traversal to be contained in a single RCU critical section. This
  2725. * function will return the correct next descendant as long as both @pos
  2726. * and @cgroup are accessible and @pos is a descendant of @cgroup.
  2727. */
  2728. struct cgroup *cgroup_next_descendant_post(struct cgroup *pos,
  2729. struct cgroup *cgroup)
  2730. {
  2731. struct cgroup *next;
  2732. WARN_ON_ONCE(!rcu_read_lock_held());
  2733. /* if first iteration, visit the leftmost descendant */
  2734. if (!pos) {
  2735. next = cgroup_leftmost_descendant(cgroup);
  2736. return next != cgroup ? next : NULL;
  2737. }
  2738. /* if there's an unvisited sibling, visit its leftmost descendant */
  2739. next = cgroup_next_sibling(pos);
  2740. if (next)
  2741. return cgroup_leftmost_descendant(next);
  2742. /* no sibling left, visit parent */
  2743. next = pos->parent;
  2744. return next != cgroup ? next : NULL;
  2745. }
  2746. EXPORT_SYMBOL_GPL(cgroup_next_descendant_post);
  2747. void cgroup_iter_start(struct cgroup *cgrp, struct cgroup_iter *it)
  2748. __acquires(css_set_lock)
  2749. {
  2750. /*
  2751. * The first time anyone tries to iterate across a cgroup,
  2752. * we need to enable the list linking each css_set to its
  2753. * tasks, and fix up all existing tasks.
  2754. */
  2755. if (!use_task_css_set_links)
  2756. cgroup_enable_task_cg_lists();
  2757. read_lock(&css_set_lock);
  2758. it->cset_link = &cgrp->cset_links;
  2759. cgroup_advance_iter(cgrp, it);
  2760. }
  2761. struct task_struct *cgroup_iter_next(struct cgroup *cgrp,
  2762. struct cgroup_iter *it)
  2763. {
  2764. struct task_struct *res;
  2765. struct list_head *l = it->task;
  2766. struct cgrp_cset_link *link;
  2767. /* If the iterator cg is NULL, we have no tasks */
  2768. if (!it->cset_link)
  2769. return NULL;
  2770. res = list_entry(l, struct task_struct, cg_list);
  2771. /* Advance iterator to find next entry */
  2772. l = l->next;
  2773. link = list_entry(it->cset_link, struct cgrp_cset_link, cset_link);
  2774. if (l == &link->cset->tasks) {
  2775. /* We reached the end of this task list - move on to
  2776. * the next cg_cgroup_link */
  2777. cgroup_advance_iter(cgrp, it);
  2778. } else {
  2779. it->task = l;
  2780. }
  2781. return res;
  2782. }
  2783. void cgroup_iter_end(struct cgroup *cgrp, struct cgroup_iter *it)
  2784. __releases(css_set_lock)
  2785. {
  2786. read_unlock(&css_set_lock);
  2787. }
  2788. static inline int started_after_time(struct task_struct *t1,
  2789. struct timespec *time,
  2790. struct task_struct *t2)
  2791. {
  2792. int start_diff = timespec_compare(&t1->start_time, time);
  2793. if (start_diff > 0) {
  2794. return 1;
  2795. } else if (start_diff < 0) {
  2796. return 0;
  2797. } else {
  2798. /*
  2799. * Arbitrarily, if two processes started at the same
  2800. * time, we'll say that the lower pointer value
  2801. * started first. Note that t2 may have exited by now
  2802. * so this may not be a valid pointer any longer, but
  2803. * that's fine - it still serves to distinguish
  2804. * between two tasks started (effectively) simultaneously.
  2805. */
  2806. return t1 > t2;
  2807. }
  2808. }
  2809. /*
  2810. * This function is a callback from heap_insert() and is used to order
  2811. * the heap.
  2812. * In this case we order the heap in descending task start time.
  2813. */
  2814. static inline int started_after(void *p1, void *p2)
  2815. {
  2816. struct task_struct *t1 = p1;
  2817. struct task_struct *t2 = p2;
  2818. return started_after_time(t1, &t2->start_time, t2);
  2819. }
  2820. /**
  2821. * cgroup_scan_tasks - iterate though all the tasks in a cgroup
  2822. * @scan: struct cgroup_scanner containing arguments for the scan
  2823. *
  2824. * Arguments include pointers to callback functions test_task() and
  2825. * process_task().
  2826. * Iterate through all the tasks in a cgroup, calling test_task() for each,
  2827. * and if it returns true, call process_task() for it also.
  2828. * The test_task pointer may be NULL, meaning always true (select all tasks).
  2829. * Effectively duplicates cgroup_iter_{start,next,end}()
  2830. * but does not lock css_set_lock for the call to process_task().
  2831. * The struct cgroup_scanner may be embedded in any structure of the caller's
  2832. * creation.
  2833. * It is guaranteed that process_task() will act on every task that
  2834. * is a member of the cgroup for the duration of this call. This
  2835. * function may or may not call process_task() for tasks that exit
  2836. * or move to a different cgroup during the call, or are forked or
  2837. * move into the cgroup during the call.
  2838. *
  2839. * Note that test_task() may be called with locks held, and may in some
  2840. * situations be called multiple times for the same task, so it should
  2841. * be cheap.
  2842. * If the heap pointer in the struct cgroup_scanner is non-NULL, a heap has been
  2843. * pre-allocated and will be used for heap operations (and its "gt" member will
  2844. * be overwritten), else a temporary heap will be used (allocation of which
  2845. * may cause this function to fail).
  2846. */
  2847. int cgroup_scan_tasks(struct cgroup_scanner *scan)
  2848. {
  2849. int retval, i;
  2850. struct cgroup_iter it;
  2851. struct task_struct *p, *dropped;
  2852. /* Never dereference latest_task, since it's not refcounted */
  2853. struct task_struct *latest_task = NULL;
  2854. struct ptr_heap tmp_heap;
  2855. struct ptr_heap *heap;
  2856. struct timespec latest_time = { 0, 0 };
  2857. if (scan->heap) {
  2858. /* The caller supplied our heap and pre-allocated its memory */
  2859. heap = scan->heap;
  2860. heap->gt = &started_after;
  2861. } else {
  2862. /* We need to allocate our own heap memory */
  2863. heap = &tmp_heap;
  2864. retval = heap_init(heap, PAGE_SIZE, GFP_KERNEL, &started_after);
  2865. if (retval)
  2866. /* cannot allocate the heap */
  2867. return retval;
  2868. }
  2869. again:
  2870. /*
  2871. * Scan tasks in the cgroup, using the scanner's "test_task" callback
  2872. * to determine which are of interest, and using the scanner's
  2873. * "process_task" callback to process any of them that need an update.
  2874. * Since we don't want to hold any locks during the task updates,
  2875. * gather tasks to be processed in a heap structure.
  2876. * The heap is sorted by descending task start time.
  2877. * If the statically-sized heap fills up, we overflow tasks that
  2878. * started later, and in future iterations only consider tasks that
  2879. * started after the latest task in the previous pass. This
  2880. * guarantees forward progress and that we don't miss any tasks.
  2881. */
  2882. heap->size = 0;
  2883. cgroup_iter_start(scan->cgrp, &it);
  2884. while ((p = cgroup_iter_next(scan->cgrp, &it))) {
  2885. /*
  2886. * Only affect tasks that qualify per the caller's callback,
  2887. * if he provided one
  2888. */
  2889. if (scan->test_task && !scan->test_task(p, scan))
  2890. continue;
  2891. /*
  2892. * Only process tasks that started after the last task
  2893. * we processed
  2894. */
  2895. if (!started_after_time(p, &latest_time, latest_task))
  2896. continue;
  2897. dropped = heap_insert(heap, p);
  2898. if (dropped == NULL) {
  2899. /*
  2900. * The new task was inserted; the heap wasn't
  2901. * previously full
  2902. */
  2903. get_task_struct(p);
  2904. } else if (dropped != p) {
  2905. /*
  2906. * The new task was inserted, and pushed out a
  2907. * different task
  2908. */
  2909. get_task_struct(p);
  2910. put_task_struct(dropped);
  2911. }
  2912. /*
  2913. * Else the new task was newer than anything already in
  2914. * the heap and wasn't inserted
  2915. */
  2916. }
  2917. cgroup_iter_end(scan->cgrp, &it);
  2918. if (heap->size) {
  2919. for (i = 0; i < heap->size; i++) {
  2920. struct task_struct *q = heap->ptrs[i];
  2921. if (i == 0) {
  2922. latest_time = q->start_time;
  2923. latest_task = q;
  2924. }
  2925. /* Process the task per the caller's callback */
  2926. scan->process_task(q, scan);
  2927. put_task_struct(q);
  2928. }
  2929. /*
  2930. * If we had to process any tasks at all, scan again
  2931. * in case some of them were in the middle of forking
  2932. * children that didn't get processed.
  2933. * Not the most efficient way to do it, but it avoids
  2934. * having to take callback_mutex in the fork path
  2935. */
  2936. goto again;
  2937. }
  2938. if (heap == &tmp_heap)
  2939. heap_free(&tmp_heap);
  2940. return 0;
  2941. }
  2942. static void cgroup_transfer_one_task(struct task_struct *task,
  2943. struct cgroup_scanner *scan)
  2944. {
  2945. struct cgroup *new_cgroup = scan->data;
  2946. mutex_lock(&cgroup_mutex);
  2947. cgroup_attach_task(new_cgroup, task, false);
  2948. mutex_unlock(&cgroup_mutex);
  2949. }
  2950. /**
  2951. * cgroup_trasnsfer_tasks - move tasks from one cgroup to another
  2952. * @to: cgroup to which the tasks will be moved
  2953. * @from: cgroup in which the tasks currently reside
  2954. */
  2955. int cgroup_transfer_tasks(struct cgroup *to, struct cgroup *from)
  2956. {
  2957. struct cgroup_scanner scan;
  2958. scan.cgrp = from;
  2959. scan.test_task = NULL; /* select all tasks in cgroup */
  2960. scan.process_task = cgroup_transfer_one_task;
  2961. scan.heap = NULL;
  2962. scan.data = to;
  2963. return cgroup_scan_tasks(&scan);
  2964. }
  2965. /*
  2966. * Stuff for reading the 'tasks'/'procs' files.
  2967. *
  2968. * Reading this file can return large amounts of data if a cgroup has
  2969. * *lots* of attached tasks. So it may need several calls to read(),
  2970. * but we cannot guarantee that the information we produce is correct
  2971. * unless we produce it entirely atomically.
  2972. *
  2973. */
  2974. /* which pidlist file are we talking about? */
  2975. enum cgroup_filetype {
  2976. CGROUP_FILE_PROCS,
  2977. CGROUP_FILE_TASKS,
  2978. };
  2979. /*
  2980. * A pidlist is a list of pids that virtually represents the contents of one
  2981. * of the cgroup files ("procs" or "tasks"). We keep a list of such pidlists,
  2982. * a pair (one each for procs, tasks) for each pid namespace that's relevant
  2983. * to the cgroup.
  2984. */
  2985. struct cgroup_pidlist {
  2986. /*
  2987. * used to find which pidlist is wanted. doesn't change as long as
  2988. * this particular list stays in the list.
  2989. */
  2990. struct { enum cgroup_filetype type; struct pid_namespace *ns; } key;
  2991. /* array of xids */
  2992. pid_t *list;
  2993. /* how many elements the above list has */
  2994. int length;
  2995. /* how many files are using the current array */
  2996. int use_count;
  2997. /* each of these stored in a list by its cgroup */
  2998. struct list_head links;
  2999. /* pointer to the cgroup we belong to, for list removal purposes */
  3000. struct cgroup *owner;
  3001. /* protects the other fields */
  3002. struct rw_semaphore rwsem;
  3003. };
  3004. /*
  3005. * The following two functions "fix" the issue where there are more pids
  3006. * than kmalloc will give memory for; in such cases, we use vmalloc/vfree.
  3007. * TODO: replace with a kernel-wide solution to this problem
  3008. */
  3009. #define PIDLIST_TOO_LARGE(c) ((c) * sizeof(pid_t) > (PAGE_SIZE * 2))
  3010. static void *pidlist_allocate(int count)
  3011. {
  3012. if (PIDLIST_TOO_LARGE(count))
  3013. return vmalloc(count * sizeof(pid_t));
  3014. else
  3015. return kmalloc(count * sizeof(pid_t), GFP_KERNEL);
  3016. }
  3017. static void pidlist_free(void *p)
  3018. {
  3019. if (is_vmalloc_addr(p))
  3020. vfree(p);
  3021. else
  3022. kfree(p);
  3023. }
  3024. /*
  3025. * pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries
  3026. * Returns the number of unique elements.
  3027. */
  3028. static int pidlist_uniq(pid_t *list, int length)
  3029. {
  3030. int src, dest = 1;
  3031. /*
  3032. * we presume the 0th element is unique, so i starts at 1. trivial
  3033. * edge cases first; no work needs to be done for either
  3034. */
  3035. if (length == 0 || length == 1)
  3036. return length;
  3037. /* src and dest walk down the list; dest counts unique elements */
  3038. for (src = 1; src < length; src++) {
  3039. /* find next unique element */
  3040. while (list[src] == list[src-1]) {
  3041. src++;
  3042. if (src == length)
  3043. goto after;
  3044. }
  3045. /* dest always points to where the next unique element goes */
  3046. list[dest] = list[src];
  3047. dest++;
  3048. }
  3049. after:
  3050. return dest;
  3051. }
  3052. static int cmppid(const void *a, const void *b)
  3053. {
  3054. return *(pid_t *)a - *(pid_t *)b;
  3055. }
  3056. /*
  3057. * find the appropriate pidlist for our purpose (given procs vs tasks)
  3058. * returns with the lock on that pidlist already held, and takes care
  3059. * of the use count, or returns NULL with no locks held if we're out of
  3060. * memory.
  3061. */
  3062. static struct cgroup_pidlist *cgroup_pidlist_find(struct cgroup *cgrp,
  3063. enum cgroup_filetype type)
  3064. {
  3065. struct cgroup_pidlist *l;
  3066. /* don't need task_nsproxy() if we're looking at ourself */
  3067. struct pid_namespace *ns = task_active_pid_ns(current);
  3068. /*
  3069. * We can't drop the pidlist_mutex before taking the l->rwsem in case
  3070. * the last ref-holder is trying to remove l from the list at the same
  3071. * time. Holding the pidlist_mutex precludes somebody taking whichever
  3072. * list we find out from under us - compare release_pid_array().
  3073. */
  3074. mutex_lock(&cgrp->pidlist_mutex);
  3075. list_for_each_entry(l, &cgrp->pidlists, links) {
  3076. if (l->key.type == type && l->key.ns == ns) {
  3077. /* make sure l doesn't vanish out from under us */
  3078. down_write(&l->rwsem);
  3079. mutex_unlock(&cgrp->pidlist_mutex);
  3080. return l;
  3081. }
  3082. }
  3083. /* entry not found; create a new one */
  3084. l = kzalloc(sizeof(struct cgroup_pidlist), GFP_KERNEL);
  3085. if (!l) {
  3086. mutex_unlock(&cgrp->pidlist_mutex);
  3087. return l;
  3088. }
  3089. init_rwsem(&l->rwsem);
  3090. down_write(&l->rwsem);
  3091. l->key.type = type;
  3092. l->key.ns = get_pid_ns(ns);
  3093. l->owner = cgrp;
  3094. list_add(&l->links, &cgrp->pidlists);
  3095. mutex_unlock(&cgrp->pidlist_mutex);
  3096. return l;
  3097. }
  3098. /*
  3099. * Load a cgroup's pidarray with either procs' tgids or tasks' pids
  3100. */
  3101. static int pidlist_array_load(struct cgroup *cgrp, enum cgroup_filetype type,
  3102. struct cgroup_pidlist **lp)
  3103. {
  3104. pid_t *array;
  3105. int length;
  3106. int pid, n = 0; /* used for populating the array */
  3107. struct cgroup_iter it;
  3108. struct task_struct *tsk;
  3109. struct cgroup_pidlist *l;
  3110. /*
  3111. * If cgroup gets more users after we read count, we won't have
  3112. * enough space - tough. This race is indistinguishable to the
  3113. * caller from the case that the additional cgroup users didn't
  3114. * show up until sometime later on.
  3115. */
  3116. length = cgroup_task_count(cgrp);
  3117. array = pidlist_allocate(length);
  3118. if (!array)
  3119. return -ENOMEM;
  3120. /* now, populate the array */
  3121. cgroup_iter_start(cgrp, &it);
  3122. while ((tsk = cgroup_iter_next(cgrp, &it))) {
  3123. if (unlikely(n == length))
  3124. break;
  3125. /* get tgid or pid for procs or tasks file respectively */
  3126. if (type == CGROUP_FILE_PROCS)
  3127. pid = task_tgid_vnr(tsk);
  3128. else
  3129. pid = task_pid_vnr(tsk);
  3130. if (pid > 0) /* make sure to only use valid results */
  3131. array[n++] = pid;
  3132. }
  3133. cgroup_iter_end(cgrp, &it);
  3134. length = n;
  3135. /* now sort & (if procs) strip out duplicates */
  3136. sort(array, length, sizeof(pid_t), cmppid, NULL);
  3137. if (type == CGROUP_FILE_PROCS)
  3138. length = pidlist_uniq(array, length);
  3139. l = cgroup_pidlist_find(cgrp, type);
  3140. if (!l) {
  3141. pidlist_free(array);
  3142. return -ENOMEM;
  3143. }
  3144. /* store array, freeing old if necessary - lock already held */
  3145. pidlist_free(l->list);
  3146. l->list = array;
  3147. l->length = length;
  3148. l->use_count++;
  3149. up_write(&l->rwsem);
  3150. *lp = l;
  3151. return 0;
  3152. }
  3153. /**
  3154. * cgroupstats_build - build and fill cgroupstats
  3155. * @stats: cgroupstats to fill information into
  3156. * @dentry: A dentry entry belonging to the cgroup for which stats have
  3157. * been requested.
  3158. *
  3159. * Build and fill cgroupstats so that taskstats can export it to user
  3160. * space.
  3161. */
  3162. int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry)
  3163. {
  3164. int ret = -EINVAL;
  3165. struct cgroup *cgrp;
  3166. struct cgroup_iter it;
  3167. struct task_struct *tsk;
  3168. /*
  3169. * Validate dentry by checking the superblock operations,
  3170. * and make sure it's a directory.
  3171. */
  3172. if (dentry->d_sb->s_op != &cgroup_ops ||
  3173. !S_ISDIR(dentry->d_inode->i_mode))
  3174. goto err;
  3175. ret = 0;
  3176. cgrp = dentry->d_fsdata;
  3177. cgroup_iter_start(cgrp, &it);
  3178. while ((tsk = cgroup_iter_next(cgrp, &it))) {
  3179. switch (tsk->state) {
  3180. case TASK_RUNNING:
  3181. stats->nr_running++;
  3182. break;
  3183. case TASK_INTERRUPTIBLE:
  3184. stats->nr_sleeping++;
  3185. break;
  3186. case TASK_UNINTERRUPTIBLE:
  3187. stats->nr_uninterruptible++;
  3188. break;
  3189. case TASK_STOPPED:
  3190. stats->nr_stopped++;
  3191. break;
  3192. default:
  3193. if (delayacct_is_task_waiting_on_io(tsk))
  3194. stats->nr_io_wait++;
  3195. break;
  3196. }
  3197. }
  3198. cgroup_iter_end(cgrp, &it);
  3199. err:
  3200. return ret;
  3201. }
  3202. /*
  3203. * seq_file methods for the tasks/procs files. The seq_file position is the
  3204. * next pid to display; the seq_file iterator is a pointer to the pid
  3205. * in the cgroup->l->list array.
  3206. */
  3207. static void *cgroup_pidlist_start(struct seq_file *s, loff_t *pos)
  3208. {
  3209. /*
  3210. * Initially we receive a position value that corresponds to
  3211. * one more than the last pid shown (or 0 on the first call or
  3212. * after a seek to the start). Use a binary-search to find the
  3213. * next pid to display, if any
  3214. */
  3215. struct cgroup_pidlist *l = s->private;
  3216. int index = 0, pid = *pos;
  3217. int *iter;
  3218. down_read(&l->rwsem);
  3219. if (pid) {
  3220. int end = l->length;
  3221. while (index < end) {
  3222. int mid = (index + end) / 2;
  3223. if (l->list[mid] == pid) {
  3224. index = mid;
  3225. break;
  3226. } else if (l->list[mid] <= pid)
  3227. index = mid + 1;
  3228. else
  3229. end = mid;
  3230. }
  3231. }
  3232. /* If we're off the end of the array, we're done */
  3233. if (index >= l->length)
  3234. return NULL;
  3235. /* Update the abstract position to be the actual pid that we found */
  3236. iter = l->list + index;
  3237. *pos = *iter;
  3238. return iter;
  3239. }
  3240. static void cgroup_pidlist_stop(struct seq_file *s, void *v)
  3241. {
  3242. struct cgroup_pidlist *l = s->private;
  3243. up_read(&l->rwsem);
  3244. }
  3245. static void *cgroup_pidlist_next(struct seq_file *s, void *v, loff_t *pos)
  3246. {
  3247. struct cgroup_pidlist *l = s->private;
  3248. pid_t *p = v;
  3249. pid_t *end = l->list + l->length;
  3250. /*
  3251. * Advance to the next pid in the array. If this goes off the
  3252. * end, we're done
  3253. */
  3254. p++;
  3255. if (p >= end) {
  3256. return NULL;
  3257. } else {
  3258. *pos = *p;
  3259. return p;
  3260. }
  3261. }
  3262. static int cgroup_pidlist_show(struct seq_file *s, void *v)
  3263. {
  3264. return seq_printf(s, "%d\n", *(int *)v);
  3265. }
  3266. /*
  3267. * seq_operations functions for iterating on pidlists through seq_file -
  3268. * independent of whether it's tasks or procs
  3269. */
  3270. static const struct seq_operations cgroup_pidlist_seq_operations = {
  3271. .start = cgroup_pidlist_start,
  3272. .stop = cgroup_pidlist_stop,
  3273. .next = cgroup_pidlist_next,
  3274. .show = cgroup_pidlist_show,
  3275. };
  3276. static void cgroup_release_pid_array(struct cgroup_pidlist *l)
  3277. {
  3278. /*
  3279. * the case where we're the last user of this particular pidlist will
  3280. * have us remove it from the cgroup's list, which entails taking the
  3281. * mutex. since in pidlist_find the pidlist->lock depends on cgroup->
  3282. * pidlist_mutex, we have to take pidlist_mutex first.
  3283. */
  3284. mutex_lock(&l->owner->pidlist_mutex);
  3285. down_write(&l->rwsem);
  3286. BUG_ON(!l->use_count);
  3287. if (!--l->use_count) {
  3288. /* we're the last user if refcount is 0; remove and free */
  3289. list_del(&l->links);
  3290. mutex_unlock(&l->owner->pidlist_mutex);
  3291. pidlist_free(l->list);
  3292. put_pid_ns(l->key.ns);
  3293. up_write(&l->rwsem);
  3294. kfree(l);
  3295. return;
  3296. }
  3297. mutex_unlock(&l->owner->pidlist_mutex);
  3298. up_write(&l->rwsem);
  3299. }
  3300. static int cgroup_pidlist_release(struct inode *inode, struct file *file)
  3301. {
  3302. struct cgroup_pidlist *l;
  3303. if (!(file->f_mode & FMODE_READ))
  3304. return 0;
  3305. /*
  3306. * the seq_file will only be initialized if the file was opened for
  3307. * reading; hence we check if it's not null only in that case.
  3308. */
  3309. l = ((struct seq_file *)file->private_data)->private;
  3310. cgroup_release_pid_array(l);
  3311. return seq_release(inode, file);
  3312. }
  3313. static const struct file_operations cgroup_pidlist_operations = {
  3314. .read = seq_read,
  3315. .llseek = seq_lseek,
  3316. .write = cgroup_file_write,
  3317. .release = cgroup_pidlist_release,
  3318. };
  3319. /*
  3320. * The following functions handle opens on a file that displays a pidlist
  3321. * (tasks or procs). Prepare an array of the process/thread IDs of whoever's
  3322. * in the cgroup.
  3323. */
  3324. /* helper function for the two below it */
  3325. static int cgroup_pidlist_open(struct file *file, enum cgroup_filetype type)
  3326. {
  3327. struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
  3328. struct cgroup_pidlist *l;
  3329. int retval;
  3330. /* Nothing to do for write-only files */
  3331. if (!(file->f_mode & FMODE_READ))
  3332. return 0;
  3333. /* have the array populated */
  3334. retval = pidlist_array_load(cgrp, type, &l);
  3335. if (retval)
  3336. return retval;
  3337. /* configure file information */
  3338. file->f_op = &cgroup_pidlist_operations;
  3339. retval = seq_open(file, &cgroup_pidlist_seq_operations);
  3340. if (retval) {
  3341. cgroup_release_pid_array(l);
  3342. return retval;
  3343. }
  3344. ((struct seq_file *)file->private_data)->private = l;
  3345. return 0;
  3346. }
  3347. static int cgroup_tasks_open(struct inode *unused, struct file *file)
  3348. {
  3349. return cgroup_pidlist_open(file, CGROUP_FILE_TASKS);
  3350. }
  3351. static int cgroup_procs_open(struct inode *unused, struct file *file)
  3352. {
  3353. return cgroup_pidlist_open(file, CGROUP_FILE_PROCS);
  3354. }
  3355. static u64 cgroup_read_notify_on_release(struct cgroup *cgrp,
  3356. struct cftype *cft)
  3357. {
  3358. return notify_on_release(cgrp);
  3359. }
  3360. static int cgroup_write_notify_on_release(struct cgroup *cgrp,
  3361. struct cftype *cft,
  3362. u64 val)
  3363. {
  3364. clear_bit(CGRP_RELEASABLE, &cgrp->flags);
  3365. if (val)
  3366. set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
  3367. else
  3368. clear_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
  3369. return 0;
  3370. }
  3371. /*
  3372. * When dput() is called asynchronously, if umount has been done and
  3373. * then deactivate_super() in cgroup_free_fn() kills the superblock,
  3374. * there's a small window that vfs will see the root dentry with non-zero
  3375. * refcnt and trigger BUG().
  3376. *
  3377. * That's why we hold a reference before dput() and drop it right after.
  3378. */
  3379. static void cgroup_dput(struct cgroup *cgrp)
  3380. {
  3381. struct super_block *sb = cgrp->root->sb;
  3382. atomic_inc(&sb->s_active);
  3383. dput(cgrp->dentry);
  3384. deactivate_super(sb);
  3385. }
  3386. /*
  3387. * Unregister event and free resources.
  3388. *
  3389. * Gets called from workqueue.
  3390. */
  3391. static void cgroup_event_remove(struct work_struct *work)
  3392. {
  3393. struct cgroup_event *event = container_of(work, struct cgroup_event,
  3394. remove);
  3395. struct cgroup *cgrp = event->cgrp;
  3396. remove_wait_queue(event->wqh, &event->wait);
  3397. event->cft->unregister_event(cgrp, event->cft, event->eventfd);
  3398. /* Notify userspace the event is going away. */
  3399. eventfd_signal(event->eventfd, 1);
  3400. eventfd_ctx_put(event->eventfd);
  3401. kfree(event);
  3402. cgroup_dput(cgrp);
  3403. }
  3404. /*
  3405. * Gets called on POLLHUP on eventfd when user closes it.
  3406. *
  3407. * Called with wqh->lock held and interrupts disabled.
  3408. */
  3409. static int cgroup_event_wake(wait_queue_t *wait, unsigned mode,
  3410. int sync, void *key)
  3411. {
  3412. struct cgroup_event *event = container_of(wait,
  3413. struct cgroup_event, wait);
  3414. struct cgroup *cgrp = event->cgrp;
  3415. unsigned long flags = (unsigned long)key;
  3416. if (flags & POLLHUP) {
  3417. /*
  3418. * If the event has been detached at cgroup removal, we
  3419. * can simply return knowing the other side will cleanup
  3420. * for us.
  3421. *
  3422. * We can't race against event freeing since the other
  3423. * side will require wqh->lock via remove_wait_queue(),
  3424. * which we hold.
  3425. */
  3426. spin_lock(&cgrp->event_list_lock);
  3427. if (!list_empty(&event->list)) {
  3428. list_del_init(&event->list);
  3429. /*
  3430. * We are in atomic context, but cgroup_event_remove()
  3431. * may sleep, so we have to call it in workqueue.
  3432. */
  3433. schedule_work(&event->remove);
  3434. }
  3435. spin_unlock(&cgrp->event_list_lock);
  3436. }
  3437. return 0;
  3438. }
  3439. static void cgroup_event_ptable_queue_proc(struct file *file,
  3440. wait_queue_head_t *wqh, poll_table *pt)
  3441. {
  3442. struct cgroup_event *event = container_of(pt,
  3443. struct cgroup_event, pt);
  3444. event->wqh = wqh;
  3445. add_wait_queue(wqh, &event->wait);
  3446. }
  3447. /*
  3448. * Parse input and register new cgroup event handler.
  3449. *
  3450. * Input must be in format '<event_fd> <control_fd> <args>'.
  3451. * Interpretation of args is defined by control file implementation.
  3452. */
  3453. static int cgroup_write_event_control(struct cgroup *cgrp, struct cftype *cft,
  3454. const char *buffer)
  3455. {
  3456. struct cgroup_event *event;
  3457. struct cgroup *cgrp_cfile;
  3458. unsigned int efd, cfd;
  3459. struct file *efile;
  3460. struct file *cfile;
  3461. char *endp;
  3462. int ret;
  3463. efd = simple_strtoul(buffer, &endp, 10);
  3464. if (*endp != ' ')
  3465. return -EINVAL;
  3466. buffer = endp + 1;
  3467. cfd = simple_strtoul(buffer, &endp, 10);
  3468. if ((*endp != ' ') && (*endp != '\0'))
  3469. return -EINVAL;
  3470. buffer = endp + 1;
  3471. event = kzalloc(sizeof(*event), GFP_KERNEL);
  3472. if (!event)
  3473. return -ENOMEM;
  3474. event->cgrp = cgrp;
  3475. INIT_LIST_HEAD(&event->list);
  3476. init_poll_funcptr(&event->pt, cgroup_event_ptable_queue_proc);
  3477. init_waitqueue_func_entry(&event->wait, cgroup_event_wake);
  3478. INIT_WORK(&event->remove, cgroup_event_remove);
  3479. efile = eventfd_fget(efd);
  3480. if (IS_ERR(efile)) {
  3481. ret = PTR_ERR(efile);
  3482. goto out_kfree;
  3483. }
  3484. event->eventfd = eventfd_ctx_fileget(efile);
  3485. if (IS_ERR(event->eventfd)) {
  3486. ret = PTR_ERR(event->eventfd);
  3487. goto out_put_efile;
  3488. }
  3489. cfile = fget(cfd);
  3490. if (!cfile) {
  3491. ret = -EBADF;
  3492. goto out_put_eventfd;
  3493. }
  3494. /* the process need read permission on control file */
  3495. /* AV: shouldn't we check that it's been opened for read instead? */
  3496. ret = inode_permission(file_inode(cfile), MAY_READ);
  3497. if (ret < 0)
  3498. goto out_put_cfile;
  3499. event->cft = __file_cft(cfile);
  3500. if (IS_ERR(event->cft)) {
  3501. ret = PTR_ERR(event->cft);
  3502. goto out_put_cfile;
  3503. }
  3504. /*
  3505. * The file to be monitored must be in the same cgroup as
  3506. * cgroup.event_control is.
  3507. */
  3508. cgrp_cfile = __d_cgrp(cfile->f_dentry->d_parent);
  3509. if (cgrp_cfile != cgrp) {
  3510. ret = -EINVAL;
  3511. goto out_put_cfile;
  3512. }
  3513. if (!event->cft->register_event || !event->cft->unregister_event) {
  3514. ret = -EINVAL;
  3515. goto out_put_cfile;
  3516. }
  3517. ret = event->cft->register_event(cgrp, event->cft,
  3518. event->eventfd, buffer);
  3519. if (ret)
  3520. goto out_put_cfile;
  3521. efile->f_op->poll(efile, &event->pt);
  3522. /*
  3523. * Events should be removed after rmdir of cgroup directory, but before
  3524. * destroying subsystem state objects. Let's take reference to cgroup
  3525. * directory dentry to do that.
  3526. */
  3527. dget(cgrp->dentry);
  3528. spin_lock(&cgrp->event_list_lock);
  3529. list_add(&event->list, &cgrp->event_list);
  3530. spin_unlock(&cgrp->event_list_lock);
  3531. fput(cfile);
  3532. fput(efile);
  3533. return 0;
  3534. out_put_cfile:
  3535. fput(cfile);
  3536. out_put_eventfd:
  3537. eventfd_ctx_put(event->eventfd);
  3538. out_put_efile:
  3539. fput(efile);
  3540. out_kfree:
  3541. kfree(event);
  3542. return ret;
  3543. }
  3544. static u64 cgroup_clone_children_read(struct cgroup *cgrp,
  3545. struct cftype *cft)
  3546. {
  3547. return test_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
  3548. }
  3549. static int cgroup_clone_children_write(struct cgroup *cgrp,
  3550. struct cftype *cft,
  3551. u64 val)
  3552. {
  3553. if (val)
  3554. set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
  3555. else
  3556. clear_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
  3557. return 0;
  3558. }
  3559. static struct cftype cgroup_base_files[] = {
  3560. {
  3561. .name = "cgroup.procs",
  3562. .open = cgroup_procs_open,
  3563. .write_u64 = cgroup_procs_write,
  3564. .release = cgroup_pidlist_release,
  3565. .mode = S_IRUGO | S_IWUSR,
  3566. },
  3567. {
  3568. .name = "cgroup.event_control",
  3569. .write_string = cgroup_write_event_control,
  3570. .mode = S_IWUGO,
  3571. },
  3572. {
  3573. .name = "cgroup.clone_children",
  3574. .flags = CFTYPE_INSANE,
  3575. .read_u64 = cgroup_clone_children_read,
  3576. .write_u64 = cgroup_clone_children_write,
  3577. },
  3578. {
  3579. .name = "cgroup.sane_behavior",
  3580. .flags = CFTYPE_ONLY_ON_ROOT,
  3581. .read_seq_string = cgroup_sane_behavior_show,
  3582. },
  3583. /*
  3584. * Historical crazy stuff. These don't have "cgroup." prefix and
  3585. * don't exist if sane_behavior. If you're depending on these, be
  3586. * prepared to be burned.
  3587. */
  3588. {
  3589. .name = "tasks",
  3590. .flags = CFTYPE_INSANE, /* use "procs" instead */
  3591. .open = cgroup_tasks_open,
  3592. .write_u64 = cgroup_tasks_write,
  3593. .release = cgroup_pidlist_release,
  3594. .mode = S_IRUGO | S_IWUSR,
  3595. },
  3596. {
  3597. .name = "notify_on_release",
  3598. .flags = CFTYPE_INSANE,
  3599. .read_u64 = cgroup_read_notify_on_release,
  3600. .write_u64 = cgroup_write_notify_on_release,
  3601. },
  3602. {
  3603. .name = "release_agent",
  3604. .flags = CFTYPE_INSANE | CFTYPE_ONLY_ON_ROOT,
  3605. .read_seq_string = cgroup_release_agent_show,
  3606. .write_string = cgroup_release_agent_write,
  3607. .max_write_len = PATH_MAX,
  3608. },
  3609. { } /* terminate */
  3610. };
  3611. /**
  3612. * cgroup_populate_dir - create subsys files in a cgroup directory
  3613. * @cgrp: target cgroup
  3614. * @subsys_mask: mask of the subsystem ids whose files should be added
  3615. *
  3616. * On failure, no file is added.
  3617. */
  3618. static int cgroup_populate_dir(struct cgroup *cgrp, unsigned long subsys_mask)
  3619. {
  3620. struct cgroup_subsys *ss;
  3621. int i, ret = 0;
  3622. /* process cftsets of each subsystem */
  3623. for_each_subsys(ss, i) {
  3624. struct cftype_set *set;
  3625. if (!test_bit(i, &subsys_mask))
  3626. continue;
  3627. list_for_each_entry(set, &ss->cftsets, node) {
  3628. ret = cgroup_addrm_files(cgrp, ss, set->cfts, true);
  3629. if (ret < 0)
  3630. goto err;
  3631. }
  3632. }
  3633. /* This cgroup is ready now */
  3634. for_each_root_subsys(cgrp->root, ss) {
  3635. struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
  3636. struct css_id *id = rcu_dereference_protected(css->id, true);
  3637. /*
  3638. * Update id->css pointer and make this css visible from
  3639. * CSS ID functions. This pointer will be dereferened
  3640. * from RCU-read-side without locks.
  3641. */
  3642. if (id)
  3643. rcu_assign_pointer(id->css, css);
  3644. }
  3645. return 0;
  3646. err:
  3647. cgroup_clear_dir(cgrp, subsys_mask);
  3648. return ret;
  3649. }
  3650. static void css_dput_fn(struct work_struct *work)
  3651. {
  3652. struct cgroup_subsys_state *css =
  3653. container_of(work, struct cgroup_subsys_state, dput_work);
  3654. cgroup_dput(css->cgroup);
  3655. }
  3656. static void css_release(struct percpu_ref *ref)
  3657. {
  3658. struct cgroup_subsys_state *css =
  3659. container_of(ref, struct cgroup_subsys_state, refcnt);
  3660. schedule_work(&css->dput_work);
  3661. }
  3662. static void init_cgroup_css(struct cgroup_subsys_state *css,
  3663. struct cgroup_subsys *ss,
  3664. struct cgroup *cgrp)
  3665. {
  3666. css->cgroup = cgrp;
  3667. css->flags = 0;
  3668. css->id = NULL;
  3669. if (cgrp == cgroup_dummy_top)
  3670. css->flags |= CSS_ROOT;
  3671. BUG_ON(cgrp->subsys[ss->subsys_id]);
  3672. cgrp->subsys[ss->subsys_id] = css;
  3673. /*
  3674. * css holds an extra ref to @cgrp->dentry which is put on the last
  3675. * css_put(). dput() requires process context, which css_put() may
  3676. * be called without. @css->dput_work will be used to invoke
  3677. * dput() asynchronously from css_put().
  3678. */
  3679. INIT_WORK(&css->dput_work, css_dput_fn);
  3680. }
  3681. /* invoke ->css_online() on a new CSS and mark it online if successful */
  3682. static int online_css(struct cgroup_subsys *ss, struct cgroup *cgrp)
  3683. {
  3684. int ret = 0;
  3685. lockdep_assert_held(&cgroup_mutex);
  3686. if (ss->css_online)
  3687. ret = ss->css_online(cgrp);
  3688. if (!ret)
  3689. cgrp->subsys[ss->subsys_id]->flags |= CSS_ONLINE;
  3690. return ret;
  3691. }
  3692. /* if the CSS is online, invoke ->css_offline() on it and mark it offline */
  3693. static void offline_css(struct cgroup_subsys *ss, struct cgroup *cgrp)
  3694. {
  3695. struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
  3696. lockdep_assert_held(&cgroup_mutex);
  3697. if (!(css->flags & CSS_ONLINE))
  3698. return;
  3699. if (ss->css_offline)
  3700. ss->css_offline(cgrp);
  3701. cgrp->subsys[ss->subsys_id]->flags &= ~CSS_ONLINE;
  3702. }
  3703. /*
  3704. * cgroup_create - create a cgroup
  3705. * @parent: cgroup that will be parent of the new cgroup
  3706. * @dentry: dentry of the new cgroup
  3707. * @mode: mode to set on new inode
  3708. *
  3709. * Must be called with the mutex on the parent inode held
  3710. */
  3711. static long cgroup_create(struct cgroup *parent, struct dentry *dentry,
  3712. umode_t mode)
  3713. {
  3714. struct cgroup *cgrp;
  3715. struct cgroup_name *name;
  3716. struct cgroupfs_root *root = parent->root;
  3717. int err = 0;
  3718. struct cgroup_subsys *ss;
  3719. struct super_block *sb = root->sb;
  3720. /* allocate the cgroup and its ID, 0 is reserved for the root */
  3721. cgrp = kzalloc(sizeof(*cgrp), GFP_KERNEL);
  3722. if (!cgrp)
  3723. return -ENOMEM;
  3724. name = cgroup_alloc_name(dentry);
  3725. if (!name)
  3726. goto err_free_cgrp;
  3727. rcu_assign_pointer(cgrp->name, name);
  3728. /*
  3729. * Temporarily set the pointer to NULL, so idr_find() won't return
  3730. * a half-baked cgroup.
  3731. */
  3732. cgrp->id = idr_alloc(&root->cgroup_idr, NULL, 1, 0, GFP_KERNEL);
  3733. if (cgrp->id < 0)
  3734. goto err_free_name;
  3735. /*
  3736. * Only live parents can have children. Note that the liveliness
  3737. * check isn't strictly necessary because cgroup_mkdir() and
  3738. * cgroup_rmdir() are fully synchronized by i_mutex; however, do it
  3739. * anyway so that locking is contained inside cgroup proper and we
  3740. * don't get nasty surprises if we ever grow another caller.
  3741. */
  3742. if (!cgroup_lock_live_group(parent)) {
  3743. err = -ENODEV;
  3744. goto err_free_id;
  3745. }
  3746. /* Grab a reference on the superblock so the hierarchy doesn't
  3747. * get deleted on unmount if there are child cgroups. This
  3748. * can be done outside cgroup_mutex, since the sb can't
  3749. * disappear while someone has an open control file on the
  3750. * fs */
  3751. atomic_inc(&sb->s_active);
  3752. init_cgroup_housekeeping(cgrp);
  3753. dentry->d_fsdata = cgrp;
  3754. cgrp->dentry = dentry;
  3755. cgrp->parent = parent;
  3756. cgrp->root = parent->root;
  3757. if (notify_on_release(parent))
  3758. set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
  3759. if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &parent->flags))
  3760. set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
  3761. for_each_root_subsys(root, ss) {
  3762. struct cgroup_subsys_state *css;
  3763. css = ss->css_alloc(cgrp);
  3764. if (IS_ERR(css)) {
  3765. err = PTR_ERR(css);
  3766. goto err_free_all;
  3767. }
  3768. err = percpu_ref_init(&css->refcnt, css_release);
  3769. if (err) {
  3770. ss->css_free(cgrp);
  3771. goto err_free_all;
  3772. }
  3773. init_cgroup_css(css, ss, cgrp);
  3774. if (ss->use_id) {
  3775. err = alloc_css_id(ss, parent, cgrp);
  3776. if (err)
  3777. goto err_free_all;
  3778. }
  3779. }
  3780. /*
  3781. * Create directory. cgroup_create_file() returns with the new
  3782. * directory locked on success so that it can be populated without
  3783. * dropping cgroup_mutex.
  3784. */
  3785. err = cgroup_create_file(dentry, S_IFDIR | mode, sb);
  3786. if (err < 0)
  3787. goto err_free_all;
  3788. lockdep_assert_held(&dentry->d_inode->i_mutex);
  3789. cgrp->serial_nr = cgroup_serial_nr_next++;
  3790. /* allocation complete, commit to creation */
  3791. list_add_tail_rcu(&cgrp->sibling, &cgrp->parent->children);
  3792. root->number_of_cgroups++;
  3793. /* each css holds a ref to the cgroup's dentry */
  3794. for_each_root_subsys(root, ss)
  3795. dget(dentry);
  3796. /* hold a ref to the parent's dentry */
  3797. dget(parent->dentry);
  3798. /* creation succeeded, notify subsystems */
  3799. for_each_root_subsys(root, ss) {
  3800. err = online_css(ss, cgrp);
  3801. if (err)
  3802. goto err_destroy;
  3803. if (ss->broken_hierarchy && !ss->warned_broken_hierarchy &&
  3804. parent->parent) {
  3805. pr_warning("cgroup: %s (%d) created nested cgroup for controller \"%s\" which has incomplete hierarchy support. Nested cgroups may change behavior in the future.\n",
  3806. current->comm, current->pid, ss->name);
  3807. if (!strcmp(ss->name, "memory"))
  3808. pr_warning("cgroup: \"memory\" requires setting use_hierarchy to 1 on the root.\n");
  3809. ss->warned_broken_hierarchy = true;
  3810. }
  3811. }
  3812. idr_replace(&root->cgroup_idr, cgrp, cgrp->id);
  3813. err = cgroup_addrm_files(cgrp, NULL, cgroup_base_files, true);
  3814. if (err)
  3815. goto err_destroy;
  3816. err = cgroup_populate_dir(cgrp, root->subsys_mask);
  3817. if (err)
  3818. goto err_destroy;
  3819. mutex_unlock(&cgroup_mutex);
  3820. mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
  3821. return 0;
  3822. err_free_all:
  3823. for_each_root_subsys(root, ss) {
  3824. struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
  3825. if (css) {
  3826. percpu_ref_cancel_init(&css->refcnt);
  3827. ss->css_free(cgrp);
  3828. }
  3829. }
  3830. mutex_unlock(&cgroup_mutex);
  3831. /* Release the reference count that we took on the superblock */
  3832. deactivate_super(sb);
  3833. err_free_id:
  3834. idr_remove(&root->cgroup_idr, cgrp->id);
  3835. err_free_name:
  3836. kfree(rcu_dereference_raw(cgrp->name));
  3837. err_free_cgrp:
  3838. kfree(cgrp);
  3839. return err;
  3840. err_destroy:
  3841. cgroup_destroy_locked(cgrp);
  3842. mutex_unlock(&cgroup_mutex);
  3843. mutex_unlock(&dentry->d_inode->i_mutex);
  3844. return err;
  3845. }
  3846. static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
  3847. {
  3848. struct cgroup *c_parent = dentry->d_parent->d_fsdata;
  3849. /* the vfs holds inode->i_mutex already */
  3850. return cgroup_create(c_parent, dentry, mode | S_IFDIR);
  3851. }
  3852. static void cgroup_css_killed(struct cgroup *cgrp)
  3853. {
  3854. if (!atomic_dec_and_test(&cgrp->css_kill_cnt))
  3855. return;
  3856. /* percpu ref's of all css's are killed, kick off the next step */
  3857. INIT_WORK(&cgrp->destroy_work, cgroup_offline_fn);
  3858. schedule_work(&cgrp->destroy_work);
  3859. }
  3860. static void css_ref_killed_fn(struct percpu_ref *ref)
  3861. {
  3862. struct cgroup_subsys_state *css =
  3863. container_of(ref, struct cgroup_subsys_state, refcnt);
  3864. cgroup_css_killed(css->cgroup);
  3865. }
  3866. /**
  3867. * cgroup_destroy_locked - the first stage of cgroup destruction
  3868. * @cgrp: cgroup to be destroyed
  3869. *
  3870. * css's make use of percpu refcnts whose killing latency shouldn't be
  3871. * exposed to userland and are RCU protected. Also, cgroup core needs to
  3872. * guarantee that css_tryget() won't succeed by the time ->css_offline() is
  3873. * invoked. To satisfy all the requirements, destruction is implemented in
  3874. * the following two steps.
  3875. *
  3876. * s1. Verify @cgrp can be destroyed and mark it dying. Remove all
  3877. * userland visible parts and start killing the percpu refcnts of
  3878. * css's. Set up so that the next stage will be kicked off once all
  3879. * the percpu refcnts are confirmed to be killed.
  3880. *
  3881. * s2. Invoke ->css_offline(), mark the cgroup dead and proceed with the
  3882. * rest of destruction. Once all cgroup references are gone, the
  3883. * cgroup is RCU-freed.
  3884. *
  3885. * This function implements s1. After this step, @cgrp is gone as far as
  3886. * the userland is concerned and a new cgroup with the same name may be
  3887. * created. As cgroup doesn't care about the names internally, this
  3888. * doesn't cause any problem.
  3889. */
  3890. static int cgroup_destroy_locked(struct cgroup *cgrp)
  3891. __releases(&cgroup_mutex) __acquires(&cgroup_mutex)
  3892. {
  3893. struct dentry *d = cgrp->dentry;
  3894. struct cgroup_event *event, *tmp;
  3895. struct cgroup_subsys *ss;
  3896. bool empty;
  3897. lockdep_assert_held(&d->d_inode->i_mutex);
  3898. lockdep_assert_held(&cgroup_mutex);
  3899. /*
  3900. * css_set_lock synchronizes access to ->cset_links and prevents
  3901. * @cgrp from being removed while __put_css_set() is in progress.
  3902. */
  3903. read_lock(&css_set_lock);
  3904. empty = list_empty(&cgrp->cset_links) && list_empty(&cgrp->children);
  3905. read_unlock(&css_set_lock);
  3906. if (!empty)
  3907. return -EBUSY;
  3908. /*
  3909. * Block new css_tryget() by killing css refcnts. cgroup core
  3910. * guarantees that, by the time ->css_offline() is invoked, no new
  3911. * css reference will be given out via css_tryget(). We can't
  3912. * simply call percpu_ref_kill() and proceed to offlining css's
  3913. * because percpu_ref_kill() doesn't guarantee that the ref is seen
  3914. * as killed on all CPUs on return.
  3915. *
  3916. * Use percpu_ref_kill_and_confirm() to get notifications as each
  3917. * css is confirmed to be seen as killed on all CPUs. The
  3918. * notification callback keeps track of the number of css's to be
  3919. * killed and schedules cgroup_offline_fn() to perform the rest of
  3920. * destruction once the percpu refs of all css's are confirmed to
  3921. * be killed.
  3922. */
  3923. atomic_set(&cgrp->css_kill_cnt, 1);
  3924. for_each_root_subsys(cgrp->root, ss) {
  3925. struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
  3926. /*
  3927. * Killing would put the base ref, but we need to keep it
  3928. * alive until after ->css_offline.
  3929. */
  3930. percpu_ref_get(&css->refcnt);
  3931. atomic_inc(&cgrp->css_kill_cnt);
  3932. percpu_ref_kill_and_confirm(&css->refcnt, css_ref_killed_fn);
  3933. }
  3934. cgroup_css_killed(cgrp);
  3935. /*
  3936. * Mark @cgrp dead. This prevents further task migration and child
  3937. * creation by disabling cgroup_lock_live_group(). Note that
  3938. * CGRP_DEAD assertion is depended upon by cgroup_next_sibling() to
  3939. * resume iteration after dropping RCU read lock. See
  3940. * cgroup_next_sibling() for details.
  3941. */
  3942. set_bit(CGRP_DEAD, &cgrp->flags);
  3943. /* CGRP_DEAD is set, remove from ->release_list for the last time */
  3944. raw_spin_lock(&release_list_lock);
  3945. if (!list_empty(&cgrp->release_list))
  3946. list_del_init(&cgrp->release_list);
  3947. raw_spin_unlock(&release_list_lock);
  3948. /*
  3949. * Clear and remove @cgrp directory. The removal puts the base ref
  3950. * but we aren't quite done with @cgrp yet, so hold onto it.
  3951. */
  3952. cgroup_clear_dir(cgrp, cgrp->root->subsys_mask);
  3953. cgroup_addrm_files(cgrp, NULL, cgroup_base_files, false);
  3954. dget(d);
  3955. cgroup_d_remove_dir(d);
  3956. /*
  3957. * Unregister events and notify userspace.
  3958. * Notify userspace about cgroup removing only after rmdir of cgroup
  3959. * directory to avoid race between userspace and kernelspace.
  3960. */
  3961. spin_lock(&cgrp->event_list_lock);
  3962. list_for_each_entry_safe(event, tmp, &cgrp->event_list, list) {
  3963. list_del_init(&event->list);
  3964. schedule_work(&event->remove);
  3965. }
  3966. spin_unlock(&cgrp->event_list_lock);
  3967. return 0;
  3968. };
  3969. /**
  3970. * cgroup_offline_fn - the second step of cgroup destruction
  3971. * @work: cgroup->destroy_free_work
  3972. *
  3973. * This function is invoked from a work item for a cgroup which is being
  3974. * destroyed after the percpu refcnts of all css's are guaranteed to be
  3975. * seen as killed on all CPUs, and performs the rest of destruction. This
  3976. * is the second step of destruction described in the comment above
  3977. * cgroup_destroy_locked().
  3978. */
  3979. static void cgroup_offline_fn(struct work_struct *work)
  3980. {
  3981. struct cgroup *cgrp = container_of(work, struct cgroup, destroy_work);
  3982. struct cgroup *parent = cgrp->parent;
  3983. struct dentry *d = cgrp->dentry;
  3984. struct cgroup_subsys *ss;
  3985. mutex_lock(&cgroup_mutex);
  3986. /*
  3987. * css_tryget() is guaranteed to fail now. Tell subsystems to
  3988. * initate destruction.
  3989. */
  3990. for_each_root_subsys(cgrp->root, ss)
  3991. offline_css(ss, cgrp);
  3992. /*
  3993. * Put the css refs from cgroup_destroy_locked(). Each css holds
  3994. * an extra reference to the cgroup's dentry and cgroup removal
  3995. * proceeds regardless of css refs. On the last put of each css,
  3996. * whenever that may be, the extra dentry ref is put so that dentry
  3997. * destruction happens only after all css's are released.
  3998. */
  3999. for_each_root_subsys(cgrp->root, ss)
  4000. css_put(cgrp->subsys[ss->subsys_id]);
  4001. /* delete this cgroup from parent->children */
  4002. list_del_rcu(&cgrp->sibling);
  4003. /*
  4004. * We should remove the cgroup object from idr before its grace
  4005. * period starts, so we won't be looking up a cgroup while the
  4006. * cgroup is being freed.
  4007. */
  4008. idr_remove(&cgrp->root->cgroup_idr, cgrp->id);
  4009. cgrp->id = -1;
  4010. dput(d);
  4011. set_bit(CGRP_RELEASABLE, &parent->flags);
  4012. check_for_release(parent);
  4013. mutex_unlock(&cgroup_mutex);
  4014. }
  4015. static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry)
  4016. {
  4017. int ret;
  4018. mutex_lock(&cgroup_mutex);
  4019. ret = cgroup_destroy_locked(dentry->d_fsdata);
  4020. mutex_unlock(&cgroup_mutex);
  4021. return ret;
  4022. }
  4023. static void __init_or_module cgroup_init_cftsets(struct cgroup_subsys *ss)
  4024. {
  4025. INIT_LIST_HEAD(&ss->cftsets);
  4026. /*
  4027. * base_cftset is embedded in subsys itself, no need to worry about
  4028. * deregistration.
  4029. */
  4030. if (ss->base_cftypes) {
  4031. ss->base_cftset.cfts = ss->base_cftypes;
  4032. list_add_tail(&ss->base_cftset.node, &ss->cftsets);
  4033. }
  4034. }
  4035. static void __init cgroup_init_subsys(struct cgroup_subsys *ss)
  4036. {
  4037. struct cgroup_subsys_state *css;
  4038. printk(KERN_INFO "Initializing cgroup subsys %s\n", ss->name);
  4039. mutex_lock(&cgroup_mutex);
  4040. /* init base cftset */
  4041. cgroup_init_cftsets(ss);
  4042. /* Create the top cgroup state for this subsystem */
  4043. list_add(&ss->sibling, &cgroup_dummy_root.subsys_list);
  4044. ss->root = &cgroup_dummy_root;
  4045. css = ss->css_alloc(cgroup_dummy_top);
  4046. /* We don't handle early failures gracefully */
  4047. BUG_ON(IS_ERR(css));
  4048. init_cgroup_css(css, ss, cgroup_dummy_top);
  4049. /* Update the init_css_set to contain a subsys
  4050. * pointer to this state - since the subsystem is
  4051. * newly registered, all tasks and hence the
  4052. * init_css_set is in the subsystem's top cgroup. */
  4053. init_css_set.subsys[ss->subsys_id] = css;
  4054. need_forkexit_callback |= ss->fork || ss->exit;
  4055. /* At system boot, before all subsystems have been
  4056. * registered, no tasks have been forked, so we don't
  4057. * need to invoke fork callbacks here. */
  4058. BUG_ON(!list_empty(&init_task.tasks));
  4059. BUG_ON(online_css(ss, cgroup_dummy_top));
  4060. mutex_unlock(&cgroup_mutex);
  4061. /* this function shouldn't be used with modular subsystems, since they
  4062. * need to register a subsys_id, among other things */
  4063. BUG_ON(ss->module);
  4064. }
  4065. /**
  4066. * cgroup_load_subsys: load and register a modular subsystem at runtime
  4067. * @ss: the subsystem to load
  4068. *
  4069. * This function should be called in a modular subsystem's initcall. If the
  4070. * subsystem is built as a module, it will be assigned a new subsys_id and set
  4071. * up for use. If the subsystem is built-in anyway, work is delegated to the
  4072. * simpler cgroup_init_subsys.
  4073. */
  4074. int __init_or_module cgroup_load_subsys(struct cgroup_subsys *ss)
  4075. {
  4076. struct cgroup_subsys_state *css;
  4077. int i, ret;
  4078. struct hlist_node *tmp;
  4079. struct css_set *cset;
  4080. unsigned long key;
  4081. /* check name and function validity */
  4082. if (ss->name == NULL || strlen(ss->name) > MAX_CGROUP_TYPE_NAMELEN ||
  4083. ss->css_alloc == NULL || ss->css_free == NULL)
  4084. return -EINVAL;
  4085. /*
  4086. * we don't support callbacks in modular subsystems. this check is
  4087. * before the ss->module check for consistency; a subsystem that could
  4088. * be a module should still have no callbacks even if the user isn't
  4089. * compiling it as one.
  4090. */
  4091. if (ss->fork || ss->exit)
  4092. return -EINVAL;
  4093. /*
  4094. * an optionally modular subsystem is built-in: we want to do nothing,
  4095. * since cgroup_init_subsys will have already taken care of it.
  4096. */
  4097. if (ss->module == NULL) {
  4098. /* a sanity check */
  4099. BUG_ON(cgroup_subsys[ss->subsys_id] != ss);
  4100. return 0;
  4101. }
  4102. /* init base cftset */
  4103. cgroup_init_cftsets(ss);
  4104. mutex_lock(&cgroup_mutex);
  4105. cgroup_subsys[ss->subsys_id] = ss;
  4106. /*
  4107. * no ss->css_alloc seems to need anything important in the ss
  4108. * struct, so this can happen first (i.e. before the dummy root
  4109. * attachment).
  4110. */
  4111. css = ss->css_alloc(cgroup_dummy_top);
  4112. if (IS_ERR(css)) {
  4113. /* failure case - need to deassign the cgroup_subsys[] slot. */
  4114. cgroup_subsys[ss->subsys_id] = NULL;
  4115. mutex_unlock(&cgroup_mutex);
  4116. return PTR_ERR(css);
  4117. }
  4118. list_add(&ss->sibling, &cgroup_dummy_root.subsys_list);
  4119. ss->root = &cgroup_dummy_root;
  4120. /* our new subsystem will be attached to the dummy hierarchy. */
  4121. init_cgroup_css(css, ss, cgroup_dummy_top);
  4122. /* init_idr must be after init_cgroup_css because it sets css->id. */
  4123. if (ss->use_id) {
  4124. ret = cgroup_init_idr(ss, css);
  4125. if (ret)
  4126. goto err_unload;
  4127. }
  4128. /*
  4129. * Now we need to entangle the css into the existing css_sets. unlike
  4130. * in cgroup_init_subsys, there are now multiple css_sets, so each one
  4131. * will need a new pointer to it; done by iterating the css_set_table.
  4132. * furthermore, modifying the existing css_sets will corrupt the hash
  4133. * table state, so each changed css_set will need its hash recomputed.
  4134. * this is all done under the css_set_lock.
  4135. */
  4136. write_lock(&css_set_lock);
  4137. hash_for_each_safe(css_set_table, i, tmp, cset, hlist) {
  4138. /* skip entries that we already rehashed */
  4139. if (cset->subsys[ss->subsys_id])
  4140. continue;
  4141. /* remove existing entry */
  4142. hash_del(&cset->hlist);
  4143. /* set new value */
  4144. cset->subsys[ss->subsys_id] = css;
  4145. /* recompute hash and restore entry */
  4146. key = css_set_hash(cset->subsys);
  4147. hash_add(css_set_table, &cset->hlist, key);
  4148. }
  4149. write_unlock(&css_set_lock);
  4150. ret = online_css(ss, cgroup_dummy_top);
  4151. if (ret)
  4152. goto err_unload;
  4153. /* success! */
  4154. mutex_unlock(&cgroup_mutex);
  4155. return 0;
  4156. err_unload:
  4157. mutex_unlock(&cgroup_mutex);
  4158. /* @ss can't be mounted here as try_module_get() would fail */
  4159. cgroup_unload_subsys(ss);
  4160. return ret;
  4161. }
  4162. EXPORT_SYMBOL_GPL(cgroup_load_subsys);
  4163. /**
  4164. * cgroup_unload_subsys: unload a modular subsystem
  4165. * @ss: the subsystem to unload
  4166. *
  4167. * This function should be called in a modular subsystem's exitcall. When this
  4168. * function is invoked, the refcount on the subsystem's module will be 0, so
  4169. * the subsystem will not be attached to any hierarchy.
  4170. */
  4171. void cgroup_unload_subsys(struct cgroup_subsys *ss)
  4172. {
  4173. struct cgrp_cset_link *link;
  4174. BUG_ON(ss->module == NULL);
  4175. /*
  4176. * we shouldn't be called if the subsystem is in use, and the use of
  4177. * try_module_get() in rebind_subsystems() should ensure that it
  4178. * doesn't start being used while we're killing it off.
  4179. */
  4180. BUG_ON(ss->root != &cgroup_dummy_root);
  4181. mutex_lock(&cgroup_mutex);
  4182. offline_css(ss, cgroup_dummy_top);
  4183. if (ss->use_id)
  4184. idr_destroy(&ss->idr);
  4185. /* deassign the subsys_id */
  4186. cgroup_subsys[ss->subsys_id] = NULL;
  4187. /* remove subsystem from the dummy root's list of subsystems */
  4188. list_del_init(&ss->sibling);
  4189. /*
  4190. * disentangle the css from all css_sets attached to the dummy
  4191. * top. as in loading, we need to pay our respects to the hashtable
  4192. * gods.
  4193. */
  4194. write_lock(&css_set_lock);
  4195. list_for_each_entry(link, &cgroup_dummy_top->cset_links, cset_link) {
  4196. struct css_set *cset = link->cset;
  4197. unsigned long key;
  4198. hash_del(&cset->hlist);
  4199. cset->subsys[ss->subsys_id] = NULL;
  4200. key = css_set_hash(cset->subsys);
  4201. hash_add(css_set_table, &cset->hlist, key);
  4202. }
  4203. write_unlock(&css_set_lock);
  4204. /*
  4205. * remove subsystem's css from the cgroup_dummy_top and free it -
  4206. * need to free before marking as null because ss->css_free needs
  4207. * the cgrp->subsys pointer to find their state. note that this
  4208. * also takes care of freeing the css_id.
  4209. */
  4210. ss->css_free(cgroup_dummy_top);
  4211. cgroup_dummy_top->subsys[ss->subsys_id] = NULL;
  4212. mutex_unlock(&cgroup_mutex);
  4213. }
  4214. EXPORT_SYMBOL_GPL(cgroup_unload_subsys);
  4215. /**
  4216. * cgroup_init_early - cgroup initialization at system boot
  4217. *
  4218. * Initialize cgroups at system boot, and initialize any
  4219. * subsystems that request early init.
  4220. */
  4221. int __init cgroup_init_early(void)
  4222. {
  4223. struct cgroup_subsys *ss;
  4224. int i;
  4225. atomic_set(&init_css_set.refcount, 1);
  4226. INIT_LIST_HEAD(&init_css_set.cgrp_links);
  4227. INIT_LIST_HEAD(&init_css_set.tasks);
  4228. INIT_HLIST_NODE(&init_css_set.hlist);
  4229. css_set_count = 1;
  4230. init_cgroup_root(&cgroup_dummy_root);
  4231. cgroup_root_count = 1;
  4232. RCU_INIT_POINTER(init_task.cgroups, &init_css_set);
  4233. init_cgrp_cset_link.cset = &init_css_set;
  4234. init_cgrp_cset_link.cgrp = cgroup_dummy_top;
  4235. list_add(&init_cgrp_cset_link.cset_link, &cgroup_dummy_top->cset_links);
  4236. list_add(&init_cgrp_cset_link.cgrp_link, &init_css_set.cgrp_links);
  4237. /* at bootup time, we don't worry about modular subsystems */
  4238. for_each_builtin_subsys(ss, i) {
  4239. BUG_ON(!ss->name);
  4240. BUG_ON(strlen(ss->name) > MAX_CGROUP_TYPE_NAMELEN);
  4241. BUG_ON(!ss->css_alloc);
  4242. BUG_ON(!ss->css_free);
  4243. if (ss->subsys_id != i) {
  4244. printk(KERN_ERR "cgroup: Subsys %s id == %d\n",
  4245. ss->name, ss->subsys_id);
  4246. BUG();
  4247. }
  4248. if (ss->early_init)
  4249. cgroup_init_subsys(ss);
  4250. }
  4251. return 0;
  4252. }
  4253. /**
  4254. * cgroup_init - cgroup initialization
  4255. *
  4256. * Register cgroup filesystem and /proc file, and initialize
  4257. * any subsystems that didn't request early init.
  4258. */
  4259. int __init cgroup_init(void)
  4260. {
  4261. struct cgroup_subsys *ss;
  4262. unsigned long key;
  4263. int i, err;
  4264. err = bdi_init(&cgroup_backing_dev_info);
  4265. if (err)
  4266. return err;
  4267. for_each_builtin_subsys(ss, i) {
  4268. if (!ss->early_init)
  4269. cgroup_init_subsys(ss);
  4270. if (ss->use_id)
  4271. cgroup_init_idr(ss, init_css_set.subsys[ss->subsys_id]);
  4272. }
  4273. /* allocate id for the dummy hierarchy */
  4274. mutex_lock(&cgroup_mutex);
  4275. mutex_lock(&cgroup_root_mutex);
  4276. /* Add init_css_set to the hash table */
  4277. key = css_set_hash(init_css_set.subsys);
  4278. hash_add(css_set_table, &init_css_set.hlist, key);
  4279. BUG_ON(cgroup_init_root_id(&cgroup_dummy_root, 0, 1));
  4280. err = idr_alloc(&cgroup_dummy_root.cgroup_idr, cgroup_dummy_top,
  4281. 0, 1, GFP_KERNEL);
  4282. BUG_ON(err < 0);
  4283. mutex_unlock(&cgroup_root_mutex);
  4284. mutex_unlock(&cgroup_mutex);
  4285. cgroup_kobj = kobject_create_and_add("cgroup", fs_kobj);
  4286. if (!cgroup_kobj) {
  4287. err = -ENOMEM;
  4288. goto out;
  4289. }
  4290. err = register_filesystem(&cgroup_fs_type);
  4291. if (err < 0) {
  4292. kobject_put(cgroup_kobj);
  4293. goto out;
  4294. }
  4295. proc_create("cgroups", 0, NULL, &proc_cgroupstats_operations);
  4296. out:
  4297. if (err)
  4298. bdi_destroy(&cgroup_backing_dev_info);
  4299. return err;
  4300. }
  4301. /*
  4302. * proc_cgroup_show()
  4303. * - Print task's cgroup paths into seq_file, one line for each hierarchy
  4304. * - Used for /proc/<pid>/cgroup.
  4305. * - No need to task_lock(tsk) on this tsk->cgroup reference, as it
  4306. * doesn't really matter if tsk->cgroup changes after we read it,
  4307. * and we take cgroup_mutex, keeping cgroup_attach_task() from changing it
  4308. * anyway. No need to check that tsk->cgroup != NULL, thanks to
  4309. * the_top_cgroup_hack in cgroup_exit(), which sets an exiting tasks
  4310. * cgroup to top_cgroup.
  4311. */
  4312. /* TODO: Use a proper seq_file iterator */
  4313. int proc_cgroup_show(struct seq_file *m, void *v)
  4314. {
  4315. struct pid *pid;
  4316. struct task_struct *tsk;
  4317. char *buf;
  4318. int retval;
  4319. struct cgroupfs_root *root;
  4320. retval = -ENOMEM;
  4321. buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
  4322. if (!buf)
  4323. goto out;
  4324. retval = -ESRCH;
  4325. pid = m->private;
  4326. tsk = get_pid_task(pid, PIDTYPE_PID);
  4327. if (!tsk)
  4328. goto out_free;
  4329. retval = 0;
  4330. mutex_lock(&cgroup_mutex);
  4331. for_each_active_root(root) {
  4332. struct cgroup_subsys *ss;
  4333. struct cgroup *cgrp;
  4334. int count = 0;
  4335. seq_printf(m, "%d:", root->hierarchy_id);
  4336. for_each_root_subsys(root, ss)
  4337. seq_printf(m, "%s%s", count++ ? "," : "", ss->name);
  4338. if (strlen(root->name))
  4339. seq_printf(m, "%sname=%s", count ? "," : "",
  4340. root->name);
  4341. seq_putc(m, ':');
  4342. cgrp = task_cgroup_from_root(tsk, root);
  4343. retval = cgroup_path(cgrp, buf, PAGE_SIZE);
  4344. if (retval < 0)
  4345. goto out_unlock;
  4346. seq_puts(m, buf);
  4347. seq_putc(m, '\n');
  4348. }
  4349. out_unlock:
  4350. mutex_unlock(&cgroup_mutex);
  4351. put_task_struct(tsk);
  4352. out_free:
  4353. kfree(buf);
  4354. out:
  4355. return retval;
  4356. }
  4357. /* Display information about each subsystem and each hierarchy */
  4358. static int proc_cgroupstats_show(struct seq_file *m, void *v)
  4359. {
  4360. struct cgroup_subsys *ss;
  4361. int i;
  4362. seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
  4363. /*
  4364. * ideally we don't want subsystems moving around while we do this.
  4365. * cgroup_mutex is also necessary to guarantee an atomic snapshot of
  4366. * subsys/hierarchy state.
  4367. */
  4368. mutex_lock(&cgroup_mutex);
  4369. for_each_subsys(ss, i)
  4370. seq_printf(m, "%s\t%d\t%d\t%d\n",
  4371. ss->name, ss->root->hierarchy_id,
  4372. ss->root->number_of_cgroups, !ss->disabled);
  4373. mutex_unlock(&cgroup_mutex);
  4374. return 0;
  4375. }
  4376. static int cgroupstats_open(struct inode *inode, struct file *file)
  4377. {
  4378. return single_open(file, proc_cgroupstats_show, NULL);
  4379. }
  4380. static const struct file_operations proc_cgroupstats_operations = {
  4381. .open = cgroupstats_open,
  4382. .read = seq_read,
  4383. .llseek = seq_lseek,
  4384. .release = single_release,
  4385. };
  4386. /**
  4387. * cgroup_fork - attach newly forked task to its parents cgroup.
  4388. * @child: pointer to task_struct of forking parent process.
  4389. *
  4390. * Description: A task inherits its parent's cgroup at fork().
  4391. *
  4392. * A pointer to the shared css_set was automatically copied in
  4393. * fork.c by dup_task_struct(). However, we ignore that copy, since
  4394. * it was not made under the protection of RCU or cgroup_mutex, so
  4395. * might no longer be a valid cgroup pointer. cgroup_attach_task() might
  4396. * have already changed current->cgroups, allowing the previously
  4397. * referenced cgroup group to be removed and freed.
  4398. *
  4399. * At the point that cgroup_fork() is called, 'current' is the parent
  4400. * task, and the passed argument 'child' points to the child task.
  4401. */
  4402. void cgroup_fork(struct task_struct *child)
  4403. {
  4404. task_lock(current);
  4405. get_css_set(task_css_set(current));
  4406. child->cgroups = current->cgroups;
  4407. task_unlock(current);
  4408. INIT_LIST_HEAD(&child->cg_list);
  4409. }
  4410. /**
  4411. * cgroup_post_fork - called on a new task after adding it to the task list
  4412. * @child: the task in question
  4413. *
  4414. * Adds the task to the list running through its css_set if necessary and
  4415. * call the subsystem fork() callbacks. Has to be after the task is
  4416. * visible on the task list in case we race with the first call to
  4417. * cgroup_iter_start() - to guarantee that the new task ends up on its
  4418. * list.
  4419. */
  4420. void cgroup_post_fork(struct task_struct *child)
  4421. {
  4422. struct cgroup_subsys *ss;
  4423. int i;
  4424. /*
  4425. * use_task_css_set_links is set to 1 before we walk the tasklist
  4426. * under the tasklist_lock and we read it here after we added the child
  4427. * to the tasklist under the tasklist_lock as well. If the child wasn't
  4428. * yet in the tasklist when we walked through it from
  4429. * cgroup_enable_task_cg_lists(), then use_task_css_set_links value
  4430. * should be visible now due to the paired locking and barriers implied
  4431. * by LOCK/UNLOCK: it is written before the tasklist_lock unlock
  4432. * in cgroup_enable_task_cg_lists() and read here after the tasklist_lock
  4433. * lock on fork.
  4434. */
  4435. if (use_task_css_set_links) {
  4436. write_lock(&css_set_lock);
  4437. task_lock(child);
  4438. if (list_empty(&child->cg_list))
  4439. list_add(&child->cg_list, &task_css_set(child)->tasks);
  4440. task_unlock(child);
  4441. write_unlock(&css_set_lock);
  4442. }
  4443. /*
  4444. * Call ss->fork(). This must happen after @child is linked on
  4445. * css_set; otherwise, @child might change state between ->fork()
  4446. * and addition to css_set.
  4447. */
  4448. if (need_forkexit_callback) {
  4449. /*
  4450. * fork/exit callbacks are supported only for builtin
  4451. * subsystems, and the builtin section of the subsys
  4452. * array is immutable, so we don't need to lock the
  4453. * subsys array here. On the other hand, modular section
  4454. * of the array can be freed at module unload, so we
  4455. * can't touch that.
  4456. */
  4457. for_each_builtin_subsys(ss, i)
  4458. if (ss->fork)
  4459. ss->fork(child);
  4460. }
  4461. }
  4462. /**
  4463. * cgroup_exit - detach cgroup from exiting task
  4464. * @tsk: pointer to task_struct of exiting process
  4465. * @run_callback: run exit callbacks?
  4466. *
  4467. * Description: Detach cgroup from @tsk and release it.
  4468. *
  4469. * Note that cgroups marked notify_on_release force every task in
  4470. * them to take the global cgroup_mutex mutex when exiting.
  4471. * This could impact scaling on very large systems. Be reluctant to
  4472. * use notify_on_release cgroups where very high task exit scaling
  4473. * is required on large systems.
  4474. *
  4475. * the_top_cgroup_hack:
  4476. *
  4477. * Set the exiting tasks cgroup to the root cgroup (top_cgroup).
  4478. *
  4479. * We call cgroup_exit() while the task is still competent to
  4480. * handle notify_on_release(), then leave the task attached to the
  4481. * root cgroup in each hierarchy for the remainder of its exit.
  4482. *
  4483. * To do this properly, we would increment the reference count on
  4484. * top_cgroup, and near the very end of the kernel/exit.c do_exit()
  4485. * code we would add a second cgroup function call, to drop that
  4486. * reference. This would just create an unnecessary hot spot on
  4487. * the top_cgroup reference count, to no avail.
  4488. *
  4489. * Normally, holding a reference to a cgroup without bumping its
  4490. * count is unsafe. The cgroup could go away, or someone could
  4491. * attach us to a different cgroup, decrementing the count on
  4492. * the first cgroup that we never incremented. But in this case,
  4493. * top_cgroup isn't going away, and either task has PF_EXITING set,
  4494. * which wards off any cgroup_attach_task() attempts, or task is a failed
  4495. * fork, never visible to cgroup_attach_task.
  4496. */
  4497. void cgroup_exit(struct task_struct *tsk, int run_callbacks)
  4498. {
  4499. struct cgroup_subsys *ss;
  4500. struct css_set *cset;
  4501. int i;
  4502. /*
  4503. * Unlink from the css_set task list if necessary.
  4504. * Optimistically check cg_list before taking
  4505. * css_set_lock
  4506. */
  4507. if (!list_empty(&tsk->cg_list)) {
  4508. write_lock(&css_set_lock);
  4509. if (!list_empty(&tsk->cg_list))
  4510. list_del_init(&tsk->cg_list);
  4511. write_unlock(&css_set_lock);
  4512. }
  4513. /* Reassign the task to the init_css_set. */
  4514. task_lock(tsk);
  4515. cset = task_css_set(tsk);
  4516. RCU_INIT_POINTER(tsk->cgroups, &init_css_set);
  4517. if (run_callbacks && need_forkexit_callback) {
  4518. /*
  4519. * fork/exit callbacks are supported only for builtin
  4520. * subsystems, see cgroup_post_fork() for details.
  4521. */
  4522. for_each_builtin_subsys(ss, i) {
  4523. if (ss->exit) {
  4524. struct cgroup *old_cgrp = cset->subsys[i]->cgroup;
  4525. struct cgroup *cgrp = task_cgroup(tsk, i);
  4526. ss->exit(cgrp, old_cgrp, tsk);
  4527. }
  4528. }
  4529. }
  4530. task_unlock(tsk);
  4531. put_css_set_taskexit(cset);
  4532. }
  4533. static void check_for_release(struct cgroup *cgrp)
  4534. {
  4535. if (cgroup_is_releasable(cgrp) &&
  4536. list_empty(&cgrp->cset_links) && list_empty(&cgrp->children)) {
  4537. /*
  4538. * Control Group is currently removeable. If it's not
  4539. * already queued for a userspace notification, queue
  4540. * it now
  4541. */
  4542. int need_schedule_work = 0;
  4543. raw_spin_lock(&release_list_lock);
  4544. if (!cgroup_is_dead(cgrp) &&
  4545. list_empty(&cgrp->release_list)) {
  4546. list_add(&cgrp->release_list, &release_list);
  4547. need_schedule_work = 1;
  4548. }
  4549. raw_spin_unlock(&release_list_lock);
  4550. if (need_schedule_work)
  4551. schedule_work(&release_agent_work);
  4552. }
  4553. }
  4554. /*
  4555. * Notify userspace when a cgroup is released, by running the
  4556. * configured release agent with the name of the cgroup (path
  4557. * relative to the root of cgroup file system) as the argument.
  4558. *
  4559. * Most likely, this user command will try to rmdir this cgroup.
  4560. *
  4561. * This races with the possibility that some other task will be
  4562. * attached to this cgroup before it is removed, or that some other
  4563. * user task will 'mkdir' a child cgroup of this cgroup. That's ok.
  4564. * The presumed 'rmdir' will fail quietly if this cgroup is no longer
  4565. * unused, and this cgroup will be reprieved from its death sentence,
  4566. * to continue to serve a useful existence. Next time it's released,
  4567. * we will get notified again, if it still has 'notify_on_release' set.
  4568. *
  4569. * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
  4570. * means only wait until the task is successfully execve()'d. The
  4571. * separate release agent task is forked by call_usermodehelper(),
  4572. * then control in this thread returns here, without waiting for the
  4573. * release agent task. We don't bother to wait because the caller of
  4574. * this routine has no use for the exit status of the release agent
  4575. * task, so no sense holding our caller up for that.
  4576. */
  4577. static void cgroup_release_agent(struct work_struct *work)
  4578. {
  4579. BUG_ON(work != &release_agent_work);
  4580. mutex_lock(&cgroup_mutex);
  4581. raw_spin_lock(&release_list_lock);
  4582. while (!list_empty(&release_list)) {
  4583. char *argv[3], *envp[3];
  4584. int i;
  4585. char *pathbuf = NULL, *agentbuf = NULL;
  4586. struct cgroup *cgrp = list_entry(release_list.next,
  4587. struct cgroup,
  4588. release_list);
  4589. list_del_init(&cgrp->release_list);
  4590. raw_spin_unlock(&release_list_lock);
  4591. pathbuf = kmalloc(PAGE_SIZE, GFP_KERNEL);
  4592. if (!pathbuf)
  4593. goto continue_free;
  4594. if (cgroup_path(cgrp, pathbuf, PAGE_SIZE) < 0)
  4595. goto continue_free;
  4596. agentbuf = kstrdup(cgrp->root->release_agent_path, GFP_KERNEL);
  4597. if (!agentbuf)
  4598. goto continue_free;
  4599. i = 0;
  4600. argv[i++] = agentbuf;
  4601. argv[i++] = pathbuf;
  4602. argv[i] = NULL;
  4603. i = 0;
  4604. /* minimal command environment */
  4605. envp[i++] = "HOME=/";
  4606. envp[i++] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
  4607. envp[i] = NULL;
  4608. /* Drop the lock while we invoke the usermode helper,
  4609. * since the exec could involve hitting disk and hence
  4610. * be a slow process */
  4611. mutex_unlock(&cgroup_mutex);
  4612. call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
  4613. mutex_lock(&cgroup_mutex);
  4614. continue_free:
  4615. kfree(pathbuf);
  4616. kfree(agentbuf);
  4617. raw_spin_lock(&release_list_lock);
  4618. }
  4619. raw_spin_unlock(&release_list_lock);
  4620. mutex_unlock(&cgroup_mutex);
  4621. }
  4622. static int __init cgroup_disable(char *str)
  4623. {
  4624. struct cgroup_subsys *ss;
  4625. char *token;
  4626. int i;
  4627. while ((token = strsep(&str, ",")) != NULL) {
  4628. if (!*token)
  4629. continue;
  4630. /*
  4631. * cgroup_disable, being at boot time, can't know about
  4632. * module subsystems, so we don't worry about them.
  4633. */
  4634. for_each_builtin_subsys(ss, i) {
  4635. if (!strcmp(token, ss->name)) {
  4636. ss->disabled = 1;
  4637. printk(KERN_INFO "Disabling %s control group"
  4638. " subsystem\n", ss->name);
  4639. break;
  4640. }
  4641. }
  4642. }
  4643. return 1;
  4644. }
  4645. __setup("cgroup_disable=", cgroup_disable);
  4646. /*
  4647. * Functons for CSS ID.
  4648. */
  4649. /* to get ID other than 0, this should be called when !cgroup_is_dead() */
  4650. unsigned short css_id(struct cgroup_subsys_state *css)
  4651. {
  4652. struct css_id *cssid;
  4653. /*
  4654. * This css_id() can return correct value when somone has refcnt
  4655. * on this or this is under rcu_read_lock(). Once css->id is allocated,
  4656. * it's unchanged until freed.
  4657. */
  4658. cssid = rcu_dereference_raw(css->id);
  4659. if (cssid)
  4660. return cssid->id;
  4661. return 0;
  4662. }
  4663. EXPORT_SYMBOL_GPL(css_id);
  4664. /**
  4665. * css_is_ancestor - test "root" css is an ancestor of "child"
  4666. * @child: the css to be tested.
  4667. * @root: the css supporsed to be an ancestor of the child.
  4668. *
  4669. * Returns true if "root" is an ancestor of "child" in its hierarchy. Because
  4670. * this function reads css->id, the caller must hold rcu_read_lock().
  4671. * But, considering usual usage, the csses should be valid objects after test.
  4672. * Assuming that the caller will do some action to the child if this returns
  4673. * returns true, the caller must take "child";s reference count.
  4674. * If "child" is valid object and this returns true, "root" is valid, too.
  4675. */
  4676. bool css_is_ancestor(struct cgroup_subsys_state *child,
  4677. const struct cgroup_subsys_state *root)
  4678. {
  4679. struct css_id *child_id;
  4680. struct css_id *root_id;
  4681. child_id = rcu_dereference(child->id);
  4682. if (!child_id)
  4683. return false;
  4684. root_id = rcu_dereference(root->id);
  4685. if (!root_id)
  4686. return false;
  4687. if (child_id->depth < root_id->depth)
  4688. return false;
  4689. if (child_id->stack[root_id->depth] != root_id->id)
  4690. return false;
  4691. return true;
  4692. }
  4693. void free_css_id(struct cgroup_subsys *ss, struct cgroup_subsys_state *css)
  4694. {
  4695. struct css_id *id = rcu_dereference_protected(css->id, true);
  4696. /* When this is called before css_id initialization, id can be NULL */
  4697. if (!id)
  4698. return;
  4699. BUG_ON(!ss->use_id);
  4700. rcu_assign_pointer(id->css, NULL);
  4701. rcu_assign_pointer(css->id, NULL);
  4702. spin_lock(&ss->id_lock);
  4703. idr_remove(&ss->idr, id->id);
  4704. spin_unlock(&ss->id_lock);
  4705. kfree_rcu(id, rcu_head);
  4706. }
  4707. EXPORT_SYMBOL_GPL(free_css_id);
  4708. /*
  4709. * This is called by init or create(). Then, calls to this function are
  4710. * always serialized (By cgroup_mutex() at create()).
  4711. */
  4712. static struct css_id *get_new_cssid(struct cgroup_subsys *ss, int depth)
  4713. {
  4714. struct css_id *newid;
  4715. int ret, size;
  4716. BUG_ON(!ss->use_id);
  4717. size = sizeof(*newid) + sizeof(unsigned short) * (depth + 1);
  4718. newid = kzalloc(size, GFP_KERNEL);
  4719. if (!newid)
  4720. return ERR_PTR(-ENOMEM);
  4721. idr_preload(GFP_KERNEL);
  4722. spin_lock(&ss->id_lock);
  4723. /* Don't use 0. allocates an ID of 1-65535 */
  4724. ret = idr_alloc(&ss->idr, newid, 1, CSS_ID_MAX + 1, GFP_NOWAIT);
  4725. spin_unlock(&ss->id_lock);
  4726. idr_preload_end();
  4727. /* Returns error when there are no free spaces for new ID.*/
  4728. if (ret < 0)
  4729. goto err_out;
  4730. newid->id = ret;
  4731. newid->depth = depth;
  4732. return newid;
  4733. err_out:
  4734. kfree(newid);
  4735. return ERR_PTR(ret);
  4736. }
  4737. static int __init_or_module cgroup_init_idr(struct cgroup_subsys *ss,
  4738. struct cgroup_subsys_state *rootcss)
  4739. {
  4740. struct css_id *newid;
  4741. spin_lock_init(&ss->id_lock);
  4742. idr_init(&ss->idr);
  4743. newid = get_new_cssid(ss, 0);
  4744. if (IS_ERR(newid))
  4745. return PTR_ERR(newid);
  4746. newid->stack[0] = newid->id;
  4747. RCU_INIT_POINTER(newid->css, rootcss);
  4748. RCU_INIT_POINTER(rootcss->id, newid);
  4749. return 0;
  4750. }
  4751. static int alloc_css_id(struct cgroup_subsys *ss, struct cgroup *parent,
  4752. struct cgroup *child)
  4753. {
  4754. int subsys_id, i, depth = 0;
  4755. struct cgroup_subsys_state *parent_css, *child_css;
  4756. struct css_id *child_id, *parent_id;
  4757. subsys_id = ss->subsys_id;
  4758. parent_css = parent->subsys[subsys_id];
  4759. child_css = child->subsys[subsys_id];
  4760. parent_id = rcu_dereference_protected(parent_css->id, true);
  4761. depth = parent_id->depth + 1;
  4762. child_id = get_new_cssid(ss, depth);
  4763. if (IS_ERR(child_id))
  4764. return PTR_ERR(child_id);
  4765. for (i = 0; i < depth; i++)
  4766. child_id->stack[i] = parent_id->stack[i];
  4767. child_id->stack[depth] = child_id->id;
  4768. /*
  4769. * child_id->css pointer will be set after this cgroup is available
  4770. * see cgroup_populate_dir()
  4771. */
  4772. rcu_assign_pointer(child_css->id, child_id);
  4773. return 0;
  4774. }
  4775. /**
  4776. * css_lookup - lookup css by id
  4777. * @ss: cgroup subsys to be looked into.
  4778. * @id: the id
  4779. *
  4780. * Returns pointer to cgroup_subsys_state if there is valid one with id.
  4781. * NULL if not. Should be called under rcu_read_lock()
  4782. */
  4783. struct cgroup_subsys_state *css_lookup(struct cgroup_subsys *ss, int id)
  4784. {
  4785. struct css_id *cssid = NULL;
  4786. BUG_ON(!ss->use_id);
  4787. cssid = idr_find(&ss->idr, id);
  4788. if (unlikely(!cssid))
  4789. return NULL;
  4790. return rcu_dereference(cssid->css);
  4791. }
  4792. EXPORT_SYMBOL_GPL(css_lookup);
  4793. /*
  4794. * get corresponding css from file open on cgroupfs directory
  4795. */
  4796. struct cgroup_subsys_state *cgroup_css_from_dir(struct file *f, int id)
  4797. {
  4798. struct cgroup *cgrp;
  4799. struct inode *inode;
  4800. struct cgroup_subsys_state *css;
  4801. inode = file_inode(f);
  4802. /* check in cgroup filesystem dir */
  4803. if (inode->i_op != &cgroup_dir_inode_operations)
  4804. return ERR_PTR(-EBADF);
  4805. if (id < 0 || id >= CGROUP_SUBSYS_COUNT)
  4806. return ERR_PTR(-EINVAL);
  4807. /* get cgroup */
  4808. cgrp = __d_cgrp(f->f_dentry);
  4809. css = cgrp->subsys[id];
  4810. return css ? css : ERR_PTR(-ENOENT);
  4811. }
  4812. #ifdef CONFIG_CGROUP_DEBUG
  4813. static struct cgroup_subsys_state *debug_css_alloc(struct cgroup *cgrp)
  4814. {
  4815. struct cgroup_subsys_state *css = kzalloc(sizeof(*css), GFP_KERNEL);
  4816. if (!css)
  4817. return ERR_PTR(-ENOMEM);
  4818. return css;
  4819. }
  4820. static void debug_css_free(struct cgroup *cgrp)
  4821. {
  4822. kfree(cgrp->subsys[debug_subsys_id]);
  4823. }
  4824. static u64 debug_taskcount_read(struct cgroup *cgrp, struct cftype *cft)
  4825. {
  4826. return cgroup_task_count(cgrp);
  4827. }
  4828. static u64 current_css_set_read(struct cgroup *cgrp, struct cftype *cft)
  4829. {
  4830. return (u64)(unsigned long)current->cgroups;
  4831. }
  4832. static u64 current_css_set_refcount_read(struct cgroup *cgrp,
  4833. struct cftype *cft)
  4834. {
  4835. u64 count;
  4836. rcu_read_lock();
  4837. count = atomic_read(&task_css_set(current)->refcount);
  4838. rcu_read_unlock();
  4839. return count;
  4840. }
  4841. static int current_css_set_cg_links_read(struct cgroup *cgrp,
  4842. struct cftype *cft,
  4843. struct seq_file *seq)
  4844. {
  4845. struct cgrp_cset_link *link;
  4846. struct css_set *cset;
  4847. read_lock(&css_set_lock);
  4848. rcu_read_lock();
  4849. cset = rcu_dereference(current->cgroups);
  4850. list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
  4851. struct cgroup *c = link->cgrp;
  4852. const char *name;
  4853. if (c->dentry)
  4854. name = c->dentry->d_name.name;
  4855. else
  4856. name = "?";
  4857. seq_printf(seq, "Root %d group %s\n",
  4858. c->root->hierarchy_id, name);
  4859. }
  4860. rcu_read_unlock();
  4861. read_unlock(&css_set_lock);
  4862. return 0;
  4863. }
  4864. #define MAX_TASKS_SHOWN_PER_CSS 25
  4865. static int cgroup_css_links_read(struct cgroup *cgrp,
  4866. struct cftype *cft,
  4867. struct seq_file *seq)
  4868. {
  4869. struct cgrp_cset_link *link;
  4870. read_lock(&css_set_lock);
  4871. list_for_each_entry(link, &cgrp->cset_links, cset_link) {
  4872. struct css_set *cset = link->cset;
  4873. struct task_struct *task;
  4874. int count = 0;
  4875. seq_printf(seq, "css_set %p\n", cset);
  4876. list_for_each_entry(task, &cset->tasks, cg_list) {
  4877. if (count++ > MAX_TASKS_SHOWN_PER_CSS) {
  4878. seq_puts(seq, " ...\n");
  4879. break;
  4880. } else {
  4881. seq_printf(seq, " task %d\n",
  4882. task_pid_vnr(task));
  4883. }
  4884. }
  4885. }
  4886. read_unlock(&css_set_lock);
  4887. return 0;
  4888. }
  4889. static u64 releasable_read(struct cgroup *cgrp, struct cftype *cft)
  4890. {
  4891. return test_bit(CGRP_RELEASABLE, &cgrp->flags);
  4892. }
  4893. static struct cftype debug_files[] = {
  4894. {
  4895. .name = "taskcount",
  4896. .read_u64 = debug_taskcount_read,
  4897. },
  4898. {
  4899. .name = "current_css_set",
  4900. .read_u64 = current_css_set_read,
  4901. },
  4902. {
  4903. .name = "current_css_set_refcount",
  4904. .read_u64 = current_css_set_refcount_read,
  4905. },
  4906. {
  4907. .name = "current_css_set_cg_links",
  4908. .read_seq_string = current_css_set_cg_links_read,
  4909. },
  4910. {
  4911. .name = "cgroup_css_links",
  4912. .read_seq_string = cgroup_css_links_read,
  4913. },
  4914. {
  4915. .name = "releasable",
  4916. .read_u64 = releasable_read,
  4917. },
  4918. { } /* terminate */
  4919. };
  4920. struct cgroup_subsys debug_subsys = {
  4921. .name = "debug",
  4922. .css_alloc = debug_css_alloc,
  4923. .css_free = debug_css_free,
  4924. .subsys_id = debug_subsys_id,
  4925. .base_cftypes = debug_files,
  4926. };
  4927. #endif /* CONFIG_CGROUP_DEBUG */