pch_can.c 35 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333
  1. /*
  2. * Copyright (C) 1999 - 2010 Intel Corporation.
  3. * Copyright (C) 2010 OKI SEMICONDUCTOR Co., LTD.
  4. *
  5. * This program is free software; you can redistribute it and/or modify
  6. * it under the terms of the GNU General Public License as published by
  7. * the Free Software Foundation; version 2 of the License.
  8. *
  9. * This program is distributed in the hope that it will be useful,
  10. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. * GNU General Public License for more details.
  13. *
  14. * You should have received a copy of the GNU General Public License
  15. * along with this program; if not, write to the Free Software
  16. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307, USA.
  17. */
  18. #include <linux/interrupt.h>
  19. #include <linux/delay.h>
  20. #include <linux/io.h>
  21. #include <linux/module.h>
  22. #include <linux/sched.h>
  23. #include <linux/pci.h>
  24. #include <linux/init.h>
  25. #include <linux/kernel.h>
  26. #include <linux/types.h>
  27. #include <linux/errno.h>
  28. #include <linux/netdevice.h>
  29. #include <linux/skbuff.h>
  30. #include <linux/can.h>
  31. #include <linux/can/dev.h>
  32. #include <linux/can/error.h>
  33. #define PCH_ENABLE 1 /* The enable flag */
  34. #define PCH_DISABLE 0 /* The disable flag */
  35. #define PCH_CTRL_INIT BIT(0) /* The INIT bit of CANCONT register. */
  36. #define PCH_CTRL_IE BIT(1) /* The IE bit of CAN control register */
  37. #define PCH_CTRL_IE_SIE_EIE (BIT(3) | BIT(2) | BIT(1))
  38. #define PCH_CTRL_CCE BIT(6)
  39. #define PCH_CTRL_OPT BIT(7) /* The OPT bit of CANCONT register. */
  40. #define PCH_OPT_SILENT BIT(3) /* The Silent bit of CANOPT reg. */
  41. #define PCH_OPT_LBACK BIT(4) /* The LoopBack bit of CANOPT reg. */
  42. #define PCH_CMASK_RX_TX_SET 0x00f3
  43. #define PCH_CMASK_RX_TX_GET 0x0073
  44. #define PCH_CMASK_ALL 0xff
  45. #define PCH_CMASK_NEWDAT BIT(2)
  46. #define PCH_CMASK_CLRINTPND BIT(3)
  47. #define PCH_CMASK_CTRL BIT(4)
  48. #define PCH_CMASK_ARB BIT(5)
  49. #define PCH_CMASK_MASK BIT(6)
  50. #define PCH_CMASK_RDWR BIT(7)
  51. #define PCH_IF_MCONT_NEWDAT BIT(15)
  52. #define PCH_IF_MCONT_MSGLOST BIT(14)
  53. #define PCH_IF_MCONT_INTPND BIT(13)
  54. #define PCH_IF_MCONT_UMASK BIT(12)
  55. #define PCH_IF_MCONT_TXIE BIT(11)
  56. #define PCH_IF_MCONT_RXIE BIT(10)
  57. #define PCH_IF_MCONT_RMTEN BIT(9)
  58. #define PCH_IF_MCONT_TXRQXT BIT(8)
  59. #define PCH_IF_MCONT_EOB BIT(7)
  60. #define PCH_IF_MCONT_DLC (BIT(0) | BIT(1) | BIT(2) | BIT(3))
  61. #define PCH_MASK2_MDIR_MXTD (BIT(14) | BIT(15))
  62. #define PCH_ID2_DIR BIT(13)
  63. #define PCH_ID2_XTD BIT(14)
  64. #define PCH_ID_MSGVAL BIT(15)
  65. #define PCH_IF_CREQ_BUSY BIT(15)
  66. #define PCH_STATUS_INT 0x8000
  67. #define PCH_REC 0x00007f00
  68. #define PCH_TEC 0x000000ff
  69. #define PCH_TX_OK BIT(3)
  70. #define PCH_RX_OK BIT(4)
  71. #define PCH_EPASSIV BIT(5)
  72. #define PCH_EWARN BIT(6)
  73. #define PCH_BUS_OFF BIT(7)
  74. /* bit position of certain controller bits. */
  75. #define PCH_BIT_BRP 0
  76. #define PCH_BIT_SJW 6
  77. #define PCH_BIT_TSEG1 8
  78. #define PCH_BIT_TSEG2 12
  79. #define PCH_BIT_BRPE_BRPE 6
  80. #define PCH_MSK_BITT_BRP 0x3f
  81. #define PCH_MSK_BRPE_BRPE 0x3c0
  82. #define PCH_MSK_CTRL_IE_SIE_EIE 0x07
  83. #define PCH_COUNTER_LIMIT 10
  84. #define PCH_CAN_CLK 50000000 /* 50MHz */
  85. /* Define the number of message object.
  86. * PCH CAN communications are done via Message RAM.
  87. * The Message RAM consists of 32 message objects. */
  88. #define PCH_RX_OBJ_NUM 26
  89. #define PCH_TX_OBJ_NUM 6
  90. #define PCH_RX_OBJ_START 1
  91. #define PCH_RX_OBJ_END PCH_RX_OBJ_NUM
  92. #define PCH_TX_OBJ_START (PCH_RX_OBJ_END + 1)
  93. #define PCH_TX_OBJ_END (PCH_RX_OBJ_NUM + PCH_TX_OBJ_NUM)
  94. #define PCH_FIFO_THRESH 16
  95. /* TxRqst2 show status of MsgObjNo.17~32 */
  96. #define PCH_TREQ2_TX_MASK (((1 << PCH_TX_OBJ_NUM) - 1) <<\
  97. (PCH_RX_OBJ_END - 16))
  98. enum pch_ifreg {
  99. PCH_RX_IFREG,
  100. PCH_TX_IFREG,
  101. };
  102. enum pch_can_err {
  103. PCH_STUF_ERR = 1,
  104. PCH_FORM_ERR,
  105. PCH_ACK_ERR,
  106. PCH_BIT1_ERR,
  107. PCH_BIT0_ERR,
  108. PCH_CRC_ERR,
  109. PCH_LEC_ALL,
  110. };
  111. enum pch_can_mode {
  112. PCH_CAN_ENABLE,
  113. PCH_CAN_DISABLE,
  114. PCH_CAN_ALL,
  115. PCH_CAN_NONE,
  116. PCH_CAN_STOP,
  117. PCH_CAN_RUN
  118. };
  119. struct pch_can_if_regs {
  120. u32 creq;
  121. u32 cmask;
  122. u32 mask1;
  123. u32 mask2;
  124. u32 id1;
  125. u32 id2;
  126. u32 mcont;
  127. u32 data[4];
  128. u32 rsv[13];
  129. };
  130. struct pch_can_regs {
  131. u32 cont;
  132. u32 stat;
  133. u32 errc;
  134. u32 bitt;
  135. u32 intr;
  136. u32 opt;
  137. u32 brpe;
  138. u32 reserve;
  139. struct pch_can_if_regs ifregs[2]; /* [0]=if1 [1]=if2 */
  140. u32 reserve1[8];
  141. u32 treq1;
  142. u32 treq2;
  143. u32 reserve2[6];
  144. u32 data1;
  145. u32 data2;
  146. u32 reserve3[6];
  147. u32 canipend1;
  148. u32 canipend2;
  149. u32 reserve4[6];
  150. u32 canmval1;
  151. u32 canmval2;
  152. u32 reserve5[37];
  153. u32 srst;
  154. };
  155. struct pch_can_priv {
  156. struct can_priv can;
  157. unsigned int can_num;
  158. struct pci_dev *dev;
  159. int tx_enable[PCH_TX_OBJ_END];
  160. int rx_enable[PCH_TX_OBJ_END];
  161. int rx_link[PCH_TX_OBJ_END];
  162. unsigned int int_enables;
  163. unsigned int int_stat;
  164. struct net_device *ndev;
  165. unsigned int msg_obj[PCH_TX_OBJ_END];
  166. struct pch_can_regs __iomem *regs;
  167. struct napi_struct napi;
  168. unsigned int tx_obj; /* Point next Tx Obj index */
  169. unsigned int use_msi;
  170. };
  171. static struct can_bittiming_const pch_can_bittiming_const = {
  172. .name = KBUILD_MODNAME,
  173. .tseg1_min = 1,
  174. .tseg1_max = 16,
  175. .tseg2_min = 1,
  176. .tseg2_max = 8,
  177. .sjw_max = 4,
  178. .brp_min = 1,
  179. .brp_max = 1024, /* 6bit + extended 4bit */
  180. .brp_inc = 1,
  181. };
  182. static DEFINE_PCI_DEVICE_TABLE(pch_pci_tbl) = {
  183. {PCI_VENDOR_ID_INTEL, 0x8818, PCI_ANY_ID, PCI_ANY_ID,},
  184. {0,}
  185. };
  186. MODULE_DEVICE_TABLE(pci, pch_pci_tbl);
  187. static inline void pch_can_bit_set(void __iomem *addr, u32 mask)
  188. {
  189. iowrite32(ioread32(addr) | mask, addr);
  190. }
  191. static inline void pch_can_bit_clear(void __iomem *addr, u32 mask)
  192. {
  193. iowrite32(ioread32(addr) & ~mask, addr);
  194. }
  195. static void pch_can_set_run_mode(struct pch_can_priv *priv,
  196. enum pch_can_mode mode)
  197. {
  198. switch (mode) {
  199. case PCH_CAN_RUN:
  200. pch_can_bit_clear(&priv->regs->cont, PCH_CTRL_INIT);
  201. break;
  202. case PCH_CAN_STOP:
  203. pch_can_bit_set(&priv->regs->cont, PCH_CTRL_INIT);
  204. break;
  205. default:
  206. dev_err(&priv->ndev->dev, "%s -> Invalid Mode.\n", __func__);
  207. break;
  208. }
  209. }
  210. static void pch_can_set_optmode(struct pch_can_priv *priv)
  211. {
  212. u32 reg_val = ioread32(&priv->regs->opt);
  213. if (priv->can.ctrlmode & CAN_CTRLMODE_LISTENONLY)
  214. reg_val |= PCH_OPT_SILENT;
  215. if (priv->can.ctrlmode & CAN_CTRLMODE_LOOPBACK)
  216. reg_val |= PCH_OPT_LBACK;
  217. pch_can_bit_set(&priv->regs->cont, PCH_CTRL_OPT);
  218. iowrite32(reg_val, &priv->regs->opt);
  219. }
  220. static void pch_can_set_int_custom(struct pch_can_priv *priv)
  221. {
  222. /* Clearing the IE, SIE and EIE bits of Can control register. */
  223. pch_can_bit_clear(&priv->regs->cont, PCH_CTRL_IE_SIE_EIE);
  224. /* Appropriately setting them. */
  225. pch_can_bit_set(&priv->regs->cont,
  226. ((priv->int_enables & PCH_MSK_CTRL_IE_SIE_EIE) << 1));
  227. }
  228. /* This function retrieves interrupt enabled for the CAN device. */
  229. static void pch_can_get_int_enables(struct pch_can_priv *priv, u32 *enables)
  230. {
  231. /* Obtaining the status of IE, SIE and EIE interrupt bits. */
  232. *enables = ((ioread32(&priv->regs->cont) & PCH_CTRL_IE_SIE_EIE) >> 1);
  233. }
  234. static void pch_can_set_int_enables(struct pch_can_priv *priv,
  235. enum pch_can_mode interrupt_no)
  236. {
  237. switch (interrupt_no) {
  238. case PCH_CAN_ENABLE:
  239. pch_can_bit_set(&priv->regs->cont, PCH_CTRL_IE);
  240. break;
  241. case PCH_CAN_DISABLE:
  242. pch_can_bit_clear(&priv->regs->cont, PCH_CTRL_IE);
  243. break;
  244. case PCH_CAN_ALL:
  245. pch_can_bit_set(&priv->regs->cont, PCH_CTRL_IE_SIE_EIE);
  246. break;
  247. case PCH_CAN_NONE:
  248. pch_can_bit_clear(&priv->regs->cont, PCH_CTRL_IE_SIE_EIE);
  249. break;
  250. default:
  251. dev_err(&priv->ndev->dev, "Invalid interrupt number.\n");
  252. break;
  253. }
  254. }
  255. static void pch_can_check_if_busy(u32 __iomem *creq_addr, u32 num)
  256. {
  257. u32 counter = PCH_COUNTER_LIMIT;
  258. u32 ifx_creq;
  259. iowrite32(num, creq_addr);
  260. while (counter) {
  261. ifx_creq = ioread32(creq_addr) & PCH_IF_CREQ_BUSY;
  262. if (!ifx_creq)
  263. break;
  264. counter--;
  265. udelay(1);
  266. }
  267. if (!counter)
  268. pr_err("%s:IF1 BUSY Flag is set forever.\n", __func__);
  269. }
  270. static void pch_can_set_rxtx(struct pch_can_priv *priv, u32 buff_num,
  271. u32 set, enum pch_ifreg dir)
  272. {
  273. u32 ie;
  274. if (dir)
  275. ie = PCH_IF_MCONT_TXIE;
  276. else
  277. ie = PCH_IF_MCONT_RXIE;
  278. /* Reading the receive buffer data from RAM to Interface1 registers */
  279. iowrite32(PCH_CMASK_RX_TX_GET, &priv->regs->ifregs[dir].cmask);
  280. pch_can_check_if_busy(&priv->regs->ifregs[dir].creq, buff_num);
  281. /* Setting the IF1MASK1 register to access MsgVal and RxIE bits */
  282. iowrite32(PCH_CMASK_RDWR | PCH_CMASK_ARB | PCH_CMASK_CTRL,
  283. &priv->regs->ifregs[dir].cmask);
  284. if (set == PCH_ENABLE) {
  285. /* Setting the MsgVal and RxIE bits */
  286. pch_can_bit_set(&priv->regs->ifregs[dir].mcont, ie);
  287. pch_can_bit_set(&priv->regs->ifregs[dir].id2, PCH_ID_MSGVAL);
  288. } else if (set == PCH_DISABLE) {
  289. /* Resetting the MsgVal and RxIE bits */
  290. pch_can_bit_clear(&priv->regs->ifregs[dir].mcont, ie);
  291. pch_can_bit_clear(&priv->regs->ifregs[dir].id2, PCH_ID_MSGVAL);
  292. }
  293. pch_can_check_if_busy(&priv->regs->ifregs[dir].creq, buff_num);
  294. }
  295. static void pch_can_set_rx_all(struct pch_can_priv *priv, u32 set)
  296. {
  297. int i;
  298. /* Traversing to obtain the object configured as receivers. */
  299. for (i = PCH_RX_OBJ_START; i <= PCH_RX_OBJ_END; i++)
  300. pch_can_set_rxtx(priv, i, set, PCH_RX_IFREG);
  301. }
  302. static void pch_can_set_tx_all(struct pch_can_priv *priv, u32 set)
  303. {
  304. int i;
  305. /* Traversing to obtain the object configured as transmit object. */
  306. for (i = PCH_TX_OBJ_START; i <= PCH_TX_OBJ_END; i++)
  307. pch_can_set_rxtx(priv, i, set, PCH_TX_IFREG);
  308. }
  309. static u32 pch_can_get_rxtx_ir(struct pch_can_priv *priv, u32 buff_num,
  310. enum pch_ifreg dir)
  311. {
  312. u32 ie, enable;
  313. if (dir)
  314. ie = PCH_IF_MCONT_RXIE;
  315. else
  316. ie = PCH_IF_MCONT_TXIE;
  317. iowrite32(PCH_CMASK_RX_TX_GET, &priv->regs->ifregs[dir].cmask);
  318. pch_can_check_if_busy(&priv->regs->ifregs[dir].creq, buff_num);
  319. if (((ioread32(&priv->regs->ifregs[dir].id2)) & PCH_ID_MSGVAL) &&
  320. ((ioread32(&priv->regs->ifregs[dir].mcont)) & ie)) {
  321. enable = 1;
  322. } else {
  323. enable = 0;
  324. }
  325. return enable;
  326. }
  327. static int pch_can_int_pending(struct pch_can_priv *priv)
  328. {
  329. return ioread32(&priv->regs->intr) & 0xffff;
  330. }
  331. static void pch_can_set_rx_buffer_link(struct pch_can_priv *priv,
  332. u32 buffer_num, u32 set)
  333. {
  334. iowrite32(PCH_CMASK_RX_TX_GET, &priv->regs->ifregs[0].cmask);
  335. pch_can_check_if_busy(&priv->regs->ifregs[0].creq, buffer_num);
  336. iowrite32(PCH_CMASK_RDWR | PCH_CMASK_CTRL,
  337. &priv->regs->ifregs[0].cmask);
  338. if (set == PCH_ENABLE)
  339. pch_can_bit_clear(&priv->regs->ifregs[0].mcont,
  340. PCH_IF_MCONT_EOB);
  341. else
  342. pch_can_bit_set(&priv->regs->ifregs[0].mcont, PCH_IF_MCONT_EOB);
  343. pch_can_check_if_busy(&priv->regs->ifregs[0].creq, buffer_num);
  344. }
  345. static void pch_can_get_rx_buffer_link(struct pch_can_priv *priv,
  346. u32 buffer_num, u32 *link)
  347. {
  348. iowrite32(PCH_CMASK_RX_TX_GET, &priv->regs->ifregs[0].cmask);
  349. pch_can_check_if_busy(&priv->regs->ifregs[0].creq, buffer_num);
  350. if (ioread32(&priv->regs->ifregs[0].mcont) & PCH_IF_MCONT_EOB)
  351. *link = PCH_DISABLE;
  352. else
  353. *link = PCH_ENABLE;
  354. }
  355. static void pch_can_clear_buffers(struct pch_can_priv *priv)
  356. {
  357. int i;
  358. for (i = PCH_RX_OBJ_START; i <= PCH_RX_OBJ_END; i++) {
  359. iowrite32(PCH_CMASK_RX_TX_SET, &priv->regs->ifregs[0].cmask);
  360. iowrite32(0xffff, &priv->regs->ifregs[0].mask1);
  361. iowrite32(0xffff, &priv->regs->ifregs[0].mask2);
  362. iowrite32(0x0, &priv->regs->ifregs[0].id1);
  363. iowrite32(0x0, &priv->regs->ifregs[0].id2);
  364. iowrite32(0x0, &priv->regs->ifregs[0].mcont);
  365. iowrite32(0x0, &priv->regs->ifregs[0].data[0]);
  366. iowrite32(0x0, &priv->regs->ifregs[0].data[1]);
  367. iowrite32(0x0, &priv->regs->ifregs[0].data[2]);
  368. iowrite32(0x0, &priv->regs->ifregs[0].data[3]);
  369. iowrite32(PCH_CMASK_RDWR | PCH_CMASK_MASK |
  370. PCH_CMASK_ARB | PCH_CMASK_CTRL,
  371. &priv->regs->ifregs[0].cmask);
  372. pch_can_check_if_busy(&priv->regs->ifregs[0].creq, i);
  373. }
  374. for (i = PCH_TX_OBJ_START; i <= PCH_TX_OBJ_END; i++) {
  375. iowrite32(PCH_CMASK_RX_TX_SET, &priv->regs->ifregs[1].cmask);
  376. iowrite32(0xffff, &priv->regs->ifregs[1].mask1);
  377. iowrite32(0xffff, &priv->regs->ifregs[1].mask2);
  378. iowrite32(0x0, &priv->regs->ifregs[1].id1);
  379. iowrite32(0x0, &priv->regs->ifregs[1].id2);
  380. iowrite32(0x0, &priv->regs->ifregs[1].mcont);
  381. iowrite32(0x0, &priv->regs->ifregs[1].data[0]);
  382. iowrite32(0x0, &priv->regs->ifregs[1].data[1]);
  383. iowrite32(0x0, &priv->regs->ifregs[1].data[2]);
  384. iowrite32(0x0, &priv->regs->ifregs[1].data[3]);
  385. iowrite32(PCH_CMASK_RDWR | PCH_CMASK_MASK |
  386. PCH_CMASK_ARB | PCH_CMASK_CTRL,
  387. &priv->regs->ifregs[1].cmask);
  388. pch_can_check_if_busy(&priv->regs->ifregs[1].creq, i);
  389. }
  390. }
  391. static void pch_can_config_rx_tx_buffers(struct pch_can_priv *priv)
  392. {
  393. int i;
  394. for (i = PCH_RX_OBJ_START; i <= PCH_RX_OBJ_END; i++) {
  395. iowrite32(PCH_CMASK_RX_TX_GET,
  396. &priv->regs->ifregs[0].cmask);
  397. pch_can_check_if_busy(&priv->regs->ifregs[0].creq, i);
  398. iowrite32(0x0, &priv->regs->ifregs[0].id1);
  399. iowrite32(0x0, &priv->regs->ifregs[0].id2);
  400. pch_can_bit_set(&priv->regs->ifregs[0].mcont,
  401. PCH_IF_MCONT_UMASK);
  402. /* Set FIFO mode set to 0 except last Rx Obj*/
  403. pch_can_bit_clear(&priv->regs->ifregs[0].mcont,
  404. PCH_IF_MCONT_EOB);
  405. /* In case FIFO mode, Last EoB of Rx Obj must be 1 */
  406. if (i == PCH_RX_OBJ_END)
  407. pch_can_bit_set(&priv->regs->ifregs[0].mcont,
  408. PCH_IF_MCONT_EOB);
  409. iowrite32(0, &priv->regs->ifregs[0].mask1);
  410. pch_can_bit_clear(&priv->regs->ifregs[0].mask2,
  411. 0x1fff | PCH_MASK2_MDIR_MXTD);
  412. /* Setting CMASK for writing */
  413. iowrite32(PCH_CMASK_RDWR | PCH_CMASK_MASK |
  414. PCH_CMASK_ARB | PCH_CMASK_CTRL,
  415. &priv->regs->ifregs[0].cmask);
  416. pch_can_check_if_busy(&priv->regs->ifregs[0].creq, i);
  417. }
  418. for (i = PCH_TX_OBJ_START; i <= PCH_TX_OBJ_END; i++) {
  419. iowrite32(PCH_CMASK_RX_TX_GET,
  420. &priv->regs->ifregs[1].cmask);
  421. pch_can_check_if_busy(&priv->regs->ifregs[1].creq, i);
  422. /* Resetting DIR bit for reception */
  423. iowrite32(0x0, &priv->regs->ifregs[1].id1);
  424. iowrite32(0x0, &priv->regs->ifregs[1].id2);
  425. pch_can_bit_set(&priv->regs->ifregs[1].id2, PCH_ID2_DIR);
  426. /* Setting EOB bit for transmitter */
  427. iowrite32(PCH_IF_MCONT_EOB, &priv->regs->ifregs[1].mcont);
  428. pch_can_bit_set(&priv->regs->ifregs[1].mcont,
  429. PCH_IF_MCONT_UMASK);
  430. iowrite32(0, &priv->regs->ifregs[1].mask1);
  431. pch_can_bit_clear(&priv->regs->ifregs[1].mask2, 0x1fff);
  432. /* Setting CMASK for writing */
  433. iowrite32(PCH_CMASK_RDWR | PCH_CMASK_MASK |
  434. PCH_CMASK_ARB | PCH_CMASK_CTRL,
  435. &priv->regs->ifregs[1].cmask);
  436. pch_can_check_if_busy(&priv->regs->ifregs[1].creq, i);
  437. }
  438. }
  439. static void pch_can_init(struct pch_can_priv *priv)
  440. {
  441. /* Stopping the Can device. */
  442. pch_can_set_run_mode(priv, PCH_CAN_STOP);
  443. /* Clearing all the message object buffers. */
  444. pch_can_clear_buffers(priv);
  445. /* Configuring the respective message object as either rx/tx object. */
  446. pch_can_config_rx_tx_buffers(priv);
  447. /* Enabling the interrupts. */
  448. pch_can_set_int_enables(priv, PCH_CAN_ALL);
  449. }
  450. static void pch_can_release(struct pch_can_priv *priv)
  451. {
  452. /* Stooping the CAN device. */
  453. pch_can_set_run_mode(priv, PCH_CAN_STOP);
  454. /* Disabling the interrupts. */
  455. pch_can_set_int_enables(priv, PCH_CAN_NONE);
  456. /* Disabling all the receive object. */
  457. pch_can_set_rx_all(priv, 0);
  458. /* Disabling all the transmit object. */
  459. pch_can_set_tx_all(priv, 0);
  460. }
  461. /* This function clears interrupt(s) from the CAN device. */
  462. static void pch_can_int_clr(struct pch_can_priv *priv, u32 mask)
  463. {
  464. if (mask == PCH_STATUS_INT) {
  465. ioread32(&priv->regs->stat);
  466. return;
  467. }
  468. /* Clear interrupt for transmit object */
  469. if ((mask >= PCH_RX_OBJ_START) && (mask <= PCH_RX_OBJ_END)) {
  470. /* Setting CMASK for clearing the reception interrupts. */
  471. iowrite32(PCH_CMASK_RDWR | PCH_CMASK_CTRL | PCH_CMASK_ARB,
  472. &priv->regs->ifregs[0].cmask);
  473. /* Clearing the Dir bit. */
  474. pch_can_bit_clear(&priv->regs->ifregs[0].id2, PCH_ID2_DIR);
  475. /* Clearing NewDat & IntPnd */
  476. pch_can_bit_clear(&priv->regs->ifregs[0].mcont,
  477. PCH_IF_MCONT_NEWDAT | PCH_IF_MCONT_INTPND);
  478. pch_can_check_if_busy(&priv->regs->ifregs[0].creq, mask);
  479. } else if ((mask >= PCH_TX_OBJ_START) && (mask <= PCH_TX_OBJ_END)) {
  480. /* Setting CMASK for clearing interrupts for
  481. frame transmission. */
  482. iowrite32(PCH_CMASK_RDWR | PCH_CMASK_CTRL | PCH_CMASK_ARB,
  483. &priv->regs->ifregs[1].cmask);
  484. /* Resetting the ID registers. */
  485. pch_can_bit_set(&priv->regs->ifregs[1].id2,
  486. PCH_ID2_DIR | (0x7ff << 2));
  487. iowrite32(0x0, &priv->regs->ifregs[1].id1);
  488. /* Claring NewDat, TxRqst & IntPnd */
  489. pch_can_bit_clear(&priv->regs->ifregs[1].mcont,
  490. PCH_IF_MCONT_NEWDAT | PCH_IF_MCONT_INTPND |
  491. PCH_IF_MCONT_TXRQXT);
  492. pch_can_check_if_busy(&priv->regs->ifregs[1].creq, mask);
  493. }
  494. }
  495. static int pch_can_get_buffer_status(struct pch_can_priv *priv)
  496. {
  497. return (ioread32(&priv->regs->treq1) & 0xffff) |
  498. ((ioread32(&priv->regs->treq2) & 0xffff) << 16);
  499. }
  500. static void pch_can_reset(struct pch_can_priv *priv)
  501. {
  502. /* write to sw reset register */
  503. iowrite32(1, &priv->regs->srst);
  504. iowrite32(0, &priv->regs->srst);
  505. }
  506. static void pch_can_error(struct net_device *ndev, u32 status)
  507. {
  508. struct sk_buff *skb;
  509. struct pch_can_priv *priv = netdev_priv(ndev);
  510. struct can_frame *cf;
  511. u32 errc, lec;
  512. struct net_device_stats *stats = &(priv->ndev->stats);
  513. enum can_state state = priv->can.state;
  514. skb = alloc_can_err_skb(ndev, &cf);
  515. if (!skb)
  516. return;
  517. if (status & PCH_BUS_OFF) {
  518. pch_can_set_tx_all(priv, 0);
  519. pch_can_set_rx_all(priv, 0);
  520. state = CAN_STATE_BUS_OFF;
  521. cf->can_id |= CAN_ERR_BUSOFF;
  522. can_bus_off(ndev);
  523. pch_can_set_run_mode(priv, PCH_CAN_RUN);
  524. dev_err(&ndev->dev, "%s -> Bus Off occurres.\n", __func__);
  525. }
  526. /* Warning interrupt. */
  527. if (status & PCH_EWARN) {
  528. state = CAN_STATE_ERROR_WARNING;
  529. priv->can.can_stats.error_warning++;
  530. cf->can_id |= CAN_ERR_CRTL;
  531. errc = ioread32(&priv->regs->errc);
  532. if (((errc & PCH_REC) >> 8) > 96)
  533. cf->data[1] |= CAN_ERR_CRTL_RX_WARNING;
  534. if ((errc & PCH_TEC) > 96)
  535. cf->data[1] |= CAN_ERR_CRTL_TX_WARNING;
  536. dev_warn(&ndev->dev,
  537. "%s -> Error Counter is more than 96.\n", __func__);
  538. }
  539. /* Error passive interrupt. */
  540. if (status & PCH_EPASSIV) {
  541. priv->can.can_stats.error_passive++;
  542. state = CAN_STATE_ERROR_PASSIVE;
  543. cf->can_id |= CAN_ERR_CRTL;
  544. errc = ioread32(&priv->regs->errc);
  545. if (((errc & PCH_REC) >> 8) > 127)
  546. cf->data[1] |= CAN_ERR_CRTL_RX_PASSIVE;
  547. if ((errc & PCH_TEC) > 127)
  548. cf->data[1] |= CAN_ERR_CRTL_TX_PASSIVE;
  549. dev_err(&ndev->dev,
  550. "%s -> CAN controller is ERROR PASSIVE .\n", __func__);
  551. }
  552. lec = status & PCH_LEC_ALL;
  553. switch (lec) {
  554. case PCH_STUF_ERR:
  555. cf->data[2] |= CAN_ERR_PROT_STUFF;
  556. priv->can.can_stats.bus_error++;
  557. stats->rx_errors++;
  558. break;
  559. case PCH_FORM_ERR:
  560. cf->data[2] |= CAN_ERR_PROT_FORM;
  561. priv->can.can_stats.bus_error++;
  562. stats->rx_errors++;
  563. break;
  564. case PCH_ACK_ERR:
  565. cf->can_id |= CAN_ERR_ACK;
  566. priv->can.can_stats.bus_error++;
  567. stats->rx_errors++;
  568. break;
  569. case PCH_BIT1_ERR:
  570. case PCH_BIT0_ERR:
  571. cf->data[2] |= CAN_ERR_PROT_BIT;
  572. priv->can.can_stats.bus_error++;
  573. stats->rx_errors++;
  574. break;
  575. case PCH_CRC_ERR:
  576. cf->data[2] |= CAN_ERR_PROT_LOC_CRC_SEQ |
  577. CAN_ERR_PROT_LOC_CRC_DEL;
  578. priv->can.can_stats.bus_error++;
  579. stats->rx_errors++;
  580. break;
  581. case PCH_LEC_ALL: /* Written by CPU. No error status */
  582. break;
  583. }
  584. priv->can.state = state;
  585. netif_rx(skb);
  586. stats->rx_packets++;
  587. stats->rx_bytes += cf->can_dlc;
  588. }
  589. static irqreturn_t pch_can_interrupt(int irq, void *dev_id)
  590. {
  591. struct net_device *ndev = (struct net_device *)dev_id;
  592. struct pch_can_priv *priv = netdev_priv(ndev);
  593. pch_can_set_int_enables(priv, PCH_CAN_NONE);
  594. napi_schedule(&priv->napi);
  595. return IRQ_HANDLED;
  596. }
  597. static int pch_can_rx_normal(struct net_device *ndev, u32 int_stat)
  598. {
  599. u32 reg;
  600. canid_t id;
  601. u32 ide;
  602. u32 rtr;
  603. int i, k;
  604. int rcv_pkts = 0;
  605. struct sk_buff *skb;
  606. struct can_frame *cf;
  607. struct pch_can_priv *priv = netdev_priv(ndev);
  608. struct net_device_stats *stats = &(priv->ndev->stats);
  609. u16 data_reg;
  610. /* Reading the messsage object from the Message RAM */
  611. iowrite32(PCH_CMASK_RX_TX_GET, &priv->regs->ifregs[0].cmask);
  612. pch_can_check_if_busy(&priv->regs->ifregs[0].creq, int_stat);
  613. /* Reading the MCONT register. */
  614. reg = ioread32(&priv->regs->ifregs[0].mcont);
  615. reg &= 0xffff;
  616. for (k = int_stat; !(reg & PCH_IF_MCONT_EOB); k++) {
  617. /* If MsgLost bit set. */
  618. if (reg & PCH_IF_MCONT_MSGLOST) {
  619. dev_err(&priv->ndev->dev, "Msg Obj is overwritten.\n");
  620. pch_can_bit_clear(&priv->regs->ifregs[0].mcont,
  621. PCH_IF_MCONT_MSGLOST);
  622. iowrite32(PCH_CMASK_RDWR | PCH_CMASK_CTRL,
  623. &priv->regs->ifregs[0].cmask);
  624. pch_can_check_if_busy(&priv->regs->ifregs[0].creq, k);
  625. skb = alloc_can_err_skb(ndev, &cf);
  626. if (!skb)
  627. return -ENOMEM;
  628. priv->can.can_stats.error_passive++;
  629. priv->can.state = CAN_STATE_ERROR_PASSIVE;
  630. cf->can_id |= CAN_ERR_CRTL;
  631. cf->data[1] |= CAN_ERR_CRTL_RX_OVERFLOW;
  632. cf->data[2] |= CAN_ERR_PROT_OVERLOAD;
  633. stats->rx_packets++;
  634. stats->rx_bytes += cf->can_dlc;
  635. netif_receive_skb(skb);
  636. rcv_pkts++;
  637. goto RX_NEXT;
  638. }
  639. if (!(reg & PCH_IF_MCONT_NEWDAT))
  640. goto RX_NEXT;
  641. skb = alloc_can_skb(priv->ndev, &cf);
  642. if (!skb)
  643. return -ENOMEM;
  644. /* Get Received data */
  645. ide = ((ioread32(&priv->regs->ifregs[0].id2)) & PCH_ID2_XTD) >>
  646. 14;
  647. if (ide) {
  648. id = (ioread32(&priv->regs->ifregs[0].id1) & 0xffff);
  649. id |= (((ioread32(&priv->regs->ifregs[0].id2)) &
  650. 0x1fff) << 16);
  651. cf->can_id = (id & CAN_EFF_MASK) | CAN_EFF_FLAG;
  652. } else {
  653. id = (((ioread32(&priv->regs->ifregs[0].id2)) &
  654. (CAN_SFF_MASK << 2)) >> 2);
  655. cf->can_id = (id & CAN_SFF_MASK);
  656. }
  657. rtr = (ioread32(&priv->regs->ifregs[0].id2) & PCH_ID2_DIR);
  658. if (rtr) {
  659. cf->can_dlc = 0;
  660. cf->can_id |= CAN_RTR_FLAG;
  661. } else {
  662. cf->can_dlc =
  663. ((ioread32(&priv->regs->ifregs[0].mcont)) & 0x0f);
  664. }
  665. for (i = 0; i < cf->can_dlc; i += 2) {
  666. data_reg = ioread16(&priv->regs->ifregs[0].data[i / 2]);
  667. cf->data[i] = data_reg;
  668. cf->data[i + 1] = data_reg >> 8;
  669. }
  670. netif_receive_skb(skb);
  671. rcv_pkts++;
  672. stats->rx_packets++;
  673. stats->rx_bytes += cf->can_dlc;
  674. if (k < PCH_FIFO_THRESH) {
  675. iowrite32(PCH_CMASK_RDWR | PCH_CMASK_CTRL |
  676. PCH_CMASK_ARB, &priv->regs->ifregs[0].cmask);
  677. /* Clearing the Dir bit. */
  678. pch_can_bit_clear(&priv->regs->ifregs[0].id2,
  679. PCH_ID2_DIR);
  680. /* Clearing NewDat & IntPnd */
  681. pch_can_bit_clear(&priv->regs->ifregs[0].mcont,
  682. PCH_IF_MCONT_INTPND);
  683. pch_can_check_if_busy(&priv->regs->ifregs[0].creq, k);
  684. } else if (k > PCH_FIFO_THRESH) {
  685. pch_can_int_clr(priv, k);
  686. } else if (k == PCH_FIFO_THRESH) {
  687. int cnt;
  688. for (cnt = 0; cnt < PCH_FIFO_THRESH; cnt++)
  689. pch_can_int_clr(priv, cnt+1);
  690. }
  691. RX_NEXT:
  692. /* Reading the messsage object from the Message RAM */
  693. iowrite32(PCH_CMASK_RX_TX_GET, &priv->regs->ifregs[0].cmask);
  694. pch_can_check_if_busy(&priv->regs->ifregs[0].creq, k);
  695. reg = ioread32(&priv->regs->ifregs[0].mcont);
  696. }
  697. return rcv_pkts;
  698. }
  699. static void pch_can_tx_complete(struct net_device *ndev, u32 int_stat)
  700. {
  701. struct pch_can_priv *priv = netdev_priv(ndev);
  702. struct net_device_stats *stats = &(priv->ndev->stats);
  703. u32 dlc;
  704. can_get_echo_skb(ndev, int_stat - PCH_RX_OBJ_END - 1);
  705. iowrite32(PCH_CMASK_RX_TX_GET | PCH_CMASK_CLRINTPND,
  706. &priv->regs->ifregs[1].cmask);
  707. pch_can_check_if_busy(&priv->regs->ifregs[1].creq, int_stat);
  708. dlc = get_can_dlc(ioread32(&priv->regs->ifregs[1].mcont) &
  709. PCH_IF_MCONT_DLC);
  710. stats->tx_bytes += dlc;
  711. stats->tx_packets++;
  712. if (int_stat == PCH_TX_OBJ_END)
  713. netif_wake_queue(ndev);
  714. }
  715. static int pch_can_rx_poll(struct napi_struct *napi, int quota)
  716. {
  717. struct net_device *ndev = napi->dev;
  718. struct pch_can_priv *priv = netdev_priv(ndev);
  719. u32 int_stat;
  720. int rcv_pkts = 0;
  721. u32 reg_stat;
  722. int_stat = pch_can_int_pending(priv);
  723. if (!int_stat)
  724. goto end;
  725. if ((int_stat == PCH_STATUS_INT) && (quota > 0)) {
  726. reg_stat = ioread32(&priv->regs->stat);
  727. if (reg_stat & (PCH_BUS_OFF | PCH_LEC_ALL)) {
  728. if (reg_stat & PCH_BUS_OFF ||
  729. (reg_stat & PCH_LEC_ALL) != PCH_LEC_ALL) {
  730. pch_can_error(ndev, reg_stat);
  731. quota--;
  732. }
  733. }
  734. if (reg_stat & PCH_TX_OK)
  735. pch_can_bit_clear(&priv->regs->stat, PCH_TX_OK);
  736. if (reg_stat & PCH_RX_OK)
  737. pch_can_bit_clear(&priv->regs->stat, PCH_RX_OK);
  738. int_stat = pch_can_int_pending(priv);
  739. }
  740. if (quota == 0)
  741. goto end;
  742. if ((int_stat >= PCH_RX_OBJ_START) && (int_stat <= PCH_RX_OBJ_END)) {
  743. rcv_pkts += pch_can_rx_normal(ndev, int_stat);
  744. quota -= rcv_pkts;
  745. if (quota < 0)
  746. goto end;
  747. } else if ((int_stat >= PCH_TX_OBJ_START) &&
  748. (int_stat <= PCH_TX_OBJ_END)) {
  749. /* Handle transmission interrupt */
  750. pch_can_tx_complete(ndev, int_stat);
  751. }
  752. end:
  753. napi_complete(napi);
  754. pch_can_set_int_enables(priv, PCH_CAN_ALL);
  755. return rcv_pkts;
  756. }
  757. static int pch_set_bittiming(struct net_device *ndev)
  758. {
  759. struct pch_can_priv *priv = netdev_priv(ndev);
  760. const struct can_bittiming *bt = &priv->can.bittiming;
  761. u32 canbit;
  762. u32 bepe;
  763. u32 brp;
  764. /* Setting the CCE bit for accessing the Can Timing register. */
  765. pch_can_bit_set(&priv->regs->cont, PCH_CTRL_CCE);
  766. brp = (bt->tq) / (1000000000/PCH_CAN_CLK) - 1;
  767. canbit = brp & PCH_MSK_BITT_BRP;
  768. canbit |= (bt->sjw - 1) << PCH_BIT_SJW;
  769. canbit |= (bt->phase_seg1 + bt->prop_seg - 1) << PCH_BIT_TSEG1;
  770. canbit |= (bt->phase_seg2 - 1) << PCH_BIT_TSEG2;
  771. bepe = (brp & PCH_MSK_BRPE_BRPE) >> PCH_BIT_BRPE_BRPE;
  772. iowrite32(canbit, &priv->regs->bitt);
  773. iowrite32(bepe, &priv->regs->brpe);
  774. pch_can_bit_clear(&priv->regs->cont, PCH_CTRL_CCE);
  775. return 0;
  776. }
  777. static void pch_can_start(struct net_device *ndev)
  778. {
  779. struct pch_can_priv *priv = netdev_priv(ndev);
  780. if (priv->can.state != CAN_STATE_STOPPED)
  781. pch_can_reset(priv);
  782. pch_set_bittiming(ndev);
  783. pch_can_set_optmode(priv);
  784. pch_can_set_tx_all(priv, 1);
  785. pch_can_set_rx_all(priv, 1);
  786. /* Setting the CAN to run mode. */
  787. pch_can_set_run_mode(priv, PCH_CAN_RUN);
  788. priv->can.state = CAN_STATE_ERROR_ACTIVE;
  789. return;
  790. }
  791. static int pch_can_do_set_mode(struct net_device *ndev, enum can_mode mode)
  792. {
  793. int ret = 0;
  794. switch (mode) {
  795. case CAN_MODE_START:
  796. pch_can_start(ndev);
  797. netif_wake_queue(ndev);
  798. break;
  799. default:
  800. ret = -EOPNOTSUPP;
  801. break;
  802. }
  803. return ret;
  804. }
  805. static int pch_can_open(struct net_device *ndev)
  806. {
  807. struct pch_can_priv *priv = netdev_priv(ndev);
  808. int retval;
  809. retval = pci_enable_msi(priv->dev);
  810. if (retval) {
  811. dev_info(&ndev->dev, "PCH CAN opened without MSI\n");
  812. priv->use_msi = 0;
  813. } else {
  814. dev_info(&ndev->dev, "PCH CAN opened with MSI\n");
  815. priv->use_msi = 1;
  816. }
  817. /* Regsitering the interrupt. */
  818. retval = request_irq(priv->dev->irq, pch_can_interrupt, IRQF_SHARED,
  819. ndev->name, ndev);
  820. if (retval) {
  821. dev_err(&ndev->dev, "request_irq failed.\n");
  822. goto req_irq_err;
  823. }
  824. /* Open common can device */
  825. retval = open_candev(ndev);
  826. if (retval) {
  827. dev_err(ndev->dev.parent, "open_candev() failed %d\n", retval);
  828. goto err_open_candev;
  829. }
  830. pch_can_init(priv);
  831. pch_can_start(ndev);
  832. napi_enable(&priv->napi);
  833. netif_start_queue(ndev);
  834. return 0;
  835. err_open_candev:
  836. free_irq(priv->dev->irq, ndev);
  837. req_irq_err:
  838. if (priv->use_msi)
  839. pci_disable_msi(priv->dev);
  840. pch_can_release(priv);
  841. return retval;
  842. }
  843. static int pch_close(struct net_device *ndev)
  844. {
  845. struct pch_can_priv *priv = netdev_priv(ndev);
  846. netif_stop_queue(ndev);
  847. napi_disable(&priv->napi);
  848. pch_can_release(priv);
  849. free_irq(priv->dev->irq, ndev);
  850. if (priv->use_msi)
  851. pci_disable_msi(priv->dev);
  852. close_candev(ndev);
  853. priv->can.state = CAN_STATE_STOPPED;
  854. return 0;
  855. }
  856. static netdev_tx_t pch_xmit(struct sk_buff *skb, struct net_device *ndev)
  857. {
  858. struct pch_can_priv *priv = netdev_priv(ndev);
  859. struct can_frame *cf = (struct can_frame *)skb->data;
  860. int tx_buffer_avail = 0;
  861. int i;
  862. if (can_dropped_invalid_skb(ndev, skb))
  863. return NETDEV_TX_OK;
  864. if (priv->tx_obj == PCH_TX_OBJ_END) {
  865. if (ioread32(&priv->regs->treq2) & PCH_TREQ2_TX_MASK)
  866. netif_stop_queue(ndev);
  867. tx_buffer_avail = priv->tx_obj;
  868. priv->tx_obj = PCH_TX_OBJ_START;
  869. } else {
  870. tx_buffer_avail = priv->tx_obj;
  871. priv->tx_obj++;
  872. }
  873. /* Reading the Msg Obj from the Msg RAM to the Interface register. */
  874. iowrite32(PCH_CMASK_RX_TX_GET, &priv->regs->ifregs[1].cmask);
  875. pch_can_check_if_busy(&priv->regs->ifregs[1].creq, tx_buffer_avail);
  876. /* Setting the CMASK register. */
  877. pch_can_bit_set(&priv->regs->ifregs[1].cmask, PCH_CMASK_ALL);
  878. /* If ID extended is set. */
  879. pch_can_bit_clear(&priv->regs->ifregs[1].id1, 0xffff);
  880. pch_can_bit_clear(&priv->regs->ifregs[1].id2, 0x1fff | PCH_ID2_XTD);
  881. if (cf->can_id & CAN_EFF_FLAG) {
  882. pch_can_bit_set(&priv->regs->ifregs[1].id1,
  883. cf->can_id & 0xffff);
  884. pch_can_bit_set(&priv->regs->ifregs[1].id2,
  885. ((cf->can_id >> 16) & 0x1fff) | PCH_ID2_XTD);
  886. } else {
  887. pch_can_bit_set(&priv->regs->ifregs[1].id1, 0);
  888. pch_can_bit_set(&priv->regs->ifregs[1].id2,
  889. (cf->can_id & CAN_SFF_MASK) << 2);
  890. }
  891. /* If remote frame has to be transmitted.. */
  892. if (cf->can_id & CAN_RTR_FLAG)
  893. pch_can_bit_clear(&priv->regs->ifregs[1].id2, PCH_ID2_DIR);
  894. /* Copy data to register */
  895. for (i = 0; i < cf->can_dlc; i += 2) {
  896. iowrite16(cf->data[i] | (cf->data[i + 1] << 8),
  897. &priv->regs->ifregs[1].data[i / 2]);
  898. }
  899. can_put_echo_skb(skb, ndev, tx_buffer_avail - PCH_RX_OBJ_END - 1);
  900. /* Updating the size of the data. */
  901. pch_can_bit_clear(&priv->regs->ifregs[1].mcont, 0x0f);
  902. pch_can_bit_set(&priv->regs->ifregs[1].mcont, cf->can_dlc);
  903. /* Clearing IntPend, NewDat & TxRqst */
  904. pch_can_bit_clear(&priv->regs->ifregs[1].mcont,
  905. PCH_IF_MCONT_NEWDAT | PCH_IF_MCONT_INTPND |
  906. PCH_IF_MCONT_TXRQXT);
  907. /* Setting NewDat, TxRqst bits */
  908. pch_can_bit_set(&priv->regs->ifregs[1].mcont,
  909. PCH_IF_MCONT_NEWDAT | PCH_IF_MCONT_TXRQXT);
  910. pch_can_check_if_busy(&priv->regs->ifregs[1].creq, tx_buffer_avail);
  911. return NETDEV_TX_OK;
  912. }
  913. static const struct net_device_ops pch_can_netdev_ops = {
  914. .ndo_open = pch_can_open,
  915. .ndo_stop = pch_close,
  916. .ndo_start_xmit = pch_xmit,
  917. };
  918. static void __devexit pch_can_remove(struct pci_dev *pdev)
  919. {
  920. struct net_device *ndev = pci_get_drvdata(pdev);
  921. struct pch_can_priv *priv = netdev_priv(ndev);
  922. unregister_candev(priv->ndev);
  923. free_candev(priv->ndev);
  924. pci_iounmap(pdev, priv->regs);
  925. pci_release_regions(pdev);
  926. pci_disable_device(pdev);
  927. pci_set_drvdata(pdev, NULL);
  928. pch_can_reset(priv);
  929. }
  930. #ifdef CONFIG_PM
  931. static int pch_can_suspend(struct pci_dev *pdev, pm_message_t state)
  932. {
  933. int i; /* Counter variable. */
  934. int retval; /* Return value. */
  935. u32 buf_stat; /* Variable for reading the transmit buffer status. */
  936. u32 counter = 0xFFFFFF;
  937. struct net_device *dev = pci_get_drvdata(pdev);
  938. struct pch_can_priv *priv = netdev_priv(dev);
  939. /* Stop the CAN controller */
  940. pch_can_set_run_mode(priv, PCH_CAN_STOP);
  941. /* Indicate that we are aboutto/in suspend */
  942. priv->can.state = CAN_STATE_SLEEPING;
  943. /* Waiting for all transmission to complete. */
  944. while (counter) {
  945. buf_stat = pch_can_get_buffer_status(priv);
  946. if (!buf_stat)
  947. break;
  948. counter--;
  949. udelay(1);
  950. }
  951. if (!counter)
  952. dev_err(&pdev->dev, "%s -> Transmission time out.\n", __func__);
  953. /* Save interrupt configuration and then disable them */
  954. pch_can_get_int_enables(priv, &(priv->int_enables));
  955. pch_can_set_int_enables(priv, PCH_CAN_DISABLE);
  956. /* Save Tx buffer enable state */
  957. for (i = PCH_TX_OBJ_START; i <= PCH_TX_OBJ_END; i++)
  958. priv->tx_enable[i] = pch_can_get_rxtx_ir(priv, i, PCH_TX_IFREG);
  959. /* Disable all Transmit buffers */
  960. pch_can_set_tx_all(priv, 0);
  961. /* Save Rx buffer enable state */
  962. for (i = PCH_RX_OBJ_START; i <= PCH_RX_OBJ_END; i++) {
  963. priv->rx_enable[i] = pch_can_get_rxtx_ir(priv, i, PCH_RX_IFREG);
  964. pch_can_get_rx_buffer_link(priv, i, &priv->rx_link[i]);
  965. }
  966. /* Disable all Receive buffers */
  967. pch_can_set_rx_all(priv, 0);
  968. retval = pci_save_state(pdev);
  969. if (retval) {
  970. dev_err(&pdev->dev, "pci_save_state failed.\n");
  971. } else {
  972. pci_enable_wake(pdev, PCI_D3hot, 0);
  973. pci_disable_device(pdev);
  974. pci_set_power_state(pdev, pci_choose_state(pdev, state));
  975. }
  976. return retval;
  977. }
  978. static int pch_can_resume(struct pci_dev *pdev)
  979. {
  980. int i; /* Counter variable. */
  981. int retval; /* Return variable. */
  982. struct net_device *dev = pci_get_drvdata(pdev);
  983. struct pch_can_priv *priv = netdev_priv(dev);
  984. pci_set_power_state(pdev, PCI_D0);
  985. pci_restore_state(pdev);
  986. retval = pci_enable_device(pdev);
  987. if (retval) {
  988. dev_err(&pdev->dev, "pci_enable_device failed.\n");
  989. return retval;
  990. }
  991. pci_enable_wake(pdev, PCI_D3hot, 0);
  992. priv->can.state = CAN_STATE_ERROR_ACTIVE;
  993. /* Disabling all interrupts. */
  994. pch_can_set_int_enables(priv, PCH_CAN_DISABLE);
  995. /* Setting the CAN device in Stop Mode. */
  996. pch_can_set_run_mode(priv, PCH_CAN_STOP);
  997. /* Configuring the transmit and receive buffers. */
  998. pch_can_config_rx_tx_buffers(priv);
  999. /* Restore the CAN state */
  1000. pch_set_bittiming(dev);
  1001. /* Listen/Active */
  1002. pch_can_set_optmode(priv);
  1003. /* Enabling the transmit buffer. */
  1004. for (i = PCH_TX_OBJ_START; i <= PCH_TX_OBJ_END; i++)
  1005. pch_can_set_rxtx(priv, i, priv->tx_enable[i], PCH_TX_IFREG);
  1006. /* Configuring the receive buffer and enabling them. */
  1007. for (i = PCH_RX_OBJ_START; i <= PCH_RX_OBJ_END; i++) {
  1008. /* Restore buffer link */
  1009. pch_can_set_rx_buffer_link(priv, i, priv->rx_link[i]);
  1010. /* Restore buffer enables */
  1011. pch_can_set_rxtx(priv, i, priv->rx_enable[i], PCH_RX_IFREG);
  1012. }
  1013. /* Enable CAN Interrupts */
  1014. pch_can_set_int_custom(priv);
  1015. /* Restore Run Mode */
  1016. pch_can_set_run_mode(priv, PCH_CAN_RUN);
  1017. return retval;
  1018. }
  1019. #else
  1020. #define pch_can_suspend NULL
  1021. #define pch_can_resume NULL
  1022. #endif
  1023. static int pch_can_get_berr_counter(const struct net_device *dev,
  1024. struct can_berr_counter *bec)
  1025. {
  1026. struct pch_can_priv *priv = netdev_priv(dev);
  1027. bec->txerr = ioread32(&priv->regs->errc) & PCH_TEC;
  1028. bec->rxerr = (ioread32(&priv->regs->errc) & PCH_REC) >> 8;
  1029. return 0;
  1030. }
  1031. static int __devinit pch_can_probe(struct pci_dev *pdev,
  1032. const struct pci_device_id *id)
  1033. {
  1034. struct net_device *ndev;
  1035. struct pch_can_priv *priv;
  1036. int rc;
  1037. void __iomem *addr;
  1038. rc = pci_enable_device(pdev);
  1039. if (rc) {
  1040. dev_err(&pdev->dev, "Failed pci_enable_device %d\n", rc);
  1041. goto probe_exit_endev;
  1042. }
  1043. rc = pci_request_regions(pdev, KBUILD_MODNAME);
  1044. if (rc) {
  1045. dev_err(&pdev->dev, "Failed pci_request_regions %d\n", rc);
  1046. goto probe_exit_pcireq;
  1047. }
  1048. addr = pci_iomap(pdev, 1, 0);
  1049. if (!addr) {
  1050. rc = -EIO;
  1051. dev_err(&pdev->dev, "Failed pci_iomap\n");
  1052. goto probe_exit_ipmap;
  1053. }
  1054. ndev = alloc_candev(sizeof(struct pch_can_priv), PCH_TX_OBJ_END);
  1055. if (!ndev) {
  1056. rc = -ENOMEM;
  1057. dev_err(&pdev->dev, "Failed alloc_candev\n");
  1058. goto probe_exit_alloc_candev;
  1059. }
  1060. priv = netdev_priv(ndev);
  1061. priv->ndev = ndev;
  1062. priv->regs = addr;
  1063. priv->dev = pdev;
  1064. priv->can.bittiming_const = &pch_can_bittiming_const;
  1065. priv->can.do_set_mode = pch_can_do_set_mode;
  1066. priv->can.do_get_berr_counter = pch_can_get_berr_counter;
  1067. priv->can.ctrlmode_supported = CAN_CTRLMODE_LISTENONLY |
  1068. CAN_CTRLMODE_LOOPBACK;
  1069. priv->tx_obj = PCH_TX_OBJ_START; /* Point head of Tx Obj */
  1070. ndev->irq = pdev->irq;
  1071. ndev->flags |= IFF_ECHO;
  1072. pci_set_drvdata(pdev, ndev);
  1073. SET_NETDEV_DEV(ndev, &pdev->dev);
  1074. ndev->netdev_ops = &pch_can_netdev_ops;
  1075. priv->can.clock.freq = PCH_CAN_CLK; /* Hz */
  1076. netif_napi_add(ndev, &priv->napi, pch_can_rx_poll, PCH_RX_OBJ_END);
  1077. rc = register_candev(ndev);
  1078. if (rc) {
  1079. dev_err(&pdev->dev, "Failed register_candev %d\n", rc);
  1080. goto probe_exit_reg_candev;
  1081. }
  1082. return 0;
  1083. probe_exit_reg_candev:
  1084. free_candev(ndev);
  1085. probe_exit_alloc_candev:
  1086. pci_iounmap(pdev, addr);
  1087. probe_exit_ipmap:
  1088. pci_release_regions(pdev);
  1089. probe_exit_pcireq:
  1090. pci_disable_device(pdev);
  1091. probe_exit_endev:
  1092. return rc;
  1093. }
  1094. static struct pci_driver pch_can_pci_driver = {
  1095. .name = "pch_can",
  1096. .id_table = pch_pci_tbl,
  1097. .probe = pch_can_probe,
  1098. .remove = __devexit_p(pch_can_remove),
  1099. .suspend = pch_can_suspend,
  1100. .resume = pch_can_resume,
  1101. };
  1102. static int __init pch_can_pci_init(void)
  1103. {
  1104. return pci_register_driver(&pch_can_pci_driver);
  1105. }
  1106. module_init(pch_can_pci_init);
  1107. static void __exit pch_can_pci_exit(void)
  1108. {
  1109. pci_unregister_driver(&pch_can_pci_driver);
  1110. }
  1111. module_exit(pch_can_pci_exit);
  1112. MODULE_DESCRIPTION("Controller Area Network Driver");
  1113. MODULE_LICENSE("GPL v2");
  1114. MODULE_VERSION("0.94");