mmap.c 24 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832
  1. /**
  2. * eCryptfs: Linux filesystem encryption layer
  3. * This is where eCryptfs coordinates the symmetric encryption and
  4. * decryption of the file data as it passes between the lower
  5. * encrypted file and the upper decrypted file.
  6. *
  7. * Copyright (C) 1997-2003 Erez Zadok
  8. * Copyright (C) 2001-2003 Stony Brook University
  9. * Copyright (C) 2004-2007 International Business Machines Corp.
  10. * Author(s): Michael A. Halcrow <mahalcro@us.ibm.com>
  11. *
  12. * This program is free software; you can redistribute it and/or
  13. * modify it under the terms of the GNU General Public License as
  14. * published by the Free Software Foundation; either version 2 of the
  15. * License, or (at your option) any later version.
  16. *
  17. * This program is distributed in the hope that it will be useful, but
  18. * WITHOUT ANY WARRANTY; without even the implied warranty of
  19. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  20. * General Public License for more details.
  21. *
  22. * You should have received a copy of the GNU General Public License
  23. * along with this program; if not, write to the Free Software
  24. * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
  25. * 02111-1307, USA.
  26. */
  27. #include <linux/pagemap.h>
  28. #include <linux/writeback.h>
  29. #include <linux/page-flags.h>
  30. #include <linux/mount.h>
  31. #include <linux/file.h>
  32. #include <linux/crypto.h>
  33. #include <linux/scatterlist.h>
  34. #include "ecryptfs_kernel.h"
  35. struct kmem_cache *ecryptfs_lower_page_cache;
  36. /**
  37. * ecryptfs_get1page
  38. *
  39. * Get one page from cache or lower f/s, return error otherwise.
  40. *
  41. * Returns unlocked and up-to-date page (if ok), with increased
  42. * refcnt.
  43. */
  44. static struct page *ecryptfs_get1page(struct file *file, int index)
  45. {
  46. struct dentry *dentry;
  47. struct inode *inode;
  48. struct address_space *mapping;
  49. dentry = file->f_path.dentry;
  50. inode = dentry->d_inode;
  51. mapping = inode->i_mapping;
  52. return read_mapping_page(mapping, index, (void *)file);
  53. }
  54. /**
  55. * ecryptfs_fill_zeros
  56. * @file: The ecryptfs file
  57. * @new_length: The new length of the data in the underlying file;
  58. * everything between the prior end of the file and the
  59. * new end of the file will be filled with zero's.
  60. * new_length must be greater than current length
  61. *
  62. * Function for handling lseek-ing past the end of the file.
  63. *
  64. * This function does not support shrinking, only growing a file.
  65. *
  66. * Returns zero on success; non-zero otherwise.
  67. */
  68. int ecryptfs_fill_zeros(struct file *file, loff_t new_length)
  69. {
  70. int rc = 0;
  71. struct dentry *dentry = file->f_path.dentry;
  72. struct inode *inode = dentry->d_inode;
  73. pgoff_t old_end_page_index = 0;
  74. pgoff_t index = old_end_page_index;
  75. int old_end_pos_in_page = -1;
  76. pgoff_t new_end_page_index;
  77. int new_end_pos_in_page;
  78. loff_t cur_length = i_size_read(inode);
  79. if (cur_length != 0) {
  80. index = old_end_page_index =
  81. ((cur_length - 1) >> PAGE_CACHE_SHIFT);
  82. old_end_pos_in_page = ((cur_length - 1) & ~PAGE_CACHE_MASK);
  83. }
  84. new_end_page_index = ((new_length - 1) >> PAGE_CACHE_SHIFT);
  85. new_end_pos_in_page = ((new_length - 1) & ~PAGE_CACHE_MASK);
  86. ecryptfs_printk(KERN_DEBUG, "old_end_page_index = [0x%.16x]; "
  87. "old_end_pos_in_page = [%d]; "
  88. "new_end_page_index = [0x%.16x]; "
  89. "new_end_pos_in_page = [%d]\n",
  90. old_end_page_index, old_end_pos_in_page,
  91. new_end_page_index, new_end_pos_in_page);
  92. if (old_end_page_index == new_end_page_index) {
  93. /* Start and end are in the same page; we just need to
  94. * set a portion of the existing page to zero's */
  95. rc = ecryptfs_write_zeros(file, index,
  96. (old_end_pos_in_page + 1),
  97. (new_end_pos_in_page
  98. - old_end_pos_in_page));
  99. if (rc)
  100. ecryptfs_printk(KERN_ERR, "ecryptfs_write_zeros("
  101. "file=[%p], "
  102. "index=[0x%.16x], "
  103. "old_end_pos_in_page=[d], "
  104. "(PAGE_CACHE_SIZE - new_end_pos_in_page"
  105. "=[%d]"
  106. ")=[d]) returned [%d]\n", file, index,
  107. old_end_pos_in_page,
  108. new_end_pos_in_page,
  109. (PAGE_CACHE_SIZE - new_end_pos_in_page),
  110. rc);
  111. goto out;
  112. }
  113. /* Fill the remainder of the previous last page with zeros */
  114. rc = ecryptfs_write_zeros(file, index, (old_end_pos_in_page + 1),
  115. ((PAGE_CACHE_SIZE - 1) - old_end_pos_in_page));
  116. if (rc) {
  117. ecryptfs_printk(KERN_ERR, "ecryptfs_write_zeros(file=[%p], "
  118. "index=[0x%.16x], old_end_pos_in_page=[d], "
  119. "(PAGE_CACHE_SIZE - old_end_pos_in_page)=[d]) "
  120. "returned [%d]\n", file, index,
  121. old_end_pos_in_page,
  122. (PAGE_CACHE_SIZE - old_end_pos_in_page), rc);
  123. goto out;
  124. }
  125. index++;
  126. while (index < new_end_page_index) {
  127. /* Fill all intermediate pages with zeros */
  128. rc = ecryptfs_write_zeros(file, index, 0, PAGE_CACHE_SIZE);
  129. if (rc) {
  130. ecryptfs_printk(KERN_ERR, "ecryptfs_write_zeros("
  131. "file=[%p], "
  132. "index=[0x%.16x], "
  133. "old_end_pos_in_page=[d], "
  134. "(PAGE_CACHE_SIZE - new_end_pos_in_page"
  135. "=[%d]"
  136. ")=[d]) returned [%d]\n", file, index,
  137. old_end_pos_in_page,
  138. new_end_pos_in_page,
  139. (PAGE_CACHE_SIZE - new_end_pos_in_page),
  140. rc);
  141. goto out;
  142. }
  143. index++;
  144. }
  145. /* Fill the portion at the beginning of the last new page with
  146. * zero's */
  147. rc = ecryptfs_write_zeros(file, index, 0, (new_end_pos_in_page + 1));
  148. if (rc) {
  149. ecryptfs_printk(KERN_ERR, "ecryptfs_write_zeros(file="
  150. "[%p], index=[0x%.16x], 0, "
  151. "new_end_pos_in_page=[%d]"
  152. "returned [%d]\n", file, index,
  153. new_end_pos_in_page, rc);
  154. goto out;
  155. }
  156. out:
  157. return rc;
  158. }
  159. /**
  160. * ecryptfs_writepage
  161. * @page: Page that is locked before this call is made
  162. *
  163. * Returns zero on success; non-zero otherwise
  164. */
  165. static int ecryptfs_writepage(struct page *page, struct writeback_control *wbc)
  166. {
  167. struct ecryptfs_page_crypt_context ctx;
  168. int rc;
  169. ctx.page = page;
  170. ctx.mode = ECRYPTFS_WRITEPAGE_MODE;
  171. ctx.param.wbc = wbc;
  172. rc = ecryptfs_encrypt_page(&ctx);
  173. if (rc) {
  174. ecryptfs_printk(KERN_WARNING, "Error encrypting "
  175. "page (upper index [0x%.16x])\n", page->index);
  176. ClearPageUptodate(page);
  177. goto out;
  178. }
  179. SetPageUptodate(page);
  180. unlock_page(page);
  181. out:
  182. return rc;
  183. }
  184. /**
  185. * Reads the data from the lower file file at index lower_page_index
  186. * and copies that data into page.
  187. *
  188. * @param page Page to fill
  189. * @param lower_page_index Index of the page in the lower file to get
  190. */
  191. int ecryptfs_do_readpage(struct file *file, struct page *page,
  192. pgoff_t lower_page_index)
  193. {
  194. int rc;
  195. struct dentry *dentry;
  196. struct file *lower_file;
  197. struct dentry *lower_dentry;
  198. struct inode *inode;
  199. struct inode *lower_inode;
  200. char *page_data;
  201. struct page *lower_page = NULL;
  202. char *lower_page_data;
  203. const struct address_space_operations *lower_a_ops;
  204. dentry = file->f_path.dentry;
  205. lower_file = ecryptfs_file_to_lower(file);
  206. lower_dentry = ecryptfs_dentry_to_lower(dentry);
  207. inode = dentry->d_inode;
  208. lower_inode = ecryptfs_inode_to_lower(inode);
  209. lower_a_ops = lower_inode->i_mapping->a_ops;
  210. lower_page = read_cache_page(lower_inode->i_mapping, lower_page_index,
  211. (filler_t *)lower_a_ops->readpage,
  212. (void *)lower_file);
  213. if (IS_ERR(lower_page)) {
  214. rc = PTR_ERR(lower_page);
  215. lower_page = NULL;
  216. ecryptfs_printk(KERN_ERR, "Error reading from page cache\n");
  217. goto out;
  218. }
  219. page_data = kmap_atomic(page, KM_USER0);
  220. lower_page_data = kmap_atomic(lower_page, KM_USER1);
  221. memcpy(page_data, lower_page_data, PAGE_CACHE_SIZE);
  222. kunmap_atomic(lower_page_data, KM_USER1);
  223. kunmap_atomic(page_data, KM_USER0);
  224. flush_dcache_page(page);
  225. rc = 0;
  226. out:
  227. if (likely(lower_page))
  228. page_cache_release(lower_page);
  229. if (rc == 0)
  230. SetPageUptodate(page);
  231. else
  232. ClearPageUptodate(page);
  233. return rc;
  234. }
  235. /**
  236. * Header Extent:
  237. * Octets 0-7: Unencrypted file size (big-endian)
  238. * Octets 8-15: eCryptfs special marker
  239. * Octets 16-19: Flags
  240. * Octet 16: File format version number (between 0 and 255)
  241. * Octets 17-18: Reserved
  242. * Octet 19: Bit 1 (lsb): Reserved
  243. * Bit 2: Encrypted?
  244. * Bits 3-8: Reserved
  245. * Octets 20-23: Header extent size (big-endian)
  246. * Octets 24-25: Number of header extents at front of file
  247. * (big-endian)
  248. * Octet 26: Begin RFC 2440 authentication token packet set
  249. */
  250. static void set_header_info(char *page_virt,
  251. struct ecryptfs_crypt_stat *crypt_stat)
  252. {
  253. size_t written;
  254. int save_num_header_extents_at_front =
  255. crypt_stat->num_header_extents_at_front;
  256. crypt_stat->num_header_extents_at_front = 1;
  257. ecryptfs_write_header_metadata(page_virt + 20, crypt_stat, &written);
  258. crypt_stat->num_header_extents_at_front =
  259. save_num_header_extents_at_front;
  260. }
  261. /**
  262. * ecryptfs_readpage
  263. * @file: This is an ecryptfs file
  264. * @page: ecryptfs associated page to stick the read data into
  265. *
  266. * Read in a page, decrypting if necessary.
  267. *
  268. * Returns zero on success; non-zero on error.
  269. */
  270. static int ecryptfs_readpage(struct file *file, struct page *page)
  271. {
  272. int rc = 0;
  273. struct ecryptfs_crypt_stat *crypt_stat;
  274. BUG_ON(!(file && file->f_path.dentry && file->f_path.dentry->d_inode));
  275. crypt_stat = &ecryptfs_inode_to_private(file->f_path.dentry->d_inode)
  276. ->crypt_stat;
  277. if (!crypt_stat
  278. || !(crypt_stat->flags & ECRYPTFS_ENCRYPTED)
  279. || (crypt_stat->flags & ECRYPTFS_NEW_FILE)) {
  280. ecryptfs_printk(KERN_DEBUG,
  281. "Passing through unencrypted page\n");
  282. rc = ecryptfs_do_readpage(file, page, page->index);
  283. if (rc) {
  284. ecryptfs_printk(KERN_ERR, "Error reading page; rc = "
  285. "[%d]\n", rc);
  286. goto out;
  287. }
  288. } else if (crypt_stat->flags & ECRYPTFS_VIEW_AS_ENCRYPTED) {
  289. if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR) {
  290. int num_pages_in_header_region =
  291. (crypt_stat->header_extent_size
  292. / PAGE_CACHE_SIZE);
  293. if (page->index < num_pages_in_header_region) {
  294. char *page_virt;
  295. page_virt = kmap_atomic(page, KM_USER0);
  296. memset(page_virt, 0, PAGE_CACHE_SIZE);
  297. if (page->index == 0) {
  298. rc = ecryptfs_read_xattr_region(
  299. page_virt, file->f_path.dentry);
  300. set_header_info(page_virt, crypt_stat);
  301. }
  302. kunmap_atomic(page_virt, KM_USER0);
  303. flush_dcache_page(page);
  304. if (rc) {
  305. printk(KERN_ERR "Error reading xattr "
  306. "region\n");
  307. goto out;
  308. }
  309. } else {
  310. rc = ecryptfs_do_readpage(
  311. file, page,
  312. (page->index
  313. - num_pages_in_header_region));
  314. if (rc) {
  315. printk(KERN_ERR "Error reading page; "
  316. "rc = [%d]\n", rc);
  317. goto out;
  318. }
  319. }
  320. } else {
  321. rc = ecryptfs_do_readpage(file, page, page->index);
  322. if (rc) {
  323. printk(KERN_ERR "Error reading page; rc = "
  324. "[%d]\n", rc);
  325. goto out;
  326. }
  327. }
  328. } else {
  329. rc = ecryptfs_decrypt_page(file, page);
  330. if (rc) {
  331. ecryptfs_printk(KERN_ERR, "Error decrypting page; "
  332. "rc = [%d]\n", rc);
  333. goto out;
  334. }
  335. }
  336. SetPageUptodate(page);
  337. out:
  338. if (rc)
  339. ClearPageUptodate(page);
  340. ecryptfs_printk(KERN_DEBUG, "Unlocking page with index = [0x%.16x]\n",
  341. page->index);
  342. unlock_page(page);
  343. return rc;
  344. }
  345. /**
  346. * Called with lower inode mutex held.
  347. */
  348. static int fill_zeros_to_end_of_page(struct page *page, unsigned int to)
  349. {
  350. struct inode *inode = page->mapping->host;
  351. int end_byte_in_page;
  352. if ((i_size_read(inode) / PAGE_CACHE_SIZE) != page->index)
  353. goto out;
  354. end_byte_in_page = i_size_read(inode) % PAGE_CACHE_SIZE;
  355. if (to > end_byte_in_page)
  356. end_byte_in_page = to;
  357. zero_user_page(page, end_byte_in_page,
  358. PAGE_CACHE_SIZE - end_byte_in_page, KM_USER0);
  359. out:
  360. return 0;
  361. }
  362. /**
  363. * eCryptfs does not currently support holes. When writing after a
  364. * seek past the end of the file, eCryptfs fills in 0's through to the
  365. * current location. The code to fill in the 0's to all the
  366. * intermediate pages calls ecryptfs_prepare_write_no_truncate().
  367. */
  368. static int
  369. ecryptfs_prepare_write_no_truncate(struct file *file, struct page *page,
  370. unsigned from, unsigned to)
  371. {
  372. int rc = 0;
  373. if (from == 0 && to == PAGE_CACHE_SIZE)
  374. goto out; /* If we are writing a full page, it will be
  375. up to date. */
  376. if (!PageUptodate(page))
  377. rc = ecryptfs_do_readpage(file, page, page->index);
  378. out:
  379. return rc;
  380. }
  381. static int ecryptfs_prepare_write(struct file *file, struct page *page,
  382. unsigned from, unsigned to)
  383. {
  384. int rc = 0;
  385. if (from == 0 && to == PAGE_CACHE_SIZE)
  386. goto out; /* If we are writing a full page, it will be
  387. up to date. */
  388. if (!PageUptodate(page))
  389. rc = ecryptfs_do_readpage(file, page, page->index);
  390. if (page->index != 0) {
  391. loff_t end_of_prev_pg_pos = page_offset(page) - 1;
  392. if (end_of_prev_pg_pos > i_size_read(page->mapping->host)) {
  393. rc = ecryptfs_truncate(file->f_path.dentry,
  394. end_of_prev_pg_pos);
  395. if (rc) {
  396. printk(KERN_ERR "Error on attempt to "
  397. "truncate to (higher) offset [%lld];"
  398. " rc = [%d]\n", end_of_prev_pg_pos, rc);
  399. goto out;
  400. }
  401. }
  402. if (end_of_prev_pg_pos + 1 > i_size_read(page->mapping->host))
  403. zero_user_page(page, 0, PAGE_CACHE_SIZE, KM_USER0);
  404. }
  405. out:
  406. return rc;
  407. }
  408. int ecryptfs_writepage_and_release_lower_page(struct page *lower_page,
  409. struct inode *lower_inode,
  410. struct writeback_control *wbc)
  411. {
  412. int rc = 0;
  413. rc = lower_inode->i_mapping->a_ops->writepage(lower_page, wbc);
  414. if (rc) {
  415. ecryptfs_printk(KERN_ERR, "Error calling lower writepage(); "
  416. "rc = [%d]\n", rc);
  417. goto out;
  418. }
  419. lower_inode->i_mtime = lower_inode->i_ctime = CURRENT_TIME;
  420. page_cache_release(lower_page);
  421. out:
  422. return rc;
  423. }
  424. static void ecryptfs_release_lower_page(struct page *lower_page)
  425. {
  426. unlock_page(lower_page);
  427. page_cache_release(lower_page);
  428. }
  429. /**
  430. * ecryptfs_write_inode_size_to_header
  431. *
  432. * Writes the lower file size to the first 8 bytes of the header.
  433. *
  434. * Returns zero on success; non-zero on error.
  435. */
  436. static int ecryptfs_write_inode_size_to_header(struct file *lower_file,
  437. struct inode *lower_inode,
  438. struct inode *inode)
  439. {
  440. int rc = 0;
  441. struct page *header_page;
  442. char *header_virt;
  443. const struct address_space_operations *lower_a_ops;
  444. u64 file_size;
  445. header_page = grab_cache_page(lower_inode->i_mapping, 0);
  446. if (!header_page) {
  447. ecryptfs_printk(KERN_ERR, "grab_cache_page for "
  448. "lower_page_index 0 failed\n");
  449. rc = -EINVAL;
  450. goto out;
  451. }
  452. lower_a_ops = lower_inode->i_mapping->a_ops;
  453. rc = lower_a_ops->prepare_write(lower_file, header_page, 0, 8);
  454. if (rc) {
  455. ecryptfs_release_lower_page(header_page);
  456. goto out;
  457. }
  458. file_size = (u64)i_size_read(inode);
  459. ecryptfs_printk(KERN_DEBUG, "Writing size: [0x%.16x]\n", file_size);
  460. file_size = cpu_to_be64(file_size);
  461. header_virt = kmap_atomic(header_page, KM_USER0);
  462. memcpy(header_virt, &file_size, sizeof(u64));
  463. kunmap_atomic(header_virt, KM_USER0);
  464. flush_dcache_page(header_page);
  465. rc = lower_a_ops->commit_write(lower_file, header_page, 0, 8);
  466. if (rc < 0)
  467. ecryptfs_printk(KERN_ERR, "Error commiting header page "
  468. "write\n");
  469. ecryptfs_release_lower_page(header_page);
  470. lower_inode->i_mtime = lower_inode->i_ctime = CURRENT_TIME;
  471. mark_inode_dirty_sync(inode);
  472. out:
  473. return rc;
  474. }
  475. static int ecryptfs_write_inode_size_to_xattr(struct inode *lower_inode,
  476. struct inode *inode,
  477. struct dentry *ecryptfs_dentry,
  478. int lower_i_mutex_held)
  479. {
  480. ssize_t size;
  481. void *xattr_virt;
  482. struct dentry *lower_dentry;
  483. u64 file_size;
  484. int rc;
  485. xattr_virt = kmem_cache_alloc(ecryptfs_xattr_cache, GFP_KERNEL);
  486. if (!xattr_virt) {
  487. printk(KERN_ERR "Out of memory whilst attempting to write "
  488. "inode size to xattr\n");
  489. rc = -ENOMEM;
  490. goto out;
  491. }
  492. lower_dentry = ecryptfs_dentry_to_lower(ecryptfs_dentry);
  493. if (!lower_dentry->d_inode->i_op->getxattr ||
  494. !lower_dentry->d_inode->i_op->setxattr) {
  495. printk(KERN_WARNING
  496. "No support for setting xattr in lower filesystem\n");
  497. rc = -ENOSYS;
  498. kmem_cache_free(ecryptfs_xattr_cache, xattr_virt);
  499. goto out;
  500. }
  501. if (!lower_i_mutex_held)
  502. mutex_lock(&lower_dentry->d_inode->i_mutex);
  503. size = lower_dentry->d_inode->i_op->getxattr(lower_dentry,
  504. ECRYPTFS_XATTR_NAME,
  505. xattr_virt,
  506. PAGE_CACHE_SIZE);
  507. if (!lower_i_mutex_held)
  508. mutex_unlock(&lower_dentry->d_inode->i_mutex);
  509. if (size < 0)
  510. size = 8;
  511. file_size = (u64)i_size_read(inode);
  512. file_size = cpu_to_be64(file_size);
  513. memcpy(xattr_virt, &file_size, sizeof(u64));
  514. if (!lower_i_mutex_held)
  515. mutex_lock(&lower_dentry->d_inode->i_mutex);
  516. rc = lower_dentry->d_inode->i_op->setxattr(lower_dentry,
  517. ECRYPTFS_XATTR_NAME,
  518. xattr_virt, size, 0);
  519. if (!lower_i_mutex_held)
  520. mutex_unlock(&lower_dentry->d_inode->i_mutex);
  521. if (rc)
  522. printk(KERN_ERR "Error whilst attempting to write inode size "
  523. "to lower file xattr; rc = [%d]\n", rc);
  524. kmem_cache_free(ecryptfs_xattr_cache, xattr_virt);
  525. out:
  526. return rc;
  527. }
  528. int
  529. ecryptfs_write_inode_size_to_metadata(struct file *lower_file,
  530. struct inode *lower_inode,
  531. struct inode *inode,
  532. struct dentry *ecryptfs_dentry,
  533. int lower_i_mutex_held)
  534. {
  535. struct ecryptfs_crypt_stat *crypt_stat;
  536. crypt_stat = &ecryptfs_inode_to_private(inode)->crypt_stat;
  537. if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR)
  538. return ecryptfs_write_inode_size_to_xattr(lower_inode, inode,
  539. ecryptfs_dentry,
  540. lower_i_mutex_held);
  541. else
  542. return ecryptfs_write_inode_size_to_header(lower_file,
  543. lower_inode,
  544. inode);
  545. }
  546. int ecryptfs_get_lower_page(struct page **lower_page, struct inode *lower_inode,
  547. struct file *lower_file,
  548. unsigned long lower_page_index, int byte_offset,
  549. int region_bytes)
  550. {
  551. int rc = 0;
  552. *lower_page = grab_cache_page(lower_inode->i_mapping, lower_page_index);
  553. if (!(*lower_page)) {
  554. rc = -EINVAL;
  555. ecryptfs_printk(KERN_ERR, "Error attempting to grab "
  556. "lower page with index [0x%.16x]\n",
  557. lower_page_index);
  558. goto out;
  559. }
  560. rc = lower_inode->i_mapping->a_ops->prepare_write(lower_file,
  561. (*lower_page),
  562. byte_offset,
  563. region_bytes);
  564. if (rc) {
  565. ecryptfs_printk(KERN_ERR, "prepare_write for "
  566. "lower_page_index = [0x%.16x] failed; rc = "
  567. "[%d]\n", lower_page_index, rc);
  568. ecryptfs_release_lower_page(*lower_page);
  569. (*lower_page) = NULL;
  570. }
  571. out:
  572. return rc;
  573. }
  574. /**
  575. * ecryptfs_commit_lower_page
  576. *
  577. * Returns zero on success; non-zero on error
  578. */
  579. int
  580. ecryptfs_commit_lower_page(struct page *lower_page, struct inode *lower_inode,
  581. struct file *lower_file, int byte_offset,
  582. int region_size)
  583. {
  584. int rc = 0;
  585. rc = lower_inode->i_mapping->a_ops->commit_write(
  586. lower_file, lower_page, byte_offset, region_size);
  587. if (rc < 0) {
  588. ecryptfs_printk(KERN_ERR,
  589. "Error committing write; rc = [%d]\n", rc);
  590. } else
  591. rc = 0;
  592. ecryptfs_release_lower_page(lower_page);
  593. return rc;
  594. }
  595. /**
  596. * ecryptfs_copy_page_to_lower
  597. *
  598. * Used for plaintext pass-through; no page index interpolation
  599. * required.
  600. */
  601. int ecryptfs_copy_page_to_lower(struct page *page, struct inode *lower_inode,
  602. struct file *lower_file)
  603. {
  604. int rc = 0;
  605. struct page *lower_page;
  606. rc = ecryptfs_get_lower_page(&lower_page, lower_inode, lower_file,
  607. page->index, 0, PAGE_CACHE_SIZE);
  608. if (rc) {
  609. ecryptfs_printk(KERN_ERR, "Error attempting to get page "
  610. "at index [0x%.16x]\n", page->index);
  611. goto out;
  612. }
  613. /* TODO: aops */
  614. memcpy((char *)page_address(lower_page), page_address(page),
  615. PAGE_CACHE_SIZE);
  616. rc = ecryptfs_commit_lower_page(lower_page, lower_inode, lower_file,
  617. 0, PAGE_CACHE_SIZE);
  618. if (rc)
  619. ecryptfs_printk(KERN_ERR, "Error attempting to commit page "
  620. "at index [0x%.16x]\n", page->index);
  621. out:
  622. return rc;
  623. }
  624. struct kmem_cache *ecryptfs_xattr_cache;
  625. /**
  626. * ecryptfs_commit_write
  627. * @file: The eCryptfs file object
  628. * @page: The eCryptfs page
  629. * @from: Ignored (we rotate the page IV on each write)
  630. * @to: Ignored
  631. *
  632. * This is where we encrypt the data and pass the encrypted data to
  633. * the lower filesystem. In OpenPGP-compatible mode, we operate on
  634. * entire underlying packets.
  635. */
  636. static int ecryptfs_commit_write(struct file *file, struct page *page,
  637. unsigned from, unsigned to)
  638. {
  639. struct ecryptfs_page_crypt_context ctx;
  640. loff_t pos;
  641. struct inode *inode;
  642. struct inode *lower_inode;
  643. struct file *lower_file;
  644. struct ecryptfs_crypt_stat *crypt_stat;
  645. int rc;
  646. inode = page->mapping->host;
  647. lower_inode = ecryptfs_inode_to_lower(inode);
  648. lower_file = ecryptfs_file_to_lower(file);
  649. mutex_lock(&lower_inode->i_mutex);
  650. crypt_stat = &ecryptfs_inode_to_private(file->f_path.dentry->d_inode)
  651. ->crypt_stat;
  652. if (crypt_stat->flags & ECRYPTFS_NEW_FILE) {
  653. ecryptfs_printk(KERN_DEBUG, "ECRYPTFS_NEW_FILE flag set in "
  654. "crypt_stat at memory location [%p]\n", crypt_stat);
  655. crypt_stat->flags &= ~(ECRYPTFS_NEW_FILE);
  656. } else
  657. ecryptfs_printk(KERN_DEBUG, "Not a new file\n");
  658. ecryptfs_printk(KERN_DEBUG, "Calling fill_zeros_to_end_of_page"
  659. "(page w/ index = [0x%.16x], to = [%d])\n", page->index,
  660. to);
  661. rc = fill_zeros_to_end_of_page(page, to);
  662. if (rc) {
  663. ecryptfs_printk(KERN_WARNING, "Error attempting to fill "
  664. "zeros in page with index = [0x%.16x]\n",
  665. page->index);
  666. goto out;
  667. }
  668. ctx.page = page;
  669. ctx.mode = ECRYPTFS_PREPARE_COMMIT_MODE;
  670. ctx.param.lower_file = lower_file;
  671. rc = ecryptfs_encrypt_page(&ctx);
  672. if (rc) {
  673. ecryptfs_printk(KERN_WARNING, "Error encrypting page (upper "
  674. "index [0x%.16x])\n", page->index);
  675. goto out;
  676. }
  677. inode->i_blocks = lower_inode->i_blocks;
  678. pos = page_offset(page) + to;
  679. if (pos > i_size_read(inode)) {
  680. i_size_write(inode, pos);
  681. ecryptfs_printk(KERN_DEBUG, "Expanded file size to "
  682. "[0x%.16x]\n", i_size_read(inode));
  683. }
  684. rc = ecryptfs_write_inode_size_to_metadata(lower_file, lower_inode,
  685. inode, file->f_dentry,
  686. ECRYPTFS_LOWER_I_MUTEX_HELD);
  687. if (rc)
  688. printk(KERN_ERR "Error writing inode size to metadata; "
  689. "rc = [%d]\n", rc);
  690. lower_inode->i_mtime = lower_inode->i_ctime = CURRENT_TIME;
  691. mark_inode_dirty_sync(inode);
  692. out:
  693. if (rc < 0)
  694. ClearPageUptodate(page);
  695. else
  696. SetPageUptodate(page);
  697. mutex_unlock(&lower_inode->i_mutex);
  698. return rc;
  699. }
  700. /**
  701. * ecryptfs_write_zeros
  702. * @file: The ecryptfs file
  703. * @index: The index in which we are writing
  704. * @start: The position after the last block of data
  705. * @num_zeros: The number of zeros to write
  706. *
  707. * Write a specified number of zero's to a page.
  708. *
  709. * (start + num_zeros) must be less than or equal to PAGE_CACHE_SIZE
  710. */
  711. int
  712. ecryptfs_write_zeros(struct file *file, pgoff_t index, int start, int num_zeros)
  713. {
  714. int rc = 0;
  715. struct page *tmp_page;
  716. tmp_page = ecryptfs_get1page(file, index);
  717. if (IS_ERR(tmp_page)) {
  718. ecryptfs_printk(KERN_ERR, "Error getting page at index "
  719. "[0x%.16x]\n", index);
  720. rc = PTR_ERR(tmp_page);
  721. goto out;
  722. }
  723. if ((rc = ecryptfs_prepare_write_no_truncate(file, tmp_page, start,
  724. (start + num_zeros)))) {
  725. ecryptfs_printk(KERN_ERR, "Error preparing to write zero's "
  726. "to page at index [0x%.16x]\n",
  727. index);
  728. page_cache_release(tmp_page);
  729. goto out;
  730. }
  731. zero_user_page(tmp_page, start, num_zeros, KM_USER0);
  732. rc = ecryptfs_commit_write(file, tmp_page, start, start + num_zeros);
  733. if (rc < 0) {
  734. ecryptfs_printk(KERN_ERR, "Error attempting to write zero's "
  735. "to remainder of page at index [0x%.16x]\n",
  736. index);
  737. page_cache_release(tmp_page);
  738. goto out;
  739. }
  740. rc = 0;
  741. page_cache_release(tmp_page);
  742. out:
  743. return rc;
  744. }
  745. static sector_t ecryptfs_bmap(struct address_space *mapping, sector_t block)
  746. {
  747. int rc = 0;
  748. struct inode *inode;
  749. struct inode *lower_inode;
  750. inode = (struct inode *)mapping->host;
  751. lower_inode = ecryptfs_inode_to_lower(inode);
  752. if (lower_inode->i_mapping->a_ops->bmap)
  753. rc = lower_inode->i_mapping->a_ops->bmap(lower_inode->i_mapping,
  754. block);
  755. return rc;
  756. }
  757. static void ecryptfs_sync_page(struct page *page)
  758. {
  759. struct inode *inode;
  760. struct inode *lower_inode;
  761. struct page *lower_page;
  762. inode = page->mapping->host;
  763. lower_inode = ecryptfs_inode_to_lower(inode);
  764. /* NOTE: Recently swapped with grab_cache_page(), since
  765. * sync_page() just makes sure that pending I/O gets done. */
  766. lower_page = find_lock_page(lower_inode->i_mapping, page->index);
  767. if (!lower_page) {
  768. ecryptfs_printk(KERN_DEBUG, "find_lock_page failed\n");
  769. return;
  770. }
  771. if (lower_page->mapping->a_ops->sync_page)
  772. lower_page->mapping->a_ops->sync_page(lower_page);
  773. ecryptfs_printk(KERN_DEBUG, "Unlocking page with index = [0x%.16x]\n",
  774. lower_page->index);
  775. unlock_page(lower_page);
  776. page_cache_release(lower_page);
  777. }
  778. struct address_space_operations ecryptfs_aops = {
  779. .writepage = ecryptfs_writepage,
  780. .readpage = ecryptfs_readpage,
  781. .prepare_write = ecryptfs_prepare_write,
  782. .commit_write = ecryptfs_commit_write,
  783. .bmap = ecryptfs_bmap,
  784. .sync_page = ecryptfs_sync_page,
  785. };