kprobes_64.c 22 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754
  1. /*
  2. * Kernel Probes (KProbes)
  3. *
  4. * This program is free software; you can redistribute it and/or modify
  5. * it under the terms of the GNU General Public License as published by
  6. * the Free Software Foundation; either version 2 of the License, or
  7. * (at your option) any later version.
  8. *
  9. * This program is distributed in the hope that it will be useful,
  10. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. * GNU General Public License for more details.
  13. *
  14. * You should have received a copy of the GNU General Public License
  15. * along with this program; if not, write to the Free Software
  16. * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
  17. *
  18. * Copyright (C) IBM Corporation, 2002, 2004
  19. *
  20. * 2002-Oct Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
  21. * Probes initial implementation ( includes contributions from
  22. * Rusty Russell).
  23. * 2004-July Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
  24. * interface to access function arguments.
  25. * 2004-Oct Jim Keniston <kenistoj@us.ibm.com> and Prasanna S Panchamukhi
  26. * <prasanna@in.ibm.com> adapted for x86_64
  27. * 2005-Mar Roland McGrath <roland@redhat.com>
  28. * Fixed to handle %rip-relative addressing mode correctly.
  29. * 2005-May Rusty Lynch <rusty.lynch@intel.com>
  30. * Added function return probes functionality
  31. */
  32. #include <linux/kprobes.h>
  33. #include <linux/ptrace.h>
  34. #include <linux/string.h>
  35. #include <linux/slab.h>
  36. #include <linux/preempt.h>
  37. #include <linux/module.h>
  38. #include <linux/kdebug.h>
  39. #include <asm/pgtable.h>
  40. #include <asm/uaccess.h>
  41. #include <asm/alternative.h>
  42. void jprobe_return_end(void);
  43. static void __kprobes arch_copy_kprobe(struct kprobe *p);
  44. DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
  45. DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
  46. /*
  47. * returns non-zero if opcode modifies the interrupt flag.
  48. */
  49. static __always_inline int is_IF_modifier(kprobe_opcode_t *insn)
  50. {
  51. switch (*insn) {
  52. case 0xfa: /* cli */
  53. case 0xfb: /* sti */
  54. case 0xcf: /* iret/iretd */
  55. case 0x9d: /* popf/popfd */
  56. return 1;
  57. }
  58. if (*insn >= 0x40 && *insn <= 0x4f && *++insn == 0xcf)
  59. return 1;
  60. return 0;
  61. }
  62. int __kprobes arch_prepare_kprobe(struct kprobe *p)
  63. {
  64. /* insn: must be on special executable page on x86_64. */
  65. p->ainsn.insn = get_insn_slot();
  66. if (!p->ainsn.insn) {
  67. return -ENOMEM;
  68. }
  69. arch_copy_kprobe(p);
  70. return 0;
  71. }
  72. /*
  73. * Determine if the instruction uses the %rip-relative addressing mode.
  74. * If it does, return the address of the 32-bit displacement word.
  75. * If not, return null.
  76. */
  77. static s32 __kprobes *is_riprel(u8 *insn)
  78. {
  79. #define W(row,b0,b1,b2,b3,b4,b5,b6,b7,b8,b9,ba,bb,bc,bd,be,bf) \
  80. (((b0##UL << 0x0)|(b1##UL << 0x1)|(b2##UL << 0x2)|(b3##UL << 0x3) | \
  81. (b4##UL << 0x4)|(b5##UL << 0x5)|(b6##UL << 0x6)|(b7##UL << 0x7) | \
  82. (b8##UL << 0x8)|(b9##UL << 0x9)|(ba##UL << 0xa)|(bb##UL << 0xb) | \
  83. (bc##UL << 0xc)|(bd##UL << 0xd)|(be##UL << 0xe)|(bf##UL << 0xf)) \
  84. << (row % 64))
  85. static const u64 onebyte_has_modrm[256 / 64] = {
  86. /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
  87. /* ------------------------------- */
  88. W(0x00, 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0)| /* 00 */
  89. W(0x10, 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0)| /* 10 */
  90. W(0x20, 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0)| /* 20 */
  91. W(0x30, 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0), /* 30 */
  92. W(0x40, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)| /* 40 */
  93. W(0x50, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)| /* 50 */
  94. W(0x60, 0,0,1,1,0,0,0,0,0,1,0,1,0,0,0,0)| /* 60 */
  95. W(0x70, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0), /* 70 */
  96. W(0x80, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)| /* 80 */
  97. W(0x90, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)| /* 90 */
  98. W(0xa0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)| /* a0 */
  99. W(0xb0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0), /* b0 */
  100. W(0xc0, 1,1,0,0,1,1,1,1,0,0,0,0,0,0,0,0)| /* c0 */
  101. W(0xd0, 1,1,1,1,0,0,0,0,1,1,1,1,1,1,1,1)| /* d0 */
  102. W(0xe0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)| /* e0 */
  103. W(0xf0, 0,0,0,0,0,0,1,1,0,0,0,0,0,0,1,1) /* f0 */
  104. /* ------------------------------- */
  105. /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
  106. };
  107. static const u64 twobyte_has_modrm[256 / 64] = {
  108. /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
  109. /* ------------------------------- */
  110. W(0x00, 1,1,1,1,0,0,0,0,0,0,0,0,0,1,0,1)| /* 0f */
  111. W(0x10, 1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0)| /* 1f */
  112. W(0x20, 1,1,1,1,1,0,1,0,1,1,1,1,1,1,1,1)| /* 2f */
  113. W(0x30, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0), /* 3f */
  114. W(0x40, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)| /* 4f */
  115. W(0x50, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)| /* 5f */
  116. W(0x60, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)| /* 6f */
  117. W(0x70, 1,1,1,1,1,1,1,0,0,0,0,0,1,1,1,1), /* 7f */
  118. W(0x80, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)| /* 8f */
  119. W(0x90, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)| /* 9f */
  120. W(0xa0, 0,0,0,1,1,1,1,1,0,0,0,1,1,1,1,1)| /* af */
  121. W(0xb0, 1,1,1,1,1,1,1,1,0,0,1,1,1,1,1,1), /* bf */
  122. W(0xc0, 1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0)| /* cf */
  123. W(0xd0, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)| /* df */
  124. W(0xe0, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)| /* ef */
  125. W(0xf0, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0) /* ff */
  126. /* ------------------------------- */
  127. /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
  128. };
  129. #undef W
  130. int need_modrm;
  131. /* Skip legacy instruction prefixes. */
  132. while (1) {
  133. switch (*insn) {
  134. case 0x66:
  135. case 0x67:
  136. case 0x2e:
  137. case 0x3e:
  138. case 0x26:
  139. case 0x64:
  140. case 0x65:
  141. case 0x36:
  142. case 0xf0:
  143. case 0xf3:
  144. case 0xf2:
  145. ++insn;
  146. continue;
  147. }
  148. break;
  149. }
  150. /* Skip REX instruction prefix. */
  151. if ((*insn & 0xf0) == 0x40)
  152. ++insn;
  153. if (*insn == 0x0f) { /* Two-byte opcode. */
  154. ++insn;
  155. need_modrm = test_bit(*insn, twobyte_has_modrm);
  156. } else { /* One-byte opcode. */
  157. need_modrm = test_bit(*insn, onebyte_has_modrm);
  158. }
  159. if (need_modrm) {
  160. u8 modrm = *++insn;
  161. if ((modrm & 0xc7) == 0x05) { /* %rip+disp32 addressing mode */
  162. /* Displacement follows ModRM byte. */
  163. return (s32 *) ++insn;
  164. }
  165. }
  166. /* No %rip-relative addressing mode here. */
  167. return NULL;
  168. }
  169. static void __kprobes arch_copy_kprobe(struct kprobe *p)
  170. {
  171. s32 *ripdisp;
  172. memcpy(p->ainsn.insn, p->addr, MAX_INSN_SIZE);
  173. ripdisp = is_riprel(p->ainsn.insn);
  174. if (ripdisp) {
  175. /*
  176. * The copied instruction uses the %rip-relative
  177. * addressing mode. Adjust the displacement for the
  178. * difference between the original location of this
  179. * instruction and the location of the copy that will
  180. * actually be run. The tricky bit here is making sure
  181. * that the sign extension happens correctly in this
  182. * calculation, since we need a signed 32-bit result to
  183. * be sign-extended to 64 bits when it's added to the
  184. * %rip value and yield the same 64-bit result that the
  185. * sign-extension of the original signed 32-bit
  186. * displacement would have given.
  187. */
  188. s64 disp = (u8 *) p->addr + *ripdisp - (u8 *) p->ainsn.insn;
  189. BUG_ON((s64) (s32) disp != disp); /* Sanity check. */
  190. *ripdisp = disp;
  191. }
  192. p->opcode = *p->addr;
  193. }
  194. void __kprobes arch_arm_kprobe(struct kprobe *p)
  195. {
  196. text_poke(p->addr, ((unsigned char []){BREAKPOINT_INSTRUCTION}), 1);
  197. }
  198. void __kprobes arch_disarm_kprobe(struct kprobe *p)
  199. {
  200. text_poke(p->addr, &p->opcode, 1);
  201. }
  202. void __kprobes arch_remove_kprobe(struct kprobe *p)
  203. {
  204. mutex_lock(&kprobe_mutex);
  205. free_insn_slot(p->ainsn.insn, 0);
  206. mutex_unlock(&kprobe_mutex);
  207. }
  208. static void __kprobes save_previous_kprobe(struct kprobe_ctlblk *kcb)
  209. {
  210. kcb->prev_kprobe.kp = kprobe_running();
  211. kcb->prev_kprobe.status = kcb->kprobe_status;
  212. kcb->prev_kprobe.old_rflags = kcb->kprobe_old_rflags;
  213. kcb->prev_kprobe.saved_rflags = kcb->kprobe_saved_rflags;
  214. }
  215. static void __kprobes restore_previous_kprobe(struct kprobe_ctlblk *kcb)
  216. {
  217. __get_cpu_var(current_kprobe) = kcb->prev_kprobe.kp;
  218. kcb->kprobe_status = kcb->prev_kprobe.status;
  219. kcb->kprobe_old_rflags = kcb->prev_kprobe.old_rflags;
  220. kcb->kprobe_saved_rflags = kcb->prev_kprobe.saved_rflags;
  221. }
  222. static void __kprobes set_current_kprobe(struct kprobe *p, struct pt_regs *regs,
  223. struct kprobe_ctlblk *kcb)
  224. {
  225. __get_cpu_var(current_kprobe) = p;
  226. kcb->kprobe_saved_rflags = kcb->kprobe_old_rflags
  227. = (regs->eflags & (TF_MASK | IF_MASK));
  228. if (is_IF_modifier(p->ainsn.insn))
  229. kcb->kprobe_saved_rflags &= ~IF_MASK;
  230. }
  231. static void __kprobes prepare_singlestep(struct kprobe *p, struct pt_regs *regs)
  232. {
  233. regs->eflags |= TF_MASK;
  234. regs->eflags &= ~IF_MASK;
  235. /*single step inline if the instruction is an int3*/
  236. if (p->opcode == BREAKPOINT_INSTRUCTION)
  237. regs->rip = (unsigned long)p->addr;
  238. else
  239. regs->rip = (unsigned long)p->ainsn.insn;
  240. }
  241. /* Called with kretprobe_lock held */
  242. void __kprobes arch_prepare_kretprobe(struct kretprobe_instance *ri,
  243. struct pt_regs *regs)
  244. {
  245. unsigned long *sara = (unsigned long *)regs->rsp;
  246. ri->ret_addr = (kprobe_opcode_t *) *sara;
  247. /* Replace the return addr with trampoline addr */
  248. *sara = (unsigned long) &kretprobe_trampoline;
  249. }
  250. int __kprobes kprobe_handler(struct pt_regs *regs)
  251. {
  252. struct kprobe *p;
  253. int ret = 0;
  254. kprobe_opcode_t *addr = (kprobe_opcode_t *)(regs->rip - sizeof(kprobe_opcode_t));
  255. struct kprobe_ctlblk *kcb;
  256. /*
  257. * We don't want to be preempted for the entire
  258. * duration of kprobe processing
  259. */
  260. preempt_disable();
  261. kcb = get_kprobe_ctlblk();
  262. /* Check we're not actually recursing */
  263. if (kprobe_running()) {
  264. p = get_kprobe(addr);
  265. if (p) {
  266. if (kcb->kprobe_status == KPROBE_HIT_SS &&
  267. *p->ainsn.insn == BREAKPOINT_INSTRUCTION) {
  268. regs->eflags &= ~TF_MASK;
  269. regs->eflags |= kcb->kprobe_saved_rflags;
  270. goto no_kprobe;
  271. } else if (kcb->kprobe_status == KPROBE_HIT_SSDONE) {
  272. /* TODO: Provide re-entrancy from
  273. * post_kprobes_handler() and avoid exception
  274. * stack corruption while single-stepping on
  275. * the instruction of the new probe.
  276. */
  277. arch_disarm_kprobe(p);
  278. regs->rip = (unsigned long)p->addr;
  279. reset_current_kprobe();
  280. ret = 1;
  281. } else {
  282. /* We have reentered the kprobe_handler(), since
  283. * another probe was hit while within the
  284. * handler. We here save the original kprobe
  285. * variables and just single step on instruction
  286. * of the new probe without calling any user
  287. * handlers.
  288. */
  289. save_previous_kprobe(kcb);
  290. set_current_kprobe(p, regs, kcb);
  291. kprobes_inc_nmissed_count(p);
  292. prepare_singlestep(p, regs);
  293. kcb->kprobe_status = KPROBE_REENTER;
  294. return 1;
  295. }
  296. } else {
  297. if (*addr != BREAKPOINT_INSTRUCTION) {
  298. /* The breakpoint instruction was removed by
  299. * another cpu right after we hit, no further
  300. * handling of this interrupt is appropriate
  301. */
  302. regs->rip = (unsigned long)addr;
  303. ret = 1;
  304. goto no_kprobe;
  305. }
  306. p = __get_cpu_var(current_kprobe);
  307. if (p->break_handler && p->break_handler(p, regs)) {
  308. goto ss_probe;
  309. }
  310. }
  311. goto no_kprobe;
  312. }
  313. p = get_kprobe(addr);
  314. if (!p) {
  315. if (*addr != BREAKPOINT_INSTRUCTION) {
  316. /*
  317. * The breakpoint instruction was removed right
  318. * after we hit it. Another cpu has removed
  319. * either a probepoint or a debugger breakpoint
  320. * at this address. In either case, no further
  321. * handling of this interrupt is appropriate.
  322. * Back up over the (now missing) int3 and run
  323. * the original instruction.
  324. */
  325. regs->rip = (unsigned long)addr;
  326. ret = 1;
  327. }
  328. /* Not one of ours: let kernel handle it */
  329. goto no_kprobe;
  330. }
  331. set_current_kprobe(p, regs, kcb);
  332. kcb->kprobe_status = KPROBE_HIT_ACTIVE;
  333. if (p->pre_handler && p->pre_handler(p, regs))
  334. /* handler has already set things up, so skip ss setup */
  335. return 1;
  336. ss_probe:
  337. prepare_singlestep(p, regs);
  338. kcb->kprobe_status = KPROBE_HIT_SS;
  339. return 1;
  340. no_kprobe:
  341. preempt_enable_no_resched();
  342. return ret;
  343. }
  344. /*
  345. * For function-return probes, init_kprobes() establishes a probepoint
  346. * here. When a retprobed function returns, this probe is hit and
  347. * trampoline_probe_handler() runs, calling the kretprobe's handler.
  348. */
  349. void kretprobe_trampoline_holder(void)
  350. {
  351. asm volatile ( ".global kretprobe_trampoline\n"
  352. "kretprobe_trampoline: \n"
  353. "nop\n");
  354. }
  355. /*
  356. * Called when we hit the probe point at kretprobe_trampoline
  357. */
  358. int __kprobes trampoline_probe_handler(struct kprobe *p, struct pt_regs *regs)
  359. {
  360. struct kretprobe_instance *ri = NULL;
  361. struct hlist_head *head, empty_rp;
  362. struct hlist_node *node, *tmp;
  363. unsigned long flags, orig_ret_address = 0;
  364. unsigned long trampoline_address =(unsigned long)&kretprobe_trampoline;
  365. INIT_HLIST_HEAD(&empty_rp);
  366. spin_lock_irqsave(&kretprobe_lock, flags);
  367. head = kretprobe_inst_table_head(current);
  368. /*
  369. * It is possible to have multiple instances associated with a given
  370. * task either because an multiple functions in the call path
  371. * have a return probe installed on them, and/or more then one return
  372. * return probe was registered for a target function.
  373. *
  374. * We can handle this because:
  375. * - instances are always inserted at the head of the list
  376. * - when multiple return probes are registered for the same
  377. * function, the first instance's ret_addr will point to the
  378. * real return address, and all the rest will point to
  379. * kretprobe_trampoline
  380. */
  381. hlist_for_each_entry_safe(ri, node, tmp, head, hlist) {
  382. if (ri->task != current)
  383. /* another task is sharing our hash bucket */
  384. continue;
  385. if (ri->rp && ri->rp->handler)
  386. ri->rp->handler(ri, regs);
  387. orig_ret_address = (unsigned long)ri->ret_addr;
  388. recycle_rp_inst(ri, &empty_rp);
  389. if (orig_ret_address != trampoline_address)
  390. /*
  391. * This is the real return address. Any other
  392. * instances associated with this task are for
  393. * other calls deeper on the call stack
  394. */
  395. break;
  396. }
  397. kretprobe_assert(ri, orig_ret_address, trampoline_address);
  398. regs->rip = orig_ret_address;
  399. reset_current_kprobe();
  400. spin_unlock_irqrestore(&kretprobe_lock, flags);
  401. preempt_enable_no_resched();
  402. hlist_for_each_entry_safe(ri, node, tmp, &empty_rp, hlist) {
  403. hlist_del(&ri->hlist);
  404. kfree(ri);
  405. }
  406. /*
  407. * By returning a non-zero value, we are telling
  408. * kprobe_handler() that we don't want the post_handler
  409. * to run (and have re-enabled preemption)
  410. */
  411. return 1;
  412. }
  413. /*
  414. * Called after single-stepping. p->addr is the address of the
  415. * instruction whose first byte has been replaced by the "int 3"
  416. * instruction. To avoid the SMP problems that can occur when we
  417. * temporarily put back the original opcode to single-step, we
  418. * single-stepped a copy of the instruction. The address of this
  419. * copy is p->ainsn.insn.
  420. *
  421. * This function prepares to return from the post-single-step
  422. * interrupt. We have to fix up the stack as follows:
  423. *
  424. * 0) Except in the case of absolute or indirect jump or call instructions,
  425. * the new rip is relative to the copied instruction. We need to make
  426. * it relative to the original instruction.
  427. *
  428. * 1) If the single-stepped instruction was pushfl, then the TF and IF
  429. * flags are set in the just-pushed eflags, and may need to be cleared.
  430. *
  431. * 2) If the single-stepped instruction was a call, the return address
  432. * that is atop the stack is the address following the copied instruction.
  433. * We need to make it the address following the original instruction.
  434. */
  435. static void __kprobes resume_execution(struct kprobe *p,
  436. struct pt_regs *regs, struct kprobe_ctlblk *kcb)
  437. {
  438. unsigned long *tos = (unsigned long *)regs->rsp;
  439. unsigned long next_rip = 0;
  440. unsigned long copy_rip = (unsigned long)p->ainsn.insn;
  441. unsigned long orig_rip = (unsigned long)p->addr;
  442. kprobe_opcode_t *insn = p->ainsn.insn;
  443. /*skip the REX prefix*/
  444. if (*insn >= 0x40 && *insn <= 0x4f)
  445. insn++;
  446. switch (*insn) {
  447. case 0x9c: /* pushfl */
  448. *tos &= ~(TF_MASK | IF_MASK);
  449. *tos |= kcb->kprobe_old_rflags;
  450. break;
  451. case 0xc3: /* ret/lret */
  452. case 0xcb:
  453. case 0xc2:
  454. case 0xca:
  455. regs->eflags &= ~TF_MASK;
  456. /* rip is already adjusted, no more changes required*/
  457. return;
  458. case 0xe8: /* call relative - Fix return addr */
  459. *tos = orig_rip + (*tos - copy_rip);
  460. break;
  461. case 0xff:
  462. if ((insn[1] & 0x30) == 0x10) {
  463. /* call absolute, indirect */
  464. /* Fix return addr; rip is correct. */
  465. next_rip = regs->rip;
  466. *tos = orig_rip + (*tos - copy_rip);
  467. } else if (((insn[1] & 0x31) == 0x20) || /* jmp near, absolute indirect */
  468. ((insn[1] & 0x31) == 0x21)) { /* jmp far, absolute indirect */
  469. /* rip is correct. */
  470. next_rip = regs->rip;
  471. }
  472. break;
  473. case 0xea: /* jmp absolute -- rip is correct */
  474. next_rip = regs->rip;
  475. break;
  476. default:
  477. break;
  478. }
  479. regs->eflags &= ~TF_MASK;
  480. if (next_rip) {
  481. regs->rip = next_rip;
  482. } else {
  483. regs->rip = orig_rip + (regs->rip - copy_rip);
  484. }
  485. }
  486. int __kprobes post_kprobe_handler(struct pt_regs *regs)
  487. {
  488. struct kprobe *cur = kprobe_running();
  489. struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
  490. if (!cur)
  491. return 0;
  492. if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) {
  493. kcb->kprobe_status = KPROBE_HIT_SSDONE;
  494. cur->post_handler(cur, regs, 0);
  495. }
  496. resume_execution(cur, regs, kcb);
  497. regs->eflags |= kcb->kprobe_saved_rflags;
  498. #ifdef CONFIG_TRACE_IRQFLAGS_SUPPORT
  499. if (raw_irqs_disabled_flags(regs->eflags))
  500. trace_hardirqs_off();
  501. else
  502. trace_hardirqs_on();
  503. #endif
  504. /* Restore the original saved kprobes variables and continue. */
  505. if (kcb->kprobe_status == KPROBE_REENTER) {
  506. restore_previous_kprobe(kcb);
  507. goto out;
  508. }
  509. reset_current_kprobe();
  510. out:
  511. preempt_enable_no_resched();
  512. /*
  513. * if somebody else is singlestepping across a probe point, eflags
  514. * will have TF set, in which case, continue the remaining processing
  515. * of do_debug, as if this is not a probe hit.
  516. */
  517. if (regs->eflags & TF_MASK)
  518. return 0;
  519. return 1;
  520. }
  521. int __kprobes kprobe_fault_handler(struct pt_regs *regs, int trapnr)
  522. {
  523. struct kprobe *cur = kprobe_running();
  524. struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
  525. const struct exception_table_entry *fixup;
  526. switch(kcb->kprobe_status) {
  527. case KPROBE_HIT_SS:
  528. case KPROBE_REENTER:
  529. /*
  530. * We are here because the instruction being single
  531. * stepped caused a page fault. We reset the current
  532. * kprobe and the rip points back to the probe address
  533. * and allow the page fault handler to continue as a
  534. * normal page fault.
  535. */
  536. regs->rip = (unsigned long)cur->addr;
  537. regs->eflags |= kcb->kprobe_old_rflags;
  538. if (kcb->kprobe_status == KPROBE_REENTER)
  539. restore_previous_kprobe(kcb);
  540. else
  541. reset_current_kprobe();
  542. preempt_enable_no_resched();
  543. break;
  544. case KPROBE_HIT_ACTIVE:
  545. case KPROBE_HIT_SSDONE:
  546. /*
  547. * We increment the nmissed count for accounting,
  548. * we can also use npre/npostfault count for accouting
  549. * these specific fault cases.
  550. */
  551. kprobes_inc_nmissed_count(cur);
  552. /*
  553. * We come here because instructions in the pre/post
  554. * handler caused the page_fault, this could happen
  555. * if handler tries to access user space by
  556. * copy_from_user(), get_user() etc. Let the
  557. * user-specified handler try to fix it first.
  558. */
  559. if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr))
  560. return 1;
  561. /*
  562. * In case the user-specified fault handler returned
  563. * zero, try to fix up.
  564. */
  565. fixup = search_exception_tables(regs->rip);
  566. if (fixup) {
  567. regs->rip = fixup->fixup;
  568. return 1;
  569. }
  570. /*
  571. * fixup() could not handle it,
  572. * Let do_page_fault() fix it.
  573. */
  574. break;
  575. default:
  576. break;
  577. }
  578. return 0;
  579. }
  580. /*
  581. * Wrapper routine for handling exceptions.
  582. */
  583. int __kprobes kprobe_exceptions_notify(struct notifier_block *self,
  584. unsigned long val, void *data)
  585. {
  586. struct die_args *args = (struct die_args *)data;
  587. int ret = NOTIFY_DONE;
  588. if (args->regs && user_mode(args->regs))
  589. return ret;
  590. switch (val) {
  591. case DIE_INT3:
  592. if (kprobe_handler(args->regs))
  593. ret = NOTIFY_STOP;
  594. break;
  595. case DIE_DEBUG:
  596. if (post_kprobe_handler(args->regs))
  597. ret = NOTIFY_STOP;
  598. break;
  599. case DIE_GPF:
  600. /* kprobe_running() needs smp_processor_id() */
  601. preempt_disable();
  602. if (kprobe_running() &&
  603. kprobe_fault_handler(args->regs, args->trapnr))
  604. ret = NOTIFY_STOP;
  605. preempt_enable();
  606. break;
  607. default:
  608. break;
  609. }
  610. return ret;
  611. }
  612. int __kprobes setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs)
  613. {
  614. struct jprobe *jp = container_of(p, struct jprobe, kp);
  615. unsigned long addr;
  616. struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
  617. kcb->jprobe_saved_regs = *regs;
  618. kcb->jprobe_saved_rsp = (long *) regs->rsp;
  619. addr = (unsigned long)(kcb->jprobe_saved_rsp);
  620. /*
  621. * As Linus pointed out, gcc assumes that the callee
  622. * owns the argument space and could overwrite it, e.g.
  623. * tailcall optimization. So, to be absolutely safe
  624. * we also save and restore enough stack bytes to cover
  625. * the argument area.
  626. */
  627. memcpy(kcb->jprobes_stack, (kprobe_opcode_t *)addr,
  628. MIN_STACK_SIZE(addr));
  629. regs->eflags &= ~IF_MASK;
  630. trace_hardirqs_off();
  631. regs->rip = (unsigned long)(jp->entry);
  632. return 1;
  633. }
  634. void __kprobes jprobe_return(void)
  635. {
  636. struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
  637. asm volatile (" xchg %%rbx,%%rsp \n"
  638. " int3 \n"
  639. " .globl jprobe_return_end \n"
  640. " jprobe_return_end: \n"
  641. " nop \n"::"b"
  642. (kcb->jprobe_saved_rsp):"memory");
  643. }
  644. int __kprobes longjmp_break_handler(struct kprobe *p, struct pt_regs *regs)
  645. {
  646. struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
  647. u8 *addr = (u8 *) (regs->rip - 1);
  648. unsigned long stack_addr = (unsigned long)(kcb->jprobe_saved_rsp);
  649. struct jprobe *jp = container_of(p, struct jprobe, kp);
  650. if ((addr > (u8 *) jprobe_return) && (addr < (u8 *) jprobe_return_end)) {
  651. if ((long *)regs->rsp != kcb->jprobe_saved_rsp) {
  652. struct pt_regs *saved_regs =
  653. container_of(kcb->jprobe_saved_rsp,
  654. struct pt_regs, rsp);
  655. printk("current rsp %p does not match saved rsp %p\n",
  656. (long *)regs->rsp, kcb->jprobe_saved_rsp);
  657. printk("Saved registers for jprobe %p\n", jp);
  658. show_registers(saved_regs);
  659. printk("Current registers\n");
  660. show_registers(regs);
  661. BUG();
  662. }
  663. *regs = kcb->jprobe_saved_regs;
  664. memcpy((kprobe_opcode_t *) stack_addr, kcb->jprobes_stack,
  665. MIN_STACK_SIZE(stack_addr));
  666. preempt_enable_no_resched();
  667. return 1;
  668. }
  669. return 0;
  670. }
  671. static struct kprobe trampoline_p = {
  672. .addr = (kprobe_opcode_t *) &kretprobe_trampoline,
  673. .pre_handler = trampoline_probe_handler
  674. };
  675. int __init arch_init_kprobes(void)
  676. {
  677. return register_kprobe(&trampoline_p);
  678. }
  679. int __kprobes arch_trampoline_kprobe(struct kprobe *p)
  680. {
  681. if (p->addr == (kprobe_opcode_t *)&kretprobe_trampoline)
  682. return 1;
  683. return 0;
  684. }