vmx.c 95 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * Copyright (C) 2006 Qumranet, Inc.
  8. *
  9. * Authors:
  10. * Avi Kivity <avi@qumranet.com>
  11. * Yaniv Kamay <yaniv@qumranet.com>
  12. *
  13. * This work is licensed under the terms of the GNU GPL, version 2. See
  14. * the COPYING file in the top-level directory.
  15. *
  16. */
  17. #include "irq.h"
  18. #include "mmu.h"
  19. #include <linux/kvm_host.h>
  20. #include <linux/module.h>
  21. #include <linux/kernel.h>
  22. #include <linux/mm.h>
  23. #include <linux/highmem.h>
  24. #include <linux/sched.h>
  25. #include <linux/moduleparam.h>
  26. #include "kvm_cache_regs.h"
  27. #include "x86.h"
  28. #include <asm/io.h>
  29. #include <asm/desc.h>
  30. #include <asm/vmx.h>
  31. #include <asm/virtext.h>
  32. #define __ex(x) __kvm_handle_fault_on_reboot(x)
  33. MODULE_AUTHOR("Qumranet");
  34. MODULE_LICENSE("GPL");
  35. static int bypass_guest_pf = 1;
  36. module_param(bypass_guest_pf, bool, 0);
  37. static int enable_vpid = 1;
  38. module_param(enable_vpid, bool, 0);
  39. static int flexpriority_enabled = 1;
  40. module_param(flexpriority_enabled, bool, 0);
  41. static int enable_ept = 1;
  42. module_param(enable_ept, bool, 0);
  43. static int emulate_invalid_guest_state = 0;
  44. module_param(emulate_invalid_guest_state, bool, 0);
  45. struct vmcs {
  46. u32 revision_id;
  47. u32 abort;
  48. char data[0];
  49. };
  50. struct vcpu_vmx {
  51. struct kvm_vcpu vcpu;
  52. struct list_head local_vcpus_link;
  53. unsigned long host_rsp;
  54. int launched;
  55. u8 fail;
  56. u32 idt_vectoring_info;
  57. struct kvm_msr_entry *guest_msrs;
  58. struct kvm_msr_entry *host_msrs;
  59. int nmsrs;
  60. int save_nmsrs;
  61. int msr_offset_efer;
  62. #ifdef CONFIG_X86_64
  63. int msr_offset_kernel_gs_base;
  64. #endif
  65. struct vmcs *vmcs;
  66. struct {
  67. int loaded;
  68. u16 fs_sel, gs_sel, ldt_sel;
  69. int gs_ldt_reload_needed;
  70. int fs_reload_needed;
  71. int guest_efer_loaded;
  72. } host_state;
  73. struct {
  74. struct {
  75. bool pending;
  76. u8 vector;
  77. unsigned rip;
  78. } irq;
  79. } rmode;
  80. int vpid;
  81. bool emulation_required;
  82. /* Support for vnmi-less CPUs */
  83. int soft_vnmi_blocked;
  84. ktime_t entry_time;
  85. s64 vnmi_blocked_time;
  86. };
  87. static inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu)
  88. {
  89. return container_of(vcpu, struct vcpu_vmx, vcpu);
  90. }
  91. static int init_rmode(struct kvm *kvm);
  92. static u64 construct_eptp(unsigned long root_hpa);
  93. static DEFINE_PER_CPU(struct vmcs *, vmxarea);
  94. static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
  95. static DEFINE_PER_CPU(struct list_head, vcpus_on_cpu);
  96. static struct page *vmx_io_bitmap_a;
  97. static struct page *vmx_io_bitmap_b;
  98. static struct page *vmx_msr_bitmap;
  99. static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
  100. static DEFINE_SPINLOCK(vmx_vpid_lock);
  101. static struct vmcs_config {
  102. int size;
  103. int order;
  104. u32 revision_id;
  105. u32 pin_based_exec_ctrl;
  106. u32 cpu_based_exec_ctrl;
  107. u32 cpu_based_2nd_exec_ctrl;
  108. u32 vmexit_ctrl;
  109. u32 vmentry_ctrl;
  110. } vmcs_config;
  111. static struct vmx_capability {
  112. u32 ept;
  113. u32 vpid;
  114. } vmx_capability;
  115. #define VMX_SEGMENT_FIELD(seg) \
  116. [VCPU_SREG_##seg] = { \
  117. .selector = GUEST_##seg##_SELECTOR, \
  118. .base = GUEST_##seg##_BASE, \
  119. .limit = GUEST_##seg##_LIMIT, \
  120. .ar_bytes = GUEST_##seg##_AR_BYTES, \
  121. }
  122. static struct kvm_vmx_segment_field {
  123. unsigned selector;
  124. unsigned base;
  125. unsigned limit;
  126. unsigned ar_bytes;
  127. } kvm_vmx_segment_fields[] = {
  128. VMX_SEGMENT_FIELD(CS),
  129. VMX_SEGMENT_FIELD(DS),
  130. VMX_SEGMENT_FIELD(ES),
  131. VMX_SEGMENT_FIELD(FS),
  132. VMX_SEGMENT_FIELD(GS),
  133. VMX_SEGMENT_FIELD(SS),
  134. VMX_SEGMENT_FIELD(TR),
  135. VMX_SEGMENT_FIELD(LDTR),
  136. };
  137. /*
  138. * Keep MSR_K6_STAR at the end, as setup_msrs() will try to optimize it
  139. * away by decrementing the array size.
  140. */
  141. static const u32 vmx_msr_index[] = {
  142. #ifdef CONFIG_X86_64
  143. MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR, MSR_KERNEL_GS_BASE,
  144. #endif
  145. MSR_EFER, MSR_K6_STAR,
  146. };
  147. #define NR_VMX_MSR ARRAY_SIZE(vmx_msr_index)
  148. static void load_msrs(struct kvm_msr_entry *e, int n)
  149. {
  150. int i;
  151. for (i = 0; i < n; ++i)
  152. wrmsrl(e[i].index, e[i].data);
  153. }
  154. static void save_msrs(struct kvm_msr_entry *e, int n)
  155. {
  156. int i;
  157. for (i = 0; i < n; ++i)
  158. rdmsrl(e[i].index, e[i].data);
  159. }
  160. static inline int is_page_fault(u32 intr_info)
  161. {
  162. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
  163. INTR_INFO_VALID_MASK)) ==
  164. (INTR_TYPE_HARD_EXCEPTION | PF_VECTOR | INTR_INFO_VALID_MASK);
  165. }
  166. static inline int is_no_device(u32 intr_info)
  167. {
  168. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
  169. INTR_INFO_VALID_MASK)) ==
  170. (INTR_TYPE_HARD_EXCEPTION | NM_VECTOR | INTR_INFO_VALID_MASK);
  171. }
  172. static inline int is_invalid_opcode(u32 intr_info)
  173. {
  174. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
  175. INTR_INFO_VALID_MASK)) ==
  176. (INTR_TYPE_HARD_EXCEPTION | UD_VECTOR | INTR_INFO_VALID_MASK);
  177. }
  178. static inline int is_external_interrupt(u32 intr_info)
  179. {
  180. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
  181. == (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
  182. }
  183. static inline int cpu_has_vmx_msr_bitmap(void)
  184. {
  185. return (vmcs_config.cpu_based_exec_ctrl & CPU_BASED_USE_MSR_BITMAPS);
  186. }
  187. static inline int cpu_has_vmx_tpr_shadow(void)
  188. {
  189. return (vmcs_config.cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW);
  190. }
  191. static inline int vm_need_tpr_shadow(struct kvm *kvm)
  192. {
  193. return ((cpu_has_vmx_tpr_shadow()) && (irqchip_in_kernel(kvm)));
  194. }
  195. static inline int cpu_has_secondary_exec_ctrls(void)
  196. {
  197. return (vmcs_config.cpu_based_exec_ctrl &
  198. CPU_BASED_ACTIVATE_SECONDARY_CONTROLS);
  199. }
  200. static inline bool cpu_has_vmx_virtualize_apic_accesses(void)
  201. {
  202. return flexpriority_enabled
  203. && (vmcs_config.cpu_based_2nd_exec_ctrl &
  204. SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES);
  205. }
  206. static inline int cpu_has_vmx_invept_individual_addr(void)
  207. {
  208. return (!!(vmx_capability.ept & VMX_EPT_EXTENT_INDIVIDUAL_BIT));
  209. }
  210. static inline int cpu_has_vmx_invept_context(void)
  211. {
  212. return (!!(vmx_capability.ept & VMX_EPT_EXTENT_CONTEXT_BIT));
  213. }
  214. static inline int cpu_has_vmx_invept_global(void)
  215. {
  216. return (!!(vmx_capability.ept & VMX_EPT_EXTENT_GLOBAL_BIT));
  217. }
  218. static inline int cpu_has_vmx_ept(void)
  219. {
  220. return (vmcs_config.cpu_based_2nd_exec_ctrl &
  221. SECONDARY_EXEC_ENABLE_EPT);
  222. }
  223. static inline int vm_need_ept(void)
  224. {
  225. return (cpu_has_vmx_ept() && enable_ept);
  226. }
  227. static inline int vm_need_virtualize_apic_accesses(struct kvm *kvm)
  228. {
  229. return ((cpu_has_vmx_virtualize_apic_accesses()) &&
  230. (irqchip_in_kernel(kvm)));
  231. }
  232. static inline int cpu_has_vmx_vpid(void)
  233. {
  234. return (vmcs_config.cpu_based_2nd_exec_ctrl &
  235. SECONDARY_EXEC_ENABLE_VPID);
  236. }
  237. static inline int cpu_has_virtual_nmis(void)
  238. {
  239. return vmcs_config.pin_based_exec_ctrl & PIN_BASED_VIRTUAL_NMIS;
  240. }
  241. static int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
  242. {
  243. int i;
  244. for (i = 0; i < vmx->nmsrs; ++i)
  245. if (vmx->guest_msrs[i].index == msr)
  246. return i;
  247. return -1;
  248. }
  249. static inline void __invvpid(int ext, u16 vpid, gva_t gva)
  250. {
  251. struct {
  252. u64 vpid : 16;
  253. u64 rsvd : 48;
  254. u64 gva;
  255. } operand = { vpid, 0, gva };
  256. asm volatile (__ex(ASM_VMX_INVVPID)
  257. /* CF==1 or ZF==1 --> rc = -1 */
  258. "; ja 1f ; ud2 ; 1:"
  259. : : "a"(&operand), "c"(ext) : "cc", "memory");
  260. }
  261. static inline void __invept(int ext, u64 eptp, gpa_t gpa)
  262. {
  263. struct {
  264. u64 eptp, gpa;
  265. } operand = {eptp, gpa};
  266. asm volatile (__ex(ASM_VMX_INVEPT)
  267. /* CF==1 or ZF==1 --> rc = -1 */
  268. "; ja 1f ; ud2 ; 1:\n"
  269. : : "a" (&operand), "c" (ext) : "cc", "memory");
  270. }
  271. static struct kvm_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
  272. {
  273. int i;
  274. i = __find_msr_index(vmx, msr);
  275. if (i >= 0)
  276. return &vmx->guest_msrs[i];
  277. return NULL;
  278. }
  279. static void vmcs_clear(struct vmcs *vmcs)
  280. {
  281. u64 phys_addr = __pa(vmcs);
  282. u8 error;
  283. asm volatile (__ex(ASM_VMX_VMCLEAR_RAX) "; setna %0"
  284. : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
  285. : "cc", "memory");
  286. if (error)
  287. printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
  288. vmcs, phys_addr);
  289. }
  290. static void __vcpu_clear(void *arg)
  291. {
  292. struct vcpu_vmx *vmx = arg;
  293. int cpu = raw_smp_processor_id();
  294. if (vmx->vcpu.cpu == cpu)
  295. vmcs_clear(vmx->vmcs);
  296. if (per_cpu(current_vmcs, cpu) == vmx->vmcs)
  297. per_cpu(current_vmcs, cpu) = NULL;
  298. rdtscll(vmx->vcpu.arch.host_tsc);
  299. list_del(&vmx->local_vcpus_link);
  300. vmx->vcpu.cpu = -1;
  301. vmx->launched = 0;
  302. }
  303. static void vcpu_clear(struct vcpu_vmx *vmx)
  304. {
  305. if (vmx->vcpu.cpu == -1)
  306. return;
  307. smp_call_function_single(vmx->vcpu.cpu, __vcpu_clear, vmx, 1);
  308. }
  309. static inline void vpid_sync_vcpu_all(struct vcpu_vmx *vmx)
  310. {
  311. if (vmx->vpid == 0)
  312. return;
  313. __invvpid(VMX_VPID_EXTENT_SINGLE_CONTEXT, vmx->vpid, 0);
  314. }
  315. static inline void ept_sync_global(void)
  316. {
  317. if (cpu_has_vmx_invept_global())
  318. __invept(VMX_EPT_EXTENT_GLOBAL, 0, 0);
  319. }
  320. static inline void ept_sync_context(u64 eptp)
  321. {
  322. if (vm_need_ept()) {
  323. if (cpu_has_vmx_invept_context())
  324. __invept(VMX_EPT_EXTENT_CONTEXT, eptp, 0);
  325. else
  326. ept_sync_global();
  327. }
  328. }
  329. static inline void ept_sync_individual_addr(u64 eptp, gpa_t gpa)
  330. {
  331. if (vm_need_ept()) {
  332. if (cpu_has_vmx_invept_individual_addr())
  333. __invept(VMX_EPT_EXTENT_INDIVIDUAL_ADDR,
  334. eptp, gpa);
  335. else
  336. ept_sync_context(eptp);
  337. }
  338. }
  339. static unsigned long vmcs_readl(unsigned long field)
  340. {
  341. unsigned long value;
  342. asm volatile (__ex(ASM_VMX_VMREAD_RDX_RAX)
  343. : "=a"(value) : "d"(field) : "cc");
  344. return value;
  345. }
  346. static u16 vmcs_read16(unsigned long field)
  347. {
  348. return vmcs_readl(field);
  349. }
  350. static u32 vmcs_read32(unsigned long field)
  351. {
  352. return vmcs_readl(field);
  353. }
  354. static u64 vmcs_read64(unsigned long field)
  355. {
  356. #ifdef CONFIG_X86_64
  357. return vmcs_readl(field);
  358. #else
  359. return vmcs_readl(field) | ((u64)vmcs_readl(field+1) << 32);
  360. #endif
  361. }
  362. static noinline void vmwrite_error(unsigned long field, unsigned long value)
  363. {
  364. printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
  365. field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
  366. dump_stack();
  367. }
  368. static void vmcs_writel(unsigned long field, unsigned long value)
  369. {
  370. u8 error;
  371. asm volatile (__ex(ASM_VMX_VMWRITE_RAX_RDX) "; setna %0"
  372. : "=q"(error) : "a"(value), "d"(field) : "cc");
  373. if (unlikely(error))
  374. vmwrite_error(field, value);
  375. }
  376. static void vmcs_write16(unsigned long field, u16 value)
  377. {
  378. vmcs_writel(field, value);
  379. }
  380. static void vmcs_write32(unsigned long field, u32 value)
  381. {
  382. vmcs_writel(field, value);
  383. }
  384. static void vmcs_write64(unsigned long field, u64 value)
  385. {
  386. vmcs_writel(field, value);
  387. #ifndef CONFIG_X86_64
  388. asm volatile ("");
  389. vmcs_writel(field+1, value >> 32);
  390. #endif
  391. }
  392. static void vmcs_clear_bits(unsigned long field, u32 mask)
  393. {
  394. vmcs_writel(field, vmcs_readl(field) & ~mask);
  395. }
  396. static void vmcs_set_bits(unsigned long field, u32 mask)
  397. {
  398. vmcs_writel(field, vmcs_readl(field) | mask);
  399. }
  400. static void update_exception_bitmap(struct kvm_vcpu *vcpu)
  401. {
  402. u32 eb;
  403. eb = (1u << PF_VECTOR) | (1u << UD_VECTOR);
  404. if (!vcpu->fpu_active)
  405. eb |= 1u << NM_VECTOR;
  406. if (vcpu->guest_debug.enabled)
  407. eb |= 1u << DB_VECTOR;
  408. if (vcpu->arch.rmode.active)
  409. eb = ~0;
  410. if (vm_need_ept())
  411. eb &= ~(1u << PF_VECTOR); /* bypass_guest_pf = 0 */
  412. vmcs_write32(EXCEPTION_BITMAP, eb);
  413. }
  414. static void reload_tss(void)
  415. {
  416. /*
  417. * VT restores TR but not its size. Useless.
  418. */
  419. struct descriptor_table gdt;
  420. struct desc_struct *descs;
  421. kvm_get_gdt(&gdt);
  422. descs = (void *)gdt.base;
  423. descs[GDT_ENTRY_TSS].type = 9; /* available TSS */
  424. load_TR_desc();
  425. }
  426. static void load_transition_efer(struct vcpu_vmx *vmx)
  427. {
  428. int efer_offset = vmx->msr_offset_efer;
  429. u64 host_efer = vmx->host_msrs[efer_offset].data;
  430. u64 guest_efer = vmx->guest_msrs[efer_offset].data;
  431. u64 ignore_bits;
  432. if (efer_offset < 0)
  433. return;
  434. /*
  435. * NX is emulated; LMA and LME handled by hardware; SCE meaninless
  436. * outside long mode
  437. */
  438. ignore_bits = EFER_NX | EFER_SCE;
  439. #ifdef CONFIG_X86_64
  440. ignore_bits |= EFER_LMA | EFER_LME;
  441. /* SCE is meaningful only in long mode on Intel */
  442. if (guest_efer & EFER_LMA)
  443. ignore_bits &= ~(u64)EFER_SCE;
  444. #endif
  445. if ((guest_efer & ~ignore_bits) == (host_efer & ~ignore_bits))
  446. return;
  447. vmx->host_state.guest_efer_loaded = 1;
  448. guest_efer &= ~ignore_bits;
  449. guest_efer |= host_efer & ignore_bits;
  450. wrmsrl(MSR_EFER, guest_efer);
  451. vmx->vcpu.stat.efer_reload++;
  452. }
  453. static void reload_host_efer(struct vcpu_vmx *vmx)
  454. {
  455. if (vmx->host_state.guest_efer_loaded) {
  456. vmx->host_state.guest_efer_loaded = 0;
  457. load_msrs(vmx->host_msrs + vmx->msr_offset_efer, 1);
  458. }
  459. }
  460. static void vmx_save_host_state(struct kvm_vcpu *vcpu)
  461. {
  462. struct vcpu_vmx *vmx = to_vmx(vcpu);
  463. if (vmx->host_state.loaded)
  464. return;
  465. vmx->host_state.loaded = 1;
  466. /*
  467. * Set host fs and gs selectors. Unfortunately, 22.2.3 does not
  468. * allow segment selectors with cpl > 0 or ti == 1.
  469. */
  470. vmx->host_state.ldt_sel = kvm_read_ldt();
  471. vmx->host_state.gs_ldt_reload_needed = vmx->host_state.ldt_sel;
  472. vmx->host_state.fs_sel = kvm_read_fs();
  473. if (!(vmx->host_state.fs_sel & 7)) {
  474. vmcs_write16(HOST_FS_SELECTOR, vmx->host_state.fs_sel);
  475. vmx->host_state.fs_reload_needed = 0;
  476. } else {
  477. vmcs_write16(HOST_FS_SELECTOR, 0);
  478. vmx->host_state.fs_reload_needed = 1;
  479. }
  480. vmx->host_state.gs_sel = kvm_read_gs();
  481. if (!(vmx->host_state.gs_sel & 7))
  482. vmcs_write16(HOST_GS_SELECTOR, vmx->host_state.gs_sel);
  483. else {
  484. vmcs_write16(HOST_GS_SELECTOR, 0);
  485. vmx->host_state.gs_ldt_reload_needed = 1;
  486. }
  487. #ifdef CONFIG_X86_64
  488. vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE));
  489. vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE));
  490. #else
  491. vmcs_writel(HOST_FS_BASE, segment_base(vmx->host_state.fs_sel));
  492. vmcs_writel(HOST_GS_BASE, segment_base(vmx->host_state.gs_sel));
  493. #endif
  494. #ifdef CONFIG_X86_64
  495. if (is_long_mode(&vmx->vcpu))
  496. save_msrs(vmx->host_msrs +
  497. vmx->msr_offset_kernel_gs_base, 1);
  498. #endif
  499. load_msrs(vmx->guest_msrs, vmx->save_nmsrs);
  500. load_transition_efer(vmx);
  501. }
  502. static void __vmx_load_host_state(struct vcpu_vmx *vmx)
  503. {
  504. unsigned long flags;
  505. if (!vmx->host_state.loaded)
  506. return;
  507. ++vmx->vcpu.stat.host_state_reload;
  508. vmx->host_state.loaded = 0;
  509. if (vmx->host_state.fs_reload_needed)
  510. kvm_load_fs(vmx->host_state.fs_sel);
  511. if (vmx->host_state.gs_ldt_reload_needed) {
  512. kvm_load_ldt(vmx->host_state.ldt_sel);
  513. /*
  514. * If we have to reload gs, we must take care to
  515. * preserve our gs base.
  516. */
  517. local_irq_save(flags);
  518. kvm_load_gs(vmx->host_state.gs_sel);
  519. #ifdef CONFIG_X86_64
  520. wrmsrl(MSR_GS_BASE, vmcs_readl(HOST_GS_BASE));
  521. #endif
  522. local_irq_restore(flags);
  523. }
  524. reload_tss();
  525. save_msrs(vmx->guest_msrs, vmx->save_nmsrs);
  526. load_msrs(vmx->host_msrs, vmx->save_nmsrs);
  527. reload_host_efer(vmx);
  528. }
  529. static void vmx_load_host_state(struct vcpu_vmx *vmx)
  530. {
  531. preempt_disable();
  532. __vmx_load_host_state(vmx);
  533. preempt_enable();
  534. }
  535. /*
  536. * Switches to specified vcpu, until a matching vcpu_put(), but assumes
  537. * vcpu mutex is already taken.
  538. */
  539. static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
  540. {
  541. struct vcpu_vmx *vmx = to_vmx(vcpu);
  542. u64 phys_addr = __pa(vmx->vmcs);
  543. u64 tsc_this, delta, new_offset;
  544. if (vcpu->cpu != cpu) {
  545. vcpu_clear(vmx);
  546. kvm_migrate_timers(vcpu);
  547. vpid_sync_vcpu_all(vmx);
  548. local_irq_disable();
  549. list_add(&vmx->local_vcpus_link,
  550. &per_cpu(vcpus_on_cpu, cpu));
  551. local_irq_enable();
  552. }
  553. if (per_cpu(current_vmcs, cpu) != vmx->vmcs) {
  554. u8 error;
  555. per_cpu(current_vmcs, cpu) = vmx->vmcs;
  556. asm volatile (__ex(ASM_VMX_VMPTRLD_RAX) "; setna %0"
  557. : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
  558. : "cc");
  559. if (error)
  560. printk(KERN_ERR "kvm: vmptrld %p/%llx fail\n",
  561. vmx->vmcs, phys_addr);
  562. }
  563. if (vcpu->cpu != cpu) {
  564. struct descriptor_table dt;
  565. unsigned long sysenter_esp;
  566. vcpu->cpu = cpu;
  567. /*
  568. * Linux uses per-cpu TSS and GDT, so set these when switching
  569. * processors.
  570. */
  571. vmcs_writel(HOST_TR_BASE, kvm_read_tr_base()); /* 22.2.4 */
  572. kvm_get_gdt(&dt);
  573. vmcs_writel(HOST_GDTR_BASE, dt.base); /* 22.2.4 */
  574. rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
  575. vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
  576. /*
  577. * Make sure the time stamp counter is monotonous.
  578. */
  579. rdtscll(tsc_this);
  580. if (tsc_this < vcpu->arch.host_tsc) {
  581. delta = vcpu->arch.host_tsc - tsc_this;
  582. new_offset = vmcs_read64(TSC_OFFSET) + delta;
  583. vmcs_write64(TSC_OFFSET, new_offset);
  584. }
  585. }
  586. }
  587. static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
  588. {
  589. __vmx_load_host_state(to_vmx(vcpu));
  590. }
  591. static void vmx_fpu_activate(struct kvm_vcpu *vcpu)
  592. {
  593. if (vcpu->fpu_active)
  594. return;
  595. vcpu->fpu_active = 1;
  596. vmcs_clear_bits(GUEST_CR0, X86_CR0_TS);
  597. if (vcpu->arch.cr0 & X86_CR0_TS)
  598. vmcs_set_bits(GUEST_CR0, X86_CR0_TS);
  599. update_exception_bitmap(vcpu);
  600. }
  601. static void vmx_fpu_deactivate(struct kvm_vcpu *vcpu)
  602. {
  603. if (!vcpu->fpu_active)
  604. return;
  605. vcpu->fpu_active = 0;
  606. vmcs_set_bits(GUEST_CR0, X86_CR0_TS);
  607. update_exception_bitmap(vcpu);
  608. }
  609. static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
  610. {
  611. return vmcs_readl(GUEST_RFLAGS);
  612. }
  613. static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
  614. {
  615. if (vcpu->arch.rmode.active)
  616. rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
  617. vmcs_writel(GUEST_RFLAGS, rflags);
  618. }
  619. static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
  620. {
  621. unsigned long rip;
  622. u32 interruptibility;
  623. rip = kvm_rip_read(vcpu);
  624. rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
  625. kvm_rip_write(vcpu, rip);
  626. /*
  627. * We emulated an instruction, so temporary interrupt blocking
  628. * should be removed, if set.
  629. */
  630. interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
  631. if (interruptibility & 3)
  632. vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
  633. interruptibility & ~3);
  634. vcpu->arch.interrupt_window_open = 1;
  635. }
  636. static void vmx_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
  637. bool has_error_code, u32 error_code)
  638. {
  639. struct vcpu_vmx *vmx = to_vmx(vcpu);
  640. u32 intr_info = nr | INTR_INFO_VALID_MASK;
  641. if (has_error_code) {
  642. vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
  643. intr_info |= INTR_INFO_DELIVER_CODE_MASK;
  644. }
  645. if (vcpu->arch.rmode.active) {
  646. vmx->rmode.irq.pending = true;
  647. vmx->rmode.irq.vector = nr;
  648. vmx->rmode.irq.rip = kvm_rip_read(vcpu);
  649. if (nr == BP_VECTOR || nr == OF_VECTOR)
  650. vmx->rmode.irq.rip++;
  651. intr_info |= INTR_TYPE_SOFT_INTR;
  652. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
  653. vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 1);
  654. kvm_rip_write(vcpu, vmx->rmode.irq.rip - 1);
  655. return;
  656. }
  657. if (nr == BP_VECTOR || nr == OF_VECTOR) {
  658. vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 1);
  659. intr_info |= INTR_TYPE_SOFT_EXCEPTION;
  660. } else
  661. intr_info |= INTR_TYPE_HARD_EXCEPTION;
  662. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
  663. }
  664. static bool vmx_exception_injected(struct kvm_vcpu *vcpu)
  665. {
  666. return false;
  667. }
  668. /*
  669. * Swap MSR entry in host/guest MSR entry array.
  670. */
  671. #ifdef CONFIG_X86_64
  672. static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
  673. {
  674. struct kvm_msr_entry tmp;
  675. tmp = vmx->guest_msrs[to];
  676. vmx->guest_msrs[to] = vmx->guest_msrs[from];
  677. vmx->guest_msrs[from] = tmp;
  678. tmp = vmx->host_msrs[to];
  679. vmx->host_msrs[to] = vmx->host_msrs[from];
  680. vmx->host_msrs[from] = tmp;
  681. }
  682. #endif
  683. /*
  684. * Set up the vmcs to automatically save and restore system
  685. * msrs. Don't touch the 64-bit msrs if the guest is in legacy
  686. * mode, as fiddling with msrs is very expensive.
  687. */
  688. static void setup_msrs(struct vcpu_vmx *vmx)
  689. {
  690. int save_nmsrs;
  691. vmx_load_host_state(vmx);
  692. save_nmsrs = 0;
  693. #ifdef CONFIG_X86_64
  694. if (is_long_mode(&vmx->vcpu)) {
  695. int index;
  696. index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
  697. if (index >= 0)
  698. move_msr_up(vmx, index, save_nmsrs++);
  699. index = __find_msr_index(vmx, MSR_LSTAR);
  700. if (index >= 0)
  701. move_msr_up(vmx, index, save_nmsrs++);
  702. index = __find_msr_index(vmx, MSR_CSTAR);
  703. if (index >= 0)
  704. move_msr_up(vmx, index, save_nmsrs++);
  705. index = __find_msr_index(vmx, MSR_KERNEL_GS_BASE);
  706. if (index >= 0)
  707. move_msr_up(vmx, index, save_nmsrs++);
  708. /*
  709. * MSR_K6_STAR is only needed on long mode guests, and only
  710. * if efer.sce is enabled.
  711. */
  712. index = __find_msr_index(vmx, MSR_K6_STAR);
  713. if ((index >= 0) && (vmx->vcpu.arch.shadow_efer & EFER_SCE))
  714. move_msr_up(vmx, index, save_nmsrs++);
  715. }
  716. #endif
  717. vmx->save_nmsrs = save_nmsrs;
  718. #ifdef CONFIG_X86_64
  719. vmx->msr_offset_kernel_gs_base =
  720. __find_msr_index(vmx, MSR_KERNEL_GS_BASE);
  721. #endif
  722. vmx->msr_offset_efer = __find_msr_index(vmx, MSR_EFER);
  723. }
  724. /*
  725. * reads and returns guest's timestamp counter "register"
  726. * guest_tsc = host_tsc + tsc_offset -- 21.3
  727. */
  728. static u64 guest_read_tsc(void)
  729. {
  730. u64 host_tsc, tsc_offset;
  731. rdtscll(host_tsc);
  732. tsc_offset = vmcs_read64(TSC_OFFSET);
  733. return host_tsc + tsc_offset;
  734. }
  735. /*
  736. * writes 'guest_tsc' into guest's timestamp counter "register"
  737. * guest_tsc = host_tsc + tsc_offset ==> tsc_offset = guest_tsc - host_tsc
  738. */
  739. static void guest_write_tsc(u64 guest_tsc)
  740. {
  741. u64 host_tsc;
  742. rdtscll(host_tsc);
  743. vmcs_write64(TSC_OFFSET, guest_tsc - host_tsc);
  744. }
  745. /*
  746. * Reads an msr value (of 'msr_index') into 'pdata'.
  747. * Returns 0 on success, non-0 otherwise.
  748. * Assumes vcpu_load() was already called.
  749. */
  750. static int vmx_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
  751. {
  752. u64 data;
  753. struct kvm_msr_entry *msr;
  754. if (!pdata) {
  755. printk(KERN_ERR "BUG: get_msr called with NULL pdata\n");
  756. return -EINVAL;
  757. }
  758. switch (msr_index) {
  759. #ifdef CONFIG_X86_64
  760. case MSR_FS_BASE:
  761. data = vmcs_readl(GUEST_FS_BASE);
  762. break;
  763. case MSR_GS_BASE:
  764. data = vmcs_readl(GUEST_GS_BASE);
  765. break;
  766. case MSR_EFER:
  767. return kvm_get_msr_common(vcpu, msr_index, pdata);
  768. #endif
  769. case MSR_IA32_TIME_STAMP_COUNTER:
  770. data = guest_read_tsc();
  771. break;
  772. case MSR_IA32_SYSENTER_CS:
  773. data = vmcs_read32(GUEST_SYSENTER_CS);
  774. break;
  775. case MSR_IA32_SYSENTER_EIP:
  776. data = vmcs_readl(GUEST_SYSENTER_EIP);
  777. break;
  778. case MSR_IA32_SYSENTER_ESP:
  779. data = vmcs_readl(GUEST_SYSENTER_ESP);
  780. break;
  781. default:
  782. vmx_load_host_state(to_vmx(vcpu));
  783. msr = find_msr_entry(to_vmx(vcpu), msr_index);
  784. if (msr) {
  785. data = msr->data;
  786. break;
  787. }
  788. return kvm_get_msr_common(vcpu, msr_index, pdata);
  789. }
  790. *pdata = data;
  791. return 0;
  792. }
  793. /*
  794. * Writes msr value into into the appropriate "register".
  795. * Returns 0 on success, non-0 otherwise.
  796. * Assumes vcpu_load() was already called.
  797. */
  798. static int vmx_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
  799. {
  800. struct vcpu_vmx *vmx = to_vmx(vcpu);
  801. struct kvm_msr_entry *msr;
  802. int ret = 0;
  803. switch (msr_index) {
  804. #ifdef CONFIG_X86_64
  805. case MSR_EFER:
  806. vmx_load_host_state(vmx);
  807. ret = kvm_set_msr_common(vcpu, msr_index, data);
  808. break;
  809. case MSR_FS_BASE:
  810. vmcs_writel(GUEST_FS_BASE, data);
  811. break;
  812. case MSR_GS_BASE:
  813. vmcs_writel(GUEST_GS_BASE, data);
  814. break;
  815. #endif
  816. case MSR_IA32_SYSENTER_CS:
  817. vmcs_write32(GUEST_SYSENTER_CS, data);
  818. break;
  819. case MSR_IA32_SYSENTER_EIP:
  820. vmcs_writel(GUEST_SYSENTER_EIP, data);
  821. break;
  822. case MSR_IA32_SYSENTER_ESP:
  823. vmcs_writel(GUEST_SYSENTER_ESP, data);
  824. break;
  825. case MSR_IA32_TIME_STAMP_COUNTER:
  826. guest_write_tsc(data);
  827. break;
  828. case MSR_P6_PERFCTR0:
  829. case MSR_P6_PERFCTR1:
  830. case MSR_P6_EVNTSEL0:
  831. case MSR_P6_EVNTSEL1:
  832. /*
  833. * Just discard all writes to the performance counters; this
  834. * should keep both older linux and windows 64-bit guests
  835. * happy
  836. */
  837. pr_unimpl(vcpu, "unimplemented perfctr wrmsr: 0x%x data 0x%llx\n", msr_index, data);
  838. break;
  839. case MSR_IA32_CR_PAT:
  840. if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
  841. vmcs_write64(GUEST_IA32_PAT, data);
  842. vcpu->arch.pat = data;
  843. break;
  844. }
  845. /* Otherwise falls through to kvm_set_msr_common */
  846. default:
  847. vmx_load_host_state(vmx);
  848. msr = find_msr_entry(vmx, msr_index);
  849. if (msr) {
  850. msr->data = data;
  851. break;
  852. }
  853. ret = kvm_set_msr_common(vcpu, msr_index, data);
  854. }
  855. return ret;
  856. }
  857. static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
  858. {
  859. __set_bit(reg, (unsigned long *)&vcpu->arch.regs_avail);
  860. switch (reg) {
  861. case VCPU_REGS_RSP:
  862. vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
  863. break;
  864. case VCPU_REGS_RIP:
  865. vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
  866. break;
  867. default:
  868. break;
  869. }
  870. }
  871. static int set_guest_debug(struct kvm_vcpu *vcpu, struct kvm_debug_guest *dbg)
  872. {
  873. unsigned long dr7 = 0x400;
  874. int old_singlestep;
  875. old_singlestep = vcpu->guest_debug.singlestep;
  876. vcpu->guest_debug.enabled = dbg->enabled;
  877. if (vcpu->guest_debug.enabled) {
  878. int i;
  879. dr7 |= 0x200; /* exact */
  880. for (i = 0; i < 4; ++i) {
  881. if (!dbg->breakpoints[i].enabled)
  882. continue;
  883. vcpu->guest_debug.bp[i] = dbg->breakpoints[i].address;
  884. dr7 |= 2 << (i*2); /* global enable */
  885. dr7 |= 0 << (i*4+16); /* execution breakpoint */
  886. }
  887. vcpu->guest_debug.singlestep = dbg->singlestep;
  888. } else
  889. vcpu->guest_debug.singlestep = 0;
  890. if (old_singlestep && !vcpu->guest_debug.singlestep) {
  891. unsigned long flags;
  892. flags = vmcs_readl(GUEST_RFLAGS);
  893. flags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
  894. vmcs_writel(GUEST_RFLAGS, flags);
  895. }
  896. update_exception_bitmap(vcpu);
  897. vmcs_writel(GUEST_DR7, dr7);
  898. return 0;
  899. }
  900. static int vmx_get_irq(struct kvm_vcpu *vcpu)
  901. {
  902. if (!vcpu->arch.interrupt.pending)
  903. return -1;
  904. return vcpu->arch.interrupt.nr;
  905. }
  906. static __init int cpu_has_kvm_support(void)
  907. {
  908. return cpu_has_vmx();
  909. }
  910. static __init int vmx_disabled_by_bios(void)
  911. {
  912. u64 msr;
  913. rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
  914. return (msr & (FEATURE_CONTROL_LOCKED |
  915. FEATURE_CONTROL_VMXON_ENABLED))
  916. == FEATURE_CONTROL_LOCKED;
  917. /* locked but not enabled */
  918. }
  919. static void hardware_enable(void *garbage)
  920. {
  921. int cpu = raw_smp_processor_id();
  922. u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
  923. u64 old;
  924. INIT_LIST_HEAD(&per_cpu(vcpus_on_cpu, cpu));
  925. rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
  926. if ((old & (FEATURE_CONTROL_LOCKED |
  927. FEATURE_CONTROL_VMXON_ENABLED))
  928. != (FEATURE_CONTROL_LOCKED |
  929. FEATURE_CONTROL_VMXON_ENABLED))
  930. /* enable and lock */
  931. wrmsrl(MSR_IA32_FEATURE_CONTROL, old |
  932. FEATURE_CONTROL_LOCKED |
  933. FEATURE_CONTROL_VMXON_ENABLED);
  934. write_cr4(read_cr4() | X86_CR4_VMXE); /* FIXME: not cpu hotplug safe */
  935. asm volatile (ASM_VMX_VMXON_RAX
  936. : : "a"(&phys_addr), "m"(phys_addr)
  937. : "memory", "cc");
  938. }
  939. static void vmclear_local_vcpus(void)
  940. {
  941. int cpu = raw_smp_processor_id();
  942. struct vcpu_vmx *vmx, *n;
  943. list_for_each_entry_safe(vmx, n, &per_cpu(vcpus_on_cpu, cpu),
  944. local_vcpus_link)
  945. __vcpu_clear(vmx);
  946. }
  947. /* Just like cpu_vmxoff(), but with the __kvm_handle_fault_on_reboot()
  948. * tricks.
  949. */
  950. static void kvm_cpu_vmxoff(void)
  951. {
  952. asm volatile (__ex(ASM_VMX_VMXOFF) : : : "cc");
  953. write_cr4(read_cr4() & ~X86_CR4_VMXE);
  954. }
  955. static void hardware_disable(void *garbage)
  956. {
  957. vmclear_local_vcpus();
  958. kvm_cpu_vmxoff();
  959. }
  960. static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
  961. u32 msr, u32 *result)
  962. {
  963. u32 vmx_msr_low, vmx_msr_high;
  964. u32 ctl = ctl_min | ctl_opt;
  965. rdmsr(msr, vmx_msr_low, vmx_msr_high);
  966. ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
  967. ctl |= vmx_msr_low; /* bit == 1 in low word ==> must be one */
  968. /* Ensure minimum (required) set of control bits are supported. */
  969. if (ctl_min & ~ctl)
  970. return -EIO;
  971. *result = ctl;
  972. return 0;
  973. }
  974. static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf)
  975. {
  976. u32 vmx_msr_low, vmx_msr_high;
  977. u32 min, opt, min2, opt2;
  978. u32 _pin_based_exec_control = 0;
  979. u32 _cpu_based_exec_control = 0;
  980. u32 _cpu_based_2nd_exec_control = 0;
  981. u32 _vmexit_control = 0;
  982. u32 _vmentry_control = 0;
  983. min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
  984. opt = PIN_BASED_VIRTUAL_NMIS;
  985. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
  986. &_pin_based_exec_control) < 0)
  987. return -EIO;
  988. min = CPU_BASED_HLT_EXITING |
  989. #ifdef CONFIG_X86_64
  990. CPU_BASED_CR8_LOAD_EXITING |
  991. CPU_BASED_CR8_STORE_EXITING |
  992. #endif
  993. CPU_BASED_CR3_LOAD_EXITING |
  994. CPU_BASED_CR3_STORE_EXITING |
  995. CPU_BASED_USE_IO_BITMAPS |
  996. CPU_BASED_MOV_DR_EXITING |
  997. CPU_BASED_USE_TSC_OFFSETING |
  998. CPU_BASED_INVLPG_EXITING;
  999. opt = CPU_BASED_TPR_SHADOW |
  1000. CPU_BASED_USE_MSR_BITMAPS |
  1001. CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
  1002. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
  1003. &_cpu_based_exec_control) < 0)
  1004. return -EIO;
  1005. #ifdef CONFIG_X86_64
  1006. if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
  1007. _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
  1008. ~CPU_BASED_CR8_STORE_EXITING;
  1009. #endif
  1010. if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
  1011. min2 = 0;
  1012. opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
  1013. SECONDARY_EXEC_WBINVD_EXITING |
  1014. SECONDARY_EXEC_ENABLE_VPID |
  1015. SECONDARY_EXEC_ENABLE_EPT;
  1016. if (adjust_vmx_controls(min2, opt2,
  1017. MSR_IA32_VMX_PROCBASED_CTLS2,
  1018. &_cpu_based_2nd_exec_control) < 0)
  1019. return -EIO;
  1020. }
  1021. #ifndef CONFIG_X86_64
  1022. if (!(_cpu_based_2nd_exec_control &
  1023. SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
  1024. _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
  1025. #endif
  1026. if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) {
  1027. /* CR3 accesses and invlpg don't need to cause VM Exits when EPT
  1028. enabled */
  1029. min &= ~(CPU_BASED_CR3_LOAD_EXITING |
  1030. CPU_BASED_CR3_STORE_EXITING |
  1031. CPU_BASED_INVLPG_EXITING);
  1032. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
  1033. &_cpu_based_exec_control) < 0)
  1034. return -EIO;
  1035. rdmsr(MSR_IA32_VMX_EPT_VPID_CAP,
  1036. vmx_capability.ept, vmx_capability.vpid);
  1037. }
  1038. min = 0;
  1039. #ifdef CONFIG_X86_64
  1040. min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
  1041. #endif
  1042. opt = VM_EXIT_SAVE_IA32_PAT | VM_EXIT_LOAD_IA32_PAT;
  1043. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
  1044. &_vmexit_control) < 0)
  1045. return -EIO;
  1046. min = 0;
  1047. opt = VM_ENTRY_LOAD_IA32_PAT;
  1048. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
  1049. &_vmentry_control) < 0)
  1050. return -EIO;
  1051. rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
  1052. /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
  1053. if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
  1054. return -EIO;
  1055. #ifdef CONFIG_X86_64
  1056. /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
  1057. if (vmx_msr_high & (1u<<16))
  1058. return -EIO;
  1059. #endif
  1060. /* Require Write-Back (WB) memory type for VMCS accesses. */
  1061. if (((vmx_msr_high >> 18) & 15) != 6)
  1062. return -EIO;
  1063. vmcs_conf->size = vmx_msr_high & 0x1fff;
  1064. vmcs_conf->order = get_order(vmcs_config.size);
  1065. vmcs_conf->revision_id = vmx_msr_low;
  1066. vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
  1067. vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
  1068. vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
  1069. vmcs_conf->vmexit_ctrl = _vmexit_control;
  1070. vmcs_conf->vmentry_ctrl = _vmentry_control;
  1071. return 0;
  1072. }
  1073. static struct vmcs *alloc_vmcs_cpu(int cpu)
  1074. {
  1075. int node = cpu_to_node(cpu);
  1076. struct page *pages;
  1077. struct vmcs *vmcs;
  1078. pages = alloc_pages_node(node, GFP_KERNEL, vmcs_config.order);
  1079. if (!pages)
  1080. return NULL;
  1081. vmcs = page_address(pages);
  1082. memset(vmcs, 0, vmcs_config.size);
  1083. vmcs->revision_id = vmcs_config.revision_id; /* vmcs revision id */
  1084. return vmcs;
  1085. }
  1086. static struct vmcs *alloc_vmcs(void)
  1087. {
  1088. return alloc_vmcs_cpu(raw_smp_processor_id());
  1089. }
  1090. static void free_vmcs(struct vmcs *vmcs)
  1091. {
  1092. free_pages((unsigned long)vmcs, vmcs_config.order);
  1093. }
  1094. static void free_kvm_area(void)
  1095. {
  1096. int cpu;
  1097. for_each_online_cpu(cpu)
  1098. free_vmcs(per_cpu(vmxarea, cpu));
  1099. }
  1100. static __init int alloc_kvm_area(void)
  1101. {
  1102. int cpu;
  1103. for_each_online_cpu(cpu) {
  1104. struct vmcs *vmcs;
  1105. vmcs = alloc_vmcs_cpu(cpu);
  1106. if (!vmcs) {
  1107. free_kvm_area();
  1108. return -ENOMEM;
  1109. }
  1110. per_cpu(vmxarea, cpu) = vmcs;
  1111. }
  1112. return 0;
  1113. }
  1114. static __init int hardware_setup(void)
  1115. {
  1116. if (setup_vmcs_config(&vmcs_config) < 0)
  1117. return -EIO;
  1118. if (boot_cpu_has(X86_FEATURE_NX))
  1119. kvm_enable_efer_bits(EFER_NX);
  1120. return alloc_kvm_area();
  1121. }
  1122. static __exit void hardware_unsetup(void)
  1123. {
  1124. free_kvm_area();
  1125. }
  1126. static void fix_pmode_dataseg(int seg, struct kvm_save_segment *save)
  1127. {
  1128. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1129. if (vmcs_readl(sf->base) == save->base && (save->base & AR_S_MASK)) {
  1130. vmcs_write16(sf->selector, save->selector);
  1131. vmcs_writel(sf->base, save->base);
  1132. vmcs_write32(sf->limit, save->limit);
  1133. vmcs_write32(sf->ar_bytes, save->ar);
  1134. } else {
  1135. u32 dpl = (vmcs_read16(sf->selector) & SELECTOR_RPL_MASK)
  1136. << AR_DPL_SHIFT;
  1137. vmcs_write32(sf->ar_bytes, 0x93 | dpl);
  1138. }
  1139. }
  1140. static void enter_pmode(struct kvm_vcpu *vcpu)
  1141. {
  1142. unsigned long flags;
  1143. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1144. vmx->emulation_required = 1;
  1145. vcpu->arch.rmode.active = 0;
  1146. vmcs_writel(GUEST_TR_BASE, vcpu->arch.rmode.tr.base);
  1147. vmcs_write32(GUEST_TR_LIMIT, vcpu->arch.rmode.tr.limit);
  1148. vmcs_write32(GUEST_TR_AR_BYTES, vcpu->arch.rmode.tr.ar);
  1149. flags = vmcs_readl(GUEST_RFLAGS);
  1150. flags &= ~(X86_EFLAGS_IOPL | X86_EFLAGS_VM);
  1151. flags |= (vcpu->arch.rmode.save_iopl << IOPL_SHIFT);
  1152. vmcs_writel(GUEST_RFLAGS, flags);
  1153. vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
  1154. (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
  1155. update_exception_bitmap(vcpu);
  1156. if (emulate_invalid_guest_state)
  1157. return;
  1158. fix_pmode_dataseg(VCPU_SREG_ES, &vcpu->arch.rmode.es);
  1159. fix_pmode_dataseg(VCPU_SREG_DS, &vcpu->arch.rmode.ds);
  1160. fix_pmode_dataseg(VCPU_SREG_GS, &vcpu->arch.rmode.gs);
  1161. fix_pmode_dataseg(VCPU_SREG_FS, &vcpu->arch.rmode.fs);
  1162. vmcs_write16(GUEST_SS_SELECTOR, 0);
  1163. vmcs_write32(GUEST_SS_AR_BYTES, 0x93);
  1164. vmcs_write16(GUEST_CS_SELECTOR,
  1165. vmcs_read16(GUEST_CS_SELECTOR) & ~SELECTOR_RPL_MASK);
  1166. vmcs_write32(GUEST_CS_AR_BYTES, 0x9b);
  1167. }
  1168. static gva_t rmode_tss_base(struct kvm *kvm)
  1169. {
  1170. if (!kvm->arch.tss_addr) {
  1171. gfn_t base_gfn = kvm->memslots[0].base_gfn +
  1172. kvm->memslots[0].npages - 3;
  1173. return base_gfn << PAGE_SHIFT;
  1174. }
  1175. return kvm->arch.tss_addr;
  1176. }
  1177. static void fix_rmode_seg(int seg, struct kvm_save_segment *save)
  1178. {
  1179. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1180. save->selector = vmcs_read16(sf->selector);
  1181. save->base = vmcs_readl(sf->base);
  1182. save->limit = vmcs_read32(sf->limit);
  1183. save->ar = vmcs_read32(sf->ar_bytes);
  1184. vmcs_write16(sf->selector, save->base >> 4);
  1185. vmcs_write32(sf->base, save->base & 0xfffff);
  1186. vmcs_write32(sf->limit, 0xffff);
  1187. vmcs_write32(sf->ar_bytes, 0xf3);
  1188. }
  1189. static void enter_rmode(struct kvm_vcpu *vcpu)
  1190. {
  1191. unsigned long flags;
  1192. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1193. vmx->emulation_required = 1;
  1194. vcpu->arch.rmode.active = 1;
  1195. vcpu->arch.rmode.tr.base = vmcs_readl(GUEST_TR_BASE);
  1196. vmcs_writel(GUEST_TR_BASE, rmode_tss_base(vcpu->kvm));
  1197. vcpu->arch.rmode.tr.limit = vmcs_read32(GUEST_TR_LIMIT);
  1198. vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
  1199. vcpu->arch.rmode.tr.ar = vmcs_read32(GUEST_TR_AR_BYTES);
  1200. vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
  1201. flags = vmcs_readl(GUEST_RFLAGS);
  1202. vcpu->arch.rmode.save_iopl
  1203. = (flags & X86_EFLAGS_IOPL) >> IOPL_SHIFT;
  1204. flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
  1205. vmcs_writel(GUEST_RFLAGS, flags);
  1206. vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
  1207. update_exception_bitmap(vcpu);
  1208. if (emulate_invalid_guest_state)
  1209. goto continue_rmode;
  1210. vmcs_write16(GUEST_SS_SELECTOR, vmcs_readl(GUEST_SS_BASE) >> 4);
  1211. vmcs_write32(GUEST_SS_LIMIT, 0xffff);
  1212. vmcs_write32(GUEST_SS_AR_BYTES, 0xf3);
  1213. vmcs_write32(GUEST_CS_AR_BYTES, 0xf3);
  1214. vmcs_write32(GUEST_CS_LIMIT, 0xffff);
  1215. if (vmcs_readl(GUEST_CS_BASE) == 0xffff0000)
  1216. vmcs_writel(GUEST_CS_BASE, 0xf0000);
  1217. vmcs_write16(GUEST_CS_SELECTOR, vmcs_readl(GUEST_CS_BASE) >> 4);
  1218. fix_rmode_seg(VCPU_SREG_ES, &vcpu->arch.rmode.es);
  1219. fix_rmode_seg(VCPU_SREG_DS, &vcpu->arch.rmode.ds);
  1220. fix_rmode_seg(VCPU_SREG_GS, &vcpu->arch.rmode.gs);
  1221. fix_rmode_seg(VCPU_SREG_FS, &vcpu->arch.rmode.fs);
  1222. continue_rmode:
  1223. kvm_mmu_reset_context(vcpu);
  1224. init_rmode(vcpu->kvm);
  1225. }
  1226. #ifdef CONFIG_X86_64
  1227. static void enter_lmode(struct kvm_vcpu *vcpu)
  1228. {
  1229. u32 guest_tr_ar;
  1230. guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
  1231. if ((guest_tr_ar & AR_TYPE_MASK) != AR_TYPE_BUSY_64_TSS) {
  1232. printk(KERN_DEBUG "%s: tss fixup for long mode. \n",
  1233. __func__);
  1234. vmcs_write32(GUEST_TR_AR_BYTES,
  1235. (guest_tr_ar & ~AR_TYPE_MASK)
  1236. | AR_TYPE_BUSY_64_TSS);
  1237. }
  1238. vcpu->arch.shadow_efer |= EFER_LMA;
  1239. find_msr_entry(to_vmx(vcpu), MSR_EFER)->data |= EFER_LMA | EFER_LME;
  1240. vmcs_write32(VM_ENTRY_CONTROLS,
  1241. vmcs_read32(VM_ENTRY_CONTROLS)
  1242. | VM_ENTRY_IA32E_MODE);
  1243. }
  1244. static void exit_lmode(struct kvm_vcpu *vcpu)
  1245. {
  1246. vcpu->arch.shadow_efer &= ~EFER_LMA;
  1247. vmcs_write32(VM_ENTRY_CONTROLS,
  1248. vmcs_read32(VM_ENTRY_CONTROLS)
  1249. & ~VM_ENTRY_IA32E_MODE);
  1250. }
  1251. #endif
  1252. static void vmx_flush_tlb(struct kvm_vcpu *vcpu)
  1253. {
  1254. vpid_sync_vcpu_all(to_vmx(vcpu));
  1255. if (vm_need_ept())
  1256. ept_sync_context(construct_eptp(vcpu->arch.mmu.root_hpa));
  1257. }
  1258. static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
  1259. {
  1260. vcpu->arch.cr4 &= KVM_GUEST_CR4_MASK;
  1261. vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & ~KVM_GUEST_CR4_MASK;
  1262. }
  1263. static void ept_load_pdptrs(struct kvm_vcpu *vcpu)
  1264. {
  1265. if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
  1266. if (!load_pdptrs(vcpu, vcpu->arch.cr3)) {
  1267. printk(KERN_ERR "EPT: Fail to load pdptrs!\n");
  1268. return;
  1269. }
  1270. vmcs_write64(GUEST_PDPTR0, vcpu->arch.pdptrs[0]);
  1271. vmcs_write64(GUEST_PDPTR1, vcpu->arch.pdptrs[1]);
  1272. vmcs_write64(GUEST_PDPTR2, vcpu->arch.pdptrs[2]);
  1273. vmcs_write64(GUEST_PDPTR3, vcpu->arch.pdptrs[3]);
  1274. }
  1275. }
  1276. static void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
  1277. static void ept_update_paging_mode_cr0(unsigned long *hw_cr0,
  1278. unsigned long cr0,
  1279. struct kvm_vcpu *vcpu)
  1280. {
  1281. if (!(cr0 & X86_CR0_PG)) {
  1282. /* From paging/starting to nonpaging */
  1283. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
  1284. vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) |
  1285. (CPU_BASED_CR3_LOAD_EXITING |
  1286. CPU_BASED_CR3_STORE_EXITING));
  1287. vcpu->arch.cr0 = cr0;
  1288. vmx_set_cr4(vcpu, vcpu->arch.cr4);
  1289. *hw_cr0 |= X86_CR0_PE | X86_CR0_PG;
  1290. *hw_cr0 &= ~X86_CR0_WP;
  1291. } else if (!is_paging(vcpu)) {
  1292. /* From nonpaging to paging */
  1293. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
  1294. vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) &
  1295. ~(CPU_BASED_CR3_LOAD_EXITING |
  1296. CPU_BASED_CR3_STORE_EXITING));
  1297. vcpu->arch.cr0 = cr0;
  1298. vmx_set_cr4(vcpu, vcpu->arch.cr4);
  1299. if (!(vcpu->arch.cr0 & X86_CR0_WP))
  1300. *hw_cr0 &= ~X86_CR0_WP;
  1301. }
  1302. }
  1303. static void ept_update_paging_mode_cr4(unsigned long *hw_cr4,
  1304. struct kvm_vcpu *vcpu)
  1305. {
  1306. if (!is_paging(vcpu)) {
  1307. *hw_cr4 &= ~X86_CR4_PAE;
  1308. *hw_cr4 |= X86_CR4_PSE;
  1309. } else if (!(vcpu->arch.cr4 & X86_CR4_PAE))
  1310. *hw_cr4 &= ~X86_CR4_PAE;
  1311. }
  1312. static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
  1313. {
  1314. unsigned long hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK) |
  1315. KVM_VM_CR0_ALWAYS_ON;
  1316. vmx_fpu_deactivate(vcpu);
  1317. if (vcpu->arch.rmode.active && (cr0 & X86_CR0_PE))
  1318. enter_pmode(vcpu);
  1319. if (!vcpu->arch.rmode.active && !(cr0 & X86_CR0_PE))
  1320. enter_rmode(vcpu);
  1321. #ifdef CONFIG_X86_64
  1322. if (vcpu->arch.shadow_efer & EFER_LME) {
  1323. if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
  1324. enter_lmode(vcpu);
  1325. if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
  1326. exit_lmode(vcpu);
  1327. }
  1328. #endif
  1329. if (vm_need_ept())
  1330. ept_update_paging_mode_cr0(&hw_cr0, cr0, vcpu);
  1331. vmcs_writel(CR0_READ_SHADOW, cr0);
  1332. vmcs_writel(GUEST_CR0, hw_cr0);
  1333. vcpu->arch.cr0 = cr0;
  1334. if (!(cr0 & X86_CR0_TS) || !(cr0 & X86_CR0_PE))
  1335. vmx_fpu_activate(vcpu);
  1336. }
  1337. static u64 construct_eptp(unsigned long root_hpa)
  1338. {
  1339. u64 eptp;
  1340. /* TODO write the value reading from MSR */
  1341. eptp = VMX_EPT_DEFAULT_MT |
  1342. VMX_EPT_DEFAULT_GAW << VMX_EPT_GAW_EPTP_SHIFT;
  1343. eptp |= (root_hpa & PAGE_MASK);
  1344. return eptp;
  1345. }
  1346. static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
  1347. {
  1348. unsigned long guest_cr3;
  1349. u64 eptp;
  1350. guest_cr3 = cr3;
  1351. if (vm_need_ept()) {
  1352. eptp = construct_eptp(cr3);
  1353. vmcs_write64(EPT_POINTER, eptp);
  1354. ept_sync_context(eptp);
  1355. ept_load_pdptrs(vcpu);
  1356. guest_cr3 = is_paging(vcpu) ? vcpu->arch.cr3 :
  1357. VMX_EPT_IDENTITY_PAGETABLE_ADDR;
  1358. }
  1359. vmx_flush_tlb(vcpu);
  1360. vmcs_writel(GUEST_CR3, guest_cr3);
  1361. if (vcpu->arch.cr0 & X86_CR0_PE)
  1362. vmx_fpu_deactivate(vcpu);
  1363. }
  1364. static void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
  1365. {
  1366. unsigned long hw_cr4 = cr4 | (vcpu->arch.rmode.active ?
  1367. KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON);
  1368. vcpu->arch.cr4 = cr4;
  1369. if (vm_need_ept())
  1370. ept_update_paging_mode_cr4(&hw_cr4, vcpu);
  1371. vmcs_writel(CR4_READ_SHADOW, cr4);
  1372. vmcs_writel(GUEST_CR4, hw_cr4);
  1373. }
  1374. static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
  1375. {
  1376. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1377. struct kvm_msr_entry *msr = find_msr_entry(vmx, MSR_EFER);
  1378. vcpu->arch.shadow_efer = efer;
  1379. if (!msr)
  1380. return;
  1381. if (efer & EFER_LMA) {
  1382. vmcs_write32(VM_ENTRY_CONTROLS,
  1383. vmcs_read32(VM_ENTRY_CONTROLS) |
  1384. VM_ENTRY_IA32E_MODE);
  1385. msr->data = efer;
  1386. } else {
  1387. vmcs_write32(VM_ENTRY_CONTROLS,
  1388. vmcs_read32(VM_ENTRY_CONTROLS) &
  1389. ~VM_ENTRY_IA32E_MODE);
  1390. msr->data = efer & ~EFER_LME;
  1391. }
  1392. setup_msrs(vmx);
  1393. }
  1394. static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
  1395. {
  1396. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1397. return vmcs_readl(sf->base);
  1398. }
  1399. static void vmx_get_segment(struct kvm_vcpu *vcpu,
  1400. struct kvm_segment *var, int seg)
  1401. {
  1402. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1403. u32 ar;
  1404. var->base = vmcs_readl(sf->base);
  1405. var->limit = vmcs_read32(sf->limit);
  1406. var->selector = vmcs_read16(sf->selector);
  1407. ar = vmcs_read32(sf->ar_bytes);
  1408. if (ar & AR_UNUSABLE_MASK)
  1409. ar = 0;
  1410. var->type = ar & 15;
  1411. var->s = (ar >> 4) & 1;
  1412. var->dpl = (ar >> 5) & 3;
  1413. var->present = (ar >> 7) & 1;
  1414. var->avl = (ar >> 12) & 1;
  1415. var->l = (ar >> 13) & 1;
  1416. var->db = (ar >> 14) & 1;
  1417. var->g = (ar >> 15) & 1;
  1418. var->unusable = (ar >> 16) & 1;
  1419. }
  1420. static int vmx_get_cpl(struct kvm_vcpu *vcpu)
  1421. {
  1422. struct kvm_segment kvm_seg;
  1423. if (!(vcpu->arch.cr0 & X86_CR0_PE)) /* if real mode */
  1424. return 0;
  1425. if (vmx_get_rflags(vcpu) & X86_EFLAGS_VM) /* if virtual 8086 */
  1426. return 3;
  1427. vmx_get_segment(vcpu, &kvm_seg, VCPU_SREG_CS);
  1428. return kvm_seg.selector & 3;
  1429. }
  1430. static u32 vmx_segment_access_rights(struct kvm_segment *var)
  1431. {
  1432. u32 ar;
  1433. if (var->unusable)
  1434. ar = 1 << 16;
  1435. else {
  1436. ar = var->type & 15;
  1437. ar |= (var->s & 1) << 4;
  1438. ar |= (var->dpl & 3) << 5;
  1439. ar |= (var->present & 1) << 7;
  1440. ar |= (var->avl & 1) << 12;
  1441. ar |= (var->l & 1) << 13;
  1442. ar |= (var->db & 1) << 14;
  1443. ar |= (var->g & 1) << 15;
  1444. }
  1445. if (ar == 0) /* a 0 value means unusable */
  1446. ar = AR_UNUSABLE_MASK;
  1447. return ar;
  1448. }
  1449. static void vmx_set_segment(struct kvm_vcpu *vcpu,
  1450. struct kvm_segment *var, int seg)
  1451. {
  1452. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1453. u32 ar;
  1454. if (vcpu->arch.rmode.active && seg == VCPU_SREG_TR) {
  1455. vcpu->arch.rmode.tr.selector = var->selector;
  1456. vcpu->arch.rmode.tr.base = var->base;
  1457. vcpu->arch.rmode.tr.limit = var->limit;
  1458. vcpu->arch.rmode.tr.ar = vmx_segment_access_rights(var);
  1459. return;
  1460. }
  1461. vmcs_writel(sf->base, var->base);
  1462. vmcs_write32(sf->limit, var->limit);
  1463. vmcs_write16(sf->selector, var->selector);
  1464. if (vcpu->arch.rmode.active && var->s) {
  1465. /*
  1466. * Hack real-mode segments into vm86 compatibility.
  1467. */
  1468. if (var->base == 0xffff0000 && var->selector == 0xf000)
  1469. vmcs_writel(sf->base, 0xf0000);
  1470. ar = 0xf3;
  1471. } else
  1472. ar = vmx_segment_access_rights(var);
  1473. vmcs_write32(sf->ar_bytes, ar);
  1474. }
  1475. static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
  1476. {
  1477. u32 ar = vmcs_read32(GUEST_CS_AR_BYTES);
  1478. *db = (ar >> 14) & 1;
  1479. *l = (ar >> 13) & 1;
  1480. }
  1481. static void vmx_get_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  1482. {
  1483. dt->limit = vmcs_read32(GUEST_IDTR_LIMIT);
  1484. dt->base = vmcs_readl(GUEST_IDTR_BASE);
  1485. }
  1486. static void vmx_set_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  1487. {
  1488. vmcs_write32(GUEST_IDTR_LIMIT, dt->limit);
  1489. vmcs_writel(GUEST_IDTR_BASE, dt->base);
  1490. }
  1491. static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  1492. {
  1493. dt->limit = vmcs_read32(GUEST_GDTR_LIMIT);
  1494. dt->base = vmcs_readl(GUEST_GDTR_BASE);
  1495. }
  1496. static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  1497. {
  1498. vmcs_write32(GUEST_GDTR_LIMIT, dt->limit);
  1499. vmcs_writel(GUEST_GDTR_BASE, dt->base);
  1500. }
  1501. static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
  1502. {
  1503. struct kvm_segment var;
  1504. u32 ar;
  1505. vmx_get_segment(vcpu, &var, seg);
  1506. ar = vmx_segment_access_rights(&var);
  1507. if (var.base != (var.selector << 4))
  1508. return false;
  1509. if (var.limit != 0xffff)
  1510. return false;
  1511. if (ar != 0xf3)
  1512. return false;
  1513. return true;
  1514. }
  1515. static bool code_segment_valid(struct kvm_vcpu *vcpu)
  1516. {
  1517. struct kvm_segment cs;
  1518. unsigned int cs_rpl;
  1519. vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
  1520. cs_rpl = cs.selector & SELECTOR_RPL_MASK;
  1521. if (~cs.type & (AR_TYPE_CODE_MASK|AR_TYPE_ACCESSES_MASK))
  1522. return false;
  1523. if (!cs.s)
  1524. return false;
  1525. if (!(~cs.type & (AR_TYPE_CODE_MASK|AR_TYPE_WRITEABLE_MASK))) {
  1526. if (cs.dpl > cs_rpl)
  1527. return false;
  1528. } else if (cs.type & AR_TYPE_CODE_MASK) {
  1529. if (cs.dpl != cs_rpl)
  1530. return false;
  1531. }
  1532. if (!cs.present)
  1533. return false;
  1534. /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
  1535. return true;
  1536. }
  1537. static bool stack_segment_valid(struct kvm_vcpu *vcpu)
  1538. {
  1539. struct kvm_segment ss;
  1540. unsigned int ss_rpl;
  1541. vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
  1542. ss_rpl = ss.selector & SELECTOR_RPL_MASK;
  1543. if ((ss.type != 3) || (ss.type != 7))
  1544. return false;
  1545. if (!ss.s)
  1546. return false;
  1547. if (ss.dpl != ss_rpl) /* DPL != RPL */
  1548. return false;
  1549. if (!ss.present)
  1550. return false;
  1551. return true;
  1552. }
  1553. static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
  1554. {
  1555. struct kvm_segment var;
  1556. unsigned int rpl;
  1557. vmx_get_segment(vcpu, &var, seg);
  1558. rpl = var.selector & SELECTOR_RPL_MASK;
  1559. if (!var.s)
  1560. return false;
  1561. if (!var.present)
  1562. return false;
  1563. if (~var.type & (AR_TYPE_CODE_MASK|AR_TYPE_WRITEABLE_MASK)) {
  1564. if (var.dpl < rpl) /* DPL < RPL */
  1565. return false;
  1566. }
  1567. /* TODO: Add other members to kvm_segment_field to allow checking for other access
  1568. * rights flags
  1569. */
  1570. return true;
  1571. }
  1572. static bool tr_valid(struct kvm_vcpu *vcpu)
  1573. {
  1574. struct kvm_segment tr;
  1575. vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
  1576. if (tr.selector & SELECTOR_TI_MASK) /* TI = 1 */
  1577. return false;
  1578. if ((tr.type != 3) || (tr.type != 11)) /* TODO: Check if guest is in IA32e mode */
  1579. return false;
  1580. if (!tr.present)
  1581. return false;
  1582. return true;
  1583. }
  1584. static bool ldtr_valid(struct kvm_vcpu *vcpu)
  1585. {
  1586. struct kvm_segment ldtr;
  1587. vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
  1588. if (ldtr.selector & SELECTOR_TI_MASK) /* TI = 1 */
  1589. return false;
  1590. if (ldtr.type != 2)
  1591. return false;
  1592. if (!ldtr.present)
  1593. return false;
  1594. return true;
  1595. }
  1596. static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
  1597. {
  1598. struct kvm_segment cs, ss;
  1599. vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
  1600. vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
  1601. return ((cs.selector & SELECTOR_RPL_MASK) ==
  1602. (ss.selector & SELECTOR_RPL_MASK));
  1603. }
  1604. /*
  1605. * Check if guest state is valid. Returns true if valid, false if
  1606. * not.
  1607. * We assume that registers are always usable
  1608. */
  1609. static bool guest_state_valid(struct kvm_vcpu *vcpu)
  1610. {
  1611. /* real mode guest state checks */
  1612. if (!(vcpu->arch.cr0 & X86_CR0_PE)) {
  1613. if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
  1614. return false;
  1615. if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
  1616. return false;
  1617. if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
  1618. return false;
  1619. if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
  1620. return false;
  1621. if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
  1622. return false;
  1623. if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
  1624. return false;
  1625. } else {
  1626. /* protected mode guest state checks */
  1627. if (!cs_ss_rpl_check(vcpu))
  1628. return false;
  1629. if (!code_segment_valid(vcpu))
  1630. return false;
  1631. if (!stack_segment_valid(vcpu))
  1632. return false;
  1633. if (!data_segment_valid(vcpu, VCPU_SREG_DS))
  1634. return false;
  1635. if (!data_segment_valid(vcpu, VCPU_SREG_ES))
  1636. return false;
  1637. if (!data_segment_valid(vcpu, VCPU_SREG_FS))
  1638. return false;
  1639. if (!data_segment_valid(vcpu, VCPU_SREG_GS))
  1640. return false;
  1641. if (!tr_valid(vcpu))
  1642. return false;
  1643. if (!ldtr_valid(vcpu))
  1644. return false;
  1645. }
  1646. /* TODO:
  1647. * - Add checks on RIP
  1648. * - Add checks on RFLAGS
  1649. */
  1650. return true;
  1651. }
  1652. static int init_rmode_tss(struct kvm *kvm)
  1653. {
  1654. gfn_t fn = rmode_tss_base(kvm) >> PAGE_SHIFT;
  1655. u16 data = 0;
  1656. int ret = 0;
  1657. int r;
  1658. r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
  1659. if (r < 0)
  1660. goto out;
  1661. data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
  1662. r = kvm_write_guest_page(kvm, fn++, &data,
  1663. TSS_IOPB_BASE_OFFSET, sizeof(u16));
  1664. if (r < 0)
  1665. goto out;
  1666. r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE);
  1667. if (r < 0)
  1668. goto out;
  1669. r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
  1670. if (r < 0)
  1671. goto out;
  1672. data = ~0;
  1673. r = kvm_write_guest_page(kvm, fn, &data,
  1674. RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1,
  1675. sizeof(u8));
  1676. if (r < 0)
  1677. goto out;
  1678. ret = 1;
  1679. out:
  1680. return ret;
  1681. }
  1682. static int init_rmode_identity_map(struct kvm *kvm)
  1683. {
  1684. int i, r, ret;
  1685. pfn_t identity_map_pfn;
  1686. u32 tmp;
  1687. if (!vm_need_ept())
  1688. return 1;
  1689. if (unlikely(!kvm->arch.ept_identity_pagetable)) {
  1690. printk(KERN_ERR "EPT: identity-mapping pagetable "
  1691. "haven't been allocated!\n");
  1692. return 0;
  1693. }
  1694. if (likely(kvm->arch.ept_identity_pagetable_done))
  1695. return 1;
  1696. ret = 0;
  1697. identity_map_pfn = VMX_EPT_IDENTITY_PAGETABLE_ADDR >> PAGE_SHIFT;
  1698. r = kvm_clear_guest_page(kvm, identity_map_pfn, 0, PAGE_SIZE);
  1699. if (r < 0)
  1700. goto out;
  1701. /* Set up identity-mapping pagetable for EPT in real mode */
  1702. for (i = 0; i < PT32_ENT_PER_PAGE; i++) {
  1703. tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
  1704. _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
  1705. r = kvm_write_guest_page(kvm, identity_map_pfn,
  1706. &tmp, i * sizeof(tmp), sizeof(tmp));
  1707. if (r < 0)
  1708. goto out;
  1709. }
  1710. kvm->arch.ept_identity_pagetable_done = true;
  1711. ret = 1;
  1712. out:
  1713. return ret;
  1714. }
  1715. static void seg_setup(int seg)
  1716. {
  1717. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1718. vmcs_write16(sf->selector, 0);
  1719. vmcs_writel(sf->base, 0);
  1720. vmcs_write32(sf->limit, 0xffff);
  1721. vmcs_write32(sf->ar_bytes, 0xf3);
  1722. }
  1723. static int alloc_apic_access_page(struct kvm *kvm)
  1724. {
  1725. struct kvm_userspace_memory_region kvm_userspace_mem;
  1726. int r = 0;
  1727. down_write(&kvm->slots_lock);
  1728. if (kvm->arch.apic_access_page)
  1729. goto out;
  1730. kvm_userspace_mem.slot = APIC_ACCESS_PAGE_PRIVATE_MEMSLOT;
  1731. kvm_userspace_mem.flags = 0;
  1732. kvm_userspace_mem.guest_phys_addr = 0xfee00000ULL;
  1733. kvm_userspace_mem.memory_size = PAGE_SIZE;
  1734. r = __kvm_set_memory_region(kvm, &kvm_userspace_mem, 0);
  1735. if (r)
  1736. goto out;
  1737. kvm->arch.apic_access_page = gfn_to_page(kvm, 0xfee00);
  1738. out:
  1739. up_write(&kvm->slots_lock);
  1740. return r;
  1741. }
  1742. static int alloc_identity_pagetable(struct kvm *kvm)
  1743. {
  1744. struct kvm_userspace_memory_region kvm_userspace_mem;
  1745. int r = 0;
  1746. down_write(&kvm->slots_lock);
  1747. if (kvm->arch.ept_identity_pagetable)
  1748. goto out;
  1749. kvm_userspace_mem.slot = IDENTITY_PAGETABLE_PRIVATE_MEMSLOT;
  1750. kvm_userspace_mem.flags = 0;
  1751. kvm_userspace_mem.guest_phys_addr = VMX_EPT_IDENTITY_PAGETABLE_ADDR;
  1752. kvm_userspace_mem.memory_size = PAGE_SIZE;
  1753. r = __kvm_set_memory_region(kvm, &kvm_userspace_mem, 0);
  1754. if (r)
  1755. goto out;
  1756. kvm->arch.ept_identity_pagetable = gfn_to_page(kvm,
  1757. VMX_EPT_IDENTITY_PAGETABLE_ADDR >> PAGE_SHIFT);
  1758. out:
  1759. up_write(&kvm->slots_lock);
  1760. return r;
  1761. }
  1762. static void allocate_vpid(struct vcpu_vmx *vmx)
  1763. {
  1764. int vpid;
  1765. vmx->vpid = 0;
  1766. if (!enable_vpid || !cpu_has_vmx_vpid())
  1767. return;
  1768. spin_lock(&vmx_vpid_lock);
  1769. vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
  1770. if (vpid < VMX_NR_VPIDS) {
  1771. vmx->vpid = vpid;
  1772. __set_bit(vpid, vmx_vpid_bitmap);
  1773. }
  1774. spin_unlock(&vmx_vpid_lock);
  1775. }
  1776. static void vmx_disable_intercept_for_msr(struct page *msr_bitmap, u32 msr)
  1777. {
  1778. void *va;
  1779. if (!cpu_has_vmx_msr_bitmap())
  1780. return;
  1781. /*
  1782. * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
  1783. * have the write-low and read-high bitmap offsets the wrong way round.
  1784. * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
  1785. */
  1786. va = kmap(msr_bitmap);
  1787. if (msr <= 0x1fff) {
  1788. __clear_bit(msr, va + 0x000); /* read-low */
  1789. __clear_bit(msr, va + 0x800); /* write-low */
  1790. } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
  1791. msr &= 0x1fff;
  1792. __clear_bit(msr, va + 0x400); /* read-high */
  1793. __clear_bit(msr, va + 0xc00); /* write-high */
  1794. }
  1795. kunmap(msr_bitmap);
  1796. }
  1797. /*
  1798. * Sets up the vmcs for emulated real mode.
  1799. */
  1800. static int vmx_vcpu_setup(struct vcpu_vmx *vmx)
  1801. {
  1802. u32 host_sysenter_cs, msr_low, msr_high;
  1803. u32 junk;
  1804. u64 host_pat;
  1805. unsigned long a;
  1806. struct descriptor_table dt;
  1807. int i;
  1808. unsigned long kvm_vmx_return;
  1809. u32 exec_control;
  1810. /* I/O */
  1811. vmcs_write64(IO_BITMAP_A, page_to_phys(vmx_io_bitmap_a));
  1812. vmcs_write64(IO_BITMAP_B, page_to_phys(vmx_io_bitmap_b));
  1813. if (cpu_has_vmx_msr_bitmap())
  1814. vmcs_write64(MSR_BITMAP, page_to_phys(vmx_msr_bitmap));
  1815. vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
  1816. /* Control */
  1817. vmcs_write32(PIN_BASED_VM_EXEC_CONTROL,
  1818. vmcs_config.pin_based_exec_ctrl);
  1819. exec_control = vmcs_config.cpu_based_exec_ctrl;
  1820. if (!vm_need_tpr_shadow(vmx->vcpu.kvm)) {
  1821. exec_control &= ~CPU_BASED_TPR_SHADOW;
  1822. #ifdef CONFIG_X86_64
  1823. exec_control |= CPU_BASED_CR8_STORE_EXITING |
  1824. CPU_BASED_CR8_LOAD_EXITING;
  1825. #endif
  1826. }
  1827. if (!vm_need_ept())
  1828. exec_control |= CPU_BASED_CR3_STORE_EXITING |
  1829. CPU_BASED_CR3_LOAD_EXITING |
  1830. CPU_BASED_INVLPG_EXITING;
  1831. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, exec_control);
  1832. if (cpu_has_secondary_exec_ctrls()) {
  1833. exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
  1834. if (!vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
  1835. exec_control &=
  1836. ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
  1837. if (vmx->vpid == 0)
  1838. exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
  1839. if (!vm_need_ept())
  1840. exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
  1841. vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
  1842. }
  1843. vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, !!bypass_guest_pf);
  1844. vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, !!bypass_guest_pf);
  1845. vmcs_write32(CR3_TARGET_COUNT, 0); /* 22.2.1 */
  1846. vmcs_writel(HOST_CR0, read_cr0()); /* 22.2.3 */
  1847. vmcs_writel(HOST_CR4, read_cr4()); /* 22.2.3, 22.2.5 */
  1848. vmcs_writel(HOST_CR3, read_cr3()); /* 22.2.3 FIXME: shadow tables */
  1849. vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS); /* 22.2.4 */
  1850. vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
  1851. vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS); /* 22.2.4 */
  1852. vmcs_write16(HOST_FS_SELECTOR, kvm_read_fs()); /* 22.2.4 */
  1853. vmcs_write16(HOST_GS_SELECTOR, kvm_read_gs()); /* 22.2.4 */
  1854. vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
  1855. #ifdef CONFIG_X86_64
  1856. rdmsrl(MSR_FS_BASE, a);
  1857. vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
  1858. rdmsrl(MSR_GS_BASE, a);
  1859. vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */
  1860. #else
  1861. vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
  1862. vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
  1863. #endif
  1864. vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8); /* 22.2.4 */
  1865. kvm_get_idt(&dt);
  1866. vmcs_writel(HOST_IDTR_BASE, dt.base); /* 22.2.4 */
  1867. asm("mov $.Lkvm_vmx_return, %0" : "=r"(kvm_vmx_return));
  1868. vmcs_writel(HOST_RIP, kvm_vmx_return); /* 22.2.5 */
  1869. vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
  1870. vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
  1871. vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
  1872. rdmsr(MSR_IA32_SYSENTER_CS, host_sysenter_cs, junk);
  1873. vmcs_write32(HOST_IA32_SYSENTER_CS, host_sysenter_cs);
  1874. rdmsrl(MSR_IA32_SYSENTER_ESP, a);
  1875. vmcs_writel(HOST_IA32_SYSENTER_ESP, a); /* 22.2.3 */
  1876. rdmsrl(MSR_IA32_SYSENTER_EIP, a);
  1877. vmcs_writel(HOST_IA32_SYSENTER_EIP, a); /* 22.2.3 */
  1878. if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
  1879. rdmsr(MSR_IA32_CR_PAT, msr_low, msr_high);
  1880. host_pat = msr_low | ((u64) msr_high << 32);
  1881. vmcs_write64(HOST_IA32_PAT, host_pat);
  1882. }
  1883. if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
  1884. rdmsr(MSR_IA32_CR_PAT, msr_low, msr_high);
  1885. host_pat = msr_low | ((u64) msr_high << 32);
  1886. /* Write the default value follow host pat */
  1887. vmcs_write64(GUEST_IA32_PAT, host_pat);
  1888. /* Keep arch.pat sync with GUEST_IA32_PAT */
  1889. vmx->vcpu.arch.pat = host_pat;
  1890. }
  1891. for (i = 0; i < NR_VMX_MSR; ++i) {
  1892. u32 index = vmx_msr_index[i];
  1893. u32 data_low, data_high;
  1894. u64 data;
  1895. int j = vmx->nmsrs;
  1896. if (rdmsr_safe(index, &data_low, &data_high) < 0)
  1897. continue;
  1898. if (wrmsr_safe(index, data_low, data_high) < 0)
  1899. continue;
  1900. data = data_low | ((u64)data_high << 32);
  1901. vmx->host_msrs[j].index = index;
  1902. vmx->host_msrs[j].reserved = 0;
  1903. vmx->host_msrs[j].data = data;
  1904. vmx->guest_msrs[j] = vmx->host_msrs[j];
  1905. ++vmx->nmsrs;
  1906. }
  1907. vmcs_write32(VM_EXIT_CONTROLS, vmcs_config.vmexit_ctrl);
  1908. /* 22.2.1, 20.8.1 */
  1909. vmcs_write32(VM_ENTRY_CONTROLS, vmcs_config.vmentry_ctrl);
  1910. vmcs_writel(CR0_GUEST_HOST_MASK, ~0UL);
  1911. vmcs_writel(CR4_GUEST_HOST_MASK, KVM_GUEST_CR4_MASK);
  1912. return 0;
  1913. }
  1914. static int init_rmode(struct kvm *kvm)
  1915. {
  1916. if (!init_rmode_tss(kvm))
  1917. return 0;
  1918. if (!init_rmode_identity_map(kvm))
  1919. return 0;
  1920. return 1;
  1921. }
  1922. static int vmx_vcpu_reset(struct kvm_vcpu *vcpu)
  1923. {
  1924. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1925. u64 msr;
  1926. int ret;
  1927. vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP));
  1928. down_read(&vcpu->kvm->slots_lock);
  1929. if (!init_rmode(vmx->vcpu.kvm)) {
  1930. ret = -ENOMEM;
  1931. goto out;
  1932. }
  1933. vmx->vcpu.arch.rmode.active = 0;
  1934. vmx->soft_vnmi_blocked = 0;
  1935. vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val();
  1936. kvm_set_cr8(&vmx->vcpu, 0);
  1937. msr = 0xfee00000 | MSR_IA32_APICBASE_ENABLE;
  1938. if (vmx->vcpu.vcpu_id == 0)
  1939. msr |= MSR_IA32_APICBASE_BSP;
  1940. kvm_set_apic_base(&vmx->vcpu, msr);
  1941. fx_init(&vmx->vcpu);
  1942. seg_setup(VCPU_SREG_CS);
  1943. /*
  1944. * GUEST_CS_BASE should really be 0xffff0000, but VT vm86 mode
  1945. * insists on having GUEST_CS_BASE == GUEST_CS_SELECTOR << 4. Sigh.
  1946. */
  1947. if (vmx->vcpu.vcpu_id == 0) {
  1948. vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
  1949. vmcs_writel(GUEST_CS_BASE, 0x000f0000);
  1950. } else {
  1951. vmcs_write16(GUEST_CS_SELECTOR, vmx->vcpu.arch.sipi_vector << 8);
  1952. vmcs_writel(GUEST_CS_BASE, vmx->vcpu.arch.sipi_vector << 12);
  1953. }
  1954. seg_setup(VCPU_SREG_DS);
  1955. seg_setup(VCPU_SREG_ES);
  1956. seg_setup(VCPU_SREG_FS);
  1957. seg_setup(VCPU_SREG_GS);
  1958. seg_setup(VCPU_SREG_SS);
  1959. vmcs_write16(GUEST_TR_SELECTOR, 0);
  1960. vmcs_writel(GUEST_TR_BASE, 0);
  1961. vmcs_write32(GUEST_TR_LIMIT, 0xffff);
  1962. vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
  1963. vmcs_write16(GUEST_LDTR_SELECTOR, 0);
  1964. vmcs_writel(GUEST_LDTR_BASE, 0);
  1965. vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
  1966. vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
  1967. vmcs_write32(GUEST_SYSENTER_CS, 0);
  1968. vmcs_writel(GUEST_SYSENTER_ESP, 0);
  1969. vmcs_writel(GUEST_SYSENTER_EIP, 0);
  1970. vmcs_writel(GUEST_RFLAGS, 0x02);
  1971. if (vmx->vcpu.vcpu_id == 0)
  1972. kvm_rip_write(vcpu, 0xfff0);
  1973. else
  1974. kvm_rip_write(vcpu, 0);
  1975. kvm_register_write(vcpu, VCPU_REGS_RSP, 0);
  1976. /* todo: dr0 = dr1 = dr2 = dr3 = 0; dr6 = 0xffff0ff0 */
  1977. vmcs_writel(GUEST_DR7, 0x400);
  1978. vmcs_writel(GUEST_GDTR_BASE, 0);
  1979. vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
  1980. vmcs_writel(GUEST_IDTR_BASE, 0);
  1981. vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
  1982. vmcs_write32(GUEST_ACTIVITY_STATE, 0);
  1983. vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
  1984. vmcs_write32(GUEST_PENDING_DBG_EXCEPTIONS, 0);
  1985. guest_write_tsc(0);
  1986. /* Special registers */
  1987. vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
  1988. setup_msrs(vmx);
  1989. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); /* 22.2.1 */
  1990. if (cpu_has_vmx_tpr_shadow()) {
  1991. vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
  1992. if (vm_need_tpr_shadow(vmx->vcpu.kvm))
  1993. vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
  1994. page_to_phys(vmx->vcpu.arch.apic->regs_page));
  1995. vmcs_write32(TPR_THRESHOLD, 0);
  1996. }
  1997. if (vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
  1998. vmcs_write64(APIC_ACCESS_ADDR,
  1999. page_to_phys(vmx->vcpu.kvm->arch.apic_access_page));
  2000. if (vmx->vpid != 0)
  2001. vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
  2002. vmx->vcpu.arch.cr0 = 0x60000010;
  2003. vmx_set_cr0(&vmx->vcpu, vmx->vcpu.arch.cr0); /* enter rmode */
  2004. vmx_set_cr4(&vmx->vcpu, 0);
  2005. vmx_set_efer(&vmx->vcpu, 0);
  2006. vmx_fpu_activate(&vmx->vcpu);
  2007. update_exception_bitmap(&vmx->vcpu);
  2008. vpid_sync_vcpu_all(vmx);
  2009. ret = 0;
  2010. /* HACK: Don't enable emulation on guest boot/reset */
  2011. vmx->emulation_required = 0;
  2012. out:
  2013. up_read(&vcpu->kvm->slots_lock);
  2014. return ret;
  2015. }
  2016. static void enable_irq_window(struct kvm_vcpu *vcpu)
  2017. {
  2018. u32 cpu_based_vm_exec_control;
  2019. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  2020. cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
  2021. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  2022. }
  2023. static void enable_nmi_window(struct kvm_vcpu *vcpu)
  2024. {
  2025. u32 cpu_based_vm_exec_control;
  2026. if (!cpu_has_virtual_nmis()) {
  2027. enable_irq_window(vcpu);
  2028. return;
  2029. }
  2030. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  2031. cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_NMI_PENDING;
  2032. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  2033. }
  2034. static void vmx_inject_irq(struct kvm_vcpu *vcpu, int irq)
  2035. {
  2036. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2037. KVMTRACE_1D(INJ_VIRQ, vcpu, (u32)irq, handler);
  2038. ++vcpu->stat.irq_injections;
  2039. if (vcpu->arch.rmode.active) {
  2040. vmx->rmode.irq.pending = true;
  2041. vmx->rmode.irq.vector = irq;
  2042. vmx->rmode.irq.rip = kvm_rip_read(vcpu);
  2043. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  2044. irq | INTR_TYPE_SOFT_INTR | INTR_INFO_VALID_MASK);
  2045. vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 1);
  2046. kvm_rip_write(vcpu, vmx->rmode.irq.rip - 1);
  2047. return;
  2048. }
  2049. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  2050. irq | INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
  2051. }
  2052. static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
  2053. {
  2054. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2055. if (!cpu_has_virtual_nmis()) {
  2056. /*
  2057. * Tracking the NMI-blocked state in software is built upon
  2058. * finding the next open IRQ window. This, in turn, depends on
  2059. * well-behaving guests: They have to keep IRQs disabled at
  2060. * least as long as the NMI handler runs. Otherwise we may
  2061. * cause NMI nesting, maybe breaking the guest. But as this is
  2062. * highly unlikely, we can live with the residual risk.
  2063. */
  2064. vmx->soft_vnmi_blocked = 1;
  2065. vmx->vnmi_blocked_time = 0;
  2066. }
  2067. ++vcpu->stat.nmi_injections;
  2068. if (vcpu->arch.rmode.active) {
  2069. vmx->rmode.irq.pending = true;
  2070. vmx->rmode.irq.vector = NMI_VECTOR;
  2071. vmx->rmode.irq.rip = kvm_rip_read(vcpu);
  2072. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  2073. NMI_VECTOR | INTR_TYPE_SOFT_INTR |
  2074. INTR_INFO_VALID_MASK);
  2075. vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 1);
  2076. kvm_rip_write(vcpu, vmx->rmode.irq.rip - 1);
  2077. return;
  2078. }
  2079. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  2080. INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
  2081. }
  2082. static void vmx_update_window_states(struct kvm_vcpu *vcpu)
  2083. {
  2084. u32 guest_intr = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
  2085. vcpu->arch.nmi_window_open =
  2086. !(guest_intr & (GUEST_INTR_STATE_STI |
  2087. GUEST_INTR_STATE_MOV_SS |
  2088. GUEST_INTR_STATE_NMI));
  2089. if (!cpu_has_virtual_nmis() && to_vmx(vcpu)->soft_vnmi_blocked)
  2090. vcpu->arch.nmi_window_open = 0;
  2091. vcpu->arch.interrupt_window_open =
  2092. ((vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
  2093. !(guest_intr & (GUEST_INTR_STATE_STI |
  2094. GUEST_INTR_STATE_MOV_SS)));
  2095. }
  2096. static void kvm_do_inject_irq(struct kvm_vcpu *vcpu)
  2097. {
  2098. int word_index = __ffs(vcpu->arch.irq_summary);
  2099. int bit_index = __ffs(vcpu->arch.irq_pending[word_index]);
  2100. int irq = word_index * BITS_PER_LONG + bit_index;
  2101. clear_bit(bit_index, &vcpu->arch.irq_pending[word_index]);
  2102. if (!vcpu->arch.irq_pending[word_index])
  2103. clear_bit(word_index, &vcpu->arch.irq_summary);
  2104. kvm_queue_interrupt(vcpu, irq);
  2105. }
  2106. static void do_interrupt_requests(struct kvm_vcpu *vcpu,
  2107. struct kvm_run *kvm_run)
  2108. {
  2109. vmx_update_window_states(vcpu);
  2110. if (vcpu->arch.nmi_pending && !vcpu->arch.nmi_injected) {
  2111. if (vcpu->arch.interrupt.pending) {
  2112. enable_nmi_window(vcpu);
  2113. } else if (vcpu->arch.nmi_window_open) {
  2114. vcpu->arch.nmi_pending = false;
  2115. vcpu->arch.nmi_injected = true;
  2116. } else {
  2117. enable_nmi_window(vcpu);
  2118. return;
  2119. }
  2120. }
  2121. if (vcpu->arch.nmi_injected) {
  2122. vmx_inject_nmi(vcpu);
  2123. if (vcpu->arch.nmi_pending)
  2124. enable_nmi_window(vcpu);
  2125. else if (vcpu->arch.irq_summary
  2126. || kvm_run->request_interrupt_window)
  2127. enable_irq_window(vcpu);
  2128. return;
  2129. }
  2130. if (vcpu->arch.interrupt_window_open) {
  2131. if (vcpu->arch.irq_summary && !vcpu->arch.interrupt.pending)
  2132. kvm_do_inject_irq(vcpu);
  2133. if (vcpu->arch.interrupt.pending)
  2134. vmx_inject_irq(vcpu, vcpu->arch.interrupt.nr);
  2135. }
  2136. if (!vcpu->arch.interrupt_window_open &&
  2137. (vcpu->arch.irq_summary || kvm_run->request_interrupt_window))
  2138. enable_irq_window(vcpu);
  2139. }
  2140. static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
  2141. {
  2142. int ret;
  2143. struct kvm_userspace_memory_region tss_mem = {
  2144. .slot = TSS_PRIVATE_MEMSLOT,
  2145. .guest_phys_addr = addr,
  2146. .memory_size = PAGE_SIZE * 3,
  2147. .flags = 0,
  2148. };
  2149. ret = kvm_set_memory_region(kvm, &tss_mem, 0);
  2150. if (ret)
  2151. return ret;
  2152. kvm->arch.tss_addr = addr;
  2153. return 0;
  2154. }
  2155. static void kvm_guest_debug_pre(struct kvm_vcpu *vcpu)
  2156. {
  2157. struct kvm_guest_debug *dbg = &vcpu->guest_debug;
  2158. set_debugreg(dbg->bp[0], 0);
  2159. set_debugreg(dbg->bp[1], 1);
  2160. set_debugreg(dbg->bp[2], 2);
  2161. set_debugreg(dbg->bp[3], 3);
  2162. if (dbg->singlestep) {
  2163. unsigned long flags;
  2164. flags = vmcs_readl(GUEST_RFLAGS);
  2165. flags |= X86_EFLAGS_TF | X86_EFLAGS_RF;
  2166. vmcs_writel(GUEST_RFLAGS, flags);
  2167. }
  2168. }
  2169. static int handle_rmode_exception(struct kvm_vcpu *vcpu,
  2170. int vec, u32 err_code)
  2171. {
  2172. /*
  2173. * Instruction with address size override prefix opcode 0x67
  2174. * Cause the #SS fault with 0 error code in VM86 mode.
  2175. */
  2176. if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0)
  2177. if (emulate_instruction(vcpu, NULL, 0, 0, 0) == EMULATE_DONE)
  2178. return 1;
  2179. /*
  2180. * Forward all other exceptions that are valid in real mode.
  2181. * FIXME: Breaks guest debugging in real mode, needs to be fixed with
  2182. * the required debugging infrastructure rework.
  2183. */
  2184. switch (vec) {
  2185. case DE_VECTOR:
  2186. case DB_VECTOR:
  2187. case BP_VECTOR:
  2188. case OF_VECTOR:
  2189. case BR_VECTOR:
  2190. case UD_VECTOR:
  2191. case DF_VECTOR:
  2192. case SS_VECTOR:
  2193. case GP_VECTOR:
  2194. case MF_VECTOR:
  2195. kvm_queue_exception(vcpu, vec);
  2196. return 1;
  2197. }
  2198. return 0;
  2199. }
  2200. static int handle_exception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2201. {
  2202. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2203. u32 intr_info, error_code;
  2204. unsigned long cr2, rip;
  2205. u32 vect_info;
  2206. enum emulation_result er;
  2207. vect_info = vmx->idt_vectoring_info;
  2208. intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
  2209. if ((vect_info & VECTORING_INFO_VALID_MASK) &&
  2210. !is_page_fault(intr_info))
  2211. printk(KERN_ERR "%s: unexpected, vectoring info 0x%x "
  2212. "intr info 0x%x\n", __func__, vect_info, intr_info);
  2213. if (!irqchip_in_kernel(vcpu->kvm) && is_external_interrupt(vect_info)) {
  2214. int irq = vect_info & VECTORING_INFO_VECTOR_MASK;
  2215. set_bit(irq, vcpu->arch.irq_pending);
  2216. set_bit(irq / BITS_PER_LONG, &vcpu->arch.irq_summary);
  2217. }
  2218. if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR)
  2219. return 1; /* already handled by vmx_vcpu_run() */
  2220. if (is_no_device(intr_info)) {
  2221. vmx_fpu_activate(vcpu);
  2222. return 1;
  2223. }
  2224. if (is_invalid_opcode(intr_info)) {
  2225. er = emulate_instruction(vcpu, kvm_run, 0, 0, EMULTYPE_TRAP_UD);
  2226. if (er != EMULATE_DONE)
  2227. kvm_queue_exception(vcpu, UD_VECTOR);
  2228. return 1;
  2229. }
  2230. error_code = 0;
  2231. rip = kvm_rip_read(vcpu);
  2232. if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
  2233. error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
  2234. if (is_page_fault(intr_info)) {
  2235. /* EPT won't cause page fault directly */
  2236. if (vm_need_ept())
  2237. BUG();
  2238. cr2 = vmcs_readl(EXIT_QUALIFICATION);
  2239. KVMTRACE_3D(PAGE_FAULT, vcpu, error_code, (u32)cr2,
  2240. (u32)((u64)cr2 >> 32), handler);
  2241. if (vcpu->arch.interrupt.pending || vcpu->arch.exception.pending)
  2242. kvm_mmu_unprotect_page_virt(vcpu, cr2);
  2243. return kvm_mmu_page_fault(vcpu, cr2, error_code);
  2244. }
  2245. if (vcpu->arch.rmode.active &&
  2246. handle_rmode_exception(vcpu, intr_info & INTR_INFO_VECTOR_MASK,
  2247. error_code)) {
  2248. if (vcpu->arch.halt_request) {
  2249. vcpu->arch.halt_request = 0;
  2250. return kvm_emulate_halt(vcpu);
  2251. }
  2252. return 1;
  2253. }
  2254. if ((intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK)) ==
  2255. (INTR_TYPE_HARD_EXCEPTION | 1)) {
  2256. kvm_run->exit_reason = KVM_EXIT_DEBUG;
  2257. return 0;
  2258. }
  2259. kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
  2260. kvm_run->ex.exception = intr_info & INTR_INFO_VECTOR_MASK;
  2261. kvm_run->ex.error_code = error_code;
  2262. return 0;
  2263. }
  2264. static int handle_external_interrupt(struct kvm_vcpu *vcpu,
  2265. struct kvm_run *kvm_run)
  2266. {
  2267. ++vcpu->stat.irq_exits;
  2268. KVMTRACE_1D(INTR, vcpu, vmcs_read32(VM_EXIT_INTR_INFO), handler);
  2269. return 1;
  2270. }
  2271. static int handle_triple_fault(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2272. {
  2273. kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
  2274. return 0;
  2275. }
  2276. static int handle_io(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2277. {
  2278. unsigned long exit_qualification;
  2279. int size, down, in, string, rep;
  2280. unsigned port;
  2281. ++vcpu->stat.io_exits;
  2282. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  2283. string = (exit_qualification & 16) != 0;
  2284. if (string) {
  2285. if (emulate_instruction(vcpu,
  2286. kvm_run, 0, 0, 0) == EMULATE_DO_MMIO)
  2287. return 0;
  2288. return 1;
  2289. }
  2290. size = (exit_qualification & 7) + 1;
  2291. in = (exit_qualification & 8) != 0;
  2292. down = (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_DF) != 0;
  2293. rep = (exit_qualification & 32) != 0;
  2294. port = exit_qualification >> 16;
  2295. skip_emulated_instruction(vcpu);
  2296. return kvm_emulate_pio(vcpu, kvm_run, in, size, port);
  2297. }
  2298. static void
  2299. vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
  2300. {
  2301. /*
  2302. * Patch in the VMCALL instruction:
  2303. */
  2304. hypercall[0] = 0x0f;
  2305. hypercall[1] = 0x01;
  2306. hypercall[2] = 0xc1;
  2307. }
  2308. static int handle_cr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2309. {
  2310. unsigned long exit_qualification;
  2311. int cr;
  2312. int reg;
  2313. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  2314. cr = exit_qualification & 15;
  2315. reg = (exit_qualification >> 8) & 15;
  2316. switch ((exit_qualification >> 4) & 3) {
  2317. case 0: /* mov to cr */
  2318. KVMTRACE_3D(CR_WRITE, vcpu, (u32)cr,
  2319. (u32)kvm_register_read(vcpu, reg),
  2320. (u32)((u64)kvm_register_read(vcpu, reg) >> 32),
  2321. handler);
  2322. switch (cr) {
  2323. case 0:
  2324. kvm_set_cr0(vcpu, kvm_register_read(vcpu, reg));
  2325. skip_emulated_instruction(vcpu);
  2326. return 1;
  2327. case 3:
  2328. kvm_set_cr3(vcpu, kvm_register_read(vcpu, reg));
  2329. skip_emulated_instruction(vcpu);
  2330. return 1;
  2331. case 4:
  2332. kvm_set_cr4(vcpu, kvm_register_read(vcpu, reg));
  2333. skip_emulated_instruction(vcpu);
  2334. return 1;
  2335. case 8:
  2336. kvm_set_cr8(vcpu, kvm_register_read(vcpu, reg));
  2337. skip_emulated_instruction(vcpu);
  2338. if (irqchip_in_kernel(vcpu->kvm))
  2339. return 1;
  2340. kvm_run->exit_reason = KVM_EXIT_SET_TPR;
  2341. return 0;
  2342. };
  2343. break;
  2344. case 2: /* clts */
  2345. vmx_fpu_deactivate(vcpu);
  2346. vcpu->arch.cr0 &= ~X86_CR0_TS;
  2347. vmcs_writel(CR0_READ_SHADOW, vcpu->arch.cr0);
  2348. vmx_fpu_activate(vcpu);
  2349. KVMTRACE_0D(CLTS, vcpu, handler);
  2350. skip_emulated_instruction(vcpu);
  2351. return 1;
  2352. case 1: /*mov from cr*/
  2353. switch (cr) {
  2354. case 3:
  2355. kvm_register_write(vcpu, reg, vcpu->arch.cr3);
  2356. KVMTRACE_3D(CR_READ, vcpu, (u32)cr,
  2357. (u32)kvm_register_read(vcpu, reg),
  2358. (u32)((u64)kvm_register_read(vcpu, reg) >> 32),
  2359. handler);
  2360. skip_emulated_instruction(vcpu);
  2361. return 1;
  2362. case 8:
  2363. kvm_register_write(vcpu, reg, kvm_get_cr8(vcpu));
  2364. KVMTRACE_2D(CR_READ, vcpu, (u32)cr,
  2365. (u32)kvm_register_read(vcpu, reg), handler);
  2366. skip_emulated_instruction(vcpu);
  2367. return 1;
  2368. }
  2369. break;
  2370. case 3: /* lmsw */
  2371. kvm_lmsw(vcpu, (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f);
  2372. skip_emulated_instruction(vcpu);
  2373. return 1;
  2374. default:
  2375. break;
  2376. }
  2377. kvm_run->exit_reason = 0;
  2378. pr_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
  2379. (int)(exit_qualification >> 4) & 3, cr);
  2380. return 0;
  2381. }
  2382. static int handle_dr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2383. {
  2384. unsigned long exit_qualification;
  2385. unsigned long val;
  2386. int dr, reg;
  2387. /*
  2388. * FIXME: this code assumes the host is debugging the guest.
  2389. * need to deal with guest debugging itself too.
  2390. */
  2391. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  2392. dr = exit_qualification & 7;
  2393. reg = (exit_qualification >> 8) & 15;
  2394. if (exit_qualification & 16) {
  2395. /* mov from dr */
  2396. switch (dr) {
  2397. case 6:
  2398. val = 0xffff0ff0;
  2399. break;
  2400. case 7:
  2401. val = 0x400;
  2402. break;
  2403. default:
  2404. val = 0;
  2405. }
  2406. kvm_register_write(vcpu, reg, val);
  2407. KVMTRACE_2D(DR_READ, vcpu, (u32)dr, (u32)val, handler);
  2408. } else {
  2409. /* mov to dr */
  2410. }
  2411. skip_emulated_instruction(vcpu);
  2412. return 1;
  2413. }
  2414. static int handle_cpuid(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2415. {
  2416. kvm_emulate_cpuid(vcpu);
  2417. return 1;
  2418. }
  2419. static int handle_rdmsr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2420. {
  2421. u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
  2422. u64 data;
  2423. if (vmx_get_msr(vcpu, ecx, &data)) {
  2424. kvm_inject_gp(vcpu, 0);
  2425. return 1;
  2426. }
  2427. KVMTRACE_3D(MSR_READ, vcpu, ecx, (u32)data, (u32)(data >> 32),
  2428. handler);
  2429. /* FIXME: handling of bits 32:63 of rax, rdx */
  2430. vcpu->arch.regs[VCPU_REGS_RAX] = data & -1u;
  2431. vcpu->arch.regs[VCPU_REGS_RDX] = (data >> 32) & -1u;
  2432. skip_emulated_instruction(vcpu);
  2433. return 1;
  2434. }
  2435. static int handle_wrmsr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2436. {
  2437. u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
  2438. u64 data = (vcpu->arch.regs[VCPU_REGS_RAX] & -1u)
  2439. | ((u64)(vcpu->arch.regs[VCPU_REGS_RDX] & -1u) << 32);
  2440. KVMTRACE_3D(MSR_WRITE, vcpu, ecx, (u32)data, (u32)(data >> 32),
  2441. handler);
  2442. if (vmx_set_msr(vcpu, ecx, data) != 0) {
  2443. kvm_inject_gp(vcpu, 0);
  2444. return 1;
  2445. }
  2446. skip_emulated_instruction(vcpu);
  2447. return 1;
  2448. }
  2449. static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu,
  2450. struct kvm_run *kvm_run)
  2451. {
  2452. return 1;
  2453. }
  2454. static int handle_interrupt_window(struct kvm_vcpu *vcpu,
  2455. struct kvm_run *kvm_run)
  2456. {
  2457. u32 cpu_based_vm_exec_control;
  2458. /* clear pending irq */
  2459. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  2460. cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
  2461. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  2462. KVMTRACE_0D(PEND_INTR, vcpu, handler);
  2463. ++vcpu->stat.irq_window_exits;
  2464. /*
  2465. * If the user space waits to inject interrupts, exit as soon as
  2466. * possible
  2467. */
  2468. if (kvm_run->request_interrupt_window &&
  2469. !vcpu->arch.irq_summary) {
  2470. kvm_run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
  2471. return 0;
  2472. }
  2473. return 1;
  2474. }
  2475. static int handle_halt(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2476. {
  2477. skip_emulated_instruction(vcpu);
  2478. return kvm_emulate_halt(vcpu);
  2479. }
  2480. static int handle_vmcall(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2481. {
  2482. skip_emulated_instruction(vcpu);
  2483. kvm_emulate_hypercall(vcpu);
  2484. return 1;
  2485. }
  2486. static int handle_invlpg(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2487. {
  2488. u64 exit_qualification = vmcs_read64(EXIT_QUALIFICATION);
  2489. kvm_mmu_invlpg(vcpu, exit_qualification);
  2490. skip_emulated_instruction(vcpu);
  2491. return 1;
  2492. }
  2493. static int handle_wbinvd(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2494. {
  2495. skip_emulated_instruction(vcpu);
  2496. /* TODO: Add support for VT-d/pass-through device */
  2497. return 1;
  2498. }
  2499. static int handle_apic_access(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2500. {
  2501. u64 exit_qualification;
  2502. enum emulation_result er;
  2503. unsigned long offset;
  2504. exit_qualification = vmcs_read64(EXIT_QUALIFICATION);
  2505. offset = exit_qualification & 0xffful;
  2506. er = emulate_instruction(vcpu, kvm_run, 0, 0, 0);
  2507. if (er != EMULATE_DONE) {
  2508. printk(KERN_ERR
  2509. "Fail to handle apic access vmexit! Offset is 0x%lx\n",
  2510. offset);
  2511. return -ENOTSUPP;
  2512. }
  2513. return 1;
  2514. }
  2515. static int handle_task_switch(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2516. {
  2517. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2518. unsigned long exit_qualification;
  2519. u16 tss_selector;
  2520. int reason;
  2521. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  2522. reason = (u32)exit_qualification >> 30;
  2523. if (reason == TASK_SWITCH_GATE && vmx->vcpu.arch.nmi_injected &&
  2524. (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
  2525. (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK)
  2526. == INTR_TYPE_NMI_INTR) {
  2527. vcpu->arch.nmi_injected = false;
  2528. if (cpu_has_virtual_nmis())
  2529. vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
  2530. GUEST_INTR_STATE_NMI);
  2531. }
  2532. tss_selector = exit_qualification;
  2533. return kvm_task_switch(vcpu, tss_selector, reason);
  2534. }
  2535. static int handle_ept_violation(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2536. {
  2537. u64 exit_qualification;
  2538. enum emulation_result er;
  2539. gpa_t gpa;
  2540. unsigned long hva;
  2541. int gla_validity;
  2542. int r;
  2543. exit_qualification = vmcs_read64(EXIT_QUALIFICATION);
  2544. if (exit_qualification & (1 << 6)) {
  2545. printk(KERN_ERR "EPT: GPA exceeds GAW!\n");
  2546. return -ENOTSUPP;
  2547. }
  2548. gla_validity = (exit_qualification >> 7) & 0x3;
  2549. if (gla_validity != 0x3 && gla_validity != 0x1 && gla_validity != 0) {
  2550. printk(KERN_ERR "EPT: Handling EPT violation failed!\n");
  2551. printk(KERN_ERR "EPT: GPA: 0x%lx, GVA: 0x%lx\n",
  2552. (long unsigned int)vmcs_read64(GUEST_PHYSICAL_ADDRESS),
  2553. (long unsigned int)vmcs_read64(GUEST_LINEAR_ADDRESS));
  2554. printk(KERN_ERR "EPT: Exit qualification is 0x%lx\n",
  2555. (long unsigned int)exit_qualification);
  2556. kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
  2557. kvm_run->hw.hardware_exit_reason = 0;
  2558. return -ENOTSUPP;
  2559. }
  2560. gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
  2561. hva = gfn_to_hva(vcpu->kvm, gpa >> PAGE_SHIFT);
  2562. if (!kvm_is_error_hva(hva)) {
  2563. r = kvm_mmu_page_fault(vcpu, gpa & PAGE_MASK, 0);
  2564. if (r < 0) {
  2565. printk(KERN_ERR "EPT: Not enough memory!\n");
  2566. return -ENOMEM;
  2567. }
  2568. return 1;
  2569. } else {
  2570. /* must be MMIO */
  2571. er = emulate_instruction(vcpu, kvm_run, 0, 0, 0);
  2572. if (er == EMULATE_FAIL) {
  2573. printk(KERN_ERR
  2574. "EPT: Fail to handle EPT violation vmexit!er is %d\n",
  2575. er);
  2576. printk(KERN_ERR "EPT: GPA: 0x%lx, GVA: 0x%lx\n",
  2577. (long unsigned int)vmcs_read64(GUEST_PHYSICAL_ADDRESS),
  2578. (long unsigned int)vmcs_read64(GUEST_LINEAR_ADDRESS));
  2579. printk(KERN_ERR "EPT: Exit qualification is 0x%lx\n",
  2580. (long unsigned int)exit_qualification);
  2581. return -ENOTSUPP;
  2582. } else if (er == EMULATE_DO_MMIO)
  2583. return 0;
  2584. }
  2585. return 1;
  2586. }
  2587. static int handle_nmi_window(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2588. {
  2589. u32 cpu_based_vm_exec_control;
  2590. /* clear pending NMI */
  2591. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  2592. cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
  2593. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  2594. ++vcpu->stat.nmi_window_exits;
  2595. return 1;
  2596. }
  2597. static void handle_invalid_guest_state(struct kvm_vcpu *vcpu,
  2598. struct kvm_run *kvm_run)
  2599. {
  2600. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2601. int err;
  2602. preempt_enable();
  2603. local_irq_enable();
  2604. while (!guest_state_valid(vcpu)) {
  2605. err = emulate_instruction(vcpu, kvm_run, 0, 0, 0);
  2606. if (err == EMULATE_DO_MMIO)
  2607. break;
  2608. if (err != EMULATE_DONE) {
  2609. kvm_report_emulation_failure(vcpu, "emulation failure");
  2610. return;
  2611. }
  2612. if (signal_pending(current))
  2613. break;
  2614. if (need_resched())
  2615. schedule();
  2616. }
  2617. local_irq_disable();
  2618. preempt_disable();
  2619. /* Guest state should be valid now except if we need to
  2620. * emulate an MMIO */
  2621. if (guest_state_valid(vcpu))
  2622. vmx->emulation_required = 0;
  2623. }
  2624. /*
  2625. * The exit handlers return 1 if the exit was handled fully and guest execution
  2626. * may resume. Otherwise they set the kvm_run parameter to indicate what needs
  2627. * to be done to userspace and return 0.
  2628. */
  2629. static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu,
  2630. struct kvm_run *kvm_run) = {
  2631. [EXIT_REASON_EXCEPTION_NMI] = handle_exception,
  2632. [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt,
  2633. [EXIT_REASON_TRIPLE_FAULT] = handle_triple_fault,
  2634. [EXIT_REASON_NMI_WINDOW] = handle_nmi_window,
  2635. [EXIT_REASON_IO_INSTRUCTION] = handle_io,
  2636. [EXIT_REASON_CR_ACCESS] = handle_cr,
  2637. [EXIT_REASON_DR_ACCESS] = handle_dr,
  2638. [EXIT_REASON_CPUID] = handle_cpuid,
  2639. [EXIT_REASON_MSR_READ] = handle_rdmsr,
  2640. [EXIT_REASON_MSR_WRITE] = handle_wrmsr,
  2641. [EXIT_REASON_PENDING_INTERRUPT] = handle_interrupt_window,
  2642. [EXIT_REASON_HLT] = handle_halt,
  2643. [EXIT_REASON_INVLPG] = handle_invlpg,
  2644. [EXIT_REASON_VMCALL] = handle_vmcall,
  2645. [EXIT_REASON_TPR_BELOW_THRESHOLD] = handle_tpr_below_threshold,
  2646. [EXIT_REASON_APIC_ACCESS] = handle_apic_access,
  2647. [EXIT_REASON_WBINVD] = handle_wbinvd,
  2648. [EXIT_REASON_TASK_SWITCH] = handle_task_switch,
  2649. [EXIT_REASON_EPT_VIOLATION] = handle_ept_violation,
  2650. };
  2651. static const int kvm_vmx_max_exit_handlers =
  2652. ARRAY_SIZE(kvm_vmx_exit_handlers);
  2653. /*
  2654. * The guest has exited. See if we can fix it or if we need userspace
  2655. * assistance.
  2656. */
  2657. static int kvm_handle_exit(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
  2658. {
  2659. u32 exit_reason = vmcs_read32(VM_EXIT_REASON);
  2660. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2661. u32 vectoring_info = vmx->idt_vectoring_info;
  2662. KVMTRACE_3D(VMEXIT, vcpu, exit_reason, (u32)kvm_rip_read(vcpu),
  2663. (u32)((u64)kvm_rip_read(vcpu) >> 32), entryexit);
  2664. /* If we need to emulate an MMIO from handle_invalid_guest_state
  2665. * we just return 0 */
  2666. if (vmx->emulation_required && emulate_invalid_guest_state)
  2667. return 0;
  2668. /* Access CR3 don't cause VMExit in paging mode, so we need
  2669. * to sync with guest real CR3. */
  2670. if (vm_need_ept() && is_paging(vcpu)) {
  2671. vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
  2672. ept_load_pdptrs(vcpu);
  2673. }
  2674. if (unlikely(vmx->fail)) {
  2675. kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
  2676. kvm_run->fail_entry.hardware_entry_failure_reason
  2677. = vmcs_read32(VM_INSTRUCTION_ERROR);
  2678. return 0;
  2679. }
  2680. if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
  2681. (exit_reason != EXIT_REASON_EXCEPTION_NMI &&
  2682. exit_reason != EXIT_REASON_EPT_VIOLATION &&
  2683. exit_reason != EXIT_REASON_TASK_SWITCH))
  2684. printk(KERN_WARNING "%s: unexpected, valid vectoring info "
  2685. "(0x%x) and exit reason is 0x%x\n",
  2686. __func__, vectoring_info, exit_reason);
  2687. if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked)) {
  2688. if (vcpu->arch.interrupt_window_open) {
  2689. vmx->soft_vnmi_blocked = 0;
  2690. vcpu->arch.nmi_window_open = 1;
  2691. } else if (vmx->vnmi_blocked_time > 1000000000LL &&
  2692. vcpu->arch.nmi_pending) {
  2693. /*
  2694. * This CPU don't support us in finding the end of an
  2695. * NMI-blocked window if the guest runs with IRQs
  2696. * disabled. So we pull the trigger after 1 s of
  2697. * futile waiting, but inform the user about this.
  2698. */
  2699. printk(KERN_WARNING "%s: Breaking out of NMI-blocked "
  2700. "state on VCPU %d after 1 s timeout\n",
  2701. __func__, vcpu->vcpu_id);
  2702. vmx->soft_vnmi_blocked = 0;
  2703. vmx->vcpu.arch.nmi_window_open = 1;
  2704. }
  2705. }
  2706. if (exit_reason < kvm_vmx_max_exit_handlers
  2707. && kvm_vmx_exit_handlers[exit_reason])
  2708. return kvm_vmx_exit_handlers[exit_reason](vcpu, kvm_run);
  2709. else {
  2710. kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
  2711. kvm_run->hw.hardware_exit_reason = exit_reason;
  2712. }
  2713. return 0;
  2714. }
  2715. static void update_tpr_threshold(struct kvm_vcpu *vcpu)
  2716. {
  2717. int max_irr, tpr;
  2718. if (!vm_need_tpr_shadow(vcpu->kvm))
  2719. return;
  2720. if (!kvm_lapic_enabled(vcpu) ||
  2721. ((max_irr = kvm_lapic_find_highest_irr(vcpu)) == -1)) {
  2722. vmcs_write32(TPR_THRESHOLD, 0);
  2723. return;
  2724. }
  2725. tpr = (kvm_lapic_get_cr8(vcpu) & 0x0f) << 4;
  2726. vmcs_write32(TPR_THRESHOLD, (max_irr > tpr) ? tpr >> 4 : max_irr >> 4);
  2727. }
  2728. static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
  2729. {
  2730. u32 exit_intr_info;
  2731. u32 idt_vectoring_info;
  2732. bool unblock_nmi;
  2733. u8 vector;
  2734. int type;
  2735. bool idtv_info_valid;
  2736. u32 error;
  2737. exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
  2738. if (cpu_has_virtual_nmis()) {
  2739. unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
  2740. vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
  2741. /*
  2742. * SDM 3: 25.7.1.2
  2743. * Re-set bit "block by NMI" before VM entry if vmexit caused by
  2744. * a guest IRET fault.
  2745. */
  2746. if (unblock_nmi && vector != DF_VECTOR)
  2747. vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
  2748. GUEST_INTR_STATE_NMI);
  2749. } else if (unlikely(vmx->soft_vnmi_blocked))
  2750. vmx->vnmi_blocked_time +=
  2751. ktime_to_ns(ktime_sub(ktime_get(), vmx->entry_time));
  2752. idt_vectoring_info = vmx->idt_vectoring_info;
  2753. idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
  2754. vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
  2755. type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
  2756. if (vmx->vcpu.arch.nmi_injected) {
  2757. /*
  2758. * SDM 3: 25.7.1.2
  2759. * Clear bit "block by NMI" before VM entry if a NMI delivery
  2760. * faulted.
  2761. */
  2762. if (idtv_info_valid && type == INTR_TYPE_NMI_INTR)
  2763. vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
  2764. GUEST_INTR_STATE_NMI);
  2765. else
  2766. vmx->vcpu.arch.nmi_injected = false;
  2767. }
  2768. kvm_clear_exception_queue(&vmx->vcpu);
  2769. if (idtv_info_valid && (type == INTR_TYPE_HARD_EXCEPTION ||
  2770. type == INTR_TYPE_SOFT_EXCEPTION)) {
  2771. if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
  2772. error = vmcs_read32(IDT_VECTORING_ERROR_CODE);
  2773. kvm_queue_exception_e(&vmx->vcpu, vector, error);
  2774. } else
  2775. kvm_queue_exception(&vmx->vcpu, vector);
  2776. vmx->idt_vectoring_info = 0;
  2777. }
  2778. kvm_clear_interrupt_queue(&vmx->vcpu);
  2779. if (idtv_info_valid && type == INTR_TYPE_EXT_INTR) {
  2780. kvm_queue_interrupt(&vmx->vcpu, vector);
  2781. vmx->idt_vectoring_info = 0;
  2782. }
  2783. }
  2784. static void vmx_intr_assist(struct kvm_vcpu *vcpu)
  2785. {
  2786. update_tpr_threshold(vcpu);
  2787. vmx_update_window_states(vcpu);
  2788. if (vcpu->arch.nmi_pending && !vcpu->arch.nmi_injected) {
  2789. if (vcpu->arch.interrupt.pending) {
  2790. enable_nmi_window(vcpu);
  2791. } else if (vcpu->arch.nmi_window_open) {
  2792. vcpu->arch.nmi_pending = false;
  2793. vcpu->arch.nmi_injected = true;
  2794. } else {
  2795. enable_nmi_window(vcpu);
  2796. return;
  2797. }
  2798. }
  2799. if (vcpu->arch.nmi_injected) {
  2800. vmx_inject_nmi(vcpu);
  2801. if (vcpu->arch.nmi_pending)
  2802. enable_nmi_window(vcpu);
  2803. else if (kvm_cpu_has_interrupt(vcpu))
  2804. enable_irq_window(vcpu);
  2805. return;
  2806. }
  2807. if (!vcpu->arch.interrupt.pending && kvm_cpu_has_interrupt(vcpu)) {
  2808. if (vcpu->arch.interrupt_window_open)
  2809. kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu));
  2810. else
  2811. enable_irq_window(vcpu);
  2812. }
  2813. if (vcpu->arch.interrupt.pending) {
  2814. vmx_inject_irq(vcpu, vcpu->arch.interrupt.nr);
  2815. if (kvm_cpu_has_interrupt(vcpu))
  2816. enable_irq_window(vcpu);
  2817. }
  2818. }
  2819. /*
  2820. * Failure to inject an interrupt should give us the information
  2821. * in IDT_VECTORING_INFO_FIELD. However, if the failure occurs
  2822. * when fetching the interrupt redirection bitmap in the real-mode
  2823. * tss, this doesn't happen. So we do it ourselves.
  2824. */
  2825. static void fixup_rmode_irq(struct vcpu_vmx *vmx)
  2826. {
  2827. vmx->rmode.irq.pending = 0;
  2828. if (kvm_rip_read(&vmx->vcpu) + 1 != vmx->rmode.irq.rip)
  2829. return;
  2830. kvm_rip_write(&vmx->vcpu, vmx->rmode.irq.rip);
  2831. if (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK) {
  2832. vmx->idt_vectoring_info &= ~VECTORING_INFO_TYPE_MASK;
  2833. vmx->idt_vectoring_info |= INTR_TYPE_EXT_INTR;
  2834. return;
  2835. }
  2836. vmx->idt_vectoring_info =
  2837. VECTORING_INFO_VALID_MASK
  2838. | INTR_TYPE_EXT_INTR
  2839. | vmx->rmode.irq.vector;
  2840. }
  2841. #ifdef CONFIG_X86_64
  2842. #define R "r"
  2843. #define Q "q"
  2844. #else
  2845. #define R "e"
  2846. #define Q "l"
  2847. #endif
  2848. static void vmx_vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2849. {
  2850. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2851. u32 intr_info;
  2852. /* Record the guest's net vcpu time for enforced NMI injections. */
  2853. if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked))
  2854. vmx->entry_time = ktime_get();
  2855. /* Handle invalid guest state instead of entering VMX */
  2856. if (vmx->emulation_required && emulate_invalid_guest_state) {
  2857. handle_invalid_guest_state(vcpu, kvm_run);
  2858. return;
  2859. }
  2860. if (test_bit(VCPU_REGS_RSP, (unsigned long *)&vcpu->arch.regs_dirty))
  2861. vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
  2862. if (test_bit(VCPU_REGS_RIP, (unsigned long *)&vcpu->arch.regs_dirty))
  2863. vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
  2864. /*
  2865. * Loading guest fpu may have cleared host cr0.ts
  2866. */
  2867. vmcs_writel(HOST_CR0, read_cr0());
  2868. asm(
  2869. /* Store host registers */
  2870. "push %%"R"dx; push %%"R"bp;"
  2871. "push %%"R"cx \n\t"
  2872. "cmp %%"R"sp, %c[host_rsp](%0) \n\t"
  2873. "je 1f \n\t"
  2874. "mov %%"R"sp, %c[host_rsp](%0) \n\t"
  2875. __ex(ASM_VMX_VMWRITE_RSP_RDX) "\n\t"
  2876. "1: \n\t"
  2877. /* Check if vmlaunch of vmresume is needed */
  2878. "cmpl $0, %c[launched](%0) \n\t"
  2879. /* Load guest registers. Don't clobber flags. */
  2880. "mov %c[cr2](%0), %%"R"ax \n\t"
  2881. "mov %%"R"ax, %%cr2 \n\t"
  2882. "mov %c[rax](%0), %%"R"ax \n\t"
  2883. "mov %c[rbx](%0), %%"R"bx \n\t"
  2884. "mov %c[rdx](%0), %%"R"dx \n\t"
  2885. "mov %c[rsi](%0), %%"R"si \n\t"
  2886. "mov %c[rdi](%0), %%"R"di \n\t"
  2887. "mov %c[rbp](%0), %%"R"bp \n\t"
  2888. #ifdef CONFIG_X86_64
  2889. "mov %c[r8](%0), %%r8 \n\t"
  2890. "mov %c[r9](%0), %%r9 \n\t"
  2891. "mov %c[r10](%0), %%r10 \n\t"
  2892. "mov %c[r11](%0), %%r11 \n\t"
  2893. "mov %c[r12](%0), %%r12 \n\t"
  2894. "mov %c[r13](%0), %%r13 \n\t"
  2895. "mov %c[r14](%0), %%r14 \n\t"
  2896. "mov %c[r15](%0), %%r15 \n\t"
  2897. #endif
  2898. "mov %c[rcx](%0), %%"R"cx \n\t" /* kills %0 (ecx) */
  2899. /* Enter guest mode */
  2900. "jne .Llaunched \n\t"
  2901. __ex(ASM_VMX_VMLAUNCH) "\n\t"
  2902. "jmp .Lkvm_vmx_return \n\t"
  2903. ".Llaunched: " __ex(ASM_VMX_VMRESUME) "\n\t"
  2904. ".Lkvm_vmx_return: "
  2905. /* Save guest registers, load host registers, keep flags */
  2906. "xchg %0, (%%"R"sp) \n\t"
  2907. "mov %%"R"ax, %c[rax](%0) \n\t"
  2908. "mov %%"R"bx, %c[rbx](%0) \n\t"
  2909. "push"Q" (%%"R"sp); pop"Q" %c[rcx](%0) \n\t"
  2910. "mov %%"R"dx, %c[rdx](%0) \n\t"
  2911. "mov %%"R"si, %c[rsi](%0) \n\t"
  2912. "mov %%"R"di, %c[rdi](%0) \n\t"
  2913. "mov %%"R"bp, %c[rbp](%0) \n\t"
  2914. #ifdef CONFIG_X86_64
  2915. "mov %%r8, %c[r8](%0) \n\t"
  2916. "mov %%r9, %c[r9](%0) \n\t"
  2917. "mov %%r10, %c[r10](%0) \n\t"
  2918. "mov %%r11, %c[r11](%0) \n\t"
  2919. "mov %%r12, %c[r12](%0) \n\t"
  2920. "mov %%r13, %c[r13](%0) \n\t"
  2921. "mov %%r14, %c[r14](%0) \n\t"
  2922. "mov %%r15, %c[r15](%0) \n\t"
  2923. #endif
  2924. "mov %%cr2, %%"R"ax \n\t"
  2925. "mov %%"R"ax, %c[cr2](%0) \n\t"
  2926. "pop %%"R"bp; pop %%"R"bp; pop %%"R"dx \n\t"
  2927. "setbe %c[fail](%0) \n\t"
  2928. : : "c"(vmx), "d"((unsigned long)HOST_RSP),
  2929. [launched]"i"(offsetof(struct vcpu_vmx, launched)),
  2930. [fail]"i"(offsetof(struct vcpu_vmx, fail)),
  2931. [host_rsp]"i"(offsetof(struct vcpu_vmx, host_rsp)),
  2932. [rax]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RAX])),
  2933. [rbx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBX])),
  2934. [rcx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RCX])),
  2935. [rdx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDX])),
  2936. [rsi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RSI])),
  2937. [rdi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDI])),
  2938. [rbp]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBP])),
  2939. #ifdef CONFIG_X86_64
  2940. [r8]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R8])),
  2941. [r9]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R9])),
  2942. [r10]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R10])),
  2943. [r11]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R11])),
  2944. [r12]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R12])),
  2945. [r13]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R13])),
  2946. [r14]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R14])),
  2947. [r15]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R15])),
  2948. #endif
  2949. [cr2]"i"(offsetof(struct vcpu_vmx, vcpu.arch.cr2))
  2950. : "cc", "memory"
  2951. , R"bx", R"di", R"si"
  2952. #ifdef CONFIG_X86_64
  2953. , "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
  2954. #endif
  2955. );
  2956. vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP));
  2957. vcpu->arch.regs_dirty = 0;
  2958. vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
  2959. if (vmx->rmode.irq.pending)
  2960. fixup_rmode_irq(vmx);
  2961. vmx_update_window_states(vcpu);
  2962. asm("mov %0, %%ds; mov %0, %%es" : : "r"(__USER_DS));
  2963. vmx->launched = 1;
  2964. intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
  2965. /* We need to handle NMIs before interrupts are enabled */
  2966. if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR &&
  2967. (intr_info & INTR_INFO_VALID_MASK)) {
  2968. KVMTRACE_0D(NMI, vcpu, handler);
  2969. asm("int $2");
  2970. }
  2971. vmx_complete_interrupts(vmx);
  2972. }
  2973. #undef R
  2974. #undef Q
  2975. static void vmx_free_vmcs(struct kvm_vcpu *vcpu)
  2976. {
  2977. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2978. if (vmx->vmcs) {
  2979. vcpu_clear(vmx);
  2980. free_vmcs(vmx->vmcs);
  2981. vmx->vmcs = NULL;
  2982. }
  2983. }
  2984. static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
  2985. {
  2986. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2987. spin_lock(&vmx_vpid_lock);
  2988. if (vmx->vpid != 0)
  2989. __clear_bit(vmx->vpid, vmx_vpid_bitmap);
  2990. spin_unlock(&vmx_vpid_lock);
  2991. vmx_free_vmcs(vcpu);
  2992. kfree(vmx->host_msrs);
  2993. kfree(vmx->guest_msrs);
  2994. kvm_vcpu_uninit(vcpu);
  2995. kmem_cache_free(kvm_vcpu_cache, vmx);
  2996. }
  2997. static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id)
  2998. {
  2999. int err;
  3000. struct vcpu_vmx *vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
  3001. int cpu;
  3002. if (!vmx)
  3003. return ERR_PTR(-ENOMEM);
  3004. allocate_vpid(vmx);
  3005. err = kvm_vcpu_init(&vmx->vcpu, kvm, id);
  3006. if (err)
  3007. goto free_vcpu;
  3008. vmx->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
  3009. if (!vmx->guest_msrs) {
  3010. err = -ENOMEM;
  3011. goto uninit_vcpu;
  3012. }
  3013. vmx->host_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
  3014. if (!vmx->host_msrs)
  3015. goto free_guest_msrs;
  3016. vmx->vmcs = alloc_vmcs();
  3017. if (!vmx->vmcs)
  3018. goto free_msrs;
  3019. vmcs_clear(vmx->vmcs);
  3020. cpu = get_cpu();
  3021. vmx_vcpu_load(&vmx->vcpu, cpu);
  3022. err = vmx_vcpu_setup(vmx);
  3023. vmx_vcpu_put(&vmx->vcpu);
  3024. put_cpu();
  3025. if (err)
  3026. goto free_vmcs;
  3027. if (vm_need_virtualize_apic_accesses(kvm))
  3028. if (alloc_apic_access_page(kvm) != 0)
  3029. goto free_vmcs;
  3030. if (vm_need_ept())
  3031. if (alloc_identity_pagetable(kvm) != 0)
  3032. goto free_vmcs;
  3033. return &vmx->vcpu;
  3034. free_vmcs:
  3035. free_vmcs(vmx->vmcs);
  3036. free_msrs:
  3037. kfree(vmx->host_msrs);
  3038. free_guest_msrs:
  3039. kfree(vmx->guest_msrs);
  3040. uninit_vcpu:
  3041. kvm_vcpu_uninit(&vmx->vcpu);
  3042. free_vcpu:
  3043. kmem_cache_free(kvm_vcpu_cache, vmx);
  3044. return ERR_PTR(err);
  3045. }
  3046. static void __init vmx_check_processor_compat(void *rtn)
  3047. {
  3048. struct vmcs_config vmcs_conf;
  3049. *(int *)rtn = 0;
  3050. if (setup_vmcs_config(&vmcs_conf) < 0)
  3051. *(int *)rtn = -EIO;
  3052. if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
  3053. printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
  3054. smp_processor_id());
  3055. *(int *)rtn = -EIO;
  3056. }
  3057. }
  3058. static int get_ept_level(void)
  3059. {
  3060. return VMX_EPT_DEFAULT_GAW + 1;
  3061. }
  3062. static int vmx_get_mt_mask_shift(void)
  3063. {
  3064. return VMX_EPT_MT_EPTE_SHIFT;
  3065. }
  3066. static struct kvm_x86_ops vmx_x86_ops = {
  3067. .cpu_has_kvm_support = cpu_has_kvm_support,
  3068. .disabled_by_bios = vmx_disabled_by_bios,
  3069. .hardware_setup = hardware_setup,
  3070. .hardware_unsetup = hardware_unsetup,
  3071. .check_processor_compatibility = vmx_check_processor_compat,
  3072. .hardware_enable = hardware_enable,
  3073. .hardware_disable = hardware_disable,
  3074. .cpu_has_accelerated_tpr = cpu_has_vmx_virtualize_apic_accesses,
  3075. .vcpu_create = vmx_create_vcpu,
  3076. .vcpu_free = vmx_free_vcpu,
  3077. .vcpu_reset = vmx_vcpu_reset,
  3078. .prepare_guest_switch = vmx_save_host_state,
  3079. .vcpu_load = vmx_vcpu_load,
  3080. .vcpu_put = vmx_vcpu_put,
  3081. .set_guest_debug = set_guest_debug,
  3082. .guest_debug_pre = kvm_guest_debug_pre,
  3083. .get_msr = vmx_get_msr,
  3084. .set_msr = vmx_set_msr,
  3085. .get_segment_base = vmx_get_segment_base,
  3086. .get_segment = vmx_get_segment,
  3087. .set_segment = vmx_set_segment,
  3088. .get_cpl = vmx_get_cpl,
  3089. .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
  3090. .decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
  3091. .set_cr0 = vmx_set_cr0,
  3092. .set_cr3 = vmx_set_cr3,
  3093. .set_cr4 = vmx_set_cr4,
  3094. .set_efer = vmx_set_efer,
  3095. .get_idt = vmx_get_idt,
  3096. .set_idt = vmx_set_idt,
  3097. .get_gdt = vmx_get_gdt,
  3098. .set_gdt = vmx_set_gdt,
  3099. .cache_reg = vmx_cache_reg,
  3100. .get_rflags = vmx_get_rflags,
  3101. .set_rflags = vmx_set_rflags,
  3102. .tlb_flush = vmx_flush_tlb,
  3103. .run = vmx_vcpu_run,
  3104. .handle_exit = kvm_handle_exit,
  3105. .skip_emulated_instruction = skip_emulated_instruction,
  3106. .patch_hypercall = vmx_patch_hypercall,
  3107. .get_irq = vmx_get_irq,
  3108. .set_irq = vmx_inject_irq,
  3109. .queue_exception = vmx_queue_exception,
  3110. .exception_injected = vmx_exception_injected,
  3111. .inject_pending_irq = vmx_intr_assist,
  3112. .inject_pending_vectors = do_interrupt_requests,
  3113. .set_tss_addr = vmx_set_tss_addr,
  3114. .get_tdp_level = get_ept_level,
  3115. .get_mt_mask_shift = vmx_get_mt_mask_shift,
  3116. };
  3117. static int __init vmx_init(void)
  3118. {
  3119. void *va;
  3120. int r;
  3121. vmx_io_bitmap_a = alloc_page(GFP_KERNEL | __GFP_HIGHMEM);
  3122. if (!vmx_io_bitmap_a)
  3123. return -ENOMEM;
  3124. vmx_io_bitmap_b = alloc_page(GFP_KERNEL | __GFP_HIGHMEM);
  3125. if (!vmx_io_bitmap_b) {
  3126. r = -ENOMEM;
  3127. goto out;
  3128. }
  3129. vmx_msr_bitmap = alloc_page(GFP_KERNEL | __GFP_HIGHMEM);
  3130. if (!vmx_msr_bitmap) {
  3131. r = -ENOMEM;
  3132. goto out1;
  3133. }
  3134. /*
  3135. * Allow direct access to the PC debug port (it is often used for I/O
  3136. * delays, but the vmexits simply slow things down).
  3137. */
  3138. va = kmap(vmx_io_bitmap_a);
  3139. memset(va, 0xff, PAGE_SIZE);
  3140. clear_bit(0x80, va);
  3141. kunmap(vmx_io_bitmap_a);
  3142. va = kmap(vmx_io_bitmap_b);
  3143. memset(va, 0xff, PAGE_SIZE);
  3144. kunmap(vmx_io_bitmap_b);
  3145. va = kmap(vmx_msr_bitmap);
  3146. memset(va, 0xff, PAGE_SIZE);
  3147. kunmap(vmx_msr_bitmap);
  3148. set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
  3149. r = kvm_init(&vmx_x86_ops, sizeof(struct vcpu_vmx), THIS_MODULE);
  3150. if (r)
  3151. goto out2;
  3152. vmx_disable_intercept_for_msr(vmx_msr_bitmap, MSR_FS_BASE);
  3153. vmx_disable_intercept_for_msr(vmx_msr_bitmap, MSR_GS_BASE);
  3154. vmx_disable_intercept_for_msr(vmx_msr_bitmap, MSR_IA32_SYSENTER_CS);
  3155. vmx_disable_intercept_for_msr(vmx_msr_bitmap, MSR_IA32_SYSENTER_ESP);
  3156. vmx_disable_intercept_for_msr(vmx_msr_bitmap, MSR_IA32_SYSENTER_EIP);
  3157. if (vm_need_ept()) {
  3158. bypass_guest_pf = 0;
  3159. kvm_mmu_set_base_ptes(VMX_EPT_READABLE_MASK |
  3160. VMX_EPT_WRITABLE_MASK);
  3161. kvm_mmu_set_mask_ptes(0ull, 0ull, 0ull, 0ull,
  3162. VMX_EPT_EXECUTABLE_MASK,
  3163. VMX_EPT_DEFAULT_MT << VMX_EPT_MT_EPTE_SHIFT);
  3164. kvm_enable_tdp();
  3165. } else
  3166. kvm_disable_tdp();
  3167. if (bypass_guest_pf)
  3168. kvm_mmu_set_nonpresent_ptes(~0xffeull, 0ull);
  3169. ept_sync_global();
  3170. return 0;
  3171. out2:
  3172. __free_page(vmx_msr_bitmap);
  3173. out1:
  3174. __free_page(vmx_io_bitmap_b);
  3175. out:
  3176. __free_page(vmx_io_bitmap_a);
  3177. return r;
  3178. }
  3179. static void __exit vmx_exit(void)
  3180. {
  3181. __free_page(vmx_msr_bitmap);
  3182. __free_page(vmx_io_bitmap_b);
  3183. __free_page(vmx_io_bitmap_a);
  3184. kvm_exit();
  3185. }
  3186. module_init(vmx_init)
  3187. module_exit(vmx_exit)