qlge_main.c 129 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829
  1. /*
  2. * QLogic qlge NIC HBA Driver
  3. * Copyright (c) 2003-2008 QLogic Corporation
  4. * See LICENSE.qlge for copyright and licensing details.
  5. * Author: Linux qlge network device driver by
  6. * Ron Mercer <ron.mercer@qlogic.com>
  7. */
  8. #include <linux/kernel.h>
  9. #include <linux/init.h>
  10. #include <linux/types.h>
  11. #include <linux/module.h>
  12. #include <linux/list.h>
  13. #include <linux/pci.h>
  14. #include <linux/dma-mapping.h>
  15. #include <linux/pagemap.h>
  16. #include <linux/sched.h>
  17. #include <linux/slab.h>
  18. #include <linux/dmapool.h>
  19. #include <linux/mempool.h>
  20. #include <linux/spinlock.h>
  21. #include <linux/kthread.h>
  22. #include <linux/interrupt.h>
  23. #include <linux/errno.h>
  24. #include <linux/ioport.h>
  25. #include <linux/in.h>
  26. #include <linux/ip.h>
  27. #include <linux/ipv6.h>
  28. #include <net/ipv6.h>
  29. #include <linux/tcp.h>
  30. #include <linux/udp.h>
  31. #include <linux/if_arp.h>
  32. #include <linux/if_ether.h>
  33. #include <linux/netdevice.h>
  34. #include <linux/etherdevice.h>
  35. #include <linux/ethtool.h>
  36. #include <linux/skbuff.h>
  37. #include <linux/if_vlan.h>
  38. #include <linux/delay.h>
  39. #include <linux/mm.h>
  40. #include <linux/vmalloc.h>
  41. #include <net/ip6_checksum.h>
  42. #include "qlge.h"
  43. char qlge_driver_name[] = DRV_NAME;
  44. const char qlge_driver_version[] = DRV_VERSION;
  45. MODULE_AUTHOR("Ron Mercer <ron.mercer@qlogic.com>");
  46. MODULE_DESCRIPTION(DRV_STRING " ");
  47. MODULE_LICENSE("GPL");
  48. MODULE_VERSION(DRV_VERSION);
  49. static const u32 default_msg =
  50. NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK |
  51. /* NETIF_MSG_TIMER | */
  52. NETIF_MSG_IFDOWN |
  53. NETIF_MSG_IFUP |
  54. NETIF_MSG_RX_ERR |
  55. NETIF_MSG_TX_ERR |
  56. /* NETIF_MSG_TX_QUEUED | */
  57. /* NETIF_MSG_INTR | NETIF_MSG_TX_DONE | NETIF_MSG_RX_STATUS | */
  58. /* NETIF_MSG_PKTDATA | */
  59. NETIF_MSG_HW | NETIF_MSG_WOL | 0;
  60. static int debug = 0x00007fff; /* defaults above */
  61. module_param(debug, int, 0);
  62. MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
  63. #define MSIX_IRQ 0
  64. #define MSI_IRQ 1
  65. #define LEG_IRQ 2
  66. static int qlge_irq_type = MSIX_IRQ;
  67. module_param(qlge_irq_type, int, MSIX_IRQ);
  68. MODULE_PARM_DESC(qlge_irq_type, "0 = MSI-X, 1 = MSI, 2 = Legacy.");
  69. static int qlge_mpi_coredump;
  70. module_param(qlge_mpi_coredump, int, 0);
  71. MODULE_PARM_DESC(qlge_mpi_coredump,
  72. "Option to enable MPI firmware dump. "
  73. "Default is OFF - Do Not allocate memory. "
  74. "Do not perform firmware coredump.");
  75. static DEFINE_PCI_DEVICE_TABLE(qlge_pci_tbl) = {
  76. {PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, QLGE_DEVICE_ID_8012)},
  77. {PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, QLGE_DEVICE_ID_8000)},
  78. /* required last entry */
  79. {0,}
  80. };
  81. MODULE_DEVICE_TABLE(pci, qlge_pci_tbl);
  82. /* This hardware semaphore causes exclusive access to
  83. * resources shared between the NIC driver, MPI firmware,
  84. * FCOE firmware and the FC driver.
  85. */
  86. static int ql_sem_trylock(struct ql_adapter *qdev, u32 sem_mask)
  87. {
  88. u32 sem_bits = 0;
  89. switch (sem_mask) {
  90. case SEM_XGMAC0_MASK:
  91. sem_bits = SEM_SET << SEM_XGMAC0_SHIFT;
  92. break;
  93. case SEM_XGMAC1_MASK:
  94. sem_bits = SEM_SET << SEM_XGMAC1_SHIFT;
  95. break;
  96. case SEM_ICB_MASK:
  97. sem_bits = SEM_SET << SEM_ICB_SHIFT;
  98. break;
  99. case SEM_MAC_ADDR_MASK:
  100. sem_bits = SEM_SET << SEM_MAC_ADDR_SHIFT;
  101. break;
  102. case SEM_FLASH_MASK:
  103. sem_bits = SEM_SET << SEM_FLASH_SHIFT;
  104. break;
  105. case SEM_PROBE_MASK:
  106. sem_bits = SEM_SET << SEM_PROBE_SHIFT;
  107. break;
  108. case SEM_RT_IDX_MASK:
  109. sem_bits = SEM_SET << SEM_RT_IDX_SHIFT;
  110. break;
  111. case SEM_PROC_REG_MASK:
  112. sem_bits = SEM_SET << SEM_PROC_REG_SHIFT;
  113. break;
  114. default:
  115. QPRINTK(qdev, PROBE, ALERT, "Bad Semaphore mask!.\n");
  116. return -EINVAL;
  117. }
  118. ql_write32(qdev, SEM, sem_bits | sem_mask);
  119. return !(ql_read32(qdev, SEM) & sem_bits);
  120. }
  121. int ql_sem_spinlock(struct ql_adapter *qdev, u32 sem_mask)
  122. {
  123. unsigned int wait_count = 30;
  124. do {
  125. if (!ql_sem_trylock(qdev, sem_mask))
  126. return 0;
  127. udelay(100);
  128. } while (--wait_count);
  129. return -ETIMEDOUT;
  130. }
  131. void ql_sem_unlock(struct ql_adapter *qdev, u32 sem_mask)
  132. {
  133. ql_write32(qdev, SEM, sem_mask);
  134. ql_read32(qdev, SEM); /* flush */
  135. }
  136. /* This function waits for a specific bit to come ready
  137. * in a given register. It is used mostly by the initialize
  138. * process, but is also used in kernel thread API such as
  139. * netdev->set_multi, netdev->set_mac_address, netdev->vlan_rx_add_vid.
  140. */
  141. int ql_wait_reg_rdy(struct ql_adapter *qdev, u32 reg, u32 bit, u32 err_bit)
  142. {
  143. u32 temp;
  144. int count = UDELAY_COUNT;
  145. while (count) {
  146. temp = ql_read32(qdev, reg);
  147. /* check for errors */
  148. if (temp & err_bit) {
  149. QPRINTK(qdev, PROBE, ALERT,
  150. "register 0x%.08x access error, value = 0x%.08x!.\n",
  151. reg, temp);
  152. return -EIO;
  153. } else if (temp & bit)
  154. return 0;
  155. udelay(UDELAY_DELAY);
  156. count--;
  157. }
  158. QPRINTK(qdev, PROBE, ALERT,
  159. "Timed out waiting for reg %x to come ready.\n", reg);
  160. return -ETIMEDOUT;
  161. }
  162. /* The CFG register is used to download TX and RX control blocks
  163. * to the chip. This function waits for an operation to complete.
  164. */
  165. static int ql_wait_cfg(struct ql_adapter *qdev, u32 bit)
  166. {
  167. int count = UDELAY_COUNT;
  168. u32 temp;
  169. while (count) {
  170. temp = ql_read32(qdev, CFG);
  171. if (temp & CFG_LE)
  172. return -EIO;
  173. if (!(temp & bit))
  174. return 0;
  175. udelay(UDELAY_DELAY);
  176. count--;
  177. }
  178. return -ETIMEDOUT;
  179. }
  180. /* Used to issue init control blocks to hw. Maps control block,
  181. * sets address, triggers download, waits for completion.
  182. */
  183. int ql_write_cfg(struct ql_adapter *qdev, void *ptr, int size, u32 bit,
  184. u16 q_id)
  185. {
  186. u64 map;
  187. int status = 0;
  188. int direction;
  189. u32 mask;
  190. u32 value;
  191. direction =
  192. (bit & (CFG_LRQ | CFG_LR | CFG_LCQ)) ? PCI_DMA_TODEVICE :
  193. PCI_DMA_FROMDEVICE;
  194. map = pci_map_single(qdev->pdev, ptr, size, direction);
  195. if (pci_dma_mapping_error(qdev->pdev, map)) {
  196. QPRINTK(qdev, IFUP, ERR, "Couldn't map DMA area.\n");
  197. return -ENOMEM;
  198. }
  199. status = ql_sem_spinlock(qdev, SEM_ICB_MASK);
  200. if (status)
  201. return status;
  202. status = ql_wait_cfg(qdev, bit);
  203. if (status) {
  204. QPRINTK(qdev, IFUP, ERR,
  205. "Timed out waiting for CFG to come ready.\n");
  206. goto exit;
  207. }
  208. ql_write32(qdev, ICB_L, (u32) map);
  209. ql_write32(qdev, ICB_H, (u32) (map >> 32));
  210. mask = CFG_Q_MASK | (bit << 16);
  211. value = bit | (q_id << CFG_Q_SHIFT);
  212. ql_write32(qdev, CFG, (mask | value));
  213. /*
  214. * Wait for the bit to clear after signaling hw.
  215. */
  216. status = ql_wait_cfg(qdev, bit);
  217. exit:
  218. ql_sem_unlock(qdev, SEM_ICB_MASK); /* does flush too */
  219. pci_unmap_single(qdev->pdev, map, size, direction);
  220. return status;
  221. }
  222. /* Get a specific MAC address from the CAM. Used for debug and reg dump. */
  223. int ql_get_mac_addr_reg(struct ql_adapter *qdev, u32 type, u16 index,
  224. u32 *value)
  225. {
  226. u32 offset = 0;
  227. int status;
  228. switch (type) {
  229. case MAC_ADDR_TYPE_MULTI_MAC:
  230. case MAC_ADDR_TYPE_CAM_MAC:
  231. {
  232. status =
  233. ql_wait_reg_rdy(qdev,
  234. MAC_ADDR_IDX, MAC_ADDR_MW, 0);
  235. if (status)
  236. goto exit;
  237. ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
  238. (index << MAC_ADDR_IDX_SHIFT) | /* index */
  239. MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
  240. status =
  241. ql_wait_reg_rdy(qdev,
  242. MAC_ADDR_IDX, MAC_ADDR_MR, 0);
  243. if (status)
  244. goto exit;
  245. *value++ = ql_read32(qdev, MAC_ADDR_DATA);
  246. status =
  247. ql_wait_reg_rdy(qdev,
  248. MAC_ADDR_IDX, MAC_ADDR_MW, 0);
  249. if (status)
  250. goto exit;
  251. ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
  252. (index << MAC_ADDR_IDX_SHIFT) | /* index */
  253. MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
  254. status =
  255. ql_wait_reg_rdy(qdev,
  256. MAC_ADDR_IDX, MAC_ADDR_MR, 0);
  257. if (status)
  258. goto exit;
  259. *value++ = ql_read32(qdev, MAC_ADDR_DATA);
  260. if (type == MAC_ADDR_TYPE_CAM_MAC) {
  261. status =
  262. ql_wait_reg_rdy(qdev,
  263. MAC_ADDR_IDX, MAC_ADDR_MW, 0);
  264. if (status)
  265. goto exit;
  266. ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
  267. (index << MAC_ADDR_IDX_SHIFT) | /* index */
  268. MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
  269. status =
  270. ql_wait_reg_rdy(qdev, MAC_ADDR_IDX,
  271. MAC_ADDR_MR, 0);
  272. if (status)
  273. goto exit;
  274. *value++ = ql_read32(qdev, MAC_ADDR_DATA);
  275. }
  276. break;
  277. }
  278. case MAC_ADDR_TYPE_VLAN:
  279. case MAC_ADDR_TYPE_MULTI_FLTR:
  280. default:
  281. QPRINTK(qdev, IFUP, CRIT,
  282. "Address type %d not yet supported.\n", type);
  283. status = -EPERM;
  284. }
  285. exit:
  286. return status;
  287. }
  288. /* Set up a MAC, multicast or VLAN address for the
  289. * inbound frame matching.
  290. */
  291. static int ql_set_mac_addr_reg(struct ql_adapter *qdev, u8 *addr, u32 type,
  292. u16 index)
  293. {
  294. u32 offset = 0;
  295. int status = 0;
  296. switch (type) {
  297. case MAC_ADDR_TYPE_MULTI_MAC:
  298. {
  299. u32 upper = (addr[0] << 8) | addr[1];
  300. u32 lower = (addr[2] << 24) | (addr[3] << 16) |
  301. (addr[4] << 8) | (addr[5]);
  302. status =
  303. ql_wait_reg_rdy(qdev,
  304. MAC_ADDR_IDX, MAC_ADDR_MW, 0);
  305. if (status)
  306. goto exit;
  307. ql_write32(qdev, MAC_ADDR_IDX, (offset++) |
  308. (index << MAC_ADDR_IDX_SHIFT) |
  309. type | MAC_ADDR_E);
  310. ql_write32(qdev, MAC_ADDR_DATA, lower);
  311. status =
  312. ql_wait_reg_rdy(qdev,
  313. MAC_ADDR_IDX, MAC_ADDR_MW, 0);
  314. if (status)
  315. goto exit;
  316. ql_write32(qdev, MAC_ADDR_IDX, (offset++) |
  317. (index << MAC_ADDR_IDX_SHIFT) |
  318. type | MAC_ADDR_E);
  319. ql_write32(qdev, MAC_ADDR_DATA, upper);
  320. status =
  321. ql_wait_reg_rdy(qdev,
  322. MAC_ADDR_IDX, MAC_ADDR_MW, 0);
  323. if (status)
  324. goto exit;
  325. break;
  326. }
  327. case MAC_ADDR_TYPE_CAM_MAC:
  328. {
  329. u32 cam_output;
  330. u32 upper = (addr[0] << 8) | addr[1];
  331. u32 lower =
  332. (addr[2] << 24) | (addr[3] << 16) | (addr[4] << 8) |
  333. (addr[5]);
  334. QPRINTK(qdev, IFUP, DEBUG,
  335. "Adding %s address %pM"
  336. " at index %d in the CAM.\n",
  337. ((type ==
  338. MAC_ADDR_TYPE_MULTI_MAC) ? "MULTICAST" :
  339. "UNICAST"), addr, index);
  340. status =
  341. ql_wait_reg_rdy(qdev,
  342. MAC_ADDR_IDX, MAC_ADDR_MW, 0);
  343. if (status)
  344. goto exit;
  345. ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
  346. (index << MAC_ADDR_IDX_SHIFT) | /* index */
  347. type); /* type */
  348. ql_write32(qdev, MAC_ADDR_DATA, lower);
  349. status =
  350. ql_wait_reg_rdy(qdev,
  351. MAC_ADDR_IDX, MAC_ADDR_MW, 0);
  352. if (status)
  353. goto exit;
  354. ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
  355. (index << MAC_ADDR_IDX_SHIFT) | /* index */
  356. type); /* type */
  357. ql_write32(qdev, MAC_ADDR_DATA, upper);
  358. status =
  359. ql_wait_reg_rdy(qdev,
  360. MAC_ADDR_IDX, MAC_ADDR_MW, 0);
  361. if (status)
  362. goto exit;
  363. ql_write32(qdev, MAC_ADDR_IDX, (offset) | /* offset */
  364. (index << MAC_ADDR_IDX_SHIFT) | /* index */
  365. type); /* type */
  366. /* This field should also include the queue id
  367. and possibly the function id. Right now we hardcode
  368. the route field to NIC core.
  369. */
  370. cam_output = (CAM_OUT_ROUTE_NIC |
  371. (qdev->
  372. func << CAM_OUT_FUNC_SHIFT) |
  373. (0 << CAM_OUT_CQ_ID_SHIFT));
  374. if (qdev->vlgrp)
  375. cam_output |= CAM_OUT_RV;
  376. /* route to NIC core */
  377. ql_write32(qdev, MAC_ADDR_DATA, cam_output);
  378. break;
  379. }
  380. case MAC_ADDR_TYPE_VLAN:
  381. {
  382. u32 enable_bit = *((u32 *) &addr[0]);
  383. /* For VLAN, the addr actually holds a bit that
  384. * either enables or disables the vlan id we are
  385. * addressing. It's either MAC_ADDR_E on or off.
  386. * That's bit-27 we're talking about.
  387. */
  388. QPRINTK(qdev, IFUP, INFO, "%s VLAN ID %d %s the CAM.\n",
  389. (enable_bit ? "Adding" : "Removing"),
  390. index, (enable_bit ? "to" : "from"));
  391. status =
  392. ql_wait_reg_rdy(qdev,
  393. MAC_ADDR_IDX, MAC_ADDR_MW, 0);
  394. if (status)
  395. goto exit;
  396. ql_write32(qdev, MAC_ADDR_IDX, offset | /* offset */
  397. (index << MAC_ADDR_IDX_SHIFT) | /* index */
  398. type | /* type */
  399. enable_bit); /* enable/disable */
  400. break;
  401. }
  402. case MAC_ADDR_TYPE_MULTI_FLTR:
  403. default:
  404. QPRINTK(qdev, IFUP, CRIT,
  405. "Address type %d not yet supported.\n", type);
  406. status = -EPERM;
  407. }
  408. exit:
  409. return status;
  410. }
  411. /* Set or clear MAC address in hardware. We sometimes
  412. * have to clear it to prevent wrong frame routing
  413. * especially in a bonding environment.
  414. */
  415. static int ql_set_mac_addr(struct ql_adapter *qdev, int set)
  416. {
  417. int status;
  418. char zero_mac_addr[ETH_ALEN];
  419. char *addr;
  420. if (set) {
  421. addr = &qdev->ndev->dev_addr[0];
  422. QPRINTK(qdev, IFUP, DEBUG,
  423. "Set Mac addr %pM\n", addr);
  424. } else {
  425. memset(zero_mac_addr, 0, ETH_ALEN);
  426. addr = &zero_mac_addr[0];
  427. QPRINTK(qdev, IFUP, DEBUG,
  428. "Clearing MAC address on %s\n",
  429. qdev->ndev->name);
  430. }
  431. status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
  432. if (status)
  433. return status;
  434. status = ql_set_mac_addr_reg(qdev, (u8 *) addr,
  435. MAC_ADDR_TYPE_CAM_MAC, qdev->func * MAX_CQ);
  436. ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
  437. if (status)
  438. QPRINTK(qdev, IFUP, ERR, "Failed to init mac "
  439. "address.\n");
  440. return status;
  441. }
  442. void ql_link_on(struct ql_adapter *qdev)
  443. {
  444. QPRINTK(qdev, LINK, ERR, "%s: Link is up.\n",
  445. qdev->ndev->name);
  446. netif_carrier_on(qdev->ndev);
  447. ql_set_mac_addr(qdev, 1);
  448. }
  449. void ql_link_off(struct ql_adapter *qdev)
  450. {
  451. QPRINTK(qdev, LINK, ERR, "%s: Link is down.\n",
  452. qdev->ndev->name);
  453. netif_carrier_off(qdev->ndev);
  454. ql_set_mac_addr(qdev, 0);
  455. }
  456. /* Get a specific frame routing value from the CAM.
  457. * Used for debug and reg dump.
  458. */
  459. int ql_get_routing_reg(struct ql_adapter *qdev, u32 index, u32 *value)
  460. {
  461. int status = 0;
  462. status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MW, 0);
  463. if (status)
  464. goto exit;
  465. ql_write32(qdev, RT_IDX,
  466. RT_IDX_TYPE_NICQ | RT_IDX_RS | (index << RT_IDX_IDX_SHIFT));
  467. status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MR, 0);
  468. if (status)
  469. goto exit;
  470. *value = ql_read32(qdev, RT_DATA);
  471. exit:
  472. return status;
  473. }
  474. /* The NIC function for this chip has 16 routing indexes. Each one can be used
  475. * to route different frame types to various inbound queues. We send broadcast/
  476. * multicast/error frames to the default queue for slow handling,
  477. * and CAM hit/RSS frames to the fast handling queues.
  478. */
  479. static int ql_set_routing_reg(struct ql_adapter *qdev, u32 index, u32 mask,
  480. int enable)
  481. {
  482. int status = -EINVAL; /* Return error if no mask match. */
  483. u32 value = 0;
  484. QPRINTK(qdev, IFUP, DEBUG,
  485. "%s %s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s mask %s the routing reg.\n",
  486. (enable ? "Adding" : "Removing"),
  487. ((index == RT_IDX_ALL_ERR_SLOT) ? "MAC ERROR/ALL ERROR" : ""),
  488. ((index == RT_IDX_IP_CSUM_ERR_SLOT) ? "IP CSUM ERROR" : ""),
  489. ((index ==
  490. RT_IDX_TCP_UDP_CSUM_ERR_SLOT) ? "TCP/UDP CSUM ERROR" : ""),
  491. ((index == RT_IDX_BCAST_SLOT) ? "BROADCAST" : ""),
  492. ((index == RT_IDX_MCAST_MATCH_SLOT) ? "MULTICAST MATCH" : ""),
  493. ((index == RT_IDX_ALLMULTI_SLOT) ? "ALL MULTICAST MATCH" : ""),
  494. ((index == RT_IDX_UNUSED6_SLOT) ? "UNUSED6" : ""),
  495. ((index == RT_IDX_UNUSED7_SLOT) ? "UNUSED7" : ""),
  496. ((index == RT_IDX_RSS_MATCH_SLOT) ? "RSS ALL/IPV4 MATCH" : ""),
  497. ((index == RT_IDX_RSS_IPV6_SLOT) ? "RSS IPV6" : ""),
  498. ((index == RT_IDX_RSS_TCP4_SLOT) ? "RSS TCP4" : ""),
  499. ((index == RT_IDX_RSS_TCP6_SLOT) ? "RSS TCP6" : ""),
  500. ((index == RT_IDX_CAM_HIT_SLOT) ? "CAM HIT" : ""),
  501. ((index == RT_IDX_UNUSED013) ? "UNUSED13" : ""),
  502. ((index == RT_IDX_UNUSED014) ? "UNUSED14" : ""),
  503. ((index == RT_IDX_PROMISCUOUS_SLOT) ? "PROMISCUOUS" : ""),
  504. (enable ? "to" : "from"));
  505. switch (mask) {
  506. case RT_IDX_CAM_HIT:
  507. {
  508. value = RT_IDX_DST_CAM_Q | /* dest */
  509. RT_IDX_TYPE_NICQ | /* type */
  510. (RT_IDX_CAM_HIT_SLOT << RT_IDX_IDX_SHIFT);/* index */
  511. break;
  512. }
  513. case RT_IDX_VALID: /* Promiscuous Mode frames. */
  514. {
  515. value = RT_IDX_DST_DFLT_Q | /* dest */
  516. RT_IDX_TYPE_NICQ | /* type */
  517. (RT_IDX_PROMISCUOUS_SLOT << RT_IDX_IDX_SHIFT);/* index */
  518. break;
  519. }
  520. case RT_IDX_ERR: /* Pass up MAC,IP,TCP/UDP error frames. */
  521. {
  522. value = RT_IDX_DST_DFLT_Q | /* dest */
  523. RT_IDX_TYPE_NICQ | /* type */
  524. (RT_IDX_ALL_ERR_SLOT << RT_IDX_IDX_SHIFT);/* index */
  525. break;
  526. }
  527. case RT_IDX_BCAST: /* Pass up Broadcast frames to default Q. */
  528. {
  529. value = RT_IDX_DST_DFLT_Q | /* dest */
  530. RT_IDX_TYPE_NICQ | /* type */
  531. (RT_IDX_BCAST_SLOT << RT_IDX_IDX_SHIFT);/* index */
  532. break;
  533. }
  534. case RT_IDX_MCAST: /* Pass up All Multicast frames. */
  535. {
  536. value = RT_IDX_DST_DFLT_Q | /* dest */
  537. RT_IDX_TYPE_NICQ | /* type */
  538. (RT_IDX_ALLMULTI_SLOT << RT_IDX_IDX_SHIFT);/* index */
  539. break;
  540. }
  541. case RT_IDX_MCAST_MATCH: /* Pass up matched Multicast frames. */
  542. {
  543. value = RT_IDX_DST_DFLT_Q | /* dest */
  544. RT_IDX_TYPE_NICQ | /* type */
  545. (RT_IDX_MCAST_MATCH_SLOT << RT_IDX_IDX_SHIFT);/* index */
  546. break;
  547. }
  548. case RT_IDX_RSS_MATCH: /* Pass up matched RSS frames. */
  549. {
  550. value = RT_IDX_DST_RSS | /* dest */
  551. RT_IDX_TYPE_NICQ | /* type */
  552. (RT_IDX_RSS_MATCH_SLOT << RT_IDX_IDX_SHIFT);/* index */
  553. break;
  554. }
  555. case 0: /* Clear the E-bit on an entry. */
  556. {
  557. value = RT_IDX_DST_DFLT_Q | /* dest */
  558. RT_IDX_TYPE_NICQ | /* type */
  559. (index << RT_IDX_IDX_SHIFT);/* index */
  560. break;
  561. }
  562. default:
  563. QPRINTK(qdev, IFUP, ERR, "Mask type %d not yet supported.\n",
  564. mask);
  565. status = -EPERM;
  566. goto exit;
  567. }
  568. if (value) {
  569. status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MW, 0);
  570. if (status)
  571. goto exit;
  572. value |= (enable ? RT_IDX_E : 0);
  573. ql_write32(qdev, RT_IDX, value);
  574. ql_write32(qdev, RT_DATA, enable ? mask : 0);
  575. }
  576. exit:
  577. return status;
  578. }
  579. static void ql_enable_interrupts(struct ql_adapter *qdev)
  580. {
  581. ql_write32(qdev, INTR_EN, (INTR_EN_EI << 16) | INTR_EN_EI);
  582. }
  583. static void ql_disable_interrupts(struct ql_adapter *qdev)
  584. {
  585. ql_write32(qdev, INTR_EN, (INTR_EN_EI << 16));
  586. }
  587. /* If we're running with multiple MSI-X vectors then we enable on the fly.
  588. * Otherwise, we may have multiple outstanding workers and don't want to
  589. * enable until the last one finishes. In this case, the irq_cnt gets
  590. * incremented everytime we queue a worker and decremented everytime
  591. * a worker finishes. Once it hits zero we enable the interrupt.
  592. */
  593. u32 ql_enable_completion_interrupt(struct ql_adapter *qdev, u32 intr)
  594. {
  595. u32 var = 0;
  596. unsigned long hw_flags = 0;
  597. struct intr_context *ctx = qdev->intr_context + intr;
  598. if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags) && intr)) {
  599. /* Always enable if we're MSIX multi interrupts and
  600. * it's not the default (zeroeth) interrupt.
  601. */
  602. ql_write32(qdev, INTR_EN,
  603. ctx->intr_en_mask);
  604. var = ql_read32(qdev, STS);
  605. return var;
  606. }
  607. spin_lock_irqsave(&qdev->hw_lock, hw_flags);
  608. if (atomic_dec_and_test(&ctx->irq_cnt)) {
  609. ql_write32(qdev, INTR_EN,
  610. ctx->intr_en_mask);
  611. var = ql_read32(qdev, STS);
  612. }
  613. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  614. return var;
  615. }
  616. static u32 ql_disable_completion_interrupt(struct ql_adapter *qdev, u32 intr)
  617. {
  618. u32 var = 0;
  619. struct intr_context *ctx;
  620. /* HW disables for us if we're MSIX multi interrupts and
  621. * it's not the default (zeroeth) interrupt.
  622. */
  623. if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags) && intr))
  624. return 0;
  625. ctx = qdev->intr_context + intr;
  626. spin_lock(&qdev->hw_lock);
  627. if (!atomic_read(&ctx->irq_cnt)) {
  628. ql_write32(qdev, INTR_EN,
  629. ctx->intr_dis_mask);
  630. var = ql_read32(qdev, STS);
  631. }
  632. atomic_inc(&ctx->irq_cnt);
  633. spin_unlock(&qdev->hw_lock);
  634. return var;
  635. }
  636. static void ql_enable_all_completion_interrupts(struct ql_adapter *qdev)
  637. {
  638. int i;
  639. for (i = 0; i < qdev->intr_count; i++) {
  640. /* The enable call does a atomic_dec_and_test
  641. * and enables only if the result is zero.
  642. * So we precharge it here.
  643. */
  644. if (unlikely(!test_bit(QL_MSIX_ENABLED, &qdev->flags) ||
  645. i == 0))
  646. atomic_set(&qdev->intr_context[i].irq_cnt, 1);
  647. ql_enable_completion_interrupt(qdev, i);
  648. }
  649. }
  650. static int ql_validate_flash(struct ql_adapter *qdev, u32 size, const char *str)
  651. {
  652. int status, i;
  653. u16 csum = 0;
  654. __le16 *flash = (__le16 *)&qdev->flash;
  655. status = strncmp((char *)&qdev->flash, str, 4);
  656. if (status) {
  657. QPRINTK(qdev, IFUP, ERR, "Invalid flash signature.\n");
  658. return status;
  659. }
  660. for (i = 0; i < size; i++)
  661. csum += le16_to_cpu(*flash++);
  662. if (csum)
  663. QPRINTK(qdev, IFUP, ERR,
  664. "Invalid flash checksum, csum = 0x%.04x.\n", csum);
  665. return csum;
  666. }
  667. static int ql_read_flash_word(struct ql_adapter *qdev, int offset, __le32 *data)
  668. {
  669. int status = 0;
  670. /* wait for reg to come ready */
  671. status = ql_wait_reg_rdy(qdev,
  672. FLASH_ADDR, FLASH_ADDR_RDY, FLASH_ADDR_ERR);
  673. if (status)
  674. goto exit;
  675. /* set up for reg read */
  676. ql_write32(qdev, FLASH_ADDR, FLASH_ADDR_R | offset);
  677. /* wait for reg to come ready */
  678. status = ql_wait_reg_rdy(qdev,
  679. FLASH_ADDR, FLASH_ADDR_RDY, FLASH_ADDR_ERR);
  680. if (status)
  681. goto exit;
  682. /* This data is stored on flash as an array of
  683. * __le32. Since ql_read32() returns cpu endian
  684. * we need to swap it back.
  685. */
  686. *data = cpu_to_le32(ql_read32(qdev, FLASH_DATA));
  687. exit:
  688. return status;
  689. }
  690. static int ql_get_8000_flash_params(struct ql_adapter *qdev)
  691. {
  692. u32 i, size;
  693. int status;
  694. __le32 *p = (__le32 *)&qdev->flash;
  695. u32 offset;
  696. u8 mac_addr[6];
  697. /* Get flash offset for function and adjust
  698. * for dword access.
  699. */
  700. if (!qdev->port)
  701. offset = FUNC0_FLASH_OFFSET / sizeof(u32);
  702. else
  703. offset = FUNC1_FLASH_OFFSET / sizeof(u32);
  704. if (ql_sem_spinlock(qdev, SEM_FLASH_MASK))
  705. return -ETIMEDOUT;
  706. size = sizeof(struct flash_params_8000) / sizeof(u32);
  707. for (i = 0; i < size; i++, p++) {
  708. status = ql_read_flash_word(qdev, i+offset, p);
  709. if (status) {
  710. QPRINTK(qdev, IFUP, ERR, "Error reading flash.\n");
  711. goto exit;
  712. }
  713. }
  714. status = ql_validate_flash(qdev,
  715. sizeof(struct flash_params_8000) / sizeof(u16),
  716. "8000");
  717. if (status) {
  718. QPRINTK(qdev, IFUP, ERR, "Invalid flash.\n");
  719. status = -EINVAL;
  720. goto exit;
  721. }
  722. /* Extract either manufacturer or BOFM modified
  723. * MAC address.
  724. */
  725. if (qdev->flash.flash_params_8000.data_type1 == 2)
  726. memcpy(mac_addr,
  727. qdev->flash.flash_params_8000.mac_addr1,
  728. qdev->ndev->addr_len);
  729. else
  730. memcpy(mac_addr,
  731. qdev->flash.flash_params_8000.mac_addr,
  732. qdev->ndev->addr_len);
  733. if (!is_valid_ether_addr(mac_addr)) {
  734. QPRINTK(qdev, IFUP, ERR, "Invalid MAC address.\n");
  735. status = -EINVAL;
  736. goto exit;
  737. }
  738. memcpy(qdev->ndev->dev_addr,
  739. mac_addr,
  740. qdev->ndev->addr_len);
  741. exit:
  742. ql_sem_unlock(qdev, SEM_FLASH_MASK);
  743. return status;
  744. }
  745. static int ql_get_8012_flash_params(struct ql_adapter *qdev)
  746. {
  747. int i;
  748. int status;
  749. __le32 *p = (__le32 *)&qdev->flash;
  750. u32 offset = 0;
  751. u32 size = sizeof(struct flash_params_8012) / sizeof(u32);
  752. /* Second function's parameters follow the first
  753. * function's.
  754. */
  755. if (qdev->port)
  756. offset = size;
  757. if (ql_sem_spinlock(qdev, SEM_FLASH_MASK))
  758. return -ETIMEDOUT;
  759. for (i = 0; i < size; i++, p++) {
  760. status = ql_read_flash_word(qdev, i+offset, p);
  761. if (status) {
  762. QPRINTK(qdev, IFUP, ERR, "Error reading flash.\n");
  763. goto exit;
  764. }
  765. }
  766. status = ql_validate_flash(qdev,
  767. sizeof(struct flash_params_8012) / sizeof(u16),
  768. "8012");
  769. if (status) {
  770. QPRINTK(qdev, IFUP, ERR, "Invalid flash.\n");
  771. status = -EINVAL;
  772. goto exit;
  773. }
  774. if (!is_valid_ether_addr(qdev->flash.flash_params_8012.mac_addr)) {
  775. status = -EINVAL;
  776. goto exit;
  777. }
  778. memcpy(qdev->ndev->dev_addr,
  779. qdev->flash.flash_params_8012.mac_addr,
  780. qdev->ndev->addr_len);
  781. exit:
  782. ql_sem_unlock(qdev, SEM_FLASH_MASK);
  783. return status;
  784. }
  785. /* xgmac register are located behind the xgmac_addr and xgmac_data
  786. * register pair. Each read/write requires us to wait for the ready
  787. * bit before reading/writing the data.
  788. */
  789. static int ql_write_xgmac_reg(struct ql_adapter *qdev, u32 reg, u32 data)
  790. {
  791. int status;
  792. /* wait for reg to come ready */
  793. status = ql_wait_reg_rdy(qdev,
  794. XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
  795. if (status)
  796. return status;
  797. /* write the data to the data reg */
  798. ql_write32(qdev, XGMAC_DATA, data);
  799. /* trigger the write */
  800. ql_write32(qdev, XGMAC_ADDR, reg);
  801. return status;
  802. }
  803. /* xgmac register are located behind the xgmac_addr and xgmac_data
  804. * register pair. Each read/write requires us to wait for the ready
  805. * bit before reading/writing the data.
  806. */
  807. int ql_read_xgmac_reg(struct ql_adapter *qdev, u32 reg, u32 *data)
  808. {
  809. int status = 0;
  810. /* wait for reg to come ready */
  811. status = ql_wait_reg_rdy(qdev,
  812. XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
  813. if (status)
  814. goto exit;
  815. /* set up for reg read */
  816. ql_write32(qdev, XGMAC_ADDR, reg | XGMAC_ADDR_R);
  817. /* wait for reg to come ready */
  818. status = ql_wait_reg_rdy(qdev,
  819. XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
  820. if (status)
  821. goto exit;
  822. /* get the data */
  823. *data = ql_read32(qdev, XGMAC_DATA);
  824. exit:
  825. return status;
  826. }
  827. /* This is used for reading the 64-bit statistics regs. */
  828. int ql_read_xgmac_reg64(struct ql_adapter *qdev, u32 reg, u64 *data)
  829. {
  830. int status = 0;
  831. u32 hi = 0;
  832. u32 lo = 0;
  833. status = ql_read_xgmac_reg(qdev, reg, &lo);
  834. if (status)
  835. goto exit;
  836. status = ql_read_xgmac_reg(qdev, reg + 4, &hi);
  837. if (status)
  838. goto exit;
  839. *data = (u64) lo | ((u64) hi << 32);
  840. exit:
  841. return status;
  842. }
  843. static int ql_8000_port_initialize(struct ql_adapter *qdev)
  844. {
  845. int status;
  846. /*
  847. * Get MPI firmware version for driver banner
  848. * and ethool info.
  849. */
  850. status = ql_mb_about_fw(qdev);
  851. if (status)
  852. goto exit;
  853. status = ql_mb_get_fw_state(qdev);
  854. if (status)
  855. goto exit;
  856. /* Wake up a worker to get/set the TX/RX frame sizes. */
  857. queue_delayed_work(qdev->workqueue, &qdev->mpi_port_cfg_work, 0);
  858. exit:
  859. return status;
  860. }
  861. /* Take the MAC Core out of reset.
  862. * Enable statistics counting.
  863. * Take the transmitter/receiver out of reset.
  864. * This functionality may be done in the MPI firmware at a
  865. * later date.
  866. */
  867. static int ql_8012_port_initialize(struct ql_adapter *qdev)
  868. {
  869. int status = 0;
  870. u32 data;
  871. if (ql_sem_trylock(qdev, qdev->xg_sem_mask)) {
  872. /* Another function has the semaphore, so
  873. * wait for the port init bit to come ready.
  874. */
  875. QPRINTK(qdev, LINK, INFO,
  876. "Another function has the semaphore, so wait for the port init bit to come ready.\n");
  877. status = ql_wait_reg_rdy(qdev, STS, qdev->port_init, 0);
  878. if (status) {
  879. QPRINTK(qdev, LINK, CRIT,
  880. "Port initialize timed out.\n");
  881. }
  882. return status;
  883. }
  884. QPRINTK(qdev, LINK, INFO, "Got xgmac semaphore!.\n");
  885. /* Set the core reset. */
  886. status = ql_read_xgmac_reg(qdev, GLOBAL_CFG, &data);
  887. if (status)
  888. goto end;
  889. data |= GLOBAL_CFG_RESET;
  890. status = ql_write_xgmac_reg(qdev, GLOBAL_CFG, data);
  891. if (status)
  892. goto end;
  893. /* Clear the core reset and turn on jumbo for receiver. */
  894. data &= ~GLOBAL_CFG_RESET; /* Clear core reset. */
  895. data |= GLOBAL_CFG_JUMBO; /* Turn on jumbo. */
  896. data |= GLOBAL_CFG_TX_STAT_EN;
  897. data |= GLOBAL_CFG_RX_STAT_EN;
  898. status = ql_write_xgmac_reg(qdev, GLOBAL_CFG, data);
  899. if (status)
  900. goto end;
  901. /* Enable transmitter, and clear it's reset. */
  902. status = ql_read_xgmac_reg(qdev, TX_CFG, &data);
  903. if (status)
  904. goto end;
  905. data &= ~TX_CFG_RESET; /* Clear the TX MAC reset. */
  906. data |= TX_CFG_EN; /* Enable the transmitter. */
  907. status = ql_write_xgmac_reg(qdev, TX_CFG, data);
  908. if (status)
  909. goto end;
  910. /* Enable receiver and clear it's reset. */
  911. status = ql_read_xgmac_reg(qdev, RX_CFG, &data);
  912. if (status)
  913. goto end;
  914. data &= ~RX_CFG_RESET; /* Clear the RX MAC reset. */
  915. data |= RX_CFG_EN; /* Enable the receiver. */
  916. status = ql_write_xgmac_reg(qdev, RX_CFG, data);
  917. if (status)
  918. goto end;
  919. /* Turn on jumbo. */
  920. status =
  921. ql_write_xgmac_reg(qdev, MAC_TX_PARAMS, MAC_TX_PARAMS_JUMBO | (0x2580 << 16));
  922. if (status)
  923. goto end;
  924. status =
  925. ql_write_xgmac_reg(qdev, MAC_RX_PARAMS, 0x2580);
  926. if (status)
  927. goto end;
  928. /* Signal to the world that the port is enabled. */
  929. ql_write32(qdev, STS, ((qdev->port_init << 16) | qdev->port_init));
  930. end:
  931. ql_sem_unlock(qdev, qdev->xg_sem_mask);
  932. return status;
  933. }
  934. static inline unsigned int ql_lbq_block_size(struct ql_adapter *qdev)
  935. {
  936. return PAGE_SIZE << qdev->lbq_buf_order;
  937. }
  938. /* Get the next large buffer. */
  939. static struct bq_desc *ql_get_curr_lbuf(struct rx_ring *rx_ring)
  940. {
  941. struct bq_desc *lbq_desc = &rx_ring->lbq[rx_ring->lbq_curr_idx];
  942. rx_ring->lbq_curr_idx++;
  943. if (rx_ring->lbq_curr_idx == rx_ring->lbq_len)
  944. rx_ring->lbq_curr_idx = 0;
  945. rx_ring->lbq_free_cnt++;
  946. return lbq_desc;
  947. }
  948. static struct bq_desc *ql_get_curr_lchunk(struct ql_adapter *qdev,
  949. struct rx_ring *rx_ring)
  950. {
  951. struct bq_desc *lbq_desc = ql_get_curr_lbuf(rx_ring);
  952. pci_dma_sync_single_for_cpu(qdev->pdev,
  953. pci_unmap_addr(lbq_desc, mapaddr),
  954. rx_ring->lbq_buf_size,
  955. PCI_DMA_FROMDEVICE);
  956. /* If it's the last chunk of our master page then
  957. * we unmap it.
  958. */
  959. if ((lbq_desc->p.pg_chunk.offset + rx_ring->lbq_buf_size)
  960. == ql_lbq_block_size(qdev))
  961. pci_unmap_page(qdev->pdev,
  962. lbq_desc->p.pg_chunk.map,
  963. ql_lbq_block_size(qdev),
  964. PCI_DMA_FROMDEVICE);
  965. return lbq_desc;
  966. }
  967. /* Get the next small buffer. */
  968. static struct bq_desc *ql_get_curr_sbuf(struct rx_ring *rx_ring)
  969. {
  970. struct bq_desc *sbq_desc = &rx_ring->sbq[rx_ring->sbq_curr_idx];
  971. rx_ring->sbq_curr_idx++;
  972. if (rx_ring->sbq_curr_idx == rx_ring->sbq_len)
  973. rx_ring->sbq_curr_idx = 0;
  974. rx_ring->sbq_free_cnt++;
  975. return sbq_desc;
  976. }
  977. /* Update an rx ring index. */
  978. static void ql_update_cq(struct rx_ring *rx_ring)
  979. {
  980. rx_ring->cnsmr_idx++;
  981. rx_ring->curr_entry++;
  982. if (unlikely(rx_ring->cnsmr_idx == rx_ring->cq_len)) {
  983. rx_ring->cnsmr_idx = 0;
  984. rx_ring->curr_entry = rx_ring->cq_base;
  985. }
  986. }
  987. static void ql_write_cq_idx(struct rx_ring *rx_ring)
  988. {
  989. ql_write_db_reg(rx_ring->cnsmr_idx, rx_ring->cnsmr_idx_db_reg);
  990. }
  991. static int ql_get_next_chunk(struct ql_adapter *qdev, struct rx_ring *rx_ring,
  992. struct bq_desc *lbq_desc)
  993. {
  994. if (!rx_ring->pg_chunk.page) {
  995. u64 map;
  996. rx_ring->pg_chunk.page = alloc_pages(__GFP_COLD | __GFP_COMP |
  997. GFP_ATOMIC,
  998. qdev->lbq_buf_order);
  999. if (unlikely(!rx_ring->pg_chunk.page)) {
  1000. QPRINTK(qdev, DRV, ERR,
  1001. "page allocation failed.\n");
  1002. return -ENOMEM;
  1003. }
  1004. rx_ring->pg_chunk.offset = 0;
  1005. map = pci_map_page(qdev->pdev, rx_ring->pg_chunk.page,
  1006. 0, ql_lbq_block_size(qdev),
  1007. PCI_DMA_FROMDEVICE);
  1008. if (pci_dma_mapping_error(qdev->pdev, map)) {
  1009. __free_pages(rx_ring->pg_chunk.page,
  1010. qdev->lbq_buf_order);
  1011. QPRINTK(qdev, DRV, ERR,
  1012. "PCI mapping failed.\n");
  1013. return -ENOMEM;
  1014. }
  1015. rx_ring->pg_chunk.map = map;
  1016. rx_ring->pg_chunk.va = page_address(rx_ring->pg_chunk.page);
  1017. }
  1018. /* Copy the current master pg_chunk info
  1019. * to the current descriptor.
  1020. */
  1021. lbq_desc->p.pg_chunk = rx_ring->pg_chunk;
  1022. /* Adjust the master page chunk for next
  1023. * buffer get.
  1024. */
  1025. rx_ring->pg_chunk.offset += rx_ring->lbq_buf_size;
  1026. if (rx_ring->pg_chunk.offset == ql_lbq_block_size(qdev)) {
  1027. rx_ring->pg_chunk.page = NULL;
  1028. lbq_desc->p.pg_chunk.last_flag = 1;
  1029. } else {
  1030. rx_ring->pg_chunk.va += rx_ring->lbq_buf_size;
  1031. get_page(rx_ring->pg_chunk.page);
  1032. lbq_desc->p.pg_chunk.last_flag = 0;
  1033. }
  1034. return 0;
  1035. }
  1036. /* Process (refill) a large buffer queue. */
  1037. static void ql_update_lbq(struct ql_adapter *qdev, struct rx_ring *rx_ring)
  1038. {
  1039. u32 clean_idx = rx_ring->lbq_clean_idx;
  1040. u32 start_idx = clean_idx;
  1041. struct bq_desc *lbq_desc;
  1042. u64 map;
  1043. int i;
  1044. while (rx_ring->lbq_free_cnt > 32) {
  1045. for (i = 0; i < 16; i++) {
  1046. QPRINTK(qdev, RX_STATUS, DEBUG,
  1047. "lbq: try cleaning clean_idx = %d.\n",
  1048. clean_idx);
  1049. lbq_desc = &rx_ring->lbq[clean_idx];
  1050. if (ql_get_next_chunk(qdev, rx_ring, lbq_desc)) {
  1051. QPRINTK(qdev, IFUP, ERR,
  1052. "Could not get a page chunk.\n");
  1053. return;
  1054. }
  1055. map = lbq_desc->p.pg_chunk.map +
  1056. lbq_desc->p.pg_chunk.offset;
  1057. pci_unmap_addr_set(lbq_desc, mapaddr, map);
  1058. pci_unmap_len_set(lbq_desc, maplen,
  1059. rx_ring->lbq_buf_size);
  1060. *lbq_desc->addr = cpu_to_le64(map);
  1061. pci_dma_sync_single_for_device(qdev->pdev, map,
  1062. rx_ring->lbq_buf_size,
  1063. PCI_DMA_FROMDEVICE);
  1064. clean_idx++;
  1065. if (clean_idx == rx_ring->lbq_len)
  1066. clean_idx = 0;
  1067. }
  1068. rx_ring->lbq_clean_idx = clean_idx;
  1069. rx_ring->lbq_prod_idx += 16;
  1070. if (rx_ring->lbq_prod_idx == rx_ring->lbq_len)
  1071. rx_ring->lbq_prod_idx = 0;
  1072. rx_ring->lbq_free_cnt -= 16;
  1073. }
  1074. if (start_idx != clean_idx) {
  1075. QPRINTK(qdev, RX_STATUS, DEBUG,
  1076. "lbq: updating prod idx = %d.\n",
  1077. rx_ring->lbq_prod_idx);
  1078. ql_write_db_reg(rx_ring->lbq_prod_idx,
  1079. rx_ring->lbq_prod_idx_db_reg);
  1080. }
  1081. }
  1082. /* Process (refill) a small buffer queue. */
  1083. static void ql_update_sbq(struct ql_adapter *qdev, struct rx_ring *rx_ring)
  1084. {
  1085. u32 clean_idx = rx_ring->sbq_clean_idx;
  1086. u32 start_idx = clean_idx;
  1087. struct bq_desc *sbq_desc;
  1088. u64 map;
  1089. int i;
  1090. while (rx_ring->sbq_free_cnt > 16) {
  1091. for (i = 0; i < 16; i++) {
  1092. sbq_desc = &rx_ring->sbq[clean_idx];
  1093. QPRINTK(qdev, RX_STATUS, DEBUG,
  1094. "sbq: try cleaning clean_idx = %d.\n",
  1095. clean_idx);
  1096. if (sbq_desc->p.skb == NULL) {
  1097. QPRINTK(qdev, RX_STATUS, DEBUG,
  1098. "sbq: getting new skb for index %d.\n",
  1099. sbq_desc->index);
  1100. sbq_desc->p.skb =
  1101. netdev_alloc_skb(qdev->ndev,
  1102. SMALL_BUFFER_SIZE);
  1103. if (sbq_desc->p.skb == NULL) {
  1104. QPRINTK(qdev, PROBE, ERR,
  1105. "Couldn't get an skb.\n");
  1106. rx_ring->sbq_clean_idx = clean_idx;
  1107. return;
  1108. }
  1109. skb_reserve(sbq_desc->p.skb, QLGE_SB_PAD);
  1110. map = pci_map_single(qdev->pdev,
  1111. sbq_desc->p.skb->data,
  1112. rx_ring->sbq_buf_size,
  1113. PCI_DMA_FROMDEVICE);
  1114. if (pci_dma_mapping_error(qdev->pdev, map)) {
  1115. QPRINTK(qdev, IFUP, ERR, "PCI mapping failed.\n");
  1116. rx_ring->sbq_clean_idx = clean_idx;
  1117. dev_kfree_skb_any(sbq_desc->p.skb);
  1118. sbq_desc->p.skb = NULL;
  1119. return;
  1120. }
  1121. pci_unmap_addr_set(sbq_desc, mapaddr, map);
  1122. pci_unmap_len_set(sbq_desc, maplen,
  1123. rx_ring->sbq_buf_size);
  1124. *sbq_desc->addr = cpu_to_le64(map);
  1125. }
  1126. clean_idx++;
  1127. if (clean_idx == rx_ring->sbq_len)
  1128. clean_idx = 0;
  1129. }
  1130. rx_ring->sbq_clean_idx = clean_idx;
  1131. rx_ring->sbq_prod_idx += 16;
  1132. if (rx_ring->sbq_prod_idx == rx_ring->sbq_len)
  1133. rx_ring->sbq_prod_idx = 0;
  1134. rx_ring->sbq_free_cnt -= 16;
  1135. }
  1136. if (start_idx != clean_idx) {
  1137. QPRINTK(qdev, RX_STATUS, DEBUG,
  1138. "sbq: updating prod idx = %d.\n",
  1139. rx_ring->sbq_prod_idx);
  1140. ql_write_db_reg(rx_ring->sbq_prod_idx,
  1141. rx_ring->sbq_prod_idx_db_reg);
  1142. }
  1143. }
  1144. static void ql_update_buffer_queues(struct ql_adapter *qdev,
  1145. struct rx_ring *rx_ring)
  1146. {
  1147. ql_update_sbq(qdev, rx_ring);
  1148. ql_update_lbq(qdev, rx_ring);
  1149. }
  1150. /* Unmaps tx buffers. Can be called from send() if a pci mapping
  1151. * fails at some stage, or from the interrupt when a tx completes.
  1152. */
  1153. static void ql_unmap_send(struct ql_adapter *qdev,
  1154. struct tx_ring_desc *tx_ring_desc, int mapped)
  1155. {
  1156. int i;
  1157. for (i = 0; i < mapped; i++) {
  1158. if (i == 0 || (i == 7 && mapped > 7)) {
  1159. /*
  1160. * Unmap the skb->data area, or the
  1161. * external sglist (AKA the Outbound
  1162. * Address List (OAL)).
  1163. * If its the zeroeth element, then it's
  1164. * the skb->data area. If it's the 7th
  1165. * element and there is more than 6 frags,
  1166. * then its an OAL.
  1167. */
  1168. if (i == 7) {
  1169. QPRINTK(qdev, TX_DONE, DEBUG,
  1170. "unmapping OAL area.\n");
  1171. }
  1172. pci_unmap_single(qdev->pdev,
  1173. pci_unmap_addr(&tx_ring_desc->map[i],
  1174. mapaddr),
  1175. pci_unmap_len(&tx_ring_desc->map[i],
  1176. maplen),
  1177. PCI_DMA_TODEVICE);
  1178. } else {
  1179. QPRINTK(qdev, TX_DONE, DEBUG, "unmapping frag %d.\n",
  1180. i);
  1181. pci_unmap_page(qdev->pdev,
  1182. pci_unmap_addr(&tx_ring_desc->map[i],
  1183. mapaddr),
  1184. pci_unmap_len(&tx_ring_desc->map[i],
  1185. maplen), PCI_DMA_TODEVICE);
  1186. }
  1187. }
  1188. }
  1189. /* Map the buffers for this transmit. This will return
  1190. * NETDEV_TX_BUSY or NETDEV_TX_OK based on success.
  1191. */
  1192. static int ql_map_send(struct ql_adapter *qdev,
  1193. struct ob_mac_iocb_req *mac_iocb_ptr,
  1194. struct sk_buff *skb, struct tx_ring_desc *tx_ring_desc)
  1195. {
  1196. int len = skb_headlen(skb);
  1197. dma_addr_t map;
  1198. int frag_idx, err, map_idx = 0;
  1199. struct tx_buf_desc *tbd = mac_iocb_ptr->tbd;
  1200. int frag_cnt = skb_shinfo(skb)->nr_frags;
  1201. if (frag_cnt) {
  1202. QPRINTK(qdev, TX_QUEUED, DEBUG, "frag_cnt = %d.\n", frag_cnt);
  1203. }
  1204. /*
  1205. * Map the skb buffer first.
  1206. */
  1207. map = pci_map_single(qdev->pdev, skb->data, len, PCI_DMA_TODEVICE);
  1208. err = pci_dma_mapping_error(qdev->pdev, map);
  1209. if (err) {
  1210. QPRINTK(qdev, TX_QUEUED, ERR,
  1211. "PCI mapping failed with error: %d\n", err);
  1212. return NETDEV_TX_BUSY;
  1213. }
  1214. tbd->len = cpu_to_le32(len);
  1215. tbd->addr = cpu_to_le64(map);
  1216. pci_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr, map);
  1217. pci_unmap_len_set(&tx_ring_desc->map[map_idx], maplen, len);
  1218. map_idx++;
  1219. /*
  1220. * This loop fills the remainder of the 8 address descriptors
  1221. * in the IOCB. If there are more than 7 fragments, then the
  1222. * eighth address desc will point to an external list (OAL).
  1223. * When this happens, the remainder of the frags will be stored
  1224. * in this list.
  1225. */
  1226. for (frag_idx = 0; frag_idx < frag_cnt; frag_idx++, map_idx++) {
  1227. skb_frag_t *frag = &skb_shinfo(skb)->frags[frag_idx];
  1228. tbd++;
  1229. if (frag_idx == 6 && frag_cnt > 7) {
  1230. /* Let's tack on an sglist.
  1231. * Our control block will now
  1232. * look like this:
  1233. * iocb->seg[0] = skb->data
  1234. * iocb->seg[1] = frag[0]
  1235. * iocb->seg[2] = frag[1]
  1236. * iocb->seg[3] = frag[2]
  1237. * iocb->seg[4] = frag[3]
  1238. * iocb->seg[5] = frag[4]
  1239. * iocb->seg[6] = frag[5]
  1240. * iocb->seg[7] = ptr to OAL (external sglist)
  1241. * oal->seg[0] = frag[6]
  1242. * oal->seg[1] = frag[7]
  1243. * oal->seg[2] = frag[8]
  1244. * oal->seg[3] = frag[9]
  1245. * oal->seg[4] = frag[10]
  1246. * etc...
  1247. */
  1248. /* Tack on the OAL in the eighth segment of IOCB. */
  1249. map = pci_map_single(qdev->pdev, &tx_ring_desc->oal,
  1250. sizeof(struct oal),
  1251. PCI_DMA_TODEVICE);
  1252. err = pci_dma_mapping_error(qdev->pdev, map);
  1253. if (err) {
  1254. QPRINTK(qdev, TX_QUEUED, ERR,
  1255. "PCI mapping outbound address list with error: %d\n",
  1256. err);
  1257. goto map_error;
  1258. }
  1259. tbd->addr = cpu_to_le64(map);
  1260. /*
  1261. * The length is the number of fragments
  1262. * that remain to be mapped times the length
  1263. * of our sglist (OAL).
  1264. */
  1265. tbd->len =
  1266. cpu_to_le32((sizeof(struct tx_buf_desc) *
  1267. (frag_cnt - frag_idx)) | TX_DESC_C);
  1268. pci_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr,
  1269. map);
  1270. pci_unmap_len_set(&tx_ring_desc->map[map_idx], maplen,
  1271. sizeof(struct oal));
  1272. tbd = (struct tx_buf_desc *)&tx_ring_desc->oal;
  1273. map_idx++;
  1274. }
  1275. map =
  1276. pci_map_page(qdev->pdev, frag->page,
  1277. frag->page_offset, frag->size,
  1278. PCI_DMA_TODEVICE);
  1279. err = pci_dma_mapping_error(qdev->pdev, map);
  1280. if (err) {
  1281. QPRINTK(qdev, TX_QUEUED, ERR,
  1282. "PCI mapping frags failed with error: %d.\n",
  1283. err);
  1284. goto map_error;
  1285. }
  1286. tbd->addr = cpu_to_le64(map);
  1287. tbd->len = cpu_to_le32(frag->size);
  1288. pci_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr, map);
  1289. pci_unmap_len_set(&tx_ring_desc->map[map_idx], maplen,
  1290. frag->size);
  1291. }
  1292. /* Save the number of segments we've mapped. */
  1293. tx_ring_desc->map_cnt = map_idx;
  1294. /* Terminate the last segment. */
  1295. tbd->len = cpu_to_le32(le32_to_cpu(tbd->len) | TX_DESC_E);
  1296. return NETDEV_TX_OK;
  1297. map_error:
  1298. /*
  1299. * If the first frag mapping failed, then i will be zero.
  1300. * This causes the unmap of the skb->data area. Otherwise
  1301. * we pass in the number of frags that mapped successfully
  1302. * so they can be umapped.
  1303. */
  1304. ql_unmap_send(qdev, tx_ring_desc, map_idx);
  1305. return NETDEV_TX_BUSY;
  1306. }
  1307. /* Process an inbound completion from an rx ring. */
  1308. static void ql_process_mac_rx_gro_page(struct ql_adapter *qdev,
  1309. struct rx_ring *rx_ring,
  1310. struct ib_mac_iocb_rsp *ib_mac_rsp,
  1311. u32 length,
  1312. u16 vlan_id)
  1313. {
  1314. struct sk_buff *skb;
  1315. struct bq_desc *lbq_desc = ql_get_curr_lchunk(qdev, rx_ring);
  1316. struct skb_frag_struct *rx_frag;
  1317. int nr_frags;
  1318. struct napi_struct *napi = &rx_ring->napi;
  1319. napi->dev = qdev->ndev;
  1320. skb = napi_get_frags(napi);
  1321. if (!skb) {
  1322. QPRINTK(qdev, DRV, ERR, "Couldn't get an skb, exiting.\n");
  1323. rx_ring->rx_dropped++;
  1324. put_page(lbq_desc->p.pg_chunk.page);
  1325. return;
  1326. }
  1327. prefetch(lbq_desc->p.pg_chunk.va);
  1328. rx_frag = skb_shinfo(skb)->frags;
  1329. nr_frags = skb_shinfo(skb)->nr_frags;
  1330. rx_frag += nr_frags;
  1331. rx_frag->page = lbq_desc->p.pg_chunk.page;
  1332. rx_frag->page_offset = lbq_desc->p.pg_chunk.offset;
  1333. rx_frag->size = length;
  1334. skb->len += length;
  1335. skb->data_len += length;
  1336. skb->truesize += length;
  1337. skb_shinfo(skb)->nr_frags++;
  1338. rx_ring->rx_packets++;
  1339. rx_ring->rx_bytes += length;
  1340. skb->ip_summed = CHECKSUM_UNNECESSARY;
  1341. skb_record_rx_queue(skb, rx_ring->cq_id);
  1342. if (qdev->vlgrp && (vlan_id != 0xffff))
  1343. vlan_gro_frags(&rx_ring->napi, qdev->vlgrp, vlan_id);
  1344. else
  1345. napi_gro_frags(napi);
  1346. }
  1347. /* Process an inbound completion from an rx ring. */
  1348. static void ql_process_mac_rx_page(struct ql_adapter *qdev,
  1349. struct rx_ring *rx_ring,
  1350. struct ib_mac_iocb_rsp *ib_mac_rsp,
  1351. u32 length,
  1352. u16 vlan_id)
  1353. {
  1354. struct net_device *ndev = qdev->ndev;
  1355. struct sk_buff *skb = NULL;
  1356. void *addr;
  1357. struct bq_desc *lbq_desc = ql_get_curr_lchunk(qdev, rx_ring);
  1358. struct napi_struct *napi = &rx_ring->napi;
  1359. skb = netdev_alloc_skb(ndev, length);
  1360. if (!skb) {
  1361. QPRINTK(qdev, DRV, ERR, "Couldn't get an skb, "
  1362. "need to unwind!.\n");
  1363. rx_ring->rx_dropped++;
  1364. put_page(lbq_desc->p.pg_chunk.page);
  1365. return;
  1366. }
  1367. addr = lbq_desc->p.pg_chunk.va;
  1368. prefetch(addr);
  1369. /* Frame error, so drop the packet. */
  1370. if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_ERR_MASK) {
  1371. QPRINTK(qdev, DRV, ERR, "Receive error, flags2 = 0x%x\n",
  1372. ib_mac_rsp->flags2);
  1373. rx_ring->rx_errors++;
  1374. goto err_out;
  1375. }
  1376. /* The max framesize filter on this chip is set higher than
  1377. * MTU since FCoE uses 2k frames.
  1378. */
  1379. if (skb->len > ndev->mtu + ETH_HLEN) {
  1380. QPRINTK(qdev, DRV, ERR, "Segment too small, dropping.\n");
  1381. rx_ring->rx_dropped++;
  1382. goto err_out;
  1383. }
  1384. memcpy(skb_put(skb, ETH_HLEN), addr, ETH_HLEN);
  1385. QPRINTK(qdev, RX_STATUS, DEBUG,
  1386. "%d bytes of headers and data in large. Chain "
  1387. "page to new skb and pull tail.\n", length);
  1388. skb_fill_page_desc(skb, 0, lbq_desc->p.pg_chunk.page,
  1389. lbq_desc->p.pg_chunk.offset+ETH_HLEN,
  1390. length-ETH_HLEN);
  1391. skb->len += length-ETH_HLEN;
  1392. skb->data_len += length-ETH_HLEN;
  1393. skb->truesize += length-ETH_HLEN;
  1394. rx_ring->rx_packets++;
  1395. rx_ring->rx_bytes += skb->len;
  1396. skb->protocol = eth_type_trans(skb, ndev);
  1397. skb->ip_summed = CHECKSUM_NONE;
  1398. if (qdev->rx_csum &&
  1399. !(ib_mac_rsp->flags1 & IB_MAC_CSUM_ERR_MASK)) {
  1400. /* TCP frame. */
  1401. if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_T) {
  1402. QPRINTK(qdev, RX_STATUS, DEBUG,
  1403. "TCP checksum done!\n");
  1404. skb->ip_summed = CHECKSUM_UNNECESSARY;
  1405. } else if ((ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_U) &&
  1406. (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_V4)) {
  1407. /* Unfragmented ipv4 UDP frame. */
  1408. struct iphdr *iph = (struct iphdr *) skb->data;
  1409. if (!(iph->frag_off &
  1410. cpu_to_be16(IP_MF|IP_OFFSET))) {
  1411. skb->ip_summed = CHECKSUM_UNNECESSARY;
  1412. QPRINTK(qdev, RX_STATUS, DEBUG,
  1413. "TCP checksum done!\n");
  1414. }
  1415. }
  1416. }
  1417. skb_record_rx_queue(skb, rx_ring->cq_id);
  1418. if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
  1419. if (qdev->vlgrp && (vlan_id != 0xffff))
  1420. vlan_gro_receive(napi, qdev->vlgrp, vlan_id, skb);
  1421. else
  1422. napi_gro_receive(napi, skb);
  1423. } else {
  1424. if (qdev->vlgrp && (vlan_id != 0xffff))
  1425. vlan_hwaccel_receive_skb(skb, qdev->vlgrp, vlan_id);
  1426. else
  1427. netif_receive_skb(skb);
  1428. }
  1429. return;
  1430. err_out:
  1431. dev_kfree_skb_any(skb);
  1432. put_page(lbq_desc->p.pg_chunk.page);
  1433. }
  1434. /* Process an inbound completion from an rx ring. */
  1435. static void ql_process_mac_rx_skb(struct ql_adapter *qdev,
  1436. struct rx_ring *rx_ring,
  1437. struct ib_mac_iocb_rsp *ib_mac_rsp,
  1438. u32 length,
  1439. u16 vlan_id)
  1440. {
  1441. struct net_device *ndev = qdev->ndev;
  1442. struct sk_buff *skb = NULL;
  1443. struct sk_buff *new_skb = NULL;
  1444. struct bq_desc *sbq_desc = ql_get_curr_sbuf(rx_ring);
  1445. skb = sbq_desc->p.skb;
  1446. /* Allocate new_skb and copy */
  1447. new_skb = netdev_alloc_skb(qdev->ndev, length + NET_IP_ALIGN);
  1448. if (new_skb == NULL) {
  1449. QPRINTK(qdev, PROBE, ERR,
  1450. "No skb available, drop the packet.\n");
  1451. rx_ring->rx_dropped++;
  1452. return;
  1453. }
  1454. skb_reserve(new_skb, NET_IP_ALIGN);
  1455. memcpy(skb_put(new_skb, length), skb->data, length);
  1456. skb = new_skb;
  1457. /* Frame error, so drop the packet. */
  1458. if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_ERR_MASK) {
  1459. QPRINTK(qdev, DRV, ERR, "Receive error, flags2 = 0x%x\n",
  1460. ib_mac_rsp->flags2);
  1461. dev_kfree_skb_any(skb);
  1462. rx_ring->rx_errors++;
  1463. return;
  1464. }
  1465. /* loopback self test for ethtool */
  1466. if (test_bit(QL_SELFTEST, &qdev->flags)) {
  1467. ql_check_lb_frame(qdev, skb);
  1468. dev_kfree_skb_any(skb);
  1469. return;
  1470. }
  1471. /* The max framesize filter on this chip is set higher than
  1472. * MTU since FCoE uses 2k frames.
  1473. */
  1474. if (skb->len > ndev->mtu + ETH_HLEN) {
  1475. dev_kfree_skb_any(skb);
  1476. rx_ring->rx_dropped++;
  1477. return;
  1478. }
  1479. prefetch(skb->data);
  1480. skb->dev = ndev;
  1481. if (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) {
  1482. QPRINTK(qdev, RX_STATUS, DEBUG, "%s%s%s Multicast.\n",
  1483. (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
  1484. IB_MAC_IOCB_RSP_M_HASH ? "Hash" : "",
  1485. (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
  1486. IB_MAC_IOCB_RSP_M_REG ? "Registered" : "",
  1487. (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
  1488. IB_MAC_IOCB_RSP_M_PROM ? "Promiscuous" : "");
  1489. }
  1490. if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_P)
  1491. QPRINTK(qdev, RX_STATUS, DEBUG, "Promiscuous Packet.\n");
  1492. rx_ring->rx_packets++;
  1493. rx_ring->rx_bytes += skb->len;
  1494. skb->protocol = eth_type_trans(skb, ndev);
  1495. skb->ip_summed = CHECKSUM_NONE;
  1496. /* If rx checksum is on, and there are no
  1497. * csum or frame errors.
  1498. */
  1499. if (qdev->rx_csum &&
  1500. !(ib_mac_rsp->flags1 & IB_MAC_CSUM_ERR_MASK)) {
  1501. /* TCP frame. */
  1502. if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_T) {
  1503. QPRINTK(qdev, RX_STATUS, DEBUG,
  1504. "TCP checksum done!\n");
  1505. skb->ip_summed = CHECKSUM_UNNECESSARY;
  1506. } else if ((ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_U) &&
  1507. (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_V4)) {
  1508. /* Unfragmented ipv4 UDP frame. */
  1509. struct iphdr *iph = (struct iphdr *) skb->data;
  1510. if (!(iph->frag_off &
  1511. cpu_to_be16(IP_MF|IP_OFFSET))) {
  1512. skb->ip_summed = CHECKSUM_UNNECESSARY;
  1513. QPRINTK(qdev, RX_STATUS, DEBUG,
  1514. "TCP checksum done!\n");
  1515. }
  1516. }
  1517. }
  1518. skb_record_rx_queue(skb, rx_ring->cq_id);
  1519. if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
  1520. if (qdev->vlgrp && (vlan_id != 0xffff))
  1521. vlan_gro_receive(&rx_ring->napi, qdev->vlgrp,
  1522. vlan_id, skb);
  1523. else
  1524. napi_gro_receive(&rx_ring->napi, skb);
  1525. } else {
  1526. if (qdev->vlgrp && (vlan_id != 0xffff))
  1527. vlan_hwaccel_receive_skb(skb, qdev->vlgrp, vlan_id);
  1528. else
  1529. netif_receive_skb(skb);
  1530. }
  1531. }
  1532. static void ql_realign_skb(struct sk_buff *skb, int len)
  1533. {
  1534. void *temp_addr = skb->data;
  1535. /* Undo the skb_reserve(skb,32) we did before
  1536. * giving to hardware, and realign data on
  1537. * a 2-byte boundary.
  1538. */
  1539. skb->data -= QLGE_SB_PAD - NET_IP_ALIGN;
  1540. skb->tail -= QLGE_SB_PAD - NET_IP_ALIGN;
  1541. skb_copy_to_linear_data(skb, temp_addr,
  1542. (unsigned int)len);
  1543. }
  1544. /*
  1545. * This function builds an skb for the given inbound
  1546. * completion. It will be rewritten for readability in the near
  1547. * future, but for not it works well.
  1548. */
  1549. static struct sk_buff *ql_build_rx_skb(struct ql_adapter *qdev,
  1550. struct rx_ring *rx_ring,
  1551. struct ib_mac_iocb_rsp *ib_mac_rsp)
  1552. {
  1553. struct bq_desc *lbq_desc;
  1554. struct bq_desc *sbq_desc;
  1555. struct sk_buff *skb = NULL;
  1556. u32 length = le32_to_cpu(ib_mac_rsp->data_len);
  1557. u32 hdr_len = le32_to_cpu(ib_mac_rsp->hdr_len);
  1558. /*
  1559. * Handle the header buffer if present.
  1560. */
  1561. if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HV &&
  1562. ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
  1563. QPRINTK(qdev, RX_STATUS, DEBUG, "Header of %d bytes in small buffer.\n", hdr_len);
  1564. /*
  1565. * Headers fit nicely into a small buffer.
  1566. */
  1567. sbq_desc = ql_get_curr_sbuf(rx_ring);
  1568. pci_unmap_single(qdev->pdev,
  1569. pci_unmap_addr(sbq_desc, mapaddr),
  1570. pci_unmap_len(sbq_desc, maplen),
  1571. PCI_DMA_FROMDEVICE);
  1572. skb = sbq_desc->p.skb;
  1573. ql_realign_skb(skb, hdr_len);
  1574. skb_put(skb, hdr_len);
  1575. sbq_desc->p.skb = NULL;
  1576. }
  1577. /*
  1578. * Handle the data buffer(s).
  1579. */
  1580. if (unlikely(!length)) { /* Is there data too? */
  1581. QPRINTK(qdev, RX_STATUS, DEBUG,
  1582. "No Data buffer in this packet.\n");
  1583. return skb;
  1584. }
  1585. if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DS) {
  1586. if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
  1587. QPRINTK(qdev, RX_STATUS, DEBUG,
  1588. "Headers in small, data of %d bytes in small, combine them.\n", length);
  1589. /*
  1590. * Data is less than small buffer size so it's
  1591. * stuffed in a small buffer.
  1592. * For this case we append the data
  1593. * from the "data" small buffer to the "header" small
  1594. * buffer.
  1595. */
  1596. sbq_desc = ql_get_curr_sbuf(rx_ring);
  1597. pci_dma_sync_single_for_cpu(qdev->pdev,
  1598. pci_unmap_addr
  1599. (sbq_desc, mapaddr),
  1600. pci_unmap_len
  1601. (sbq_desc, maplen),
  1602. PCI_DMA_FROMDEVICE);
  1603. memcpy(skb_put(skb, length),
  1604. sbq_desc->p.skb->data, length);
  1605. pci_dma_sync_single_for_device(qdev->pdev,
  1606. pci_unmap_addr
  1607. (sbq_desc,
  1608. mapaddr),
  1609. pci_unmap_len
  1610. (sbq_desc,
  1611. maplen),
  1612. PCI_DMA_FROMDEVICE);
  1613. } else {
  1614. QPRINTK(qdev, RX_STATUS, DEBUG,
  1615. "%d bytes in a single small buffer.\n", length);
  1616. sbq_desc = ql_get_curr_sbuf(rx_ring);
  1617. skb = sbq_desc->p.skb;
  1618. ql_realign_skb(skb, length);
  1619. skb_put(skb, length);
  1620. pci_unmap_single(qdev->pdev,
  1621. pci_unmap_addr(sbq_desc,
  1622. mapaddr),
  1623. pci_unmap_len(sbq_desc,
  1624. maplen),
  1625. PCI_DMA_FROMDEVICE);
  1626. sbq_desc->p.skb = NULL;
  1627. }
  1628. } else if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DL) {
  1629. if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
  1630. QPRINTK(qdev, RX_STATUS, DEBUG,
  1631. "Header in small, %d bytes in large. Chain large to small!\n", length);
  1632. /*
  1633. * The data is in a single large buffer. We
  1634. * chain it to the header buffer's skb and let
  1635. * it rip.
  1636. */
  1637. lbq_desc = ql_get_curr_lchunk(qdev, rx_ring);
  1638. QPRINTK(qdev, RX_STATUS, DEBUG,
  1639. "Chaining page at offset = %d,"
  1640. "for %d bytes to skb.\n",
  1641. lbq_desc->p.pg_chunk.offset, length);
  1642. skb_fill_page_desc(skb, 0, lbq_desc->p.pg_chunk.page,
  1643. lbq_desc->p.pg_chunk.offset,
  1644. length);
  1645. skb->len += length;
  1646. skb->data_len += length;
  1647. skb->truesize += length;
  1648. } else {
  1649. /*
  1650. * The headers and data are in a single large buffer. We
  1651. * copy it to a new skb and let it go. This can happen with
  1652. * jumbo mtu on a non-TCP/UDP frame.
  1653. */
  1654. lbq_desc = ql_get_curr_lchunk(qdev, rx_ring);
  1655. skb = netdev_alloc_skb(qdev->ndev, length);
  1656. if (skb == NULL) {
  1657. QPRINTK(qdev, PROBE, DEBUG,
  1658. "No skb available, drop the packet.\n");
  1659. return NULL;
  1660. }
  1661. pci_unmap_page(qdev->pdev,
  1662. pci_unmap_addr(lbq_desc,
  1663. mapaddr),
  1664. pci_unmap_len(lbq_desc, maplen),
  1665. PCI_DMA_FROMDEVICE);
  1666. skb_reserve(skb, NET_IP_ALIGN);
  1667. QPRINTK(qdev, RX_STATUS, DEBUG,
  1668. "%d bytes of headers and data in large. Chain page to new skb and pull tail.\n", length);
  1669. skb_fill_page_desc(skb, 0,
  1670. lbq_desc->p.pg_chunk.page,
  1671. lbq_desc->p.pg_chunk.offset,
  1672. length);
  1673. skb->len += length;
  1674. skb->data_len += length;
  1675. skb->truesize += length;
  1676. length -= length;
  1677. __pskb_pull_tail(skb,
  1678. (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) ?
  1679. VLAN_ETH_HLEN : ETH_HLEN);
  1680. }
  1681. } else {
  1682. /*
  1683. * The data is in a chain of large buffers
  1684. * pointed to by a small buffer. We loop
  1685. * thru and chain them to the our small header
  1686. * buffer's skb.
  1687. * frags: There are 18 max frags and our small
  1688. * buffer will hold 32 of them. The thing is,
  1689. * we'll use 3 max for our 9000 byte jumbo
  1690. * frames. If the MTU goes up we could
  1691. * eventually be in trouble.
  1692. */
  1693. int size, i = 0;
  1694. sbq_desc = ql_get_curr_sbuf(rx_ring);
  1695. pci_unmap_single(qdev->pdev,
  1696. pci_unmap_addr(sbq_desc, mapaddr),
  1697. pci_unmap_len(sbq_desc, maplen),
  1698. PCI_DMA_FROMDEVICE);
  1699. if (!(ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS)) {
  1700. /*
  1701. * This is an non TCP/UDP IP frame, so
  1702. * the headers aren't split into a small
  1703. * buffer. We have to use the small buffer
  1704. * that contains our sg list as our skb to
  1705. * send upstairs. Copy the sg list here to
  1706. * a local buffer and use it to find the
  1707. * pages to chain.
  1708. */
  1709. QPRINTK(qdev, RX_STATUS, DEBUG,
  1710. "%d bytes of headers & data in chain of large.\n", length);
  1711. skb = sbq_desc->p.skb;
  1712. sbq_desc->p.skb = NULL;
  1713. skb_reserve(skb, NET_IP_ALIGN);
  1714. }
  1715. while (length > 0) {
  1716. lbq_desc = ql_get_curr_lchunk(qdev, rx_ring);
  1717. size = (length < rx_ring->lbq_buf_size) ? length :
  1718. rx_ring->lbq_buf_size;
  1719. QPRINTK(qdev, RX_STATUS, DEBUG,
  1720. "Adding page %d to skb for %d bytes.\n",
  1721. i, size);
  1722. skb_fill_page_desc(skb, i,
  1723. lbq_desc->p.pg_chunk.page,
  1724. lbq_desc->p.pg_chunk.offset,
  1725. size);
  1726. skb->len += size;
  1727. skb->data_len += size;
  1728. skb->truesize += size;
  1729. length -= size;
  1730. i++;
  1731. }
  1732. __pskb_pull_tail(skb, (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) ?
  1733. VLAN_ETH_HLEN : ETH_HLEN);
  1734. }
  1735. return skb;
  1736. }
  1737. /* Process an inbound completion from an rx ring. */
  1738. static void ql_process_mac_split_rx_intr(struct ql_adapter *qdev,
  1739. struct rx_ring *rx_ring,
  1740. struct ib_mac_iocb_rsp *ib_mac_rsp,
  1741. u16 vlan_id)
  1742. {
  1743. struct net_device *ndev = qdev->ndev;
  1744. struct sk_buff *skb = NULL;
  1745. QL_DUMP_IB_MAC_RSP(ib_mac_rsp);
  1746. skb = ql_build_rx_skb(qdev, rx_ring, ib_mac_rsp);
  1747. if (unlikely(!skb)) {
  1748. QPRINTK(qdev, RX_STATUS, DEBUG,
  1749. "No skb available, drop packet.\n");
  1750. rx_ring->rx_dropped++;
  1751. return;
  1752. }
  1753. /* Frame error, so drop the packet. */
  1754. if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_ERR_MASK) {
  1755. QPRINTK(qdev, DRV, ERR, "Receive error, flags2 = 0x%x\n",
  1756. ib_mac_rsp->flags2);
  1757. dev_kfree_skb_any(skb);
  1758. rx_ring->rx_errors++;
  1759. return;
  1760. }
  1761. /* The max framesize filter on this chip is set higher than
  1762. * MTU since FCoE uses 2k frames.
  1763. */
  1764. if (skb->len > ndev->mtu + ETH_HLEN) {
  1765. dev_kfree_skb_any(skb);
  1766. rx_ring->rx_dropped++;
  1767. return;
  1768. }
  1769. /* loopback self test for ethtool */
  1770. if (test_bit(QL_SELFTEST, &qdev->flags)) {
  1771. ql_check_lb_frame(qdev, skb);
  1772. dev_kfree_skb_any(skb);
  1773. return;
  1774. }
  1775. prefetch(skb->data);
  1776. skb->dev = ndev;
  1777. if (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) {
  1778. QPRINTK(qdev, RX_STATUS, DEBUG, "%s%s%s Multicast.\n",
  1779. (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
  1780. IB_MAC_IOCB_RSP_M_HASH ? "Hash" : "",
  1781. (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
  1782. IB_MAC_IOCB_RSP_M_REG ? "Registered" : "",
  1783. (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
  1784. IB_MAC_IOCB_RSP_M_PROM ? "Promiscuous" : "");
  1785. rx_ring->rx_multicast++;
  1786. }
  1787. if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_P) {
  1788. QPRINTK(qdev, RX_STATUS, DEBUG, "Promiscuous Packet.\n");
  1789. }
  1790. skb->protocol = eth_type_trans(skb, ndev);
  1791. skb->ip_summed = CHECKSUM_NONE;
  1792. /* If rx checksum is on, and there are no
  1793. * csum or frame errors.
  1794. */
  1795. if (qdev->rx_csum &&
  1796. !(ib_mac_rsp->flags1 & IB_MAC_CSUM_ERR_MASK)) {
  1797. /* TCP frame. */
  1798. if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_T) {
  1799. QPRINTK(qdev, RX_STATUS, DEBUG,
  1800. "TCP checksum done!\n");
  1801. skb->ip_summed = CHECKSUM_UNNECESSARY;
  1802. } else if ((ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_U) &&
  1803. (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_V4)) {
  1804. /* Unfragmented ipv4 UDP frame. */
  1805. struct iphdr *iph = (struct iphdr *) skb->data;
  1806. if (!(iph->frag_off &
  1807. cpu_to_be16(IP_MF|IP_OFFSET))) {
  1808. skb->ip_summed = CHECKSUM_UNNECESSARY;
  1809. QPRINTK(qdev, RX_STATUS, DEBUG,
  1810. "TCP checksum done!\n");
  1811. }
  1812. }
  1813. }
  1814. rx_ring->rx_packets++;
  1815. rx_ring->rx_bytes += skb->len;
  1816. skb_record_rx_queue(skb, rx_ring->cq_id);
  1817. if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
  1818. if (qdev->vlgrp &&
  1819. (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) &&
  1820. (vlan_id != 0))
  1821. vlan_gro_receive(&rx_ring->napi, qdev->vlgrp,
  1822. vlan_id, skb);
  1823. else
  1824. napi_gro_receive(&rx_ring->napi, skb);
  1825. } else {
  1826. if (qdev->vlgrp &&
  1827. (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) &&
  1828. (vlan_id != 0))
  1829. vlan_hwaccel_receive_skb(skb, qdev->vlgrp, vlan_id);
  1830. else
  1831. netif_receive_skb(skb);
  1832. }
  1833. }
  1834. /* Process an inbound completion from an rx ring. */
  1835. static unsigned long ql_process_mac_rx_intr(struct ql_adapter *qdev,
  1836. struct rx_ring *rx_ring,
  1837. struct ib_mac_iocb_rsp *ib_mac_rsp)
  1838. {
  1839. u32 length = le32_to_cpu(ib_mac_rsp->data_len);
  1840. u16 vlan_id = (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) ?
  1841. ((le16_to_cpu(ib_mac_rsp->vlan_id) &
  1842. IB_MAC_IOCB_RSP_VLAN_MASK)) : 0xffff;
  1843. QL_DUMP_IB_MAC_RSP(ib_mac_rsp);
  1844. if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HV) {
  1845. /* The data and headers are split into
  1846. * separate buffers.
  1847. */
  1848. ql_process_mac_split_rx_intr(qdev, rx_ring, ib_mac_rsp,
  1849. vlan_id);
  1850. } else if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DS) {
  1851. /* The data fit in a single small buffer.
  1852. * Allocate a new skb, copy the data and
  1853. * return the buffer to the free pool.
  1854. */
  1855. ql_process_mac_rx_skb(qdev, rx_ring, ib_mac_rsp,
  1856. length, vlan_id);
  1857. } else if ((ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DL) &&
  1858. !(ib_mac_rsp->flags1 & IB_MAC_CSUM_ERR_MASK) &&
  1859. (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_T)) {
  1860. /* TCP packet in a page chunk that's been checksummed.
  1861. * Tack it on to our GRO skb and let it go.
  1862. */
  1863. ql_process_mac_rx_gro_page(qdev, rx_ring, ib_mac_rsp,
  1864. length, vlan_id);
  1865. } else if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DL) {
  1866. /* Non-TCP packet in a page chunk. Allocate an
  1867. * skb, tack it on frags, and send it up.
  1868. */
  1869. ql_process_mac_rx_page(qdev, rx_ring, ib_mac_rsp,
  1870. length, vlan_id);
  1871. } else {
  1872. struct bq_desc *lbq_desc;
  1873. /* Free small buffer that holds the IAL */
  1874. lbq_desc = ql_get_curr_sbuf(rx_ring);
  1875. QPRINTK(qdev, RX_ERR, ERR, "Dropping frame, len %d > mtu %d\n",
  1876. length, qdev->ndev->mtu);
  1877. /* Unwind the large buffers for this frame. */
  1878. while (length > 0) {
  1879. lbq_desc = ql_get_curr_lchunk(qdev, rx_ring);
  1880. length -= (length < rx_ring->lbq_buf_size) ?
  1881. length : rx_ring->lbq_buf_size;
  1882. put_page(lbq_desc->p.pg_chunk.page);
  1883. }
  1884. }
  1885. return (unsigned long)length;
  1886. }
  1887. /* Process an outbound completion from an rx ring. */
  1888. static void ql_process_mac_tx_intr(struct ql_adapter *qdev,
  1889. struct ob_mac_iocb_rsp *mac_rsp)
  1890. {
  1891. struct tx_ring *tx_ring;
  1892. struct tx_ring_desc *tx_ring_desc;
  1893. QL_DUMP_OB_MAC_RSP(mac_rsp);
  1894. tx_ring = &qdev->tx_ring[mac_rsp->txq_idx];
  1895. tx_ring_desc = &tx_ring->q[mac_rsp->tid];
  1896. ql_unmap_send(qdev, tx_ring_desc, tx_ring_desc->map_cnt);
  1897. tx_ring->tx_bytes += (tx_ring_desc->skb)->len;
  1898. tx_ring->tx_packets++;
  1899. dev_kfree_skb(tx_ring_desc->skb);
  1900. tx_ring_desc->skb = NULL;
  1901. if (unlikely(mac_rsp->flags1 & (OB_MAC_IOCB_RSP_E |
  1902. OB_MAC_IOCB_RSP_S |
  1903. OB_MAC_IOCB_RSP_L |
  1904. OB_MAC_IOCB_RSP_P | OB_MAC_IOCB_RSP_B))) {
  1905. if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_E) {
  1906. QPRINTK(qdev, TX_DONE, WARNING,
  1907. "Total descriptor length did not match transfer length.\n");
  1908. }
  1909. if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_S) {
  1910. QPRINTK(qdev, TX_DONE, WARNING,
  1911. "Frame too short to be legal, not sent.\n");
  1912. }
  1913. if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_L) {
  1914. QPRINTK(qdev, TX_DONE, WARNING,
  1915. "Frame too long, but sent anyway.\n");
  1916. }
  1917. if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_B) {
  1918. QPRINTK(qdev, TX_DONE, WARNING,
  1919. "PCI backplane error. Frame not sent.\n");
  1920. }
  1921. }
  1922. atomic_inc(&tx_ring->tx_count);
  1923. }
  1924. /* Fire up a handler to reset the MPI processor. */
  1925. void ql_queue_fw_error(struct ql_adapter *qdev)
  1926. {
  1927. ql_link_off(qdev);
  1928. queue_delayed_work(qdev->workqueue, &qdev->mpi_reset_work, 0);
  1929. }
  1930. void ql_queue_asic_error(struct ql_adapter *qdev)
  1931. {
  1932. ql_link_off(qdev);
  1933. ql_disable_interrupts(qdev);
  1934. /* Clear adapter up bit to signal the recovery
  1935. * process that it shouldn't kill the reset worker
  1936. * thread
  1937. */
  1938. clear_bit(QL_ADAPTER_UP, &qdev->flags);
  1939. queue_delayed_work(qdev->workqueue, &qdev->asic_reset_work, 0);
  1940. }
  1941. static void ql_process_chip_ae_intr(struct ql_adapter *qdev,
  1942. struct ib_ae_iocb_rsp *ib_ae_rsp)
  1943. {
  1944. switch (ib_ae_rsp->event) {
  1945. case MGMT_ERR_EVENT:
  1946. QPRINTK(qdev, RX_ERR, ERR,
  1947. "Management Processor Fatal Error.\n");
  1948. ql_queue_fw_error(qdev);
  1949. return;
  1950. case CAM_LOOKUP_ERR_EVENT:
  1951. QPRINTK(qdev, LINK, ERR,
  1952. "Multiple CAM hits lookup occurred.\n");
  1953. QPRINTK(qdev, DRV, ERR, "This event shouldn't occur.\n");
  1954. ql_queue_asic_error(qdev);
  1955. return;
  1956. case SOFT_ECC_ERROR_EVENT:
  1957. QPRINTK(qdev, RX_ERR, ERR, "Soft ECC error detected.\n");
  1958. ql_queue_asic_error(qdev);
  1959. break;
  1960. case PCI_ERR_ANON_BUF_RD:
  1961. QPRINTK(qdev, RX_ERR, ERR,
  1962. "PCI error occurred when reading anonymous buffers from rx_ring %d.\n",
  1963. ib_ae_rsp->q_id);
  1964. ql_queue_asic_error(qdev);
  1965. break;
  1966. default:
  1967. QPRINTK(qdev, DRV, ERR, "Unexpected event %d.\n",
  1968. ib_ae_rsp->event);
  1969. ql_queue_asic_error(qdev);
  1970. break;
  1971. }
  1972. }
  1973. static int ql_clean_outbound_rx_ring(struct rx_ring *rx_ring)
  1974. {
  1975. struct ql_adapter *qdev = rx_ring->qdev;
  1976. u32 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
  1977. struct ob_mac_iocb_rsp *net_rsp = NULL;
  1978. int count = 0;
  1979. struct tx_ring *tx_ring;
  1980. /* While there are entries in the completion queue. */
  1981. while (prod != rx_ring->cnsmr_idx) {
  1982. QPRINTK(qdev, RX_STATUS, DEBUG,
  1983. "cq_id = %d, prod = %d, cnsmr = %d.\n.", rx_ring->cq_id,
  1984. prod, rx_ring->cnsmr_idx);
  1985. net_rsp = (struct ob_mac_iocb_rsp *)rx_ring->curr_entry;
  1986. rmb();
  1987. switch (net_rsp->opcode) {
  1988. case OPCODE_OB_MAC_TSO_IOCB:
  1989. case OPCODE_OB_MAC_IOCB:
  1990. ql_process_mac_tx_intr(qdev, net_rsp);
  1991. break;
  1992. default:
  1993. QPRINTK(qdev, RX_STATUS, DEBUG,
  1994. "Hit default case, not handled! dropping the packet, opcode = %x.\n",
  1995. net_rsp->opcode);
  1996. }
  1997. count++;
  1998. ql_update_cq(rx_ring);
  1999. prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
  2000. }
  2001. ql_write_cq_idx(rx_ring);
  2002. tx_ring = &qdev->tx_ring[net_rsp->txq_idx];
  2003. if (__netif_subqueue_stopped(qdev->ndev, tx_ring->wq_id) &&
  2004. net_rsp != NULL) {
  2005. if (atomic_read(&tx_ring->queue_stopped) &&
  2006. (atomic_read(&tx_ring->tx_count) > (tx_ring->wq_len / 4)))
  2007. /*
  2008. * The queue got stopped because the tx_ring was full.
  2009. * Wake it up, because it's now at least 25% empty.
  2010. */
  2011. netif_wake_subqueue(qdev->ndev, tx_ring->wq_id);
  2012. }
  2013. return count;
  2014. }
  2015. static int ql_clean_inbound_rx_ring(struct rx_ring *rx_ring, int budget)
  2016. {
  2017. struct ql_adapter *qdev = rx_ring->qdev;
  2018. u32 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
  2019. struct ql_net_rsp_iocb *net_rsp;
  2020. int count = 0;
  2021. /* While there are entries in the completion queue. */
  2022. while (prod != rx_ring->cnsmr_idx) {
  2023. QPRINTK(qdev, RX_STATUS, DEBUG,
  2024. "cq_id = %d, prod = %d, cnsmr = %d.\n.", rx_ring->cq_id,
  2025. prod, rx_ring->cnsmr_idx);
  2026. net_rsp = rx_ring->curr_entry;
  2027. rmb();
  2028. switch (net_rsp->opcode) {
  2029. case OPCODE_IB_MAC_IOCB:
  2030. ql_process_mac_rx_intr(qdev, rx_ring,
  2031. (struct ib_mac_iocb_rsp *)
  2032. net_rsp);
  2033. break;
  2034. case OPCODE_IB_AE_IOCB:
  2035. ql_process_chip_ae_intr(qdev, (struct ib_ae_iocb_rsp *)
  2036. net_rsp);
  2037. break;
  2038. default:
  2039. {
  2040. QPRINTK(qdev, RX_STATUS, DEBUG,
  2041. "Hit default case, not handled! dropping the packet, opcode = %x.\n",
  2042. net_rsp->opcode);
  2043. }
  2044. }
  2045. count++;
  2046. ql_update_cq(rx_ring);
  2047. prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
  2048. if (count == budget)
  2049. break;
  2050. }
  2051. ql_update_buffer_queues(qdev, rx_ring);
  2052. ql_write_cq_idx(rx_ring);
  2053. return count;
  2054. }
  2055. static int ql_napi_poll_msix(struct napi_struct *napi, int budget)
  2056. {
  2057. struct rx_ring *rx_ring = container_of(napi, struct rx_ring, napi);
  2058. struct ql_adapter *qdev = rx_ring->qdev;
  2059. struct rx_ring *trx_ring;
  2060. int i, work_done = 0;
  2061. struct intr_context *ctx = &qdev->intr_context[rx_ring->cq_id];
  2062. QPRINTK(qdev, RX_STATUS, DEBUG, "Enter, NAPI POLL cq_id = %d.\n",
  2063. rx_ring->cq_id);
  2064. /* Service the TX rings first. They start
  2065. * right after the RSS rings. */
  2066. for (i = qdev->rss_ring_count; i < qdev->rx_ring_count; i++) {
  2067. trx_ring = &qdev->rx_ring[i];
  2068. /* If this TX completion ring belongs to this vector and
  2069. * it's not empty then service it.
  2070. */
  2071. if ((ctx->irq_mask & (1 << trx_ring->cq_id)) &&
  2072. (ql_read_sh_reg(trx_ring->prod_idx_sh_reg) !=
  2073. trx_ring->cnsmr_idx)) {
  2074. QPRINTK(qdev, INTR, DEBUG,
  2075. "%s: Servicing TX completion ring %d.\n",
  2076. __func__, trx_ring->cq_id);
  2077. ql_clean_outbound_rx_ring(trx_ring);
  2078. }
  2079. }
  2080. /*
  2081. * Now service the RSS ring if it's active.
  2082. */
  2083. if (ql_read_sh_reg(rx_ring->prod_idx_sh_reg) !=
  2084. rx_ring->cnsmr_idx) {
  2085. QPRINTK(qdev, INTR, DEBUG,
  2086. "%s: Servicing RX completion ring %d.\n",
  2087. __func__, rx_ring->cq_id);
  2088. work_done = ql_clean_inbound_rx_ring(rx_ring, budget);
  2089. }
  2090. if (work_done < budget) {
  2091. napi_complete(napi);
  2092. ql_enable_completion_interrupt(qdev, rx_ring->irq);
  2093. }
  2094. return work_done;
  2095. }
  2096. static void qlge_vlan_rx_register(struct net_device *ndev, struct vlan_group *grp)
  2097. {
  2098. struct ql_adapter *qdev = netdev_priv(ndev);
  2099. qdev->vlgrp = grp;
  2100. if (grp) {
  2101. QPRINTK(qdev, IFUP, DEBUG, "Turning on VLAN in NIC_RCV_CFG.\n");
  2102. ql_write32(qdev, NIC_RCV_CFG, NIC_RCV_CFG_VLAN_MASK |
  2103. NIC_RCV_CFG_VLAN_MATCH_AND_NON);
  2104. } else {
  2105. QPRINTK(qdev, IFUP, DEBUG,
  2106. "Turning off VLAN in NIC_RCV_CFG.\n");
  2107. ql_write32(qdev, NIC_RCV_CFG, NIC_RCV_CFG_VLAN_MASK);
  2108. }
  2109. }
  2110. static void qlge_vlan_rx_add_vid(struct net_device *ndev, u16 vid)
  2111. {
  2112. struct ql_adapter *qdev = netdev_priv(ndev);
  2113. u32 enable_bit = MAC_ADDR_E;
  2114. int status;
  2115. status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
  2116. if (status)
  2117. return;
  2118. if (ql_set_mac_addr_reg
  2119. (qdev, (u8 *) &enable_bit, MAC_ADDR_TYPE_VLAN, vid)) {
  2120. QPRINTK(qdev, IFUP, ERR, "Failed to init vlan address.\n");
  2121. }
  2122. ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
  2123. }
  2124. static void qlge_vlan_rx_kill_vid(struct net_device *ndev, u16 vid)
  2125. {
  2126. struct ql_adapter *qdev = netdev_priv(ndev);
  2127. u32 enable_bit = 0;
  2128. int status;
  2129. status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
  2130. if (status)
  2131. return;
  2132. if (ql_set_mac_addr_reg
  2133. (qdev, (u8 *) &enable_bit, MAC_ADDR_TYPE_VLAN, vid)) {
  2134. QPRINTK(qdev, IFUP, ERR, "Failed to clear vlan address.\n");
  2135. }
  2136. ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
  2137. }
  2138. /* MSI-X Multiple Vector Interrupt Handler for inbound completions. */
  2139. static irqreturn_t qlge_msix_rx_isr(int irq, void *dev_id)
  2140. {
  2141. struct rx_ring *rx_ring = dev_id;
  2142. napi_schedule(&rx_ring->napi);
  2143. return IRQ_HANDLED;
  2144. }
  2145. /* This handles a fatal error, MPI activity, and the default
  2146. * rx_ring in an MSI-X multiple vector environment.
  2147. * In MSI/Legacy environment it also process the rest of
  2148. * the rx_rings.
  2149. */
  2150. static irqreturn_t qlge_isr(int irq, void *dev_id)
  2151. {
  2152. struct rx_ring *rx_ring = dev_id;
  2153. struct ql_adapter *qdev = rx_ring->qdev;
  2154. struct intr_context *intr_context = &qdev->intr_context[0];
  2155. u32 var;
  2156. int work_done = 0;
  2157. spin_lock(&qdev->hw_lock);
  2158. if (atomic_read(&qdev->intr_context[0].irq_cnt)) {
  2159. QPRINTK(qdev, INTR, DEBUG, "Shared Interrupt, Not ours!\n");
  2160. spin_unlock(&qdev->hw_lock);
  2161. return IRQ_NONE;
  2162. }
  2163. spin_unlock(&qdev->hw_lock);
  2164. var = ql_disable_completion_interrupt(qdev, intr_context->intr);
  2165. /*
  2166. * Check for fatal error.
  2167. */
  2168. if (var & STS_FE) {
  2169. ql_queue_asic_error(qdev);
  2170. QPRINTK(qdev, INTR, ERR, "Got fatal error, STS = %x.\n", var);
  2171. var = ql_read32(qdev, ERR_STS);
  2172. QPRINTK(qdev, INTR, ERR,
  2173. "Resetting chip. Error Status Register = 0x%x\n", var);
  2174. return IRQ_HANDLED;
  2175. }
  2176. /*
  2177. * Check MPI processor activity.
  2178. */
  2179. if ((var & STS_PI) &&
  2180. (ql_read32(qdev, INTR_MASK) & INTR_MASK_PI)) {
  2181. /*
  2182. * We've got an async event or mailbox completion.
  2183. * Handle it and clear the source of the interrupt.
  2184. */
  2185. QPRINTK(qdev, INTR, ERR, "Got MPI processor interrupt.\n");
  2186. ql_disable_completion_interrupt(qdev, intr_context->intr);
  2187. ql_write32(qdev, INTR_MASK, (INTR_MASK_PI << 16));
  2188. queue_delayed_work_on(smp_processor_id(),
  2189. qdev->workqueue, &qdev->mpi_work, 0);
  2190. work_done++;
  2191. }
  2192. /*
  2193. * Get the bit-mask that shows the active queues for this
  2194. * pass. Compare it to the queues that this irq services
  2195. * and call napi if there's a match.
  2196. */
  2197. var = ql_read32(qdev, ISR1);
  2198. if (var & intr_context->irq_mask) {
  2199. QPRINTK(qdev, INTR, INFO,
  2200. "Waking handler for rx_ring[0].\n");
  2201. ql_disable_completion_interrupt(qdev, intr_context->intr);
  2202. napi_schedule(&rx_ring->napi);
  2203. work_done++;
  2204. }
  2205. ql_enable_completion_interrupt(qdev, intr_context->intr);
  2206. return work_done ? IRQ_HANDLED : IRQ_NONE;
  2207. }
  2208. static int ql_tso(struct sk_buff *skb, struct ob_mac_tso_iocb_req *mac_iocb_ptr)
  2209. {
  2210. if (skb_is_gso(skb)) {
  2211. int err;
  2212. if (skb_header_cloned(skb)) {
  2213. err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
  2214. if (err)
  2215. return err;
  2216. }
  2217. mac_iocb_ptr->opcode = OPCODE_OB_MAC_TSO_IOCB;
  2218. mac_iocb_ptr->flags3 |= OB_MAC_TSO_IOCB_IC;
  2219. mac_iocb_ptr->frame_len = cpu_to_le32((u32) skb->len);
  2220. mac_iocb_ptr->total_hdrs_len =
  2221. cpu_to_le16(skb_transport_offset(skb) + tcp_hdrlen(skb));
  2222. mac_iocb_ptr->net_trans_offset =
  2223. cpu_to_le16(skb_network_offset(skb) |
  2224. skb_transport_offset(skb)
  2225. << OB_MAC_TRANSPORT_HDR_SHIFT);
  2226. mac_iocb_ptr->mss = cpu_to_le16(skb_shinfo(skb)->gso_size);
  2227. mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_LSO;
  2228. if (likely(skb->protocol == htons(ETH_P_IP))) {
  2229. struct iphdr *iph = ip_hdr(skb);
  2230. iph->check = 0;
  2231. mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP4;
  2232. tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
  2233. iph->daddr, 0,
  2234. IPPROTO_TCP,
  2235. 0);
  2236. } else if (skb->protocol == htons(ETH_P_IPV6)) {
  2237. mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP6;
  2238. tcp_hdr(skb)->check =
  2239. ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
  2240. &ipv6_hdr(skb)->daddr,
  2241. 0, IPPROTO_TCP, 0);
  2242. }
  2243. return 1;
  2244. }
  2245. return 0;
  2246. }
  2247. static void ql_hw_csum_setup(struct sk_buff *skb,
  2248. struct ob_mac_tso_iocb_req *mac_iocb_ptr)
  2249. {
  2250. int len;
  2251. struct iphdr *iph = ip_hdr(skb);
  2252. __sum16 *check;
  2253. mac_iocb_ptr->opcode = OPCODE_OB_MAC_TSO_IOCB;
  2254. mac_iocb_ptr->frame_len = cpu_to_le32((u32) skb->len);
  2255. mac_iocb_ptr->net_trans_offset =
  2256. cpu_to_le16(skb_network_offset(skb) |
  2257. skb_transport_offset(skb) << OB_MAC_TRANSPORT_HDR_SHIFT);
  2258. mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP4;
  2259. len = (ntohs(iph->tot_len) - (iph->ihl << 2));
  2260. if (likely(iph->protocol == IPPROTO_TCP)) {
  2261. check = &(tcp_hdr(skb)->check);
  2262. mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_TC;
  2263. mac_iocb_ptr->total_hdrs_len =
  2264. cpu_to_le16(skb_transport_offset(skb) +
  2265. (tcp_hdr(skb)->doff << 2));
  2266. } else {
  2267. check = &(udp_hdr(skb)->check);
  2268. mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_UC;
  2269. mac_iocb_ptr->total_hdrs_len =
  2270. cpu_to_le16(skb_transport_offset(skb) +
  2271. sizeof(struct udphdr));
  2272. }
  2273. *check = ~csum_tcpudp_magic(iph->saddr,
  2274. iph->daddr, len, iph->protocol, 0);
  2275. }
  2276. static netdev_tx_t qlge_send(struct sk_buff *skb, struct net_device *ndev)
  2277. {
  2278. struct tx_ring_desc *tx_ring_desc;
  2279. struct ob_mac_iocb_req *mac_iocb_ptr;
  2280. struct ql_adapter *qdev = netdev_priv(ndev);
  2281. int tso;
  2282. struct tx_ring *tx_ring;
  2283. u32 tx_ring_idx = (u32) skb->queue_mapping;
  2284. tx_ring = &qdev->tx_ring[tx_ring_idx];
  2285. if (skb_padto(skb, ETH_ZLEN))
  2286. return NETDEV_TX_OK;
  2287. if (unlikely(atomic_read(&tx_ring->tx_count) < 2)) {
  2288. QPRINTK(qdev, TX_QUEUED, INFO,
  2289. "%s: shutting down tx queue %d du to lack of resources.\n",
  2290. __func__, tx_ring_idx);
  2291. netif_stop_subqueue(ndev, tx_ring->wq_id);
  2292. atomic_inc(&tx_ring->queue_stopped);
  2293. tx_ring->tx_errors++;
  2294. return NETDEV_TX_BUSY;
  2295. }
  2296. tx_ring_desc = &tx_ring->q[tx_ring->prod_idx];
  2297. mac_iocb_ptr = tx_ring_desc->queue_entry;
  2298. memset((void *)mac_iocb_ptr, 0, sizeof(*mac_iocb_ptr));
  2299. mac_iocb_ptr->opcode = OPCODE_OB_MAC_IOCB;
  2300. mac_iocb_ptr->tid = tx_ring_desc->index;
  2301. /* We use the upper 32-bits to store the tx queue for this IO.
  2302. * When we get the completion we can use it to establish the context.
  2303. */
  2304. mac_iocb_ptr->txq_idx = tx_ring_idx;
  2305. tx_ring_desc->skb = skb;
  2306. mac_iocb_ptr->frame_len = cpu_to_le16((u16) skb->len);
  2307. if (qdev->vlgrp && vlan_tx_tag_present(skb)) {
  2308. QPRINTK(qdev, TX_QUEUED, DEBUG, "Adding a vlan tag %d.\n",
  2309. vlan_tx_tag_get(skb));
  2310. mac_iocb_ptr->flags3 |= OB_MAC_IOCB_V;
  2311. mac_iocb_ptr->vlan_tci = cpu_to_le16(vlan_tx_tag_get(skb));
  2312. }
  2313. tso = ql_tso(skb, (struct ob_mac_tso_iocb_req *)mac_iocb_ptr);
  2314. if (tso < 0) {
  2315. dev_kfree_skb_any(skb);
  2316. return NETDEV_TX_OK;
  2317. } else if (unlikely(!tso) && (skb->ip_summed == CHECKSUM_PARTIAL)) {
  2318. ql_hw_csum_setup(skb,
  2319. (struct ob_mac_tso_iocb_req *)mac_iocb_ptr);
  2320. }
  2321. if (ql_map_send(qdev, mac_iocb_ptr, skb, tx_ring_desc) !=
  2322. NETDEV_TX_OK) {
  2323. QPRINTK(qdev, TX_QUEUED, ERR,
  2324. "Could not map the segments.\n");
  2325. tx_ring->tx_errors++;
  2326. return NETDEV_TX_BUSY;
  2327. }
  2328. QL_DUMP_OB_MAC_IOCB(mac_iocb_ptr);
  2329. tx_ring->prod_idx++;
  2330. if (tx_ring->prod_idx == tx_ring->wq_len)
  2331. tx_ring->prod_idx = 0;
  2332. wmb();
  2333. ql_write_db_reg(tx_ring->prod_idx, tx_ring->prod_idx_db_reg);
  2334. QPRINTK(qdev, TX_QUEUED, DEBUG, "tx queued, slot %d, len %d\n",
  2335. tx_ring->prod_idx, skb->len);
  2336. atomic_dec(&tx_ring->tx_count);
  2337. return NETDEV_TX_OK;
  2338. }
  2339. static void ql_free_shadow_space(struct ql_adapter *qdev)
  2340. {
  2341. if (qdev->rx_ring_shadow_reg_area) {
  2342. pci_free_consistent(qdev->pdev,
  2343. PAGE_SIZE,
  2344. qdev->rx_ring_shadow_reg_area,
  2345. qdev->rx_ring_shadow_reg_dma);
  2346. qdev->rx_ring_shadow_reg_area = NULL;
  2347. }
  2348. if (qdev->tx_ring_shadow_reg_area) {
  2349. pci_free_consistent(qdev->pdev,
  2350. PAGE_SIZE,
  2351. qdev->tx_ring_shadow_reg_area,
  2352. qdev->tx_ring_shadow_reg_dma);
  2353. qdev->tx_ring_shadow_reg_area = NULL;
  2354. }
  2355. }
  2356. static int ql_alloc_shadow_space(struct ql_adapter *qdev)
  2357. {
  2358. qdev->rx_ring_shadow_reg_area =
  2359. pci_alloc_consistent(qdev->pdev,
  2360. PAGE_SIZE, &qdev->rx_ring_shadow_reg_dma);
  2361. if (qdev->rx_ring_shadow_reg_area == NULL) {
  2362. QPRINTK(qdev, IFUP, ERR,
  2363. "Allocation of RX shadow space failed.\n");
  2364. return -ENOMEM;
  2365. }
  2366. memset(qdev->rx_ring_shadow_reg_area, 0, PAGE_SIZE);
  2367. qdev->tx_ring_shadow_reg_area =
  2368. pci_alloc_consistent(qdev->pdev, PAGE_SIZE,
  2369. &qdev->tx_ring_shadow_reg_dma);
  2370. if (qdev->tx_ring_shadow_reg_area == NULL) {
  2371. QPRINTK(qdev, IFUP, ERR,
  2372. "Allocation of TX shadow space failed.\n");
  2373. goto err_wqp_sh_area;
  2374. }
  2375. memset(qdev->tx_ring_shadow_reg_area, 0, PAGE_SIZE);
  2376. return 0;
  2377. err_wqp_sh_area:
  2378. pci_free_consistent(qdev->pdev,
  2379. PAGE_SIZE,
  2380. qdev->rx_ring_shadow_reg_area,
  2381. qdev->rx_ring_shadow_reg_dma);
  2382. return -ENOMEM;
  2383. }
  2384. static void ql_init_tx_ring(struct ql_adapter *qdev, struct tx_ring *tx_ring)
  2385. {
  2386. struct tx_ring_desc *tx_ring_desc;
  2387. int i;
  2388. struct ob_mac_iocb_req *mac_iocb_ptr;
  2389. mac_iocb_ptr = tx_ring->wq_base;
  2390. tx_ring_desc = tx_ring->q;
  2391. for (i = 0; i < tx_ring->wq_len; i++) {
  2392. tx_ring_desc->index = i;
  2393. tx_ring_desc->skb = NULL;
  2394. tx_ring_desc->queue_entry = mac_iocb_ptr;
  2395. mac_iocb_ptr++;
  2396. tx_ring_desc++;
  2397. }
  2398. atomic_set(&tx_ring->tx_count, tx_ring->wq_len);
  2399. atomic_set(&tx_ring->queue_stopped, 0);
  2400. }
  2401. static void ql_free_tx_resources(struct ql_adapter *qdev,
  2402. struct tx_ring *tx_ring)
  2403. {
  2404. if (tx_ring->wq_base) {
  2405. pci_free_consistent(qdev->pdev, tx_ring->wq_size,
  2406. tx_ring->wq_base, tx_ring->wq_base_dma);
  2407. tx_ring->wq_base = NULL;
  2408. }
  2409. kfree(tx_ring->q);
  2410. tx_ring->q = NULL;
  2411. }
  2412. static int ql_alloc_tx_resources(struct ql_adapter *qdev,
  2413. struct tx_ring *tx_ring)
  2414. {
  2415. tx_ring->wq_base =
  2416. pci_alloc_consistent(qdev->pdev, tx_ring->wq_size,
  2417. &tx_ring->wq_base_dma);
  2418. if ((tx_ring->wq_base == NULL) ||
  2419. tx_ring->wq_base_dma & WQ_ADDR_ALIGN) {
  2420. QPRINTK(qdev, IFUP, ERR, "tx_ring alloc failed.\n");
  2421. return -ENOMEM;
  2422. }
  2423. tx_ring->q =
  2424. kmalloc(tx_ring->wq_len * sizeof(struct tx_ring_desc), GFP_KERNEL);
  2425. if (tx_ring->q == NULL)
  2426. goto err;
  2427. return 0;
  2428. err:
  2429. pci_free_consistent(qdev->pdev, tx_ring->wq_size,
  2430. tx_ring->wq_base, tx_ring->wq_base_dma);
  2431. return -ENOMEM;
  2432. }
  2433. static void ql_free_lbq_buffers(struct ql_adapter *qdev, struct rx_ring *rx_ring)
  2434. {
  2435. struct bq_desc *lbq_desc;
  2436. uint32_t curr_idx, clean_idx;
  2437. curr_idx = rx_ring->lbq_curr_idx;
  2438. clean_idx = rx_ring->lbq_clean_idx;
  2439. while (curr_idx != clean_idx) {
  2440. lbq_desc = &rx_ring->lbq[curr_idx];
  2441. if (lbq_desc->p.pg_chunk.last_flag) {
  2442. pci_unmap_page(qdev->pdev,
  2443. lbq_desc->p.pg_chunk.map,
  2444. ql_lbq_block_size(qdev),
  2445. PCI_DMA_FROMDEVICE);
  2446. lbq_desc->p.pg_chunk.last_flag = 0;
  2447. }
  2448. put_page(lbq_desc->p.pg_chunk.page);
  2449. lbq_desc->p.pg_chunk.page = NULL;
  2450. if (++curr_idx == rx_ring->lbq_len)
  2451. curr_idx = 0;
  2452. }
  2453. }
  2454. static void ql_free_sbq_buffers(struct ql_adapter *qdev, struct rx_ring *rx_ring)
  2455. {
  2456. int i;
  2457. struct bq_desc *sbq_desc;
  2458. for (i = 0; i < rx_ring->sbq_len; i++) {
  2459. sbq_desc = &rx_ring->sbq[i];
  2460. if (sbq_desc == NULL) {
  2461. QPRINTK(qdev, IFUP, ERR, "sbq_desc %d is NULL.\n", i);
  2462. return;
  2463. }
  2464. if (sbq_desc->p.skb) {
  2465. pci_unmap_single(qdev->pdev,
  2466. pci_unmap_addr(sbq_desc, mapaddr),
  2467. pci_unmap_len(sbq_desc, maplen),
  2468. PCI_DMA_FROMDEVICE);
  2469. dev_kfree_skb(sbq_desc->p.skb);
  2470. sbq_desc->p.skb = NULL;
  2471. }
  2472. }
  2473. }
  2474. /* Free all large and small rx buffers associated
  2475. * with the completion queues for this device.
  2476. */
  2477. static void ql_free_rx_buffers(struct ql_adapter *qdev)
  2478. {
  2479. int i;
  2480. struct rx_ring *rx_ring;
  2481. for (i = 0; i < qdev->rx_ring_count; i++) {
  2482. rx_ring = &qdev->rx_ring[i];
  2483. if (rx_ring->lbq)
  2484. ql_free_lbq_buffers(qdev, rx_ring);
  2485. if (rx_ring->sbq)
  2486. ql_free_sbq_buffers(qdev, rx_ring);
  2487. }
  2488. }
  2489. static void ql_alloc_rx_buffers(struct ql_adapter *qdev)
  2490. {
  2491. struct rx_ring *rx_ring;
  2492. int i;
  2493. for (i = 0; i < qdev->rx_ring_count; i++) {
  2494. rx_ring = &qdev->rx_ring[i];
  2495. if (rx_ring->type != TX_Q)
  2496. ql_update_buffer_queues(qdev, rx_ring);
  2497. }
  2498. }
  2499. static void ql_init_lbq_ring(struct ql_adapter *qdev,
  2500. struct rx_ring *rx_ring)
  2501. {
  2502. int i;
  2503. struct bq_desc *lbq_desc;
  2504. __le64 *bq = rx_ring->lbq_base;
  2505. memset(rx_ring->lbq, 0, rx_ring->lbq_len * sizeof(struct bq_desc));
  2506. for (i = 0; i < rx_ring->lbq_len; i++) {
  2507. lbq_desc = &rx_ring->lbq[i];
  2508. memset(lbq_desc, 0, sizeof(*lbq_desc));
  2509. lbq_desc->index = i;
  2510. lbq_desc->addr = bq;
  2511. bq++;
  2512. }
  2513. }
  2514. static void ql_init_sbq_ring(struct ql_adapter *qdev,
  2515. struct rx_ring *rx_ring)
  2516. {
  2517. int i;
  2518. struct bq_desc *sbq_desc;
  2519. __le64 *bq = rx_ring->sbq_base;
  2520. memset(rx_ring->sbq, 0, rx_ring->sbq_len * sizeof(struct bq_desc));
  2521. for (i = 0; i < rx_ring->sbq_len; i++) {
  2522. sbq_desc = &rx_ring->sbq[i];
  2523. memset(sbq_desc, 0, sizeof(*sbq_desc));
  2524. sbq_desc->index = i;
  2525. sbq_desc->addr = bq;
  2526. bq++;
  2527. }
  2528. }
  2529. static void ql_free_rx_resources(struct ql_adapter *qdev,
  2530. struct rx_ring *rx_ring)
  2531. {
  2532. /* Free the small buffer queue. */
  2533. if (rx_ring->sbq_base) {
  2534. pci_free_consistent(qdev->pdev,
  2535. rx_ring->sbq_size,
  2536. rx_ring->sbq_base, rx_ring->sbq_base_dma);
  2537. rx_ring->sbq_base = NULL;
  2538. }
  2539. /* Free the small buffer queue control blocks. */
  2540. kfree(rx_ring->sbq);
  2541. rx_ring->sbq = NULL;
  2542. /* Free the large buffer queue. */
  2543. if (rx_ring->lbq_base) {
  2544. pci_free_consistent(qdev->pdev,
  2545. rx_ring->lbq_size,
  2546. rx_ring->lbq_base, rx_ring->lbq_base_dma);
  2547. rx_ring->lbq_base = NULL;
  2548. }
  2549. /* Free the large buffer queue control blocks. */
  2550. kfree(rx_ring->lbq);
  2551. rx_ring->lbq = NULL;
  2552. /* Free the rx queue. */
  2553. if (rx_ring->cq_base) {
  2554. pci_free_consistent(qdev->pdev,
  2555. rx_ring->cq_size,
  2556. rx_ring->cq_base, rx_ring->cq_base_dma);
  2557. rx_ring->cq_base = NULL;
  2558. }
  2559. }
  2560. /* Allocate queues and buffers for this completions queue based
  2561. * on the values in the parameter structure. */
  2562. static int ql_alloc_rx_resources(struct ql_adapter *qdev,
  2563. struct rx_ring *rx_ring)
  2564. {
  2565. /*
  2566. * Allocate the completion queue for this rx_ring.
  2567. */
  2568. rx_ring->cq_base =
  2569. pci_alloc_consistent(qdev->pdev, rx_ring->cq_size,
  2570. &rx_ring->cq_base_dma);
  2571. if (rx_ring->cq_base == NULL) {
  2572. QPRINTK(qdev, IFUP, ERR, "rx_ring alloc failed.\n");
  2573. return -ENOMEM;
  2574. }
  2575. if (rx_ring->sbq_len) {
  2576. /*
  2577. * Allocate small buffer queue.
  2578. */
  2579. rx_ring->sbq_base =
  2580. pci_alloc_consistent(qdev->pdev, rx_ring->sbq_size,
  2581. &rx_ring->sbq_base_dma);
  2582. if (rx_ring->sbq_base == NULL) {
  2583. QPRINTK(qdev, IFUP, ERR,
  2584. "Small buffer queue allocation failed.\n");
  2585. goto err_mem;
  2586. }
  2587. /*
  2588. * Allocate small buffer queue control blocks.
  2589. */
  2590. rx_ring->sbq =
  2591. kmalloc(rx_ring->sbq_len * sizeof(struct bq_desc),
  2592. GFP_KERNEL);
  2593. if (rx_ring->sbq == NULL) {
  2594. QPRINTK(qdev, IFUP, ERR,
  2595. "Small buffer queue control block allocation failed.\n");
  2596. goto err_mem;
  2597. }
  2598. ql_init_sbq_ring(qdev, rx_ring);
  2599. }
  2600. if (rx_ring->lbq_len) {
  2601. /*
  2602. * Allocate large buffer queue.
  2603. */
  2604. rx_ring->lbq_base =
  2605. pci_alloc_consistent(qdev->pdev, rx_ring->lbq_size,
  2606. &rx_ring->lbq_base_dma);
  2607. if (rx_ring->lbq_base == NULL) {
  2608. QPRINTK(qdev, IFUP, ERR,
  2609. "Large buffer queue allocation failed.\n");
  2610. goto err_mem;
  2611. }
  2612. /*
  2613. * Allocate large buffer queue control blocks.
  2614. */
  2615. rx_ring->lbq =
  2616. kmalloc(rx_ring->lbq_len * sizeof(struct bq_desc),
  2617. GFP_KERNEL);
  2618. if (rx_ring->lbq == NULL) {
  2619. QPRINTK(qdev, IFUP, ERR,
  2620. "Large buffer queue control block allocation failed.\n");
  2621. goto err_mem;
  2622. }
  2623. ql_init_lbq_ring(qdev, rx_ring);
  2624. }
  2625. return 0;
  2626. err_mem:
  2627. ql_free_rx_resources(qdev, rx_ring);
  2628. return -ENOMEM;
  2629. }
  2630. static void ql_tx_ring_clean(struct ql_adapter *qdev)
  2631. {
  2632. struct tx_ring *tx_ring;
  2633. struct tx_ring_desc *tx_ring_desc;
  2634. int i, j;
  2635. /*
  2636. * Loop through all queues and free
  2637. * any resources.
  2638. */
  2639. for (j = 0; j < qdev->tx_ring_count; j++) {
  2640. tx_ring = &qdev->tx_ring[j];
  2641. for (i = 0; i < tx_ring->wq_len; i++) {
  2642. tx_ring_desc = &tx_ring->q[i];
  2643. if (tx_ring_desc && tx_ring_desc->skb) {
  2644. QPRINTK(qdev, IFDOWN, ERR,
  2645. "Freeing lost SKB %p, from queue %d, index %d.\n",
  2646. tx_ring_desc->skb, j,
  2647. tx_ring_desc->index);
  2648. ql_unmap_send(qdev, tx_ring_desc,
  2649. tx_ring_desc->map_cnt);
  2650. dev_kfree_skb(tx_ring_desc->skb);
  2651. tx_ring_desc->skb = NULL;
  2652. }
  2653. }
  2654. }
  2655. }
  2656. static void ql_free_mem_resources(struct ql_adapter *qdev)
  2657. {
  2658. int i;
  2659. for (i = 0; i < qdev->tx_ring_count; i++)
  2660. ql_free_tx_resources(qdev, &qdev->tx_ring[i]);
  2661. for (i = 0; i < qdev->rx_ring_count; i++)
  2662. ql_free_rx_resources(qdev, &qdev->rx_ring[i]);
  2663. ql_free_shadow_space(qdev);
  2664. }
  2665. static int ql_alloc_mem_resources(struct ql_adapter *qdev)
  2666. {
  2667. int i;
  2668. /* Allocate space for our shadow registers and such. */
  2669. if (ql_alloc_shadow_space(qdev))
  2670. return -ENOMEM;
  2671. for (i = 0; i < qdev->rx_ring_count; i++) {
  2672. if (ql_alloc_rx_resources(qdev, &qdev->rx_ring[i]) != 0) {
  2673. QPRINTK(qdev, IFUP, ERR,
  2674. "RX resource allocation failed.\n");
  2675. goto err_mem;
  2676. }
  2677. }
  2678. /* Allocate tx queue resources */
  2679. for (i = 0; i < qdev->tx_ring_count; i++) {
  2680. if (ql_alloc_tx_resources(qdev, &qdev->tx_ring[i]) != 0) {
  2681. QPRINTK(qdev, IFUP, ERR,
  2682. "TX resource allocation failed.\n");
  2683. goto err_mem;
  2684. }
  2685. }
  2686. return 0;
  2687. err_mem:
  2688. ql_free_mem_resources(qdev);
  2689. return -ENOMEM;
  2690. }
  2691. /* Set up the rx ring control block and pass it to the chip.
  2692. * The control block is defined as
  2693. * "Completion Queue Initialization Control Block", or cqicb.
  2694. */
  2695. static int ql_start_rx_ring(struct ql_adapter *qdev, struct rx_ring *rx_ring)
  2696. {
  2697. struct cqicb *cqicb = &rx_ring->cqicb;
  2698. void *shadow_reg = qdev->rx_ring_shadow_reg_area +
  2699. (rx_ring->cq_id * RX_RING_SHADOW_SPACE);
  2700. u64 shadow_reg_dma = qdev->rx_ring_shadow_reg_dma +
  2701. (rx_ring->cq_id * RX_RING_SHADOW_SPACE);
  2702. void __iomem *doorbell_area =
  2703. qdev->doorbell_area + (DB_PAGE_SIZE * (128 + rx_ring->cq_id));
  2704. int err = 0;
  2705. u16 bq_len;
  2706. u64 tmp;
  2707. __le64 *base_indirect_ptr;
  2708. int page_entries;
  2709. /* Set up the shadow registers for this ring. */
  2710. rx_ring->prod_idx_sh_reg = shadow_reg;
  2711. rx_ring->prod_idx_sh_reg_dma = shadow_reg_dma;
  2712. *rx_ring->prod_idx_sh_reg = 0;
  2713. shadow_reg += sizeof(u64);
  2714. shadow_reg_dma += sizeof(u64);
  2715. rx_ring->lbq_base_indirect = shadow_reg;
  2716. rx_ring->lbq_base_indirect_dma = shadow_reg_dma;
  2717. shadow_reg += (sizeof(u64) * MAX_DB_PAGES_PER_BQ(rx_ring->lbq_len));
  2718. shadow_reg_dma += (sizeof(u64) * MAX_DB_PAGES_PER_BQ(rx_ring->lbq_len));
  2719. rx_ring->sbq_base_indirect = shadow_reg;
  2720. rx_ring->sbq_base_indirect_dma = shadow_reg_dma;
  2721. /* PCI doorbell mem area + 0x00 for consumer index register */
  2722. rx_ring->cnsmr_idx_db_reg = (u32 __iomem *) doorbell_area;
  2723. rx_ring->cnsmr_idx = 0;
  2724. rx_ring->curr_entry = rx_ring->cq_base;
  2725. /* PCI doorbell mem area + 0x04 for valid register */
  2726. rx_ring->valid_db_reg = doorbell_area + 0x04;
  2727. /* PCI doorbell mem area + 0x18 for large buffer consumer */
  2728. rx_ring->lbq_prod_idx_db_reg = (u32 __iomem *) (doorbell_area + 0x18);
  2729. /* PCI doorbell mem area + 0x1c */
  2730. rx_ring->sbq_prod_idx_db_reg = (u32 __iomem *) (doorbell_area + 0x1c);
  2731. memset((void *)cqicb, 0, sizeof(struct cqicb));
  2732. cqicb->msix_vect = rx_ring->irq;
  2733. bq_len = (rx_ring->cq_len == 65536) ? 0 : (u16) rx_ring->cq_len;
  2734. cqicb->len = cpu_to_le16(bq_len | LEN_V | LEN_CPP_CONT);
  2735. cqicb->addr = cpu_to_le64(rx_ring->cq_base_dma);
  2736. cqicb->prod_idx_addr = cpu_to_le64(rx_ring->prod_idx_sh_reg_dma);
  2737. /*
  2738. * Set up the control block load flags.
  2739. */
  2740. cqicb->flags = FLAGS_LC | /* Load queue base address */
  2741. FLAGS_LV | /* Load MSI-X vector */
  2742. FLAGS_LI; /* Load irq delay values */
  2743. if (rx_ring->lbq_len) {
  2744. cqicb->flags |= FLAGS_LL; /* Load lbq values */
  2745. tmp = (u64)rx_ring->lbq_base_dma;
  2746. base_indirect_ptr = (__le64 *) rx_ring->lbq_base_indirect;
  2747. page_entries = 0;
  2748. do {
  2749. *base_indirect_ptr = cpu_to_le64(tmp);
  2750. tmp += DB_PAGE_SIZE;
  2751. base_indirect_ptr++;
  2752. page_entries++;
  2753. } while (page_entries < MAX_DB_PAGES_PER_BQ(rx_ring->lbq_len));
  2754. cqicb->lbq_addr =
  2755. cpu_to_le64(rx_ring->lbq_base_indirect_dma);
  2756. bq_len = (rx_ring->lbq_buf_size == 65536) ? 0 :
  2757. (u16) rx_ring->lbq_buf_size;
  2758. cqicb->lbq_buf_size = cpu_to_le16(bq_len);
  2759. bq_len = (rx_ring->lbq_len == 65536) ? 0 :
  2760. (u16) rx_ring->lbq_len;
  2761. cqicb->lbq_len = cpu_to_le16(bq_len);
  2762. rx_ring->lbq_prod_idx = 0;
  2763. rx_ring->lbq_curr_idx = 0;
  2764. rx_ring->lbq_clean_idx = 0;
  2765. rx_ring->lbq_free_cnt = rx_ring->lbq_len;
  2766. }
  2767. if (rx_ring->sbq_len) {
  2768. cqicb->flags |= FLAGS_LS; /* Load sbq values */
  2769. tmp = (u64)rx_ring->sbq_base_dma;
  2770. base_indirect_ptr = (__le64 *) rx_ring->sbq_base_indirect;
  2771. page_entries = 0;
  2772. do {
  2773. *base_indirect_ptr = cpu_to_le64(tmp);
  2774. tmp += DB_PAGE_SIZE;
  2775. base_indirect_ptr++;
  2776. page_entries++;
  2777. } while (page_entries < MAX_DB_PAGES_PER_BQ(rx_ring->sbq_len));
  2778. cqicb->sbq_addr =
  2779. cpu_to_le64(rx_ring->sbq_base_indirect_dma);
  2780. cqicb->sbq_buf_size =
  2781. cpu_to_le16((u16)(rx_ring->sbq_buf_size));
  2782. bq_len = (rx_ring->sbq_len == 65536) ? 0 :
  2783. (u16) rx_ring->sbq_len;
  2784. cqicb->sbq_len = cpu_to_le16(bq_len);
  2785. rx_ring->sbq_prod_idx = 0;
  2786. rx_ring->sbq_curr_idx = 0;
  2787. rx_ring->sbq_clean_idx = 0;
  2788. rx_ring->sbq_free_cnt = rx_ring->sbq_len;
  2789. }
  2790. switch (rx_ring->type) {
  2791. case TX_Q:
  2792. cqicb->irq_delay = cpu_to_le16(qdev->tx_coalesce_usecs);
  2793. cqicb->pkt_delay = cpu_to_le16(qdev->tx_max_coalesced_frames);
  2794. break;
  2795. case RX_Q:
  2796. /* Inbound completion handling rx_rings run in
  2797. * separate NAPI contexts.
  2798. */
  2799. netif_napi_add(qdev->ndev, &rx_ring->napi, ql_napi_poll_msix,
  2800. 64);
  2801. cqicb->irq_delay = cpu_to_le16(qdev->rx_coalesce_usecs);
  2802. cqicb->pkt_delay = cpu_to_le16(qdev->rx_max_coalesced_frames);
  2803. break;
  2804. default:
  2805. QPRINTK(qdev, IFUP, DEBUG, "Invalid rx_ring->type = %d.\n",
  2806. rx_ring->type);
  2807. }
  2808. QPRINTK(qdev, IFUP, DEBUG, "Initializing rx work queue.\n");
  2809. err = ql_write_cfg(qdev, cqicb, sizeof(struct cqicb),
  2810. CFG_LCQ, rx_ring->cq_id);
  2811. if (err) {
  2812. QPRINTK(qdev, IFUP, ERR, "Failed to load CQICB.\n");
  2813. return err;
  2814. }
  2815. return err;
  2816. }
  2817. static int ql_start_tx_ring(struct ql_adapter *qdev, struct tx_ring *tx_ring)
  2818. {
  2819. struct wqicb *wqicb = (struct wqicb *)tx_ring;
  2820. void __iomem *doorbell_area =
  2821. qdev->doorbell_area + (DB_PAGE_SIZE * tx_ring->wq_id);
  2822. void *shadow_reg = qdev->tx_ring_shadow_reg_area +
  2823. (tx_ring->wq_id * sizeof(u64));
  2824. u64 shadow_reg_dma = qdev->tx_ring_shadow_reg_dma +
  2825. (tx_ring->wq_id * sizeof(u64));
  2826. int err = 0;
  2827. /*
  2828. * Assign doorbell registers for this tx_ring.
  2829. */
  2830. /* TX PCI doorbell mem area for tx producer index */
  2831. tx_ring->prod_idx_db_reg = (u32 __iomem *) doorbell_area;
  2832. tx_ring->prod_idx = 0;
  2833. /* TX PCI doorbell mem area + 0x04 */
  2834. tx_ring->valid_db_reg = doorbell_area + 0x04;
  2835. /*
  2836. * Assign shadow registers for this tx_ring.
  2837. */
  2838. tx_ring->cnsmr_idx_sh_reg = shadow_reg;
  2839. tx_ring->cnsmr_idx_sh_reg_dma = shadow_reg_dma;
  2840. wqicb->len = cpu_to_le16(tx_ring->wq_len | Q_LEN_V | Q_LEN_CPP_CONT);
  2841. wqicb->flags = cpu_to_le16(Q_FLAGS_LC |
  2842. Q_FLAGS_LB | Q_FLAGS_LI | Q_FLAGS_LO);
  2843. wqicb->cq_id_rss = cpu_to_le16(tx_ring->cq_id);
  2844. wqicb->rid = 0;
  2845. wqicb->addr = cpu_to_le64(tx_ring->wq_base_dma);
  2846. wqicb->cnsmr_idx_addr = cpu_to_le64(tx_ring->cnsmr_idx_sh_reg_dma);
  2847. ql_init_tx_ring(qdev, tx_ring);
  2848. err = ql_write_cfg(qdev, wqicb, sizeof(*wqicb), CFG_LRQ,
  2849. (u16) tx_ring->wq_id);
  2850. if (err) {
  2851. QPRINTK(qdev, IFUP, ERR, "Failed to load tx_ring.\n");
  2852. return err;
  2853. }
  2854. QPRINTK(qdev, IFUP, DEBUG, "Successfully loaded WQICB.\n");
  2855. return err;
  2856. }
  2857. static void ql_disable_msix(struct ql_adapter *qdev)
  2858. {
  2859. if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
  2860. pci_disable_msix(qdev->pdev);
  2861. clear_bit(QL_MSIX_ENABLED, &qdev->flags);
  2862. kfree(qdev->msi_x_entry);
  2863. qdev->msi_x_entry = NULL;
  2864. } else if (test_bit(QL_MSI_ENABLED, &qdev->flags)) {
  2865. pci_disable_msi(qdev->pdev);
  2866. clear_bit(QL_MSI_ENABLED, &qdev->flags);
  2867. }
  2868. }
  2869. /* We start by trying to get the number of vectors
  2870. * stored in qdev->intr_count. If we don't get that
  2871. * many then we reduce the count and try again.
  2872. */
  2873. static void ql_enable_msix(struct ql_adapter *qdev)
  2874. {
  2875. int i, err;
  2876. /* Get the MSIX vectors. */
  2877. if (qlge_irq_type == MSIX_IRQ) {
  2878. /* Try to alloc space for the msix struct,
  2879. * if it fails then go to MSI/legacy.
  2880. */
  2881. qdev->msi_x_entry = kcalloc(qdev->intr_count,
  2882. sizeof(struct msix_entry),
  2883. GFP_KERNEL);
  2884. if (!qdev->msi_x_entry) {
  2885. qlge_irq_type = MSI_IRQ;
  2886. goto msi;
  2887. }
  2888. for (i = 0; i < qdev->intr_count; i++)
  2889. qdev->msi_x_entry[i].entry = i;
  2890. /* Loop to get our vectors. We start with
  2891. * what we want and settle for what we get.
  2892. */
  2893. do {
  2894. err = pci_enable_msix(qdev->pdev,
  2895. qdev->msi_x_entry, qdev->intr_count);
  2896. if (err > 0)
  2897. qdev->intr_count = err;
  2898. } while (err > 0);
  2899. if (err < 0) {
  2900. kfree(qdev->msi_x_entry);
  2901. qdev->msi_x_entry = NULL;
  2902. QPRINTK(qdev, IFUP, WARNING,
  2903. "MSI-X Enable failed, trying MSI.\n");
  2904. qdev->intr_count = 1;
  2905. qlge_irq_type = MSI_IRQ;
  2906. } else if (err == 0) {
  2907. set_bit(QL_MSIX_ENABLED, &qdev->flags);
  2908. QPRINTK(qdev, IFUP, INFO,
  2909. "MSI-X Enabled, got %d vectors.\n",
  2910. qdev->intr_count);
  2911. return;
  2912. }
  2913. }
  2914. msi:
  2915. qdev->intr_count = 1;
  2916. if (qlge_irq_type == MSI_IRQ) {
  2917. if (!pci_enable_msi(qdev->pdev)) {
  2918. set_bit(QL_MSI_ENABLED, &qdev->flags);
  2919. QPRINTK(qdev, IFUP, INFO,
  2920. "Running with MSI interrupts.\n");
  2921. return;
  2922. }
  2923. }
  2924. qlge_irq_type = LEG_IRQ;
  2925. QPRINTK(qdev, IFUP, DEBUG, "Running with legacy interrupts.\n");
  2926. }
  2927. /* Each vector services 1 RSS ring and and 1 or more
  2928. * TX completion rings. This function loops through
  2929. * the TX completion rings and assigns the vector that
  2930. * will service it. An example would be if there are
  2931. * 2 vectors (so 2 RSS rings) and 8 TX completion rings.
  2932. * This would mean that vector 0 would service RSS ring 0
  2933. * and TX competion rings 0,1,2 and 3. Vector 1 would
  2934. * service RSS ring 1 and TX completion rings 4,5,6 and 7.
  2935. */
  2936. static void ql_set_tx_vect(struct ql_adapter *qdev)
  2937. {
  2938. int i, j, vect;
  2939. u32 tx_rings_per_vector = qdev->tx_ring_count / qdev->intr_count;
  2940. if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags))) {
  2941. /* Assign irq vectors to TX rx_rings.*/
  2942. for (vect = 0, j = 0, i = qdev->rss_ring_count;
  2943. i < qdev->rx_ring_count; i++) {
  2944. if (j == tx_rings_per_vector) {
  2945. vect++;
  2946. j = 0;
  2947. }
  2948. qdev->rx_ring[i].irq = vect;
  2949. j++;
  2950. }
  2951. } else {
  2952. /* For single vector all rings have an irq
  2953. * of zero.
  2954. */
  2955. for (i = 0; i < qdev->rx_ring_count; i++)
  2956. qdev->rx_ring[i].irq = 0;
  2957. }
  2958. }
  2959. /* Set the interrupt mask for this vector. Each vector
  2960. * will service 1 RSS ring and 1 or more TX completion
  2961. * rings. This function sets up a bit mask per vector
  2962. * that indicates which rings it services.
  2963. */
  2964. static void ql_set_irq_mask(struct ql_adapter *qdev, struct intr_context *ctx)
  2965. {
  2966. int j, vect = ctx->intr;
  2967. u32 tx_rings_per_vector = qdev->tx_ring_count / qdev->intr_count;
  2968. if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags))) {
  2969. /* Add the RSS ring serviced by this vector
  2970. * to the mask.
  2971. */
  2972. ctx->irq_mask = (1 << qdev->rx_ring[vect].cq_id);
  2973. /* Add the TX ring(s) serviced by this vector
  2974. * to the mask. */
  2975. for (j = 0; j < tx_rings_per_vector; j++) {
  2976. ctx->irq_mask |=
  2977. (1 << qdev->rx_ring[qdev->rss_ring_count +
  2978. (vect * tx_rings_per_vector) + j].cq_id);
  2979. }
  2980. } else {
  2981. /* For single vector we just shift each queue's
  2982. * ID into the mask.
  2983. */
  2984. for (j = 0; j < qdev->rx_ring_count; j++)
  2985. ctx->irq_mask |= (1 << qdev->rx_ring[j].cq_id);
  2986. }
  2987. }
  2988. /*
  2989. * Here we build the intr_context structures based on
  2990. * our rx_ring count and intr vector count.
  2991. * The intr_context structure is used to hook each vector
  2992. * to possibly different handlers.
  2993. */
  2994. static void ql_resolve_queues_to_irqs(struct ql_adapter *qdev)
  2995. {
  2996. int i = 0;
  2997. struct intr_context *intr_context = &qdev->intr_context[0];
  2998. if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags))) {
  2999. /* Each rx_ring has it's
  3000. * own intr_context since we have separate
  3001. * vectors for each queue.
  3002. */
  3003. for (i = 0; i < qdev->intr_count; i++, intr_context++) {
  3004. qdev->rx_ring[i].irq = i;
  3005. intr_context->intr = i;
  3006. intr_context->qdev = qdev;
  3007. /* Set up this vector's bit-mask that indicates
  3008. * which queues it services.
  3009. */
  3010. ql_set_irq_mask(qdev, intr_context);
  3011. /*
  3012. * We set up each vectors enable/disable/read bits so
  3013. * there's no bit/mask calculations in the critical path.
  3014. */
  3015. intr_context->intr_en_mask =
  3016. INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
  3017. INTR_EN_TYPE_ENABLE | INTR_EN_IHD_MASK | INTR_EN_IHD
  3018. | i;
  3019. intr_context->intr_dis_mask =
  3020. INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
  3021. INTR_EN_TYPE_DISABLE | INTR_EN_IHD_MASK |
  3022. INTR_EN_IHD | i;
  3023. intr_context->intr_read_mask =
  3024. INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
  3025. INTR_EN_TYPE_READ | INTR_EN_IHD_MASK | INTR_EN_IHD |
  3026. i;
  3027. if (i == 0) {
  3028. /* The first vector/queue handles
  3029. * broadcast/multicast, fatal errors,
  3030. * and firmware events. This in addition
  3031. * to normal inbound NAPI processing.
  3032. */
  3033. intr_context->handler = qlge_isr;
  3034. sprintf(intr_context->name, "%s-rx-%d",
  3035. qdev->ndev->name, i);
  3036. } else {
  3037. /*
  3038. * Inbound queues handle unicast frames only.
  3039. */
  3040. intr_context->handler = qlge_msix_rx_isr;
  3041. sprintf(intr_context->name, "%s-rx-%d",
  3042. qdev->ndev->name, i);
  3043. }
  3044. }
  3045. } else {
  3046. /*
  3047. * All rx_rings use the same intr_context since
  3048. * there is only one vector.
  3049. */
  3050. intr_context->intr = 0;
  3051. intr_context->qdev = qdev;
  3052. /*
  3053. * We set up each vectors enable/disable/read bits so
  3054. * there's no bit/mask calculations in the critical path.
  3055. */
  3056. intr_context->intr_en_mask =
  3057. INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK | INTR_EN_TYPE_ENABLE;
  3058. intr_context->intr_dis_mask =
  3059. INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
  3060. INTR_EN_TYPE_DISABLE;
  3061. intr_context->intr_read_mask =
  3062. INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK | INTR_EN_TYPE_READ;
  3063. /*
  3064. * Single interrupt means one handler for all rings.
  3065. */
  3066. intr_context->handler = qlge_isr;
  3067. sprintf(intr_context->name, "%s-single_irq", qdev->ndev->name);
  3068. /* Set up this vector's bit-mask that indicates
  3069. * which queues it services. In this case there is
  3070. * a single vector so it will service all RSS and
  3071. * TX completion rings.
  3072. */
  3073. ql_set_irq_mask(qdev, intr_context);
  3074. }
  3075. /* Tell the TX completion rings which MSIx vector
  3076. * they will be using.
  3077. */
  3078. ql_set_tx_vect(qdev);
  3079. }
  3080. static void ql_free_irq(struct ql_adapter *qdev)
  3081. {
  3082. int i;
  3083. struct intr_context *intr_context = &qdev->intr_context[0];
  3084. for (i = 0; i < qdev->intr_count; i++, intr_context++) {
  3085. if (intr_context->hooked) {
  3086. if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
  3087. free_irq(qdev->msi_x_entry[i].vector,
  3088. &qdev->rx_ring[i]);
  3089. QPRINTK(qdev, IFDOWN, DEBUG,
  3090. "freeing msix interrupt %d.\n", i);
  3091. } else {
  3092. free_irq(qdev->pdev->irq, &qdev->rx_ring[0]);
  3093. QPRINTK(qdev, IFDOWN, DEBUG,
  3094. "freeing msi interrupt %d.\n", i);
  3095. }
  3096. }
  3097. }
  3098. ql_disable_msix(qdev);
  3099. }
  3100. static int ql_request_irq(struct ql_adapter *qdev)
  3101. {
  3102. int i;
  3103. int status = 0;
  3104. struct pci_dev *pdev = qdev->pdev;
  3105. struct intr_context *intr_context = &qdev->intr_context[0];
  3106. ql_resolve_queues_to_irqs(qdev);
  3107. for (i = 0; i < qdev->intr_count; i++, intr_context++) {
  3108. atomic_set(&intr_context->irq_cnt, 0);
  3109. if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
  3110. status = request_irq(qdev->msi_x_entry[i].vector,
  3111. intr_context->handler,
  3112. 0,
  3113. intr_context->name,
  3114. &qdev->rx_ring[i]);
  3115. if (status) {
  3116. QPRINTK(qdev, IFUP, ERR,
  3117. "Failed request for MSIX interrupt %d.\n",
  3118. i);
  3119. goto err_irq;
  3120. } else {
  3121. QPRINTK(qdev, IFUP, DEBUG,
  3122. "Hooked intr %d, queue type %s%s%s, with name %s.\n",
  3123. i,
  3124. qdev->rx_ring[i].type ==
  3125. DEFAULT_Q ? "DEFAULT_Q" : "",
  3126. qdev->rx_ring[i].type ==
  3127. TX_Q ? "TX_Q" : "",
  3128. qdev->rx_ring[i].type ==
  3129. RX_Q ? "RX_Q" : "", intr_context->name);
  3130. }
  3131. } else {
  3132. QPRINTK(qdev, IFUP, DEBUG,
  3133. "trying msi or legacy interrupts.\n");
  3134. QPRINTK(qdev, IFUP, DEBUG,
  3135. "%s: irq = %d.\n", __func__, pdev->irq);
  3136. QPRINTK(qdev, IFUP, DEBUG,
  3137. "%s: context->name = %s.\n", __func__,
  3138. intr_context->name);
  3139. QPRINTK(qdev, IFUP, DEBUG,
  3140. "%s: dev_id = 0x%p.\n", __func__,
  3141. &qdev->rx_ring[0]);
  3142. status =
  3143. request_irq(pdev->irq, qlge_isr,
  3144. test_bit(QL_MSI_ENABLED,
  3145. &qdev->
  3146. flags) ? 0 : IRQF_SHARED,
  3147. intr_context->name, &qdev->rx_ring[0]);
  3148. if (status)
  3149. goto err_irq;
  3150. QPRINTK(qdev, IFUP, ERR,
  3151. "Hooked intr %d, queue type %s%s%s, with name %s.\n",
  3152. i,
  3153. qdev->rx_ring[0].type ==
  3154. DEFAULT_Q ? "DEFAULT_Q" : "",
  3155. qdev->rx_ring[0].type == TX_Q ? "TX_Q" : "",
  3156. qdev->rx_ring[0].type == RX_Q ? "RX_Q" : "",
  3157. intr_context->name);
  3158. }
  3159. intr_context->hooked = 1;
  3160. }
  3161. return status;
  3162. err_irq:
  3163. QPRINTK(qdev, IFUP, ERR, "Failed to get the interrupts!!!/n");
  3164. ql_free_irq(qdev);
  3165. return status;
  3166. }
  3167. static int ql_start_rss(struct ql_adapter *qdev)
  3168. {
  3169. u8 init_hash_seed[] = {0x6d, 0x5a, 0x56, 0xda, 0x25, 0x5b, 0x0e, 0xc2,
  3170. 0x41, 0x67, 0x25, 0x3d, 0x43, 0xa3, 0x8f,
  3171. 0xb0, 0xd0, 0xca, 0x2b, 0xcb, 0xae, 0x7b,
  3172. 0x30, 0xb4, 0x77, 0xcb, 0x2d, 0xa3, 0x80,
  3173. 0x30, 0xf2, 0x0c, 0x6a, 0x42, 0xb7, 0x3b,
  3174. 0xbe, 0xac, 0x01, 0xfa};
  3175. struct ricb *ricb = &qdev->ricb;
  3176. int status = 0;
  3177. int i;
  3178. u8 *hash_id = (u8 *) ricb->hash_cq_id;
  3179. memset((void *)ricb, 0, sizeof(*ricb));
  3180. ricb->base_cq = RSS_L4K;
  3181. ricb->flags =
  3182. (RSS_L6K | RSS_LI | RSS_LB | RSS_LM | RSS_RT4 | RSS_RT6);
  3183. ricb->mask = cpu_to_le16((u16)(0x3ff));
  3184. /*
  3185. * Fill out the Indirection Table.
  3186. */
  3187. for (i = 0; i < 1024; i++)
  3188. hash_id[i] = (i & (qdev->rss_ring_count - 1));
  3189. memcpy((void *)&ricb->ipv6_hash_key[0], init_hash_seed, 40);
  3190. memcpy((void *)&ricb->ipv4_hash_key[0], init_hash_seed, 16);
  3191. QPRINTK(qdev, IFUP, DEBUG, "Initializing RSS.\n");
  3192. status = ql_write_cfg(qdev, ricb, sizeof(*ricb), CFG_LR, 0);
  3193. if (status) {
  3194. QPRINTK(qdev, IFUP, ERR, "Failed to load RICB.\n");
  3195. return status;
  3196. }
  3197. QPRINTK(qdev, IFUP, DEBUG, "Successfully loaded RICB.\n");
  3198. return status;
  3199. }
  3200. static int ql_clear_routing_entries(struct ql_adapter *qdev)
  3201. {
  3202. int i, status = 0;
  3203. status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK);
  3204. if (status)
  3205. return status;
  3206. /* Clear all the entries in the routing table. */
  3207. for (i = 0; i < 16; i++) {
  3208. status = ql_set_routing_reg(qdev, i, 0, 0);
  3209. if (status) {
  3210. QPRINTK(qdev, IFUP, ERR,
  3211. "Failed to init routing register for CAM "
  3212. "packets.\n");
  3213. break;
  3214. }
  3215. }
  3216. ql_sem_unlock(qdev, SEM_RT_IDX_MASK);
  3217. return status;
  3218. }
  3219. /* Initialize the frame-to-queue routing. */
  3220. static int ql_route_initialize(struct ql_adapter *qdev)
  3221. {
  3222. int status = 0;
  3223. /* Clear all the entries in the routing table. */
  3224. status = ql_clear_routing_entries(qdev);
  3225. if (status)
  3226. return status;
  3227. status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK);
  3228. if (status)
  3229. return status;
  3230. status = ql_set_routing_reg(qdev, RT_IDX_ALL_ERR_SLOT, RT_IDX_ERR, 1);
  3231. if (status) {
  3232. QPRINTK(qdev, IFUP, ERR,
  3233. "Failed to init routing register for error packets.\n");
  3234. goto exit;
  3235. }
  3236. status = ql_set_routing_reg(qdev, RT_IDX_BCAST_SLOT, RT_IDX_BCAST, 1);
  3237. if (status) {
  3238. QPRINTK(qdev, IFUP, ERR,
  3239. "Failed to init routing register for broadcast packets.\n");
  3240. goto exit;
  3241. }
  3242. /* If we have more than one inbound queue, then turn on RSS in the
  3243. * routing block.
  3244. */
  3245. if (qdev->rss_ring_count > 1) {
  3246. status = ql_set_routing_reg(qdev, RT_IDX_RSS_MATCH_SLOT,
  3247. RT_IDX_RSS_MATCH, 1);
  3248. if (status) {
  3249. QPRINTK(qdev, IFUP, ERR,
  3250. "Failed to init routing register for MATCH RSS packets.\n");
  3251. goto exit;
  3252. }
  3253. }
  3254. status = ql_set_routing_reg(qdev, RT_IDX_CAM_HIT_SLOT,
  3255. RT_IDX_CAM_HIT, 1);
  3256. if (status)
  3257. QPRINTK(qdev, IFUP, ERR,
  3258. "Failed to init routing register for CAM packets.\n");
  3259. exit:
  3260. ql_sem_unlock(qdev, SEM_RT_IDX_MASK);
  3261. return status;
  3262. }
  3263. int ql_cam_route_initialize(struct ql_adapter *qdev)
  3264. {
  3265. int status, set;
  3266. /* If check if the link is up and use to
  3267. * determine if we are setting or clearing
  3268. * the MAC address in the CAM.
  3269. */
  3270. set = ql_read32(qdev, STS);
  3271. set &= qdev->port_link_up;
  3272. status = ql_set_mac_addr(qdev, set);
  3273. if (status) {
  3274. QPRINTK(qdev, IFUP, ERR, "Failed to init mac address.\n");
  3275. return status;
  3276. }
  3277. status = ql_route_initialize(qdev);
  3278. if (status)
  3279. QPRINTK(qdev, IFUP, ERR, "Failed to init routing table.\n");
  3280. return status;
  3281. }
  3282. static int ql_adapter_initialize(struct ql_adapter *qdev)
  3283. {
  3284. u32 value, mask;
  3285. int i;
  3286. int status = 0;
  3287. /*
  3288. * Set up the System register to halt on errors.
  3289. */
  3290. value = SYS_EFE | SYS_FAE;
  3291. mask = value << 16;
  3292. ql_write32(qdev, SYS, mask | value);
  3293. /* Set the default queue, and VLAN behavior. */
  3294. value = NIC_RCV_CFG_DFQ | NIC_RCV_CFG_RV;
  3295. mask = NIC_RCV_CFG_DFQ_MASK | (NIC_RCV_CFG_RV << 16);
  3296. ql_write32(qdev, NIC_RCV_CFG, (mask | value));
  3297. /* Set the MPI interrupt to enabled. */
  3298. ql_write32(qdev, INTR_MASK, (INTR_MASK_PI << 16) | INTR_MASK_PI);
  3299. /* Enable the function, set pagesize, enable error checking. */
  3300. value = FSC_FE | FSC_EPC_INBOUND | FSC_EPC_OUTBOUND |
  3301. FSC_EC | FSC_VM_PAGE_4K;
  3302. value |= SPLT_SETTING;
  3303. /* Set/clear header splitting. */
  3304. mask = FSC_VM_PAGESIZE_MASK |
  3305. FSC_DBL_MASK | FSC_DBRST_MASK | (value << 16);
  3306. ql_write32(qdev, FSC, mask | value);
  3307. ql_write32(qdev, SPLT_HDR, SPLT_LEN);
  3308. /* Set RX packet routing to use port/pci function on which the
  3309. * packet arrived on in addition to usual frame routing.
  3310. * This is helpful on bonding where both interfaces can have
  3311. * the same MAC address.
  3312. */
  3313. ql_write32(qdev, RST_FO, RST_FO_RR_MASK | RST_FO_RR_RCV_FUNC_CQ);
  3314. /* Reroute all packets to our Interface.
  3315. * They may have been routed to MPI firmware
  3316. * due to WOL.
  3317. */
  3318. value = ql_read32(qdev, MGMT_RCV_CFG);
  3319. value &= ~MGMT_RCV_CFG_RM;
  3320. mask = 0xffff0000;
  3321. /* Sticky reg needs clearing due to WOL. */
  3322. ql_write32(qdev, MGMT_RCV_CFG, mask);
  3323. ql_write32(qdev, MGMT_RCV_CFG, mask | value);
  3324. /* Default WOL is enable on Mezz cards */
  3325. if (qdev->pdev->subsystem_device == 0x0068 ||
  3326. qdev->pdev->subsystem_device == 0x0180)
  3327. qdev->wol = WAKE_MAGIC;
  3328. /* Start up the rx queues. */
  3329. for (i = 0; i < qdev->rx_ring_count; i++) {
  3330. status = ql_start_rx_ring(qdev, &qdev->rx_ring[i]);
  3331. if (status) {
  3332. QPRINTK(qdev, IFUP, ERR,
  3333. "Failed to start rx ring[%d].\n", i);
  3334. return status;
  3335. }
  3336. }
  3337. /* If there is more than one inbound completion queue
  3338. * then download a RICB to configure RSS.
  3339. */
  3340. if (qdev->rss_ring_count > 1) {
  3341. status = ql_start_rss(qdev);
  3342. if (status) {
  3343. QPRINTK(qdev, IFUP, ERR, "Failed to start RSS.\n");
  3344. return status;
  3345. }
  3346. }
  3347. /* Start up the tx queues. */
  3348. for (i = 0; i < qdev->tx_ring_count; i++) {
  3349. status = ql_start_tx_ring(qdev, &qdev->tx_ring[i]);
  3350. if (status) {
  3351. QPRINTK(qdev, IFUP, ERR,
  3352. "Failed to start tx ring[%d].\n", i);
  3353. return status;
  3354. }
  3355. }
  3356. /* Initialize the port and set the max framesize. */
  3357. status = qdev->nic_ops->port_initialize(qdev);
  3358. if (status)
  3359. QPRINTK(qdev, IFUP, ERR, "Failed to start port.\n");
  3360. /* Set up the MAC address and frame routing filter. */
  3361. status = ql_cam_route_initialize(qdev);
  3362. if (status) {
  3363. QPRINTK(qdev, IFUP, ERR,
  3364. "Failed to init CAM/Routing tables.\n");
  3365. return status;
  3366. }
  3367. /* Start NAPI for the RSS queues. */
  3368. for (i = 0; i < qdev->rss_ring_count; i++) {
  3369. QPRINTK(qdev, IFUP, DEBUG, "Enabling NAPI for rx_ring[%d].\n",
  3370. i);
  3371. napi_enable(&qdev->rx_ring[i].napi);
  3372. }
  3373. return status;
  3374. }
  3375. /* Issue soft reset to chip. */
  3376. static int ql_adapter_reset(struct ql_adapter *qdev)
  3377. {
  3378. u32 value;
  3379. int status = 0;
  3380. unsigned long end_jiffies;
  3381. /* Clear all the entries in the routing table. */
  3382. status = ql_clear_routing_entries(qdev);
  3383. if (status) {
  3384. QPRINTK(qdev, IFUP, ERR, "Failed to clear routing bits.\n");
  3385. return status;
  3386. }
  3387. end_jiffies = jiffies +
  3388. max((unsigned long)1, usecs_to_jiffies(30));
  3389. /* Stop management traffic. */
  3390. ql_mb_set_mgmnt_traffic_ctl(qdev, MB_SET_MPI_TFK_STOP);
  3391. /* Wait for the NIC and MGMNT FIFOs to empty. */
  3392. ql_wait_fifo_empty(qdev);
  3393. ql_write32(qdev, RST_FO, (RST_FO_FR << 16) | RST_FO_FR);
  3394. do {
  3395. value = ql_read32(qdev, RST_FO);
  3396. if ((value & RST_FO_FR) == 0)
  3397. break;
  3398. cpu_relax();
  3399. } while (time_before(jiffies, end_jiffies));
  3400. if (value & RST_FO_FR) {
  3401. QPRINTK(qdev, IFDOWN, ERR,
  3402. "ETIMEDOUT!!! errored out of resetting the chip!\n");
  3403. status = -ETIMEDOUT;
  3404. }
  3405. /* Resume management traffic. */
  3406. ql_mb_set_mgmnt_traffic_ctl(qdev, MB_SET_MPI_TFK_RESUME);
  3407. return status;
  3408. }
  3409. static void ql_display_dev_info(struct net_device *ndev)
  3410. {
  3411. struct ql_adapter *qdev = (struct ql_adapter *)netdev_priv(ndev);
  3412. QPRINTK(qdev, PROBE, INFO,
  3413. "Function #%d, Port %d, NIC Roll %d, NIC Rev = %d, "
  3414. "XG Roll = %d, XG Rev = %d.\n",
  3415. qdev->func,
  3416. qdev->port,
  3417. qdev->chip_rev_id & 0x0000000f,
  3418. qdev->chip_rev_id >> 4 & 0x0000000f,
  3419. qdev->chip_rev_id >> 8 & 0x0000000f,
  3420. qdev->chip_rev_id >> 12 & 0x0000000f);
  3421. QPRINTK(qdev, PROBE, INFO, "MAC address %pM\n", ndev->dev_addr);
  3422. }
  3423. int ql_wol(struct ql_adapter *qdev)
  3424. {
  3425. int status = 0;
  3426. u32 wol = MB_WOL_DISABLE;
  3427. /* The CAM is still intact after a reset, but if we
  3428. * are doing WOL, then we may need to program the
  3429. * routing regs. We would also need to issue the mailbox
  3430. * commands to instruct the MPI what to do per the ethtool
  3431. * settings.
  3432. */
  3433. if (qdev->wol & (WAKE_ARP | WAKE_MAGICSECURE | WAKE_PHY | WAKE_UCAST |
  3434. WAKE_MCAST | WAKE_BCAST)) {
  3435. QPRINTK(qdev, IFDOWN, ERR,
  3436. "Unsupported WOL paramter. qdev->wol = 0x%x.\n",
  3437. qdev->wol);
  3438. return -EINVAL;
  3439. }
  3440. if (qdev->wol & WAKE_MAGIC) {
  3441. status = ql_mb_wol_set_magic(qdev, 1);
  3442. if (status) {
  3443. QPRINTK(qdev, IFDOWN, ERR,
  3444. "Failed to set magic packet on %s.\n",
  3445. qdev->ndev->name);
  3446. return status;
  3447. } else
  3448. QPRINTK(qdev, DRV, INFO,
  3449. "Enabled magic packet successfully on %s.\n",
  3450. qdev->ndev->name);
  3451. wol |= MB_WOL_MAGIC_PKT;
  3452. }
  3453. if (qdev->wol) {
  3454. wol |= MB_WOL_MODE_ON;
  3455. status = ql_mb_wol_mode(qdev, wol);
  3456. QPRINTK(qdev, DRV, ERR, "WOL %s (wol code 0x%x) on %s\n",
  3457. (status == 0) ? "Sucessfully set" : "Failed", wol,
  3458. qdev->ndev->name);
  3459. }
  3460. return status;
  3461. }
  3462. static int ql_adapter_down(struct ql_adapter *qdev)
  3463. {
  3464. int i, status = 0;
  3465. ql_link_off(qdev);
  3466. /* Don't kill the reset worker thread if we
  3467. * are in the process of recovery.
  3468. */
  3469. if (test_bit(QL_ADAPTER_UP, &qdev->flags))
  3470. cancel_delayed_work_sync(&qdev->asic_reset_work);
  3471. cancel_delayed_work_sync(&qdev->mpi_reset_work);
  3472. cancel_delayed_work_sync(&qdev->mpi_work);
  3473. cancel_delayed_work_sync(&qdev->mpi_idc_work);
  3474. cancel_delayed_work_sync(&qdev->mpi_core_to_log);
  3475. cancel_delayed_work_sync(&qdev->mpi_port_cfg_work);
  3476. for (i = 0; i < qdev->rss_ring_count; i++)
  3477. napi_disable(&qdev->rx_ring[i].napi);
  3478. clear_bit(QL_ADAPTER_UP, &qdev->flags);
  3479. ql_disable_interrupts(qdev);
  3480. ql_tx_ring_clean(qdev);
  3481. /* Call netif_napi_del() from common point.
  3482. */
  3483. for (i = 0; i < qdev->rss_ring_count; i++)
  3484. netif_napi_del(&qdev->rx_ring[i].napi);
  3485. ql_free_rx_buffers(qdev);
  3486. status = ql_adapter_reset(qdev);
  3487. if (status)
  3488. QPRINTK(qdev, IFDOWN, ERR, "reset(func #%d) FAILED!\n",
  3489. qdev->func);
  3490. return status;
  3491. }
  3492. static int ql_adapter_up(struct ql_adapter *qdev)
  3493. {
  3494. int err = 0;
  3495. err = ql_adapter_initialize(qdev);
  3496. if (err) {
  3497. QPRINTK(qdev, IFUP, INFO, "Unable to initialize adapter.\n");
  3498. goto err_init;
  3499. }
  3500. set_bit(QL_ADAPTER_UP, &qdev->flags);
  3501. ql_alloc_rx_buffers(qdev);
  3502. /* If the port is initialized and the
  3503. * link is up the turn on the carrier.
  3504. */
  3505. if ((ql_read32(qdev, STS) & qdev->port_init) &&
  3506. (ql_read32(qdev, STS) & qdev->port_link_up))
  3507. ql_link_on(qdev);
  3508. ql_enable_interrupts(qdev);
  3509. ql_enable_all_completion_interrupts(qdev);
  3510. netif_tx_start_all_queues(qdev->ndev);
  3511. return 0;
  3512. err_init:
  3513. ql_adapter_reset(qdev);
  3514. return err;
  3515. }
  3516. static void ql_release_adapter_resources(struct ql_adapter *qdev)
  3517. {
  3518. ql_free_mem_resources(qdev);
  3519. ql_free_irq(qdev);
  3520. }
  3521. static int ql_get_adapter_resources(struct ql_adapter *qdev)
  3522. {
  3523. int status = 0;
  3524. if (ql_alloc_mem_resources(qdev)) {
  3525. QPRINTK(qdev, IFUP, ERR, "Unable to allocate memory.\n");
  3526. return -ENOMEM;
  3527. }
  3528. status = ql_request_irq(qdev);
  3529. return status;
  3530. }
  3531. static int qlge_close(struct net_device *ndev)
  3532. {
  3533. struct ql_adapter *qdev = netdev_priv(ndev);
  3534. /*
  3535. * Wait for device to recover from a reset.
  3536. * (Rarely happens, but possible.)
  3537. */
  3538. while (!test_bit(QL_ADAPTER_UP, &qdev->flags))
  3539. msleep(1);
  3540. ql_adapter_down(qdev);
  3541. ql_release_adapter_resources(qdev);
  3542. return 0;
  3543. }
  3544. static int ql_configure_rings(struct ql_adapter *qdev)
  3545. {
  3546. int i;
  3547. struct rx_ring *rx_ring;
  3548. struct tx_ring *tx_ring;
  3549. int cpu_cnt = min(MAX_CPUS, (int)num_online_cpus());
  3550. unsigned int lbq_buf_len = (qdev->ndev->mtu > 1500) ?
  3551. LARGE_BUFFER_MAX_SIZE : LARGE_BUFFER_MIN_SIZE;
  3552. qdev->lbq_buf_order = get_order(lbq_buf_len);
  3553. /* In a perfect world we have one RSS ring for each CPU
  3554. * and each has it's own vector. To do that we ask for
  3555. * cpu_cnt vectors. ql_enable_msix() will adjust the
  3556. * vector count to what we actually get. We then
  3557. * allocate an RSS ring for each.
  3558. * Essentially, we are doing min(cpu_count, msix_vector_count).
  3559. */
  3560. qdev->intr_count = cpu_cnt;
  3561. ql_enable_msix(qdev);
  3562. /* Adjust the RSS ring count to the actual vector count. */
  3563. qdev->rss_ring_count = qdev->intr_count;
  3564. qdev->tx_ring_count = cpu_cnt;
  3565. qdev->rx_ring_count = qdev->tx_ring_count + qdev->rss_ring_count;
  3566. for (i = 0; i < qdev->tx_ring_count; i++) {
  3567. tx_ring = &qdev->tx_ring[i];
  3568. memset((void *)tx_ring, 0, sizeof(*tx_ring));
  3569. tx_ring->qdev = qdev;
  3570. tx_ring->wq_id = i;
  3571. tx_ring->wq_len = qdev->tx_ring_size;
  3572. tx_ring->wq_size =
  3573. tx_ring->wq_len * sizeof(struct ob_mac_iocb_req);
  3574. /*
  3575. * The completion queue ID for the tx rings start
  3576. * immediately after the rss rings.
  3577. */
  3578. tx_ring->cq_id = qdev->rss_ring_count + i;
  3579. }
  3580. for (i = 0; i < qdev->rx_ring_count; i++) {
  3581. rx_ring = &qdev->rx_ring[i];
  3582. memset((void *)rx_ring, 0, sizeof(*rx_ring));
  3583. rx_ring->qdev = qdev;
  3584. rx_ring->cq_id = i;
  3585. rx_ring->cpu = i % cpu_cnt; /* CPU to run handler on. */
  3586. if (i < qdev->rss_ring_count) {
  3587. /*
  3588. * Inbound (RSS) queues.
  3589. */
  3590. rx_ring->cq_len = qdev->rx_ring_size;
  3591. rx_ring->cq_size =
  3592. rx_ring->cq_len * sizeof(struct ql_net_rsp_iocb);
  3593. rx_ring->lbq_len = NUM_LARGE_BUFFERS;
  3594. rx_ring->lbq_size =
  3595. rx_ring->lbq_len * sizeof(__le64);
  3596. rx_ring->lbq_buf_size = (u16)lbq_buf_len;
  3597. QPRINTK(qdev, IFUP, DEBUG,
  3598. "lbq_buf_size %d, order = %d\n",
  3599. rx_ring->lbq_buf_size, qdev->lbq_buf_order);
  3600. rx_ring->sbq_len = NUM_SMALL_BUFFERS;
  3601. rx_ring->sbq_size =
  3602. rx_ring->sbq_len * sizeof(__le64);
  3603. rx_ring->sbq_buf_size = SMALL_BUF_MAP_SIZE;
  3604. rx_ring->type = RX_Q;
  3605. } else {
  3606. /*
  3607. * Outbound queue handles outbound completions only.
  3608. */
  3609. /* outbound cq is same size as tx_ring it services. */
  3610. rx_ring->cq_len = qdev->tx_ring_size;
  3611. rx_ring->cq_size =
  3612. rx_ring->cq_len * sizeof(struct ql_net_rsp_iocb);
  3613. rx_ring->lbq_len = 0;
  3614. rx_ring->lbq_size = 0;
  3615. rx_ring->lbq_buf_size = 0;
  3616. rx_ring->sbq_len = 0;
  3617. rx_ring->sbq_size = 0;
  3618. rx_ring->sbq_buf_size = 0;
  3619. rx_ring->type = TX_Q;
  3620. }
  3621. }
  3622. return 0;
  3623. }
  3624. static int qlge_open(struct net_device *ndev)
  3625. {
  3626. int err = 0;
  3627. struct ql_adapter *qdev = netdev_priv(ndev);
  3628. err = ql_adapter_reset(qdev);
  3629. if (err)
  3630. return err;
  3631. err = ql_configure_rings(qdev);
  3632. if (err)
  3633. return err;
  3634. err = ql_get_adapter_resources(qdev);
  3635. if (err)
  3636. goto error_up;
  3637. err = ql_adapter_up(qdev);
  3638. if (err)
  3639. goto error_up;
  3640. return err;
  3641. error_up:
  3642. ql_release_adapter_resources(qdev);
  3643. return err;
  3644. }
  3645. static int ql_change_rx_buffers(struct ql_adapter *qdev)
  3646. {
  3647. struct rx_ring *rx_ring;
  3648. int i, status;
  3649. u32 lbq_buf_len;
  3650. /* Wait for an oustanding reset to complete. */
  3651. if (!test_bit(QL_ADAPTER_UP, &qdev->flags)) {
  3652. int i = 3;
  3653. while (i-- && !test_bit(QL_ADAPTER_UP, &qdev->flags)) {
  3654. QPRINTK(qdev, IFUP, ERR,
  3655. "Waiting for adapter UP...\n");
  3656. ssleep(1);
  3657. }
  3658. if (!i) {
  3659. QPRINTK(qdev, IFUP, ERR,
  3660. "Timed out waiting for adapter UP\n");
  3661. return -ETIMEDOUT;
  3662. }
  3663. }
  3664. status = ql_adapter_down(qdev);
  3665. if (status)
  3666. goto error;
  3667. /* Get the new rx buffer size. */
  3668. lbq_buf_len = (qdev->ndev->mtu > 1500) ?
  3669. LARGE_BUFFER_MAX_SIZE : LARGE_BUFFER_MIN_SIZE;
  3670. qdev->lbq_buf_order = get_order(lbq_buf_len);
  3671. for (i = 0; i < qdev->rss_ring_count; i++) {
  3672. rx_ring = &qdev->rx_ring[i];
  3673. /* Set the new size. */
  3674. rx_ring->lbq_buf_size = lbq_buf_len;
  3675. }
  3676. status = ql_adapter_up(qdev);
  3677. if (status)
  3678. goto error;
  3679. return status;
  3680. error:
  3681. QPRINTK(qdev, IFUP, ALERT,
  3682. "Driver up/down cycle failed, closing device.\n");
  3683. set_bit(QL_ADAPTER_UP, &qdev->flags);
  3684. dev_close(qdev->ndev);
  3685. return status;
  3686. }
  3687. static int qlge_change_mtu(struct net_device *ndev, int new_mtu)
  3688. {
  3689. struct ql_adapter *qdev = netdev_priv(ndev);
  3690. int status;
  3691. if (ndev->mtu == 1500 && new_mtu == 9000) {
  3692. QPRINTK(qdev, IFUP, ERR, "Changing to jumbo MTU.\n");
  3693. } else if (ndev->mtu == 9000 && new_mtu == 1500) {
  3694. QPRINTK(qdev, IFUP, ERR, "Changing to normal MTU.\n");
  3695. } else if ((ndev->mtu == 1500 && new_mtu == 1500) ||
  3696. (ndev->mtu == 9000 && new_mtu == 9000)) {
  3697. return 0;
  3698. } else
  3699. return -EINVAL;
  3700. queue_delayed_work(qdev->workqueue,
  3701. &qdev->mpi_port_cfg_work, 3*HZ);
  3702. if (!netif_running(qdev->ndev)) {
  3703. ndev->mtu = new_mtu;
  3704. return 0;
  3705. }
  3706. ndev->mtu = new_mtu;
  3707. status = ql_change_rx_buffers(qdev);
  3708. if (status) {
  3709. QPRINTK(qdev, IFUP, ERR,
  3710. "Changing MTU failed.\n");
  3711. }
  3712. return status;
  3713. }
  3714. static struct net_device_stats *qlge_get_stats(struct net_device
  3715. *ndev)
  3716. {
  3717. struct ql_adapter *qdev = netdev_priv(ndev);
  3718. struct rx_ring *rx_ring = &qdev->rx_ring[0];
  3719. struct tx_ring *tx_ring = &qdev->tx_ring[0];
  3720. unsigned long pkts, mcast, dropped, errors, bytes;
  3721. int i;
  3722. /* Get RX stats. */
  3723. pkts = mcast = dropped = errors = bytes = 0;
  3724. for (i = 0; i < qdev->rss_ring_count; i++, rx_ring++) {
  3725. pkts += rx_ring->rx_packets;
  3726. bytes += rx_ring->rx_bytes;
  3727. dropped += rx_ring->rx_dropped;
  3728. errors += rx_ring->rx_errors;
  3729. mcast += rx_ring->rx_multicast;
  3730. }
  3731. ndev->stats.rx_packets = pkts;
  3732. ndev->stats.rx_bytes = bytes;
  3733. ndev->stats.rx_dropped = dropped;
  3734. ndev->stats.rx_errors = errors;
  3735. ndev->stats.multicast = mcast;
  3736. /* Get TX stats. */
  3737. pkts = errors = bytes = 0;
  3738. for (i = 0; i < qdev->tx_ring_count; i++, tx_ring++) {
  3739. pkts += tx_ring->tx_packets;
  3740. bytes += tx_ring->tx_bytes;
  3741. errors += tx_ring->tx_errors;
  3742. }
  3743. ndev->stats.tx_packets = pkts;
  3744. ndev->stats.tx_bytes = bytes;
  3745. ndev->stats.tx_errors = errors;
  3746. return &ndev->stats;
  3747. }
  3748. static void qlge_set_multicast_list(struct net_device *ndev)
  3749. {
  3750. struct ql_adapter *qdev = (struct ql_adapter *)netdev_priv(ndev);
  3751. struct dev_mc_list *mc_ptr;
  3752. int i, status;
  3753. status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK);
  3754. if (status)
  3755. return;
  3756. /*
  3757. * Set or clear promiscuous mode if a
  3758. * transition is taking place.
  3759. */
  3760. if (ndev->flags & IFF_PROMISC) {
  3761. if (!test_bit(QL_PROMISCUOUS, &qdev->flags)) {
  3762. if (ql_set_routing_reg
  3763. (qdev, RT_IDX_PROMISCUOUS_SLOT, RT_IDX_VALID, 1)) {
  3764. QPRINTK(qdev, HW, ERR,
  3765. "Failed to set promiscous mode.\n");
  3766. } else {
  3767. set_bit(QL_PROMISCUOUS, &qdev->flags);
  3768. }
  3769. }
  3770. } else {
  3771. if (test_bit(QL_PROMISCUOUS, &qdev->flags)) {
  3772. if (ql_set_routing_reg
  3773. (qdev, RT_IDX_PROMISCUOUS_SLOT, RT_IDX_VALID, 0)) {
  3774. QPRINTK(qdev, HW, ERR,
  3775. "Failed to clear promiscous mode.\n");
  3776. } else {
  3777. clear_bit(QL_PROMISCUOUS, &qdev->flags);
  3778. }
  3779. }
  3780. }
  3781. /*
  3782. * Set or clear all multicast mode if a
  3783. * transition is taking place.
  3784. */
  3785. if ((ndev->flags & IFF_ALLMULTI) ||
  3786. (ndev->mc_count > MAX_MULTICAST_ENTRIES)) {
  3787. if (!test_bit(QL_ALLMULTI, &qdev->flags)) {
  3788. if (ql_set_routing_reg
  3789. (qdev, RT_IDX_ALLMULTI_SLOT, RT_IDX_MCAST, 1)) {
  3790. QPRINTK(qdev, HW, ERR,
  3791. "Failed to set all-multi mode.\n");
  3792. } else {
  3793. set_bit(QL_ALLMULTI, &qdev->flags);
  3794. }
  3795. }
  3796. } else {
  3797. if (test_bit(QL_ALLMULTI, &qdev->flags)) {
  3798. if (ql_set_routing_reg
  3799. (qdev, RT_IDX_ALLMULTI_SLOT, RT_IDX_MCAST, 0)) {
  3800. QPRINTK(qdev, HW, ERR,
  3801. "Failed to clear all-multi mode.\n");
  3802. } else {
  3803. clear_bit(QL_ALLMULTI, &qdev->flags);
  3804. }
  3805. }
  3806. }
  3807. if (ndev->mc_count) {
  3808. status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
  3809. if (status)
  3810. goto exit;
  3811. for (i = 0, mc_ptr = ndev->mc_list; mc_ptr;
  3812. i++, mc_ptr = mc_ptr->next)
  3813. if (ql_set_mac_addr_reg(qdev, (u8 *) mc_ptr->dmi_addr,
  3814. MAC_ADDR_TYPE_MULTI_MAC, i)) {
  3815. QPRINTK(qdev, HW, ERR,
  3816. "Failed to loadmulticast address.\n");
  3817. ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
  3818. goto exit;
  3819. }
  3820. ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
  3821. if (ql_set_routing_reg
  3822. (qdev, RT_IDX_MCAST_MATCH_SLOT, RT_IDX_MCAST_MATCH, 1)) {
  3823. QPRINTK(qdev, HW, ERR,
  3824. "Failed to set multicast match mode.\n");
  3825. } else {
  3826. set_bit(QL_ALLMULTI, &qdev->flags);
  3827. }
  3828. }
  3829. exit:
  3830. ql_sem_unlock(qdev, SEM_RT_IDX_MASK);
  3831. }
  3832. static int qlge_set_mac_address(struct net_device *ndev, void *p)
  3833. {
  3834. struct ql_adapter *qdev = (struct ql_adapter *)netdev_priv(ndev);
  3835. struct sockaddr *addr = p;
  3836. int status;
  3837. if (!is_valid_ether_addr(addr->sa_data))
  3838. return -EADDRNOTAVAIL;
  3839. memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len);
  3840. status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
  3841. if (status)
  3842. return status;
  3843. status = ql_set_mac_addr_reg(qdev, (u8 *) ndev->dev_addr,
  3844. MAC_ADDR_TYPE_CAM_MAC, qdev->func * MAX_CQ);
  3845. if (status)
  3846. QPRINTK(qdev, HW, ERR, "Failed to load MAC address.\n");
  3847. ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
  3848. return status;
  3849. }
  3850. static void qlge_tx_timeout(struct net_device *ndev)
  3851. {
  3852. struct ql_adapter *qdev = (struct ql_adapter *)netdev_priv(ndev);
  3853. ql_queue_asic_error(qdev);
  3854. }
  3855. static void ql_asic_reset_work(struct work_struct *work)
  3856. {
  3857. struct ql_adapter *qdev =
  3858. container_of(work, struct ql_adapter, asic_reset_work.work);
  3859. int status;
  3860. rtnl_lock();
  3861. status = ql_adapter_down(qdev);
  3862. if (status)
  3863. goto error;
  3864. status = ql_adapter_up(qdev);
  3865. if (status)
  3866. goto error;
  3867. /* Restore rx mode. */
  3868. clear_bit(QL_ALLMULTI, &qdev->flags);
  3869. clear_bit(QL_PROMISCUOUS, &qdev->flags);
  3870. qlge_set_multicast_list(qdev->ndev);
  3871. rtnl_unlock();
  3872. return;
  3873. error:
  3874. QPRINTK(qdev, IFUP, ALERT,
  3875. "Driver up/down cycle failed, closing device\n");
  3876. set_bit(QL_ADAPTER_UP, &qdev->flags);
  3877. dev_close(qdev->ndev);
  3878. rtnl_unlock();
  3879. }
  3880. static struct nic_operations qla8012_nic_ops = {
  3881. .get_flash = ql_get_8012_flash_params,
  3882. .port_initialize = ql_8012_port_initialize,
  3883. };
  3884. static struct nic_operations qla8000_nic_ops = {
  3885. .get_flash = ql_get_8000_flash_params,
  3886. .port_initialize = ql_8000_port_initialize,
  3887. };
  3888. /* Find the pcie function number for the other NIC
  3889. * on this chip. Since both NIC functions share a
  3890. * common firmware we have the lowest enabled function
  3891. * do any common work. Examples would be resetting
  3892. * after a fatal firmware error, or doing a firmware
  3893. * coredump.
  3894. */
  3895. static int ql_get_alt_pcie_func(struct ql_adapter *qdev)
  3896. {
  3897. int status = 0;
  3898. u32 temp;
  3899. u32 nic_func1, nic_func2;
  3900. status = ql_read_mpi_reg(qdev, MPI_TEST_FUNC_PORT_CFG,
  3901. &temp);
  3902. if (status)
  3903. return status;
  3904. nic_func1 = ((temp >> MPI_TEST_NIC1_FUNC_SHIFT) &
  3905. MPI_TEST_NIC_FUNC_MASK);
  3906. nic_func2 = ((temp >> MPI_TEST_NIC2_FUNC_SHIFT) &
  3907. MPI_TEST_NIC_FUNC_MASK);
  3908. if (qdev->func == nic_func1)
  3909. qdev->alt_func = nic_func2;
  3910. else if (qdev->func == nic_func2)
  3911. qdev->alt_func = nic_func1;
  3912. else
  3913. status = -EIO;
  3914. return status;
  3915. }
  3916. static int ql_get_board_info(struct ql_adapter *qdev)
  3917. {
  3918. int status;
  3919. qdev->func =
  3920. (ql_read32(qdev, STS) & STS_FUNC_ID_MASK) >> STS_FUNC_ID_SHIFT;
  3921. if (qdev->func > 3)
  3922. return -EIO;
  3923. status = ql_get_alt_pcie_func(qdev);
  3924. if (status)
  3925. return status;
  3926. qdev->port = (qdev->func < qdev->alt_func) ? 0 : 1;
  3927. if (qdev->port) {
  3928. qdev->xg_sem_mask = SEM_XGMAC1_MASK;
  3929. qdev->port_link_up = STS_PL1;
  3930. qdev->port_init = STS_PI1;
  3931. qdev->mailbox_in = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC2_MBI;
  3932. qdev->mailbox_out = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC2_MBO;
  3933. } else {
  3934. qdev->xg_sem_mask = SEM_XGMAC0_MASK;
  3935. qdev->port_link_up = STS_PL0;
  3936. qdev->port_init = STS_PI0;
  3937. qdev->mailbox_in = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC0_MBI;
  3938. qdev->mailbox_out = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC0_MBO;
  3939. }
  3940. qdev->chip_rev_id = ql_read32(qdev, REV_ID);
  3941. qdev->device_id = qdev->pdev->device;
  3942. if (qdev->device_id == QLGE_DEVICE_ID_8012)
  3943. qdev->nic_ops = &qla8012_nic_ops;
  3944. else if (qdev->device_id == QLGE_DEVICE_ID_8000)
  3945. qdev->nic_ops = &qla8000_nic_ops;
  3946. return status;
  3947. }
  3948. static void ql_release_all(struct pci_dev *pdev)
  3949. {
  3950. struct net_device *ndev = pci_get_drvdata(pdev);
  3951. struct ql_adapter *qdev = netdev_priv(ndev);
  3952. if (qdev->workqueue) {
  3953. destroy_workqueue(qdev->workqueue);
  3954. qdev->workqueue = NULL;
  3955. }
  3956. if (qdev->reg_base)
  3957. iounmap(qdev->reg_base);
  3958. if (qdev->doorbell_area)
  3959. iounmap(qdev->doorbell_area);
  3960. vfree(qdev->mpi_coredump);
  3961. pci_release_regions(pdev);
  3962. pci_set_drvdata(pdev, NULL);
  3963. }
  3964. static int __devinit ql_init_device(struct pci_dev *pdev,
  3965. struct net_device *ndev, int cards_found)
  3966. {
  3967. struct ql_adapter *qdev = netdev_priv(ndev);
  3968. int err = 0;
  3969. memset((void *)qdev, 0, sizeof(*qdev));
  3970. err = pci_enable_device(pdev);
  3971. if (err) {
  3972. dev_err(&pdev->dev, "PCI device enable failed.\n");
  3973. return err;
  3974. }
  3975. qdev->ndev = ndev;
  3976. qdev->pdev = pdev;
  3977. pci_set_drvdata(pdev, ndev);
  3978. /* Set PCIe read request size */
  3979. err = pcie_set_readrq(pdev, 4096);
  3980. if (err) {
  3981. dev_err(&pdev->dev, "Set readrq failed.\n");
  3982. goto err_out;
  3983. }
  3984. err = pci_request_regions(pdev, DRV_NAME);
  3985. if (err) {
  3986. dev_err(&pdev->dev, "PCI region request failed.\n");
  3987. return err;
  3988. }
  3989. pci_set_master(pdev);
  3990. if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
  3991. set_bit(QL_DMA64, &qdev->flags);
  3992. err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
  3993. } else {
  3994. err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
  3995. if (!err)
  3996. err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
  3997. }
  3998. if (err) {
  3999. dev_err(&pdev->dev, "No usable DMA configuration.\n");
  4000. goto err_out;
  4001. }
  4002. /* Set PCIe reset type for EEH to fundamental. */
  4003. pdev->needs_freset = 1;
  4004. pci_save_state(pdev);
  4005. qdev->reg_base =
  4006. ioremap_nocache(pci_resource_start(pdev, 1),
  4007. pci_resource_len(pdev, 1));
  4008. if (!qdev->reg_base) {
  4009. dev_err(&pdev->dev, "Register mapping failed.\n");
  4010. err = -ENOMEM;
  4011. goto err_out;
  4012. }
  4013. qdev->doorbell_area_size = pci_resource_len(pdev, 3);
  4014. qdev->doorbell_area =
  4015. ioremap_nocache(pci_resource_start(pdev, 3),
  4016. pci_resource_len(pdev, 3));
  4017. if (!qdev->doorbell_area) {
  4018. dev_err(&pdev->dev, "Doorbell register mapping failed.\n");
  4019. err = -ENOMEM;
  4020. goto err_out;
  4021. }
  4022. err = ql_get_board_info(qdev);
  4023. if (err) {
  4024. dev_err(&pdev->dev, "Register access failed.\n");
  4025. err = -EIO;
  4026. goto err_out;
  4027. }
  4028. qdev->msg_enable = netif_msg_init(debug, default_msg);
  4029. spin_lock_init(&qdev->hw_lock);
  4030. spin_lock_init(&qdev->stats_lock);
  4031. if (qlge_mpi_coredump) {
  4032. qdev->mpi_coredump =
  4033. vmalloc(sizeof(struct ql_mpi_coredump));
  4034. if (qdev->mpi_coredump == NULL) {
  4035. dev_err(&pdev->dev, "Coredump alloc failed.\n");
  4036. err = -ENOMEM;
  4037. goto err_out;
  4038. }
  4039. }
  4040. /* make sure the EEPROM is good */
  4041. err = qdev->nic_ops->get_flash(qdev);
  4042. if (err) {
  4043. dev_err(&pdev->dev, "Invalid FLASH.\n");
  4044. goto err_out;
  4045. }
  4046. memcpy(ndev->perm_addr, ndev->dev_addr, ndev->addr_len);
  4047. /* Set up the default ring sizes. */
  4048. qdev->tx_ring_size = NUM_TX_RING_ENTRIES;
  4049. qdev->rx_ring_size = NUM_RX_RING_ENTRIES;
  4050. /* Set up the coalescing parameters. */
  4051. qdev->rx_coalesce_usecs = DFLT_COALESCE_WAIT;
  4052. qdev->tx_coalesce_usecs = DFLT_COALESCE_WAIT;
  4053. qdev->rx_max_coalesced_frames = DFLT_INTER_FRAME_WAIT;
  4054. qdev->tx_max_coalesced_frames = DFLT_INTER_FRAME_WAIT;
  4055. /*
  4056. * Set up the operating parameters.
  4057. */
  4058. qdev->rx_csum = 1;
  4059. qdev->workqueue = create_singlethread_workqueue(ndev->name);
  4060. INIT_DELAYED_WORK(&qdev->asic_reset_work, ql_asic_reset_work);
  4061. INIT_DELAYED_WORK(&qdev->mpi_reset_work, ql_mpi_reset_work);
  4062. INIT_DELAYED_WORK(&qdev->mpi_work, ql_mpi_work);
  4063. INIT_DELAYED_WORK(&qdev->mpi_port_cfg_work, ql_mpi_port_cfg_work);
  4064. INIT_DELAYED_WORK(&qdev->mpi_idc_work, ql_mpi_idc_work);
  4065. INIT_DELAYED_WORK(&qdev->mpi_core_to_log, ql_mpi_core_to_log);
  4066. init_completion(&qdev->ide_completion);
  4067. if (!cards_found) {
  4068. dev_info(&pdev->dev, "%s\n", DRV_STRING);
  4069. dev_info(&pdev->dev, "Driver name: %s, Version: %s.\n",
  4070. DRV_NAME, DRV_VERSION);
  4071. }
  4072. return 0;
  4073. err_out:
  4074. ql_release_all(pdev);
  4075. pci_disable_device(pdev);
  4076. return err;
  4077. }
  4078. static const struct net_device_ops qlge_netdev_ops = {
  4079. .ndo_open = qlge_open,
  4080. .ndo_stop = qlge_close,
  4081. .ndo_start_xmit = qlge_send,
  4082. .ndo_change_mtu = qlge_change_mtu,
  4083. .ndo_get_stats = qlge_get_stats,
  4084. .ndo_set_multicast_list = qlge_set_multicast_list,
  4085. .ndo_set_mac_address = qlge_set_mac_address,
  4086. .ndo_validate_addr = eth_validate_addr,
  4087. .ndo_tx_timeout = qlge_tx_timeout,
  4088. .ndo_vlan_rx_register = qlge_vlan_rx_register,
  4089. .ndo_vlan_rx_add_vid = qlge_vlan_rx_add_vid,
  4090. .ndo_vlan_rx_kill_vid = qlge_vlan_rx_kill_vid,
  4091. };
  4092. static int __devinit qlge_probe(struct pci_dev *pdev,
  4093. const struct pci_device_id *pci_entry)
  4094. {
  4095. struct net_device *ndev = NULL;
  4096. struct ql_adapter *qdev = NULL;
  4097. static int cards_found = 0;
  4098. int err = 0;
  4099. ndev = alloc_etherdev_mq(sizeof(struct ql_adapter),
  4100. min(MAX_CPUS, (int)num_online_cpus()));
  4101. if (!ndev)
  4102. return -ENOMEM;
  4103. err = ql_init_device(pdev, ndev, cards_found);
  4104. if (err < 0) {
  4105. free_netdev(ndev);
  4106. return err;
  4107. }
  4108. qdev = netdev_priv(ndev);
  4109. SET_NETDEV_DEV(ndev, &pdev->dev);
  4110. ndev->features = (0
  4111. | NETIF_F_IP_CSUM
  4112. | NETIF_F_SG
  4113. | NETIF_F_TSO
  4114. | NETIF_F_TSO6
  4115. | NETIF_F_TSO_ECN
  4116. | NETIF_F_HW_VLAN_TX
  4117. | NETIF_F_HW_VLAN_RX | NETIF_F_HW_VLAN_FILTER);
  4118. ndev->features |= NETIF_F_GRO;
  4119. if (test_bit(QL_DMA64, &qdev->flags))
  4120. ndev->features |= NETIF_F_HIGHDMA;
  4121. /*
  4122. * Set up net_device structure.
  4123. */
  4124. ndev->tx_queue_len = qdev->tx_ring_size;
  4125. ndev->irq = pdev->irq;
  4126. ndev->netdev_ops = &qlge_netdev_ops;
  4127. SET_ETHTOOL_OPS(ndev, &qlge_ethtool_ops);
  4128. ndev->watchdog_timeo = 10 * HZ;
  4129. err = register_netdev(ndev);
  4130. if (err) {
  4131. dev_err(&pdev->dev, "net device registration failed.\n");
  4132. ql_release_all(pdev);
  4133. pci_disable_device(pdev);
  4134. return err;
  4135. }
  4136. ql_link_off(qdev);
  4137. ql_display_dev_info(ndev);
  4138. atomic_set(&qdev->lb_count, 0);
  4139. cards_found++;
  4140. return 0;
  4141. }
  4142. netdev_tx_t ql_lb_send(struct sk_buff *skb, struct net_device *ndev)
  4143. {
  4144. return qlge_send(skb, ndev);
  4145. }
  4146. int ql_clean_lb_rx_ring(struct rx_ring *rx_ring, int budget)
  4147. {
  4148. return ql_clean_inbound_rx_ring(rx_ring, budget);
  4149. }
  4150. static void __devexit qlge_remove(struct pci_dev *pdev)
  4151. {
  4152. struct net_device *ndev = pci_get_drvdata(pdev);
  4153. unregister_netdev(ndev);
  4154. ql_release_all(pdev);
  4155. pci_disable_device(pdev);
  4156. free_netdev(ndev);
  4157. }
  4158. /* Clean up resources without touching hardware. */
  4159. static void ql_eeh_close(struct net_device *ndev)
  4160. {
  4161. int i;
  4162. struct ql_adapter *qdev = netdev_priv(ndev);
  4163. if (netif_carrier_ok(ndev)) {
  4164. netif_carrier_off(ndev);
  4165. netif_stop_queue(ndev);
  4166. }
  4167. if (test_bit(QL_ADAPTER_UP, &qdev->flags))
  4168. cancel_delayed_work_sync(&qdev->asic_reset_work);
  4169. cancel_delayed_work_sync(&qdev->mpi_reset_work);
  4170. cancel_delayed_work_sync(&qdev->mpi_work);
  4171. cancel_delayed_work_sync(&qdev->mpi_idc_work);
  4172. cancel_delayed_work_sync(&qdev->mpi_core_to_log);
  4173. cancel_delayed_work_sync(&qdev->mpi_port_cfg_work);
  4174. for (i = 0; i < qdev->rss_ring_count; i++)
  4175. netif_napi_del(&qdev->rx_ring[i].napi);
  4176. clear_bit(QL_ADAPTER_UP, &qdev->flags);
  4177. ql_tx_ring_clean(qdev);
  4178. ql_free_rx_buffers(qdev);
  4179. ql_release_adapter_resources(qdev);
  4180. }
  4181. /*
  4182. * This callback is called by the PCI subsystem whenever
  4183. * a PCI bus error is detected.
  4184. */
  4185. static pci_ers_result_t qlge_io_error_detected(struct pci_dev *pdev,
  4186. enum pci_channel_state state)
  4187. {
  4188. struct net_device *ndev = pci_get_drvdata(pdev);
  4189. switch (state) {
  4190. case pci_channel_io_normal:
  4191. return PCI_ERS_RESULT_CAN_RECOVER;
  4192. case pci_channel_io_frozen:
  4193. netif_device_detach(ndev);
  4194. if (netif_running(ndev))
  4195. ql_eeh_close(ndev);
  4196. pci_disable_device(pdev);
  4197. return PCI_ERS_RESULT_NEED_RESET;
  4198. case pci_channel_io_perm_failure:
  4199. dev_err(&pdev->dev,
  4200. "%s: pci_channel_io_perm_failure.\n", __func__);
  4201. return PCI_ERS_RESULT_DISCONNECT;
  4202. }
  4203. /* Request a slot reset. */
  4204. return PCI_ERS_RESULT_NEED_RESET;
  4205. }
  4206. /*
  4207. * This callback is called after the PCI buss has been reset.
  4208. * Basically, this tries to restart the card from scratch.
  4209. * This is a shortened version of the device probe/discovery code,
  4210. * it resembles the first-half of the () routine.
  4211. */
  4212. static pci_ers_result_t qlge_io_slot_reset(struct pci_dev *pdev)
  4213. {
  4214. struct net_device *ndev = pci_get_drvdata(pdev);
  4215. struct ql_adapter *qdev = netdev_priv(ndev);
  4216. pdev->error_state = pci_channel_io_normal;
  4217. pci_restore_state(pdev);
  4218. if (pci_enable_device(pdev)) {
  4219. QPRINTK(qdev, IFUP, ERR,
  4220. "Cannot re-enable PCI device after reset.\n");
  4221. return PCI_ERS_RESULT_DISCONNECT;
  4222. }
  4223. pci_set_master(pdev);
  4224. return PCI_ERS_RESULT_RECOVERED;
  4225. }
  4226. static void qlge_io_resume(struct pci_dev *pdev)
  4227. {
  4228. struct net_device *ndev = pci_get_drvdata(pdev);
  4229. struct ql_adapter *qdev = netdev_priv(ndev);
  4230. int err = 0;
  4231. if (ql_adapter_reset(qdev))
  4232. QPRINTK(qdev, DRV, ERR, "reset FAILED!\n");
  4233. if (netif_running(ndev)) {
  4234. err = qlge_open(ndev);
  4235. if (err) {
  4236. QPRINTK(qdev, IFUP, ERR,
  4237. "Device initialization failed after reset.\n");
  4238. return;
  4239. }
  4240. } else {
  4241. QPRINTK(qdev, IFUP, ERR,
  4242. "Device was not running prior to EEH.\n");
  4243. }
  4244. netif_device_attach(ndev);
  4245. }
  4246. static struct pci_error_handlers qlge_err_handler = {
  4247. .error_detected = qlge_io_error_detected,
  4248. .slot_reset = qlge_io_slot_reset,
  4249. .resume = qlge_io_resume,
  4250. };
  4251. static int qlge_suspend(struct pci_dev *pdev, pm_message_t state)
  4252. {
  4253. struct net_device *ndev = pci_get_drvdata(pdev);
  4254. struct ql_adapter *qdev = netdev_priv(ndev);
  4255. int err;
  4256. netif_device_detach(ndev);
  4257. if (netif_running(ndev)) {
  4258. err = ql_adapter_down(qdev);
  4259. if (!err)
  4260. return err;
  4261. }
  4262. ql_wol(qdev);
  4263. err = pci_save_state(pdev);
  4264. if (err)
  4265. return err;
  4266. pci_disable_device(pdev);
  4267. pci_set_power_state(pdev, pci_choose_state(pdev, state));
  4268. return 0;
  4269. }
  4270. #ifdef CONFIG_PM
  4271. static int qlge_resume(struct pci_dev *pdev)
  4272. {
  4273. struct net_device *ndev = pci_get_drvdata(pdev);
  4274. struct ql_adapter *qdev = netdev_priv(ndev);
  4275. int err;
  4276. pci_set_power_state(pdev, PCI_D0);
  4277. pci_restore_state(pdev);
  4278. err = pci_enable_device(pdev);
  4279. if (err) {
  4280. QPRINTK(qdev, IFUP, ERR, "Cannot enable PCI device from suspend\n");
  4281. return err;
  4282. }
  4283. pci_set_master(pdev);
  4284. pci_enable_wake(pdev, PCI_D3hot, 0);
  4285. pci_enable_wake(pdev, PCI_D3cold, 0);
  4286. if (netif_running(ndev)) {
  4287. err = ql_adapter_up(qdev);
  4288. if (err)
  4289. return err;
  4290. }
  4291. netif_device_attach(ndev);
  4292. return 0;
  4293. }
  4294. #endif /* CONFIG_PM */
  4295. static void qlge_shutdown(struct pci_dev *pdev)
  4296. {
  4297. qlge_suspend(pdev, PMSG_SUSPEND);
  4298. }
  4299. static struct pci_driver qlge_driver = {
  4300. .name = DRV_NAME,
  4301. .id_table = qlge_pci_tbl,
  4302. .probe = qlge_probe,
  4303. .remove = __devexit_p(qlge_remove),
  4304. #ifdef CONFIG_PM
  4305. .suspend = qlge_suspend,
  4306. .resume = qlge_resume,
  4307. #endif
  4308. .shutdown = qlge_shutdown,
  4309. .err_handler = &qlge_err_handler
  4310. };
  4311. static int __init qlge_init_module(void)
  4312. {
  4313. return pci_register_driver(&qlge_driver);
  4314. }
  4315. static void __exit qlge_exit(void)
  4316. {
  4317. pci_unregister_driver(&qlge_driver);
  4318. }
  4319. module_init(qlge_init_module);
  4320. module_exit(qlge_exit);