rmap.c 27 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995
  1. /*
  2. * mm/rmap.c - physical to virtual reverse mappings
  3. *
  4. * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
  5. * Released under the General Public License (GPL).
  6. *
  7. * Simple, low overhead reverse mapping scheme.
  8. * Please try to keep this thing as modular as possible.
  9. *
  10. * Provides methods for unmapping each kind of mapped page:
  11. * the anon methods track anonymous pages, and
  12. * the file methods track pages belonging to an inode.
  13. *
  14. * Original design by Rik van Riel <riel@conectiva.com.br> 2001
  15. * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
  16. * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
  17. * Contributions by Hugh Dickins <hugh@veritas.com> 2003, 2004
  18. */
  19. /*
  20. * Lock ordering in mm:
  21. *
  22. * inode->i_mutex (while writing or truncating, not reading or faulting)
  23. * inode->i_alloc_sem (vmtruncate_range)
  24. * mm->mmap_sem
  25. * page->flags PG_locked (lock_page)
  26. * mapping->i_mmap_lock
  27. * anon_vma->lock
  28. * mm->page_table_lock or pte_lock
  29. * zone->lru_lock (in mark_page_accessed, isolate_lru_page)
  30. * swap_lock (in swap_duplicate, swap_info_get)
  31. * mmlist_lock (in mmput, drain_mmlist and others)
  32. * mapping->private_lock (in __set_page_dirty_buffers)
  33. * inode_lock (in set_page_dirty's __mark_inode_dirty)
  34. * sb_lock (within inode_lock in fs/fs-writeback.c)
  35. * mapping->tree_lock (widely used, in set_page_dirty,
  36. * in arch-dependent flush_dcache_mmap_lock,
  37. * within inode_lock in __sync_single_inode)
  38. */
  39. #include <linux/mm.h>
  40. #include <linux/pagemap.h>
  41. #include <linux/swap.h>
  42. #include <linux/swapops.h>
  43. #include <linux/slab.h>
  44. #include <linux/init.h>
  45. #include <linux/rmap.h>
  46. #include <linux/rcupdate.h>
  47. #include <linux/module.h>
  48. #include <linux/kallsyms.h>
  49. #include <linux/memcontrol.h>
  50. #include <asm/tlbflush.h>
  51. struct kmem_cache *anon_vma_cachep;
  52. /* This must be called under the mmap_sem. */
  53. int anon_vma_prepare(struct vm_area_struct *vma)
  54. {
  55. struct anon_vma *anon_vma = vma->anon_vma;
  56. might_sleep();
  57. if (unlikely(!anon_vma)) {
  58. struct mm_struct *mm = vma->vm_mm;
  59. struct anon_vma *allocated, *locked;
  60. anon_vma = find_mergeable_anon_vma(vma);
  61. if (anon_vma) {
  62. allocated = NULL;
  63. locked = anon_vma;
  64. spin_lock(&locked->lock);
  65. } else {
  66. anon_vma = anon_vma_alloc();
  67. if (unlikely(!anon_vma))
  68. return -ENOMEM;
  69. allocated = anon_vma;
  70. locked = NULL;
  71. }
  72. /* page_table_lock to protect against threads */
  73. spin_lock(&mm->page_table_lock);
  74. if (likely(!vma->anon_vma)) {
  75. vma->anon_vma = anon_vma;
  76. list_add_tail(&vma->anon_vma_node, &anon_vma->head);
  77. allocated = NULL;
  78. }
  79. spin_unlock(&mm->page_table_lock);
  80. if (locked)
  81. spin_unlock(&locked->lock);
  82. if (unlikely(allocated))
  83. anon_vma_free(allocated);
  84. }
  85. return 0;
  86. }
  87. void __anon_vma_merge(struct vm_area_struct *vma, struct vm_area_struct *next)
  88. {
  89. BUG_ON(vma->anon_vma != next->anon_vma);
  90. list_del(&next->anon_vma_node);
  91. }
  92. void __anon_vma_link(struct vm_area_struct *vma)
  93. {
  94. struct anon_vma *anon_vma = vma->anon_vma;
  95. if (anon_vma)
  96. list_add_tail(&vma->anon_vma_node, &anon_vma->head);
  97. }
  98. void anon_vma_link(struct vm_area_struct *vma)
  99. {
  100. struct anon_vma *anon_vma = vma->anon_vma;
  101. if (anon_vma) {
  102. spin_lock(&anon_vma->lock);
  103. list_add_tail(&vma->anon_vma_node, &anon_vma->head);
  104. spin_unlock(&anon_vma->lock);
  105. }
  106. }
  107. void anon_vma_unlink(struct vm_area_struct *vma)
  108. {
  109. struct anon_vma *anon_vma = vma->anon_vma;
  110. int empty;
  111. if (!anon_vma)
  112. return;
  113. spin_lock(&anon_vma->lock);
  114. list_del(&vma->anon_vma_node);
  115. /* We must garbage collect the anon_vma if it's empty */
  116. empty = list_empty(&anon_vma->head);
  117. spin_unlock(&anon_vma->lock);
  118. if (empty)
  119. anon_vma_free(anon_vma);
  120. }
  121. static void anon_vma_ctor(struct kmem_cache *cachep, void *data)
  122. {
  123. struct anon_vma *anon_vma = data;
  124. spin_lock_init(&anon_vma->lock);
  125. INIT_LIST_HEAD(&anon_vma->head);
  126. }
  127. void __init anon_vma_init(void)
  128. {
  129. anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
  130. 0, SLAB_DESTROY_BY_RCU|SLAB_PANIC, anon_vma_ctor);
  131. }
  132. /*
  133. * Getting a lock on a stable anon_vma from a page off the LRU is
  134. * tricky: page_lock_anon_vma rely on RCU to guard against the races.
  135. */
  136. static struct anon_vma *page_lock_anon_vma(struct page *page)
  137. {
  138. struct anon_vma *anon_vma;
  139. unsigned long anon_mapping;
  140. rcu_read_lock();
  141. anon_mapping = (unsigned long) page->mapping;
  142. if (!(anon_mapping & PAGE_MAPPING_ANON))
  143. goto out;
  144. if (!page_mapped(page))
  145. goto out;
  146. anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
  147. spin_lock(&anon_vma->lock);
  148. return anon_vma;
  149. out:
  150. rcu_read_unlock();
  151. return NULL;
  152. }
  153. static void page_unlock_anon_vma(struct anon_vma *anon_vma)
  154. {
  155. spin_unlock(&anon_vma->lock);
  156. rcu_read_unlock();
  157. }
  158. /*
  159. * At what user virtual address is page expected in @vma?
  160. * Returns virtual address or -EFAULT if page's index/offset is not
  161. * within the range mapped the @vma.
  162. */
  163. static inline unsigned long
  164. vma_address(struct page *page, struct vm_area_struct *vma)
  165. {
  166. pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
  167. unsigned long address;
  168. address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
  169. if (unlikely(address < vma->vm_start || address >= vma->vm_end)) {
  170. /* page should be within @vma mapping range */
  171. return -EFAULT;
  172. }
  173. return address;
  174. }
  175. /*
  176. * At what user virtual address is page expected in vma? checking that the
  177. * page matches the vma: currently only used on anon pages, by unuse_vma;
  178. */
  179. unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
  180. {
  181. if (PageAnon(page)) {
  182. if ((void *)vma->anon_vma !=
  183. (void *)page->mapping - PAGE_MAPPING_ANON)
  184. return -EFAULT;
  185. } else if (page->mapping && !(vma->vm_flags & VM_NONLINEAR)) {
  186. if (!vma->vm_file ||
  187. vma->vm_file->f_mapping != page->mapping)
  188. return -EFAULT;
  189. } else
  190. return -EFAULT;
  191. return vma_address(page, vma);
  192. }
  193. /*
  194. * Check that @page is mapped at @address into @mm.
  195. *
  196. * On success returns with pte mapped and locked.
  197. */
  198. pte_t *page_check_address(struct page *page, struct mm_struct *mm,
  199. unsigned long address, spinlock_t **ptlp)
  200. {
  201. pgd_t *pgd;
  202. pud_t *pud;
  203. pmd_t *pmd;
  204. pte_t *pte;
  205. spinlock_t *ptl;
  206. pgd = pgd_offset(mm, address);
  207. if (!pgd_present(*pgd))
  208. return NULL;
  209. pud = pud_offset(pgd, address);
  210. if (!pud_present(*pud))
  211. return NULL;
  212. pmd = pmd_offset(pud, address);
  213. if (!pmd_present(*pmd))
  214. return NULL;
  215. pte = pte_offset_map(pmd, address);
  216. /* Make a quick check before getting the lock */
  217. if (!pte_present(*pte)) {
  218. pte_unmap(pte);
  219. return NULL;
  220. }
  221. ptl = pte_lockptr(mm, pmd);
  222. spin_lock(ptl);
  223. if (pte_present(*pte) && page_to_pfn(page) == pte_pfn(*pte)) {
  224. *ptlp = ptl;
  225. return pte;
  226. }
  227. pte_unmap_unlock(pte, ptl);
  228. return NULL;
  229. }
  230. /*
  231. * Subfunctions of page_referenced: page_referenced_one called
  232. * repeatedly from either page_referenced_anon or page_referenced_file.
  233. */
  234. static int page_referenced_one(struct page *page,
  235. struct vm_area_struct *vma, unsigned int *mapcount)
  236. {
  237. struct mm_struct *mm = vma->vm_mm;
  238. unsigned long address;
  239. pte_t *pte;
  240. spinlock_t *ptl;
  241. int referenced = 0;
  242. address = vma_address(page, vma);
  243. if (address == -EFAULT)
  244. goto out;
  245. pte = page_check_address(page, mm, address, &ptl);
  246. if (!pte)
  247. goto out;
  248. if (vma->vm_flags & VM_LOCKED) {
  249. referenced++;
  250. *mapcount = 1; /* break early from loop */
  251. } else if (ptep_clear_flush_young(vma, address, pte))
  252. referenced++;
  253. /* Pretend the page is referenced if the task has the
  254. swap token and is in the middle of a page fault. */
  255. if (mm != current->mm && has_swap_token(mm) &&
  256. rwsem_is_locked(&mm->mmap_sem))
  257. referenced++;
  258. (*mapcount)--;
  259. pte_unmap_unlock(pte, ptl);
  260. out:
  261. return referenced;
  262. }
  263. static int page_referenced_anon(struct page *page)
  264. {
  265. unsigned int mapcount;
  266. struct anon_vma *anon_vma;
  267. struct vm_area_struct *vma;
  268. int referenced = 0;
  269. anon_vma = page_lock_anon_vma(page);
  270. if (!anon_vma)
  271. return referenced;
  272. mapcount = page_mapcount(page);
  273. list_for_each_entry(vma, &anon_vma->head, anon_vma_node) {
  274. referenced += page_referenced_one(page, vma, &mapcount);
  275. if (!mapcount)
  276. break;
  277. }
  278. page_unlock_anon_vma(anon_vma);
  279. return referenced;
  280. }
  281. /**
  282. * page_referenced_file - referenced check for object-based rmap
  283. * @page: the page we're checking references on.
  284. *
  285. * For an object-based mapped page, find all the places it is mapped and
  286. * check/clear the referenced flag. This is done by following the page->mapping
  287. * pointer, then walking the chain of vmas it holds. It returns the number
  288. * of references it found.
  289. *
  290. * This function is only called from page_referenced for object-based pages.
  291. */
  292. static int page_referenced_file(struct page *page)
  293. {
  294. unsigned int mapcount;
  295. struct address_space *mapping = page->mapping;
  296. pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
  297. struct vm_area_struct *vma;
  298. struct prio_tree_iter iter;
  299. int referenced = 0;
  300. /*
  301. * The caller's checks on page->mapping and !PageAnon have made
  302. * sure that this is a file page: the check for page->mapping
  303. * excludes the case just before it gets set on an anon page.
  304. */
  305. BUG_ON(PageAnon(page));
  306. /*
  307. * The page lock not only makes sure that page->mapping cannot
  308. * suddenly be NULLified by truncation, it makes sure that the
  309. * structure at mapping cannot be freed and reused yet,
  310. * so we can safely take mapping->i_mmap_lock.
  311. */
  312. BUG_ON(!PageLocked(page));
  313. spin_lock(&mapping->i_mmap_lock);
  314. /*
  315. * i_mmap_lock does not stabilize mapcount at all, but mapcount
  316. * is more likely to be accurate if we note it after spinning.
  317. */
  318. mapcount = page_mapcount(page);
  319. vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
  320. if ((vma->vm_flags & (VM_LOCKED|VM_MAYSHARE))
  321. == (VM_LOCKED|VM_MAYSHARE)) {
  322. referenced++;
  323. break;
  324. }
  325. referenced += page_referenced_one(page, vma, &mapcount);
  326. if (!mapcount)
  327. break;
  328. }
  329. spin_unlock(&mapping->i_mmap_lock);
  330. return referenced;
  331. }
  332. /**
  333. * page_referenced - test if the page was referenced
  334. * @page: the page to test
  335. * @is_locked: caller holds lock on the page
  336. *
  337. * Quick test_and_clear_referenced for all mappings to a page,
  338. * returns the number of ptes which referenced the page.
  339. */
  340. int page_referenced(struct page *page, int is_locked)
  341. {
  342. int referenced = 0;
  343. if (page_test_and_clear_young(page))
  344. referenced++;
  345. if (TestClearPageReferenced(page))
  346. referenced++;
  347. if (page_mapped(page) && page->mapping) {
  348. if (PageAnon(page))
  349. referenced += page_referenced_anon(page);
  350. else if (is_locked)
  351. referenced += page_referenced_file(page);
  352. else if (TestSetPageLocked(page))
  353. referenced++;
  354. else {
  355. if (page->mapping)
  356. referenced += page_referenced_file(page);
  357. unlock_page(page);
  358. }
  359. }
  360. return referenced;
  361. }
  362. static int page_mkclean_one(struct page *page, struct vm_area_struct *vma)
  363. {
  364. struct mm_struct *mm = vma->vm_mm;
  365. unsigned long address;
  366. pte_t *pte;
  367. spinlock_t *ptl;
  368. int ret = 0;
  369. address = vma_address(page, vma);
  370. if (address == -EFAULT)
  371. goto out;
  372. pte = page_check_address(page, mm, address, &ptl);
  373. if (!pte)
  374. goto out;
  375. if (pte_dirty(*pte) || pte_write(*pte)) {
  376. pte_t entry;
  377. flush_cache_page(vma, address, pte_pfn(*pte));
  378. entry = ptep_clear_flush(vma, address, pte);
  379. entry = pte_wrprotect(entry);
  380. entry = pte_mkclean(entry);
  381. set_pte_at(mm, address, pte, entry);
  382. ret = 1;
  383. }
  384. pte_unmap_unlock(pte, ptl);
  385. out:
  386. return ret;
  387. }
  388. static int page_mkclean_file(struct address_space *mapping, struct page *page)
  389. {
  390. pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
  391. struct vm_area_struct *vma;
  392. struct prio_tree_iter iter;
  393. int ret = 0;
  394. BUG_ON(PageAnon(page));
  395. spin_lock(&mapping->i_mmap_lock);
  396. vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
  397. if (vma->vm_flags & VM_SHARED)
  398. ret += page_mkclean_one(page, vma);
  399. }
  400. spin_unlock(&mapping->i_mmap_lock);
  401. return ret;
  402. }
  403. int page_mkclean(struct page *page)
  404. {
  405. int ret = 0;
  406. BUG_ON(!PageLocked(page));
  407. if (page_mapped(page)) {
  408. struct address_space *mapping = page_mapping(page);
  409. if (mapping) {
  410. ret = page_mkclean_file(mapping, page);
  411. if (page_test_dirty(page)) {
  412. page_clear_dirty(page);
  413. ret = 1;
  414. }
  415. }
  416. }
  417. return ret;
  418. }
  419. EXPORT_SYMBOL_GPL(page_mkclean);
  420. /**
  421. * page_set_anon_rmap - setup new anonymous rmap
  422. * @page: the page to add the mapping to
  423. * @vma: the vm area in which the mapping is added
  424. * @address: the user virtual address mapped
  425. */
  426. static void __page_set_anon_rmap(struct page *page,
  427. struct vm_area_struct *vma, unsigned long address)
  428. {
  429. struct anon_vma *anon_vma = vma->anon_vma;
  430. BUG_ON(!anon_vma);
  431. anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
  432. page->mapping = (struct address_space *) anon_vma;
  433. page->index = linear_page_index(vma, address);
  434. /*
  435. * nr_mapped state can be updated without turning off
  436. * interrupts because it is not modified via interrupt.
  437. */
  438. __inc_zone_page_state(page, NR_ANON_PAGES);
  439. }
  440. /**
  441. * page_set_anon_rmap - sanity check anonymous rmap addition
  442. * @page: the page to add the mapping to
  443. * @vma: the vm area in which the mapping is added
  444. * @address: the user virtual address mapped
  445. */
  446. static void __page_check_anon_rmap(struct page *page,
  447. struct vm_area_struct *vma, unsigned long address)
  448. {
  449. #ifdef CONFIG_DEBUG_VM
  450. /*
  451. * The page's anon-rmap details (mapping and index) are guaranteed to
  452. * be set up correctly at this point.
  453. *
  454. * We have exclusion against page_add_anon_rmap because the caller
  455. * always holds the page locked, except if called from page_dup_rmap,
  456. * in which case the page is already known to be setup.
  457. *
  458. * We have exclusion against page_add_new_anon_rmap because those pages
  459. * are initially only visible via the pagetables, and the pte is locked
  460. * over the call to page_add_new_anon_rmap.
  461. */
  462. struct anon_vma *anon_vma = vma->anon_vma;
  463. anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
  464. BUG_ON(page->mapping != (struct address_space *)anon_vma);
  465. BUG_ON(page->index != linear_page_index(vma, address));
  466. #endif
  467. }
  468. /**
  469. * page_add_anon_rmap - add pte mapping to an anonymous page
  470. * @page: the page to add the mapping to
  471. * @vma: the vm area in which the mapping is added
  472. * @address: the user virtual address mapped
  473. *
  474. * The caller needs to hold the pte lock and the page must be locked.
  475. */
  476. void page_add_anon_rmap(struct page *page,
  477. struct vm_area_struct *vma, unsigned long address)
  478. {
  479. VM_BUG_ON(!PageLocked(page));
  480. VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end);
  481. if (atomic_inc_and_test(&page->_mapcount))
  482. __page_set_anon_rmap(page, vma, address);
  483. else {
  484. __page_check_anon_rmap(page, vma, address);
  485. /*
  486. * We unconditionally charged during prepare, we uncharge here
  487. * This takes care of balancing the reference counts
  488. */
  489. mem_cgroup_uncharge_page(page);
  490. }
  491. }
  492. /*
  493. * page_add_new_anon_rmap - add pte mapping to a new anonymous page
  494. * @page: the page to add the mapping to
  495. * @vma: the vm area in which the mapping is added
  496. * @address: the user virtual address mapped
  497. *
  498. * Same as page_add_anon_rmap but must only be called on *new* pages.
  499. * This means the inc-and-test can be bypassed.
  500. * Page does not have to be locked.
  501. */
  502. void page_add_new_anon_rmap(struct page *page,
  503. struct vm_area_struct *vma, unsigned long address)
  504. {
  505. BUG_ON(address < vma->vm_start || address >= vma->vm_end);
  506. atomic_set(&page->_mapcount, 0); /* elevate count by 1 (starts at -1) */
  507. __page_set_anon_rmap(page, vma, address);
  508. }
  509. /**
  510. * page_add_file_rmap - add pte mapping to a file page
  511. * @page: the page to add the mapping to
  512. *
  513. * The caller needs to hold the pte lock.
  514. */
  515. void page_add_file_rmap(struct page *page)
  516. {
  517. if (atomic_inc_and_test(&page->_mapcount))
  518. __inc_zone_page_state(page, NR_FILE_MAPPED);
  519. else
  520. /*
  521. * We unconditionally charged during prepare, we uncharge here
  522. * This takes care of balancing the reference counts
  523. */
  524. mem_cgroup_uncharge_page(page);
  525. }
  526. #ifdef CONFIG_DEBUG_VM
  527. /**
  528. * page_dup_rmap - duplicate pte mapping to a page
  529. * @page: the page to add the mapping to
  530. *
  531. * For copy_page_range only: minimal extract from page_add_file_rmap /
  532. * page_add_anon_rmap, avoiding unnecessary tests (already checked) so it's
  533. * quicker.
  534. *
  535. * The caller needs to hold the pte lock.
  536. */
  537. void page_dup_rmap(struct page *page, struct vm_area_struct *vma, unsigned long address)
  538. {
  539. BUG_ON(page_mapcount(page) == 0);
  540. if (PageAnon(page))
  541. __page_check_anon_rmap(page, vma, address);
  542. atomic_inc(&page->_mapcount);
  543. }
  544. #endif
  545. /**
  546. * page_remove_rmap - take down pte mapping from a page
  547. * @page: page to remove mapping from
  548. *
  549. * The caller needs to hold the pte lock.
  550. */
  551. void page_remove_rmap(struct page *page, struct vm_area_struct *vma)
  552. {
  553. if (atomic_add_negative(-1, &page->_mapcount)) {
  554. if (unlikely(page_mapcount(page) < 0)) {
  555. printk (KERN_EMERG "Eeek! page_mapcount(page) went negative! (%d)\n", page_mapcount(page));
  556. printk (KERN_EMERG " page pfn = %lx\n", page_to_pfn(page));
  557. printk (KERN_EMERG " page->flags = %lx\n", page->flags);
  558. printk (KERN_EMERG " page->count = %x\n", page_count(page));
  559. printk (KERN_EMERG " page->mapping = %p\n", page->mapping);
  560. print_symbol (KERN_EMERG " vma->vm_ops = %s\n", (unsigned long)vma->vm_ops);
  561. if (vma->vm_ops) {
  562. print_symbol (KERN_EMERG " vma->vm_ops->nopage = %s\n", (unsigned long)vma->vm_ops->nopage);
  563. print_symbol (KERN_EMERG " vma->vm_ops->fault = %s\n", (unsigned long)vma->vm_ops->fault);
  564. }
  565. if (vma->vm_file && vma->vm_file->f_op)
  566. print_symbol (KERN_EMERG " vma->vm_file->f_op->mmap = %s\n", (unsigned long)vma->vm_file->f_op->mmap);
  567. BUG();
  568. }
  569. /*
  570. * It would be tidy to reset the PageAnon mapping here,
  571. * but that might overwrite a racing page_add_anon_rmap
  572. * which increments mapcount after us but sets mapping
  573. * before us: so leave the reset to free_hot_cold_page,
  574. * and remember that it's only reliable while mapped.
  575. * Leaving it set also helps swapoff to reinstate ptes
  576. * faster for those pages still in swapcache.
  577. */
  578. if (page_test_dirty(page)) {
  579. page_clear_dirty(page);
  580. set_page_dirty(page);
  581. }
  582. mem_cgroup_uncharge_page(page);
  583. __dec_zone_page_state(page,
  584. PageAnon(page) ? NR_ANON_PAGES : NR_FILE_MAPPED);
  585. }
  586. }
  587. /*
  588. * Subfunctions of try_to_unmap: try_to_unmap_one called
  589. * repeatedly from either try_to_unmap_anon or try_to_unmap_file.
  590. */
  591. static int try_to_unmap_one(struct page *page, struct vm_area_struct *vma,
  592. int migration)
  593. {
  594. struct mm_struct *mm = vma->vm_mm;
  595. unsigned long address;
  596. pte_t *pte;
  597. pte_t pteval;
  598. spinlock_t *ptl;
  599. int ret = SWAP_AGAIN;
  600. address = vma_address(page, vma);
  601. if (address == -EFAULT)
  602. goto out;
  603. pte = page_check_address(page, mm, address, &ptl);
  604. if (!pte)
  605. goto out;
  606. /*
  607. * If the page is mlock()d, we cannot swap it out.
  608. * If it's recently referenced (perhaps page_referenced
  609. * skipped over this mm) then we should reactivate it.
  610. */
  611. if (!migration && ((vma->vm_flags & VM_LOCKED) ||
  612. (ptep_clear_flush_young(vma, address, pte)))) {
  613. ret = SWAP_FAIL;
  614. goto out_unmap;
  615. }
  616. /* Nuke the page table entry. */
  617. flush_cache_page(vma, address, page_to_pfn(page));
  618. pteval = ptep_clear_flush(vma, address, pte);
  619. /* Move the dirty bit to the physical page now the pte is gone. */
  620. if (pte_dirty(pteval))
  621. set_page_dirty(page);
  622. /* Update high watermark before we lower rss */
  623. update_hiwater_rss(mm);
  624. if (PageAnon(page)) {
  625. swp_entry_t entry = { .val = page_private(page) };
  626. if (PageSwapCache(page)) {
  627. /*
  628. * Store the swap location in the pte.
  629. * See handle_pte_fault() ...
  630. */
  631. swap_duplicate(entry);
  632. if (list_empty(&mm->mmlist)) {
  633. spin_lock(&mmlist_lock);
  634. if (list_empty(&mm->mmlist))
  635. list_add(&mm->mmlist, &init_mm.mmlist);
  636. spin_unlock(&mmlist_lock);
  637. }
  638. dec_mm_counter(mm, anon_rss);
  639. #ifdef CONFIG_MIGRATION
  640. } else {
  641. /*
  642. * Store the pfn of the page in a special migration
  643. * pte. do_swap_page() will wait until the migration
  644. * pte is removed and then restart fault handling.
  645. */
  646. BUG_ON(!migration);
  647. entry = make_migration_entry(page, pte_write(pteval));
  648. #endif
  649. }
  650. set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
  651. BUG_ON(pte_file(*pte));
  652. } else
  653. #ifdef CONFIG_MIGRATION
  654. if (migration) {
  655. /* Establish migration entry for a file page */
  656. swp_entry_t entry;
  657. entry = make_migration_entry(page, pte_write(pteval));
  658. set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
  659. } else
  660. #endif
  661. dec_mm_counter(mm, file_rss);
  662. page_remove_rmap(page, vma);
  663. page_cache_release(page);
  664. out_unmap:
  665. pte_unmap_unlock(pte, ptl);
  666. out:
  667. return ret;
  668. }
  669. /*
  670. * objrmap doesn't work for nonlinear VMAs because the assumption that
  671. * offset-into-file correlates with offset-into-virtual-addresses does not hold.
  672. * Consequently, given a particular page and its ->index, we cannot locate the
  673. * ptes which are mapping that page without an exhaustive linear search.
  674. *
  675. * So what this code does is a mini "virtual scan" of each nonlinear VMA which
  676. * maps the file to which the target page belongs. The ->vm_private_data field
  677. * holds the current cursor into that scan. Successive searches will circulate
  678. * around the vma's virtual address space.
  679. *
  680. * So as more replacement pressure is applied to the pages in a nonlinear VMA,
  681. * more scanning pressure is placed against them as well. Eventually pages
  682. * will become fully unmapped and are eligible for eviction.
  683. *
  684. * For very sparsely populated VMAs this is a little inefficient - chances are
  685. * there there won't be many ptes located within the scan cluster. In this case
  686. * maybe we could scan further - to the end of the pte page, perhaps.
  687. */
  688. #define CLUSTER_SIZE min(32*PAGE_SIZE, PMD_SIZE)
  689. #define CLUSTER_MASK (~(CLUSTER_SIZE - 1))
  690. static void try_to_unmap_cluster(unsigned long cursor,
  691. unsigned int *mapcount, struct vm_area_struct *vma)
  692. {
  693. struct mm_struct *mm = vma->vm_mm;
  694. pgd_t *pgd;
  695. pud_t *pud;
  696. pmd_t *pmd;
  697. pte_t *pte;
  698. pte_t pteval;
  699. spinlock_t *ptl;
  700. struct page *page;
  701. unsigned long address;
  702. unsigned long end;
  703. address = (vma->vm_start + cursor) & CLUSTER_MASK;
  704. end = address + CLUSTER_SIZE;
  705. if (address < vma->vm_start)
  706. address = vma->vm_start;
  707. if (end > vma->vm_end)
  708. end = vma->vm_end;
  709. pgd = pgd_offset(mm, address);
  710. if (!pgd_present(*pgd))
  711. return;
  712. pud = pud_offset(pgd, address);
  713. if (!pud_present(*pud))
  714. return;
  715. pmd = pmd_offset(pud, address);
  716. if (!pmd_present(*pmd))
  717. return;
  718. pte = pte_offset_map_lock(mm, pmd, address, &ptl);
  719. /* Update high watermark before we lower rss */
  720. update_hiwater_rss(mm);
  721. for (; address < end; pte++, address += PAGE_SIZE) {
  722. if (!pte_present(*pte))
  723. continue;
  724. page = vm_normal_page(vma, address, *pte);
  725. BUG_ON(!page || PageAnon(page));
  726. if (ptep_clear_flush_young(vma, address, pte))
  727. continue;
  728. /* Nuke the page table entry. */
  729. flush_cache_page(vma, address, pte_pfn(*pte));
  730. pteval = ptep_clear_flush(vma, address, pte);
  731. /* If nonlinear, store the file page offset in the pte. */
  732. if (page->index != linear_page_index(vma, address))
  733. set_pte_at(mm, address, pte, pgoff_to_pte(page->index));
  734. /* Move the dirty bit to the physical page now the pte is gone. */
  735. if (pte_dirty(pteval))
  736. set_page_dirty(page);
  737. page_remove_rmap(page, vma);
  738. page_cache_release(page);
  739. dec_mm_counter(mm, file_rss);
  740. (*mapcount)--;
  741. }
  742. pte_unmap_unlock(pte - 1, ptl);
  743. }
  744. static int try_to_unmap_anon(struct page *page, int migration)
  745. {
  746. struct anon_vma *anon_vma;
  747. struct vm_area_struct *vma;
  748. int ret = SWAP_AGAIN;
  749. anon_vma = page_lock_anon_vma(page);
  750. if (!anon_vma)
  751. return ret;
  752. list_for_each_entry(vma, &anon_vma->head, anon_vma_node) {
  753. ret = try_to_unmap_one(page, vma, migration);
  754. if (ret == SWAP_FAIL || !page_mapped(page))
  755. break;
  756. }
  757. page_unlock_anon_vma(anon_vma);
  758. return ret;
  759. }
  760. /**
  761. * try_to_unmap_file - unmap file page using the object-based rmap method
  762. * @page: the page to unmap
  763. *
  764. * Find all the mappings of a page using the mapping pointer and the vma chains
  765. * contained in the address_space struct it points to.
  766. *
  767. * This function is only called from try_to_unmap for object-based pages.
  768. */
  769. static int try_to_unmap_file(struct page *page, int migration)
  770. {
  771. struct address_space *mapping = page->mapping;
  772. pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
  773. struct vm_area_struct *vma;
  774. struct prio_tree_iter iter;
  775. int ret = SWAP_AGAIN;
  776. unsigned long cursor;
  777. unsigned long max_nl_cursor = 0;
  778. unsigned long max_nl_size = 0;
  779. unsigned int mapcount;
  780. spin_lock(&mapping->i_mmap_lock);
  781. vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
  782. ret = try_to_unmap_one(page, vma, migration);
  783. if (ret == SWAP_FAIL || !page_mapped(page))
  784. goto out;
  785. }
  786. if (list_empty(&mapping->i_mmap_nonlinear))
  787. goto out;
  788. list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
  789. shared.vm_set.list) {
  790. if ((vma->vm_flags & VM_LOCKED) && !migration)
  791. continue;
  792. cursor = (unsigned long) vma->vm_private_data;
  793. if (cursor > max_nl_cursor)
  794. max_nl_cursor = cursor;
  795. cursor = vma->vm_end - vma->vm_start;
  796. if (cursor > max_nl_size)
  797. max_nl_size = cursor;
  798. }
  799. if (max_nl_size == 0) { /* any nonlinears locked or reserved */
  800. ret = SWAP_FAIL;
  801. goto out;
  802. }
  803. /*
  804. * We don't try to search for this page in the nonlinear vmas,
  805. * and page_referenced wouldn't have found it anyway. Instead
  806. * just walk the nonlinear vmas trying to age and unmap some.
  807. * The mapcount of the page we came in with is irrelevant,
  808. * but even so use it as a guide to how hard we should try?
  809. */
  810. mapcount = page_mapcount(page);
  811. if (!mapcount)
  812. goto out;
  813. cond_resched_lock(&mapping->i_mmap_lock);
  814. max_nl_size = (max_nl_size + CLUSTER_SIZE - 1) & CLUSTER_MASK;
  815. if (max_nl_cursor == 0)
  816. max_nl_cursor = CLUSTER_SIZE;
  817. do {
  818. list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
  819. shared.vm_set.list) {
  820. if ((vma->vm_flags & VM_LOCKED) && !migration)
  821. continue;
  822. cursor = (unsigned long) vma->vm_private_data;
  823. while ( cursor < max_nl_cursor &&
  824. cursor < vma->vm_end - vma->vm_start) {
  825. try_to_unmap_cluster(cursor, &mapcount, vma);
  826. cursor += CLUSTER_SIZE;
  827. vma->vm_private_data = (void *) cursor;
  828. if ((int)mapcount <= 0)
  829. goto out;
  830. }
  831. vma->vm_private_data = (void *) max_nl_cursor;
  832. }
  833. cond_resched_lock(&mapping->i_mmap_lock);
  834. max_nl_cursor += CLUSTER_SIZE;
  835. } while (max_nl_cursor <= max_nl_size);
  836. /*
  837. * Don't loop forever (perhaps all the remaining pages are
  838. * in locked vmas). Reset cursor on all unreserved nonlinear
  839. * vmas, now forgetting on which ones it had fallen behind.
  840. */
  841. list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
  842. vma->vm_private_data = NULL;
  843. out:
  844. spin_unlock(&mapping->i_mmap_lock);
  845. return ret;
  846. }
  847. /**
  848. * try_to_unmap - try to remove all page table mappings to a page
  849. * @page: the page to get unmapped
  850. *
  851. * Tries to remove all the page table entries which are mapping this
  852. * page, used in the pageout path. Caller must hold the page lock.
  853. * Return values are:
  854. *
  855. * SWAP_SUCCESS - we succeeded in removing all mappings
  856. * SWAP_AGAIN - we missed a mapping, try again later
  857. * SWAP_FAIL - the page is unswappable
  858. */
  859. int try_to_unmap(struct page *page, int migration)
  860. {
  861. int ret;
  862. BUG_ON(!PageLocked(page));
  863. if (PageAnon(page))
  864. ret = try_to_unmap_anon(page, migration);
  865. else
  866. ret = try_to_unmap_file(page, migration);
  867. if (!page_mapped(page))
  868. ret = SWAP_SUCCESS;
  869. return ret;
  870. }