paging_tmpl.h 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * MMU support
  8. *
  9. * Copyright (C) 2006 Qumranet, Inc.
  10. *
  11. * Authors:
  12. * Yaniv Kamay <yaniv@qumranet.com>
  13. * Avi Kivity <avi@qumranet.com>
  14. *
  15. * This work is licensed under the terms of the GNU GPL, version 2. See
  16. * the COPYING file in the top-level directory.
  17. *
  18. */
  19. /*
  20. * We need the mmu code to access both 32-bit and 64-bit guest ptes,
  21. * so the code in this file is compiled twice, once per pte size.
  22. */
  23. #if PTTYPE == 64
  24. #define pt_element_t u64
  25. #define guest_walker guest_walker64
  26. #define FNAME(name) paging##64_##name
  27. #define PT_BASE_ADDR_MASK PT64_BASE_ADDR_MASK
  28. #define PT_DIR_BASE_ADDR_MASK PT64_DIR_BASE_ADDR_MASK
  29. #define PT_INDEX(addr, level) PT64_INDEX(addr, level)
  30. #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
  31. #define PT_LEVEL_MASK(level) PT64_LEVEL_MASK(level)
  32. #define PT_LEVEL_BITS PT64_LEVEL_BITS
  33. #ifdef CONFIG_X86_64
  34. #define PT_MAX_FULL_LEVELS 4
  35. #else
  36. #define PT_MAX_FULL_LEVELS 2
  37. #endif
  38. #elif PTTYPE == 32
  39. #define pt_element_t u32
  40. #define guest_walker guest_walker32
  41. #define FNAME(name) paging##32_##name
  42. #define PT_BASE_ADDR_MASK PT32_BASE_ADDR_MASK
  43. #define PT_DIR_BASE_ADDR_MASK PT32_DIR_BASE_ADDR_MASK
  44. #define PT_INDEX(addr, level) PT32_INDEX(addr, level)
  45. #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
  46. #define PT_LEVEL_MASK(level) PT32_LEVEL_MASK(level)
  47. #define PT_LEVEL_BITS PT32_LEVEL_BITS
  48. #define PT_MAX_FULL_LEVELS 2
  49. #else
  50. #error Invalid PTTYPE value
  51. #endif
  52. /*
  53. * The guest_walker structure emulates the behavior of the hardware page
  54. * table walker.
  55. */
  56. struct guest_walker {
  57. int level;
  58. gfn_t table_gfn[PT_MAX_FULL_LEVELS];
  59. pt_element_t pte;
  60. pt_element_t inherited_ar;
  61. gfn_t gfn;
  62. u32 error_code;
  63. };
  64. /*
  65. * Fetch a guest pte for a guest virtual address
  66. */
  67. static int FNAME(walk_addr)(struct guest_walker *walker,
  68. struct kvm_vcpu *vcpu, gva_t addr,
  69. int write_fault, int user_fault, int fetch_fault)
  70. {
  71. struct page *page = NULL;
  72. pt_element_t *table;
  73. pt_element_t pte;
  74. gfn_t table_gfn;
  75. unsigned index;
  76. gpa_t pte_gpa;
  77. pgprintk("%s: addr %lx\n", __FUNCTION__, addr);
  78. walker->level = vcpu->mmu.root_level;
  79. pte = vcpu->cr3;
  80. #if PTTYPE == 64
  81. if (!is_long_mode(vcpu)) {
  82. pte = vcpu->pdptrs[(addr >> 30) & 3];
  83. if (!is_present_pte(pte))
  84. goto not_present;
  85. --walker->level;
  86. }
  87. #endif
  88. ASSERT((!is_long_mode(vcpu) && is_pae(vcpu)) ||
  89. (vcpu->cr3 & CR3_NONPAE_RESERVED_BITS) == 0);
  90. walker->inherited_ar = PT_USER_MASK | PT_WRITABLE_MASK;
  91. for (;;) {
  92. index = PT_INDEX(addr, walker->level);
  93. table_gfn = (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
  94. walker->table_gfn[walker->level - 1] = table_gfn;
  95. pgprintk("%s: table_gfn[%d] %lx\n", __FUNCTION__,
  96. walker->level - 1, table_gfn);
  97. page = gfn_to_page(vcpu->kvm, (pte & PT64_BASE_ADDR_MASK)
  98. >> PAGE_SHIFT);
  99. table = kmap_atomic(page, KM_USER0);
  100. pte = table[index];
  101. kunmap_atomic(table, KM_USER0);
  102. if (!is_present_pte(pte))
  103. goto not_present;
  104. if (write_fault && !is_writeble_pte(pte))
  105. if (user_fault || is_write_protection(vcpu))
  106. goto access_error;
  107. if (user_fault && !(pte & PT_USER_MASK))
  108. goto access_error;
  109. #if PTTYPE == 64
  110. if (fetch_fault && is_nx(vcpu) && (pte & PT64_NX_MASK))
  111. goto access_error;
  112. #endif
  113. if (!(pte & PT_ACCESSED_MASK)) {
  114. mark_page_dirty(vcpu->kvm, table_gfn);
  115. pte |= PT_ACCESSED_MASK;
  116. table = kmap_atomic(page, KM_USER0);
  117. table[index] = pte;
  118. kunmap_atomic(table, KM_USER0);
  119. }
  120. if (walker->level == PT_PAGE_TABLE_LEVEL) {
  121. walker->gfn = (pte & PT_BASE_ADDR_MASK) >> PAGE_SHIFT;
  122. break;
  123. }
  124. if (walker->level == PT_DIRECTORY_LEVEL
  125. && (pte & PT_PAGE_SIZE_MASK)
  126. && (PTTYPE == 64 || is_pse(vcpu))) {
  127. walker->gfn = (pte & PT_DIR_BASE_ADDR_MASK)
  128. >> PAGE_SHIFT;
  129. walker->gfn += PT_INDEX(addr, PT_PAGE_TABLE_LEVEL);
  130. break;
  131. }
  132. walker->inherited_ar &= pte;
  133. --walker->level;
  134. kvm_release_page(page);
  135. }
  136. if (write_fault && !is_dirty_pte(pte)) {
  137. mark_page_dirty(vcpu->kvm, table_gfn);
  138. pte |= PT_DIRTY_MASK;
  139. table = kmap_atomic(page, KM_USER0);
  140. table[index] = pte;
  141. kunmap_atomic(table, KM_USER0);
  142. pte_gpa = table_gfn << PAGE_SHIFT;
  143. pte_gpa += index * sizeof(pt_element_t);
  144. kvm_mmu_pte_write(vcpu, pte_gpa, (u8 *)&pte, sizeof(pte));
  145. }
  146. kvm_release_page(page);
  147. walker->pte = pte;
  148. pgprintk("%s: pte %llx\n", __FUNCTION__, (u64)pte);
  149. return 1;
  150. not_present:
  151. walker->error_code = 0;
  152. goto err;
  153. access_error:
  154. walker->error_code = PFERR_PRESENT_MASK;
  155. err:
  156. if (write_fault)
  157. walker->error_code |= PFERR_WRITE_MASK;
  158. if (user_fault)
  159. walker->error_code |= PFERR_USER_MASK;
  160. if (fetch_fault)
  161. walker->error_code |= PFERR_FETCH_MASK;
  162. if (page)
  163. kvm_release_page(page);
  164. return 0;
  165. }
  166. static void FNAME(set_pte_common)(struct kvm_vcpu *vcpu,
  167. u64 *shadow_pte,
  168. gpa_t gaddr,
  169. pt_element_t gpte,
  170. u64 access_bits,
  171. int user_fault,
  172. int write_fault,
  173. int *ptwrite,
  174. struct guest_walker *walker,
  175. gfn_t gfn)
  176. {
  177. hpa_t paddr;
  178. int dirty = gpte & PT_DIRTY_MASK;
  179. u64 spte;
  180. int was_rmapped = is_rmap_pte(*shadow_pte);
  181. pgprintk("%s: spte %llx gpte %llx access %llx write_fault %d"
  182. " user_fault %d gfn %lx\n",
  183. __FUNCTION__, *shadow_pte, (u64)gpte, access_bits,
  184. write_fault, user_fault, gfn);
  185. /*
  186. * We don't set the accessed bit, since we sometimes want to see
  187. * whether the guest actually used the pte (in order to detect
  188. * demand paging).
  189. */
  190. spte = PT_PRESENT_MASK | PT_DIRTY_MASK;
  191. spte |= gpte & PT64_NX_MASK;
  192. if (!dirty)
  193. access_bits &= ~PT_WRITABLE_MASK;
  194. paddr = gpa_to_hpa(vcpu->kvm, gaddr & PT64_BASE_ADDR_MASK);
  195. spte |= PT_PRESENT_MASK;
  196. if (access_bits & PT_USER_MASK)
  197. spte |= PT_USER_MASK;
  198. if (is_error_hpa(paddr)) {
  199. set_shadow_pte(shadow_pte,
  200. shadow_trap_nonpresent_pte | PT_SHADOW_IO_MARK);
  201. kvm_release_page(pfn_to_page((paddr & PT64_BASE_ADDR_MASK)
  202. >> PAGE_SHIFT));
  203. return;
  204. }
  205. spte |= paddr;
  206. if ((access_bits & PT_WRITABLE_MASK)
  207. || (write_fault && !is_write_protection(vcpu) && !user_fault)) {
  208. struct kvm_mmu_page *shadow;
  209. spte |= PT_WRITABLE_MASK;
  210. if (user_fault) {
  211. mmu_unshadow(vcpu->kvm, gfn);
  212. goto unshadowed;
  213. }
  214. shadow = kvm_mmu_lookup_page(vcpu->kvm, gfn);
  215. if (shadow) {
  216. pgprintk("%s: found shadow page for %lx, marking ro\n",
  217. __FUNCTION__, gfn);
  218. access_bits &= ~PT_WRITABLE_MASK;
  219. if (is_writeble_pte(spte)) {
  220. spte &= ~PT_WRITABLE_MASK;
  221. kvm_x86_ops->tlb_flush(vcpu);
  222. }
  223. if (write_fault)
  224. *ptwrite = 1;
  225. }
  226. }
  227. unshadowed:
  228. if (access_bits & PT_WRITABLE_MASK)
  229. mark_page_dirty(vcpu->kvm, gaddr >> PAGE_SHIFT);
  230. pgprintk("%s: setting spte %llx\n", __FUNCTION__, spte);
  231. set_shadow_pte(shadow_pte, spte);
  232. page_header_update_slot(vcpu->kvm, shadow_pte, gaddr);
  233. if (!was_rmapped) {
  234. rmap_add(vcpu, shadow_pte, (gaddr & PT64_BASE_ADDR_MASK)
  235. >> PAGE_SHIFT);
  236. if (!is_rmap_pte(*shadow_pte)) {
  237. struct page *page;
  238. page = pfn_to_page((paddr & PT64_BASE_ADDR_MASK)
  239. >> PAGE_SHIFT);
  240. kvm_release_page(page);
  241. }
  242. }
  243. else
  244. kvm_release_page(pfn_to_page((paddr & PT64_BASE_ADDR_MASK)
  245. >> PAGE_SHIFT));
  246. if (!ptwrite || !*ptwrite)
  247. vcpu->last_pte_updated = shadow_pte;
  248. }
  249. static void FNAME(set_pte)(struct kvm_vcpu *vcpu, pt_element_t gpte,
  250. u64 *shadow_pte, u64 access_bits,
  251. int user_fault, int write_fault, int *ptwrite,
  252. struct guest_walker *walker, gfn_t gfn)
  253. {
  254. access_bits &= gpte;
  255. FNAME(set_pte_common)(vcpu, shadow_pte, gpte & PT_BASE_ADDR_MASK,
  256. gpte, access_bits, user_fault, write_fault,
  257. ptwrite, walker, gfn);
  258. }
  259. static void FNAME(update_pte)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *page,
  260. u64 *spte, const void *pte, int bytes,
  261. int offset_in_pte)
  262. {
  263. pt_element_t gpte;
  264. gpte = *(const pt_element_t *)pte;
  265. if (~gpte & (PT_PRESENT_MASK | PT_ACCESSED_MASK)) {
  266. if (!offset_in_pte && !is_present_pte(gpte))
  267. set_shadow_pte(spte, shadow_notrap_nonpresent_pte);
  268. return;
  269. }
  270. if (bytes < sizeof(pt_element_t))
  271. return;
  272. pgprintk("%s: gpte %llx spte %p\n", __FUNCTION__, (u64)gpte, spte);
  273. FNAME(set_pte)(vcpu, gpte, spte, PT_USER_MASK | PT_WRITABLE_MASK, 0,
  274. 0, NULL, NULL,
  275. (gpte & PT_BASE_ADDR_MASK) >> PAGE_SHIFT);
  276. }
  277. static void FNAME(set_pde)(struct kvm_vcpu *vcpu, pt_element_t gpde,
  278. u64 *shadow_pte, u64 access_bits,
  279. int user_fault, int write_fault, int *ptwrite,
  280. struct guest_walker *walker, gfn_t gfn)
  281. {
  282. gpa_t gaddr;
  283. access_bits &= gpde;
  284. gaddr = (gpa_t)gfn << PAGE_SHIFT;
  285. if (PTTYPE == 32 && is_cpuid_PSE36())
  286. gaddr |= (gpde & PT32_DIR_PSE36_MASK) <<
  287. (32 - PT32_DIR_PSE36_SHIFT);
  288. FNAME(set_pte_common)(vcpu, shadow_pte, gaddr,
  289. gpde, access_bits, user_fault, write_fault,
  290. ptwrite, walker, gfn);
  291. }
  292. /*
  293. * Fetch a shadow pte for a specific level in the paging hierarchy.
  294. */
  295. static u64 *FNAME(fetch)(struct kvm_vcpu *vcpu, gva_t addr,
  296. struct guest_walker *walker,
  297. int user_fault, int write_fault, int *ptwrite)
  298. {
  299. hpa_t shadow_addr;
  300. int level;
  301. u64 *shadow_ent;
  302. u64 *prev_shadow_ent = NULL;
  303. if (!is_present_pte(walker->pte))
  304. return NULL;
  305. shadow_addr = vcpu->mmu.root_hpa;
  306. level = vcpu->mmu.shadow_root_level;
  307. if (level == PT32E_ROOT_LEVEL) {
  308. shadow_addr = vcpu->mmu.pae_root[(addr >> 30) & 3];
  309. shadow_addr &= PT64_BASE_ADDR_MASK;
  310. --level;
  311. }
  312. for (; ; level--) {
  313. u32 index = SHADOW_PT_INDEX(addr, level);
  314. struct kvm_mmu_page *shadow_page;
  315. u64 shadow_pte;
  316. int metaphysical;
  317. gfn_t table_gfn;
  318. unsigned hugepage_access = 0;
  319. shadow_ent = ((u64 *)__va(shadow_addr)) + index;
  320. if (is_shadow_present_pte(*shadow_ent)) {
  321. if (level == PT_PAGE_TABLE_LEVEL)
  322. break;
  323. shadow_addr = *shadow_ent & PT64_BASE_ADDR_MASK;
  324. prev_shadow_ent = shadow_ent;
  325. continue;
  326. }
  327. if (level == PT_PAGE_TABLE_LEVEL)
  328. break;
  329. if (level - 1 == PT_PAGE_TABLE_LEVEL
  330. && walker->level == PT_DIRECTORY_LEVEL) {
  331. metaphysical = 1;
  332. hugepage_access = walker->pte;
  333. hugepage_access &= PT_USER_MASK | PT_WRITABLE_MASK;
  334. if (!is_dirty_pte(walker->pte))
  335. hugepage_access &= ~PT_WRITABLE_MASK;
  336. hugepage_access >>= PT_WRITABLE_SHIFT;
  337. if (walker->pte & PT64_NX_MASK)
  338. hugepage_access |= (1 << 2);
  339. table_gfn = (walker->pte & PT_BASE_ADDR_MASK)
  340. >> PAGE_SHIFT;
  341. } else {
  342. metaphysical = 0;
  343. table_gfn = walker->table_gfn[level - 2];
  344. }
  345. shadow_page = kvm_mmu_get_page(vcpu, table_gfn, addr, level-1,
  346. metaphysical, hugepage_access,
  347. shadow_ent);
  348. shadow_addr = __pa(shadow_page->spt);
  349. shadow_pte = shadow_addr | PT_PRESENT_MASK | PT_ACCESSED_MASK
  350. | PT_WRITABLE_MASK | PT_USER_MASK;
  351. *shadow_ent = shadow_pte;
  352. prev_shadow_ent = shadow_ent;
  353. }
  354. if (walker->level == PT_DIRECTORY_LEVEL) {
  355. FNAME(set_pde)(vcpu, walker->pte, shadow_ent,
  356. walker->inherited_ar, user_fault, write_fault,
  357. ptwrite, walker, walker->gfn);
  358. } else {
  359. ASSERT(walker->level == PT_PAGE_TABLE_LEVEL);
  360. FNAME(set_pte)(vcpu, walker->pte, shadow_ent,
  361. walker->inherited_ar, user_fault, write_fault,
  362. ptwrite, walker, walker->gfn);
  363. }
  364. return shadow_ent;
  365. }
  366. /*
  367. * Page fault handler. There are several causes for a page fault:
  368. * - there is no shadow pte for the guest pte
  369. * - write access through a shadow pte marked read only so that we can set
  370. * the dirty bit
  371. * - write access to a shadow pte marked read only so we can update the page
  372. * dirty bitmap, when userspace requests it
  373. * - mmio access; in this case we will never install a present shadow pte
  374. * - normal guest page fault due to the guest pte marked not present, not
  375. * writable, or not executable
  376. *
  377. * Returns: 1 if we need to emulate the instruction, 0 otherwise, or
  378. * a negative value on error.
  379. */
  380. static int FNAME(page_fault)(struct kvm_vcpu *vcpu, gva_t addr,
  381. u32 error_code)
  382. {
  383. int write_fault = error_code & PFERR_WRITE_MASK;
  384. int user_fault = error_code & PFERR_USER_MASK;
  385. int fetch_fault = error_code & PFERR_FETCH_MASK;
  386. struct guest_walker walker;
  387. u64 *shadow_pte;
  388. int write_pt = 0;
  389. int r;
  390. pgprintk("%s: addr %lx err %x\n", __FUNCTION__, addr, error_code);
  391. kvm_mmu_audit(vcpu, "pre page fault");
  392. r = mmu_topup_memory_caches(vcpu);
  393. if (r)
  394. return r;
  395. /*
  396. * Look up the shadow pte for the faulting address.
  397. */
  398. r = FNAME(walk_addr)(&walker, vcpu, addr, write_fault, user_fault,
  399. fetch_fault);
  400. /*
  401. * The page is not mapped by the guest. Let the guest handle it.
  402. */
  403. if (!r) {
  404. pgprintk("%s: guest page fault\n", __FUNCTION__);
  405. inject_page_fault(vcpu, addr, walker.error_code);
  406. vcpu->last_pt_write_count = 0; /* reset fork detector */
  407. return 0;
  408. }
  409. shadow_pte = FNAME(fetch)(vcpu, addr, &walker, user_fault, write_fault,
  410. &write_pt);
  411. pgprintk("%s: shadow pte %p %llx ptwrite %d\n", __FUNCTION__,
  412. shadow_pte, *shadow_pte, write_pt);
  413. if (!write_pt)
  414. vcpu->last_pt_write_count = 0; /* reset fork detector */
  415. /*
  416. * mmio: emulate if accessible, otherwise its a guest fault.
  417. */
  418. if (is_io_pte(*shadow_pte))
  419. return 1;
  420. ++vcpu->stat.pf_fixed;
  421. kvm_mmu_audit(vcpu, "post page fault (fixed)");
  422. return write_pt;
  423. }
  424. static gpa_t FNAME(gva_to_gpa)(struct kvm_vcpu *vcpu, gva_t vaddr)
  425. {
  426. struct guest_walker walker;
  427. gpa_t gpa = UNMAPPED_GVA;
  428. int r;
  429. r = FNAME(walk_addr)(&walker, vcpu, vaddr, 0, 0, 0);
  430. if (r) {
  431. gpa = (gpa_t)walker.gfn << PAGE_SHIFT;
  432. gpa |= vaddr & ~PAGE_MASK;
  433. }
  434. return gpa;
  435. }
  436. static void FNAME(prefetch_page)(struct kvm_vcpu *vcpu,
  437. struct kvm_mmu_page *sp)
  438. {
  439. int i;
  440. pt_element_t *gpt;
  441. struct page *page;
  442. if (sp->role.metaphysical || PTTYPE == 32) {
  443. nonpaging_prefetch_page(vcpu, sp);
  444. return;
  445. }
  446. page = gfn_to_page(vcpu->kvm, sp->gfn);
  447. gpt = kmap_atomic(page, KM_USER0);
  448. for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
  449. if (is_present_pte(gpt[i]))
  450. sp->spt[i] = shadow_trap_nonpresent_pte;
  451. else
  452. sp->spt[i] = shadow_notrap_nonpresent_pte;
  453. kunmap_atomic(gpt, KM_USER0);
  454. kvm_release_page(page);
  455. }
  456. #undef pt_element_t
  457. #undef guest_walker
  458. #undef FNAME
  459. #undef PT_BASE_ADDR_MASK
  460. #undef PT_INDEX
  461. #undef SHADOW_PT_INDEX
  462. #undef PT_LEVEL_MASK
  463. #undef PT_DIR_BASE_ADDR_MASK
  464. #undef PT_LEVEL_BITS
  465. #undef PT_MAX_FULL_LEVELS