intel_display.c 267 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668766976707671767276737674767576767677767876797680768176827683768476857686768776887689769076917692769376947695769676977698769977007701770277037704770577067707770877097710771177127713771477157716771777187719772077217722772377247725772677277728772977307731773277337734773577367737773877397740774177427743774477457746774777487749775077517752775377547755775677577758775977607761776277637764776577667767776877697770777177727773777477757776777777787779778077817782778377847785778677877788778977907791779277937794779577967797779877997800780178027803780478057806780778087809781078117812781378147815781678177818781978207821782278237824782578267827782878297830783178327833783478357836783778387839784078417842784378447845784678477848784978507851785278537854785578567857785878597860786178627863786478657866786778687869787078717872787378747875787678777878787978807881788278837884788578867887788878897890789178927893789478957896789778987899790079017902790379047905790679077908790979107911791279137914791579167917791879197920792179227923792479257926792779287929793079317932793379347935793679377938793979407941794279437944794579467947794879497950795179527953795479557956795779587959796079617962796379647965796679677968796979707971797279737974797579767977797879797980798179827983798479857986798779887989799079917992799379947995799679977998799980008001800280038004800580068007800880098010801180128013801480158016801780188019802080218022802380248025802680278028802980308031803280338034803580368037803880398040804180428043804480458046804780488049805080518052805380548055805680578058805980608061806280638064806580668067806880698070807180728073807480758076807780788079808080818082808380848085808680878088808980908091809280938094809580968097809880998100810181028103810481058106810781088109811081118112811381148115811681178118811981208121812281238124812581268127812881298130813181328133813481358136813781388139814081418142814381448145814681478148814981508151815281538154815581568157815881598160816181628163816481658166816781688169817081718172817381748175817681778178817981808181818281838184818581868187818881898190819181928193819481958196819781988199820082018202820382048205820682078208820982108211821282138214821582168217821882198220822182228223822482258226822782288229823082318232823382348235823682378238823982408241824282438244824582468247824882498250825182528253825482558256825782588259826082618262826382648265826682678268826982708271827282738274827582768277827882798280828182828283828482858286828782888289829082918292829382948295829682978298829983008301830283038304830583068307830883098310831183128313831483158316831783188319832083218322832383248325832683278328832983308331833283338334833583368337833883398340834183428343834483458346834783488349835083518352835383548355835683578358835983608361836283638364836583668367836883698370837183728373837483758376837783788379838083818382838383848385838683878388838983908391839283938394839583968397839883998400840184028403840484058406840784088409841084118412841384148415841684178418841984208421842284238424842584268427842884298430843184328433843484358436843784388439844084418442844384448445844684478448844984508451845284538454845584568457845884598460846184628463846484658466846784688469847084718472847384748475847684778478847984808481848284838484848584868487848884898490849184928493849484958496849784988499850085018502850385048505850685078508850985108511851285138514851585168517851885198520852185228523852485258526852785288529853085318532853385348535853685378538853985408541854285438544854585468547854885498550855185528553855485558556855785588559856085618562856385648565856685678568856985708571857285738574857585768577857885798580858185828583858485858586858785888589859085918592859385948595859685978598859986008601860286038604860586068607860886098610861186128613861486158616861786188619862086218622862386248625862686278628862986308631863286338634863586368637863886398640864186428643864486458646864786488649865086518652865386548655865686578658865986608661866286638664866586668667866886698670867186728673867486758676867786788679868086818682868386848685868686878688868986908691869286938694869586968697869886998700870187028703870487058706870787088709871087118712871387148715871687178718871987208721872287238724872587268727872887298730873187328733873487358736873787388739874087418742874387448745874687478748874987508751875287538754875587568757875887598760876187628763876487658766876787688769877087718772877387748775877687778778877987808781878287838784878587868787878887898790879187928793879487958796879787988799880088018802880388048805880688078808880988108811881288138814881588168817881888198820882188228823882488258826882788288829883088318832883388348835883688378838883988408841884288438844884588468847884888498850885188528853885488558856885788588859886088618862886388648865886688678868886988708871887288738874887588768877887888798880888188828883888488858886888788888889889088918892889388948895889688978898889989008901890289038904890589068907890889098910891189128913891489158916891789188919892089218922892389248925892689278928892989308931893289338934893589368937893889398940894189428943894489458946894789488949895089518952895389548955895689578958895989608961896289638964896589668967896889698970897189728973897489758976897789788979898089818982898389848985898689878988898989908991899289938994899589968997899889999000900190029003900490059006900790089009901090119012901390149015901690179018901990209021902290239024902590269027902890299030903190329033903490359036903790389039904090419042904390449045904690479048904990509051905290539054905590569057905890599060906190629063906490659066906790689069907090719072907390749075907690779078907990809081908290839084908590869087908890899090909190929093909490959096909790989099910091019102910391049105910691079108910991109111911291139114911591169117911891199120912191229123912491259126912791289129913091319132913391349135913691379138913991409141914291439144914591469147914891499150915191529153915491559156915791589159916091619162916391649165916691679168916991709171917291739174917591769177917891799180918191829183918491859186918791889189919091919192919391949195919691979198919992009201920292039204920592069207920892099210921192129213921492159216921792189219922092219222922392249225922692279228922992309231923292339234923592369237923892399240924192429243924492459246924792489249925092519252925392549255925692579258925992609261926292639264926592669267926892699270927192729273927492759276927792789279928092819282928392849285928692879288928992909291929292939294929592969297929892999300930193029303930493059306930793089309931093119312931393149315931693179318931993209321932293239324932593269327932893299330933193329333933493359336933793389339934093419342934393449345934693479348934993509351935293539354935593569357935893599360936193629363936493659366936793689369937093719372937393749375937693779378937993809381938293839384938593869387938893899390939193929393939493959396939793989399940094019402940394049405940694079408940994109411941294139414941594169417941894199420942194229423942494259426942794289429943094319432943394349435943694379438943994409441944294439444944594469447944894499450945194529453945494559456945794589459946094619462946394649465946694679468946994709471947294739474947594769477947894799480948194829483948494859486948794889489949094919492949394949495949694979498949995009501950295039504950595069507950895099510951195129513951495159516951795189519952095219522952395249525952695279528952995309531953295339534953595369537953895399540954195429543954495459546954795489549955095519552955395549555955695579558955995609561956295639564956595669567956895699570957195729573957495759576957795789579958095819582958395849585958695879588958995909591959295939594959595969597959895999600960196029603960496059606960796089609961096119612961396149615961696179618961996209621962296239624962596269627962896299630963196329633963496359636963796389639964096419642964396449645964696479648964996509651965296539654965596569657965896599660966196629663966496659666966796689669967096719672967396749675967696779678967996809681968296839684968596869687968896899690969196929693969496959696969796989699970097019702970397049705970697079708970997109711971297139714971597169717971897199720972197229723972497259726972797289729973097319732973397349735973697379738973997409741974297439744974597469747974897499750975197529753975497559756975797589759976097619762976397649765976697679768976997709771977297739774977597769777977897799780978197829783978497859786978797889789979097919792979397949795979697979798979998009801980298039804980598069807980898099810981198129813981498159816981798189819982098219822982398249825982698279828982998309831983298339834983598369837983898399840984198429843984498459846984798489849985098519852985398549855985698579858985998609861986298639864986598669867986898699870987198729873987498759876987798789879988098819882988398849885
  1. /*
  2. * Copyright © 2006-2007 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
  21. * DEALINGS IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Eric Anholt <eric@anholt.net>
  25. */
  26. #include <linux/dmi.h>
  27. #include <linux/module.h>
  28. #include <linux/input.h>
  29. #include <linux/i2c.h>
  30. #include <linux/kernel.h>
  31. #include <linux/slab.h>
  32. #include <linux/vgaarb.h>
  33. #include <drm/drm_edid.h>
  34. #include <drm/drmP.h>
  35. #include "intel_drv.h"
  36. #include <drm/i915_drm.h>
  37. #include "i915_drv.h"
  38. #include "i915_trace.h"
  39. #include <drm/drm_dp_helper.h>
  40. #include <drm/drm_crtc_helper.h>
  41. #include <linux/dma_remapping.h>
  42. bool intel_pipe_has_type(struct drm_crtc *crtc, int type);
  43. static void intel_increase_pllclock(struct drm_crtc *crtc);
  44. static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
  45. typedef struct {
  46. int min, max;
  47. } intel_range_t;
  48. typedef struct {
  49. int dot_limit;
  50. int p2_slow, p2_fast;
  51. } intel_p2_t;
  52. #define INTEL_P2_NUM 2
  53. typedef struct intel_limit intel_limit_t;
  54. struct intel_limit {
  55. intel_range_t dot, vco, n, m, m1, m2, p, p1;
  56. intel_p2_t p2;
  57. };
  58. /* FDI */
  59. #define IRONLAKE_FDI_FREQ 2700000 /* in kHz for mode->clock */
  60. int
  61. intel_pch_rawclk(struct drm_device *dev)
  62. {
  63. struct drm_i915_private *dev_priv = dev->dev_private;
  64. WARN_ON(!HAS_PCH_SPLIT(dev));
  65. return I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK;
  66. }
  67. static inline u32 /* units of 100MHz */
  68. intel_fdi_link_freq(struct drm_device *dev)
  69. {
  70. if (IS_GEN5(dev)) {
  71. struct drm_i915_private *dev_priv = dev->dev_private;
  72. return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
  73. } else
  74. return 27;
  75. }
  76. static const intel_limit_t intel_limits_i8xx_dvo = {
  77. .dot = { .min = 25000, .max = 350000 },
  78. .vco = { .min = 930000, .max = 1400000 },
  79. .n = { .min = 3, .max = 16 },
  80. .m = { .min = 96, .max = 140 },
  81. .m1 = { .min = 18, .max = 26 },
  82. .m2 = { .min = 6, .max = 16 },
  83. .p = { .min = 4, .max = 128 },
  84. .p1 = { .min = 2, .max = 33 },
  85. .p2 = { .dot_limit = 165000,
  86. .p2_slow = 4, .p2_fast = 2 },
  87. };
  88. static const intel_limit_t intel_limits_i8xx_lvds = {
  89. .dot = { .min = 25000, .max = 350000 },
  90. .vco = { .min = 930000, .max = 1400000 },
  91. .n = { .min = 3, .max = 16 },
  92. .m = { .min = 96, .max = 140 },
  93. .m1 = { .min = 18, .max = 26 },
  94. .m2 = { .min = 6, .max = 16 },
  95. .p = { .min = 4, .max = 128 },
  96. .p1 = { .min = 1, .max = 6 },
  97. .p2 = { .dot_limit = 165000,
  98. .p2_slow = 14, .p2_fast = 7 },
  99. };
  100. static const intel_limit_t intel_limits_i9xx_sdvo = {
  101. .dot = { .min = 20000, .max = 400000 },
  102. .vco = { .min = 1400000, .max = 2800000 },
  103. .n = { .min = 1, .max = 6 },
  104. .m = { .min = 70, .max = 120 },
  105. .m1 = { .min = 8, .max = 18 },
  106. .m2 = { .min = 3, .max = 7 },
  107. .p = { .min = 5, .max = 80 },
  108. .p1 = { .min = 1, .max = 8 },
  109. .p2 = { .dot_limit = 200000,
  110. .p2_slow = 10, .p2_fast = 5 },
  111. };
  112. static const intel_limit_t intel_limits_i9xx_lvds = {
  113. .dot = { .min = 20000, .max = 400000 },
  114. .vco = { .min = 1400000, .max = 2800000 },
  115. .n = { .min = 1, .max = 6 },
  116. .m = { .min = 70, .max = 120 },
  117. .m1 = { .min = 8, .max = 18 },
  118. .m2 = { .min = 3, .max = 7 },
  119. .p = { .min = 7, .max = 98 },
  120. .p1 = { .min = 1, .max = 8 },
  121. .p2 = { .dot_limit = 112000,
  122. .p2_slow = 14, .p2_fast = 7 },
  123. };
  124. static const intel_limit_t intel_limits_g4x_sdvo = {
  125. .dot = { .min = 25000, .max = 270000 },
  126. .vco = { .min = 1750000, .max = 3500000},
  127. .n = { .min = 1, .max = 4 },
  128. .m = { .min = 104, .max = 138 },
  129. .m1 = { .min = 17, .max = 23 },
  130. .m2 = { .min = 5, .max = 11 },
  131. .p = { .min = 10, .max = 30 },
  132. .p1 = { .min = 1, .max = 3},
  133. .p2 = { .dot_limit = 270000,
  134. .p2_slow = 10,
  135. .p2_fast = 10
  136. },
  137. };
  138. static const intel_limit_t intel_limits_g4x_hdmi = {
  139. .dot = { .min = 22000, .max = 400000 },
  140. .vco = { .min = 1750000, .max = 3500000},
  141. .n = { .min = 1, .max = 4 },
  142. .m = { .min = 104, .max = 138 },
  143. .m1 = { .min = 16, .max = 23 },
  144. .m2 = { .min = 5, .max = 11 },
  145. .p = { .min = 5, .max = 80 },
  146. .p1 = { .min = 1, .max = 8},
  147. .p2 = { .dot_limit = 165000,
  148. .p2_slow = 10, .p2_fast = 5 },
  149. };
  150. static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
  151. .dot = { .min = 20000, .max = 115000 },
  152. .vco = { .min = 1750000, .max = 3500000 },
  153. .n = { .min = 1, .max = 3 },
  154. .m = { .min = 104, .max = 138 },
  155. .m1 = { .min = 17, .max = 23 },
  156. .m2 = { .min = 5, .max = 11 },
  157. .p = { .min = 28, .max = 112 },
  158. .p1 = { .min = 2, .max = 8 },
  159. .p2 = { .dot_limit = 0,
  160. .p2_slow = 14, .p2_fast = 14
  161. },
  162. };
  163. static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
  164. .dot = { .min = 80000, .max = 224000 },
  165. .vco = { .min = 1750000, .max = 3500000 },
  166. .n = { .min = 1, .max = 3 },
  167. .m = { .min = 104, .max = 138 },
  168. .m1 = { .min = 17, .max = 23 },
  169. .m2 = { .min = 5, .max = 11 },
  170. .p = { .min = 14, .max = 42 },
  171. .p1 = { .min = 2, .max = 6 },
  172. .p2 = { .dot_limit = 0,
  173. .p2_slow = 7, .p2_fast = 7
  174. },
  175. };
  176. static const intel_limit_t intel_limits_pineview_sdvo = {
  177. .dot = { .min = 20000, .max = 400000},
  178. .vco = { .min = 1700000, .max = 3500000 },
  179. /* Pineview's Ncounter is a ring counter */
  180. .n = { .min = 3, .max = 6 },
  181. .m = { .min = 2, .max = 256 },
  182. /* Pineview only has one combined m divider, which we treat as m2. */
  183. .m1 = { .min = 0, .max = 0 },
  184. .m2 = { .min = 0, .max = 254 },
  185. .p = { .min = 5, .max = 80 },
  186. .p1 = { .min = 1, .max = 8 },
  187. .p2 = { .dot_limit = 200000,
  188. .p2_slow = 10, .p2_fast = 5 },
  189. };
  190. static const intel_limit_t intel_limits_pineview_lvds = {
  191. .dot = { .min = 20000, .max = 400000 },
  192. .vco = { .min = 1700000, .max = 3500000 },
  193. .n = { .min = 3, .max = 6 },
  194. .m = { .min = 2, .max = 256 },
  195. .m1 = { .min = 0, .max = 0 },
  196. .m2 = { .min = 0, .max = 254 },
  197. .p = { .min = 7, .max = 112 },
  198. .p1 = { .min = 1, .max = 8 },
  199. .p2 = { .dot_limit = 112000,
  200. .p2_slow = 14, .p2_fast = 14 },
  201. };
  202. /* Ironlake / Sandybridge
  203. *
  204. * We calculate clock using (register_value + 2) for N/M1/M2, so here
  205. * the range value for them is (actual_value - 2).
  206. */
  207. static const intel_limit_t intel_limits_ironlake_dac = {
  208. .dot = { .min = 25000, .max = 350000 },
  209. .vco = { .min = 1760000, .max = 3510000 },
  210. .n = { .min = 1, .max = 5 },
  211. .m = { .min = 79, .max = 127 },
  212. .m1 = { .min = 12, .max = 22 },
  213. .m2 = { .min = 5, .max = 9 },
  214. .p = { .min = 5, .max = 80 },
  215. .p1 = { .min = 1, .max = 8 },
  216. .p2 = { .dot_limit = 225000,
  217. .p2_slow = 10, .p2_fast = 5 },
  218. };
  219. static const intel_limit_t intel_limits_ironlake_single_lvds = {
  220. .dot = { .min = 25000, .max = 350000 },
  221. .vco = { .min = 1760000, .max = 3510000 },
  222. .n = { .min = 1, .max = 3 },
  223. .m = { .min = 79, .max = 118 },
  224. .m1 = { .min = 12, .max = 22 },
  225. .m2 = { .min = 5, .max = 9 },
  226. .p = { .min = 28, .max = 112 },
  227. .p1 = { .min = 2, .max = 8 },
  228. .p2 = { .dot_limit = 225000,
  229. .p2_slow = 14, .p2_fast = 14 },
  230. };
  231. static const intel_limit_t intel_limits_ironlake_dual_lvds = {
  232. .dot = { .min = 25000, .max = 350000 },
  233. .vco = { .min = 1760000, .max = 3510000 },
  234. .n = { .min = 1, .max = 3 },
  235. .m = { .min = 79, .max = 127 },
  236. .m1 = { .min = 12, .max = 22 },
  237. .m2 = { .min = 5, .max = 9 },
  238. .p = { .min = 14, .max = 56 },
  239. .p1 = { .min = 2, .max = 8 },
  240. .p2 = { .dot_limit = 225000,
  241. .p2_slow = 7, .p2_fast = 7 },
  242. };
  243. /* LVDS 100mhz refclk limits. */
  244. static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
  245. .dot = { .min = 25000, .max = 350000 },
  246. .vco = { .min = 1760000, .max = 3510000 },
  247. .n = { .min = 1, .max = 2 },
  248. .m = { .min = 79, .max = 126 },
  249. .m1 = { .min = 12, .max = 22 },
  250. .m2 = { .min = 5, .max = 9 },
  251. .p = { .min = 28, .max = 112 },
  252. .p1 = { .min = 2, .max = 8 },
  253. .p2 = { .dot_limit = 225000,
  254. .p2_slow = 14, .p2_fast = 14 },
  255. };
  256. static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
  257. .dot = { .min = 25000, .max = 350000 },
  258. .vco = { .min = 1760000, .max = 3510000 },
  259. .n = { .min = 1, .max = 3 },
  260. .m = { .min = 79, .max = 126 },
  261. .m1 = { .min = 12, .max = 22 },
  262. .m2 = { .min = 5, .max = 9 },
  263. .p = { .min = 14, .max = 42 },
  264. .p1 = { .min = 2, .max = 6 },
  265. .p2 = { .dot_limit = 225000,
  266. .p2_slow = 7, .p2_fast = 7 },
  267. };
  268. static const intel_limit_t intel_limits_vlv_dac = {
  269. .dot = { .min = 25000, .max = 270000 },
  270. .vco = { .min = 4000000, .max = 6000000 },
  271. .n = { .min = 1, .max = 7 },
  272. .m = { .min = 22, .max = 450 }, /* guess */
  273. .m1 = { .min = 2, .max = 3 },
  274. .m2 = { .min = 11, .max = 156 },
  275. .p = { .min = 10, .max = 30 },
  276. .p1 = { .min = 1, .max = 3 },
  277. .p2 = { .dot_limit = 270000,
  278. .p2_slow = 2, .p2_fast = 20 },
  279. };
  280. static const intel_limit_t intel_limits_vlv_hdmi = {
  281. .dot = { .min = 25000, .max = 270000 },
  282. .vco = { .min = 4000000, .max = 6000000 },
  283. .n = { .min = 1, .max = 7 },
  284. .m = { .min = 60, .max = 300 }, /* guess */
  285. .m1 = { .min = 2, .max = 3 },
  286. .m2 = { .min = 11, .max = 156 },
  287. .p = { .min = 10, .max = 30 },
  288. .p1 = { .min = 2, .max = 3 },
  289. .p2 = { .dot_limit = 270000,
  290. .p2_slow = 2, .p2_fast = 20 },
  291. };
  292. static const intel_limit_t intel_limits_vlv_dp = {
  293. .dot = { .min = 25000, .max = 270000 },
  294. .vco = { .min = 4000000, .max = 6000000 },
  295. .n = { .min = 1, .max = 7 },
  296. .m = { .min = 22, .max = 450 },
  297. .m1 = { .min = 2, .max = 3 },
  298. .m2 = { .min = 11, .max = 156 },
  299. .p = { .min = 10, .max = 30 },
  300. .p1 = { .min = 1, .max = 3 },
  301. .p2 = { .dot_limit = 270000,
  302. .p2_slow = 2, .p2_fast = 20 },
  303. };
  304. static const intel_limit_t *intel_ironlake_limit(struct drm_crtc *crtc,
  305. int refclk)
  306. {
  307. struct drm_device *dev = crtc->dev;
  308. const intel_limit_t *limit;
  309. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  310. if (intel_is_dual_link_lvds(dev)) {
  311. if (refclk == 100000)
  312. limit = &intel_limits_ironlake_dual_lvds_100m;
  313. else
  314. limit = &intel_limits_ironlake_dual_lvds;
  315. } else {
  316. if (refclk == 100000)
  317. limit = &intel_limits_ironlake_single_lvds_100m;
  318. else
  319. limit = &intel_limits_ironlake_single_lvds;
  320. }
  321. } else
  322. limit = &intel_limits_ironlake_dac;
  323. return limit;
  324. }
  325. static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
  326. {
  327. struct drm_device *dev = crtc->dev;
  328. const intel_limit_t *limit;
  329. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  330. if (intel_is_dual_link_lvds(dev))
  331. limit = &intel_limits_g4x_dual_channel_lvds;
  332. else
  333. limit = &intel_limits_g4x_single_channel_lvds;
  334. } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
  335. intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
  336. limit = &intel_limits_g4x_hdmi;
  337. } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
  338. limit = &intel_limits_g4x_sdvo;
  339. } else /* The option is for other outputs */
  340. limit = &intel_limits_i9xx_sdvo;
  341. return limit;
  342. }
  343. static const intel_limit_t *intel_limit(struct drm_crtc *crtc, int refclk)
  344. {
  345. struct drm_device *dev = crtc->dev;
  346. const intel_limit_t *limit;
  347. if (HAS_PCH_SPLIT(dev))
  348. limit = intel_ironlake_limit(crtc, refclk);
  349. else if (IS_G4X(dev)) {
  350. limit = intel_g4x_limit(crtc);
  351. } else if (IS_PINEVIEW(dev)) {
  352. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
  353. limit = &intel_limits_pineview_lvds;
  354. else
  355. limit = &intel_limits_pineview_sdvo;
  356. } else if (IS_VALLEYVIEW(dev)) {
  357. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG))
  358. limit = &intel_limits_vlv_dac;
  359. else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI))
  360. limit = &intel_limits_vlv_hdmi;
  361. else
  362. limit = &intel_limits_vlv_dp;
  363. } else if (!IS_GEN2(dev)) {
  364. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
  365. limit = &intel_limits_i9xx_lvds;
  366. else
  367. limit = &intel_limits_i9xx_sdvo;
  368. } else {
  369. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
  370. limit = &intel_limits_i8xx_lvds;
  371. else
  372. limit = &intel_limits_i8xx_dvo;
  373. }
  374. return limit;
  375. }
  376. /* m1 is reserved as 0 in Pineview, n is a ring counter */
  377. static void pineview_clock(int refclk, intel_clock_t *clock)
  378. {
  379. clock->m = clock->m2 + 2;
  380. clock->p = clock->p1 * clock->p2;
  381. clock->vco = refclk * clock->m / clock->n;
  382. clock->dot = clock->vco / clock->p;
  383. }
  384. static uint32_t i9xx_dpll_compute_m(struct dpll *dpll)
  385. {
  386. return 5 * (dpll->m1 + 2) + (dpll->m2 + 2);
  387. }
  388. static void i9xx_clock(int refclk, intel_clock_t *clock)
  389. {
  390. clock->m = i9xx_dpll_compute_m(clock);
  391. clock->p = clock->p1 * clock->p2;
  392. clock->vco = refclk * clock->m / (clock->n + 2);
  393. clock->dot = clock->vco / clock->p;
  394. }
  395. /**
  396. * Returns whether any output on the specified pipe is of the specified type
  397. */
  398. bool intel_pipe_has_type(struct drm_crtc *crtc, int type)
  399. {
  400. struct drm_device *dev = crtc->dev;
  401. struct intel_encoder *encoder;
  402. for_each_encoder_on_crtc(dev, crtc, encoder)
  403. if (encoder->type == type)
  404. return true;
  405. return false;
  406. }
  407. #define INTELPllInvalid(s) do { /* DRM_DEBUG(s); */ return false; } while (0)
  408. /**
  409. * Returns whether the given set of divisors are valid for a given refclk with
  410. * the given connectors.
  411. */
  412. static bool intel_PLL_is_valid(struct drm_device *dev,
  413. const intel_limit_t *limit,
  414. const intel_clock_t *clock)
  415. {
  416. if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
  417. INTELPllInvalid("p1 out of range\n");
  418. if (clock->p < limit->p.min || limit->p.max < clock->p)
  419. INTELPllInvalid("p out of range\n");
  420. if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
  421. INTELPllInvalid("m2 out of range\n");
  422. if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
  423. INTELPllInvalid("m1 out of range\n");
  424. if (clock->m1 <= clock->m2 && !IS_PINEVIEW(dev))
  425. INTELPllInvalid("m1 <= m2\n");
  426. if (clock->m < limit->m.min || limit->m.max < clock->m)
  427. INTELPllInvalid("m out of range\n");
  428. if (clock->n < limit->n.min || limit->n.max < clock->n)
  429. INTELPllInvalid("n out of range\n");
  430. if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
  431. INTELPllInvalid("vco out of range\n");
  432. /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
  433. * connector, etc., rather than just a single range.
  434. */
  435. if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
  436. INTELPllInvalid("dot out of range\n");
  437. return true;
  438. }
  439. static bool
  440. i9xx_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
  441. int target, int refclk, intel_clock_t *match_clock,
  442. intel_clock_t *best_clock)
  443. {
  444. struct drm_device *dev = crtc->dev;
  445. intel_clock_t clock;
  446. int err = target;
  447. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  448. /*
  449. * For LVDS just rely on its current settings for dual-channel.
  450. * We haven't figured out how to reliably set up different
  451. * single/dual channel state, if we even can.
  452. */
  453. if (intel_is_dual_link_lvds(dev))
  454. clock.p2 = limit->p2.p2_fast;
  455. else
  456. clock.p2 = limit->p2.p2_slow;
  457. } else {
  458. if (target < limit->p2.dot_limit)
  459. clock.p2 = limit->p2.p2_slow;
  460. else
  461. clock.p2 = limit->p2.p2_fast;
  462. }
  463. memset(best_clock, 0, sizeof(*best_clock));
  464. for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
  465. clock.m1++) {
  466. for (clock.m2 = limit->m2.min;
  467. clock.m2 <= limit->m2.max; clock.m2++) {
  468. if (clock.m2 >= clock.m1)
  469. break;
  470. for (clock.n = limit->n.min;
  471. clock.n <= limit->n.max; clock.n++) {
  472. for (clock.p1 = limit->p1.min;
  473. clock.p1 <= limit->p1.max; clock.p1++) {
  474. int this_err;
  475. i9xx_clock(refclk, &clock);
  476. if (!intel_PLL_is_valid(dev, limit,
  477. &clock))
  478. continue;
  479. if (match_clock &&
  480. clock.p != match_clock->p)
  481. continue;
  482. this_err = abs(clock.dot - target);
  483. if (this_err < err) {
  484. *best_clock = clock;
  485. err = this_err;
  486. }
  487. }
  488. }
  489. }
  490. }
  491. return (err != target);
  492. }
  493. static bool
  494. pnv_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
  495. int target, int refclk, intel_clock_t *match_clock,
  496. intel_clock_t *best_clock)
  497. {
  498. struct drm_device *dev = crtc->dev;
  499. intel_clock_t clock;
  500. int err = target;
  501. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  502. /*
  503. * For LVDS just rely on its current settings for dual-channel.
  504. * We haven't figured out how to reliably set up different
  505. * single/dual channel state, if we even can.
  506. */
  507. if (intel_is_dual_link_lvds(dev))
  508. clock.p2 = limit->p2.p2_fast;
  509. else
  510. clock.p2 = limit->p2.p2_slow;
  511. } else {
  512. if (target < limit->p2.dot_limit)
  513. clock.p2 = limit->p2.p2_slow;
  514. else
  515. clock.p2 = limit->p2.p2_fast;
  516. }
  517. memset(best_clock, 0, sizeof(*best_clock));
  518. for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
  519. clock.m1++) {
  520. for (clock.m2 = limit->m2.min;
  521. clock.m2 <= limit->m2.max; clock.m2++) {
  522. for (clock.n = limit->n.min;
  523. clock.n <= limit->n.max; clock.n++) {
  524. for (clock.p1 = limit->p1.min;
  525. clock.p1 <= limit->p1.max; clock.p1++) {
  526. int this_err;
  527. pineview_clock(refclk, &clock);
  528. if (!intel_PLL_is_valid(dev, limit,
  529. &clock))
  530. continue;
  531. if (match_clock &&
  532. clock.p != match_clock->p)
  533. continue;
  534. this_err = abs(clock.dot - target);
  535. if (this_err < err) {
  536. *best_clock = clock;
  537. err = this_err;
  538. }
  539. }
  540. }
  541. }
  542. }
  543. return (err != target);
  544. }
  545. static bool
  546. g4x_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
  547. int target, int refclk, intel_clock_t *match_clock,
  548. intel_clock_t *best_clock)
  549. {
  550. struct drm_device *dev = crtc->dev;
  551. intel_clock_t clock;
  552. int max_n;
  553. bool found;
  554. /* approximately equals target * 0.00585 */
  555. int err_most = (target >> 8) + (target >> 9);
  556. found = false;
  557. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  558. if (intel_is_dual_link_lvds(dev))
  559. clock.p2 = limit->p2.p2_fast;
  560. else
  561. clock.p2 = limit->p2.p2_slow;
  562. } else {
  563. if (target < limit->p2.dot_limit)
  564. clock.p2 = limit->p2.p2_slow;
  565. else
  566. clock.p2 = limit->p2.p2_fast;
  567. }
  568. memset(best_clock, 0, sizeof(*best_clock));
  569. max_n = limit->n.max;
  570. /* based on hardware requirement, prefer smaller n to precision */
  571. for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
  572. /* based on hardware requirement, prefere larger m1,m2 */
  573. for (clock.m1 = limit->m1.max;
  574. clock.m1 >= limit->m1.min; clock.m1--) {
  575. for (clock.m2 = limit->m2.max;
  576. clock.m2 >= limit->m2.min; clock.m2--) {
  577. for (clock.p1 = limit->p1.max;
  578. clock.p1 >= limit->p1.min; clock.p1--) {
  579. int this_err;
  580. i9xx_clock(refclk, &clock);
  581. if (!intel_PLL_is_valid(dev, limit,
  582. &clock))
  583. continue;
  584. this_err = abs(clock.dot - target);
  585. if (this_err < err_most) {
  586. *best_clock = clock;
  587. err_most = this_err;
  588. max_n = clock.n;
  589. found = true;
  590. }
  591. }
  592. }
  593. }
  594. }
  595. return found;
  596. }
  597. static bool
  598. vlv_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
  599. int target, int refclk, intel_clock_t *match_clock,
  600. intel_clock_t *best_clock)
  601. {
  602. u32 p1, p2, m1, m2, vco, bestn, bestm1, bestm2, bestp1, bestp2;
  603. u32 m, n, fastclk;
  604. u32 updrate, minupdate, fracbits, p;
  605. unsigned long bestppm, ppm, absppm;
  606. int dotclk, flag;
  607. flag = 0;
  608. dotclk = target * 1000;
  609. bestppm = 1000000;
  610. ppm = absppm = 0;
  611. fastclk = dotclk / (2*100);
  612. updrate = 0;
  613. minupdate = 19200;
  614. fracbits = 1;
  615. n = p = p1 = p2 = m = m1 = m2 = vco = bestn = 0;
  616. bestm1 = bestm2 = bestp1 = bestp2 = 0;
  617. /* based on hardware requirement, prefer smaller n to precision */
  618. for (n = limit->n.min; n <= ((refclk) / minupdate); n++) {
  619. updrate = refclk / n;
  620. for (p1 = limit->p1.max; p1 > limit->p1.min; p1--) {
  621. for (p2 = limit->p2.p2_fast+1; p2 > 0; p2--) {
  622. if (p2 > 10)
  623. p2 = p2 - 1;
  624. p = p1 * p2;
  625. /* based on hardware requirement, prefer bigger m1,m2 values */
  626. for (m1 = limit->m1.min; m1 <= limit->m1.max; m1++) {
  627. m2 = (((2*(fastclk * p * n / m1 )) +
  628. refclk) / (2*refclk));
  629. m = m1 * m2;
  630. vco = updrate * m;
  631. if (vco >= limit->vco.min && vco < limit->vco.max) {
  632. ppm = 1000000 * ((vco / p) - fastclk) / fastclk;
  633. absppm = (ppm > 0) ? ppm : (-ppm);
  634. if (absppm < 100 && ((p1 * p2) > (bestp1 * bestp2))) {
  635. bestppm = 0;
  636. flag = 1;
  637. }
  638. if (absppm < bestppm - 10) {
  639. bestppm = absppm;
  640. flag = 1;
  641. }
  642. if (flag) {
  643. bestn = n;
  644. bestm1 = m1;
  645. bestm2 = m2;
  646. bestp1 = p1;
  647. bestp2 = p2;
  648. flag = 0;
  649. }
  650. }
  651. }
  652. }
  653. }
  654. }
  655. best_clock->n = bestn;
  656. best_clock->m1 = bestm1;
  657. best_clock->m2 = bestm2;
  658. best_clock->p1 = bestp1;
  659. best_clock->p2 = bestp2;
  660. return true;
  661. }
  662. enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
  663. enum pipe pipe)
  664. {
  665. struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
  666. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  667. return intel_crtc->config.cpu_transcoder;
  668. }
  669. static void ironlake_wait_for_vblank(struct drm_device *dev, int pipe)
  670. {
  671. struct drm_i915_private *dev_priv = dev->dev_private;
  672. u32 frame, frame_reg = PIPEFRAME(pipe);
  673. frame = I915_READ(frame_reg);
  674. if (wait_for(I915_READ_NOTRACE(frame_reg) != frame, 50))
  675. DRM_DEBUG_KMS("vblank wait timed out\n");
  676. }
  677. /**
  678. * intel_wait_for_vblank - wait for vblank on a given pipe
  679. * @dev: drm device
  680. * @pipe: pipe to wait for
  681. *
  682. * Wait for vblank to occur on a given pipe. Needed for various bits of
  683. * mode setting code.
  684. */
  685. void intel_wait_for_vblank(struct drm_device *dev, int pipe)
  686. {
  687. struct drm_i915_private *dev_priv = dev->dev_private;
  688. int pipestat_reg = PIPESTAT(pipe);
  689. if (INTEL_INFO(dev)->gen >= 5) {
  690. ironlake_wait_for_vblank(dev, pipe);
  691. return;
  692. }
  693. /* Clear existing vblank status. Note this will clear any other
  694. * sticky status fields as well.
  695. *
  696. * This races with i915_driver_irq_handler() with the result
  697. * that either function could miss a vblank event. Here it is not
  698. * fatal, as we will either wait upon the next vblank interrupt or
  699. * timeout. Generally speaking intel_wait_for_vblank() is only
  700. * called during modeset at which time the GPU should be idle and
  701. * should *not* be performing page flips and thus not waiting on
  702. * vblanks...
  703. * Currently, the result of us stealing a vblank from the irq
  704. * handler is that a single frame will be skipped during swapbuffers.
  705. */
  706. I915_WRITE(pipestat_reg,
  707. I915_READ(pipestat_reg) | PIPE_VBLANK_INTERRUPT_STATUS);
  708. /* Wait for vblank interrupt bit to set */
  709. if (wait_for(I915_READ(pipestat_reg) &
  710. PIPE_VBLANK_INTERRUPT_STATUS,
  711. 50))
  712. DRM_DEBUG_KMS("vblank wait timed out\n");
  713. }
  714. /*
  715. * intel_wait_for_pipe_off - wait for pipe to turn off
  716. * @dev: drm device
  717. * @pipe: pipe to wait for
  718. *
  719. * After disabling a pipe, we can't wait for vblank in the usual way,
  720. * spinning on the vblank interrupt status bit, since we won't actually
  721. * see an interrupt when the pipe is disabled.
  722. *
  723. * On Gen4 and above:
  724. * wait for the pipe register state bit to turn off
  725. *
  726. * Otherwise:
  727. * wait for the display line value to settle (it usually
  728. * ends up stopping at the start of the next frame).
  729. *
  730. */
  731. void intel_wait_for_pipe_off(struct drm_device *dev, int pipe)
  732. {
  733. struct drm_i915_private *dev_priv = dev->dev_private;
  734. enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
  735. pipe);
  736. if (INTEL_INFO(dev)->gen >= 4) {
  737. int reg = PIPECONF(cpu_transcoder);
  738. /* Wait for the Pipe State to go off */
  739. if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
  740. 100))
  741. WARN(1, "pipe_off wait timed out\n");
  742. } else {
  743. u32 last_line, line_mask;
  744. int reg = PIPEDSL(pipe);
  745. unsigned long timeout = jiffies + msecs_to_jiffies(100);
  746. if (IS_GEN2(dev))
  747. line_mask = DSL_LINEMASK_GEN2;
  748. else
  749. line_mask = DSL_LINEMASK_GEN3;
  750. /* Wait for the display line to settle */
  751. do {
  752. last_line = I915_READ(reg) & line_mask;
  753. mdelay(5);
  754. } while (((I915_READ(reg) & line_mask) != last_line) &&
  755. time_after(timeout, jiffies));
  756. if (time_after(jiffies, timeout))
  757. WARN(1, "pipe_off wait timed out\n");
  758. }
  759. }
  760. /*
  761. * ibx_digital_port_connected - is the specified port connected?
  762. * @dev_priv: i915 private structure
  763. * @port: the port to test
  764. *
  765. * Returns true if @port is connected, false otherwise.
  766. */
  767. bool ibx_digital_port_connected(struct drm_i915_private *dev_priv,
  768. struct intel_digital_port *port)
  769. {
  770. u32 bit;
  771. if (HAS_PCH_IBX(dev_priv->dev)) {
  772. switch(port->port) {
  773. case PORT_B:
  774. bit = SDE_PORTB_HOTPLUG;
  775. break;
  776. case PORT_C:
  777. bit = SDE_PORTC_HOTPLUG;
  778. break;
  779. case PORT_D:
  780. bit = SDE_PORTD_HOTPLUG;
  781. break;
  782. default:
  783. return true;
  784. }
  785. } else {
  786. switch(port->port) {
  787. case PORT_B:
  788. bit = SDE_PORTB_HOTPLUG_CPT;
  789. break;
  790. case PORT_C:
  791. bit = SDE_PORTC_HOTPLUG_CPT;
  792. break;
  793. case PORT_D:
  794. bit = SDE_PORTD_HOTPLUG_CPT;
  795. break;
  796. default:
  797. return true;
  798. }
  799. }
  800. return I915_READ(SDEISR) & bit;
  801. }
  802. static const char *state_string(bool enabled)
  803. {
  804. return enabled ? "on" : "off";
  805. }
  806. /* Only for pre-ILK configs */
  807. static void assert_pll(struct drm_i915_private *dev_priv,
  808. enum pipe pipe, bool state)
  809. {
  810. int reg;
  811. u32 val;
  812. bool cur_state;
  813. reg = DPLL(pipe);
  814. val = I915_READ(reg);
  815. cur_state = !!(val & DPLL_VCO_ENABLE);
  816. WARN(cur_state != state,
  817. "PLL state assertion failure (expected %s, current %s)\n",
  818. state_string(state), state_string(cur_state));
  819. }
  820. #define assert_pll_enabled(d, p) assert_pll(d, p, true)
  821. #define assert_pll_disabled(d, p) assert_pll(d, p, false)
  822. /* For ILK+ */
  823. static void assert_pch_pll(struct drm_i915_private *dev_priv,
  824. struct intel_pch_pll *pll,
  825. struct intel_crtc *crtc,
  826. bool state)
  827. {
  828. u32 val;
  829. bool cur_state;
  830. if (HAS_PCH_LPT(dev_priv->dev)) {
  831. DRM_DEBUG_DRIVER("LPT detected: skipping PCH PLL test\n");
  832. return;
  833. }
  834. if (WARN (!pll,
  835. "asserting PCH PLL %s with no PLL\n", state_string(state)))
  836. return;
  837. val = I915_READ(pll->pll_reg);
  838. cur_state = !!(val & DPLL_VCO_ENABLE);
  839. WARN(cur_state != state,
  840. "PCH PLL state for reg %x assertion failure (expected %s, current %s), val=%08x\n",
  841. pll->pll_reg, state_string(state), state_string(cur_state), val);
  842. /* Make sure the selected PLL is correctly attached to the transcoder */
  843. if (crtc && HAS_PCH_CPT(dev_priv->dev)) {
  844. u32 pch_dpll;
  845. pch_dpll = I915_READ(PCH_DPLL_SEL);
  846. cur_state = pll->pll_reg == _PCH_DPLL_B;
  847. if (!WARN(((pch_dpll >> (4 * crtc->pipe)) & 1) != cur_state,
  848. "PLL[%d] not attached to this transcoder %c: %08x\n",
  849. cur_state, pipe_name(crtc->pipe), pch_dpll)) {
  850. cur_state = !!(val >> (4*crtc->pipe + 3));
  851. WARN(cur_state != state,
  852. "PLL[%d] not %s on this transcoder %c: %08x\n",
  853. pll->pll_reg == _PCH_DPLL_B,
  854. state_string(state),
  855. pipe_name(crtc->pipe),
  856. val);
  857. }
  858. }
  859. }
  860. #define assert_pch_pll_enabled(d, p, c) assert_pch_pll(d, p, c, true)
  861. #define assert_pch_pll_disabled(d, p, c) assert_pch_pll(d, p, c, false)
  862. static void assert_fdi_tx(struct drm_i915_private *dev_priv,
  863. enum pipe pipe, bool state)
  864. {
  865. int reg;
  866. u32 val;
  867. bool cur_state;
  868. enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
  869. pipe);
  870. if (HAS_DDI(dev_priv->dev)) {
  871. /* DDI does not have a specific FDI_TX register */
  872. reg = TRANS_DDI_FUNC_CTL(cpu_transcoder);
  873. val = I915_READ(reg);
  874. cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
  875. } else {
  876. reg = FDI_TX_CTL(pipe);
  877. val = I915_READ(reg);
  878. cur_state = !!(val & FDI_TX_ENABLE);
  879. }
  880. WARN(cur_state != state,
  881. "FDI TX state assertion failure (expected %s, current %s)\n",
  882. state_string(state), state_string(cur_state));
  883. }
  884. #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
  885. #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
  886. static void assert_fdi_rx(struct drm_i915_private *dev_priv,
  887. enum pipe pipe, bool state)
  888. {
  889. int reg;
  890. u32 val;
  891. bool cur_state;
  892. reg = FDI_RX_CTL(pipe);
  893. val = I915_READ(reg);
  894. cur_state = !!(val & FDI_RX_ENABLE);
  895. WARN(cur_state != state,
  896. "FDI RX state assertion failure (expected %s, current %s)\n",
  897. state_string(state), state_string(cur_state));
  898. }
  899. #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
  900. #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
  901. static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
  902. enum pipe pipe)
  903. {
  904. int reg;
  905. u32 val;
  906. /* ILK FDI PLL is always enabled */
  907. if (dev_priv->info->gen == 5)
  908. return;
  909. /* On Haswell, DDI ports are responsible for the FDI PLL setup */
  910. if (HAS_DDI(dev_priv->dev))
  911. return;
  912. reg = FDI_TX_CTL(pipe);
  913. val = I915_READ(reg);
  914. WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
  915. }
  916. static void assert_fdi_rx_pll_enabled(struct drm_i915_private *dev_priv,
  917. enum pipe pipe)
  918. {
  919. int reg;
  920. u32 val;
  921. reg = FDI_RX_CTL(pipe);
  922. val = I915_READ(reg);
  923. WARN(!(val & FDI_RX_PLL_ENABLE), "FDI RX PLL assertion failure, should be active but is disabled\n");
  924. }
  925. static void assert_panel_unlocked(struct drm_i915_private *dev_priv,
  926. enum pipe pipe)
  927. {
  928. int pp_reg, lvds_reg;
  929. u32 val;
  930. enum pipe panel_pipe = PIPE_A;
  931. bool locked = true;
  932. if (HAS_PCH_SPLIT(dev_priv->dev)) {
  933. pp_reg = PCH_PP_CONTROL;
  934. lvds_reg = PCH_LVDS;
  935. } else {
  936. pp_reg = PP_CONTROL;
  937. lvds_reg = LVDS;
  938. }
  939. val = I915_READ(pp_reg);
  940. if (!(val & PANEL_POWER_ON) ||
  941. ((val & PANEL_UNLOCK_REGS) == PANEL_UNLOCK_REGS))
  942. locked = false;
  943. if (I915_READ(lvds_reg) & LVDS_PIPEB_SELECT)
  944. panel_pipe = PIPE_B;
  945. WARN(panel_pipe == pipe && locked,
  946. "panel assertion failure, pipe %c regs locked\n",
  947. pipe_name(pipe));
  948. }
  949. void assert_pipe(struct drm_i915_private *dev_priv,
  950. enum pipe pipe, bool state)
  951. {
  952. int reg;
  953. u32 val;
  954. bool cur_state;
  955. enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
  956. pipe);
  957. /* if we need the pipe A quirk it must be always on */
  958. if (pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE)
  959. state = true;
  960. if (!intel_display_power_enabled(dev_priv->dev,
  961. POWER_DOMAIN_TRANSCODER(cpu_transcoder))) {
  962. cur_state = false;
  963. } else {
  964. reg = PIPECONF(cpu_transcoder);
  965. val = I915_READ(reg);
  966. cur_state = !!(val & PIPECONF_ENABLE);
  967. }
  968. WARN(cur_state != state,
  969. "pipe %c assertion failure (expected %s, current %s)\n",
  970. pipe_name(pipe), state_string(state), state_string(cur_state));
  971. }
  972. static void assert_plane(struct drm_i915_private *dev_priv,
  973. enum plane plane, bool state)
  974. {
  975. int reg;
  976. u32 val;
  977. bool cur_state;
  978. reg = DSPCNTR(plane);
  979. val = I915_READ(reg);
  980. cur_state = !!(val & DISPLAY_PLANE_ENABLE);
  981. WARN(cur_state != state,
  982. "plane %c assertion failure (expected %s, current %s)\n",
  983. plane_name(plane), state_string(state), state_string(cur_state));
  984. }
  985. #define assert_plane_enabled(d, p) assert_plane(d, p, true)
  986. #define assert_plane_disabled(d, p) assert_plane(d, p, false)
  987. static void assert_planes_disabled(struct drm_i915_private *dev_priv,
  988. enum pipe pipe)
  989. {
  990. int reg, i;
  991. u32 val;
  992. int cur_pipe;
  993. /* Planes are fixed to pipes on ILK+ */
  994. if (HAS_PCH_SPLIT(dev_priv->dev) || IS_VALLEYVIEW(dev_priv->dev)) {
  995. reg = DSPCNTR(pipe);
  996. val = I915_READ(reg);
  997. WARN((val & DISPLAY_PLANE_ENABLE),
  998. "plane %c assertion failure, should be disabled but not\n",
  999. plane_name(pipe));
  1000. return;
  1001. }
  1002. /* Need to check both planes against the pipe */
  1003. for (i = 0; i < 2; i++) {
  1004. reg = DSPCNTR(i);
  1005. val = I915_READ(reg);
  1006. cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
  1007. DISPPLANE_SEL_PIPE_SHIFT;
  1008. WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
  1009. "plane %c assertion failure, should be off on pipe %c but is still active\n",
  1010. plane_name(i), pipe_name(pipe));
  1011. }
  1012. }
  1013. static void assert_sprites_disabled(struct drm_i915_private *dev_priv,
  1014. enum pipe pipe)
  1015. {
  1016. int reg, i;
  1017. u32 val;
  1018. if (!IS_VALLEYVIEW(dev_priv->dev))
  1019. return;
  1020. /* Need to check both planes against the pipe */
  1021. for (i = 0; i < dev_priv->num_plane; i++) {
  1022. reg = SPCNTR(pipe, i);
  1023. val = I915_READ(reg);
  1024. WARN((val & SP_ENABLE),
  1025. "sprite %c assertion failure, should be off on pipe %c but is still active\n",
  1026. sprite_name(pipe, i), pipe_name(pipe));
  1027. }
  1028. }
  1029. static void assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
  1030. {
  1031. u32 val;
  1032. bool enabled;
  1033. if (HAS_PCH_LPT(dev_priv->dev)) {
  1034. DRM_DEBUG_DRIVER("LPT does not has PCH refclk, skipping check\n");
  1035. return;
  1036. }
  1037. val = I915_READ(PCH_DREF_CONTROL);
  1038. enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
  1039. DREF_SUPERSPREAD_SOURCE_MASK));
  1040. WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
  1041. }
  1042. static void assert_pch_transcoder_disabled(struct drm_i915_private *dev_priv,
  1043. enum pipe pipe)
  1044. {
  1045. int reg;
  1046. u32 val;
  1047. bool enabled;
  1048. reg = PCH_TRANSCONF(pipe);
  1049. val = I915_READ(reg);
  1050. enabled = !!(val & TRANS_ENABLE);
  1051. WARN(enabled,
  1052. "transcoder assertion failed, should be off on pipe %c but is still active\n",
  1053. pipe_name(pipe));
  1054. }
  1055. static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
  1056. enum pipe pipe, u32 port_sel, u32 val)
  1057. {
  1058. if ((val & DP_PORT_EN) == 0)
  1059. return false;
  1060. if (HAS_PCH_CPT(dev_priv->dev)) {
  1061. u32 trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
  1062. u32 trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
  1063. if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
  1064. return false;
  1065. } else {
  1066. if ((val & DP_PIPE_MASK) != (pipe << 30))
  1067. return false;
  1068. }
  1069. return true;
  1070. }
  1071. static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
  1072. enum pipe pipe, u32 val)
  1073. {
  1074. if ((val & SDVO_ENABLE) == 0)
  1075. return false;
  1076. if (HAS_PCH_CPT(dev_priv->dev)) {
  1077. if ((val & SDVO_PIPE_SEL_MASK_CPT) != SDVO_PIPE_SEL_CPT(pipe))
  1078. return false;
  1079. } else {
  1080. if ((val & SDVO_PIPE_SEL_MASK) != SDVO_PIPE_SEL(pipe))
  1081. return false;
  1082. }
  1083. return true;
  1084. }
  1085. static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
  1086. enum pipe pipe, u32 val)
  1087. {
  1088. if ((val & LVDS_PORT_EN) == 0)
  1089. return false;
  1090. if (HAS_PCH_CPT(dev_priv->dev)) {
  1091. if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
  1092. return false;
  1093. } else {
  1094. if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
  1095. return false;
  1096. }
  1097. return true;
  1098. }
  1099. static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
  1100. enum pipe pipe, u32 val)
  1101. {
  1102. if ((val & ADPA_DAC_ENABLE) == 0)
  1103. return false;
  1104. if (HAS_PCH_CPT(dev_priv->dev)) {
  1105. if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
  1106. return false;
  1107. } else {
  1108. if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
  1109. return false;
  1110. }
  1111. return true;
  1112. }
  1113. static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
  1114. enum pipe pipe, int reg, u32 port_sel)
  1115. {
  1116. u32 val = I915_READ(reg);
  1117. WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
  1118. "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
  1119. reg, pipe_name(pipe));
  1120. WARN(HAS_PCH_IBX(dev_priv->dev) && (val & DP_PORT_EN) == 0
  1121. && (val & DP_PIPEB_SELECT),
  1122. "IBX PCH dp port still using transcoder B\n");
  1123. }
  1124. static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
  1125. enum pipe pipe, int reg)
  1126. {
  1127. u32 val = I915_READ(reg);
  1128. WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
  1129. "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
  1130. reg, pipe_name(pipe));
  1131. WARN(HAS_PCH_IBX(dev_priv->dev) && (val & SDVO_ENABLE) == 0
  1132. && (val & SDVO_PIPE_B_SELECT),
  1133. "IBX PCH hdmi port still using transcoder B\n");
  1134. }
  1135. static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
  1136. enum pipe pipe)
  1137. {
  1138. int reg;
  1139. u32 val;
  1140. assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
  1141. assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
  1142. assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
  1143. reg = PCH_ADPA;
  1144. val = I915_READ(reg);
  1145. WARN(adpa_pipe_enabled(dev_priv, pipe, val),
  1146. "PCH VGA enabled on transcoder %c, should be disabled\n",
  1147. pipe_name(pipe));
  1148. reg = PCH_LVDS;
  1149. val = I915_READ(reg);
  1150. WARN(lvds_pipe_enabled(dev_priv, pipe, val),
  1151. "PCH LVDS enabled on transcoder %c, should be disabled\n",
  1152. pipe_name(pipe));
  1153. assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIB);
  1154. assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIC);
  1155. assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMID);
  1156. }
  1157. /**
  1158. * intel_enable_pll - enable a PLL
  1159. * @dev_priv: i915 private structure
  1160. * @pipe: pipe PLL to enable
  1161. *
  1162. * Enable @pipe's PLL so we can start pumping pixels from a plane. Check to
  1163. * make sure the PLL reg is writable first though, since the panel write
  1164. * protect mechanism may be enabled.
  1165. *
  1166. * Note! This is for pre-ILK only.
  1167. *
  1168. * Unfortunately needed by dvo_ns2501 since the dvo depends on it running.
  1169. */
  1170. static void intel_enable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
  1171. {
  1172. int reg;
  1173. u32 val;
  1174. assert_pipe_disabled(dev_priv, pipe);
  1175. /* No really, not for ILK+ */
  1176. BUG_ON(!IS_VALLEYVIEW(dev_priv->dev) && dev_priv->info->gen >= 5);
  1177. /* PLL is protected by panel, make sure we can write it */
  1178. if (IS_MOBILE(dev_priv->dev) && !IS_I830(dev_priv->dev))
  1179. assert_panel_unlocked(dev_priv, pipe);
  1180. reg = DPLL(pipe);
  1181. val = I915_READ(reg);
  1182. val |= DPLL_VCO_ENABLE;
  1183. /* We do this three times for luck */
  1184. I915_WRITE(reg, val);
  1185. POSTING_READ(reg);
  1186. udelay(150); /* wait for warmup */
  1187. I915_WRITE(reg, val);
  1188. POSTING_READ(reg);
  1189. udelay(150); /* wait for warmup */
  1190. I915_WRITE(reg, val);
  1191. POSTING_READ(reg);
  1192. udelay(150); /* wait for warmup */
  1193. }
  1194. /**
  1195. * intel_disable_pll - disable a PLL
  1196. * @dev_priv: i915 private structure
  1197. * @pipe: pipe PLL to disable
  1198. *
  1199. * Disable the PLL for @pipe, making sure the pipe is off first.
  1200. *
  1201. * Note! This is for pre-ILK only.
  1202. */
  1203. static void intel_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
  1204. {
  1205. int reg;
  1206. u32 val;
  1207. /* Don't disable pipe A or pipe A PLLs if needed */
  1208. if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
  1209. return;
  1210. /* Make sure the pipe isn't still relying on us */
  1211. assert_pipe_disabled(dev_priv, pipe);
  1212. reg = DPLL(pipe);
  1213. val = I915_READ(reg);
  1214. val &= ~DPLL_VCO_ENABLE;
  1215. I915_WRITE(reg, val);
  1216. POSTING_READ(reg);
  1217. }
  1218. void vlv_wait_port_ready(struct drm_i915_private *dev_priv, int port)
  1219. {
  1220. u32 port_mask;
  1221. if (!port)
  1222. port_mask = DPLL_PORTB_READY_MASK;
  1223. else
  1224. port_mask = DPLL_PORTC_READY_MASK;
  1225. if (wait_for((I915_READ(DPLL(0)) & port_mask) == 0, 1000))
  1226. WARN(1, "timed out waiting for port %c ready: 0x%08x\n",
  1227. 'B' + port, I915_READ(DPLL(0)));
  1228. }
  1229. /**
  1230. * ironlake_enable_pch_pll - enable PCH PLL
  1231. * @dev_priv: i915 private structure
  1232. * @pipe: pipe PLL to enable
  1233. *
  1234. * The PCH PLL needs to be enabled before the PCH transcoder, since it
  1235. * drives the transcoder clock.
  1236. */
  1237. static void ironlake_enable_pch_pll(struct intel_crtc *intel_crtc)
  1238. {
  1239. struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
  1240. struct intel_pch_pll *pll;
  1241. int reg;
  1242. u32 val;
  1243. /* PCH PLLs only available on ILK, SNB and IVB */
  1244. BUG_ON(dev_priv->info->gen < 5);
  1245. pll = intel_crtc->pch_pll;
  1246. if (pll == NULL)
  1247. return;
  1248. if (WARN_ON(pll->refcount == 0))
  1249. return;
  1250. DRM_DEBUG_KMS("enable PCH PLL %x (active %d, on? %d)for crtc %d\n",
  1251. pll->pll_reg, pll->active, pll->on,
  1252. intel_crtc->base.base.id);
  1253. /* PCH refclock must be enabled first */
  1254. assert_pch_refclk_enabled(dev_priv);
  1255. if (pll->active++ && pll->on) {
  1256. assert_pch_pll_enabled(dev_priv, pll, NULL);
  1257. return;
  1258. }
  1259. DRM_DEBUG_KMS("enabling PCH PLL %x\n", pll->pll_reg);
  1260. reg = pll->pll_reg;
  1261. val = I915_READ(reg);
  1262. val |= DPLL_VCO_ENABLE;
  1263. I915_WRITE(reg, val);
  1264. POSTING_READ(reg);
  1265. udelay(200);
  1266. pll->on = true;
  1267. }
  1268. static void intel_disable_pch_pll(struct intel_crtc *intel_crtc)
  1269. {
  1270. struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
  1271. struct intel_pch_pll *pll = intel_crtc->pch_pll;
  1272. int reg;
  1273. u32 val;
  1274. /* PCH only available on ILK+ */
  1275. BUG_ON(dev_priv->info->gen < 5);
  1276. if (pll == NULL)
  1277. return;
  1278. if (WARN_ON(pll->refcount == 0))
  1279. return;
  1280. DRM_DEBUG_KMS("disable PCH PLL %x (active %d, on? %d) for crtc %d\n",
  1281. pll->pll_reg, pll->active, pll->on,
  1282. intel_crtc->base.base.id);
  1283. if (WARN_ON(pll->active == 0)) {
  1284. assert_pch_pll_disabled(dev_priv, pll, NULL);
  1285. return;
  1286. }
  1287. if (--pll->active) {
  1288. assert_pch_pll_enabled(dev_priv, pll, NULL);
  1289. return;
  1290. }
  1291. DRM_DEBUG_KMS("disabling PCH PLL %x\n", pll->pll_reg);
  1292. /* Make sure transcoder isn't still depending on us */
  1293. assert_pch_transcoder_disabled(dev_priv, intel_crtc->pipe);
  1294. reg = pll->pll_reg;
  1295. val = I915_READ(reg);
  1296. val &= ~DPLL_VCO_ENABLE;
  1297. I915_WRITE(reg, val);
  1298. POSTING_READ(reg);
  1299. udelay(200);
  1300. pll->on = false;
  1301. }
  1302. static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv,
  1303. enum pipe pipe)
  1304. {
  1305. struct drm_device *dev = dev_priv->dev;
  1306. struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
  1307. uint32_t reg, val, pipeconf_val;
  1308. /* PCH only available on ILK+ */
  1309. BUG_ON(dev_priv->info->gen < 5);
  1310. /* Make sure PCH DPLL is enabled */
  1311. assert_pch_pll_enabled(dev_priv,
  1312. to_intel_crtc(crtc)->pch_pll,
  1313. to_intel_crtc(crtc));
  1314. /* FDI must be feeding us bits for PCH ports */
  1315. assert_fdi_tx_enabled(dev_priv, pipe);
  1316. assert_fdi_rx_enabled(dev_priv, pipe);
  1317. if (HAS_PCH_CPT(dev)) {
  1318. /* Workaround: Set the timing override bit before enabling the
  1319. * pch transcoder. */
  1320. reg = TRANS_CHICKEN2(pipe);
  1321. val = I915_READ(reg);
  1322. val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
  1323. I915_WRITE(reg, val);
  1324. }
  1325. reg = PCH_TRANSCONF(pipe);
  1326. val = I915_READ(reg);
  1327. pipeconf_val = I915_READ(PIPECONF(pipe));
  1328. if (HAS_PCH_IBX(dev_priv->dev)) {
  1329. /*
  1330. * make the BPC in transcoder be consistent with
  1331. * that in pipeconf reg.
  1332. */
  1333. val &= ~PIPECONF_BPC_MASK;
  1334. val |= pipeconf_val & PIPECONF_BPC_MASK;
  1335. }
  1336. val &= ~TRANS_INTERLACE_MASK;
  1337. if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
  1338. if (HAS_PCH_IBX(dev_priv->dev) &&
  1339. intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO))
  1340. val |= TRANS_LEGACY_INTERLACED_ILK;
  1341. else
  1342. val |= TRANS_INTERLACED;
  1343. else
  1344. val |= TRANS_PROGRESSIVE;
  1345. I915_WRITE(reg, val | TRANS_ENABLE);
  1346. if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
  1347. DRM_ERROR("failed to enable transcoder %c\n", pipe_name(pipe));
  1348. }
  1349. static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
  1350. enum transcoder cpu_transcoder)
  1351. {
  1352. u32 val, pipeconf_val;
  1353. /* PCH only available on ILK+ */
  1354. BUG_ON(dev_priv->info->gen < 5);
  1355. /* FDI must be feeding us bits for PCH ports */
  1356. assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder);
  1357. assert_fdi_rx_enabled(dev_priv, TRANSCODER_A);
  1358. /* Workaround: set timing override bit. */
  1359. val = I915_READ(_TRANSA_CHICKEN2);
  1360. val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
  1361. I915_WRITE(_TRANSA_CHICKEN2, val);
  1362. val = TRANS_ENABLE;
  1363. pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
  1364. if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
  1365. PIPECONF_INTERLACED_ILK)
  1366. val |= TRANS_INTERLACED;
  1367. else
  1368. val |= TRANS_PROGRESSIVE;
  1369. I915_WRITE(LPT_TRANSCONF, val);
  1370. if (wait_for(I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE, 100))
  1371. DRM_ERROR("Failed to enable PCH transcoder\n");
  1372. }
  1373. static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
  1374. enum pipe pipe)
  1375. {
  1376. struct drm_device *dev = dev_priv->dev;
  1377. uint32_t reg, val;
  1378. /* FDI relies on the transcoder */
  1379. assert_fdi_tx_disabled(dev_priv, pipe);
  1380. assert_fdi_rx_disabled(dev_priv, pipe);
  1381. /* Ports must be off as well */
  1382. assert_pch_ports_disabled(dev_priv, pipe);
  1383. reg = PCH_TRANSCONF(pipe);
  1384. val = I915_READ(reg);
  1385. val &= ~TRANS_ENABLE;
  1386. I915_WRITE(reg, val);
  1387. /* wait for PCH transcoder off, transcoder state */
  1388. if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
  1389. DRM_ERROR("failed to disable transcoder %c\n", pipe_name(pipe));
  1390. if (!HAS_PCH_IBX(dev)) {
  1391. /* Workaround: Clear the timing override chicken bit again. */
  1392. reg = TRANS_CHICKEN2(pipe);
  1393. val = I915_READ(reg);
  1394. val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
  1395. I915_WRITE(reg, val);
  1396. }
  1397. }
  1398. static void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
  1399. {
  1400. u32 val;
  1401. val = I915_READ(LPT_TRANSCONF);
  1402. val &= ~TRANS_ENABLE;
  1403. I915_WRITE(LPT_TRANSCONF, val);
  1404. /* wait for PCH transcoder off, transcoder state */
  1405. if (wait_for((I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE) == 0, 50))
  1406. DRM_ERROR("Failed to disable PCH transcoder\n");
  1407. /* Workaround: clear timing override bit. */
  1408. val = I915_READ(_TRANSA_CHICKEN2);
  1409. val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
  1410. I915_WRITE(_TRANSA_CHICKEN2, val);
  1411. }
  1412. /**
  1413. * intel_enable_pipe - enable a pipe, asserting requirements
  1414. * @dev_priv: i915 private structure
  1415. * @pipe: pipe to enable
  1416. * @pch_port: on ILK+, is this pipe driving a PCH port or not
  1417. *
  1418. * Enable @pipe, making sure that various hardware specific requirements
  1419. * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
  1420. *
  1421. * @pipe should be %PIPE_A or %PIPE_B.
  1422. *
  1423. * Will wait until the pipe is actually running (i.e. first vblank) before
  1424. * returning.
  1425. */
  1426. static void intel_enable_pipe(struct drm_i915_private *dev_priv, enum pipe pipe,
  1427. bool pch_port)
  1428. {
  1429. enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
  1430. pipe);
  1431. enum pipe pch_transcoder;
  1432. int reg;
  1433. u32 val;
  1434. assert_planes_disabled(dev_priv, pipe);
  1435. assert_sprites_disabled(dev_priv, pipe);
  1436. if (HAS_PCH_LPT(dev_priv->dev))
  1437. pch_transcoder = TRANSCODER_A;
  1438. else
  1439. pch_transcoder = pipe;
  1440. /*
  1441. * A pipe without a PLL won't actually be able to drive bits from
  1442. * a plane. On ILK+ the pipe PLLs are integrated, so we don't
  1443. * need the check.
  1444. */
  1445. if (!HAS_PCH_SPLIT(dev_priv->dev))
  1446. assert_pll_enabled(dev_priv, pipe);
  1447. else {
  1448. if (pch_port) {
  1449. /* if driving the PCH, we need FDI enabled */
  1450. assert_fdi_rx_pll_enabled(dev_priv, pch_transcoder);
  1451. assert_fdi_tx_pll_enabled(dev_priv,
  1452. (enum pipe) cpu_transcoder);
  1453. }
  1454. /* FIXME: assert CPU port conditions for SNB+ */
  1455. }
  1456. reg = PIPECONF(cpu_transcoder);
  1457. val = I915_READ(reg);
  1458. if (val & PIPECONF_ENABLE)
  1459. return;
  1460. I915_WRITE(reg, val | PIPECONF_ENABLE);
  1461. intel_wait_for_vblank(dev_priv->dev, pipe);
  1462. }
  1463. /**
  1464. * intel_disable_pipe - disable a pipe, asserting requirements
  1465. * @dev_priv: i915 private structure
  1466. * @pipe: pipe to disable
  1467. *
  1468. * Disable @pipe, making sure that various hardware specific requirements
  1469. * are met, if applicable, e.g. plane disabled, panel fitter off, etc.
  1470. *
  1471. * @pipe should be %PIPE_A or %PIPE_B.
  1472. *
  1473. * Will wait until the pipe has shut down before returning.
  1474. */
  1475. static void intel_disable_pipe(struct drm_i915_private *dev_priv,
  1476. enum pipe pipe)
  1477. {
  1478. enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
  1479. pipe);
  1480. int reg;
  1481. u32 val;
  1482. /*
  1483. * Make sure planes won't keep trying to pump pixels to us,
  1484. * or we might hang the display.
  1485. */
  1486. assert_planes_disabled(dev_priv, pipe);
  1487. assert_sprites_disabled(dev_priv, pipe);
  1488. /* Don't disable pipe A or pipe A PLLs if needed */
  1489. if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
  1490. return;
  1491. reg = PIPECONF(cpu_transcoder);
  1492. val = I915_READ(reg);
  1493. if ((val & PIPECONF_ENABLE) == 0)
  1494. return;
  1495. I915_WRITE(reg, val & ~PIPECONF_ENABLE);
  1496. intel_wait_for_pipe_off(dev_priv->dev, pipe);
  1497. }
  1498. /*
  1499. * Plane regs are double buffered, going from enabled->disabled needs a
  1500. * trigger in order to latch. The display address reg provides this.
  1501. */
  1502. void intel_flush_display_plane(struct drm_i915_private *dev_priv,
  1503. enum plane plane)
  1504. {
  1505. if (dev_priv->info->gen >= 4)
  1506. I915_WRITE(DSPSURF(plane), I915_READ(DSPSURF(plane)));
  1507. else
  1508. I915_WRITE(DSPADDR(plane), I915_READ(DSPADDR(plane)));
  1509. }
  1510. /**
  1511. * intel_enable_plane - enable a display plane on a given pipe
  1512. * @dev_priv: i915 private structure
  1513. * @plane: plane to enable
  1514. * @pipe: pipe being fed
  1515. *
  1516. * Enable @plane on @pipe, making sure that @pipe is running first.
  1517. */
  1518. static void intel_enable_plane(struct drm_i915_private *dev_priv,
  1519. enum plane plane, enum pipe pipe)
  1520. {
  1521. int reg;
  1522. u32 val;
  1523. /* If the pipe isn't enabled, we can't pump pixels and may hang */
  1524. assert_pipe_enabled(dev_priv, pipe);
  1525. reg = DSPCNTR(plane);
  1526. val = I915_READ(reg);
  1527. if (val & DISPLAY_PLANE_ENABLE)
  1528. return;
  1529. I915_WRITE(reg, val | DISPLAY_PLANE_ENABLE);
  1530. intel_flush_display_plane(dev_priv, plane);
  1531. intel_wait_for_vblank(dev_priv->dev, pipe);
  1532. }
  1533. /**
  1534. * intel_disable_plane - disable a display plane
  1535. * @dev_priv: i915 private structure
  1536. * @plane: plane to disable
  1537. * @pipe: pipe consuming the data
  1538. *
  1539. * Disable @plane; should be an independent operation.
  1540. */
  1541. static void intel_disable_plane(struct drm_i915_private *dev_priv,
  1542. enum plane plane, enum pipe pipe)
  1543. {
  1544. int reg;
  1545. u32 val;
  1546. reg = DSPCNTR(plane);
  1547. val = I915_READ(reg);
  1548. if ((val & DISPLAY_PLANE_ENABLE) == 0)
  1549. return;
  1550. I915_WRITE(reg, val & ~DISPLAY_PLANE_ENABLE);
  1551. intel_flush_display_plane(dev_priv, plane);
  1552. intel_wait_for_vblank(dev_priv->dev, pipe);
  1553. }
  1554. static bool need_vtd_wa(struct drm_device *dev)
  1555. {
  1556. #ifdef CONFIG_INTEL_IOMMU
  1557. if (INTEL_INFO(dev)->gen >= 6 && intel_iommu_gfx_mapped)
  1558. return true;
  1559. #endif
  1560. return false;
  1561. }
  1562. int
  1563. intel_pin_and_fence_fb_obj(struct drm_device *dev,
  1564. struct drm_i915_gem_object *obj,
  1565. struct intel_ring_buffer *pipelined)
  1566. {
  1567. struct drm_i915_private *dev_priv = dev->dev_private;
  1568. u32 alignment;
  1569. int ret;
  1570. switch (obj->tiling_mode) {
  1571. case I915_TILING_NONE:
  1572. if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
  1573. alignment = 128 * 1024;
  1574. else if (INTEL_INFO(dev)->gen >= 4)
  1575. alignment = 4 * 1024;
  1576. else
  1577. alignment = 64 * 1024;
  1578. break;
  1579. case I915_TILING_X:
  1580. /* pin() will align the object as required by fence */
  1581. alignment = 0;
  1582. break;
  1583. case I915_TILING_Y:
  1584. /* Despite that we check this in framebuffer_init userspace can
  1585. * screw us over and change the tiling after the fact. Only
  1586. * pinned buffers can't change their tiling. */
  1587. DRM_DEBUG_DRIVER("Y tiled not allowed for scan out buffers\n");
  1588. return -EINVAL;
  1589. default:
  1590. BUG();
  1591. }
  1592. /* Note that the w/a also requires 64 PTE of padding following the
  1593. * bo. We currently fill all unused PTE with the shadow page and so
  1594. * we should always have valid PTE following the scanout preventing
  1595. * the VT-d warning.
  1596. */
  1597. if (need_vtd_wa(dev) && alignment < 256 * 1024)
  1598. alignment = 256 * 1024;
  1599. dev_priv->mm.interruptible = false;
  1600. ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined);
  1601. if (ret)
  1602. goto err_interruptible;
  1603. /* Install a fence for tiled scan-out. Pre-i965 always needs a
  1604. * fence, whereas 965+ only requires a fence if using
  1605. * framebuffer compression. For simplicity, we always install
  1606. * a fence as the cost is not that onerous.
  1607. */
  1608. ret = i915_gem_object_get_fence(obj);
  1609. if (ret)
  1610. goto err_unpin;
  1611. i915_gem_object_pin_fence(obj);
  1612. dev_priv->mm.interruptible = true;
  1613. return 0;
  1614. err_unpin:
  1615. i915_gem_object_unpin(obj);
  1616. err_interruptible:
  1617. dev_priv->mm.interruptible = true;
  1618. return ret;
  1619. }
  1620. void intel_unpin_fb_obj(struct drm_i915_gem_object *obj)
  1621. {
  1622. i915_gem_object_unpin_fence(obj);
  1623. i915_gem_object_unpin(obj);
  1624. }
  1625. /* Computes the linear offset to the base tile and adjusts x, y. bytes per pixel
  1626. * is assumed to be a power-of-two. */
  1627. unsigned long intel_gen4_compute_page_offset(int *x, int *y,
  1628. unsigned int tiling_mode,
  1629. unsigned int cpp,
  1630. unsigned int pitch)
  1631. {
  1632. if (tiling_mode != I915_TILING_NONE) {
  1633. unsigned int tile_rows, tiles;
  1634. tile_rows = *y / 8;
  1635. *y %= 8;
  1636. tiles = *x / (512/cpp);
  1637. *x %= 512/cpp;
  1638. return tile_rows * pitch * 8 + tiles * 4096;
  1639. } else {
  1640. unsigned int offset;
  1641. offset = *y * pitch + *x * cpp;
  1642. *y = 0;
  1643. *x = (offset & 4095) / cpp;
  1644. return offset & -4096;
  1645. }
  1646. }
  1647. static int i9xx_update_plane(struct drm_crtc *crtc, struct drm_framebuffer *fb,
  1648. int x, int y)
  1649. {
  1650. struct drm_device *dev = crtc->dev;
  1651. struct drm_i915_private *dev_priv = dev->dev_private;
  1652. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1653. struct intel_framebuffer *intel_fb;
  1654. struct drm_i915_gem_object *obj;
  1655. int plane = intel_crtc->plane;
  1656. unsigned long linear_offset;
  1657. u32 dspcntr;
  1658. u32 reg;
  1659. switch (plane) {
  1660. case 0:
  1661. case 1:
  1662. break;
  1663. default:
  1664. DRM_ERROR("Can't update plane %c in SAREA\n", plane_name(plane));
  1665. return -EINVAL;
  1666. }
  1667. intel_fb = to_intel_framebuffer(fb);
  1668. obj = intel_fb->obj;
  1669. reg = DSPCNTR(plane);
  1670. dspcntr = I915_READ(reg);
  1671. /* Mask out pixel format bits in case we change it */
  1672. dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
  1673. switch (fb->pixel_format) {
  1674. case DRM_FORMAT_C8:
  1675. dspcntr |= DISPPLANE_8BPP;
  1676. break;
  1677. case DRM_FORMAT_XRGB1555:
  1678. case DRM_FORMAT_ARGB1555:
  1679. dspcntr |= DISPPLANE_BGRX555;
  1680. break;
  1681. case DRM_FORMAT_RGB565:
  1682. dspcntr |= DISPPLANE_BGRX565;
  1683. break;
  1684. case DRM_FORMAT_XRGB8888:
  1685. case DRM_FORMAT_ARGB8888:
  1686. dspcntr |= DISPPLANE_BGRX888;
  1687. break;
  1688. case DRM_FORMAT_XBGR8888:
  1689. case DRM_FORMAT_ABGR8888:
  1690. dspcntr |= DISPPLANE_RGBX888;
  1691. break;
  1692. case DRM_FORMAT_XRGB2101010:
  1693. case DRM_FORMAT_ARGB2101010:
  1694. dspcntr |= DISPPLANE_BGRX101010;
  1695. break;
  1696. case DRM_FORMAT_XBGR2101010:
  1697. case DRM_FORMAT_ABGR2101010:
  1698. dspcntr |= DISPPLANE_RGBX101010;
  1699. break;
  1700. default:
  1701. BUG();
  1702. }
  1703. if (INTEL_INFO(dev)->gen >= 4) {
  1704. if (obj->tiling_mode != I915_TILING_NONE)
  1705. dspcntr |= DISPPLANE_TILED;
  1706. else
  1707. dspcntr &= ~DISPPLANE_TILED;
  1708. }
  1709. I915_WRITE(reg, dspcntr);
  1710. linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
  1711. if (INTEL_INFO(dev)->gen >= 4) {
  1712. intel_crtc->dspaddr_offset =
  1713. intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
  1714. fb->bits_per_pixel / 8,
  1715. fb->pitches[0]);
  1716. linear_offset -= intel_crtc->dspaddr_offset;
  1717. } else {
  1718. intel_crtc->dspaddr_offset = linear_offset;
  1719. }
  1720. DRM_DEBUG_KMS("Writing base %08X %08lX %d %d %d\n",
  1721. obj->gtt_offset, linear_offset, x, y, fb->pitches[0]);
  1722. I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
  1723. if (INTEL_INFO(dev)->gen >= 4) {
  1724. I915_MODIFY_DISPBASE(DSPSURF(plane),
  1725. obj->gtt_offset + intel_crtc->dspaddr_offset);
  1726. I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
  1727. I915_WRITE(DSPLINOFF(plane), linear_offset);
  1728. } else
  1729. I915_WRITE(DSPADDR(plane), obj->gtt_offset + linear_offset);
  1730. POSTING_READ(reg);
  1731. return 0;
  1732. }
  1733. static int ironlake_update_plane(struct drm_crtc *crtc,
  1734. struct drm_framebuffer *fb, int x, int y)
  1735. {
  1736. struct drm_device *dev = crtc->dev;
  1737. struct drm_i915_private *dev_priv = dev->dev_private;
  1738. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1739. struct intel_framebuffer *intel_fb;
  1740. struct drm_i915_gem_object *obj;
  1741. int plane = intel_crtc->plane;
  1742. unsigned long linear_offset;
  1743. u32 dspcntr;
  1744. u32 reg;
  1745. switch (plane) {
  1746. case 0:
  1747. case 1:
  1748. case 2:
  1749. break;
  1750. default:
  1751. DRM_ERROR("Can't update plane %c in SAREA\n", plane_name(plane));
  1752. return -EINVAL;
  1753. }
  1754. intel_fb = to_intel_framebuffer(fb);
  1755. obj = intel_fb->obj;
  1756. reg = DSPCNTR(plane);
  1757. dspcntr = I915_READ(reg);
  1758. /* Mask out pixel format bits in case we change it */
  1759. dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
  1760. switch (fb->pixel_format) {
  1761. case DRM_FORMAT_C8:
  1762. dspcntr |= DISPPLANE_8BPP;
  1763. break;
  1764. case DRM_FORMAT_RGB565:
  1765. dspcntr |= DISPPLANE_BGRX565;
  1766. break;
  1767. case DRM_FORMAT_XRGB8888:
  1768. case DRM_FORMAT_ARGB8888:
  1769. dspcntr |= DISPPLANE_BGRX888;
  1770. break;
  1771. case DRM_FORMAT_XBGR8888:
  1772. case DRM_FORMAT_ABGR8888:
  1773. dspcntr |= DISPPLANE_RGBX888;
  1774. break;
  1775. case DRM_FORMAT_XRGB2101010:
  1776. case DRM_FORMAT_ARGB2101010:
  1777. dspcntr |= DISPPLANE_BGRX101010;
  1778. break;
  1779. case DRM_FORMAT_XBGR2101010:
  1780. case DRM_FORMAT_ABGR2101010:
  1781. dspcntr |= DISPPLANE_RGBX101010;
  1782. break;
  1783. default:
  1784. BUG();
  1785. }
  1786. if (obj->tiling_mode != I915_TILING_NONE)
  1787. dspcntr |= DISPPLANE_TILED;
  1788. else
  1789. dspcntr &= ~DISPPLANE_TILED;
  1790. /* must disable */
  1791. dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
  1792. I915_WRITE(reg, dspcntr);
  1793. linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
  1794. intel_crtc->dspaddr_offset =
  1795. intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
  1796. fb->bits_per_pixel / 8,
  1797. fb->pitches[0]);
  1798. linear_offset -= intel_crtc->dspaddr_offset;
  1799. DRM_DEBUG_KMS("Writing base %08X %08lX %d %d %d\n",
  1800. obj->gtt_offset, linear_offset, x, y, fb->pitches[0]);
  1801. I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
  1802. I915_MODIFY_DISPBASE(DSPSURF(plane),
  1803. obj->gtt_offset + intel_crtc->dspaddr_offset);
  1804. if (IS_HASWELL(dev)) {
  1805. I915_WRITE(DSPOFFSET(plane), (y << 16) | x);
  1806. } else {
  1807. I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
  1808. I915_WRITE(DSPLINOFF(plane), linear_offset);
  1809. }
  1810. POSTING_READ(reg);
  1811. return 0;
  1812. }
  1813. /* Assume fb object is pinned & idle & fenced and just update base pointers */
  1814. static int
  1815. intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
  1816. int x, int y, enum mode_set_atomic state)
  1817. {
  1818. struct drm_device *dev = crtc->dev;
  1819. struct drm_i915_private *dev_priv = dev->dev_private;
  1820. if (dev_priv->display.disable_fbc)
  1821. dev_priv->display.disable_fbc(dev);
  1822. intel_increase_pllclock(crtc);
  1823. return dev_priv->display.update_plane(crtc, fb, x, y);
  1824. }
  1825. void intel_display_handle_reset(struct drm_device *dev)
  1826. {
  1827. struct drm_i915_private *dev_priv = dev->dev_private;
  1828. struct drm_crtc *crtc;
  1829. /*
  1830. * Flips in the rings have been nuked by the reset,
  1831. * so complete all pending flips so that user space
  1832. * will get its events and not get stuck.
  1833. *
  1834. * Also update the base address of all primary
  1835. * planes to the the last fb to make sure we're
  1836. * showing the correct fb after a reset.
  1837. *
  1838. * Need to make two loops over the crtcs so that we
  1839. * don't try to grab a crtc mutex before the
  1840. * pending_flip_queue really got woken up.
  1841. */
  1842. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  1843. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1844. enum plane plane = intel_crtc->plane;
  1845. intel_prepare_page_flip(dev, plane);
  1846. intel_finish_page_flip_plane(dev, plane);
  1847. }
  1848. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  1849. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1850. mutex_lock(&crtc->mutex);
  1851. if (intel_crtc->active)
  1852. dev_priv->display.update_plane(crtc, crtc->fb,
  1853. crtc->x, crtc->y);
  1854. mutex_unlock(&crtc->mutex);
  1855. }
  1856. }
  1857. static int
  1858. intel_finish_fb(struct drm_framebuffer *old_fb)
  1859. {
  1860. struct drm_i915_gem_object *obj = to_intel_framebuffer(old_fb)->obj;
  1861. struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
  1862. bool was_interruptible = dev_priv->mm.interruptible;
  1863. int ret;
  1864. /* Big Hammer, we also need to ensure that any pending
  1865. * MI_WAIT_FOR_EVENT inside a user batch buffer on the
  1866. * current scanout is retired before unpinning the old
  1867. * framebuffer.
  1868. *
  1869. * This should only fail upon a hung GPU, in which case we
  1870. * can safely continue.
  1871. */
  1872. dev_priv->mm.interruptible = false;
  1873. ret = i915_gem_object_finish_gpu(obj);
  1874. dev_priv->mm.interruptible = was_interruptible;
  1875. return ret;
  1876. }
  1877. static void intel_crtc_update_sarea_pos(struct drm_crtc *crtc, int x, int y)
  1878. {
  1879. struct drm_device *dev = crtc->dev;
  1880. struct drm_i915_master_private *master_priv;
  1881. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1882. if (!dev->primary->master)
  1883. return;
  1884. master_priv = dev->primary->master->driver_priv;
  1885. if (!master_priv->sarea_priv)
  1886. return;
  1887. switch (intel_crtc->pipe) {
  1888. case 0:
  1889. master_priv->sarea_priv->pipeA_x = x;
  1890. master_priv->sarea_priv->pipeA_y = y;
  1891. break;
  1892. case 1:
  1893. master_priv->sarea_priv->pipeB_x = x;
  1894. master_priv->sarea_priv->pipeB_y = y;
  1895. break;
  1896. default:
  1897. break;
  1898. }
  1899. }
  1900. static int
  1901. intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
  1902. struct drm_framebuffer *fb)
  1903. {
  1904. struct drm_device *dev = crtc->dev;
  1905. struct drm_i915_private *dev_priv = dev->dev_private;
  1906. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1907. struct drm_framebuffer *old_fb;
  1908. int ret;
  1909. /* no fb bound */
  1910. if (!fb) {
  1911. DRM_ERROR("No FB bound\n");
  1912. return 0;
  1913. }
  1914. if (intel_crtc->plane > INTEL_INFO(dev)->num_pipes) {
  1915. DRM_ERROR("no plane for crtc: plane %c, num_pipes %d\n",
  1916. plane_name(intel_crtc->plane),
  1917. INTEL_INFO(dev)->num_pipes);
  1918. return -EINVAL;
  1919. }
  1920. mutex_lock(&dev->struct_mutex);
  1921. ret = intel_pin_and_fence_fb_obj(dev,
  1922. to_intel_framebuffer(fb)->obj,
  1923. NULL);
  1924. if (ret != 0) {
  1925. mutex_unlock(&dev->struct_mutex);
  1926. DRM_ERROR("pin & fence failed\n");
  1927. return ret;
  1928. }
  1929. ret = dev_priv->display.update_plane(crtc, fb, x, y);
  1930. if (ret) {
  1931. intel_unpin_fb_obj(to_intel_framebuffer(fb)->obj);
  1932. mutex_unlock(&dev->struct_mutex);
  1933. DRM_ERROR("failed to update base address\n");
  1934. return ret;
  1935. }
  1936. old_fb = crtc->fb;
  1937. crtc->fb = fb;
  1938. crtc->x = x;
  1939. crtc->y = y;
  1940. if (old_fb) {
  1941. if (intel_crtc->active && old_fb != fb)
  1942. intel_wait_for_vblank(dev, intel_crtc->pipe);
  1943. intel_unpin_fb_obj(to_intel_framebuffer(old_fb)->obj);
  1944. }
  1945. intel_update_fbc(dev);
  1946. mutex_unlock(&dev->struct_mutex);
  1947. intel_crtc_update_sarea_pos(crtc, x, y);
  1948. return 0;
  1949. }
  1950. static void intel_fdi_normal_train(struct drm_crtc *crtc)
  1951. {
  1952. struct drm_device *dev = crtc->dev;
  1953. struct drm_i915_private *dev_priv = dev->dev_private;
  1954. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1955. int pipe = intel_crtc->pipe;
  1956. u32 reg, temp;
  1957. /* enable normal train */
  1958. reg = FDI_TX_CTL(pipe);
  1959. temp = I915_READ(reg);
  1960. if (IS_IVYBRIDGE(dev)) {
  1961. temp &= ~FDI_LINK_TRAIN_NONE_IVB;
  1962. temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
  1963. } else {
  1964. temp &= ~FDI_LINK_TRAIN_NONE;
  1965. temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
  1966. }
  1967. I915_WRITE(reg, temp);
  1968. reg = FDI_RX_CTL(pipe);
  1969. temp = I915_READ(reg);
  1970. if (HAS_PCH_CPT(dev)) {
  1971. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  1972. temp |= FDI_LINK_TRAIN_NORMAL_CPT;
  1973. } else {
  1974. temp &= ~FDI_LINK_TRAIN_NONE;
  1975. temp |= FDI_LINK_TRAIN_NONE;
  1976. }
  1977. I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
  1978. /* wait one idle pattern time */
  1979. POSTING_READ(reg);
  1980. udelay(1000);
  1981. /* IVB wants error correction enabled */
  1982. if (IS_IVYBRIDGE(dev))
  1983. I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
  1984. FDI_FE_ERRC_ENABLE);
  1985. }
  1986. static bool pipe_has_enabled_pch(struct intel_crtc *intel_crtc)
  1987. {
  1988. return intel_crtc->base.enabled && intel_crtc->config.has_pch_encoder;
  1989. }
  1990. static void ivb_modeset_global_resources(struct drm_device *dev)
  1991. {
  1992. struct drm_i915_private *dev_priv = dev->dev_private;
  1993. struct intel_crtc *pipe_B_crtc =
  1994. to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
  1995. struct intel_crtc *pipe_C_crtc =
  1996. to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_C]);
  1997. uint32_t temp;
  1998. /*
  1999. * When everything is off disable fdi C so that we could enable fdi B
  2000. * with all lanes. Note that we don't care about enabled pipes without
  2001. * an enabled pch encoder.
  2002. */
  2003. if (!pipe_has_enabled_pch(pipe_B_crtc) &&
  2004. !pipe_has_enabled_pch(pipe_C_crtc)) {
  2005. WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
  2006. WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
  2007. temp = I915_READ(SOUTH_CHICKEN1);
  2008. temp &= ~FDI_BC_BIFURCATION_SELECT;
  2009. DRM_DEBUG_KMS("disabling fdi C rx\n");
  2010. I915_WRITE(SOUTH_CHICKEN1, temp);
  2011. }
  2012. }
  2013. /* The FDI link training functions for ILK/Ibexpeak. */
  2014. static void ironlake_fdi_link_train(struct drm_crtc *crtc)
  2015. {
  2016. struct drm_device *dev = crtc->dev;
  2017. struct drm_i915_private *dev_priv = dev->dev_private;
  2018. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2019. int pipe = intel_crtc->pipe;
  2020. int plane = intel_crtc->plane;
  2021. u32 reg, temp, tries;
  2022. /* FDI needs bits from pipe & plane first */
  2023. assert_pipe_enabled(dev_priv, pipe);
  2024. assert_plane_enabled(dev_priv, plane);
  2025. /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
  2026. for train result */
  2027. reg = FDI_RX_IMR(pipe);
  2028. temp = I915_READ(reg);
  2029. temp &= ~FDI_RX_SYMBOL_LOCK;
  2030. temp &= ~FDI_RX_BIT_LOCK;
  2031. I915_WRITE(reg, temp);
  2032. I915_READ(reg);
  2033. udelay(150);
  2034. /* enable CPU FDI TX and PCH FDI RX */
  2035. reg = FDI_TX_CTL(pipe);
  2036. temp = I915_READ(reg);
  2037. temp &= ~FDI_DP_PORT_WIDTH_MASK;
  2038. temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
  2039. temp &= ~FDI_LINK_TRAIN_NONE;
  2040. temp |= FDI_LINK_TRAIN_PATTERN_1;
  2041. I915_WRITE(reg, temp | FDI_TX_ENABLE);
  2042. reg = FDI_RX_CTL(pipe);
  2043. temp = I915_READ(reg);
  2044. temp &= ~FDI_LINK_TRAIN_NONE;
  2045. temp |= FDI_LINK_TRAIN_PATTERN_1;
  2046. I915_WRITE(reg, temp | FDI_RX_ENABLE);
  2047. POSTING_READ(reg);
  2048. udelay(150);
  2049. /* Ironlake workaround, enable clock pointer after FDI enable*/
  2050. I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
  2051. I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
  2052. FDI_RX_PHASE_SYNC_POINTER_EN);
  2053. reg = FDI_RX_IIR(pipe);
  2054. for (tries = 0; tries < 5; tries++) {
  2055. temp = I915_READ(reg);
  2056. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2057. if ((temp & FDI_RX_BIT_LOCK)) {
  2058. DRM_DEBUG_KMS("FDI train 1 done.\n");
  2059. I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
  2060. break;
  2061. }
  2062. }
  2063. if (tries == 5)
  2064. DRM_ERROR("FDI train 1 fail!\n");
  2065. /* Train 2 */
  2066. reg = FDI_TX_CTL(pipe);
  2067. temp = I915_READ(reg);
  2068. temp &= ~FDI_LINK_TRAIN_NONE;
  2069. temp |= FDI_LINK_TRAIN_PATTERN_2;
  2070. I915_WRITE(reg, temp);
  2071. reg = FDI_RX_CTL(pipe);
  2072. temp = I915_READ(reg);
  2073. temp &= ~FDI_LINK_TRAIN_NONE;
  2074. temp |= FDI_LINK_TRAIN_PATTERN_2;
  2075. I915_WRITE(reg, temp);
  2076. POSTING_READ(reg);
  2077. udelay(150);
  2078. reg = FDI_RX_IIR(pipe);
  2079. for (tries = 0; tries < 5; tries++) {
  2080. temp = I915_READ(reg);
  2081. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2082. if (temp & FDI_RX_SYMBOL_LOCK) {
  2083. I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
  2084. DRM_DEBUG_KMS("FDI train 2 done.\n");
  2085. break;
  2086. }
  2087. }
  2088. if (tries == 5)
  2089. DRM_ERROR("FDI train 2 fail!\n");
  2090. DRM_DEBUG_KMS("FDI train done\n");
  2091. }
  2092. static const int snb_b_fdi_train_param[] = {
  2093. FDI_LINK_TRAIN_400MV_0DB_SNB_B,
  2094. FDI_LINK_TRAIN_400MV_6DB_SNB_B,
  2095. FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
  2096. FDI_LINK_TRAIN_800MV_0DB_SNB_B,
  2097. };
  2098. /* The FDI link training functions for SNB/Cougarpoint. */
  2099. static void gen6_fdi_link_train(struct drm_crtc *crtc)
  2100. {
  2101. struct drm_device *dev = crtc->dev;
  2102. struct drm_i915_private *dev_priv = dev->dev_private;
  2103. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2104. int pipe = intel_crtc->pipe;
  2105. u32 reg, temp, i, retry;
  2106. /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
  2107. for train result */
  2108. reg = FDI_RX_IMR(pipe);
  2109. temp = I915_READ(reg);
  2110. temp &= ~FDI_RX_SYMBOL_LOCK;
  2111. temp &= ~FDI_RX_BIT_LOCK;
  2112. I915_WRITE(reg, temp);
  2113. POSTING_READ(reg);
  2114. udelay(150);
  2115. /* enable CPU FDI TX and PCH FDI RX */
  2116. reg = FDI_TX_CTL(pipe);
  2117. temp = I915_READ(reg);
  2118. temp &= ~FDI_DP_PORT_WIDTH_MASK;
  2119. temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
  2120. temp &= ~FDI_LINK_TRAIN_NONE;
  2121. temp |= FDI_LINK_TRAIN_PATTERN_1;
  2122. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2123. /* SNB-B */
  2124. temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
  2125. I915_WRITE(reg, temp | FDI_TX_ENABLE);
  2126. I915_WRITE(FDI_RX_MISC(pipe),
  2127. FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
  2128. reg = FDI_RX_CTL(pipe);
  2129. temp = I915_READ(reg);
  2130. if (HAS_PCH_CPT(dev)) {
  2131. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  2132. temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
  2133. } else {
  2134. temp &= ~FDI_LINK_TRAIN_NONE;
  2135. temp |= FDI_LINK_TRAIN_PATTERN_1;
  2136. }
  2137. I915_WRITE(reg, temp | FDI_RX_ENABLE);
  2138. POSTING_READ(reg);
  2139. udelay(150);
  2140. for (i = 0; i < 4; i++) {
  2141. reg = FDI_TX_CTL(pipe);
  2142. temp = I915_READ(reg);
  2143. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2144. temp |= snb_b_fdi_train_param[i];
  2145. I915_WRITE(reg, temp);
  2146. POSTING_READ(reg);
  2147. udelay(500);
  2148. for (retry = 0; retry < 5; retry++) {
  2149. reg = FDI_RX_IIR(pipe);
  2150. temp = I915_READ(reg);
  2151. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2152. if (temp & FDI_RX_BIT_LOCK) {
  2153. I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
  2154. DRM_DEBUG_KMS("FDI train 1 done.\n");
  2155. break;
  2156. }
  2157. udelay(50);
  2158. }
  2159. if (retry < 5)
  2160. break;
  2161. }
  2162. if (i == 4)
  2163. DRM_ERROR("FDI train 1 fail!\n");
  2164. /* Train 2 */
  2165. reg = FDI_TX_CTL(pipe);
  2166. temp = I915_READ(reg);
  2167. temp &= ~FDI_LINK_TRAIN_NONE;
  2168. temp |= FDI_LINK_TRAIN_PATTERN_2;
  2169. if (IS_GEN6(dev)) {
  2170. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2171. /* SNB-B */
  2172. temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
  2173. }
  2174. I915_WRITE(reg, temp);
  2175. reg = FDI_RX_CTL(pipe);
  2176. temp = I915_READ(reg);
  2177. if (HAS_PCH_CPT(dev)) {
  2178. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  2179. temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
  2180. } else {
  2181. temp &= ~FDI_LINK_TRAIN_NONE;
  2182. temp |= FDI_LINK_TRAIN_PATTERN_2;
  2183. }
  2184. I915_WRITE(reg, temp);
  2185. POSTING_READ(reg);
  2186. udelay(150);
  2187. for (i = 0; i < 4; i++) {
  2188. reg = FDI_TX_CTL(pipe);
  2189. temp = I915_READ(reg);
  2190. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2191. temp |= snb_b_fdi_train_param[i];
  2192. I915_WRITE(reg, temp);
  2193. POSTING_READ(reg);
  2194. udelay(500);
  2195. for (retry = 0; retry < 5; retry++) {
  2196. reg = FDI_RX_IIR(pipe);
  2197. temp = I915_READ(reg);
  2198. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2199. if (temp & FDI_RX_SYMBOL_LOCK) {
  2200. I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
  2201. DRM_DEBUG_KMS("FDI train 2 done.\n");
  2202. break;
  2203. }
  2204. udelay(50);
  2205. }
  2206. if (retry < 5)
  2207. break;
  2208. }
  2209. if (i == 4)
  2210. DRM_ERROR("FDI train 2 fail!\n");
  2211. DRM_DEBUG_KMS("FDI train done.\n");
  2212. }
  2213. /* Manual link training for Ivy Bridge A0 parts */
  2214. static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
  2215. {
  2216. struct drm_device *dev = crtc->dev;
  2217. struct drm_i915_private *dev_priv = dev->dev_private;
  2218. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2219. int pipe = intel_crtc->pipe;
  2220. u32 reg, temp, i;
  2221. /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
  2222. for train result */
  2223. reg = FDI_RX_IMR(pipe);
  2224. temp = I915_READ(reg);
  2225. temp &= ~FDI_RX_SYMBOL_LOCK;
  2226. temp &= ~FDI_RX_BIT_LOCK;
  2227. I915_WRITE(reg, temp);
  2228. POSTING_READ(reg);
  2229. udelay(150);
  2230. DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
  2231. I915_READ(FDI_RX_IIR(pipe)));
  2232. /* enable CPU FDI TX and PCH FDI RX */
  2233. reg = FDI_TX_CTL(pipe);
  2234. temp = I915_READ(reg);
  2235. temp &= ~FDI_DP_PORT_WIDTH_MASK;
  2236. temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
  2237. temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
  2238. temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
  2239. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2240. temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
  2241. temp |= FDI_COMPOSITE_SYNC;
  2242. I915_WRITE(reg, temp | FDI_TX_ENABLE);
  2243. I915_WRITE(FDI_RX_MISC(pipe),
  2244. FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
  2245. reg = FDI_RX_CTL(pipe);
  2246. temp = I915_READ(reg);
  2247. temp &= ~FDI_LINK_TRAIN_AUTO;
  2248. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  2249. temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
  2250. temp |= FDI_COMPOSITE_SYNC;
  2251. I915_WRITE(reg, temp | FDI_RX_ENABLE);
  2252. POSTING_READ(reg);
  2253. udelay(150);
  2254. for (i = 0; i < 4; i++) {
  2255. reg = FDI_TX_CTL(pipe);
  2256. temp = I915_READ(reg);
  2257. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2258. temp |= snb_b_fdi_train_param[i];
  2259. I915_WRITE(reg, temp);
  2260. POSTING_READ(reg);
  2261. udelay(500);
  2262. reg = FDI_RX_IIR(pipe);
  2263. temp = I915_READ(reg);
  2264. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2265. if (temp & FDI_RX_BIT_LOCK ||
  2266. (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
  2267. I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
  2268. DRM_DEBUG_KMS("FDI train 1 done, level %i.\n", i);
  2269. break;
  2270. }
  2271. }
  2272. if (i == 4)
  2273. DRM_ERROR("FDI train 1 fail!\n");
  2274. /* Train 2 */
  2275. reg = FDI_TX_CTL(pipe);
  2276. temp = I915_READ(reg);
  2277. temp &= ~FDI_LINK_TRAIN_NONE_IVB;
  2278. temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
  2279. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2280. temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
  2281. I915_WRITE(reg, temp);
  2282. reg = FDI_RX_CTL(pipe);
  2283. temp = I915_READ(reg);
  2284. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  2285. temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
  2286. I915_WRITE(reg, temp);
  2287. POSTING_READ(reg);
  2288. udelay(150);
  2289. for (i = 0; i < 4; i++) {
  2290. reg = FDI_TX_CTL(pipe);
  2291. temp = I915_READ(reg);
  2292. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2293. temp |= snb_b_fdi_train_param[i];
  2294. I915_WRITE(reg, temp);
  2295. POSTING_READ(reg);
  2296. udelay(500);
  2297. reg = FDI_RX_IIR(pipe);
  2298. temp = I915_READ(reg);
  2299. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2300. if (temp & FDI_RX_SYMBOL_LOCK) {
  2301. I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
  2302. DRM_DEBUG_KMS("FDI train 2 done, level %i.\n", i);
  2303. break;
  2304. }
  2305. }
  2306. if (i == 4)
  2307. DRM_ERROR("FDI train 2 fail!\n");
  2308. DRM_DEBUG_KMS("FDI train done.\n");
  2309. }
  2310. static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
  2311. {
  2312. struct drm_device *dev = intel_crtc->base.dev;
  2313. struct drm_i915_private *dev_priv = dev->dev_private;
  2314. int pipe = intel_crtc->pipe;
  2315. u32 reg, temp;
  2316. /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
  2317. reg = FDI_RX_CTL(pipe);
  2318. temp = I915_READ(reg);
  2319. temp &= ~(FDI_DP_PORT_WIDTH_MASK | (0x7 << 16));
  2320. temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
  2321. temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
  2322. I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
  2323. POSTING_READ(reg);
  2324. udelay(200);
  2325. /* Switch from Rawclk to PCDclk */
  2326. temp = I915_READ(reg);
  2327. I915_WRITE(reg, temp | FDI_PCDCLK);
  2328. POSTING_READ(reg);
  2329. udelay(200);
  2330. /* Enable CPU FDI TX PLL, always on for Ironlake */
  2331. reg = FDI_TX_CTL(pipe);
  2332. temp = I915_READ(reg);
  2333. if ((temp & FDI_TX_PLL_ENABLE) == 0) {
  2334. I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
  2335. POSTING_READ(reg);
  2336. udelay(100);
  2337. }
  2338. }
  2339. static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
  2340. {
  2341. struct drm_device *dev = intel_crtc->base.dev;
  2342. struct drm_i915_private *dev_priv = dev->dev_private;
  2343. int pipe = intel_crtc->pipe;
  2344. u32 reg, temp;
  2345. /* Switch from PCDclk to Rawclk */
  2346. reg = FDI_RX_CTL(pipe);
  2347. temp = I915_READ(reg);
  2348. I915_WRITE(reg, temp & ~FDI_PCDCLK);
  2349. /* Disable CPU FDI TX PLL */
  2350. reg = FDI_TX_CTL(pipe);
  2351. temp = I915_READ(reg);
  2352. I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
  2353. POSTING_READ(reg);
  2354. udelay(100);
  2355. reg = FDI_RX_CTL(pipe);
  2356. temp = I915_READ(reg);
  2357. I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
  2358. /* Wait for the clocks to turn off. */
  2359. POSTING_READ(reg);
  2360. udelay(100);
  2361. }
  2362. static void ironlake_fdi_disable(struct drm_crtc *crtc)
  2363. {
  2364. struct drm_device *dev = crtc->dev;
  2365. struct drm_i915_private *dev_priv = dev->dev_private;
  2366. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2367. int pipe = intel_crtc->pipe;
  2368. u32 reg, temp;
  2369. /* disable CPU FDI tx and PCH FDI rx */
  2370. reg = FDI_TX_CTL(pipe);
  2371. temp = I915_READ(reg);
  2372. I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
  2373. POSTING_READ(reg);
  2374. reg = FDI_RX_CTL(pipe);
  2375. temp = I915_READ(reg);
  2376. temp &= ~(0x7 << 16);
  2377. temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
  2378. I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
  2379. POSTING_READ(reg);
  2380. udelay(100);
  2381. /* Ironlake workaround, disable clock pointer after downing FDI */
  2382. if (HAS_PCH_IBX(dev)) {
  2383. I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
  2384. }
  2385. /* still set train pattern 1 */
  2386. reg = FDI_TX_CTL(pipe);
  2387. temp = I915_READ(reg);
  2388. temp &= ~FDI_LINK_TRAIN_NONE;
  2389. temp |= FDI_LINK_TRAIN_PATTERN_1;
  2390. I915_WRITE(reg, temp);
  2391. reg = FDI_RX_CTL(pipe);
  2392. temp = I915_READ(reg);
  2393. if (HAS_PCH_CPT(dev)) {
  2394. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  2395. temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
  2396. } else {
  2397. temp &= ~FDI_LINK_TRAIN_NONE;
  2398. temp |= FDI_LINK_TRAIN_PATTERN_1;
  2399. }
  2400. /* BPC in FDI rx is consistent with that in PIPECONF */
  2401. temp &= ~(0x07 << 16);
  2402. temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
  2403. I915_WRITE(reg, temp);
  2404. POSTING_READ(reg);
  2405. udelay(100);
  2406. }
  2407. static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
  2408. {
  2409. struct drm_device *dev = crtc->dev;
  2410. struct drm_i915_private *dev_priv = dev->dev_private;
  2411. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2412. unsigned long flags;
  2413. bool pending;
  2414. if (i915_reset_in_progress(&dev_priv->gpu_error) ||
  2415. intel_crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
  2416. return false;
  2417. spin_lock_irqsave(&dev->event_lock, flags);
  2418. pending = to_intel_crtc(crtc)->unpin_work != NULL;
  2419. spin_unlock_irqrestore(&dev->event_lock, flags);
  2420. return pending;
  2421. }
  2422. static void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
  2423. {
  2424. struct drm_device *dev = crtc->dev;
  2425. struct drm_i915_private *dev_priv = dev->dev_private;
  2426. if (crtc->fb == NULL)
  2427. return;
  2428. WARN_ON(waitqueue_active(&dev_priv->pending_flip_queue));
  2429. wait_event(dev_priv->pending_flip_queue,
  2430. !intel_crtc_has_pending_flip(crtc));
  2431. mutex_lock(&dev->struct_mutex);
  2432. intel_finish_fb(crtc->fb);
  2433. mutex_unlock(&dev->struct_mutex);
  2434. }
  2435. /* Program iCLKIP clock to the desired frequency */
  2436. static void lpt_program_iclkip(struct drm_crtc *crtc)
  2437. {
  2438. struct drm_device *dev = crtc->dev;
  2439. struct drm_i915_private *dev_priv = dev->dev_private;
  2440. u32 divsel, phaseinc, auxdiv, phasedir = 0;
  2441. u32 temp;
  2442. mutex_lock(&dev_priv->dpio_lock);
  2443. /* It is necessary to ungate the pixclk gate prior to programming
  2444. * the divisors, and gate it back when it is done.
  2445. */
  2446. I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
  2447. /* Disable SSCCTL */
  2448. intel_sbi_write(dev_priv, SBI_SSCCTL6,
  2449. intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK) |
  2450. SBI_SSCCTL_DISABLE,
  2451. SBI_ICLK);
  2452. /* 20MHz is a corner case which is out of range for the 7-bit divisor */
  2453. if (crtc->mode.clock == 20000) {
  2454. auxdiv = 1;
  2455. divsel = 0x41;
  2456. phaseinc = 0x20;
  2457. } else {
  2458. /* The iCLK virtual clock root frequency is in MHz,
  2459. * but the crtc->mode.clock in in KHz. To get the divisors,
  2460. * it is necessary to divide one by another, so we
  2461. * convert the virtual clock precision to KHz here for higher
  2462. * precision.
  2463. */
  2464. u32 iclk_virtual_root_freq = 172800 * 1000;
  2465. u32 iclk_pi_range = 64;
  2466. u32 desired_divisor, msb_divisor_value, pi_value;
  2467. desired_divisor = (iclk_virtual_root_freq / crtc->mode.clock);
  2468. msb_divisor_value = desired_divisor / iclk_pi_range;
  2469. pi_value = desired_divisor % iclk_pi_range;
  2470. auxdiv = 0;
  2471. divsel = msb_divisor_value - 2;
  2472. phaseinc = pi_value;
  2473. }
  2474. /* This should not happen with any sane values */
  2475. WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
  2476. ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
  2477. WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
  2478. ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
  2479. DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
  2480. crtc->mode.clock,
  2481. auxdiv,
  2482. divsel,
  2483. phasedir,
  2484. phaseinc);
  2485. /* Program SSCDIVINTPHASE6 */
  2486. temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
  2487. temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
  2488. temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
  2489. temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
  2490. temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
  2491. temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
  2492. temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
  2493. intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK);
  2494. /* Program SSCAUXDIV */
  2495. temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
  2496. temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
  2497. temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
  2498. intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK);
  2499. /* Enable modulator and associated divider */
  2500. temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
  2501. temp &= ~SBI_SSCCTL_DISABLE;
  2502. intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
  2503. /* Wait for initialization time */
  2504. udelay(24);
  2505. I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
  2506. mutex_unlock(&dev_priv->dpio_lock);
  2507. }
  2508. static void ironlake_pch_transcoder_set_timings(struct intel_crtc *crtc,
  2509. enum pipe pch_transcoder)
  2510. {
  2511. struct drm_device *dev = crtc->base.dev;
  2512. struct drm_i915_private *dev_priv = dev->dev_private;
  2513. enum transcoder cpu_transcoder = crtc->config.cpu_transcoder;
  2514. I915_WRITE(PCH_TRANS_HTOTAL(pch_transcoder),
  2515. I915_READ(HTOTAL(cpu_transcoder)));
  2516. I915_WRITE(PCH_TRANS_HBLANK(pch_transcoder),
  2517. I915_READ(HBLANK(cpu_transcoder)));
  2518. I915_WRITE(PCH_TRANS_HSYNC(pch_transcoder),
  2519. I915_READ(HSYNC(cpu_transcoder)));
  2520. I915_WRITE(PCH_TRANS_VTOTAL(pch_transcoder),
  2521. I915_READ(VTOTAL(cpu_transcoder)));
  2522. I915_WRITE(PCH_TRANS_VBLANK(pch_transcoder),
  2523. I915_READ(VBLANK(cpu_transcoder)));
  2524. I915_WRITE(PCH_TRANS_VSYNC(pch_transcoder),
  2525. I915_READ(VSYNC(cpu_transcoder)));
  2526. I915_WRITE(PCH_TRANS_VSYNCSHIFT(pch_transcoder),
  2527. I915_READ(VSYNCSHIFT(cpu_transcoder)));
  2528. }
  2529. /*
  2530. * Enable PCH resources required for PCH ports:
  2531. * - PCH PLLs
  2532. * - FDI training & RX/TX
  2533. * - update transcoder timings
  2534. * - DP transcoding bits
  2535. * - transcoder
  2536. */
  2537. static void ironlake_pch_enable(struct drm_crtc *crtc)
  2538. {
  2539. struct drm_device *dev = crtc->dev;
  2540. struct drm_i915_private *dev_priv = dev->dev_private;
  2541. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2542. int pipe = intel_crtc->pipe;
  2543. u32 reg, temp;
  2544. assert_pch_transcoder_disabled(dev_priv, pipe);
  2545. /* Write the TU size bits before fdi link training, so that error
  2546. * detection works. */
  2547. I915_WRITE(FDI_RX_TUSIZE1(pipe),
  2548. I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
  2549. /* For PCH output, training FDI link */
  2550. dev_priv->display.fdi_link_train(crtc);
  2551. /* XXX: pch pll's can be enabled any time before we enable the PCH
  2552. * transcoder, and we actually should do this to not upset any PCH
  2553. * transcoder that already use the clock when we share it.
  2554. *
  2555. * Note that enable_pch_pll tries to do the right thing, but get_pch_pll
  2556. * unconditionally resets the pll - we need that to have the right LVDS
  2557. * enable sequence. */
  2558. ironlake_enable_pch_pll(intel_crtc);
  2559. if (HAS_PCH_CPT(dev)) {
  2560. u32 sel;
  2561. temp = I915_READ(PCH_DPLL_SEL);
  2562. switch (pipe) {
  2563. default:
  2564. case 0:
  2565. temp |= TRANSA_DPLL_ENABLE;
  2566. sel = TRANSA_DPLLB_SEL;
  2567. break;
  2568. case 1:
  2569. temp |= TRANSB_DPLL_ENABLE;
  2570. sel = TRANSB_DPLLB_SEL;
  2571. break;
  2572. case 2:
  2573. temp |= TRANSC_DPLL_ENABLE;
  2574. sel = TRANSC_DPLLB_SEL;
  2575. break;
  2576. }
  2577. if (intel_crtc->pch_pll->pll_reg == _PCH_DPLL_B)
  2578. temp |= sel;
  2579. else
  2580. temp &= ~sel;
  2581. I915_WRITE(PCH_DPLL_SEL, temp);
  2582. }
  2583. /* set transcoder timing, panel must allow it */
  2584. assert_panel_unlocked(dev_priv, pipe);
  2585. ironlake_pch_transcoder_set_timings(intel_crtc, pipe);
  2586. intel_fdi_normal_train(crtc);
  2587. /* For PCH DP, enable TRANS_DP_CTL */
  2588. if (HAS_PCH_CPT(dev) &&
  2589. (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
  2590. intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
  2591. u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5;
  2592. reg = TRANS_DP_CTL(pipe);
  2593. temp = I915_READ(reg);
  2594. temp &= ~(TRANS_DP_PORT_SEL_MASK |
  2595. TRANS_DP_SYNC_MASK |
  2596. TRANS_DP_BPC_MASK);
  2597. temp |= (TRANS_DP_OUTPUT_ENABLE |
  2598. TRANS_DP_ENH_FRAMING);
  2599. temp |= bpc << 9; /* same format but at 11:9 */
  2600. if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
  2601. temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
  2602. if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
  2603. temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
  2604. switch (intel_trans_dp_port_sel(crtc)) {
  2605. case PCH_DP_B:
  2606. temp |= TRANS_DP_PORT_SEL_B;
  2607. break;
  2608. case PCH_DP_C:
  2609. temp |= TRANS_DP_PORT_SEL_C;
  2610. break;
  2611. case PCH_DP_D:
  2612. temp |= TRANS_DP_PORT_SEL_D;
  2613. break;
  2614. default:
  2615. BUG();
  2616. }
  2617. I915_WRITE(reg, temp);
  2618. }
  2619. ironlake_enable_pch_transcoder(dev_priv, pipe);
  2620. }
  2621. static void lpt_pch_enable(struct drm_crtc *crtc)
  2622. {
  2623. struct drm_device *dev = crtc->dev;
  2624. struct drm_i915_private *dev_priv = dev->dev_private;
  2625. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2626. enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
  2627. assert_pch_transcoder_disabled(dev_priv, TRANSCODER_A);
  2628. lpt_program_iclkip(crtc);
  2629. /* Set transcoder timing. */
  2630. ironlake_pch_transcoder_set_timings(intel_crtc, PIPE_A);
  2631. lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
  2632. }
  2633. static void intel_put_pch_pll(struct intel_crtc *intel_crtc)
  2634. {
  2635. struct intel_pch_pll *pll = intel_crtc->pch_pll;
  2636. if (pll == NULL)
  2637. return;
  2638. if (pll->refcount == 0) {
  2639. WARN(1, "bad PCH PLL refcount\n");
  2640. return;
  2641. }
  2642. --pll->refcount;
  2643. intel_crtc->pch_pll = NULL;
  2644. }
  2645. static struct intel_pch_pll *intel_get_pch_pll(struct intel_crtc *intel_crtc, u32 dpll, u32 fp)
  2646. {
  2647. struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
  2648. struct intel_pch_pll *pll;
  2649. int i;
  2650. pll = intel_crtc->pch_pll;
  2651. if (pll) {
  2652. DRM_DEBUG_KMS("CRTC:%d reusing existing PCH PLL %x\n",
  2653. intel_crtc->base.base.id, pll->pll_reg);
  2654. goto prepare;
  2655. }
  2656. if (HAS_PCH_IBX(dev_priv->dev)) {
  2657. /* Ironlake PCH has a fixed PLL->PCH pipe mapping. */
  2658. i = intel_crtc->pipe;
  2659. pll = &dev_priv->pch_plls[i];
  2660. DRM_DEBUG_KMS("CRTC:%d using pre-allocated PCH PLL %x\n",
  2661. intel_crtc->base.base.id, pll->pll_reg);
  2662. goto found;
  2663. }
  2664. for (i = 0; i < dev_priv->num_pch_pll; i++) {
  2665. pll = &dev_priv->pch_plls[i];
  2666. /* Only want to check enabled timings first */
  2667. if (pll->refcount == 0)
  2668. continue;
  2669. if (dpll == (I915_READ(pll->pll_reg) & 0x7fffffff) &&
  2670. fp == I915_READ(pll->fp0_reg)) {
  2671. DRM_DEBUG_KMS("CRTC:%d sharing existing PCH PLL %x (refcount %d, ative %d)\n",
  2672. intel_crtc->base.base.id,
  2673. pll->pll_reg, pll->refcount, pll->active);
  2674. goto found;
  2675. }
  2676. }
  2677. /* Ok no matching timings, maybe there's a free one? */
  2678. for (i = 0; i < dev_priv->num_pch_pll; i++) {
  2679. pll = &dev_priv->pch_plls[i];
  2680. if (pll->refcount == 0) {
  2681. DRM_DEBUG_KMS("CRTC:%d allocated PCH PLL %x\n",
  2682. intel_crtc->base.base.id, pll->pll_reg);
  2683. goto found;
  2684. }
  2685. }
  2686. return NULL;
  2687. found:
  2688. intel_crtc->pch_pll = pll;
  2689. pll->refcount++;
  2690. DRM_DEBUG_DRIVER("using pll %d for pipe %c\n", i, pipe_name(intel_crtc->pipe));
  2691. prepare: /* separate function? */
  2692. DRM_DEBUG_DRIVER("switching PLL %x off\n", pll->pll_reg);
  2693. /* Wait for the clocks to stabilize before rewriting the regs */
  2694. I915_WRITE(pll->pll_reg, dpll & ~DPLL_VCO_ENABLE);
  2695. POSTING_READ(pll->pll_reg);
  2696. udelay(150);
  2697. I915_WRITE(pll->fp0_reg, fp);
  2698. I915_WRITE(pll->pll_reg, dpll & ~DPLL_VCO_ENABLE);
  2699. pll->on = false;
  2700. return pll;
  2701. }
  2702. static void cpt_verify_modeset(struct drm_device *dev, int pipe)
  2703. {
  2704. struct drm_i915_private *dev_priv = dev->dev_private;
  2705. int dslreg = PIPEDSL(pipe);
  2706. u32 temp;
  2707. temp = I915_READ(dslreg);
  2708. udelay(500);
  2709. if (wait_for(I915_READ(dslreg) != temp, 5)) {
  2710. if (wait_for(I915_READ(dslreg) != temp, 5))
  2711. DRM_ERROR("mode set failed: pipe %c stuck\n", pipe_name(pipe));
  2712. }
  2713. }
  2714. static void ironlake_pfit_enable(struct intel_crtc *crtc)
  2715. {
  2716. struct drm_device *dev = crtc->base.dev;
  2717. struct drm_i915_private *dev_priv = dev->dev_private;
  2718. int pipe = crtc->pipe;
  2719. if (crtc->config.pch_pfit.size) {
  2720. /* Force use of hard-coded filter coefficients
  2721. * as some pre-programmed values are broken,
  2722. * e.g. x201.
  2723. */
  2724. if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
  2725. I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
  2726. PF_PIPE_SEL_IVB(pipe));
  2727. else
  2728. I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
  2729. I915_WRITE(PF_WIN_POS(pipe), crtc->config.pch_pfit.pos);
  2730. I915_WRITE(PF_WIN_SZ(pipe), crtc->config.pch_pfit.size);
  2731. }
  2732. }
  2733. static void ironlake_crtc_enable(struct drm_crtc *crtc)
  2734. {
  2735. struct drm_device *dev = crtc->dev;
  2736. struct drm_i915_private *dev_priv = dev->dev_private;
  2737. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2738. struct intel_encoder *encoder;
  2739. int pipe = intel_crtc->pipe;
  2740. int plane = intel_crtc->plane;
  2741. u32 temp;
  2742. WARN_ON(!crtc->enabled);
  2743. if (intel_crtc->active)
  2744. return;
  2745. intel_crtc->active = true;
  2746. intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
  2747. intel_set_pch_fifo_underrun_reporting(dev, pipe, true);
  2748. intel_update_watermarks(dev);
  2749. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  2750. temp = I915_READ(PCH_LVDS);
  2751. if ((temp & LVDS_PORT_EN) == 0)
  2752. I915_WRITE(PCH_LVDS, temp | LVDS_PORT_EN);
  2753. }
  2754. if (intel_crtc->config.has_pch_encoder) {
  2755. /* Note: FDI PLL enabling _must_ be done before we enable the
  2756. * cpu pipes, hence this is separate from all the other fdi/pch
  2757. * enabling. */
  2758. ironlake_fdi_pll_enable(intel_crtc);
  2759. } else {
  2760. assert_fdi_tx_disabled(dev_priv, pipe);
  2761. assert_fdi_rx_disabled(dev_priv, pipe);
  2762. }
  2763. for_each_encoder_on_crtc(dev, crtc, encoder)
  2764. if (encoder->pre_enable)
  2765. encoder->pre_enable(encoder);
  2766. /* Enable panel fitting for LVDS */
  2767. ironlake_pfit_enable(intel_crtc);
  2768. /*
  2769. * On ILK+ LUT must be loaded before the pipe is running but with
  2770. * clocks enabled
  2771. */
  2772. intel_crtc_load_lut(crtc);
  2773. intel_enable_pipe(dev_priv, pipe,
  2774. intel_crtc->config.has_pch_encoder);
  2775. intel_enable_plane(dev_priv, plane, pipe);
  2776. if (intel_crtc->config.has_pch_encoder)
  2777. ironlake_pch_enable(crtc);
  2778. mutex_lock(&dev->struct_mutex);
  2779. intel_update_fbc(dev);
  2780. mutex_unlock(&dev->struct_mutex);
  2781. intel_crtc_update_cursor(crtc, true);
  2782. for_each_encoder_on_crtc(dev, crtc, encoder)
  2783. encoder->enable(encoder);
  2784. if (HAS_PCH_CPT(dev))
  2785. cpt_verify_modeset(dev, intel_crtc->pipe);
  2786. /*
  2787. * There seems to be a race in PCH platform hw (at least on some
  2788. * outputs) where an enabled pipe still completes any pageflip right
  2789. * away (as if the pipe is off) instead of waiting for vblank. As soon
  2790. * as the first vblank happend, everything works as expected. Hence just
  2791. * wait for one vblank before returning to avoid strange things
  2792. * happening.
  2793. */
  2794. intel_wait_for_vblank(dev, intel_crtc->pipe);
  2795. }
  2796. /* IPS only exists on ULT machines and is tied to pipe A. */
  2797. static bool hsw_crtc_supports_ips(struct intel_crtc *crtc)
  2798. {
  2799. return IS_ULT(crtc->base.dev) && crtc->pipe == PIPE_A;
  2800. }
  2801. static void hsw_enable_ips(struct intel_crtc *crtc)
  2802. {
  2803. struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
  2804. if (!crtc->config.ips_enabled)
  2805. return;
  2806. /* We can only enable IPS after we enable a plane and wait for a vblank.
  2807. * We guarantee that the plane is enabled by calling intel_enable_ips
  2808. * only after intel_enable_plane. And intel_enable_plane already waits
  2809. * for a vblank, so all we need to do here is to enable the IPS bit. */
  2810. assert_plane_enabled(dev_priv, crtc->plane);
  2811. I915_WRITE(IPS_CTL, IPS_ENABLE);
  2812. }
  2813. static void hsw_disable_ips(struct intel_crtc *crtc)
  2814. {
  2815. struct drm_device *dev = crtc->base.dev;
  2816. struct drm_i915_private *dev_priv = dev->dev_private;
  2817. if (!crtc->config.ips_enabled)
  2818. return;
  2819. assert_plane_enabled(dev_priv, crtc->plane);
  2820. I915_WRITE(IPS_CTL, 0);
  2821. /* We need to wait for a vblank before we can disable the plane. */
  2822. intel_wait_for_vblank(dev, crtc->pipe);
  2823. }
  2824. static void haswell_crtc_enable(struct drm_crtc *crtc)
  2825. {
  2826. struct drm_device *dev = crtc->dev;
  2827. struct drm_i915_private *dev_priv = dev->dev_private;
  2828. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2829. struct intel_encoder *encoder;
  2830. int pipe = intel_crtc->pipe;
  2831. int plane = intel_crtc->plane;
  2832. WARN_ON(!crtc->enabled);
  2833. if (intel_crtc->active)
  2834. return;
  2835. intel_crtc->active = true;
  2836. intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
  2837. if (intel_crtc->config.has_pch_encoder)
  2838. intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, true);
  2839. intel_update_watermarks(dev);
  2840. if (intel_crtc->config.has_pch_encoder)
  2841. dev_priv->display.fdi_link_train(crtc);
  2842. for_each_encoder_on_crtc(dev, crtc, encoder)
  2843. if (encoder->pre_enable)
  2844. encoder->pre_enable(encoder);
  2845. intel_ddi_enable_pipe_clock(intel_crtc);
  2846. /* Enable panel fitting for eDP */
  2847. ironlake_pfit_enable(intel_crtc);
  2848. /*
  2849. * On ILK+ LUT must be loaded before the pipe is running but with
  2850. * clocks enabled
  2851. */
  2852. intel_crtc_load_lut(crtc);
  2853. intel_ddi_set_pipe_settings(crtc);
  2854. intel_ddi_enable_transcoder_func(crtc);
  2855. intel_enable_pipe(dev_priv, pipe,
  2856. intel_crtc->config.has_pch_encoder);
  2857. intel_enable_plane(dev_priv, plane, pipe);
  2858. hsw_enable_ips(intel_crtc);
  2859. if (intel_crtc->config.has_pch_encoder)
  2860. lpt_pch_enable(crtc);
  2861. mutex_lock(&dev->struct_mutex);
  2862. intel_update_fbc(dev);
  2863. mutex_unlock(&dev->struct_mutex);
  2864. intel_crtc_update_cursor(crtc, true);
  2865. for_each_encoder_on_crtc(dev, crtc, encoder)
  2866. encoder->enable(encoder);
  2867. /*
  2868. * There seems to be a race in PCH platform hw (at least on some
  2869. * outputs) where an enabled pipe still completes any pageflip right
  2870. * away (as if the pipe is off) instead of waiting for vblank. As soon
  2871. * as the first vblank happend, everything works as expected. Hence just
  2872. * wait for one vblank before returning to avoid strange things
  2873. * happening.
  2874. */
  2875. intel_wait_for_vblank(dev, intel_crtc->pipe);
  2876. }
  2877. static void ironlake_pfit_disable(struct intel_crtc *crtc)
  2878. {
  2879. struct drm_device *dev = crtc->base.dev;
  2880. struct drm_i915_private *dev_priv = dev->dev_private;
  2881. int pipe = crtc->pipe;
  2882. /* To avoid upsetting the power well on haswell only disable the pfit if
  2883. * it's in use. The hw state code will make sure we get this right. */
  2884. if (crtc->config.pch_pfit.size) {
  2885. I915_WRITE(PF_CTL(pipe), 0);
  2886. I915_WRITE(PF_WIN_POS(pipe), 0);
  2887. I915_WRITE(PF_WIN_SZ(pipe), 0);
  2888. }
  2889. }
  2890. static void ironlake_crtc_disable(struct drm_crtc *crtc)
  2891. {
  2892. struct drm_device *dev = crtc->dev;
  2893. struct drm_i915_private *dev_priv = dev->dev_private;
  2894. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2895. struct intel_encoder *encoder;
  2896. int pipe = intel_crtc->pipe;
  2897. int plane = intel_crtc->plane;
  2898. u32 reg, temp;
  2899. if (!intel_crtc->active)
  2900. return;
  2901. for_each_encoder_on_crtc(dev, crtc, encoder)
  2902. encoder->disable(encoder);
  2903. intel_crtc_wait_for_pending_flips(crtc);
  2904. drm_vblank_off(dev, pipe);
  2905. intel_crtc_update_cursor(crtc, false);
  2906. intel_disable_plane(dev_priv, plane, pipe);
  2907. if (dev_priv->cfb_plane == plane)
  2908. intel_disable_fbc(dev);
  2909. intel_set_pch_fifo_underrun_reporting(dev, pipe, false);
  2910. intel_disable_pipe(dev_priv, pipe);
  2911. ironlake_pfit_disable(intel_crtc);
  2912. for_each_encoder_on_crtc(dev, crtc, encoder)
  2913. if (encoder->post_disable)
  2914. encoder->post_disable(encoder);
  2915. ironlake_fdi_disable(crtc);
  2916. ironlake_disable_pch_transcoder(dev_priv, pipe);
  2917. intel_set_pch_fifo_underrun_reporting(dev, pipe, true);
  2918. if (HAS_PCH_CPT(dev)) {
  2919. /* disable TRANS_DP_CTL */
  2920. reg = TRANS_DP_CTL(pipe);
  2921. temp = I915_READ(reg);
  2922. temp &= ~(TRANS_DP_OUTPUT_ENABLE | TRANS_DP_PORT_SEL_MASK);
  2923. temp |= TRANS_DP_PORT_SEL_NONE;
  2924. I915_WRITE(reg, temp);
  2925. /* disable DPLL_SEL */
  2926. temp = I915_READ(PCH_DPLL_SEL);
  2927. switch (pipe) {
  2928. case 0:
  2929. temp &= ~(TRANSA_DPLL_ENABLE | TRANSA_DPLLB_SEL);
  2930. break;
  2931. case 1:
  2932. temp &= ~(TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL);
  2933. break;
  2934. case 2:
  2935. /* C shares PLL A or B */
  2936. temp &= ~(TRANSC_DPLL_ENABLE | TRANSC_DPLLB_SEL);
  2937. break;
  2938. default:
  2939. BUG(); /* wtf */
  2940. }
  2941. I915_WRITE(PCH_DPLL_SEL, temp);
  2942. }
  2943. /* disable PCH DPLL */
  2944. intel_disable_pch_pll(intel_crtc);
  2945. ironlake_fdi_pll_disable(intel_crtc);
  2946. intel_crtc->active = false;
  2947. intel_update_watermarks(dev);
  2948. mutex_lock(&dev->struct_mutex);
  2949. intel_update_fbc(dev);
  2950. mutex_unlock(&dev->struct_mutex);
  2951. }
  2952. static void haswell_crtc_disable(struct drm_crtc *crtc)
  2953. {
  2954. struct drm_device *dev = crtc->dev;
  2955. struct drm_i915_private *dev_priv = dev->dev_private;
  2956. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2957. struct intel_encoder *encoder;
  2958. int pipe = intel_crtc->pipe;
  2959. int plane = intel_crtc->plane;
  2960. enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
  2961. if (!intel_crtc->active)
  2962. return;
  2963. for_each_encoder_on_crtc(dev, crtc, encoder)
  2964. encoder->disable(encoder);
  2965. intel_crtc_wait_for_pending_flips(crtc);
  2966. drm_vblank_off(dev, pipe);
  2967. intel_crtc_update_cursor(crtc, false);
  2968. /* FBC must be disabled before disabling the plane on HSW. */
  2969. if (dev_priv->cfb_plane == plane)
  2970. intel_disable_fbc(dev);
  2971. hsw_disable_ips(intel_crtc);
  2972. intel_disable_plane(dev_priv, plane, pipe);
  2973. if (intel_crtc->config.has_pch_encoder)
  2974. intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, false);
  2975. intel_disable_pipe(dev_priv, pipe);
  2976. intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
  2977. ironlake_pfit_disable(intel_crtc);
  2978. intel_ddi_disable_pipe_clock(intel_crtc);
  2979. for_each_encoder_on_crtc(dev, crtc, encoder)
  2980. if (encoder->post_disable)
  2981. encoder->post_disable(encoder);
  2982. if (intel_crtc->config.has_pch_encoder) {
  2983. lpt_disable_pch_transcoder(dev_priv);
  2984. intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, true);
  2985. intel_ddi_fdi_disable(crtc);
  2986. }
  2987. intel_crtc->active = false;
  2988. intel_update_watermarks(dev);
  2989. mutex_lock(&dev->struct_mutex);
  2990. intel_update_fbc(dev);
  2991. mutex_unlock(&dev->struct_mutex);
  2992. }
  2993. static void ironlake_crtc_off(struct drm_crtc *crtc)
  2994. {
  2995. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2996. intel_put_pch_pll(intel_crtc);
  2997. }
  2998. static void haswell_crtc_off(struct drm_crtc *crtc)
  2999. {
  3000. intel_ddi_put_crtc_pll(crtc);
  3001. }
  3002. static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
  3003. {
  3004. if (!enable && intel_crtc->overlay) {
  3005. struct drm_device *dev = intel_crtc->base.dev;
  3006. struct drm_i915_private *dev_priv = dev->dev_private;
  3007. mutex_lock(&dev->struct_mutex);
  3008. dev_priv->mm.interruptible = false;
  3009. (void) intel_overlay_switch_off(intel_crtc->overlay);
  3010. dev_priv->mm.interruptible = true;
  3011. mutex_unlock(&dev->struct_mutex);
  3012. }
  3013. /* Let userspace switch the overlay on again. In most cases userspace
  3014. * has to recompute where to put it anyway.
  3015. */
  3016. }
  3017. /**
  3018. * i9xx_fixup_plane - ugly workaround for G45 to fire up the hardware
  3019. * cursor plane briefly if not already running after enabling the display
  3020. * plane.
  3021. * This workaround avoids occasional blank screens when self refresh is
  3022. * enabled.
  3023. */
  3024. static void
  3025. g4x_fixup_plane(struct drm_i915_private *dev_priv, enum pipe pipe)
  3026. {
  3027. u32 cntl = I915_READ(CURCNTR(pipe));
  3028. if ((cntl & CURSOR_MODE) == 0) {
  3029. u32 fw_bcl_self = I915_READ(FW_BLC_SELF);
  3030. I915_WRITE(FW_BLC_SELF, fw_bcl_self & ~FW_BLC_SELF_EN);
  3031. I915_WRITE(CURCNTR(pipe), CURSOR_MODE_64_ARGB_AX);
  3032. intel_wait_for_vblank(dev_priv->dev, pipe);
  3033. I915_WRITE(CURCNTR(pipe), cntl);
  3034. I915_WRITE(CURBASE(pipe), I915_READ(CURBASE(pipe)));
  3035. I915_WRITE(FW_BLC_SELF, fw_bcl_self);
  3036. }
  3037. }
  3038. static void i9xx_pfit_enable(struct intel_crtc *crtc)
  3039. {
  3040. struct drm_device *dev = crtc->base.dev;
  3041. struct drm_i915_private *dev_priv = dev->dev_private;
  3042. struct intel_crtc_config *pipe_config = &crtc->config;
  3043. if (!crtc->config.gmch_pfit.control)
  3044. return;
  3045. /*
  3046. * The panel fitter should only be adjusted whilst the pipe is disabled,
  3047. * according to register description and PRM.
  3048. */
  3049. WARN_ON(I915_READ(PFIT_CONTROL) & PFIT_ENABLE);
  3050. assert_pipe_disabled(dev_priv, crtc->pipe);
  3051. I915_WRITE(PFIT_PGM_RATIOS, pipe_config->gmch_pfit.pgm_ratios);
  3052. I915_WRITE(PFIT_CONTROL, pipe_config->gmch_pfit.control);
  3053. /* Border color in case we don't scale up to the full screen. Black by
  3054. * default, change to something else for debugging. */
  3055. I915_WRITE(BCLRPAT(crtc->pipe), 0);
  3056. }
  3057. static void valleyview_crtc_enable(struct drm_crtc *crtc)
  3058. {
  3059. struct drm_device *dev = crtc->dev;
  3060. struct drm_i915_private *dev_priv = dev->dev_private;
  3061. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3062. struct intel_encoder *encoder;
  3063. int pipe = intel_crtc->pipe;
  3064. int plane = intel_crtc->plane;
  3065. WARN_ON(!crtc->enabled);
  3066. if (intel_crtc->active)
  3067. return;
  3068. intel_crtc->active = true;
  3069. intel_update_watermarks(dev);
  3070. mutex_lock(&dev_priv->dpio_lock);
  3071. for_each_encoder_on_crtc(dev, crtc, encoder)
  3072. if (encoder->pre_pll_enable)
  3073. encoder->pre_pll_enable(encoder);
  3074. intel_enable_pll(dev_priv, pipe);
  3075. for_each_encoder_on_crtc(dev, crtc, encoder)
  3076. if (encoder->pre_enable)
  3077. encoder->pre_enable(encoder);
  3078. /* VLV wants encoder enabling _before_ the pipe is up. */
  3079. for_each_encoder_on_crtc(dev, crtc, encoder)
  3080. encoder->enable(encoder);
  3081. /* Enable panel fitting for eDP */
  3082. i9xx_pfit_enable(intel_crtc);
  3083. intel_enable_pipe(dev_priv, pipe, false);
  3084. intel_enable_plane(dev_priv, plane, pipe);
  3085. intel_crtc_load_lut(crtc);
  3086. intel_update_fbc(dev);
  3087. /* Give the overlay scaler a chance to enable if it's on this pipe */
  3088. intel_crtc_dpms_overlay(intel_crtc, true);
  3089. intel_crtc_update_cursor(crtc, true);
  3090. mutex_unlock(&dev_priv->dpio_lock);
  3091. }
  3092. static void i9xx_crtc_enable(struct drm_crtc *crtc)
  3093. {
  3094. struct drm_device *dev = crtc->dev;
  3095. struct drm_i915_private *dev_priv = dev->dev_private;
  3096. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3097. struct intel_encoder *encoder;
  3098. int pipe = intel_crtc->pipe;
  3099. int plane = intel_crtc->plane;
  3100. WARN_ON(!crtc->enabled);
  3101. if (intel_crtc->active)
  3102. return;
  3103. intel_crtc->active = true;
  3104. intel_update_watermarks(dev);
  3105. intel_enable_pll(dev_priv, pipe);
  3106. for_each_encoder_on_crtc(dev, crtc, encoder)
  3107. if (encoder->pre_enable)
  3108. encoder->pre_enable(encoder);
  3109. /* Enable panel fitting for LVDS */
  3110. i9xx_pfit_enable(intel_crtc);
  3111. intel_enable_pipe(dev_priv, pipe, false);
  3112. intel_enable_plane(dev_priv, plane, pipe);
  3113. if (IS_G4X(dev))
  3114. g4x_fixup_plane(dev_priv, pipe);
  3115. intel_crtc_load_lut(crtc);
  3116. intel_update_fbc(dev);
  3117. /* Give the overlay scaler a chance to enable if it's on this pipe */
  3118. intel_crtc_dpms_overlay(intel_crtc, true);
  3119. intel_crtc_update_cursor(crtc, true);
  3120. for_each_encoder_on_crtc(dev, crtc, encoder)
  3121. encoder->enable(encoder);
  3122. }
  3123. static void i9xx_pfit_disable(struct intel_crtc *crtc)
  3124. {
  3125. struct drm_device *dev = crtc->base.dev;
  3126. struct drm_i915_private *dev_priv = dev->dev_private;
  3127. if (!crtc->config.gmch_pfit.control)
  3128. return;
  3129. assert_pipe_disabled(dev_priv, crtc->pipe);
  3130. DRM_DEBUG_DRIVER("disabling pfit, current: 0x%08x\n",
  3131. I915_READ(PFIT_CONTROL));
  3132. I915_WRITE(PFIT_CONTROL, 0);
  3133. }
  3134. static void i9xx_crtc_disable(struct drm_crtc *crtc)
  3135. {
  3136. struct drm_device *dev = crtc->dev;
  3137. struct drm_i915_private *dev_priv = dev->dev_private;
  3138. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3139. struct intel_encoder *encoder;
  3140. int pipe = intel_crtc->pipe;
  3141. int plane = intel_crtc->plane;
  3142. if (!intel_crtc->active)
  3143. return;
  3144. for_each_encoder_on_crtc(dev, crtc, encoder)
  3145. encoder->disable(encoder);
  3146. /* Give the overlay scaler a chance to disable if it's on this pipe */
  3147. intel_crtc_wait_for_pending_flips(crtc);
  3148. drm_vblank_off(dev, pipe);
  3149. intel_crtc_dpms_overlay(intel_crtc, false);
  3150. intel_crtc_update_cursor(crtc, false);
  3151. if (dev_priv->cfb_plane == plane)
  3152. intel_disable_fbc(dev);
  3153. intel_disable_plane(dev_priv, plane, pipe);
  3154. intel_disable_pipe(dev_priv, pipe);
  3155. i9xx_pfit_disable(intel_crtc);
  3156. for_each_encoder_on_crtc(dev, crtc, encoder)
  3157. if (encoder->post_disable)
  3158. encoder->post_disable(encoder);
  3159. intel_disable_pll(dev_priv, pipe);
  3160. intel_crtc->active = false;
  3161. intel_update_fbc(dev);
  3162. intel_update_watermarks(dev);
  3163. }
  3164. static void i9xx_crtc_off(struct drm_crtc *crtc)
  3165. {
  3166. }
  3167. static void intel_crtc_update_sarea(struct drm_crtc *crtc,
  3168. bool enabled)
  3169. {
  3170. struct drm_device *dev = crtc->dev;
  3171. struct drm_i915_master_private *master_priv;
  3172. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3173. int pipe = intel_crtc->pipe;
  3174. if (!dev->primary->master)
  3175. return;
  3176. master_priv = dev->primary->master->driver_priv;
  3177. if (!master_priv->sarea_priv)
  3178. return;
  3179. switch (pipe) {
  3180. case 0:
  3181. master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
  3182. master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
  3183. break;
  3184. case 1:
  3185. master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
  3186. master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
  3187. break;
  3188. default:
  3189. DRM_ERROR("Can't update pipe %c in SAREA\n", pipe_name(pipe));
  3190. break;
  3191. }
  3192. }
  3193. /**
  3194. * Sets the power management mode of the pipe and plane.
  3195. */
  3196. void intel_crtc_update_dpms(struct drm_crtc *crtc)
  3197. {
  3198. struct drm_device *dev = crtc->dev;
  3199. struct drm_i915_private *dev_priv = dev->dev_private;
  3200. struct intel_encoder *intel_encoder;
  3201. bool enable = false;
  3202. for_each_encoder_on_crtc(dev, crtc, intel_encoder)
  3203. enable |= intel_encoder->connectors_active;
  3204. if (enable)
  3205. dev_priv->display.crtc_enable(crtc);
  3206. else
  3207. dev_priv->display.crtc_disable(crtc);
  3208. intel_crtc_update_sarea(crtc, enable);
  3209. }
  3210. static void intel_crtc_disable(struct drm_crtc *crtc)
  3211. {
  3212. struct drm_device *dev = crtc->dev;
  3213. struct drm_connector *connector;
  3214. struct drm_i915_private *dev_priv = dev->dev_private;
  3215. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3216. /* crtc should still be enabled when we disable it. */
  3217. WARN_ON(!crtc->enabled);
  3218. dev_priv->display.crtc_disable(crtc);
  3219. intel_crtc->eld_vld = false;
  3220. intel_crtc_update_sarea(crtc, false);
  3221. dev_priv->display.off(crtc);
  3222. assert_plane_disabled(dev->dev_private, to_intel_crtc(crtc)->plane);
  3223. assert_pipe_disabled(dev->dev_private, to_intel_crtc(crtc)->pipe);
  3224. if (crtc->fb) {
  3225. mutex_lock(&dev->struct_mutex);
  3226. intel_unpin_fb_obj(to_intel_framebuffer(crtc->fb)->obj);
  3227. mutex_unlock(&dev->struct_mutex);
  3228. crtc->fb = NULL;
  3229. }
  3230. /* Update computed state. */
  3231. list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
  3232. if (!connector->encoder || !connector->encoder->crtc)
  3233. continue;
  3234. if (connector->encoder->crtc != crtc)
  3235. continue;
  3236. connector->dpms = DRM_MODE_DPMS_OFF;
  3237. to_intel_encoder(connector->encoder)->connectors_active = false;
  3238. }
  3239. }
  3240. void intel_modeset_disable(struct drm_device *dev)
  3241. {
  3242. struct drm_crtc *crtc;
  3243. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  3244. if (crtc->enabled)
  3245. intel_crtc_disable(crtc);
  3246. }
  3247. }
  3248. void intel_encoder_destroy(struct drm_encoder *encoder)
  3249. {
  3250. struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
  3251. drm_encoder_cleanup(encoder);
  3252. kfree(intel_encoder);
  3253. }
  3254. /* Simple dpms helper for encodres with just one connector, no cloning and only
  3255. * one kind of off state. It clamps all !ON modes to fully OFF and changes the
  3256. * state of the entire output pipe. */
  3257. void intel_encoder_dpms(struct intel_encoder *encoder, int mode)
  3258. {
  3259. if (mode == DRM_MODE_DPMS_ON) {
  3260. encoder->connectors_active = true;
  3261. intel_crtc_update_dpms(encoder->base.crtc);
  3262. } else {
  3263. encoder->connectors_active = false;
  3264. intel_crtc_update_dpms(encoder->base.crtc);
  3265. }
  3266. }
  3267. /* Cross check the actual hw state with our own modeset state tracking (and it's
  3268. * internal consistency). */
  3269. static void intel_connector_check_state(struct intel_connector *connector)
  3270. {
  3271. if (connector->get_hw_state(connector)) {
  3272. struct intel_encoder *encoder = connector->encoder;
  3273. struct drm_crtc *crtc;
  3274. bool encoder_enabled;
  3275. enum pipe pipe;
  3276. DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
  3277. connector->base.base.id,
  3278. drm_get_connector_name(&connector->base));
  3279. WARN(connector->base.dpms == DRM_MODE_DPMS_OFF,
  3280. "wrong connector dpms state\n");
  3281. WARN(connector->base.encoder != &encoder->base,
  3282. "active connector not linked to encoder\n");
  3283. WARN(!encoder->connectors_active,
  3284. "encoder->connectors_active not set\n");
  3285. encoder_enabled = encoder->get_hw_state(encoder, &pipe);
  3286. WARN(!encoder_enabled, "encoder not enabled\n");
  3287. if (WARN_ON(!encoder->base.crtc))
  3288. return;
  3289. crtc = encoder->base.crtc;
  3290. WARN(!crtc->enabled, "crtc not enabled\n");
  3291. WARN(!to_intel_crtc(crtc)->active, "crtc not active\n");
  3292. WARN(pipe != to_intel_crtc(crtc)->pipe,
  3293. "encoder active on the wrong pipe\n");
  3294. }
  3295. }
  3296. /* Even simpler default implementation, if there's really no special case to
  3297. * consider. */
  3298. void intel_connector_dpms(struct drm_connector *connector, int mode)
  3299. {
  3300. struct intel_encoder *encoder = intel_attached_encoder(connector);
  3301. /* All the simple cases only support two dpms states. */
  3302. if (mode != DRM_MODE_DPMS_ON)
  3303. mode = DRM_MODE_DPMS_OFF;
  3304. if (mode == connector->dpms)
  3305. return;
  3306. connector->dpms = mode;
  3307. /* Only need to change hw state when actually enabled */
  3308. if (encoder->base.crtc)
  3309. intel_encoder_dpms(encoder, mode);
  3310. else
  3311. WARN_ON(encoder->connectors_active != false);
  3312. intel_modeset_check_state(connector->dev);
  3313. }
  3314. /* Simple connector->get_hw_state implementation for encoders that support only
  3315. * one connector and no cloning and hence the encoder state determines the state
  3316. * of the connector. */
  3317. bool intel_connector_get_hw_state(struct intel_connector *connector)
  3318. {
  3319. enum pipe pipe = 0;
  3320. struct intel_encoder *encoder = connector->encoder;
  3321. return encoder->get_hw_state(encoder, &pipe);
  3322. }
  3323. static bool ironlake_check_fdi_lanes(struct drm_device *dev, enum pipe pipe,
  3324. struct intel_crtc_config *pipe_config)
  3325. {
  3326. struct drm_i915_private *dev_priv = dev->dev_private;
  3327. struct intel_crtc *pipe_B_crtc =
  3328. to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
  3329. DRM_DEBUG_KMS("checking fdi config on pipe %c, lanes %i\n",
  3330. pipe_name(pipe), pipe_config->fdi_lanes);
  3331. if (pipe_config->fdi_lanes > 4) {
  3332. DRM_DEBUG_KMS("invalid fdi lane config on pipe %c: %i lanes\n",
  3333. pipe_name(pipe), pipe_config->fdi_lanes);
  3334. return false;
  3335. }
  3336. if (IS_HASWELL(dev)) {
  3337. if (pipe_config->fdi_lanes > 2) {
  3338. DRM_DEBUG_KMS("only 2 lanes on haswell, required: %i lanes\n",
  3339. pipe_config->fdi_lanes);
  3340. return false;
  3341. } else {
  3342. return true;
  3343. }
  3344. }
  3345. if (INTEL_INFO(dev)->num_pipes == 2)
  3346. return true;
  3347. /* Ivybridge 3 pipe is really complicated */
  3348. switch (pipe) {
  3349. case PIPE_A:
  3350. return true;
  3351. case PIPE_B:
  3352. if (dev_priv->pipe_to_crtc_mapping[PIPE_C]->enabled &&
  3353. pipe_config->fdi_lanes > 2) {
  3354. DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
  3355. pipe_name(pipe), pipe_config->fdi_lanes);
  3356. return false;
  3357. }
  3358. return true;
  3359. case PIPE_C:
  3360. if (!pipe_has_enabled_pch(pipe_B_crtc) ||
  3361. pipe_B_crtc->config.fdi_lanes <= 2) {
  3362. if (pipe_config->fdi_lanes > 2) {
  3363. DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
  3364. pipe_name(pipe), pipe_config->fdi_lanes);
  3365. return false;
  3366. }
  3367. } else {
  3368. DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
  3369. return false;
  3370. }
  3371. return true;
  3372. default:
  3373. BUG();
  3374. }
  3375. }
  3376. #define RETRY 1
  3377. static int ironlake_fdi_compute_config(struct intel_crtc *intel_crtc,
  3378. struct intel_crtc_config *pipe_config)
  3379. {
  3380. struct drm_device *dev = intel_crtc->base.dev;
  3381. struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
  3382. int lane, link_bw, fdi_dotclock;
  3383. bool setup_ok, needs_recompute = false;
  3384. retry:
  3385. /* FDI is a binary signal running at ~2.7GHz, encoding
  3386. * each output octet as 10 bits. The actual frequency
  3387. * is stored as a divider into a 100MHz clock, and the
  3388. * mode pixel clock is stored in units of 1KHz.
  3389. * Hence the bw of each lane in terms of the mode signal
  3390. * is:
  3391. */
  3392. link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
  3393. fdi_dotclock = adjusted_mode->clock;
  3394. if (pipe_config->pixel_multiplier > 1)
  3395. fdi_dotclock /= pipe_config->pixel_multiplier;
  3396. lane = ironlake_get_lanes_required(fdi_dotclock, link_bw,
  3397. pipe_config->pipe_bpp);
  3398. pipe_config->fdi_lanes = lane;
  3399. intel_link_compute_m_n(pipe_config->pipe_bpp, lane, fdi_dotclock,
  3400. link_bw, &pipe_config->fdi_m_n);
  3401. setup_ok = ironlake_check_fdi_lanes(intel_crtc->base.dev,
  3402. intel_crtc->pipe, pipe_config);
  3403. if (!setup_ok && pipe_config->pipe_bpp > 6*3) {
  3404. pipe_config->pipe_bpp -= 2*3;
  3405. DRM_DEBUG_KMS("fdi link bw constraint, reducing pipe bpp to %i\n",
  3406. pipe_config->pipe_bpp);
  3407. needs_recompute = true;
  3408. pipe_config->bw_constrained = true;
  3409. goto retry;
  3410. }
  3411. if (needs_recompute)
  3412. return RETRY;
  3413. return setup_ok ? 0 : -EINVAL;
  3414. }
  3415. static void hsw_compute_ips_config(struct intel_crtc *crtc,
  3416. struct intel_crtc_config *pipe_config)
  3417. {
  3418. pipe_config->ips_enabled = i915_enable_ips &&
  3419. hsw_crtc_supports_ips(crtc) &&
  3420. pipe_config->pipe_bpp == 24;
  3421. }
  3422. static int intel_crtc_compute_config(struct drm_crtc *crtc,
  3423. struct intel_crtc_config *pipe_config)
  3424. {
  3425. struct drm_device *dev = crtc->dev;
  3426. struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
  3427. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3428. if (HAS_PCH_SPLIT(dev)) {
  3429. /* FDI link clock is fixed at 2.7G */
  3430. if (pipe_config->requested_mode.clock * 3
  3431. > IRONLAKE_FDI_FREQ * 4)
  3432. return -EINVAL;
  3433. }
  3434. /* All interlaced capable intel hw wants timings in frames. Note though
  3435. * that intel_lvds_mode_fixup does some funny tricks with the crtc
  3436. * timings, so we need to be careful not to clobber these.*/
  3437. if (!pipe_config->timings_set)
  3438. drm_mode_set_crtcinfo(adjusted_mode, 0);
  3439. /* Cantiga+ cannot handle modes with a hsync front porch of 0.
  3440. * WaPruneModeWithIncorrectHsyncOffset:ctg,elk,ilk,snb,ivb,vlv,hsw.
  3441. */
  3442. if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
  3443. adjusted_mode->hsync_start == adjusted_mode->hdisplay)
  3444. return -EINVAL;
  3445. if ((IS_G4X(dev) || IS_VALLEYVIEW(dev)) && pipe_config->pipe_bpp > 10*3) {
  3446. pipe_config->pipe_bpp = 10*3; /* 12bpc is gen5+ */
  3447. } else if (INTEL_INFO(dev)->gen <= 4 && pipe_config->pipe_bpp > 8*3) {
  3448. /* only a 8bpc pipe, with 6bpc dither through the panel fitter
  3449. * for lvds. */
  3450. pipe_config->pipe_bpp = 8*3;
  3451. }
  3452. if (IS_HASWELL(dev))
  3453. hsw_compute_ips_config(intel_crtc, pipe_config);
  3454. if (pipe_config->has_pch_encoder)
  3455. return ironlake_fdi_compute_config(intel_crtc, pipe_config);
  3456. return 0;
  3457. }
  3458. static int valleyview_get_display_clock_speed(struct drm_device *dev)
  3459. {
  3460. return 400000; /* FIXME */
  3461. }
  3462. static int i945_get_display_clock_speed(struct drm_device *dev)
  3463. {
  3464. return 400000;
  3465. }
  3466. static int i915_get_display_clock_speed(struct drm_device *dev)
  3467. {
  3468. return 333000;
  3469. }
  3470. static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
  3471. {
  3472. return 200000;
  3473. }
  3474. static int i915gm_get_display_clock_speed(struct drm_device *dev)
  3475. {
  3476. u16 gcfgc = 0;
  3477. pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
  3478. if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
  3479. return 133000;
  3480. else {
  3481. switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
  3482. case GC_DISPLAY_CLOCK_333_MHZ:
  3483. return 333000;
  3484. default:
  3485. case GC_DISPLAY_CLOCK_190_200_MHZ:
  3486. return 190000;
  3487. }
  3488. }
  3489. }
  3490. static int i865_get_display_clock_speed(struct drm_device *dev)
  3491. {
  3492. return 266000;
  3493. }
  3494. static int i855_get_display_clock_speed(struct drm_device *dev)
  3495. {
  3496. u16 hpllcc = 0;
  3497. /* Assume that the hardware is in the high speed state. This
  3498. * should be the default.
  3499. */
  3500. switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
  3501. case GC_CLOCK_133_200:
  3502. case GC_CLOCK_100_200:
  3503. return 200000;
  3504. case GC_CLOCK_166_250:
  3505. return 250000;
  3506. case GC_CLOCK_100_133:
  3507. return 133000;
  3508. }
  3509. /* Shouldn't happen */
  3510. return 0;
  3511. }
  3512. static int i830_get_display_clock_speed(struct drm_device *dev)
  3513. {
  3514. return 133000;
  3515. }
  3516. static void
  3517. intel_reduce_m_n_ratio(uint32_t *num, uint32_t *den)
  3518. {
  3519. while (*num > DATA_LINK_M_N_MASK ||
  3520. *den > DATA_LINK_M_N_MASK) {
  3521. *num >>= 1;
  3522. *den >>= 1;
  3523. }
  3524. }
  3525. static void compute_m_n(unsigned int m, unsigned int n,
  3526. uint32_t *ret_m, uint32_t *ret_n)
  3527. {
  3528. *ret_n = min_t(unsigned int, roundup_pow_of_two(n), DATA_LINK_N_MAX);
  3529. *ret_m = div_u64((uint64_t) m * *ret_n, n);
  3530. intel_reduce_m_n_ratio(ret_m, ret_n);
  3531. }
  3532. void
  3533. intel_link_compute_m_n(int bits_per_pixel, int nlanes,
  3534. int pixel_clock, int link_clock,
  3535. struct intel_link_m_n *m_n)
  3536. {
  3537. m_n->tu = 64;
  3538. compute_m_n(bits_per_pixel * pixel_clock,
  3539. link_clock * nlanes * 8,
  3540. &m_n->gmch_m, &m_n->gmch_n);
  3541. compute_m_n(pixel_clock, link_clock,
  3542. &m_n->link_m, &m_n->link_n);
  3543. }
  3544. static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
  3545. {
  3546. if (i915_panel_use_ssc >= 0)
  3547. return i915_panel_use_ssc != 0;
  3548. return dev_priv->vbt.lvds_use_ssc
  3549. && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
  3550. }
  3551. static int vlv_get_refclk(struct drm_crtc *crtc)
  3552. {
  3553. struct drm_device *dev = crtc->dev;
  3554. struct drm_i915_private *dev_priv = dev->dev_private;
  3555. int refclk = 27000; /* for DP & HDMI */
  3556. return 100000; /* only one validated so far */
  3557. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
  3558. refclk = 96000;
  3559. } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  3560. if (intel_panel_use_ssc(dev_priv))
  3561. refclk = 100000;
  3562. else
  3563. refclk = 96000;
  3564. } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP)) {
  3565. refclk = 100000;
  3566. }
  3567. return refclk;
  3568. }
  3569. static int i9xx_get_refclk(struct drm_crtc *crtc, int num_connectors)
  3570. {
  3571. struct drm_device *dev = crtc->dev;
  3572. struct drm_i915_private *dev_priv = dev->dev_private;
  3573. int refclk;
  3574. if (IS_VALLEYVIEW(dev)) {
  3575. refclk = vlv_get_refclk(crtc);
  3576. } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
  3577. intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
  3578. refclk = dev_priv->vbt.lvds_ssc_freq * 1000;
  3579. DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
  3580. refclk / 1000);
  3581. } else if (!IS_GEN2(dev)) {
  3582. refclk = 96000;
  3583. } else {
  3584. refclk = 48000;
  3585. }
  3586. return refclk;
  3587. }
  3588. static uint32_t pnv_dpll_compute_fp(struct dpll *dpll)
  3589. {
  3590. return (1 << dpll->n) << 16 | dpll->m1 << 8 | dpll->m2;
  3591. }
  3592. static uint32_t i9xx_dpll_compute_fp(struct dpll *dpll)
  3593. {
  3594. return dpll->n << 16 | dpll->m1 << 8 | dpll->m2;
  3595. }
  3596. static void i9xx_update_pll_dividers(struct intel_crtc *crtc,
  3597. intel_clock_t *reduced_clock)
  3598. {
  3599. struct drm_device *dev = crtc->base.dev;
  3600. struct drm_i915_private *dev_priv = dev->dev_private;
  3601. int pipe = crtc->pipe;
  3602. u32 fp, fp2 = 0;
  3603. if (IS_PINEVIEW(dev)) {
  3604. fp = pnv_dpll_compute_fp(&crtc->config.dpll);
  3605. if (reduced_clock)
  3606. fp2 = pnv_dpll_compute_fp(reduced_clock);
  3607. } else {
  3608. fp = i9xx_dpll_compute_fp(&crtc->config.dpll);
  3609. if (reduced_clock)
  3610. fp2 = i9xx_dpll_compute_fp(reduced_clock);
  3611. }
  3612. I915_WRITE(FP0(pipe), fp);
  3613. crtc->lowfreq_avail = false;
  3614. if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
  3615. reduced_clock && i915_powersave) {
  3616. I915_WRITE(FP1(pipe), fp2);
  3617. crtc->lowfreq_avail = true;
  3618. } else {
  3619. I915_WRITE(FP1(pipe), fp);
  3620. }
  3621. }
  3622. static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv)
  3623. {
  3624. u32 reg_val;
  3625. /*
  3626. * PLLB opamp always calibrates to max value of 0x3f, force enable it
  3627. * and set it to a reasonable value instead.
  3628. */
  3629. reg_val = vlv_dpio_read(dev_priv, DPIO_IREF(1));
  3630. reg_val &= 0xffffff00;
  3631. reg_val |= 0x00000030;
  3632. vlv_dpio_write(dev_priv, DPIO_IREF(1), reg_val);
  3633. reg_val = vlv_dpio_read(dev_priv, DPIO_CALIBRATION);
  3634. reg_val &= 0x8cffffff;
  3635. reg_val = 0x8c000000;
  3636. vlv_dpio_write(dev_priv, DPIO_CALIBRATION, reg_val);
  3637. reg_val = vlv_dpio_read(dev_priv, DPIO_IREF(1));
  3638. reg_val &= 0xffffff00;
  3639. vlv_dpio_write(dev_priv, DPIO_IREF(1), reg_val);
  3640. reg_val = vlv_dpio_read(dev_priv, DPIO_CALIBRATION);
  3641. reg_val &= 0x00ffffff;
  3642. reg_val |= 0xb0000000;
  3643. vlv_dpio_write(dev_priv, DPIO_CALIBRATION, reg_val);
  3644. }
  3645. static void intel_pch_transcoder_set_m_n(struct intel_crtc *crtc,
  3646. struct intel_link_m_n *m_n)
  3647. {
  3648. struct drm_device *dev = crtc->base.dev;
  3649. struct drm_i915_private *dev_priv = dev->dev_private;
  3650. int pipe = crtc->pipe;
  3651. I915_WRITE(PCH_TRANS_DATA_M1(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
  3652. I915_WRITE(PCH_TRANS_DATA_N1(pipe), m_n->gmch_n);
  3653. I915_WRITE(PCH_TRANS_LINK_M1(pipe), m_n->link_m);
  3654. I915_WRITE(PCH_TRANS_LINK_N1(pipe), m_n->link_n);
  3655. }
  3656. static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
  3657. struct intel_link_m_n *m_n)
  3658. {
  3659. struct drm_device *dev = crtc->base.dev;
  3660. struct drm_i915_private *dev_priv = dev->dev_private;
  3661. int pipe = crtc->pipe;
  3662. enum transcoder transcoder = crtc->config.cpu_transcoder;
  3663. if (INTEL_INFO(dev)->gen >= 5) {
  3664. I915_WRITE(PIPE_DATA_M1(transcoder), TU_SIZE(m_n->tu) | m_n->gmch_m);
  3665. I915_WRITE(PIPE_DATA_N1(transcoder), m_n->gmch_n);
  3666. I915_WRITE(PIPE_LINK_M1(transcoder), m_n->link_m);
  3667. I915_WRITE(PIPE_LINK_N1(transcoder), m_n->link_n);
  3668. } else {
  3669. I915_WRITE(PIPE_DATA_M_G4X(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
  3670. I915_WRITE(PIPE_DATA_N_G4X(pipe), m_n->gmch_n);
  3671. I915_WRITE(PIPE_LINK_M_G4X(pipe), m_n->link_m);
  3672. I915_WRITE(PIPE_LINK_N_G4X(pipe), m_n->link_n);
  3673. }
  3674. }
  3675. static void intel_dp_set_m_n(struct intel_crtc *crtc)
  3676. {
  3677. if (crtc->config.has_pch_encoder)
  3678. intel_pch_transcoder_set_m_n(crtc, &crtc->config.dp_m_n);
  3679. else
  3680. intel_cpu_transcoder_set_m_n(crtc, &crtc->config.dp_m_n);
  3681. }
  3682. static void vlv_update_pll(struct intel_crtc *crtc)
  3683. {
  3684. struct drm_device *dev = crtc->base.dev;
  3685. struct drm_i915_private *dev_priv = dev->dev_private;
  3686. struct intel_encoder *encoder;
  3687. int pipe = crtc->pipe;
  3688. u32 dpll, mdiv;
  3689. u32 bestn, bestm1, bestm2, bestp1, bestp2;
  3690. bool is_hdmi;
  3691. u32 coreclk, reg_val, dpll_md;
  3692. mutex_lock(&dev_priv->dpio_lock);
  3693. is_hdmi = intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI);
  3694. bestn = crtc->config.dpll.n;
  3695. bestm1 = crtc->config.dpll.m1;
  3696. bestm2 = crtc->config.dpll.m2;
  3697. bestp1 = crtc->config.dpll.p1;
  3698. bestp2 = crtc->config.dpll.p2;
  3699. /* See eDP HDMI DPIO driver vbios notes doc */
  3700. /* PLL B needs special handling */
  3701. if (pipe)
  3702. vlv_pllb_recal_opamp(dev_priv);
  3703. /* Set up Tx target for periodic Rcomp update */
  3704. vlv_dpio_write(dev_priv, DPIO_IREF_BCAST, 0x0100000f);
  3705. /* Disable target IRef on PLL */
  3706. reg_val = vlv_dpio_read(dev_priv, DPIO_IREF_CTL(pipe));
  3707. reg_val &= 0x00ffffff;
  3708. vlv_dpio_write(dev_priv, DPIO_IREF_CTL(pipe), reg_val);
  3709. /* Disable fast lock */
  3710. vlv_dpio_write(dev_priv, DPIO_FASTCLK_DISABLE, 0x610);
  3711. /* Set idtafcrecal before PLL is enabled */
  3712. mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
  3713. mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
  3714. mdiv |= ((bestn << DPIO_N_SHIFT));
  3715. mdiv |= (1 << DPIO_K_SHIFT);
  3716. /*
  3717. * Post divider depends on pixel clock rate, DAC vs digital (and LVDS,
  3718. * but we don't support that).
  3719. * Note: don't use the DAC post divider as it seems unstable.
  3720. */
  3721. mdiv |= (DPIO_POST_DIV_HDMIDP << DPIO_POST_DIV_SHIFT);
  3722. vlv_dpio_write(dev_priv, DPIO_DIV(pipe), mdiv);
  3723. mdiv |= DPIO_ENABLE_CALIBRATION;
  3724. vlv_dpio_write(dev_priv, DPIO_DIV(pipe), mdiv);
  3725. /* Set HBR and RBR LPF coefficients */
  3726. if (crtc->config.port_clock == 162000 ||
  3727. intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI))
  3728. vlv_dpio_write(dev_priv, DPIO_LFP_COEFF(pipe),
  3729. 0x005f0021);
  3730. else
  3731. vlv_dpio_write(dev_priv, DPIO_LFP_COEFF(pipe),
  3732. 0x00d0000f);
  3733. if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_EDP) ||
  3734. intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT)) {
  3735. /* Use SSC source */
  3736. if (!pipe)
  3737. vlv_dpio_write(dev_priv, DPIO_REFSFR(pipe),
  3738. 0x0df40000);
  3739. else
  3740. vlv_dpio_write(dev_priv, DPIO_REFSFR(pipe),
  3741. 0x0df70000);
  3742. } else { /* HDMI or VGA */
  3743. /* Use bend source */
  3744. if (!pipe)
  3745. vlv_dpio_write(dev_priv, DPIO_REFSFR(pipe),
  3746. 0x0df70000);
  3747. else
  3748. vlv_dpio_write(dev_priv, DPIO_REFSFR(pipe),
  3749. 0x0df40000);
  3750. }
  3751. coreclk = vlv_dpio_read(dev_priv, DPIO_CORE_CLK(pipe));
  3752. coreclk = (coreclk & 0x0000ff00) | 0x01c00000;
  3753. if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT) ||
  3754. intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_EDP))
  3755. coreclk |= 0x01000000;
  3756. vlv_dpio_write(dev_priv, DPIO_CORE_CLK(pipe), coreclk);
  3757. vlv_dpio_write(dev_priv, DPIO_PLL_CML(pipe), 0x87871000);
  3758. for_each_encoder_on_crtc(dev, &crtc->base, encoder)
  3759. if (encoder->pre_pll_enable)
  3760. encoder->pre_pll_enable(encoder);
  3761. /* Enable DPIO clock input */
  3762. dpll = DPLL_EXT_BUFFER_ENABLE_VLV | DPLL_REFA_CLK_ENABLE_VLV |
  3763. DPLL_VGA_MODE_DIS | DPLL_INTEGRATED_CLOCK_VLV;
  3764. if (pipe)
  3765. dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
  3766. dpll |= DPLL_VCO_ENABLE;
  3767. I915_WRITE(DPLL(pipe), dpll);
  3768. POSTING_READ(DPLL(pipe));
  3769. udelay(150);
  3770. if (wait_for(((I915_READ(DPLL(pipe)) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
  3771. DRM_ERROR("DPLL %d failed to lock\n", pipe);
  3772. dpll_md = 0;
  3773. if (crtc->config.pixel_multiplier > 1) {
  3774. dpll_md = (crtc->config.pixel_multiplier - 1)
  3775. << DPLL_MD_UDI_MULTIPLIER_SHIFT;
  3776. }
  3777. I915_WRITE(DPLL_MD(pipe), dpll_md);
  3778. POSTING_READ(DPLL_MD(pipe));
  3779. if (crtc->config.has_dp_encoder)
  3780. intel_dp_set_m_n(crtc);
  3781. mutex_unlock(&dev_priv->dpio_lock);
  3782. }
  3783. static void i9xx_update_pll(struct intel_crtc *crtc,
  3784. intel_clock_t *reduced_clock,
  3785. int num_connectors)
  3786. {
  3787. struct drm_device *dev = crtc->base.dev;
  3788. struct drm_i915_private *dev_priv = dev->dev_private;
  3789. struct intel_encoder *encoder;
  3790. int pipe = crtc->pipe;
  3791. u32 dpll;
  3792. bool is_sdvo;
  3793. struct dpll *clock = &crtc->config.dpll;
  3794. i9xx_update_pll_dividers(crtc, reduced_clock);
  3795. is_sdvo = intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_SDVO) ||
  3796. intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI);
  3797. dpll = DPLL_VGA_MODE_DIS;
  3798. if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS))
  3799. dpll |= DPLLB_MODE_LVDS;
  3800. else
  3801. dpll |= DPLLB_MODE_DAC_SERIAL;
  3802. if ((crtc->config.pixel_multiplier > 1) &&
  3803. (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))) {
  3804. dpll |= (crtc->config.pixel_multiplier - 1)
  3805. << SDVO_MULTIPLIER_SHIFT_HIRES;
  3806. }
  3807. if (is_sdvo)
  3808. dpll |= DPLL_DVO_HIGH_SPEED;
  3809. if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT))
  3810. dpll |= DPLL_DVO_HIGH_SPEED;
  3811. /* compute bitmask from p1 value */
  3812. if (IS_PINEVIEW(dev))
  3813. dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
  3814. else {
  3815. dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
  3816. if (IS_G4X(dev) && reduced_clock)
  3817. dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
  3818. }
  3819. switch (clock->p2) {
  3820. case 5:
  3821. dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
  3822. break;
  3823. case 7:
  3824. dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
  3825. break;
  3826. case 10:
  3827. dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
  3828. break;
  3829. case 14:
  3830. dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
  3831. break;
  3832. }
  3833. if (INTEL_INFO(dev)->gen >= 4)
  3834. dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
  3835. if (crtc->config.sdvo_tv_clock)
  3836. dpll |= PLL_REF_INPUT_TVCLKINBC;
  3837. else if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
  3838. intel_panel_use_ssc(dev_priv) && num_connectors < 2)
  3839. dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
  3840. else
  3841. dpll |= PLL_REF_INPUT_DREFCLK;
  3842. dpll |= DPLL_VCO_ENABLE;
  3843. I915_WRITE(DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
  3844. POSTING_READ(DPLL(pipe));
  3845. udelay(150);
  3846. for_each_encoder_on_crtc(dev, &crtc->base, encoder)
  3847. if (encoder->pre_pll_enable)
  3848. encoder->pre_pll_enable(encoder);
  3849. if (crtc->config.has_dp_encoder)
  3850. intel_dp_set_m_n(crtc);
  3851. I915_WRITE(DPLL(pipe), dpll);
  3852. /* Wait for the clocks to stabilize. */
  3853. POSTING_READ(DPLL(pipe));
  3854. udelay(150);
  3855. if (INTEL_INFO(dev)->gen >= 4) {
  3856. u32 dpll_md = 0;
  3857. if (crtc->config.pixel_multiplier > 1) {
  3858. dpll_md = (crtc->config.pixel_multiplier - 1)
  3859. << DPLL_MD_UDI_MULTIPLIER_SHIFT;
  3860. }
  3861. I915_WRITE(DPLL_MD(pipe), dpll_md);
  3862. } else {
  3863. /* The pixel multiplier can only be updated once the
  3864. * DPLL is enabled and the clocks are stable.
  3865. *
  3866. * So write it again.
  3867. */
  3868. I915_WRITE(DPLL(pipe), dpll);
  3869. }
  3870. }
  3871. static void i8xx_update_pll(struct intel_crtc *crtc,
  3872. intel_clock_t *reduced_clock,
  3873. int num_connectors)
  3874. {
  3875. struct drm_device *dev = crtc->base.dev;
  3876. struct drm_i915_private *dev_priv = dev->dev_private;
  3877. struct intel_encoder *encoder;
  3878. int pipe = crtc->pipe;
  3879. u32 dpll;
  3880. struct dpll *clock = &crtc->config.dpll;
  3881. i9xx_update_pll_dividers(crtc, reduced_clock);
  3882. dpll = DPLL_VGA_MODE_DIS;
  3883. if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS)) {
  3884. dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
  3885. } else {
  3886. if (clock->p1 == 2)
  3887. dpll |= PLL_P1_DIVIDE_BY_TWO;
  3888. else
  3889. dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
  3890. if (clock->p2 == 4)
  3891. dpll |= PLL_P2_DIVIDE_BY_4;
  3892. }
  3893. if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
  3894. intel_panel_use_ssc(dev_priv) && num_connectors < 2)
  3895. dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
  3896. else
  3897. dpll |= PLL_REF_INPUT_DREFCLK;
  3898. dpll |= DPLL_VCO_ENABLE;
  3899. I915_WRITE(DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
  3900. POSTING_READ(DPLL(pipe));
  3901. udelay(150);
  3902. for_each_encoder_on_crtc(dev, &crtc->base, encoder)
  3903. if (encoder->pre_pll_enable)
  3904. encoder->pre_pll_enable(encoder);
  3905. I915_WRITE(DPLL(pipe), dpll);
  3906. /* Wait for the clocks to stabilize. */
  3907. POSTING_READ(DPLL(pipe));
  3908. udelay(150);
  3909. /* The pixel multiplier can only be updated once the
  3910. * DPLL is enabled and the clocks are stable.
  3911. *
  3912. * So write it again.
  3913. */
  3914. I915_WRITE(DPLL(pipe), dpll);
  3915. }
  3916. static void intel_set_pipe_timings(struct intel_crtc *intel_crtc)
  3917. {
  3918. struct drm_device *dev = intel_crtc->base.dev;
  3919. struct drm_i915_private *dev_priv = dev->dev_private;
  3920. enum pipe pipe = intel_crtc->pipe;
  3921. enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
  3922. struct drm_display_mode *adjusted_mode =
  3923. &intel_crtc->config.adjusted_mode;
  3924. struct drm_display_mode *mode = &intel_crtc->config.requested_mode;
  3925. uint32_t vsyncshift, crtc_vtotal, crtc_vblank_end;
  3926. /* We need to be careful not to changed the adjusted mode, for otherwise
  3927. * the hw state checker will get angry at the mismatch. */
  3928. crtc_vtotal = adjusted_mode->crtc_vtotal;
  3929. crtc_vblank_end = adjusted_mode->crtc_vblank_end;
  3930. if (!IS_GEN2(dev) && adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
  3931. /* the chip adds 2 halflines automatically */
  3932. crtc_vtotal -= 1;
  3933. crtc_vblank_end -= 1;
  3934. vsyncshift = adjusted_mode->crtc_hsync_start
  3935. - adjusted_mode->crtc_htotal / 2;
  3936. } else {
  3937. vsyncshift = 0;
  3938. }
  3939. if (INTEL_INFO(dev)->gen > 3)
  3940. I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
  3941. I915_WRITE(HTOTAL(cpu_transcoder),
  3942. (adjusted_mode->crtc_hdisplay - 1) |
  3943. ((adjusted_mode->crtc_htotal - 1) << 16));
  3944. I915_WRITE(HBLANK(cpu_transcoder),
  3945. (adjusted_mode->crtc_hblank_start - 1) |
  3946. ((adjusted_mode->crtc_hblank_end - 1) << 16));
  3947. I915_WRITE(HSYNC(cpu_transcoder),
  3948. (adjusted_mode->crtc_hsync_start - 1) |
  3949. ((adjusted_mode->crtc_hsync_end - 1) << 16));
  3950. I915_WRITE(VTOTAL(cpu_transcoder),
  3951. (adjusted_mode->crtc_vdisplay - 1) |
  3952. ((crtc_vtotal - 1) << 16));
  3953. I915_WRITE(VBLANK(cpu_transcoder),
  3954. (adjusted_mode->crtc_vblank_start - 1) |
  3955. ((crtc_vblank_end - 1) << 16));
  3956. I915_WRITE(VSYNC(cpu_transcoder),
  3957. (adjusted_mode->crtc_vsync_start - 1) |
  3958. ((adjusted_mode->crtc_vsync_end - 1) << 16));
  3959. /* Workaround: when the EDP input selection is B, the VTOTAL_B must be
  3960. * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
  3961. * documented on the DDI_FUNC_CTL register description, EDP Input Select
  3962. * bits. */
  3963. if (IS_HASWELL(dev) && cpu_transcoder == TRANSCODER_EDP &&
  3964. (pipe == PIPE_B || pipe == PIPE_C))
  3965. I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
  3966. /* pipesrc controls the size that is scaled from, which should
  3967. * always be the user's requested size.
  3968. */
  3969. I915_WRITE(PIPESRC(pipe),
  3970. ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
  3971. }
  3972. static void intel_get_pipe_timings(struct intel_crtc *crtc,
  3973. struct intel_crtc_config *pipe_config)
  3974. {
  3975. struct drm_device *dev = crtc->base.dev;
  3976. struct drm_i915_private *dev_priv = dev->dev_private;
  3977. enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
  3978. uint32_t tmp;
  3979. tmp = I915_READ(HTOTAL(cpu_transcoder));
  3980. pipe_config->adjusted_mode.crtc_hdisplay = (tmp & 0xffff) + 1;
  3981. pipe_config->adjusted_mode.crtc_htotal = ((tmp >> 16) & 0xffff) + 1;
  3982. tmp = I915_READ(HBLANK(cpu_transcoder));
  3983. pipe_config->adjusted_mode.crtc_hblank_start = (tmp & 0xffff) + 1;
  3984. pipe_config->adjusted_mode.crtc_hblank_end = ((tmp >> 16) & 0xffff) + 1;
  3985. tmp = I915_READ(HSYNC(cpu_transcoder));
  3986. pipe_config->adjusted_mode.crtc_hsync_start = (tmp & 0xffff) + 1;
  3987. pipe_config->adjusted_mode.crtc_hsync_end = ((tmp >> 16) & 0xffff) + 1;
  3988. tmp = I915_READ(VTOTAL(cpu_transcoder));
  3989. pipe_config->adjusted_mode.crtc_vdisplay = (tmp & 0xffff) + 1;
  3990. pipe_config->adjusted_mode.crtc_vtotal = ((tmp >> 16) & 0xffff) + 1;
  3991. tmp = I915_READ(VBLANK(cpu_transcoder));
  3992. pipe_config->adjusted_mode.crtc_vblank_start = (tmp & 0xffff) + 1;
  3993. pipe_config->adjusted_mode.crtc_vblank_end = ((tmp >> 16) & 0xffff) + 1;
  3994. tmp = I915_READ(VSYNC(cpu_transcoder));
  3995. pipe_config->adjusted_mode.crtc_vsync_start = (tmp & 0xffff) + 1;
  3996. pipe_config->adjusted_mode.crtc_vsync_end = ((tmp >> 16) & 0xffff) + 1;
  3997. if (I915_READ(PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK) {
  3998. pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_INTERLACE;
  3999. pipe_config->adjusted_mode.crtc_vtotal += 1;
  4000. pipe_config->adjusted_mode.crtc_vblank_end += 1;
  4001. }
  4002. tmp = I915_READ(PIPESRC(crtc->pipe));
  4003. pipe_config->requested_mode.vdisplay = (tmp & 0xffff) + 1;
  4004. pipe_config->requested_mode.hdisplay = ((tmp >> 16) & 0xffff) + 1;
  4005. }
  4006. static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc)
  4007. {
  4008. struct drm_device *dev = intel_crtc->base.dev;
  4009. struct drm_i915_private *dev_priv = dev->dev_private;
  4010. uint32_t pipeconf;
  4011. pipeconf = I915_READ(PIPECONF(intel_crtc->pipe));
  4012. if (intel_crtc->pipe == 0 && INTEL_INFO(dev)->gen < 4) {
  4013. /* Enable pixel doubling when the dot clock is > 90% of the (display)
  4014. * core speed.
  4015. *
  4016. * XXX: No double-wide on 915GM pipe B. Is that the only reason for the
  4017. * pipe == 0 check?
  4018. */
  4019. if (intel_crtc->config.requested_mode.clock >
  4020. dev_priv->display.get_display_clock_speed(dev) * 9 / 10)
  4021. pipeconf |= PIPECONF_DOUBLE_WIDE;
  4022. else
  4023. pipeconf &= ~PIPECONF_DOUBLE_WIDE;
  4024. }
  4025. /* only g4x and later have fancy bpc/dither controls */
  4026. if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
  4027. pipeconf &= ~(PIPECONF_BPC_MASK |
  4028. PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_MASK);
  4029. /* Bspec claims that we can't use dithering for 30bpp pipes. */
  4030. if (intel_crtc->config.dither && intel_crtc->config.pipe_bpp != 30)
  4031. pipeconf |= PIPECONF_DITHER_EN |
  4032. PIPECONF_DITHER_TYPE_SP;
  4033. switch (intel_crtc->config.pipe_bpp) {
  4034. case 18:
  4035. pipeconf |= PIPECONF_6BPC;
  4036. break;
  4037. case 24:
  4038. pipeconf |= PIPECONF_8BPC;
  4039. break;
  4040. case 30:
  4041. pipeconf |= PIPECONF_10BPC;
  4042. break;
  4043. default:
  4044. /* Case prevented by intel_choose_pipe_bpp_dither. */
  4045. BUG();
  4046. }
  4047. }
  4048. if (HAS_PIPE_CXSR(dev)) {
  4049. if (intel_crtc->lowfreq_avail) {
  4050. DRM_DEBUG_KMS("enabling CxSR downclocking\n");
  4051. pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
  4052. } else {
  4053. DRM_DEBUG_KMS("disabling CxSR downclocking\n");
  4054. pipeconf &= ~PIPECONF_CXSR_DOWNCLOCK;
  4055. }
  4056. }
  4057. pipeconf &= ~PIPECONF_INTERLACE_MASK;
  4058. if (!IS_GEN2(dev) &&
  4059. intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
  4060. pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
  4061. else
  4062. pipeconf |= PIPECONF_PROGRESSIVE;
  4063. if (IS_VALLEYVIEW(dev)) {
  4064. if (intel_crtc->config.limited_color_range)
  4065. pipeconf |= PIPECONF_COLOR_RANGE_SELECT;
  4066. else
  4067. pipeconf &= ~PIPECONF_COLOR_RANGE_SELECT;
  4068. }
  4069. I915_WRITE(PIPECONF(intel_crtc->pipe), pipeconf);
  4070. POSTING_READ(PIPECONF(intel_crtc->pipe));
  4071. }
  4072. static int i9xx_crtc_mode_set(struct drm_crtc *crtc,
  4073. int x, int y,
  4074. struct drm_framebuffer *fb)
  4075. {
  4076. struct drm_device *dev = crtc->dev;
  4077. struct drm_i915_private *dev_priv = dev->dev_private;
  4078. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4079. struct drm_display_mode *mode = &intel_crtc->config.requested_mode;
  4080. int pipe = intel_crtc->pipe;
  4081. int plane = intel_crtc->plane;
  4082. int refclk, num_connectors = 0;
  4083. intel_clock_t clock, reduced_clock;
  4084. u32 dspcntr;
  4085. bool ok, has_reduced_clock = false;
  4086. bool is_lvds = false;
  4087. struct intel_encoder *encoder;
  4088. const intel_limit_t *limit;
  4089. int ret;
  4090. for_each_encoder_on_crtc(dev, crtc, encoder) {
  4091. switch (encoder->type) {
  4092. case INTEL_OUTPUT_LVDS:
  4093. is_lvds = true;
  4094. break;
  4095. }
  4096. num_connectors++;
  4097. }
  4098. refclk = i9xx_get_refclk(crtc, num_connectors);
  4099. /*
  4100. * Returns a set of divisors for the desired target clock with the given
  4101. * refclk, or FALSE. The returned values represent the clock equation:
  4102. * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
  4103. */
  4104. limit = intel_limit(crtc, refclk);
  4105. ok = dev_priv->display.find_dpll(limit, crtc,
  4106. intel_crtc->config.port_clock,
  4107. refclk, NULL, &clock);
  4108. if (!ok && !intel_crtc->config.clock_set) {
  4109. DRM_ERROR("Couldn't find PLL settings for mode!\n");
  4110. return -EINVAL;
  4111. }
  4112. /* Ensure that the cursor is valid for the new mode before changing... */
  4113. intel_crtc_update_cursor(crtc, true);
  4114. if (is_lvds && dev_priv->lvds_downclock_avail) {
  4115. /*
  4116. * Ensure we match the reduced clock's P to the target clock.
  4117. * If the clocks don't match, we can't switch the display clock
  4118. * by using the FP0/FP1. In such case we will disable the LVDS
  4119. * downclock feature.
  4120. */
  4121. has_reduced_clock =
  4122. dev_priv->display.find_dpll(limit, crtc,
  4123. dev_priv->lvds_downclock,
  4124. refclk, &clock,
  4125. &reduced_clock);
  4126. }
  4127. /* Compat-code for transition, will disappear. */
  4128. if (!intel_crtc->config.clock_set) {
  4129. intel_crtc->config.dpll.n = clock.n;
  4130. intel_crtc->config.dpll.m1 = clock.m1;
  4131. intel_crtc->config.dpll.m2 = clock.m2;
  4132. intel_crtc->config.dpll.p1 = clock.p1;
  4133. intel_crtc->config.dpll.p2 = clock.p2;
  4134. }
  4135. if (IS_GEN2(dev))
  4136. i8xx_update_pll(intel_crtc,
  4137. has_reduced_clock ? &reduced_clock : NULL,
  4138. num_connectors);
  4139. else if (IS_VALLEYVIEW(dev))
  4140. vlv_update_pll(intel_crtc);
  4141. else
  4142. i9xx_update_pll(intel_crtc,
  4143. has_reduced_clock ? &reduced_clock : NULL,
  4144. num_connectors);
  4145. /* Set up the display plane register */
  4146. dspcntr = DISPPLANE_GAMMA_ENABLE;
  4147. if (!IS_VALLEYVIEW(dev)) {
  4148. if (pipe == 0)
  4149. dspcntr &= ~DISPPLANE_SEL_PIPE_MASK;
  4150. else
  4151. dspcntr |= DISPPLANE_SEL_PIPE_B;
  4152. }
  4153. intel_set_pipe_timings(intel_crtc);
  4154. /* pipesrc and dspsize control the size that is scaled from,
  4155. * which should always be the user's requested size.
  4156. */
  4157. I915_WRITE(DSPSIZE(plane),
  4158. ((mode->vdisplay - 1) << 16) |
  4159. (mode->hdisplay - 1));
  4160. I915_WRITE(DSPPOS(plane), 0);
  4161. i9xx_set_pipeconf(intel_crtc);
  4162. I915_WRITE(DSPCNTR(plane), dspcntr);
  4163. POSTING_READ(DSPCNTR(plane));
  4164. ret = intel_pipe_set_base(crtc, x, y, fb);
  4165. intel_update_watermarks(dev);
  4166. return ret;
  4167. }
  4168. static void i9xx_get_pfit_config(struct intel_crtc *crtc,
  4169. struct intel_crtc_config *pipe_config)
  4170. {
  4171. struct drm_device *dev = crtc->base.dev;
  4172. struct drm_i915_private *dev_priv = dev->dev_private;
  4173. uint32_t tmp;
  4174. tmp = I915_READ(PFIT_CONTROL);
  4175. if (INTEL_INFO(dev)->gen < 4) {
  4176. if (crtc->pipe != PIPE_B)
  4177. return;
  4178. /* gen2/3 store dither state in pfit control, needs to match */
  4179. pipe_config->gmch_pfit.control = tmp & PANEL_8TO6_DITHER_ENABLE;
  4180. } else {
  4181. if ((tmp & PFIT_PIPE_MASK) != (crtc->pipe << PFIT_PIPE_SHIFT))
  4182. return;
  4183. }
  4184. if (!(tmp & PFIT_ENABLE))
  4185. return;
  4186. pipe_config->gmch_pfit.control = I915_READ(PFIT_CONTROL);
  4187. pipe_config->gmch_pfit.pgm_ratios = I915_READ(PFIT_PGM_RATIOS);
  4188. if (INTEL_INFO(dev)->gen < 5)
  4189. pipe_config->gmch_pfit.lvds_border_bits =
  4190. I915_READ(LVDS) & LVDS_BORDER_ENABLE;
  4191. }
  4192. static bool i9xx_get_pipe_config(struct intel_crtc *crtc,
  4193. struct intel_crtc_config *pipe_config)
  4194. {
  4195. struct drm_device *dev = crtc->base.dev;
  4196. struct drm_i915_private *dev_priv = dev->dev_private;
  4197. uint32_t tmp;
  4198. pipe_config->cpu_transcoder = crtc->pipe;
  4199. tmp = I915_READ(PIPECONF(crtc->pipe));
  4200. if (!(tmp & PIPECONF_ENABLE))
  4201. return false;
  4202. intel_get_pipe_timings(crtc, pipe_config);
  4203. i9xx_get_pfit_config(crtc, pipe_config);
  4204. return true;
  4205. }
  4206. static void ironlake_init_pch_refclk(struct drm_device *dev)
  4207. {
  4208. struct drm_i915_private *dev_priv = dev->dev_private;
  4209. struct drm_mode_config *mode_config = &dev->mode_config;
  4210. struct intel_encoder *encoder;
  4211. u32 val, final;
  4212. bool has_lvds = false;
  4213. bool has_cpu_edp = false;
  4214. bool has_panel = false;
  4215. bool has_ck505 = false;
  4216. bool can_ssc = false;
  4217. /* We need to take the global config into account */
  4218. list_for_each_entry(encoder, &mode_config->encoder_list,
  4219. base.head) {
  4220. switch (encoder->type) {
  4221. case INTEL_OUTPUT_LVDS:
  4222. has_panel = true;
  4223. has_lvds = true;
  4224. break;
  4225. case INTEL_OUTPUT_EDP:
  4226. has_panel = true;
  4227. if (enc_to_dig_port(&encoder->base)->port == PORT_A)
  4228. has_cpu_edp = true;
  4229. break;
  4230. }
  4231. }
  4232. if (HAS_PCH_IBX(dev)) {
  4233. has_ck505 = dev_priv->vbt.display_clock_mode;
  4234. can_ssc = has_ck505;
  4235. } else {
  4236. has_ck505 = false;
  4237. can_ssc = true;
  4238. }
  4239. DRM_DEBUG_KMS("has_panel %d has_lvds %d has_ck505 %d\n",
  4240. has_panel, has_lvds, has_ck505);
  4241. /* Ironlake: try to setup display ref clock before DPLL
  4242. * enabling. This is only under driver's control after
  4243. * PCH B stepping, previous chipset stepping should be
  4244. * ignoring this setting.
  4245. */
  4246. val = I915_READ(PCH_DREF_CONTROL);
  4247. /* As we must carefully and slowly disable/enable each source in turn,
  4248. * compute the final state we want first and check if we need to
  4249. * make any changes at all.
  4250. */
  4251. final = val;
  4252. final &= ~DREF_NONSPREAD_SOURCE_MASK;
  4253. if (has_ck505)
  4254. final |= DREF_NONSPREAD_CK505_ENABLE;
  4255. else
  4256. final |= DREF_NONSPREAD_SOURCE_ENABLE;
  4257. final &= ~DREF_SSC_SOURCE_MASK;
  4258. final &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
  4259. final &= ~DREF_SSC1_ENABLE;
  4260. if (has_panel) {
  4261. final |= DREF_SSC_SOURCE_ENABLE;
  4262. if (intel_panel_use_ssc(dev_priv) && can_ssc)
  4263. final |= DREF_SSC1_ENABLE;
  4264. if (has_cpu_edp) {
  4265. if (intel_panel_use_ssc(dev_priv) && can_ssc)
  4266. final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
  4267. else
  4268. final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
  4269. } else
  4270. final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
  4271. } else {
  4272. final |= DREF_SSC_SOURCE_DISABLE;
  4273. final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
  4274. }
  4275. if (final == val)
  4276. return;
  4277. /* Always enable nonspread source */
  4278. val &= ~DREF_NONSPREAD_SOURCE_MASK;
  4279. if (has_ck505)
  4280. val |= DREF_NONSPREAD_CK505_ENABLE;
  4281. else
  4282. val |= DREF_NONSPREAD_SOURCE_ENABLE;
  4283. if (has_panel) {
  4284. val &= ~DREF_SSC_SOURCE_MASK;
  4285. val |= DREF_SSC_SOURCE_ENABLE;
  4286. /* SSC must be turned on before enabling the CPU output */
  4287. if (intel_panel_use_ssc(dev_priv) && can_ssc) {
  4288. DRM_DEBUG_KMS("Using SSC on panel\n");
  4289. val |= DREF_SSC1_ENABLE;
  4290. } else
  4291. val &= ~DREF_SSC1_ENABLE;
  4292. /* Get SSC going before enabling the outputs */
  4293. I915_WRITE(PCH_DREF_CONTROL, val);
  4294. POSTING_READ(PCH_DREF_CONTROL);
  4295. udelay(200);
  4296. val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
  4297. /* Enable CPU source on CPU attached eDP */
  4298. if (has_cpu_edp) {
  4299. if (intel_panel_use_ssc(dev_priv) && can_ssc) {
  4300. DRM_DEBUG_KMS("Using SSC on eDP\n");
  4301. val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
  4302. }
  4303. else
  4304. val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
  4305. } else
  4306. val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
  4307. I915_WRITE(PCH_DREF_CONTROL, val);
  4308. POSTING_READ(PCH_DREF_CONTROL);
  4309. udelay(200);
  4310. } else {
  4311. DRM_DEBUG_KMS("Disabling SSC entirely\n");
  4312. val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
  4313. /* Turn off CPU output */
  4314. val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
  4315. I915_WRITE(PCH_DREF_CONTROL, val);
  4316. POSTING_READ(PCH_DREF_CONTROL);
  4317. udelay(200);
  4318. /* Turn off the SSC source */
  4319. val &= ~DREF_SSC_SOURCE_MASK;
  4320. val |= DREF_SSC_SOURCE_DISABLE;
  4321. /* Turn off SSC1 */
  4322. val &= ~DREF_SSC1_ENABLE;
  4323. I915_WRITE(PCH_DREF_CONTROL, val);
  4324. POSTING_READ(PCH_DREF_CONTROL);
  4325. udelay(200);
  4326. }
  4327. BUG_ON(val != final);
  4328. }
  4329. /* Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O. */
  4330. static void lpt_init_pch_refclk(struct drm_device *dev)
  4331. {
  4332. struct drm_i915_private *dev_priv = dev->dev_private;
  4333. struct drm_mode_config *mode_config = &dev->mode_config;
  4334. struct intel_encoder *encoder;
  4335. bool has_vga = false;
  4336. bool is_sdv = false;
  4337. u32 tmp;
  4338. list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
  4339. switch (encoder->type) {
  4340. case INTEL_OUTPUT_ANALOG:
  4341. has_vga = true;
  4342. break;
  4343. }
  4344. }
  4345. if (!has_vga)
  4346. return;
  4347. mutex_lock(&dev_priv->dpio_lock);
  4348. /* XXX: Rip out SDV support once Haswell ships for real. */
  4349. if (IS_HASWELL(dev) && (dev->pci_device & 0xFF00) == 0x0C00)
  4350. is_sdv = true;
  4351. tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
  4352. tmp &= ~SBI_SSCCTL_DISABLE;
  4353. tmp |= SBI_SSCCTL_PATHALT;
  4354. intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
  4355. udelay(24);
  4356. tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
  4357. tmp &= ~SBI_SSCCTL_PATHALT;
  4358. intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
  4359. if (!is_sdv) {
  4360. tmp = I915_READ(SOUTH_CHICKEN2);
  4361. tmp |= FDI_MPHY_IOSFSB_RESET_CTL;
  4362. I915_WRITE(SOUTH_CHICKEN2, tmp);
  4363. if (wait_for_atomic_us(I915_READ(SOUTH_CHICKEN2) &
  4364. FDI_MPHY_IOSFSB_RESET_STATUS, 100))
  4365. DRM_ERROR("FDI mPHY reset assert timeout\n");
  4366. tmp = I915_READ(SOUTH_CHICKEN2);
  4367. tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL;
  4368. I915_WRITE(SOUTH_CHICKEN2, tmp);
  4369. if (wait_for_atomic_us((I915_READ(SOUTH_CHICKEN2) &
  4370. FDI_MPHY_IOSFSB_RESET_STATUS) == 0,
  4371. 100))
  4372. DRM_ERROR("FDI mPHY reset de-assert timeout\n");
  4373. }
  4374. tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY);
  4375. tmp &= ~(0xFF << 24);
  4376. tmp |= (0x12 << 24);
  4377. intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY);
  4378. if (is_sdv) {
  4379. tmp = intel_sbi_read(dev_priv, 0x800C, SBI_MPHY);
  4380. tmp |= 0x7FFF;
  4381. intel_sbi_write(dev_priv, 0x800C, tmp, SBI_MPHY);
  4382. }
  4383. tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY);
  4384. tmp |= (1 << 11);
  4385. intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY);
  4386. tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY);
  4387. tmp |= (1 << 11);
  4388. intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY);
  4389. if (is_sdv) {
  4390. tmp = intel_sbi_read(dev_priv, 0x2038, SBI_MPHY);
  4391. tmp |= (0x3F << 24) | (0xF << 20) | (0xF << 16);
  4392. intel_sbi_write(dev_priv, 0x2038, tmp, SBI_MPHY);
  4393. tmp = intel_sbi_read(dev_priv, 0x2138, SBI_MPHY);
  4394. tmp |= (0x3F << 24) | (0xF << 20) | (0xF << 16);
  4395. intel_sbi_write(dev_priv, 0x2138, tmp, SBI_MPHY);
  4396. tmp = intel_sbi_read(dev_priv, 0x203C, SBI_MPHY);
  4397. tmp |= (0x3F << 8);
  4398. intel_sbi_write(dev_priv, 0x203C, tmp, SBI_MPHY);
  4399. tmp = intel_sbi_read(dev_priv, 0x213C, SBI_MPHY);
  4400. tmp |= (0x3F << 8);
  4401. intel_sbi_write(dev_priv, 0x213C, tmp, SBI_MPHY);
  4402. }
  4403. tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY);
  4404. tmp |= (1 << 24) | (1 << 21) | (1 << 18);
  4405. intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY);
  4406. tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY);
  4407. tmp |= (1 << 24) | (1 << 21) | (1 << 18);
  4408. intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY);
  4409. if (!is_sdv) {
  4410. tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY);
  4411. tmp &= ~(7 << 13);
  4412. tmp |= (5 << 13);
  4413. intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY);
  4414. tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY);
  4415. tmp &= ~(7 << 13);
  4416. tmp |= (5 << 13);
  4417. intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY);
  4418. }
  4419. tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY);
  4420. tmp &= ~0xFF;
  4421. tmp |= 0x1C;
  4422. intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY);
  4423. tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY);
  4424. tmp &= ~0xFF;
  4425. tmp |= 0x1C;
  4426. intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY);
  4427. tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY);
  4428. tmp &= ~(0xFF << 16);
  4429. tmp |= (0x1C << 16);
  4430. intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY);
  4431. tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY);
  4432. tmp &= ~(0xFF << 16);
  4433. tmp |= (0x1C << 16);
  4434. intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY);
  4435. if (!is_sdv) {
  4436. tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY);
  4437. tmp |= (1 << 27);
  4438. intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY);
  4439. tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY);
  4440. tmp |= (1 << 27);
  4441. intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY);
  4442. tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY);
  4443. tmp &= ~(0xF << 28);
  4444. tmp |= (4 << 28);
  4445. intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY);
  4446. tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY);
  4447. tmp &= ~(0xF << 28);
  4448. tmp |= (4 << 28);
  4449. intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY);
  4450. }
  4451. /* ULT uses SBI_GEN0, but ULT doesn't have VGA, so we don't care. */
  4452. tmp = intel_sbi_read(dev_priv, SBI_DBUFF0, SBI_ICLK);
  4453. tmp |= SBI_DBUFF0_ENABLE;
  4454. intel_sbi_write(dev_priv, SBI_DBUFF0, tmp, SBI_ICLK);
  4455. mutex_unlock(&dev_priv->dpio_lock);
  4456. }
  4457. /*
  4458. * Initialize reference clocks when the driver loads
  4459. */
  4460. void intel_init_pch_refclk(struct drm_device *dev)
  4461. {
  4462. if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
  4463. ironlake_init_pch_refclk(dev);
  4464. else if (HAS_PCH_LPT(dev))
  4465. lpt_init_pch_refclk(dev);
  4466. }
  4467. static int ironlake_get_refclk(struct drm_crtc *crtc)
  4468. {
  4469. struct drm_device *dev = crtc->dev;
  4470. struct drm_i915_private *dev_priv = dev->dev_private;
  4471. struct intel_encoder *encoder;
  4472. int num_connectors = 0;
  4473. bool is_lvds = false;
  4474. for_each_encoder_on_crtc(dev, crtc, encoder) {
  4475. switch (encoder->type) {
  4476. case INTEL_OUTPUT_LVDS:
  4477. is_lvds = true;
  4478. break;
  4479. }
  4480. num_connectors++;
  4481. }
  4482. if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
  4483. DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
  4484. dev_priv->vbt.lvds_ssc_freq);
  4485. return dev_priv->vbt.lvds_ssc_freq * 1000;
  4486. }
  4487. return 120000;
  4488. }
  4489. static void ironlake_set_pipeconf(struct drm_crtc *crtc)
  4490. {
  4491. struct drm_i915_private *dev_priv = crtc->dev->dev_private;
  4492. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4493. int pipe = intel_crtc->pipe;
  4494. uint32_t val;
  4495. val = I915_READ(PIPECONF(pipe));
  4496. val &= ~PIPECONF_BPC_MASK;
  4497. switch (intel_crtc->config.pipe_bpp) {
  4498. case 18:
  4499. val |= PIPECONF_6BPC;
  4500. break;
  4501. case 24:
  4502. val |= PIPECONF_8BPC;
  4503. break;
  4504. case 30:
  4505. val |= PIPECONF_10BPC;
  4506. break;
  4507. case 36:
  4508. val |= PIPECONF_12BPC;
  4509. break;
  4510. default:
  4511. /* Case prevented by intel_choose_pipe_bpp_dither. */
  4512. BUG();
  4513. }
  4514. val &= ~(PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_MASK);
  4515. if (intel_crtc->config.dither)
  4516. val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
  4517. val &= ~PIPECONF_INTERLACE_MASK;
  4518. if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
  4519. val |= PIPECONF_INTERLACED_ILK;
  4520. else
  4521. val |= PIPECONF_PROGRESSIVE;
  4522. if (intel_crtc->config.limited_color_range)
  4523. val |= PIPECONF_COLOR_RANGE_SELECT;
  4524. else
  4525. val &= ~PIPECONF_COLOR_RANGE_SELECT;
  4526. I915_WRITE(PIPECONF(pipe), val);
  4527. POSTING_READ(PIPECONF(pipe));
  4528. }
  4529. /*
  4530. * Set up the pipe CSC unit.
  4531. *
  4532. * Currently only full range RGB to limited range RGB conversion
  4533. * is supported, but eventually this should handle various
  4534. * RGB<->YCbCr scenarios as well.
  4535. */
  4536. static void intel_set_pipe_csc(struct drm_crtc *crtc)
  4537. {
  4538. struct drm_device *dev = crtc->dev;
  4539. struct drm_i915_private *dev_priv = dev->dev_private;
  4540. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4541. int pipe = intel_crtc->pipe;
  4542. uint16_t coeff = 0x7800; /* 1.0 */
  4543. /*
  4544. * TODO: Check what kind of values actually come out of the pipe
  4545. * with these coeff/postoff values and adjust to get the best
  4546. * accuracy. Perhaps we even need to take the bpc value into
  4547. * consideration.
  4548. */
  4549. if (intel_crtc->config.limited_color_range)
  4550. coeff = ((235 - 16) * (1 << 12) / 255) & 0xff8; /* 0.xxx... */
  4551. /*
  4552. * GY/GU and RY/RU should be the other way around according
  4553. * to BSpec, but reality doesn't agree. Just set them up in
  4554. * a way that results in the correct picture.
  4555. */
  4556. I915_WRITE(PIPE_CSC_COEFF_RY_GY(pipe), coeff << 16);
  4557. I915_WRITE(PIPE_CSC_COEFF_BY(pipe), 0);
  4558. I915_WRITE(PIPE_CSC_COEFF_RU_GU(pipe), coeff);
  4559. I915_WRITE(PIPE_CSC_COEFF_BU(pipe), 0);
  4560. I915_WRITE(PIPE_CSC_COEFF_RV_GV(pipe), 0);
  4561. I915_WRITE(PIPE_CSC_COEFF_BV(pipe), coeff << 16);
  4562. I915_WRITE(PIPE_CSC_PREOFF_HI(pipe), 0);
  4563. I915_WRITE(PIPE_CSC_PREOFF_ME(pipe), 0);
  4564. I915_WRITE(PIPE_CSC_PREOFF_LO(pipe), 0);
  4565. if (INTEL_INFO(dev)->gen > 6) {
  4566. uint16_t postoff = 0;
  4567. if (intel_crtc->config.limited_color_range)
  4568. postoff = (16 * (1 << 13) / 255) & 0x1fff;
  4569. I915_WRITE(PIPE_CSC_POSTOFF_HI(pipe), postoff);
  4570. I915_WRITE(PIPE_CSC_POSTOFF_ME(pipe), postoff);
  4571. I915_WRITE(PIPE_CSC_POSTOFF_LO(pipe), postoff);
  4572. I915_WRITE(PIPE_CSC_MODE(pipe), 0);
  4573. } else {
  4574. uint32_t mode = CSC_MODE_YUV_TO_RGB;
  4575. if (intel_crtc->config.limited_color_range)
  4576. mode |= CSC_BLACK_SCREEN_OFFSET;
  4577. I915_WRITE(PIPE_CSC_MODE(pipe), mode);
  4578. }
  4579. }
  4580. static void haswell_set_pipeconf(struct drm_crtc *crtc)
  4581. {
  4582. struct drm_i915_private *dev_priv = crtc->dev->dev_private;
  4583. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4584. enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
  4585. uint32_t val;
  4586. val = I915_READ(PIPECONF(cpu_transcoder));
  4587. val &= ~(PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_MASK);
  4588. if (intel_crtc->config.dither)
  4589. val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
  4590. val &= ~PIPECONF_INTERLACE_MASK_HSW;
  4591. if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
  4592. val |= PIPECONF_INTERLACED_ILK;
  4593. else
  4594. val |= PIPECONF_PROGRESSIVE;
  4595. I915_WRITE(PIPECONF(cpu_transcoder), val);
  4596. POSTING_READ(PIPECONF(cpu_transcoder));
  4597. }
  4598. static bool ironlake_compute_clocks(struct drm_crtc *crtc,
  4599. intel_clock_t *clock,
  4600. bool *has_reduced_clock,
  4601. intel_clock_t *reduced_clock)
  4602. {
  4603. struct drm_device *dev = crtc->dev;
  4604. struct drm_i915_private *dev_priv = dev->dev_private;
  4605. struct intel_encoder *intel_encoder;
  4606. int refclk;
  4607. const intel_limit_t *limit;
  4608. bool ret, is_lvds = false;
  4609. for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
  4610. switch (intel_encoder->type) {
  4611. case INTEL_OUTPUT_LVDS:
  4612. is_lvds = true;
  4613. break;
  4614. }
  4615. }
  4616. refclk = ironlake_get_refclk(crtc);
  4617. /*
  4618. * Returns a set of divisors for the desired target clock with the given
  4619. * refclk, or FALSE. The returned values represent the clock equation:
  4620. * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
  4621. */
  4622. limit = intel_limit(crtc, refclk);
  4623. ret = dev_priv->display.find_dpll(limit, crtc,
  4624. to_intel_crtc(crtc)->config.port_clock,
  4625. refclk, NULL, clock);
  4626. if (!ret)
  4627. return false;
  4628. if (is_lvds && dev_priv->lvds_downclock_avail) {
  4629. /*
  4630. * Ensure we match the reduced clock's P to the target clock.
  4631. * If the clocks don't match, we can't switch the display clock
  4632. * by using the FP0/FP1. In such case we will disable the LVDS
  4633. * downclock feature.
  4634. */
  4635. *has_reduced_clock =
  4636. dev_priv->display.find_dpll(limit, crtc,
  4637. dev_priv->lvds_downclock,
  4638. refclk, clock,
  4639. reduced_clock);
  4640. }
  4641. return true;
  4642. }
  4643. static void cpt_enable_fdi_bc_bifurcation(struct drm_device *dev)
  4644. {
  4645. struct drm_i915_private *dev_priv = dev->dev_private;
  4646. uint32_t temp;
  4647. temp = I915_READ(SOUTH_CHICKEN1);
  4648. if (temp & FDI_BC_BIFURCATION_SELECT)
  4649. return;
  4650. WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
  4651. WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
  4652. temp |= FDI_BC_BIFURCATION_SELECT;
  4653. DRM_DEBUG_KMS("enabling fdi C rx\n");
  4654. I915_WRITE(SOUTH_CHICKEN1, temp);
  4655. POSTING_READ(SOUTH_CHICKEN1);
  4656. }
  4657. static void ivybridge_update_fdi_bc_bifurcation(struct intel_crtc *intel_crtc)
  4658. {
  4659. struct drm_device *dev = intel_crtc->base.dev;
  4660. struct drm_i915_private *dev_priv = dev->dev_private;
  4661. switch (intel_crtc->pipe) {
  4662. case PIPE_A:
  4663. break;
  4664. case PIPE_B:
  4665. if (intel_crtc->config.fdi_lanes > 2)
  4666. WARN_ON(I915_READ(SOUTH_CHICKEN1) & FDI_BC_BIFURCATION_SELECT);
  4667. else
  4668. cpt_enable_fdi_bc_bifurcation(dev);
  4669. break;
  4670. case PIPE_C:
  4671. cpt_enable_fdi_bc_bifurcation(dev);
  4672. break;
  4673. default:
  4674. BUG();
  4675. }
  4676. }
  4677. int ironlake_get_lanes_required(int target_clock, int link_bw, int bpp)
  4678. {
  4679. /*
  4680. * Account for spread spectrum to avoid
  4681. * oversubscribing the link. Max center spread
  4682. * is 2.5%; use 5% for safety's sake.
  4683. */
  4684. u32 bps = target_clock * bpp * 21 / 20;
  4685. return bps / (link_bw * 8) + 1;
  4686. }
  4687. static bool ironlake_needs_fb_cb_tune(struct dpll *dpll, int factor)
  4688. {
  4689. return i9xx_dpll_compute_m(dpll) < factor * dpll->n;
  4690. }
  4691. static uint32_t ironlake_compute_dpll(struct intel_crtc *intel_crtc,
  4692. u32 *fp,
  4693. intel_clock_t *reduced_clock, u32 *fp2)
  4694. {
  4695. struct drm_crtc *crtc = &intel_crtc->base;
  4696. struct drm_device *dev = crtc->dev;
  4697. struct drm_i915_private *dev_priv = dev->dev_private;
  4698. struct intel_encoder *intel_encoder;
  4699. uint32_t dpll;
  4700. int factor, num_connectors = 0;
  4701. bool is_lvds = false, is_sdvo = false;
  4702. for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
  4703. switch (intel_encoder->type) {
  4704. case INTEL_OUTPUT_LVDS:
  4705. is_lvds = true;
  4706. break;
  4707. case INTEL_OUTPUT_SDVO:
  4708. case INTEL_OUTPUT_HDMI:
  4709. is_sdvo = true;
  4710. break;
  4711. }
  4712. num_connectors++;
  4713. }
  4714. /* Enable autotuning of the PLL clock (if permissible) */
  4715. factor = 21;
  4716. if (is_lvds) {
  4717. if ((intel_panel_use_ssc(dev_priv) &&
  4718. dev_priv->vbt.lvds_ssc_freq == 100) ||
  4719. (HAS_PCH_IBX(dev) && intel_is_dual_link_lvds(dev)))
  4720. factor = 25;
  4721. } else if (intel_crtc->config.sdvo_tv_clock)
  4722. factor = 20;
  4723. if (ironlake_needs_fb_cb_tune(&intel_crtc->config.dpll, factor))
  4724. *fp |= FP_CB_TUNE;
  4725. if (fp2 && (reduced_clock->m < factor * reduced_clock->n))
  4726. *fp2 |= FP_CB_TUNE;
  4727. dpll = 0;
  4728. if (is_lvds)
  4729. dpll |= DPLLB_MODE_LVDS;
  4730. else
  4731. dpll |= DPLLB_MODE_DAC_SERIAL;
  4732. if (intel_crtc->config.pixel_multiplier > 1) {
  4733. dpll |= (intel_crtc->config.pixel_multiplier - 1)
  4734. << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
  4735. }
  4736. if (is_sdvo)
  4737. dpll |= DPLL_DVO_HIGH_SPEED;
  4738. if (intel_crtc->config.has_dp_encoder)
  4739. dpll |= DPLL_DVO_HIGH_SPEED;
  4740. /* compute bitmask from p1 value */
  4741. dpll |= (1 << (intel_crtc->config.dpll.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
  4742. /* also FPA1 */
  4743. dpll |= (1 << (intel_crtc->config.dpll.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
  4744. switch (intel_crtc->config.dpll.p2) {
  4745. case 5:
  4746. dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
  4747. break;
  4748. case 7:
  4749. dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
  4750. break;
  4751. case 10:
  4752. dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
  4753. break;
  4754. case 14:
  4755. dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
  4756. break;
  4757. }
  4758. if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
  4759. dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
  4760. else
  4761. dpll |= PLL_REF_INPUT_DREFCLK;
  4762. return dpll;
  4763. }
  4764. static int ironlake_crtc_mode_set(struct drm_crtc *crtc,
  4765. int x, int y,
  4766. struct drm_framebuffer *fb)
  4767. {
  4768. struct drm_device *dev = crtc->dev;
  4769. struct drm_i915_private *dev_priv = dev->dev_private;
  4770. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4771. int pipe = intel_crtc->pipe;
  4772. int plane = intel_crtc->plane;
  4773. int num_connectors = 0;
  4774. intel_clock_t clock, reduced_clock;
  4775. u32 dpll = 0, fp = 0, fp2 = 0;
  4776. bool ok, has_reduced_clock = false;
  4777. bool is_lvds = false;
  4778. struct intel_encoder *encoder;
  4779. int ret;
  4780. for_each_encoder_on_crtc(dev, crtc, encoder) {
  4781. switch (encoder->type) {
  4782. case INTEL_OUTPUT_LVDS:
  4783. is_lvds = true;
  4784. break;
  4785. }
  4786. num_connectors++;
  4787. }
  4788. WARN(!(HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)),
  4789. "Unexpected PCH type %d\n", INTEL_PCH_TYPE(dev));
  4790. ok = ironlake_compute_clocks(crtc, &clock,
  4791. &has_reduced_clock, &reduced_clock);
  4792. if (!ok && !intel_crtc->config.clock_set) {
  4793. DRM_ERROR("Couldn't find PLL settings for mode!\n");
  4794. return -EINVAL;
  4795. }
  4796. /* Compat-code for transition, will disappear. */
  4797. if (!intel_crtc->config.clock_set) {
  4798. intel_crtc->config.dpll.n = clock.n;
  4799. intel_crtc->config.dpll.m1 = clock.m1;
  4800. intel_crtc->config.dpll.m2 = clock.m2;
  4801. intel_crtc->config.dpll.p1 = clock.p1;
  4802. intel_crtc->config.dpll.p2 = clock.p2;
  4803. }
  4804. /* Ensure that the cursor is valid for the new mode before changing... */
  4805. intel_crtc_update_cursor(crtc, true);
  4806. /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
  4807. if (intel_crtc->config.has_pch_encoder) {
  4808. struct intel_pch_pll *pll;
  4809. fp = i9xx_dpll_compute_fp(&intel_crtc->config.dpll);
  4810. if (has_reduced_clock)
  4811. fp2 = i9xx_dpll_compute_fp(&reduced_clock);
  4812. dpll = ironlake_compute_dpll(intel_crtc,
  4813. &fp, &reduced_clock,
  4814. has_reduced_clock ? &fp2 : NULL);
  4815. pll = intel_get_pch_pll(intel_crtc, dpll, fp);
  4816. if (pll == NULL) {
  4817. DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
  4818. pipe_name(pipe));
  4819. return -EINVAL;
  4820. }
  4821. } else
  4822. intel_put_pch_pll(intel_crtc);
  4823. if (intel_crtc->config.has_dp_encoder)
  4824. intel_dp_set_m_n(intel_crtc);
  4825. for_each_encoder_on_crtc(dev, crtc, encoder)
  4826. if (encoder->pre_pll_enable)
  4827. encoder->pre_pll_enable(encoder);
  4828. if (intel_crtc->pch_pll) {
  4829. I915_WRITE(intel_crtc->pch_pll->pll_reg, dpll);
  4830. /* Wait for the clocks to stabilize. */
  4831. POSTING_READ(intel_crtc->pch_pll->pll_reg);
  4832. udelay(150);
  4833. /* The pixel multiplier can only be updated once the
  4834. * DPLL is enabled and the clocks are stable.
  4835. *
  4836. * So write it again.
  4837. */
  4838. I915_WRITE(intel_crtc->pch_pll->pll_reg, dpll);
  4839. }
  4840. intel_crtc->lowfreq_avail = false;
  4841. if (intel_crtc->pch_pll) {
  4842. if (is_lvds && has_reduced_clock && i915_powersave) {
  4843. I915_WRITE(intel_crtc->pch_pll->fp1_reg, fp2);
  4844. intel_crtc->lowfreq_avail = true;
  4845. } else {
  4846. I915_WRITE(intel_crtc->pch_pll->fp1_reg, fp);
  4847. }
  4848. }
  4849. intel_set_pipe_timings(intel_crtc);
  4850. if (intel_crtc->config.has_pch_encoder) {
  4851. intel_cpu_transcoder_set_m_n(intel_crtc,
  4852. &intel_crtc->config.fdi_m_n);
  4853. }
  4854. if (IS_IVYBRIDGE(dev))
  4855. ivybridge_update_fdi_bc_bifurcation(intel_crtc);
  4856. ironlake_set_pipeconf(crtc);
  4857. /* Set up the display plane register */
  4858. I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE);
  4859. POSTING_READ(DSPCNTR(plane));
  4860. ret = intel_pipe_set_base(crtc, x, y, fb);
  4861. intel_update_watermarks(dev);
  4862. return ret;
  4863. }
  4864. static void ironlake_get_fdi_m_n_config(struct intel_crtc *crtc,
  4865. struct intel_crtc_config *pipe_config)
  4866. {
  4867. struct drm_device *dev = crtc->base.dev;
  4868. struct drm_i915_private *dev_priv = dev->dev_private;
  4869. enum transcoder transcoder = pipe_config->cpu_transcoder;
  4870. pipe_config->fdi_m_n.link_m = I915_READ(PIPE_LINK_M1(transcoder));
  4871. pipe_config->fdi_m_n.link_n = I915_READ(PIPE_LINK_N1(transcoder));
  4872. pipe_config->fdi_m_n.gmch_m = I915_READ(PIPE_DATA_M1(transcoder))
  4873. & ~TU_SIZE_MASK;
  4874. pipe_config->fdi_m_n.gmch_n = I915_READ(PIPE_DATA_N1(transcoder));
  4875. pipe_config->fdi_m_n.tu = ((I915_READ(PIPE_DATA_M1(transcoder))
  4876. & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
  4877. }
  4878. static void ironlake_get_pfit_config(struct intel_crtc *crtc,
  4879. struct intel_crtc_config *pipe_config)
  4880. {
  4881. struct drm_device *dev = crtc->base.dev;
  4882. struct drm_i915_private *dev_priv = dev->dev_private;
  4883. uint32_t tmp;
  4884. tmp = I915_READ(PF_CTL(crtc->pipe));
  4885. if (tmp & PF_ENABLE) {
  4886. pipe_config->pch_pfit.pos = I915_READ(PF_WIN_POS(crtc->pipe));
  4887. pipe_config->pch_pfit.size = I915_READ(PF_WIN_SZ(crtc->pipe));
  4888. }
  4889. }
  4890. static bool ironlake_get_pipe_config(struct intel_crtc *crtc,
  4891. struct intel_crtc_config *pipe_config)
  4892. {
  4893. struct drm_device *dev = crtc->base.dev;
  4894. struct drm_i915_private *dev_priv = dev->dev_private;
  4895. uint32_t tmp;
  4896. pipe_config->cpu_transcoder = crtc->pipe;
  4897. tmp = I915_READ(PIPECONF(crtc->pipe));
  4898. if (!(tmp & PIPECONF_ENABLE))
  4899. return false;
  4900. if (I915_READ(PCH_TRANSCONF(crtc->pipe)) & TRANS_ENABLE) {
  4901. pipe_config->has_pch_encoder = true;
  4902. tmp = I915_READ(FDI_RX_CTL(crtc->pipe));
  4903. pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
  4904. FDI_DP_PORT_WIDTH_SHIFT) + 1;
  4905. ironlake_get_fdi_m_n_config(crtc, pipe_config);
  4906. }
  4907. intel_get_pipe_timings(crtc, pipe_config);
  4908. ironlake_get_pfit_config(crtc, pipe_config);
  4909. return true;
  4910. }
  4911. static void haswell_modeset_global_resources(struct drm_device *dev)
  4912. {
  4913. bool enable = false;
  4914. struct intel_crtc *crtc;
  4915. list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head) {
  4916. if (!crtc->base.enabled)
  4917. continue;
  4918. if (crtc->pipe != PIPE_A || crtc->config.pch_pfit.size ||
  4919. crtc->config.cpu_transcoder != TRANSCODER_EDP)
  4920. enable = true;
  4921. }
  4922. intel_set_power_well(dev, enable);
  4923. }
  4924. static int haswell_crtc_mode_set(struct drm_crtc *crtc,
  4925. int x, int y,
  4926. struct drm_framebuffer *fb)
  4927. {
  4928. struct drm_device *dev = crtc->dev;
  4929. struct drm_i915_private *dev_priv = dev->dev_private;
  4930. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4931. int pipe = intel_crtc->pipe;
  4932. int plane = intel_crtc->plane;
  4933. int num_connectors = 0;
  4934. bool is_cpu_edp = false;
  4935. struct intel_encoder *encoder;
  4936. int ret;
  4937. for_each_encoder_on_crtc(dev, crtc, encoder) {
  4938. switch (encoder->type) {
  4939. case INTEL_OUTPUT_EDP:
  4940. if (enc_to_dig_port(&encoder->base)->port == PORT_A)
  4941. is_cpu_edp = true;
  4942. break;
  4943. }
  4944. num_connectors++;
  4945. }
  4946. WARN(num_connectors != 1, "%d connectors attached to pipe %c\n",
  4947. num_connectors, pipe_name(pipe));
  4948. if (!intel_ddi_pll_mode_set(crtc))
  4949. return -EINVAL;
  4950. /* Ensure that the cursor is valid for the new mode before changing... */
  4951. intel_crtc_update_cursor(crtc, true);
  4952. if (intel_crtc->config.has_dp_encoder)
  4953. intel_dp_set_m_n(intel_crtc);
  4954. intel_crtc->lowfreq_avail = false;
  4955. intel_set_pipe_timings(intel_crtc);
  4956. if (intel_crtc->config.has_pch_encoder) {
  4957. intel_cpu_transcoder_set_m_n(intel_crtc,
  4958. &intel_crtc->config.fdi_m_n);
  4959. }
  4960. haswell_set_pipeconf(crtc);
  4961. intel_set_pipe_csc(crtc);
  4962. /* Set up the display plane register */
  4963. I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE | DISPPLANE_PIPE_CSC_ENABLE);
  4964. POSTING_READ(DSPCNTR(plane));
  4965. ret = intel_pipe_set_base(crtc, x, y, fb);
  4966. intel_update_watermarks(dev);
  4967. return ret;
  4968. }
  4969. static bool haswell_get_pipe_config(struct intel_crtc *crtc,
  4970. struct intel_crtc_config *pipe_config)
  4971. {
  4972. struct drm_device *dev = crtc->base.dev;
  4973. struct drm_i915_private *dev_priv = dev->dev_private;
  4974. enum intel_display_power_domain pfit_domain;
  4975. uint32_t tmp;
  4976. pipe_config->cpu_transcoder = crtc->pipe;
  4977. tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
  4978. if (tmp & TRANS_DDI_FUNC_ENABLE) {
  4979. enum pipe trans_edp_pipe;
  4980. switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
  4981. default:
  4982. WARN(1, "unknown pipe linked to edp transcoder\n");
  4983. case TRANS_DDI_EDP_INPUT_A_ONOFF:
  4984. case TRANS_DDI_EDP_INPUT_A_ON:
  4985. trans_edp_pipe = PIPE_A;
  4986. break;
  4987. case TRANS_DDI_EDP_INPUT_B_ONOFF:
  4988. trans_edp_pipe = PIPE_B;
  4989. break;
  4990. case TRANS_DDI_EDP_INPUT_C_ONOFF:
  4991. trans_edp_pipe = PIPE_C;
  4992. break;
  4993. }
  4994. if (trans_edp_pipe == crtc->pipe)
  4995. pipe_config->cpu_transcoder = TRANSCODER_EDP;
  4996. }
  4997. if (!intel_display_power_enabled(dev,
  4998. POWER_DOMAIN_TRANSCODER(pipe_config->cpu_transcoder)))
  4999. return false;
  5000. tmp = I915_READ(PIPECONF(pipe_config->cpu_transcoder));
  5001. if (!(tmp & PIPECONF_ENABLE))
  5002. return false;
  5003. /*
  5004. * Haswell has only FDI/PCH transcoder A. It is which is connected to
  5005. * DDI E. So just check whether this pipe is wired to DDI E and whether
  5006. * the PCH transcoder is on.
  5007. */
  5008. tmp = I915_READ(TRANS_DDI_FUNC_CTL(pipe_config->cpu_transcoder));
  5009. if ((tmp & TRANS_DDI_PORT_MASK) == TRANS_DDI_SELECT_PORT(PORT_E) &&
  5010. I915_READ(LPT_TRANSCONF) & TRANS_ENABLE) {
  5011. pipe_config->has_pch_encoder = true;
  5012. tmp = I915_READ(FDI_RX_CTL(PIPE_A));
  5013. pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
  5014. FDI_DP_PORT_WIDTH_SHIFT) + 1;
  5015. ironlake_get_fdi_m_n_config(crtc, pipe_config);
  5016. }
  5017. intel_get_pipe_timings(crtc, pipe_config);
  5018. pfit_domain = POWER_DOMAIN_PIPE_PANEL_FITTER(crtc->pipe);
  5019. if (intel_display_power_enabled(dev, pfit_domain))
  5020. ironlake_get_pfit_config(crtc, pipe_config);
  5021. pipe_config->ips_enabled = hsw_crtc_supports_ips(crtc) &&
  5022. (I915_READ(IPS_CTL) & IPS_ENABLE);
  5023. return true;
  5024. }
  5025. static int intel_crtc_mode_set(struct drm_crtc *crtc,
  5026. int x, int y,
  5027. struct drm_framebuffer *fb)
  5028. {
  5029. struct drm_device *dev = crtc->dev;
  5030. struct drm_i915_private *dev_priv = dev->dev_private;
  5031. struct drm_encoder_helper_funcs *encoder_funcs;
  5032. struct intel_encoder *encoder;
  5033. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5034. struct drm_display_mode *adjusted_mode =
  5035. &intel_crtc->config.adjusted_mode;
  5036. struct drm_display_mode *mode = &intel_crtc->config.requested_mode;
  5037. int pipe = intel_crtc->pipe;
  5038. int ret;
  5039. drm_vblank_pre_modeset(dev, pipe);
  5040. ret = dev_priv->display.crtc_mode_set(crtc, x, y, fb);
  5041. drm_vblank_post_modeset(dev, pipe);
  5042. if (ret != 0)
  5043. return ret;
  5044. for_each_encoder_on_crtc(dev, crtc, encoder) {
  5045. DRM_DEBUG_KMS("[ENCODER:%d:%s] set [MODE:%d:%s]\n",
  5046. encoder->base.base.id,
  5047. drm_get_encoder_name(&encoder->base),
  5048. mode->base.id, mode->name);
  5049. if (encoder->mode_set) {
  5050. encoder->mode_set(encoder);
  5051. } else {
  5052. encoder_funcs = encoder->base.helper_private;
  5053. encoder_funcs->mode_set(&encoder->base, mode, adjusted_mode);
  5054. }
  5055. }
  5056. return 0;
  5057. }
  5058. static bool intel_eld_uptodate(struct drm_connector *connector,
  5059. int reg_eldv, uint32_t bits_eldv,
  5060. int reg_elda, uint32_t bits_elda,
  5061. int reg_edid)
  5062. {
  5063. struct drm_i915_private *dev_priv = connector->dev->dev_private;
  5064. uint8_t *eld = connector->eld;
  5065. uint32_t i;
  5066. i = I915_READ(reg_eldv);
  5067. i &= bits_eldv;
  5068. if (!eld[0])
  5069. return !i;
  5070. if (!i)
  5071. return false;
  5072. i = I915_READ(reg_elda);
  5073. i &= ~bits_elda;
  5074. I915_WRITE(reg_elda, i);
  5075. for (i = 0; i < eld[2]; i++)
  5076. if (I915_READ(reg_edid) != *((uint32_t *)eld + i))
  5077. return false;
  5078. return true;
  5079. }
  5080. static void g4x_write_eld(struct drm_connector *connector,
  5081. struct drm_crtc *crtc)
  5082. {
  5083. struct drm_i915_private *dev_priv = connector->dev->dev_private;
  5084. uint8_t *eld = connector->eld;
  5085. uint32_t eldv;
  5086. uint32_t len;
  5087. uint32_t i;
  5088. i = I915_READ(G4X_AUD_VID_DID);
  5089. if (i == INTEL_AUDIO_DEVBLC || i == INTEL_AUDIO_DEVCL)
  5090. eldv = G4X_ELDV_DEVCL_DEVBLC;
  5091. else
  5092. eldv = G4X_ELDV_DEVCTG;
  5093. if (intel_eld_uptodate(connector,
  5094. G4X_AUD_CNTL_ST, eldv,
  5095. G4X_AUD_CNTL_ST, G4X_ELD_ADDR,
  5096. G4X_HDMIW_HDMIEDID))
  5097. return;
  5098. i = I915_READ(G4X_AUD_CNTL_ST);
  5099. i &= ~(eldv | G4X_ELD_ADDR);
  5100. len = (i >> 9) & 0x1f; /* ELD buffer size */
  5101. I915_WRITE(G4X_AUD_CNTL_ST, i);
  5102. if (!eld[0])
  5103. return;
  5104. len = min_t(uint8_t, eld[2], len);
  5105. DRM_DEBUG_DRIVER("ELD size %d\n", len);
  5106. for (i = 0; i < len; i++)
  5107. I915_WRITE(G4X_HDMIW_HDMIEDID, *((uint32_t *)eld + i));
  5108. i = I915_READ(G4X_AUD_CNTL_ST);
  5109. i |= eldv;
  5110. I915_WRITE(G4X_AUD_CNTL_ST, i);
  5111. }
  5112. static void haswell_write_eld(struct drm_connector *connector,
  5113. struct drm_crtc *crtc)
  5114. {
  5115. struct drm_i915_private *dev_priv = connector->dev->dev_private;
  5116. uint8_t *eld = connector->eld;
  5117. struct drm_device *dev = crtc->dev;
  5118. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5119. uint32_t eldv;
  5120. uint32_t i;
  5121. int len;
  5122. int pipe = to_intel_crtc(crtc)->pipe;
  5123. int tmp;
  5124. int hdmiw_hdmiedid = HSW_AUD_EDID_DATA(pipe);
  5125. int aud_cntl_st = HSW_AUD_DIP_ELD_CTRL(pipe);
  5126. int aud_config = HSW_AUD_CFG(pipe);
  5127. int aud_cntrl_st2 = HSW_AUD_PIN_ELD_CP_VLD;
  5128. DRM_DEBUG_DRIVER("HDMI: Haswell Audio initialize....\n");
  5129. /* Audio output enable */
  5130. DRM_DEBUG_DRIVER("HDMI audio: enable codec\n");
  5131. tmp = I915_READ(aud_cntrl_st2);
  5132. tmp |= (AUDIO_OUTPUT_ENABLE_A << (pipe * 4));
  5133. I915_WRITE(aud_cntrl_st2, tmp);
  5134. /* Wait for 1 vertical blank */
  5135. intel_wait_for_vblank(dev, pipe);
  5136. /* Set ELD valid state */
  5137. tmp = I915_READ(aud_cntrl_st2);
  5138. DRM_DEBUG_DRIVER("HDMI audio: pin eld vld status=0x%8x\n", tmp);
  5139. tmp |= (AUDIO_ELD_VALID_A << (pipe * 4));
  5140. I915_WRITE(aud_cntrl_st2, tmp);
  5141. tmp = I915_READ(aud_cntrl_st2);
  5142. DRM_DEBUG_DRIVER("HDMI audio: eld vld status=0x%8x\n", tmp);
  5143. /* Enable HDMI mode */
  5144. tmp = I915_READ(aud_config);
  5145. DRM_DEBUG_DRIVER("HDMI audio: audio conf: 0x%8x\n", tmp);
  5146. /* clear N_programing_enable and N_value_index */
  5147. tmp &= ~(AUD_CONFIG_N_VALUE_INDEX | AUD_CONFIG_N_PROG_ENABLE);
  5148. I915_WRITE(aud_config, tmp);
  5149. DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
  5150. eldv = AUDIO_ELD_VALID_A << (pipe * 4);
  5151. intel_crtc->eld_vld = true;
  5152. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
  5153. DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
  5154. eld[5] |= (1 << 2); /* Conn_Type, 0x1 = DisplayPort */
  5155. I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
  5156. } else
  5157. I915_WRITE(aud_config, 0);
  5158. if (intel_eld_uptodate(connector,
  5159. aud_cntrl_st2, eldv,
  5160. aud_cntl_st, IBX_ELD_ADDRESS,
  5161. hdmiw_hdmiedid))
  5162. return;
  5163. i = I915_READ(aud_cntrl_st2);
  5164. i &= ~eldv;
  5165. I915_WRITE(aud_cntrl_st2, i);
  5166. if (!eld[0])
  5167. return;
  5168. i = I915_READ(aud_cntl_st);
  5169. i &= ~IBX_ELD_ADDRESS;
  5170. I915_WRITE(aud_cntl_st, i);
  5171. i = (i >> 29) & DIP_PORT_SEL_MASK; /* DIP_Port_Select, 0x1 = PortB */
  5172. DRM_DEBUG_DRIVER("port num:%d\n", i);
  5173. len = min_t(uint8_t, eld[2], 21); /* 84 bytes of hw ELD buffer */
  5174. DRM_DEBUG_DRIVER("ELD size %d\n", len);
  5175. for (i = 0; i < len; i++)
  5176. I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
  5177. i = I915_READ(aud_cntrl_st2);
  5178. i |= eldv;
  5179. I915_WRITE(aud_cntrl_st2, i);
  5180. }
  5181. static void ironlake_write_eld(struct drm_connector *connector,
  5182. struct drm_crtc *crtc)
  5183. {
  5184. struct drm_i915_private *dev_priv = connector->dev->dev_private;
  5185. uint8_t *eld = connector->eld;
  5186. uint32_t eldv;
  5187. uint32_t i;
  5188. int len;
  5189. int hdmiw_hdmiedid;
  5190. int aud_config;
  5191. int aud_cntl_st;
  5192. int aud_cntrl_st2;
  5193. int pipe = to_intel_crtc(crtc)->pipe;
  5194. if (HAS_PCH_IBX(connector->dev)) {
  5195. hdmiw_hdmiedid = IBX_HDMIW_HDMIEDID(pipe);
  5196. aud_config = IBX_AUD_CFG(pipe);
  5197. aud_cntl_st = IBX_AUD_CNTL_ST(pipe);
  5198. aud_cntrl_st2 = IBX_AUD_CNTL_ST2;
  5199. } else {
  5200. hdmiw_hdmiedid = CPT_HDMIW_HDMIEDID(pipe);
  5201. aud_config = CPT_AUD_CFG(pipe);
  5202. aud_cntl_st = CPT_AUD_CNTL_ST(pipe);
  5203. aud_cntrl_st2 = CPT_AUD_CNTRL_ST2;
  5204. }
  5205. DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
  5206. i = I915_READ(aud_cntl_st);
  5207. i = (i >> 29) & DIP_PORT_SEL_MASK; /* DIP_Port_Select, 0x1 = PortB */
  5208. if (!i) {
  5209. DRM_DEBUG_DRIVER("Audio directed to unknown port\n");
  5210. /* operate blindly on all ports */
  5211. eldv = IBX_ELD_VALIDB;
  5212. eldv |= IBX_ELD_VALIDB << 4;
  5213. eldv |= IBX_ELD_VALIDB << 8;
  5214. } else {
  5215. DRM_DEBUG_DRIVER("ELD on port %c\n", port_name(i));
  5216. eldv = IBX_ELD_VALIDB << ((i - 1) * 4);
  5217. }
  5218. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
  5219. DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
  5220. eld[5] |= (1 << 2); /* Conn_Type, 0x1 = DisplayPort */
  5221. I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
  5222. } else
  5223. I915_WRITE(aud_config, 0);
  5224. if (intel_eld_uptodate(connector,
  5225. aud_cntrl_st2, eldv,
  5226. aud_cntl_st, IBX_ELD_ADDRESS,
  5227. hdmiw_hdmiedid))
  5228. return;
  5229. i = I915_READ(aud_cntrl_st2);
  5230. i &= ~eldv;
  5231. I915_WRITE(aud_cntrl_st2, i);
  5232. if (!eld[0])
  5233. return;
  5234. i = I915_READ(aud_cntl_st);
  5235. i &= ~IBX_ELD_ADDRESS;
  5236. I915_WRITE(aud_cntl_st, i);
  5237. len = min_t(uint8_t, eld[2], 21); /* 84 bytes of hw ELD buffer */
  5238. DRM_DEBUG_DRIVER("ELD size %d\n", len);
  5239. for (i = 0; i < len; i++)
  5240. I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
  5241. i = I915_READ(aud_cntrl_st2);
  5242. i |= eldv;
  5243. I915_WRITE(aud_cntrl_st2, i);
  5244. }
  5245. void intel_write_eld(struct drm_encoder *encoder,
  5246. struct drm_display_mode *mode)
  5247. {
  5248. struct drm_crtc *crtc = encoder->crtc;
  5249. struct drm_connector *connector;
  5250. struct drm_device *dev = encoder->dev;
  5251. struct drm_i915_private *dev_priv = dev->dev_private;
  5252. connector = drm_select_eld(encoder, mode);
  5253. if (!connector)
  5254. return;
  5255. DRM_DEBUG_DRIVER("ELD on [CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
  5256. connector->base.id,
  5257. drm_get_connector_name(connector),
  5258. connector->encoder->base.id,
  5259. drm_get_encoder_name(connector->encoder));
  5260. connector->eld[6] = drm_av_sync_delay(connector, mode) / 2;
  5261. if (dev_priv->display.write_eld)
  5262. dev_priv->display.write_eld(connector, crtc);
  5263. }
  5264. /** Loads the palette/gamma unit for the CRTC with the prepared values */
  5265. void intel_crtc_load_lut(struct drm_crtc *crtc)
  5266. {
  5267. struct drm_device *dev = crtc->dev;
  5268. struct drm_i915_private *dev_priv = dev->dev_private;
  5269. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5270. enum pipe pipe = intel_crtc->pipe;
  5271. int palreg = PALETTE(pipe);
  5272. int i;
  5273. bool reenable_ips = false;
  5274. /* The clocks have to be on to load the palette. */
  5275. if (!crtc->enabled || !intel_crtc->active)
  5276. return;
  5277. /* use legacy palette for Ironlake */
  5278. if (HAS_PCH_SPLIT(dev))
  5279. palreg = LGC_PALETTE(pipe);
  5280. /* Workaround : Do not read or write the pipe palette/gamma data while
  5281. * GAMMA_MODE is configured for split gamma and IPS_CTL has IPS enabled.
  5282. */
  5283. if (intel_crtc->config.ips_enabled &&
  5284. ((I915_READ(GAMMA_MODE(pipe)) & GAMMA_MODE_MODE_MASK) ==
  5285. GAMMA_MODE_MODE_SPLIT)) {
  5286. hsw_disable_ips(intel_crtc);
  5287. reenable_ips = true;
  5288. }
  5289. for (i = 0; i < 256; i++) {
  5290. I915_WRITE(palreg + 4 * i,
  5291. (intel_crtc->lut_r[i] << 16) |
  5292. (intel_crtc->lut_g[i] << 8) |
  5293. intel_crtc->lut_b[i]);
  5294. }
  5295. if (reenable_ips)
  5296. hsw_enable_ips(intel_crtc);
  5297. }
  5298. static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
  5299. {
  5300. struct drm_device *dev = crtc->dev;
  5301. struct drm_i915_private *dev_priv = dev->dev_private;
  5302. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5303. bool visible = base != 0;
  5304. u32 cntl;
  5305. if (intel_crtc->cursor_visible == visible)
  5306. return;
  5307. cntl = I915_READ(_CURACNTR);
  5308. if (visible) {
  5309. /* On these chipsets we can only modify the base whilst
  5310. * the cursor is disabled.
  5311. */
  5312. I915_WRITE(_CURABASE, base);
  5313. cntl &= ~(CURSOR_FORMAT_MASK);
  5314. /* XXX width must be 64, stride 256 => 0x00 << 28 */
  5315. cntl |= CURSOR_ENABLE |
  5316. CURSOR_GAMMA_ENABLE |
  5317. CURSOR_FORMAT_ARGB;
  5318. } else
  5319. cntl &= ~(CURSOR_ENABLE | CURSOR_GAMMA_ENABLE);
  5320. I915_WRITE(_CURACNTR, cntl);
  5321. intel_crtc->cursor_visible = visible;
  5322. }
  5323. static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
  5324. {
  5325. struct drm_device *dev = crtc->dev;
  5326. struct drm_i915_private *dev_priv = dev->dev_private;
  5327. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5328. int pipe = intel_crtc->pipe;
  5329. bool visible = base != 0;
  5330. if (intel_crtc->cursor_visible != visible) {
  5331. uint32_t cntl = I915_READ(CURCNTR(pipe));
  5332. if (base) {
  5333. cntl &= ~(CURSOR_MODE | MCURSOR_PIPE_SELECT);
  5334. cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
  5335. cntl |= pipe << 28; /* Connect to correct pipe */
  5336. } else {
  5337. cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
  5338. cntl |= CURSOR_MODE_DISABLE;
  5339. }
  5340. I915_WRITE(CURCNTR(pipe), cntl);
  5341. intel_crtc->cursor_visible = visible;
  5342. }
  5343. /* and commit changes on next vblank */
  5344. I915_WRITE(CURBASE(pipe), base);
  5345. }
  5346. static void ivb_update_cursor(struct drm_crtc *crtc, u32 base)
  5347. {
  5348. struct drm_device *dev = crtc->dev;
  5349. struct drm_i915_private *dev_priv = dev->dev_private;
  5350. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5351. int pipe = intel_crtc->pipe;
  5352. bool visible = base != 0;
  5353. if (intel_crtc->cursor_visible != visible) {
  5354. uint32_t cntl = I915_READ(CURCNTR_IVB(pipe));
  5355. if (base) {
  5356. cntl &= ~CURSOR_MODE;
  5357. cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
  5358. } else {
  5359. cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
  5360. cntl |= CURSOR_MODE_DISABLE;
  5361. }
  5362. if (IS_HASWELL(dev))
  5363. cntl |= CURSOR_PIPE_CSC_ENABLE;
  5364. I915_WRITE(CURCNTR_IVB(pipe), cntl);
  5365. intel_crtc->cursor_visible = visible;
  5366. }
  5367. /* and commit changes on next vblank */
  5368. I915_WRITE(CURBASE_IVB(pipe), base);
  5369. }
  5370. /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
  5371. static void intel_crtc_update_cursor(struct drm_crtc *crtc,
  5372. bool on)
  5373. {
  5374. struct drm_device *dev = crtc->dev;
  5375. struct drm_i915_private *dev_priv = dev->dev_private;
  5376. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5377. int pipe = intel_crtc->pipe;
  5378. int x = intel_crtc->cursor_x;
  5379. int y = intel_crtc->cursor_y;
  5380. u32 base, pos;
  5381. bool visible;
  5382. pos = 0;
  5383. if (on && crtc->enabled && crtc->fb) {
  5384. base = intel_crtc->cursor_addr;
  5385. if (x > (int) crtc->fb->width)
  5386. base = 0;
  5387. if (y > (int) crtc->fb->height)
  5388. base = 0;
  5389. } else
  5390. base = 0;
  5391. if (x < 0) {
  5392. if (x + intel_crtc->cursor_width < 0)
  5393. base = 0;
  5394. pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
  5395. x = -x;
  5396. }
  5397. pos |= x << CURSOR_X_SHIFT;
  5398. if (y < 0) {
  5399. if (y + intel_crtc->cursor_height < 0)
  5400. base = 0;
  5401. pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
  5402. y = -y;
  5403. }
  5404. pos |= y << CURSOR_Y_SHIFT;
  5405. visible = base != 0;
  5406. if (!visible && !intel_crtc->cursor_visible)
  5407. return;
  5408. if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) {
  5409. I915_WRITE(CURPOS_IVB(pipe), pos);
  5410. ivb_update_cursor(crtc, base);
  5411. } else {
  5412. I915_WRITE(CURPOS(pipe), pos);
  5413. if (IS_845G(dev) || IS_I865G(dev))
  5414. i845_update_cursor(crtc, base);
  5415. else
  5416. i9xx_update_cursor(crtc, base);
  5417. }
  5418. }
  5419. static int intel_crtc_cursor_set(struct drm_crtc *crtc,
  5420. struct drm_file *file,
  5421. uint32_t handle,
  5422. uint32_t width, uint32_t height)
  5423. {
  5424. struct drm_device *dev = crtc->dev;
  5425. struct drm_i915_private *dev_priv = dev->dev_private;
  5426. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5427. struct drm_i915_gem_object *obj;
  5428. uint32_t addr;
  5429. int ret;
  5430. /* if we want to turn off the cursor ignore width and height */
  5431. if (!handle) {
  5432. DRM_DEBUG_KMS("cursor off\n");
  5433. addr = 0;
  5434. obj = NULL;
  5435. mutex_lock(&dev->struct_mutex);
  5436. goto finish;
  5437. }
  5438. /* Currently we only support 64x64 cursors */
  5439. if (width != 64 || height != 64) {
  5440. DRM_ERROR("we currently only support 64x64 cursors\n");
  5441. return -EINVAL;
  5442. }
  5443. obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
  5444. if (&obj->base == NULL)
  5445. return -ENOENT;
  5446. if (obj->base.size < width * height * 4) {
  5447. DRM_ERROR("buffer is to small\n");
  5448. ret = -ENOMEM;
  5449. goto fail;
  5450. }
  5451. /* we only need to pin inside GTT if cursor is non-phy */
  5452. mutex_lock(&dev->struct_mutex);
  5453. if (!dev_priv->info->cursor_needs_physical) {
  5454. unsigned alignment;
  5455. if (obj->tiling_mode) {
  5456. DRM_ERROR("cursor cannot be tiled\n");
  5457. ret = -EINVAL;
  5458. goto fail_locked;
  5459. }
  5460. /* Note that the w/a also requires 2 PTE of padding following
  5461. * the bo. We currently fill all unused PTE with the shadow
  5462. * page and so we should always have valid PTE following the
  5463. * cursor preventing the VT-d warning.
  5464. */
  5465. alignment = 0;
  5466. if (need_vtd_wa(dev))
  5467. alignment = 64*1024;
  5468. ret = i915_gem_object_pin_to_display_plane(obj, alignment, NULL);
  5469. if (ret) {
  5470. DRM_ERROR("failed to move cursor bo into the GTT\n");
  5471. goto fail_locked;
  5472. }
  5473. ret = i915_gem_object_put_fence(obj);
  5474. if (ret) {
  5475. DRM_ERROR("failed to release fence for cursor");
  5476. goto fail_unpin;
  5477. }
  5478. addr = obj->gtt_offset;
  5479. } else {
  5480. int align = IS_I830(dev) ? 16 * 1024 : 256;
  5481. ret = i915_gem_attach_phys_object(dev, obj,
  5482. (intel_crtc->pipe == 0) ? I915_GEM_PHYS_CURSOR_0 : I915_GEM_PHYS_CURSOR_1,
  5483. align);
  5484. if (ret) {
  5485. DRM_ERROR("failed to attach phys object\n");
  5486. goto fail_locked;
  5487. }
  5488. addr = obj->phys_obj->handle->busaddr;
  5489. }
  5490. if (IS_GEN2(dev))
  5491. I915_WRITE(CURSIZE, (height << 12) | width);
  5492. finish:
  5493. if (intel_crtc->cursor_bo) {
  5494. if (dev_priv->info->cursor_needs_physical) {
  5495. if (intel_crtc->cursor_bo != obj)
  5496. i915_gem_detach_phys_object(dev, intel_crtc->cursor_bo);
  5497. } else
  5498. i915_gem_object_unpin(intel_crtc->cursor_bo);
  5499. drm_gem_object_unreference(&intel_crtc->cursor_bo->base);
  5500. }
  5501. mutex_unlock(&dev->struct_mutex);
  5502. intel_crtc->cursor_addr = addr;
  5503. intel_crtc->cursor_bo = obj;
  5504. intel_crtc->cursor_width = width;
  5505. intel_crtc->cursor_height = height;
  5506. intel_crtc_update_cursor(crtc, intel_crtc->cursor_bo != NULL);
  5507. return 0;
  5508. fail_unpin:
  5509. i915_gem_object_unpin(obj);
  5510. fail_locked:
  5511. mutex_unlock(&dev->struct_mutex);
  5512. fail:
  5513. drm_gem_object_unreference_unlocked(&obj->base);
  5514. return ret;
  5515. }
  5516. static int intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
  5517. {
  5518. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5519. intel_crtc->cursor_x = x;
  5520. intel_crtc->cursor_y = y;
  5521. intel_crtc_update_cursor(crtc, intel_crtc->cursor_bo != NULL);
  5522. return 0;
  5523. }
  5524. /** Sets the color ramps on behalf of RandR */
  5525. void intel_crtc_fb_gamma_set(struct drm_crtc *crtc, u16 red, u16 green,
  5526. u16 blue, int regno)
  5527. {
  5528. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5529. intel_crtc->lut_r[regno] = red >> 8;
  5530. intel_crtc->lut_g[regno] = green >> 8;
  5531. intel_crtc->lut_b[regno] = blue >> 8;
  5532. }
  5533. void intel_crtc_fb_gamma_get(struct drm_crtc *crtc, u16 *red, u16 *green,
  5534. u16 *blue, int regno)
  5535. {
  5536. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5537. *red = intel_crtc->lut_r[regno] << 8;
  5538. *green = intel_crtc->lut_g[regno] << 8;
  5539. *blue = intel_crtc->lut_b[regno] << 8;
  5540. }
  5541. static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
  5542. u16 *blue, uint32_t start, uint32_t size)
  5543. {
  5544. int end = (start + size > 256) ? 256 : start + size, i;
  5545. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5546. for (i = start; i < end; i++) {
  5547. intel_crtc->lut_r[i] = red[i] >> 8;
  5548. intel_crtc->lut_g[i] = green[i] >> 8;
  5549. intel_crtc->lut_b[i] = blue[i] >> 8;
  5550. }
  5551. intel_crtc_load_lut(crtc);
  5552. }
  5553. /* VESA 640x480x72Hz mode to set on the pipe */
  5554. static struct drm_display_mode load_detect_mode = {
  5555. DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
  5556. 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
  5557. };
  5558. static struct drm_framebuffer *
  5559. intel_framebuffer_create(struct drm_device *dev,
  5560. struct drm_mode_fb_cmd2 *mode_cmd,
  5561. struct drm_i915_gem_object *obj)
  5562. {
  5563. struct intel_framebuffer *intel_fb;
  5564. int ret;
  5565. intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
  5566. if (!intel_fb) {
  5567. drm_gem_object_unreference_unlocked(&obj->base);
  5568. return ERR_PTR(-ENOMEM);
  5569. }
  5570. ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
  5571. if (ret) {
  5572. drm_gem_object_unreference_unlocked(&obj->base);
  5573. kfree(intel_fb);
  5574. return ERR_PTR(ret);
  5575. }
  5576. return &intel_fb->base;
  5577. }
  5578. static u32
  5579. intel_framebuffer_pitch_for_width(int width, int bpp)
  5580. {
  5581. u32 pitch = DIV_ROUND_UP(width * bpp, 8);
  5582. return ALIGN(pitch, 64);
  5583. }
  5584. static u32
  5585. intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
  5586. {
  5587. u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
  5588. return ALIGN(pitch * mode->vdisplay, PAGE_SIZE);
  5589. }
  5590. static struct drm_framebuffer *
  5591. intel_framebuffer_create_for_mode(struct drm_device *dev,
  5592. struct drm_display_mode *mode,
  5593. int depth, int bpp)
  5594. {
  5595. struct drm_i915_gem_object *obj;
  5596. struct drm_mode_fb_cmd2 mode_cmd = { 0 };
  5597. obj = i915_gem_alloc_object(dev,
  5598. intel_framebuffer_size_for_mode(mode, bpp));
  5599. if (obj == NULL)
  5600. return ERR_PTR(-ENOMEM);
  5601. mode_cmd.width = mode->hdisplay;
  5602. mode_cmd.height = mode->vdisplay;
  5603. mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
  5604. bpp);
  5605. mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
  5606. return intel_framebuffer_create(dev, &mode_cmd, obj);
  5607. }
  5608. static struct drm_framebuffer *
  5609. mode_fits_in_fbdev(struct drm_device *dev,
  5610. struct drm_display_mode *mode)
  5611. {
  5612. struct drm_i915_private *dev_priv = dev->dev_private;
  5613. struct drm_i915_gem_object *obj;
  5614. struct drm_framebuffer *fb;
  5615. if (dev_priv->fbdev == NULL)
  5616. return NULL;
  5617. obj = dev_priv->fbdev->ifb.obj;
  5618. if (obj == NULL)
  5619. return NULL;
  5620. fb = &dev_priv->fbdev->ifb.base;
  5621. if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
  5622. fb->bits_per_pixel))
  5623. return NULL;
  5624. if (obj->base.size < mode->vdisplay * fb->pitches[0])
  5625. return NULL;
  5626. return fb;
  5627. }
  5628. bool intel_get_load_detect_pipe(struct drm_connector *connector,
  5629. struct drm_display_mode *mode,
  5630. struct intel_load_detect_pipe *old)
  5631. {
  5632. struct intel_crtc *intel_crtc;
  5633. struct intel_encoder *intel_encoder =
  5634. intel_attached_encoder(connector);
  5635. struct drm_crtc *possible_crtc;
  5636. struct drm_encoder *encoder = &intel_encoder->base;
  5637. struct drm_crtc *crtc = NULL;
  5638. struct drm_device *dev = encoder->dev;
  5639. struct drm_framebuffer *fb;
  5640. int i = -1;
  5641. DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
  5642. connector->base.id, drm_get_connector_name(connector),
  5643. encoder->base.id, drm_get_encoder_name(encoder));
  5644. /*
  5645. * Algorithm gets a little messy:
  5646. *
  5647. * - if the connector already has an assigned crtc, use it (but make
  5648. * sure it's on first)
  5649. *
  5650. * - try to find the first unused crtc that can drive this connector,
  5651. * and use that if we find one
  5652. */
  5653. /* See if we already have a CRTC for this connector */
  5654. if (encoder->crtc) {
  5655. crtc = encoder->crtc;
  5656. mutex_lock(&crtc->mutex);
  5657. old->dpms_mode = connector->dpms;
  5658. old->load_detect_temp = false;
  5659. /* Make sure the crtc and connector are running */
  5660. if (connector->dpms != DRM_MODE_DPMS_ON)
  5661. connector->funcs->dpms(connector, DRM_MODE_DPMS_ON);
  5662. return true;
  5663. }
  5664. /* Find an unused one (if possible) */
  5665. list_for_each_entry(possible_crtc, &dev->mode_config.crtc_list, head) {
  5666. i++;
  5667. if (!(encoder->possible_crtcs & (1 << i)))
  5668. continue;
  5669. if (!possible_crtc->enabled) {
  5670. crtc = possible_crtc;
  5671. break;
  5672. }
  5673. }
  5674. /*
  5675. * If we didn't find an unused CRTC, don't use any.
  5676. */
  5677. if (!crtc) {
  5678. DRM_DEBUG_KMS("no pipe available for load-detect\n");
  5679. return false;
  5680. }
  5681. mutex_lock(&crtc->mutex);
  5682. intel_encoder->new_crtc = to_intel_crtc(crtc);
  5683. to_intel_connector(connector)->new_encoder = intel_encoder;
  5684. intel_crtc = to_intel_crtc(crtc);
  5685. old->dpms_mode = connector->dpms;
  5686. old->load_detect_temp = true;
  5687. old->release_fb = NULL;
  5688. if (!mode)
  5689. mode = &load_detect_mode;
  5690. /* We need a framebuffer large enough to accommodate all accesses
  5691. * that the plane may generate whilst we perform load detection.
  5692. * We can not rely on the fbcon either being present (we get called
  5693. * during its initialisation to detect all boot displays, or it may
  5694. * not even exist) or that it is large enough to satisfy the
  5695. * requested mode.
  5696. */
  5697. fb = mode_fits_in_fbdev(dev, mode);
  5698. if (fb == NULL) {
  5699. DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
  5700. fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
  5701. old->release_fb = fb;
  5702. } else
  5703. DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
  5704. if (IS_ERR(fb)) {
  5705. DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
  5706. mutex_unlock(&crtc->mutex);
  5707. return false;
  5708. }
  5709. if (intel_set_mode(crtc, mode, 0, 0, fb)) {
  5710. DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
  5711. if (old->release_fb)
  5712. old->release_fb->funcs->destroy(old->release_fb);
  5713. mutex_unlock(&crtc->mutex);
  5714. return false;
  5715. }
  5716. /* let the connector get through one full cycle before testing */
  5717. intel_wait_for_vblank(dev, intel_crtc->pipe);
  5718. return true;
  5719. }
  5720. void intel_release_load_detect_pipe(struct drm_connector *connector,
  5721. struct intel_load_detect_pipe *old)
  5722. {
  5723. struct intel_encoder *intel_encoder =
  5724. intel_attached_encoder(connector);
  5725. struct drm_encoder *encoder = &intel_encoder->base;
  5726. struct drm_crtc *crtc = encoder->crtc;
  5727. DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
  5728. connector->base.id, drm_get_connector_name(connector),
  5729. encoder->base.id, drm_get_encoder_name(encoder));
  5730. if (old->load_detect_temp) {
  5731. to_intel_connector(connector)->new_encoder = NULL;
  5732. intel_encoder->new_crtc = NULL;
  5733. intel_set_mode(crtc, NULL, 0, 0, NULL);
  5734. if (old->release_fb) {
  5735. drm_framebuffer_unregister_private(old->release_fb);
  5736. drm_framebuffer_unreference(old->release_fb);
  5737. }
  5738. mutex_unlock(&crtc->mutex);
  5739. return;
  5740. }
  5741. /* Switch crtc and encoder back off if necessary */
  5742. if (old->dpms_mode != DRM_MODE_DPMS_ON)
  5743. connector->funcs->dpms(connector, old->dpms_mode);
  5744. mutex_unlock(&crtc->mutex);
  5745. }
  5746. /* Returns the clock of the currently programmed mode of the given pipe. */
  5747. static int intel_crtc_clock_get(struct drm_device *dev, struct drm_crtc *crtc)
  5748. {
  5749. struct drm_i915_private *dev_priv = dev->dev_private;
  5750. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5751. int pipe = intel_crtc->pipe;
  5752. u32 dpll = I915_READ(DPLL(pipe));
  5753. u32 fp;
  5754. intel_clock_t clock;
  5755. if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
  5756. fp = I915_READ(FP0(pipe));
  5757. else
  5758. fp = I915_READ(FP1(pipe));
  5759. clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
  5760. if (IS_PINEVIEW(dev)) {
  5761. clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
  5762. clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
  5763. } else {
  5764. clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
  5765. clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
  5766. }
  5767. if (!IS_GEN2(dev)) {
  5768. if (IS_PINEVIEW(dev))
  5769. clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
  5770. DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
  5771. else
  5772. clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
  5773. DPLL_FPA01_P1_POST_DIV_SHIFT);
  5774. switch (dpll & DPLL_MODE_MASK) {
  5775. case DPLLB_MODE_DAC_SERIAL:
  5776. clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
  5777. 5 : 10;
  5778. break;
  5779. case DPLLB_MODE_LVDS:
  5780. clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
  5781. 7 : 14;
  5782. break;
  5783. default:
  5784. DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
  5785. "mode\n", (int)(dpll & DPLL_MODE_MASK));
  5786. return 0;
  5787. }
  5788. if (IS_PINEVIEW(dev))
  5789. pineview_clock(96000, &clock);
  5790. else
  5791. i9xx_clock(96000, &clock);
  5792. } else {
  5793. bool is_lvds = (pipe == 1) && (I915_READ(LVDS) & LVDS_PORT_EN);
  5794. if (is_lvds) {
  5795. clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
  5796. DPLL_FPA01_P1_POST_DIV_SHIFT);
  5797. clock.p2 = 14;
  5798. if ((dpll & PLL_REF_INPUT_MASK) ==
  5799. PLLB_REF_INPUT_SPREADSPECTRUMIN) {
  5800. /* XXX: might not be 66MHz */
  5801. i9xx_clock(66000, &clock);
  5802. } else
  5803. i9xx_clock(48000, &clock);
  5804. } else {
  5805. if (dpll & PLL_P1_DIVIDE_BY_TWO)
  5806. clock.p1 = 2;
  5807. else {
  5808. clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
  5809. DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
  5810. }
  5811. if (dpll & PLL_P2_DIVIDE_BY_4)
  5812. clock.p2 = 4;
  5813. else
  5814. clock.p2 = 2;
  5815. i9xx_clock(48000, &clock);
  5816. }
  5817. }
  5818. /* XXX: It would be nice to validate the clocks, but we can't reuse
  5819. * i830PllIsValid() because it relies on the xf86_config connector
  5820. * configuration being accurate, which it isn't necessarily.
  5821. */
  5822. return clock.dot;
  5823. }
  5824. /** Returns the currently programmed mode of the given pipe. */
  5825. struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
  5826. struct drm_crtc *crtc)
  5827. {
  5828. struct drm_i915_private *dev_priv = dev->dev_private;
  5829. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5830. enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
  5831. struct drm_display_mode *mode;
  5832. int htot = I915_READ(HTOTAL(cpu_transcoder));
  5833. int hsync = I915_READ(HSYNC(cpu_transcoder));
  5834. int vtot = I915_READ(VTOTAL(cpu_transcoder));
  5835. int vsync = I915_READ(VSYNC(cpu_transcoder));
  5836. mode = kzalloc(sizeof(*mode), GFP_KERNEL);
  5837. if (!mode)
  5838. return NULL;
  5839. mode->clock = intel_crtc_clock_get(dev, crtc);
  5840. mode->hdisplay = (htot & 0xffff) + 1;
  5841. mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
  5842. mode->hsync_start = (hsync & 0xffff) + 1;
  5843. mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
  5844. mode->vdisplay = (vtot & 0xffff) + 1;
  5845. mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
  5846. mode->vsync_start = (vsync & 0xffff) + 1;
  5847. mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
  5848. drm_mode_set_name(mode);
  5849. return mode;
  5850. }
  5851. static void intel_increase_pllclock(struct drm_crtc *crtc)
  5852. {
  5853. struct drm_device *dev = crtc->dev;
  5854. drm_i915_private_t *dev_priv = dev->dev_private;
  5855. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5856. int pipe = intel_crtc->pipe;
  5857. int dpll_reg = DPLL(pipe);
  5858. int dpll;
  5859. if (HAS_PCH_SPLIT(dev))
  5860. return;
  5861. if (!dev_priv->lvds_downclock_avail)
  5862. return;
  5863. dpll = I915_READ(dpll_reg);
  5864. if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) {
  5865. DRM_DEBUG_DRIVER("upclocking LVDS\n");
  5866. assert_panel_unlocked(dev_priv, pipe);
  5867. dpll &= ~DISPLAY_RATE_SELECT_FPA1;
  5868. I915_WRITE(dpll_reg, dpll);
  5869. intel_wait_for_vblank(dev, pipe);
  5870. dpll = I915_READ(dpll_reg);
  5871. if (dpll & DISPLAY_RATE_SELECT_FPA1)
  5872. DRM_DEBUG_DRIVER("failed to upclock LVDS!\n");
  5873. }
  5874. }
  5875. static void intel_decrease_pllclock(struct drm_crtc *crtc)
  5876. {
  5877. struct drm_device *dev = crtc->dev;
  5878. drm_i915_private_t *dev_priv = dev->dev_private;
  5879. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5880. if (HAS_PCH_SPLIT(dev))
  5881. return;
  5882. if (!dev_priv->lvds_downclock_avail)
  5883. return;
  5884. /*
  5885. * Since this is called by a timer, we should never get here in
  5886. * the manual case.
  5887. */
  5888. if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
  5889. int pipe = intel_crtc->pipe;
  5890. int dpll_reg = DPLL(pipe);
  5891. int dpll;
  5892. DRM_DEBUG_DRIVER("downclocking LVDS\n");
  5893. assert_panel_unlocked(dev_priv, pipe);
  5894. dpll = I915_READ(dpll_reg);
  5895. dpll |= DISPLAY_RATE_SELECT_FPA1;
  5896. I915_WRITE(dpll_reg, dpll);
  5897. intel_wait_for_vblank(dev, pipe);
  5898. dpll = I915_READ(dpll_reg);
  5899. if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
  5900. DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
  5901. }
  5902. }
  5903. void intel_mark_busy(struct drm_device *dev)
  5904. {
  5905. i915_update_gfx_val(dev->dev_private);
  5906. }
  5907. void intel_mark_idle(struct drm_device *dev)
  5908. {
  5909. struct drm_crtc *crtc;
  5910. if (!i915_powersave)
  5911. return;
  5912. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  5913. if (!crtc->fb)
  5914. continue;
  5915. intel_decrease_pllclock(crtc);
  5916. }
  5917. }
  5918. void intel_mark_fb_busy(struct drm_i915_gem_object *obj)
  5919. {
  5920. struct drm_device *dev = obj->base.dev;
  5921. struct drm_crtc *crtc;
  5922. if (!i915_powersave)
  5923. return;
  5924. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  5925. if (!crtc->fb)
  5926. continue;
  5927. if (to_intel_framebuffer(crtc->fb)->obj == obj)
  5928. intel_increase_pllclock(crtc);
  5929. }
  5930. }
  5931. static void intel_crtc_destroy(struct drm_crtc *crtc)
  5932. {
  5933. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5934. struct drm_device *dev = crtc->dev;
  5935. struct intel_unpin_work *work;
  5936. unsigned long flags;
  5937. spin_lock_irqsave(&dev->event_lock, flags);
  5938. work = intel_crtc->unpin_work;
  5939. intel_crtc->unpin_work = NULL;
  5940. spin_unlock_irqrestore(&dev->event_lock, flags);
  5941. if (work) {
  5942. cancel_work_sync(&work->work);
  5943. kfree(work);
  5944. }
  5945. intel_crtc_cursor_set(crtc, NULL, 0, 0, 0);
  5946. drm_crtc_cleanup(crtc);
  5947. kfree(intel_crtc);
  5948. }
  5949. static void intel_unpin_work_fn(struct work_struct *__work)
  5950. {
  5951. struct intel_unpin_work *work =
  5952. container_of(__work, struct intel_unpin_work, work);
  5953. struct drm_device *dev = work->crtc->dev;
  5954. mutex_lock(&dev->struct_mutex);
  5955. intel_unpin_fb_obj(work->old_fb_obj);
  5956. drm_gem_object_unreference(&work->pending_flip_obj->base);
  5957. drm_gem_object_unreference(&work->old_fb_obj->base);
  5958. intel_update_fbc(dev);
  5959. mutex_unlock(&dev->struct_mutex);
  5960. BUG_ON(atomic_read(&to_intel_crtc(work->crtc)->unpin_work_count) == 0);
  5961. atomic_dec(&to_intel_crtc(work->crtc)->unpin_work_count);
  5962. kfree(work);
  5963. }
  5964. static void do_intel_finish_page_flip(struct drm_device *dev,
  5965. struct drm_crtc *crtc)
  5966. {
  5967. drm_i915_private_t *dev_priv = dev->dev_private;
  5968. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5969. struct intel_unpin_work *work;
  5970. unsigned long flags;
  5971. /* Ignore early vblank irqs */
  5972. if (intel_crtc == NULL)
  5973. return;
  5974. spin_lock_irqsave(&dev->event_lock, flags);
  5975. work = intel_crtc->unpin_work;
  5976. /* Ensure we don't miss a work->pending update ... */
  5977. smp_rmb();
  5978. if (work == NULL || atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) {
  5979. spin_unlock_irqrestore(&dev->event_lock, flags);
  5980. return;
  5981. }
  5982. /* and that the unpin work is consistent wrt ->pending. */
  5983. smp_rmb();
  5984. intel_crtc->unpin_work = NULL;
  5985. if (work->event)
  5986. drm_send_vblank_event(dev, intel_crtc->pipe, work->event);
  5987. drm_vblank_put(dev, intel_crtc->pipe);
  5988. spin_unlock_irqrestore(&dev->event_lock, flags);
  5989. wake_up_all(&dev_priv->pending_flip_queue);
  5990. queue_work(dev_priv->wq, &work->work);
  5991. trace_i915_flip_complete(intel_crtc->plane, work->pending_flip_obj);
  5992. }
  5993. void intel_finish_page_flip(struct drm_device *dev, int pipe)
  5994. {
  5995. drm_i915_private_t *dev_priv = dev->dev_private;
  5996. struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
  5997. do_intel_finish_page_flip(dev, crtc);
  5998. }
  5999. void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
  6000. {
  6001. drm_i915_private_t *dev_priv = dev->dev_private;
  6002. struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
  6003. do_intel_finish_page_flip(dev, crtc);
  6004. }
  6005. void intel_prepare_page_flip(struct drm_device *dev, int plane)
  6006. {
  6007. drm_i915_private_t *dev_priv = dev->dev_private;
  6008. struct intel_crtc *intel_crtc =
  6009. to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
  6010. unsigned long flags;
  6011. /* NB: An MMIO update of the plane base pointer will also
  6012. * generate a page-flip completion irq, i.e. every modeset
  6013. * is also accompanied by a spurious intel_prepare_page_flip().
  6014. */
  6015. spin_lock_irqsave(&dev->event_lock, flags);
  6016. if (intel_crtc->unpin_work)
  6017. atomic_inc_not_zero(&intel_crtc->unpin_work->pending);
  6018. spin_unlock_irqrestore(&dev->event_lock, flags);
  6019. }
  6020. inline static void intel_mark_page_flip_active(struct intel_crtc *intel_crtc)
  6021. {
  6022. /* Ensure that the work item is consistent when activating it ... */
  6023. smp_wmb();
  6024. atomic_set(&intel_crtc->unpin_work->pending, INTEL_FLIP_PENDING);
  6025. /* and that it is marked active as soon as the irq could fire. */
  6026. smp_wmb();
  6027. }
  6028. static int intel_gen2_queue_flip(struct drm_device *dev,
  6029. struct drm_crtc *crtc,
  6030. struct drm_framebuffer *fb,
  6031. struct drm_i915_gem_object *obj)
  6032. {
  6033. struct drm_i915_private *dev_priv = dev->dev_private;
  6034. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6035. u32 flip_mask;
  6036. struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
  6037. int ret;
  6038. ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
  6039. if (ret)
  6040. goto err;
  6041. ret = intel_ring_begin(ring, 6);
  6042. if (ret)
  6043. goto err_unpin;
  6044. /* Can't queue multiple flips, so wait for the previous
  6045. * one to finish before executing the next.
  6046. */
  6047. if (intel_crtc->plane)
  6048. flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
  6049. else
  6050. flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
  6051. intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
  6052. intel_ring_emit(ring, MI_NOOP);
  6053. intel_ring_emit(ring, MI_DISPLAY_FLIP |
  6054. MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
  6055. intel_ring_emit(ring, fb->pitches[0]);
  6056. intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
  6057. intel_ring_emit(ring, 0); /* aux display base address, unused */
  6058. intel_mark_page_flip_active(intel_crtc);
  6059. intel_ring_advance(ring);
  6060. return 0;
  6061. err_unpin:
  6062. intel_unpin_fb_obj(obj);
  6063. err:
  6064. return ret;
  6065. }
  6066. static int intel_gen3_queue_flip(struct drm_device *dev,
  6067. struct drm_crtc *crtc,
  6068. struct drm_framebuffer *fb,
  6069. struct drm_i915_gem_object *obj)
  6070. {
  6071. struct drm_i915_private *dev_priv = dev->dev_private;
  6072. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6073. u32 flip_mask;
  6074. struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
  6075. int ret;
  6076. ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
  6077. if (ret)
  6078. goto err;
  6079. ret = intel_ring_begin(ring, 6);
  6080. if (ret)
  6081. goto err_unpin;
  6082. if (intel_crtc->plane)
  6083. flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
  6084. else
  6085. flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
  6086. intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
  6087. intel_ring_emit(ring, MI_NOOP);
  6088. intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
  6089. MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
  6090. intel_ring_emit(ring, fb->pitches[0]);
  6091. intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
  6092. intel_ring_emit(ring, MI_NOOP);
  6093. intel_mark_page_flip_active(intel_crtc);
  6094. intel_ring_advance(ring);
  6095. return 0;
  6096. err_unpin:
  6097. intel_unpin_fb_obj(obj);
  6098. err:
  6099. return ret;
  6100. }
  6101. static int intel_gen4_queue_flip(struct drm_device *dev,
  6102. struct drm_crtc *crtc,
  6103. struct drm_framebuffer *fb,
  6104. struct drm_i915_gem_object *obj)
  6105. {
  6106. struct drm_i915_private *dev_priv = dev->dev_private;
  6107. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6108. uint32_t pf, pipesrc;
  6109. struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
  6110. int ret;
  6111. ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
  6112. if (ret)
  6113. goto err;
  6114. ret = intel_ring_begin(ring, 4);
  6115. if (ret)
  6116. goto err_unpin;
  6117. /* i965+ uses the linear or tiled offsets from the
  6118. * Display Registers (which do not change across a page-flip)
  6119. * so we need only reprogram the base address.
  6120. */
  6121. intel_ring_emit(ring, MI_DISPLAY_FLIP |
  6122. MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
  6123. intel_ring_emit(ring, fb->pitches[0]);
  6124. intel_ring_emit(ring,
  6125. (obj->gtt_offset + intel_crtc->dspaddr_offset) |
  6126. obj->tiling_mode);
  6127. /* XXX Enabling the panel-fitter across page-flip is so far
  6128. * untested on non-native modes, so ignore it for now.
  6129. * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
  6130. */
  6131. pf = 0;
  6132. pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
  6133. intel_ring_emit(ring, pf | pipesrc);
  6134. intel_mark_page_flip_active(intel_crtc);
  6135. intel_ring_advance(ring);
  6136. return 0;
  6137. err_unpin:
  6138. intel_unpin_fb_obj(obj);
  6139. err:
  6140. return ret;
  6141. }
  6142. static int intel_gen6_queue_flip(struct drm_device *dev,
  6143. struct drm_crtc *crtc,
  6144. struct drm_framebuffer *fb,
  6145. struct drm_i915_gem_object *obj)
  6146. {
  6147. struct drm_i915_private *dev_priv = dev->dev_private;
  6148. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6149. struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
  6150. uint32_t pf, pipesrc;
  6151. int ret;
  6152. ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
  6153. if (ret)
  6154. goto err;
  6155. ret = intel_ring_begin(ring, 4);
  6156. if (ret)
  6157. goto err_unpin;
  6158. intel_ring_emit(ring, MI_DISPLAY_FLIP |
  6159. MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
  6160. intel_ring_emit(ring, fb->pitches[0] | obj->tiling_mode);
  6161. intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
  6162. /* Contrary to the suggestions in the documentation,
  6163. * "Enable Panel Fitter" does not seem to be required when page
  6164. * flipping with a non-native mode, and worse causes a normal
  6165. * modeset to fail.
  6166. * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
  6167. */
  6168. pf = 0;
  6169. pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
  6170. intel_ring_emit(ring, pf | pipesrc);
  6171. intel_mark_page_flip_active(intel_crtc);
  6172. intel_ring_advance(ring);
  6173. return 0;
  6174. err_unpin:
  6175. intel_unpin_fb_obj(obj);
  6176. err:
  6177. return ret;
  6178. }
  6179. /*
  6180. * On gen7 we currently use the blit ring because (in early silicon at least)
  6181. * the render ring doesn't give us interrpts for page flip completion, which
  6182. * means clients will hang after the first flip is queued. Fortunately the
  6183. * blit ring generates interrupts properly, so use it instead.
  6184. */
  6185. static int intel_gen7_queue_flip(struct drm_device *dev,
  6186. struct drm_crtc *crtc,
  6187. struct drm_framebuffer *fb,
  6188. struct drm_i915_gem_object *obj)
  6189. {
  6190. struct drm_i915_private *dev_priv = dev->dev_private;
  6191. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6192. struct intel_ring_buffer *ring = &dev_priv->ring[BCS];
  6193. uint32_t plane_bit = 0;
  6194. int ret;
  6195. ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
  6196. if (ret)
  6197. goto err;
  6198. switch(intel_crtc->plane) {
  6199. case PLANE_A:
  6200. plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
  6201. break;
  6202. case PLANE_B:
  6203. plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
  6204. break;
  6205. case PLANE_C:
  6206. plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
  6207. break;
  6208. default:
  6209. WARN_ONCE(1, "unknown plane in flip command\n");
  6210. ret = -ENODEV;
  6211. goto err_unpin;
  6212. }
  6213. ret = intel_ring_begin(ring, 4);
  6214. if (ret)
  6215. goto err_unpin;
  6216. intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
  6217. intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
  6218. intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
  6219. intel_ring_emit(ring, (MI_NOOP));
  6220. intel_mark_page_flip_active(intel_crtc);
  6221. intel_ring_advance(ring);
  6222. return 0;
  6223. err_unpin:
  6224. intel_unpin_fb_obj(obj);
  6225. err:
  6226. return ret;
  6227. }
  6228. static int intel_default_queue_flip(struct drm_device *dev,
  6229. struct drm_crtc *crtc,
  6230. struct drm_framebuffer *fb,
  6231. struct drm_i915_gem_object *obj)
  6232. {
  6233. return -ENODEV;
  6234. }
  6235. static int intel_crtc_page_flip(struct drm_crtc *crtc,
  6236. struct drm_framebuffer *fb,
  6237. struct drm_pending_vblank_event *event)
  6238. {
  6239. struct drm_device *dev = crtc->dev;
  6240. struct drm_i915_private *dev_priv = dev->dev_private;
  6241. struct drm_framebuffer *old_fb = crtc->fb;
  6242. struct drm_i915_gem_object *obj = to_intel_framebuffer(fb)->obj;
  6243. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6244. struct intel_unpin_work *work;
  6245. unsigned long flags;
  6246. int ret;
  6247. /* Can't change pixel format via MI display flips. */
  6248. if (fb->pixel_format != crtc->fb->pixel_format)
  6249. return -EINVAL;
  6250. /*
  6251. * TILEOFF/LINOFF registers can't be changed via MI display flips.
  6252. * Note that pitch changes could also affect these register.
  6253. */
  6254. if (INTEL_INFO(dev)->gen > 3 &&
  6255. (fb->offsets[0] != crtc->fb->offsets[0] ||
  6256. fb->pitches[0] != crtc->fb->pitches[0]))
  6257. return -EINVAL;
  6258. work = kzalloc(sizeof *work, GFP_KERNEL);
  6259. if (work == NULL)
  6260. return -ENOMEM;
  6261. work->event = event;
  6262. work->crtc = crtc;
  6263. work->old_fb_obj = to_intel_framebuffer(old_fb)->obj;
  6264. INIT_WORK(&work->work, intel_unpin_work_fn);
  6265. ret = drm_vblank_get(dev, intel_crtc->pipe);
  6266. if (ret)
  6267. goto free_work;
  6268. /* We borrow the event spin lock for protecting unpin_work */
  6269. spin_lock_irqsave(&dev->event_lock, flags);
  6270. if (intel_crtc->unpin_work) {
  6271. spin_unlock_irqrestore(&dev->event_lock, flags);
  6272. kfree(work);
  6273. drm_vblank_put(dev, intel_crtc->pipe);
  6274. DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
  6275. return -EBUSY;
  6276. }
  6277. intel_crtc->unpin_work = work;
  6278. spin_unlock_irqrestore(&dev->event_lock, flags);
  6279. if (atomic_read(&intel_crtc->unpin_work_count) >= 2)
  6280. flush_workqueue(dev_priv->wq);
  6281. ret = i915_mutex_lock_interruptible(dev);
  6282. if (ret)
  6283. goto cleanup;
  6284. /* Reference the objects for the scheduled work. */
  6285. drm_gem_object_reference(&work->old_fb_obj->base);
  6286. drm_gem_object_reference(&obj->base);
  6287. crtc->fb = fb;
  6288. work->pending_flip_obj = obj;
  6289. work->enable_stall_check = true;
  6290. atomic_inc(&intel_crtc->unpin_work_count);
  6291. intel_crtc->reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
  6292. ret = dev_priv->display.queue_flip(dev, crtc, fb, obj);
  6293. if (ret)
  6294. goto cleanup_pending;
  6295. intel_disable_fbc(dev);
  6296. intel_mark_fb_busy(obj);
  6297. mutex_unlock(&dev->struct_mutex);
  6298. trace_i915_flip_request(intel_crtc->plane, obj);
  6299. return 0;
  6300. cleanup_pending:
  6301. atomic_dec(&intel_crtc->unpin_work_count);
  6302. crtc->fb = old_fb;
  6303. drm_gem_object_unreference(&work->old_fb_obj->base);
  6304. drm_gem_object_unreference(&obj->base);
  6305. mutex_unlock(&dev->struct_mutex);
  6306. cleanup:
  6307. spin_lock_irqsave(&dev->event_lock, flags);
  6308. intel_crtc->unpin_work = NULL;
  6309. spin_unlock_irqrestore(&dev->event_lock, flags);
  6310. drm_vblank_put(dev, intel_crtc->pipe);
  6311. free_work:
  6312. kfree(work);
  6313. return ret;
  6314. }
  6315. static struct drm_crtc_helper_funcs intel_helper_funcs = {
  6316. .mode_set_base_atomic = intel_pipe_set_base_atomic,
  6317. .load_lut = intel_crtc_load_lut,
  6318. };
  6319. bool intel_encoder_check_is_cloned(struct intel_encoder *encoder)
  6320. {
  6321. struct intel_encoder *other_encoder;
  6322. struct drm_crtc *crtc = &encoder->new_crtc->base;
  6323. if (WARN_ON(!crtc))
  6324. return false;
  6325. list_for_each_entry(other_encoder,
  6326. &crtc->dev->mode_config.encoder_list,
  6327. base.head) {
  6328. if (&other_encoder->new_crtc->base != crtc ||
  6329. encoder == other_encoder)
  6330. continue;
  6331. else
  6332. return true;
  6333. }
  6334. return false;
  6335. }
  6336. static bool intel_encoder_crtc_ok(struct drm_encoder *encoder,
  6337. struct drm_crtc *crtc)
  6338. {
  6339. struct drm_device *dev;
  6340. struct drm_crtc *tmp;
  6341. int crtc_mask = 1;
  6342. WARN(!crtc, "checking null crtc?\n");
  6343. dev = crtc->dev;
  6344. list_for_each_entry(tmp, &dev->mode_config.crtc_list, head) {
  6345. if (tmp == crtc)
  6346. break;
  6347. crtc_mask <<= 1;
  6348. }
  6349. if (encoder->possible_crtcs & crtc_mask)
  6350. return true;
  6351. return false;
  6352. }
  6353. /**
  6354. * intel_modeset_update_staged_output_state
  6355. *
  6356. * Updates the staged output configuration state, e.g. after we've read out the
  6357. * current hw state.
  6358. */
  6359. static void intel_modeset_update_staged_output_state(struct drm_device *dev)
  6360. {
  6361. struct intel_encoder *encoder;
  6362. struct intel_connector *connector;
  6363. list_for_each_entry(connector, &dev->mode_config.connector_list,
  6364. base.head) {
  6365. connector->new_encoder =
  6366. to_intel_encoder(connector->base.encoder);
  6367. }
  6368. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  6369. base.head) {
  6370. encoder->new_crtc =
  6371. to_intel_crtc(encoder->base.crtc);
  6372. }
  6373. }
  6374. /**
  6375. * intel_modeset_commit_output_state
  6376. *
  6377. * This function copies the stage display pipe configuration to the real one.
  6378. */
  6379. static void intel_modeset_commit_output_state(struct drm_device *dev)
  6380. {
  6381. struct intel_encoder *encoder;
  6382. struct intel_connector *connector;
  6383. list_for_each_entry(connector, &dev->mode_config.connector_list,
  6384. base.head) {
  6385. connector->base.encoder = &connector->new_encoder->base;
  6386. }
  6387. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  6388. base.head) {
  6389. encoder->base.crtc = &encoder->new_crtc->base;
  6390. }
  6391. }
  6392. static void
  6393. connected_sink_compute_bpp(struct intel_connector * connector,
  6394. struct intel_crtc_config *pipe_config)
  6395. {
  6396. int bpp = pipe_config->pipe_bpp;
  6397. DRM_DEBUG_KMS("[CONNECTOR:%d:%s] checking for sink bpp constrains\n",
  6398. connector->base.base.id,
  6399. drm_get_connector_name(&connector->base));
  6400. /* Don't use an invalid EDID bpc value */
  6401. if (connector->base.display_info.bpc &&
  6402. connector->base.display_info.bpc * 3 < bpp) {
  6403. DRM_DEBUG_KMS("clamping display bpp (was %d) to EDID reported max of %d\n",
  6404. bpp, connector->base.display_info.bpc*3);
  6405. pipe_config->pipe_bpp = connector->base.display_info.bpc*3;
  6406. }
  6407. /* Clamp bpp to 8 on screens without EDID 1.4 */
  6408. if (connector->base.display_info.bpc == 0 && bpp > 24) {
  6409. DRM_DEBUG_KMS("clamping display bpp (was %d) to default limit of 24\n",
  6410. bpp);
  6411. pipe_config->pipe_bpp = 24;
  6412. }
  6413. }
  6414. static int
  6415. compute_baseline_pipe_bpp(struct intel_crtc *crtc,
  6416. struct drm_framebuffer *fb,
  6417. struct intel_crtc_config *pipe_config)
  6418. {
  6419. struct drm_device *dev = crtc->base.dev;
  6420. struct intel_connector *connector;
  6421. int bpp;
  6422. switch (fb->pixel_format) {
  6423. case DRM_FORMAT_C8:
  6424. bpp = 8*3; /* since we go through a colormap */
  6425. break;
  6426. case DRM_FORMAT_XRGB1555:
  6427. case DRM_FORMAT_ARGB1555:
  6428. /* checked in intel_framebuffer_init already */
  6429. if (WARN_ON(INTEL_INFO(dev)->gen > 3))
  6430. return -EINVAL;
  6431. case DRM_FORMAT_RGB565:
  6432. bpp = 6*3; /* min is 18bpp */
  6433. break;
  6434. case DRM_FORMAT_XBGR8888:
  6435. case DRM_FORMAT_ABGR8888:
  6436. /* checked in intel_framebuffer_init already */
  6437. if (WARN_ON(INTEL_INFO(dev)->gen < 4))
  6438. return -EINVAL;
  6439. case DRM_FORMAT_XRGB8888:
  6440. case DRM_FORMAT_ARGB8888:
  6441. bpp = 8*3;
  6442. break;
  6443. case DRM_FORMAT_XRGB2101010:
  6444. case DRM_FORMAT_ARGB2101010:
  6445. case DRM_FORMAT_XBGR2101010:
  6446. case DRM_FORMAT_ABGR2101010:
  6447. /* checked in intel_framebuffer_init already */
  6448. if (WARN_ON(INTEL_INFO(dev)->gen < 4))
  6449. return -EINVAL;
  6450. bpp = 10*3;
  6451. break;
  6452. /* TODO: gen4+ supports 16 bpc floating point, too. */
  6453. default:
  6454. DRM_DEBUG_KMS("unsupported depth\n");
  6455. return -EINVAL;
  6456. }
  6457. pipe_config->pipe_bpp = bpp;
  6458. /* Clamp display bpp to EDID value */
  6459. list_for_each_entry(connector, &dev->mode_config.connector_list,
  6460. base.head) {
  6461. if (!connector->new_encoder ||
  6462. connector->new_encoder->new_crtc != crtc)
  6463. continue;
  6464. connected_sink_compute_bpp(connector, pipe_config);
  6465. }
  6466. return bpp;
  6467. }
  6468. static void intel_dump_pipe_config(struct intel_crtc *crtc,
  6469. struct intel_crtc_config *pipe_config,
  6470. const char *context)
  6471. {
  6472. DRM_DEBUG_KMS("[CRTC:%d]%s config for pipe %c\n", crtc->base.base.id,
  6473. context, pipe_name(crtc->pipe));
  6474. DRM_DEBUG_KMS("cpu_transcoder: %c\n", transcoder_name(pipe_config->cpu_transcoder));
  6475. DRM_DEBUG_KMS("pipe bpp: %i, dithering: %i\n",
  6476. pipe_config->pipe_bpp, pipe_config->dither);
  6477. DRM_DEBUG_KMS("fdi/pch: %i, lanes: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
  6478. pipe_config->has_pch_encoder,
  6479. pipe_config->fdi_lanes,
  6480. pipe_config->fdi_m_n.gmch_m, pipe_config->fdi_m_n.gmch_n,
  6481. pipe_config->fdi_m_n.link_m, pipe_config->fdi_m_n.link_n,
  6482. pipe_config->fdi_m_n.tu);
  6483. DRM_DEBUG_KMS("requested mode:\n");
  6484. drm_mode_debug_printmodeline(&pipe_config->requested_mode);
  6485. DRM_DEBUG_KMS("adjusted mode:\n");
  6486. drm_mode_debug_printmodeline(&pipe_config->adjusted_mode);
  6487. DRM_DEBUG_KMS("gmch pfit: control: 0x%08x, ratios: 0x%08x, lvds border: 0x%08x\n",
  6488. pipe_config->gmch_pfit.control,
  6489. pipe_config->gmch_pfit.pgm_ratios,
  6490. pipe_config->gmch_pfit.lvds_border_bits);
  6491. DRM_DEBUG_KMS("pch pfit: pos: 0x%08x, size: 0x%08x\n",
  6492. pipe_config->pch_pfit.pos,
  6493. pipe_config->pch_pfit.size);
  6494. DRM_DEBUG_KMS("ips: %i\n", pipe_config->ips_enabled);
  6495. }
  6496. static struct intel_crtc_config *
  6497. intel_modeset_pipe_config(struct drm_crtc *crtc,
  6498. struct drm_framebuffer *fb,
  6499. struct drm_display_mode *mode)
  6500. {
  6501. struct drm_device *dev = crtc->dev;
  6502. struct drm_encoder_helper_funcs *encoder_funcs;
  6503. struct intel_encoder *encoder;
  6504. struct intel_crtc_config *pipe_config;
  6505. int plane_bpp, ret = -EINVAL;
  6506. bool retry = true;
  6507. pipe_config = kzalloc(sizeof(*pipe_config), GFP_KERNEL);
  6508. if (!pipe_config)
  6509. return ERR_PTR(-ENOMEM);
  6510. drm_mode_copy(&pipe_config->adjusted_mode, mode);
  6511. drm_mode_copy(&pipe_config->requested_mode, mode);
  6512. pipe_config->cpu_transcoder = to_intel_crtc(crtc)->pipe;
  6513. /* Compute a starting value for pipe_config->pipe_bpp taking the source
  6514. * plane pixel format and any sink constraints into account. Returns the
  6515. * source plane bpp so that dithering can be selected on mismatches
  6516. * after encoders and crtc also have had their say. */
  6517. plane_bpp = compute_baseline_pipe_bpp(to_intel_crtc(crtc),
  6518. fb, pipe_config);
  6519. if (plane_bpp < 0)
  6520. goto fail;
  6521. encoder_retry:
  6522. /* Ensure the port clock default is reset when retrying. */
  6523. pipe_config->port_clock = 0;
  6524. /* Pass our mode to the connectors and the CRTC to give them a chance to
  6525. * adjust it according to limitations or connector properties, and also
  6526. * a chance to reject the mode entirely.
  6527. */
  6528. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  6529. base.head) {
  6530. if (&encoder->new_crtc->base != crtc)
  6531. continue;
  6532. if (encoder->compute_config) {
  6533. if (!(encoder->compute_config(encoder, pipe_config))) {
  6534. DRM_DEBUG_KMS("Encoder config failure\n");
  6535. goto fail;
  6536. }
  6537. continue;
  6538. }
  6539. encoder_funcs = encoder->base.helper_private;
  6540. if (!(encoder_funcs->mode_fixup(&encoder->base,
  6541. &pipe_config->requested_mode,
  6542. &pipe_config->adjusted_mode))) {
  6543. DRM_DEBUG_KMS("Encoder fixup failed\n");
  6544. goto fail;
  6545. }
  6546. }
  6547. /* Set default port clock if not overwritten by the encoder. Needs to be
  6548. * done afterwards in case the encoder adjusts the mode. */
  6549. if (!pipe_config->port_clock)
  6550. pipe_config->port_clock = pipe_config->adjusted_mode.clock;
  6551. ret = intel_crtc_compute_config(crtc, pipe_config);
  6552. if (ret < 0) {
  6553. DRM_DEBUG_KMS("CRTC fixup failed\n");
  6554. goto fail;
  6555. }
  6556. if (ret == RETRY) {
  6557. if (WARN(!retry, "loop in pipe configuration computation\n")) {
  6558. ret = -EINVAL;
  6559. goto fail;
  6560. }
  6561. DRM_DEBUG_KMS("CRTC bw constrained, retrying\n");
  6562. retry = false;
  6563. goto encoder_retry;
  6564. }
  6565. pipe_config->dither = pipe_config->pipe_bpp != plane_bpp;
  6566. DRM_DEBUG_KMS("plane bpp: %i, pipe bpp: %i, dithering: %i\n",
  6567. plane_bpp, pipe_config->pipe_bpp, pipe_config->dither);
  6568. return pipe_config;
  6569. fail:
  6570. kfree(pipe_config);
  6571. return ERR_PTR(ret);
  6572. }
  6573. /* Computes which crtcs are affected and sets the relevant bits in the mask. For
  6574. * simplicity we use the crtc's pipe number (because it's easier to obtain). */
  6575. static void
  6576. intel_modeset_affected_pipes(struct drm_crtc *crtc, unsigned *modeset_pipes,
  6577. unsigned *prepare_pipes, unsigned *disable_pipes)
  6578. {
  6579. struct intel_crtc *intel_crtc;
  6580. struct drm_device *dev = crtc->dev;
  6581. struct intel_encoder *encoder;
  6582. struct intel_connector *connector;
  6583. struct drm_crtc *tmp_crtc;
  6584. *disable_pipes = *modeset_pipes = *prepare_pipes = 0;
  6585. /* Check which crtcs have changed outputs connected to them, these need
  6586. * to be part of the prepare_pipes mask. We don't (yet) support global
  6587. * modeset across multiple crtcs, so modeset_pipes will only have one
  6588. * bit set at most. */
  6589. list_for_each_entry(connector, &dev->mode_config.connector_list,
  6590. base.head) {
  6591. if (connector->base.encoder == &connector->new_encoder->base)
  6592. continue;
  6593. if (connector->base.encoder) {
  6594. tmp_crtc = connector->base.encoder->crtc;
  6595. *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
  6596. }
  6597. if (connector->new_encoder)
  6598. *prepare_pipes |=
  6599. 1 << connector->new_encoder->new_crtc->pipe;
  6600. }
  6601. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  6602. base.head) {
  6603. if (encoder->base.crtc == &encoder->new_crtc->base)
  6604. continue;
  6605. if (encoder->base.crtc) {
  6606. tmp_crtc = encoder->base.crtc;
  6607. *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
  6608. }
  6609. if (encoder->new_crtc)
  6610. *prepare_pipes |= 1 << encoder->new_crtc->pipe;
  6611. }
  6612. /* Check for any pipes that will be fully disabled ... */
  6613. list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
  6614. base.head) {
  6615. bool used = false;
  6616. /* Don't try to disable disabled crtcs. */
  6617. if (!intel_crtc->base.enabled)
  6618. continue;
  6619. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  6620. base.head) {
  6621. if (encoder->new_crtc == intel_crtc)
  6622. used = true;
  6623. }
  6624. if (!used)
  6625. *disable_pipes |= 1 << intel_crtc->pipe;
  6626. }
  6627. /* set_mode is also used to update properties on life display pipes. */
  6628. intel_crtc = to_intel_crtc(crtc);
  6629. if (crtc->enabled)
  6630. *prepare_pipes |= 1 << intel_crtc->pipe;
  6631. /*
  6632. * For simplicity do a full modeset on any pipe where the output routing
  6633. * changed. We could be more clever, but that would require us to be
  6634. * more careful with calling the relevant encoder->mode_set functions.
  6635. */
  6636. if (*prepare_pipes)
  6637. *modeset_pipes = *prepare_pipes;
  6638. /* ... and mask these out. */
  6639. *modeset_pipes &= ~(*disable_pipes);
  6640. *prepare_pipes &= ~(*disable_pipes);
  6641. /*
  6642. * HACK: We don't (yet) fully support global modesets. intel_set_config
  6643. * obies this rule, but the modeset restore mode of
  6644. * intel_modeset_setup_hw_state does not.
  6645. */
  6646. *modeset_pipes &= 1 << intel_crtc->pipe;
  6647. *prepare_pipes &= 1 << intel_crtc->pipe;
  6648. DRM_DEBUG_KMS("set mode pipe masks: modeset: %x, prepare: %x, disable: %x\n",
  6649. *modeset_pipes, *prepare_pipes, *disable_pipes);
  6650. }
  6651. static bool intel_crtc_in_use(struct drm_crtc *crtc)
  6652. {
  6653. struct drm_encoder *encoder;
  6654. struct drm_device *dev = crtc->dev;
  6655. list_for_each_entry(encoder, &dev->mode_config.encoder_list, head)
  6656. if (encoder->crtc == crtc)
  6657. return true;
  6658. return false;
  6659. }
  6660. static void
  6661. intel_modeset_update_state(struct drm_device *dev, unsigned prepare_pipes)
  6662. {
  6663. struct intel_encoder *intel_encoder;
  6664. struct intel_crtc *intel_crtc;
  6665. struct drm_connector *connector;
  6666. list_for_each_entry(intel_encoder, &dev->mode_config.encoder_list,
  6667. base.head) {
  6668. if (!intel_encoder->base.crtc)
  6669. continue;
  6670. intel_crtc = to_intel_crtc(intel_encoder->base.crtc);
  6671. if (prepare_pipes & (1 << intel_crtc->pipe))
  6672. intel_encoder->connectors_active = false;
  6673. }
  6674. intel_modeset_commit_output_state(dev);
  6675. /* Update computed state. */
  6676. list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
  6677. base.head) {
  6678. intel_crtc->base.enabled = intel_crtc_in_use(&intel_crtc->base);
  6679. }
  6680. list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
  6681. if (!connector->encoder || !connector->encoder->crtc)
  6682. continue;
  6683. intel_crtc = to_intel_crtc(connector->encoder->crtc);
  6684. if (prepare_pipes & (1 << intel_crtc->pipe)) {
  6685. struct drm_property *dpms_property =
  6686. dev->mode_config.dpms_property;
  6687. connector->dpms = DRM_MODE_DPMS_ON;
  6688. drm_object_property_set_value(&connector->base,
  6689. dpms_property,
  6690. DRM_MODE_DPMS_ON);
  6691. intel_encoder = to_intel_encoder(connector->encoder);
  6692. intel_encoder->connectors_active = true;
  6693. }
  6694. }
  6695. }
  6696. #define for_each_intel_crtc_masked(dev, mask, intel_crtc) \
  6697. list_for_each_entry((intel_crtc), \
  6698. &(dev)->mode_config.crtc_list, \
  6699. base.head) \
  6700. if (mask & (1 <<(intel_crtc)->pipe))
  6701. static bool
  6702. intel_pipe_config_compare(struct drm_device *dev,
  6703. struct intel_crtc_config *current_config,
  6704. struct intel_crtc_config *pipe_config)
  6705. {
  6706. #define PIPE_CONF_CHECK_I(name) \
  6707. if (current_config->name != pipe_config->name) { \
  6708. DRM_ERROR("mismatch in " #name " " \
  6709. "(expected %i, found %i)\n", \
  6710. current_config->name, \
  6711. pipe_config->name); \
  6712. return false; \
  6713. }
  6714. #define PIPE_CONF_CHECK_FLAGS(name, mask) \
  6715. if ((current_config->name ^ pipe_config->name) & (mask)) { \
  6716. DRM_ERROR("mismatch in " #name " " \
  6717. "(expected %i, found %i)\n", \
  6718. current_config->name & (mask), \
  6719. pipe_config->name & (mask)); \
  6720. return false; \
  6721. }
  6722. PIPE_CONF_CHECK_I(cpu_transcoder);
  6723. PIPE_CONF_CHECK_I(has_pch_encoder);
  6724. PIPE_CONF_CHECK_I(fdi_lanes);
  6725. PIPE_CONF_CHECK_I(fdi_m_n.gmch_m);
  6726. PIPE_CONF_CHECK_I(fdi_m_n.gmch_n);
  6727. PIPE_CONF_CHECK_I(fdi_m_n.link_m);
  6728. PIPE_CONF_CHECK_I(fdi_m_n.link_n);
  6729. PIPE_CONF_CHECK_I(fdi_m_n.tu);
  6730. PIPE_CONF_CHECK_I(adjusted_mode.crtc_hdisplay);
  6731. PIPE_CONF_CHECK_I(adjusted_mode.crtc_htotal);
  6732. PIPE_CONF_CHECK_I(adjusted_mode.crtc_hblank_start);
  6733. PIPE_CONF_CHECK_I(adjusted_mode.crtc_hblank_end);
  6734. PIPE_CONF_CHECK_I(adjusted_mode.crtc_hsync_start);
  6735. PIPE_CONF_CHECK_I(adjusted_mode.crtc_hsync_end);
  6736. PIPE_CONF_CHECK_I(adjusted_mode.crtc_vdisplay);
  6737. PIPE_CONF_CHECK_I(adjusted_mode.crtc_vtotal);
  6738. PIPE_CONF_CHECK_I(adjusted_mode.crtc_vblank_start);
  6739. PIPE_CONF_CHECK_I(adjusted_mode.crtc_vblank_end);
  6740. PIPE_CONF_CHECK_I(adjusted_mode.crtc_vsync_start);
  6741. PIPE_CONF_CHECK_I(adjusted_mode.crtc_vsync_end);
  6742. PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
  6743. DRM_MODE_FLAG_INTERLACE);
  6744. PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
  6745. DRM_MODE_FLAG_PHSYNC);
  6746. PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
  6747. DRM_MODE_FLAG_NHSYNC);
  6748. PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
  6749. DRM_MODE_FLAG_PVSYNC);
  6750. PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
  6751. DRM_MODE_FLAG_NVSYNC);
  6752. PIPE_CONF_CHECK_I(requested_mode.hdisplay);
  6753. PIPE_CONF_CHECK_I(requested_mode.vdisplay);
  6754. PIPE_CONF_CHECK_I(gmch_pfit.control);
  6755. /* pfit ratios are autocomputed by the hw on gen4+ */
  6756. if (INTEL_INFO(dev)->gen < 4)
  6757. PIPE_CONF_CHECK_I(gmch_pfit.pgm_ratios);
  6758. PIPE_CONF_CHECK_I(gmch_pfit.lvds_border_bits);
  6759. PIPE_CONF_CHECK_I(pch_pfit.pos);
  6760. PIPE_CONF_CHECK_I(pch_pfit.size);
  6761. PIPE_CONF_CHECK_I(ips_enabled);
  6762. #undef PIPE_CONF_CHECK_I
  6763. #undef PIPE_CONF_CHECK_FLAGS
  6764. return true;
  6765. }
  6766. void
  6767. intel_modeset_check_state(struct drm_device *dev)
  6768. {
  6769. drm_i915_private_t *dev_priv = dev->dev_private;
  6770. struct intel_crtc *crtc;
  6771. struct intel_encoder *encoder;
  6772. struct intel_connector *connector;
  6773. struct intel_crtc_config pipe_config;
  6774. list_for_each_entry(connector, &dev->mode_config.connector_list,
  6775. base.head) {
  6776. /* This also checks the encoder/connector hw state with the
  6777. * ->get_hw_state callbacks. */
  6778. intel_connector_check_state(connector);
  6779. WARN(&connector->new_encoder->base != connector->base.encoder,
  6780. "connector's staged encoder doesn't match current encoder\n");
  6781. }
  6782. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  6783. base.head) {
  6784. bool enabled = false;
  6785. bool active = false;
  6786. enum pipe pipe, tracked_pipe;
  6787. DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
  6788. encoder->base.base.id,
  6789. drm_get_encoder_name(&encoder->base));
  6790. WARN(&encoder->new_crtc->base != encoder->base.crtc,
  6791. "encoder's stage crtc doesn't match current crtc\n");
  6792. WARN(encoder->connectors_active && !encoder->base.crtc,
  6793. "encoder's active_connectors set, but no crtc\n");
  6794. list_for_each_entry(connector, &dev->mode_config.connector_list,
  6795. base.head) {
  6796. if (connector->base.encoder != &encoder->base)
  6797. continue;
  6798. enabled = true;
  6799. if (connector->base.dpms != DRM_MODE_DPMS_OFF)
  6800. active = true;
  6801. }
  6802. WARN(!!encoder->base.crtc != enabled,
  6803. "encoder's enabled state mismatch "
  6804. "(expected %i, found %i)\n",
  6805. !!encoder->base.crtc, enabled);
  6806. WARN(active && !encoder->base.crtc,
  6807. "active encoder with no crtc\n");
  6808. WARN(encoder->connectors_active != active,
  6809. "encoder's computed active state doesn't match tracked active state "
  6810. "(expected %i, found %i)\n", active, encoder->connectors_active);
  6811. active = encoder->get_hw_state(encoder, &pipe);
  6812. WARN(active != encoder->connectors_active,
  6813. "encoder's hw state doesn't match sw tracking "
  6814. "(expected %i, found %i)\n",
  6815. encoder->connectors_active, active);
  6816. if (!encoder->base.crtc)
  6817. continue;
  6818. tracked_pipe = to_intel_crtc(encoder->base.crtc)->pipe;
  6819. WARN(active && pipe != tracked_pipe,
  6820. "active encoder's pipe doesn't match"
  6821. "(expected %i, found %i)\n",
  6822. tracked_pipe, pipe);
  6823. }
  6824. list_for_each_entry(crtc, &dev->mode_config.crtc_list,
  6825. base.head) {
  6826. bool enabled = false;
  6827. bool active = false;
  6828. memset(&pipe_config, 0, sizeof(pipe_config));
  6829. DRM_DEBUG_KMS("[CRTC:%d]\n",
  6830. crtc->base.base.id);
  6831. WARN(crtc->active && !crtc->base.enabled,
  6832. "active crtc, but not enabled in sw tracking\n");
  6833. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  6834. base.head) {
  6835. if (encoder->base.crtc != &crtc->base)
  6836. continue;
  6837. enabled = true;
  6838. if (encoder->connectors_active)
  6839. active = true;
  6840. if (encoder->get_config)
  6841. encoder->get_config(encoder, &pipe_config);
  6842. }
  6843. WARN(active != crtc->active,
  6844. "crtc's computed active state doesn't match tracked active state "
  6845. "(expected %i, found %i)\n", active, crtc->active);
  6846. WARN(enabled != crtc->base.enabled,
  6847. "crtc's computed enabled state doesn't match tracked enabled state "
  6848. "(expected %i, found %i)\n", enabled, crtc->base.enabled);
  6849. active = dev_priv->display.get_pipe_config(crtc,
  6850. &pipe_config);
  6851. WARN(crtc->active != active,
  6852. "crtc active state doesn't match with hw state "
  6853. "(expected %i, found %i)\n", crtc->active, active);
  6854. if (active &&
  6855. !intel_pipe_config_compare(dev, &crtc->config, &pipe_config)) {
  6856. WARN(1, "pipe state doesn't match!\n");
  6857. intel_dump_pipe_config(crtc, &pipe_config,
  6858. "[hw state]");
  6859. intel_dump_pipe_config(crtc, &crtc->config,
  6860. "[sw state]");
  6861. }
  6862. }
  6863. }
  6864. static int __intel_set_mode(struct drm_crtc *crtc,
  6865. struct drm_display_mode *mode,
  6866. int x, int y, struct drm_framebuffer *fb)
  6867. {
  6868. struct drm_device *dev = crtc->dev;
  6869. drm_i915_private_t *dev_priv = dev->dev_private;
  6870. struct drm_display_mode *saved_mode, *saved_hwmode;
  6871. struct intel_crtc_config *pipe_config = NULL;
  6872. struct intel_crtc *intel_crtc;
  6873. unsigned disable_pipes, prepare_pipes, modeset_pipes;
  6874. int ret = 0;
  6875. saved_mode = kmalloc(2 * sizeof(*saved_mode), GFP_KERNEL);
  6876. if (!saved_mode)
  6877. return -ENOMEM;
  6878. saved_hwmode = saved_mode + 1;
  6879. intel_modeset_affected_pipes(crtc, &modeset_pipes,
  6880. &prepare_pipes, &disable_pipes);
  6881. *saved_hwmode = crtc->hwmode;
  6882. *saved_mode = crtc->mode;
  6883. /* Hack: Because we don't (yet) support global modeset on multiple
  6884. * crtcs, we don't keep track of the new mode for more than one crtc.
  6885. * Hence simply check whether any bit is set in modeset_pipes in all the
  6886. * pieces of code that are not yet converted to deal with mutliple crtcs
  6887. * changing their mode at the same time. */
  6888. if (modeset_pipes) {
  6889. pipe_config = intel_modeset_pipe_config(crtc, fb, mode);
  6890. if (IS_ERR(pipe_config)) {
  6891. ret = PTR_ERR(pipe_config);
  6892. pipe_config = NULL;
  6893. goto out;
  6894. }
  6895. intel_dump_pipe_config(to_intel_crtc(crtc), pipe_config,
  6896. "[modeset]");
  6897. }
  6898. for_each_intel_crtc_masked(dev, disable_pipes, intel_crtc)
  6899. intel_crtc_disable(&intel_crtc->base);
  6900. for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
  6901. if (intel_crtc->base.enabled)
  6902. dev_priv->display.crtc_disable(&intel_crtc->base);
  6903. }
  6904. /* crtc->mode is already used by the ->mode_set callbacks, hence we need
  6905. * to set it here already despite that we pass it down the callchain.
  6906. */
  6907. if (modeset_pipes) {
  6908. crtc->mode = *mode;
  6909. /* mode_set/enable/disable functions rely on a correct pipe
  6910. * config. */
  6911. to_intel_crtc(crtc)->config = *pipe_config;
  6912. }
  6913. /* Only after disabling all output pipelines that will be changed can we
  6914. * update the the output configuration. */
  6915. intel_modeset_update_state(dev, prepare_pipes);
  6916. if (dev_priv->display.modeset_global_resources)
  6917. dev_priv->display.modeset_global_resources(dev);
  6918. /* Set up the DPLL and any encoders state that needs to adjust or depend
  6919. * on the DPLL.
  6920. */
  6921. for_each_intel_crtc_masked(dev, modeset_pipes, intel_crtc) {
  6922. ret = intel_crtc_mode_set(&intel_crtc->base,
  6923. x, y, fb);
  6924. if (ret)
  6925. goto done;
  6926. }
  6927. /* Now enable the clocks, plane, pipe, and connectors that we set up. */
  6928. for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc)
  6929. dev_priv->display.crtc_enable(&intel_crtc->base);
  6930. if (modeset_pipes) {
  6931. /* Store real post-adjustment hardware mode. */
  6932. crtc->hwmode = pipe_config->adjusted_mode;
  6933. /* Calculate and store various constants which
  6934. * are later needed by vblank and swap-completion
  6935. * timestamping. They are derived from true hwmode.
  6936. */
  6937. drm_calc_timestamping_constants(crtc);
  6938. }
  6939. /* FIXME: add subpixel order */
  6940. done:
  6941. if (ret && crtc->enabled) {
  6942. crtc->hwmode = *saved_hwmode;
  6943. crtc->mode = *saved_mode;
  6944. }
  6945. out:
  6946. kfree(pipe_config);
  6947. kfree(saved_mode);
  6948. return ret;
  6949. }
  6950. int intel_set_mode(struct drm_crtc *crtc,
  6951. struct drm_display_mode *mode,
  6952. int x, int y, struct drm_framebuffer *fb)
  6953. {
  6954. int ret;
  6955. ret = __intel_set_mode(crtc, mode, x, y, fb);
  6956. if (ret == 0)
  6957. intel_modeset_check_state(crtc->dev);
  6958. return ret;
  6959. }
  6960. void intel_crtc_restore_mode(struct drm_crtc *crtc)
  6961. {
  6962. intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y, crtc->fb);
  6963. }
  6964. #undef for_each_intel_crtc_masked
  6965. static void intel_set_config_free(struct intel_set_config *config)
  6966. {
  6967. if (!config)
  6968. return;
  6969. kfree(config->save_connector_encoders);
  6970. kfree(config->save_encoder_crtcs);
  6971. kfree(config);
  6972. }
  6973. static int intel_set_config_save_state(struct drm_device *dev,
  6974. struct intel_set_config *config)
  6975. {
  6976. struct drm_encoder *encoder;
  6977. struct drm_connector *connector;
  6978. int count;
  6979. config->save_encoder_crtcs =
  6980. kcalloc(dev->mode_config.num_encoder,
  6981. sizeof(struct drm_crtc *), GFP_KERNEL);
  6982. if (!config->save_encoder_crtcs)
  6983. return -ENOMEM;
  6984. config->save_connector_encoders =
  6985. kcalloc(dev->mode_config.num_connector,
  6986. sizeof(struct drm_encoder *), GFP_KERNEL);
  6987. if (!config->save_connector_encoders)
  6988. return -ENOMEM;
  6989. /* Copy data. Note that driver private data is not affected.
  6990. * Should anything bad happen only the expected state is
  6991. * restored, not the drivers personal bookkeeping.
  6992. */
  6993. count = 0;
  6994. list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
  6995. config->save_encoder_crtcs[count++] = encoder->crtc;
  6996. }
  6997. count = 0;
  6998. list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
  6999. config->save_connector_encoders[count++] = connector->encoder;
  7000. }
  7001. return 0;
  7002. }
  7003. static void intel_set_config_restore_state(struct drm_device *dev,
  7004. struct intel_set_config *config)
  7005. {
  7006. struct intel_encoder *encoder;
  7007. struct intel_connector *connector;
  7008. int count;
  7009. count = 0;
  7010. list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
  7011. encoder->new_crtc =
  7012. to_intel_crtc(config->save_encoder_crtcs[count++]);
  7013. }
  7014. count = 0;
  7015. list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) {
  7016. connector->new_encoder =
  7017. to_intel_encoder(config->save_connector_encoders[count++]);
  7018. }
  7019. }
  7020. static void
  7021. intel_set_config_compute_mode_changes(struct drm_mode_set *set,
  7022. struct intel_set_config *config)
  7023. {
  7024. /* We should be able to check here if the fb has the same properties
  7025. * and then just flip_or_move it */
  7026. if (set->crtc->fb != set->fb) {
  7027. /* If we have no fb then treat it as a full mode set */
  7028. if (set->crtc->fb == NULL) {
  7029. DRM_DEBUG_KMS("crtc has no fb, full mode set\n");
  7030. config->mode_changed = true;
  7031. } else if (set->fb == NULL) {
  7032. config->mode_changed = true;
  7033. } else if (set->fb->pixel_format !=
  7034. set->crtc->fb->pixel_format) {
  7035. config->mode_changed = true;
  7036. } else
  7037. config->fb_changed = true;
  7038. }
  7039. if (set->fb && (set->x != set->crtc->x || set->y != set->crtc->y))
  7040. config->fb_changed = true;
  7041. if (set->mode && !drm_mode_equal(set->mode, &set->crtc->mode)) {
  7042. DRM_DEBUG_KMS("modes are different, full mode set\n");
  7043. drm_mode_debug_printmodeline(&set->crtc->mode);
  7044. drm_mode_debug_printmodeline(set->mode);
  7045. config->mode_changed = true;
  7046. }
  7047. }
  7048. static int
  7049. intel_modeset_stage_output_state(struct drm_device *dev,
  7050. struct drm_mode_set *set,
  7051. struct intel_set_config *config)
  7052. {
  7053. struct drm_crtc *new_crtc;
  7054. struct intel_connector *connector;
  7055. struct intel_encoder *encoder;
  7056. int count, ro;
  7057. /* The upper layers ensure that we either disable a crtc or have a list
  7058. * of connectors. For paranoia, double-check this. */
  7059. WARN_ON(!set->fb && (set->num_connectors != 0));
  7060. WARN_ON(set->fb && (set->num_connectors == 0));
  7061. count = 0;
  7062. list_for_each_entry(connector, &dev->mode_config.connector_list,
  7063. base.head) {
  7064. /* Otherwise traverse passed in connector list and get encoders
  7065. * for them. */
  7066. for (ro = 0; ro < set->num_connectors; ro++) {
  7067. if (set->connectors[ro] == &connector->base) {
  7068. connector->new_encoder = connector->encoder;
  7069. break;
  7070. }
  7071. }
  7072. /* If we disable the crtc, disable all its connectors. Also, if
  7073. * the connector is on the changing crtc but not on the new
  7074. * connector list, disable it. */
  7075. if ((!set->fb || ro == set->num_connectors) &&
  7076. connector->base.encoder &&
  7077. connector->base.encoder->crtc == set->crtc) {
  7078. connector->new_encoder = NULL;
  7079. DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [NOCRTC]\n",
  7080. connector->base.base.id,
  7081. drm_get_connector_name(&connector->base));
  7082. }
  7083. if (&connector->new_encoder->base != connector->base.encoder) {
  7084. DRM_DEBUG_KMS("encoder changed, full mode switch\n");
  7085. config->mode_changed = true;
  7086. }
  7087. }
  7088. /* connector->new_encoder is now updated for all connectors. */
  7089. /* Update crtc of enabled connectors. */
  7090. count = 0;
  7091. list_for_each_entry(connector, &dev->mode_config.connector_list,
  7092. base.head) {
  7093. if (!connector->new_encoder)
  7094. continue;
  7095. new_crtc = connector->new_encoder->base.crtc;
  7096. for (ro = 0; ro < set->num_connectors; ro++) {
  7097. if (set->connectors[ro] == &connector->base)
  7098. new_crtc = set->crtc;
  7099. }
  7100. /* Make sure the new CRTC will work with the encoder */
  7101. if (!intel_encoder_crtc_ok(&connector->new_encoder->base,
  7102. new_crtc)) {
  7103. return -EINVAL;
  7104. }
  7105. connector->encoder->new_crtc = to_intel_crtc(new_crtc);
  7106. DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [CRTC:%d]\n",
  7107. connector->base.base.id,
  7108. drm_get_connector_name(&connector->base),
  7109. new_crtc->base.id);
  7110. }
  7111. /* Check for any encoders that needs to be disabled. */
  7112. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  7113. base.head) {
  7114. list_for_each_entry(connector,
  7115. &dev->mode_config.connector_list,
  7116. base.head) {
  7117. if (connector->new_encoder == encoder) {
  7118. WARN_ON(!connector->new_encoder->new_crtc);
  7119. goto next_encoder;
  7120. }
  7121. }
  7122. encoder->new_crtc = NULL;
  7123. next_encoder:
  7124. /* Only now check for crtc changes so we don't miss encoders
  7125. * that will be disabled. */
  7126. if (&encoder->new_crtc->base != encoder->base.crtc) {
  7127. DRM_DEBUG_KMS("crtc changed, full mode switch\n");
  7128. config->mode_changed = true;
  7129. }
  7130. }
  7131. /* Now we've also updated encoder->new_crtc for all encoders. */
  7132. return 0;
  7133. }
  7134. static int intel_crtc_set_config(struct drm_mode_set *set)
  7135. {
  7136. struct drm_device *dev;
  7137. struct drm_mode_set save_set;
  7138. struct intel_set_config *config;
  7139. int ret;
  7140. BUG_ON(!set);
  7141. BUG_ON(!set->crtc);
  7142. BUG_ON(!set->crtc->helper_private);
  7143. /* Enforce sane interface api - has been abused by the fb helper. */
  7144. BUG_ON(!set->mode && set->fb);
  7145. BUG_ON(set->fb && set->num_connectors == 0);
  7146. if (set->fb) {
  7147. DRM_DEBUG_KMS("[CRTC:%d] [FB:%d] #connectors=%d (x y) (%i %i)\n",
  7148. set->crtc->base.id, set->fb->base.id,
  7149. (int)set->num_connectors, set->x, set->y);
  7150. } else {
  7151. DRM_DEBUG_KMS("[CRTC:%d] [NOFB]\n", set->crtc->base.id);
  7152. }
  7153. dev = set->crtc->dev;
  7154. ret = -ENOMEM;
  7155. config = kzalloc(sizeof(*config), GFP_KERNEL);
  7156. if (!config)
  7157. goto out_config;
  7158. ret = intel_set_config_save_state(dev, config);
  7159. if (ret)
  7160. goto out_config;
  7161. save_set.crtc = set->crtc;
  7162. save_set.mode = &set->crtc->mode;
  7163. save_set.x = set->crtc->x;
  7164. save_set.y = set->crtc->y;
  7165. save_set.fb = set->crtc->fb;
  7166. /* Compute whether we need a full modeset, only an fb base update or no
  7167. * change at all. In the future we might also check whether only the
  7168. * mode changed, e.g. for LVDS where we only change the panel fitter in
  7169. * such cases. */
  7170. intel_set_config_compute_mode_changes(set, config);
  7171. ret = intel_modeset_stage_output_state(dev, set, config);
  7172. if (ret)
  7173. goto fail;
  7174. if (config->mode_changed) {
  7175. ret = intel_set_mode(set->crtc, set->mode,
  7176. set->x, set->y, set->fb);
  7177. if (ret) {
  7178. DRM_ERROR("failed to set mode on [CRTC:%d], err = %d\n",
  7179. set->crtc->base.id, ret);
  7180. goto fail;
  7181. }
  7182. } else if (config->fb_changed) {
  7183. intel_crtc_wait_for_pending_flips(set->crtc);
  7184. ret = intel_pipe_set_base(set->crtc,
  7185. set->x, set->y, set->fb);
  7186. }
  7187. intel_set_config_free(config);
  7188. return 0;
  7189. fail:
  7190. intel_set_config_restore_state(dev, config);
  7191. /* Try to restore the config */
  7192. if (config->mode_changed &&
  7193. intel_set_mode(save_set.crtc, save_set.mode,
  7194. save_set.x, save_set.y, save_set.fb))
  7195. DRM_ERROR("failed to restore config after modeset failure\n");
  7196. out_config:
  7197. intel_set_config_free(config);
  7198. return ret;
  7199. }
  7200. static const struct drm_crtc_funcs intel_crtc_funcs = {
  7201. .cursor_set = intel_crtc_cursor_set,
  7202. .cursor_move = intel_crtc_cursor_move,
  7203. .gamma_set = intel_crtc_gamma_set,
  7204. .set_config = intel_crtc_set_config,
  7205. .destroy = intel_crtc_destroy,
  7206. .page_flip = intel_crtc_page_flip,
  7207. };
  7208. static void intel_cpu_pll_init(struct drm_device *dev)
  7209. {
  7210. if (HAS_DDI(dev))
  7211. intel_ddi_pll_init(dev);
  7212. }
  7213. static void intel_pch_pll_init(struct drm_device *dev)
  7214. {
  7215. drm_i915_private_t *dev_priv = dev->dev_private;
  7216. int i;
  7217. if (dev_priv->num_pch_pll == 0) {
  7218. DRM_DEBUG_KMS("No PCH PLLs on this hardware, skipping initialisation\n");
  7219. return;
  7220. }
  7221. for (i = 0; i < dev_priv->num_pch_pll; i++) {
  7222. dev_priv->pch_plls[i].pll_reg = _PCH_DPLL(i);
  7223. dev_priv->pch_plls[i].fp0_reg = _PCH_FP0(i);
  7224. dev_priv->pch_plls[i].fp1_reg = _PCH_FP1(i);
  7225. }
  7226. }
  7227. static void intel_crtc_init(struct drm_device *dev, int pipe)
  7228. {
  7229. drm_i915_private_t *dev_priv = dev->dev_private;
  7230. struct intel_crtc *intel_crtc;
  7231. int i;
  7232. intel_crtc = kzalloc(sizeof(struct intel_crtc) + (INTELFB_CONN_LIMIT * sizeof(struct drm_connector *)), GFP_KERNEL);
  7233. if (intel_crtc == NULL)
  7234. return;
  7235. drm_crtc_init(dev, &intel_crtc->base, &intel_crtc_funcs);
  7236. drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
  7237. for (i = 0; i < 256; i++) {
  7238. intel_crtc->lut_r[i] = i;
  7239. intel_crtc->lut_g[i] = i;
  7240. intel_crtc->lut_b[i] = i;
  7241. }
  7242. /* Swap pipes & planes for FBC on pre-965 */
  7243. intel_crtc->pipe = pipe;
  7244. intel_crtc->plane = pipe;
  7245. if (IS_MOBILE(dev) && IS_GEN3(dev)) {
  7246. DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
  7247. intel_crtc->plane = !pipe;
  7248. }
  7249. BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
  7250. dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
  7251. dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
  7252. dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
  7253. drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
  7254. }
  7255. int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
  7256. struct drm_file *file)
  7257. {
  7258. struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
  7259. struct drm_mode_object *drmmode_obj;
  7260. struct intel_crtc *crtc;
  7261. if (!drm_core_check_feature(dev, DRIVER_MODESET))
  7262. return -ENODEV;
  7263. drmmode_obj = drm_mode_object_find(dev, pipe_from_crtc_id->crtc_id,
  7264. DRM_MODE_OBJECT_CRTC);
  7265. if (!drmmode_obj) {
  7266. DRM_ERROR("no such CRTC id\n");
  7267. return -EINVAL;
  7268. }
  7269. crtc = to_intel_crtc(obj_to_crtc(drmmode_obj));
  7270. pipe_from_crtc_id->pipe = crtc->pipe;
  7271. return 0;
  7272. }
  7273. static int intel_encoder_clones(struct intel_encoder *encoder)
  7274. {
  7275. struct drm_device *dev = encoder->base.dev;
  7276. struct intel_encoder *source_encoder;
  7277. int index_mask = 0;
  7278. int entry = 0;
  7279. list_for_each_entry(source_encoder,
  7280. &dev->mode_config.encoder_list, base.head) {
  7281. if (encoder == source_encoder)
  7282. index_mask |= (1 << entry);
  7283. /* Intel hw has only one MUX where enocoders could be cloned. */
  7284. if (encoder->cloneable && source_encoder->cloneable)
  7285. index_mask |= (1 << entry);
  7286. entry++;
  7287. }
  7288. return index_mask;
  7289. }
  7290. static bool has_edp_a(struct drm_device *dev)
  7291. {
  7292. struct drm_i915_private *dev_priv = dev->dev_private;
  7293. if (!IS_MOBILE(dev))
  7294. return false;
  7295. if ((I915_READ(DP_A) & DP_DETECTED) == 0)
  7296. return false;
  7297. if (IS_GEN5(dev) &&
  7298. (I915_READ(ILK_DISPLAY_CHICKEN_FUSES) & ILK_eDP_A_DISABLE))
  7299. return false;
  7300. return true;
  7301. }
  7302. static void intel_setup_outputs(struct drm_device *dev)
  7303. {
  7304. struct drm_i915_private *dev_priv = dev->dev_private;
  7305. struct intel_encoder *encoder;
  7306. bool dpd_is_edp = false;
  7307. bool has_lvds;
  7308. has_lvds = intel_lvds_init(dev);
  7309. if (!has_lvds && !HAS_PCH_SPLIT(dev)) {
  7310. /* disable the panel fitter on everything but LVDS */
  7311. I915_WRITE(PFIT_CONTROL, 0);
  7312. }
  7313. if (!IS_ULT(dev))
  7314. intel_crt_init(dev);
  7315. if (HAS_DDI(dev)) {
  7316. int found;
  7317. /* Haswell uses DDI functions to detect digital outputs */
  7318. found = I915_READ(DDI_BUF_CTL_A) & DDI_INIT_DISPLAY_DETECTED;
  7319. /* DDI A only supports eDP */
  7320. if (found)
  7321. intel_ddi_init(dev, PORT_A);
  7322. /* DDI B, C and D detection is indicated by the SFUSE_STRAP
  7323. * register */
  7324. found = I915_READ(SFUSE_STRAP);
  7325. if (found & SFUSE_STRAP_DDIB_DETECTED)
  7326. intel_ddi_init(dev, PORT_B);
  7327. if (found & SFUSE_STRAP_DDIC_DETECTED)
  7328. intel_ddi_init(dev, PORT_C);
  7329. if (found & SFUSE_STRAP_DDID_DETECTED)
  7330. intel_ddi_init(dev, PORT_D);
  7331. } else if (HAS_PCH_SPLIT(dev)) {
  7332. int found;
  7333. dpd_is_edp = intel_dpd_is_edp(dev);
  7334. if (has_edp_a(dev))
  7335. intel_dp_init(dev, DP_A, PORT_A);
  7336. if (I915_READ(PCH_HDMIB) & SDVO_DETECTED) {
  7337. /* PCH SDVOB multiplex with HDMIB */
  7338. found = intel_sdvo_init(dev, PCH_SDVOB, true);
  7339. if (!found)
  7340. intel_hdmi_init(dev, PCH_HDMIB, PORT_B);
  7341. if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
  7342. intel_dp_init(dev, PCH_DP_B, PORT_B);
  7343. }
  7344. if (I915_READ(PCH_HDMIC) & SDVO_DETECTED)
  7345. intel_hdmi_init(dev, PCH_HDMIC, PORT_C);
  7346. if (!dpd_is_edp && I915_READ(PCH_HDMID) & SDVO_DETECTED)
  7347. intel_hdmi_init(dev, PCH_HDMID, PORT_D);
  7348. if (I915_READ(PCH_DP_C) & DP_DETECTED)
  7349. intel_dp_init(dev, PCH_DP_C, PORT_C);
  7350. if (I915_READ(PCH_DP_D) & DP_DETECTED)
  7351. intel_dp_init(dev, PCH_DP_D, PORT_D);
  7352. } else if (IS_VALLEYVIEW(dev)) {
  7353. /* Check for built-in panel first. Shares lanes with HDMI on SDVOC */
  7354. if (I915_READ(VLV_DISPLAY_BASE + DP_C) & DP_DETECTED)
  7355. intel_dp_init(dev, VLV_DISPLAY_BASE + DP_C, PORT_C);
  7356. if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIB) & SDVO_DETECTED) {
  7357. intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIB,
  7358. PORT_B);
  7359. if (I915_READ(VLV_DISPLAY_BASE + DP_B) & DP_DETECTED)
  7360. intel_dp_init(dev, VLV_DISPLAY_BASE + DP_B, PORT_B);
  7361. }
  7362. } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
  7363. bool found = false;
  7364. if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
  7365. DRM_DEBUG_KMS("probing SDVOB\n");
  7366. found = intel_sdvo_init(dev, GEN3_SDVOB, true);
  7367. if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
  7368. DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
  7369. intel_hdmi_init(dev, GEN4_HDMIB, PORT_B);
  7370. }
  7371. if (!found && SUPPORTS_INTEGRATED_DP(dev))
  7372. intel_dp_init(dev, DP_B, PORT_B);
  7373. }
  7374. /* Before G4X SDVOC doesn't have its own detect register */
  7375. if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
  7376. DRM_DEBUG_KMS("probing SDVOC\n");
  7377. found = intel_sdvo_init(dev, GEN3_SDVOC, false);
  7378. }
  7379. if (!found && (I915_READ(GEN3_SDVOC) & SDVO_DETECTED)) {
  7380. if (SUPPORTS_INTEGRATED_HDMI(dev)) {
  7381. DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
  7382. intel_hdmi_init(dev, GEN4_HDMIC, PORT_C);
  7383. }
  7384. if (SUPPORTS_INTEGRATED_DP(dev))
  7385. intel_dp_init(dev, DP_C, PORT_C);
  7386. }
  7387. if (SUPPORTS_INTEGRATED_DP(dev) &&
  7388. (I915_READ(DP_D) & DP_DETECTED))
  7389. intel_dp_init(dev, DP_D, PORT_D);
  7390. } else if (IS_GEN2(dev))
  7391. intel_dvo_init(dev);
  7392. if (SUPPORTS_TV(dev))
  7393. intel_tv_init(dev);
  7394. list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
  7395. encoder->base.possible_crtcs = encoder->crtc_mask;
  7396. encoder->base.possible_clones =
  7397. intel_encoder_clones(encoder);
  7398. }
  7399. intel_init_pch_refclk(dev);
  7400. drm_helper_move_panel_connectors_to_head(dev);
  7401. }
  7402. static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
  7403. {
  7404. struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
  7405. drm_framebuffer_cleanup(fb);
  7406. drm_gem_object_unreference_unlocked(&intel_fb->obj->base);
  7407. kfree(intel_fb);
  7408. }
  7409. static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
  7410. struct drm_file *file,
  7411. unsigned int *handle)
  7412. {
  7413. struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
  7414. struct drm_i915_gem_object *obj = intel_fb->obj;
  7415. return drm_gem_handle_create(file, &obj->base, handle);
  7416. }
  7417. static const struct drm_framebuffer_funcs intel_fb_funcs = {
  7418. .destroy = intel_user_framebuffer_destroy,
  7419. .create_handle = intel_user_framebuffer_create_handle,
  7420. };
  7421. int intel_framebuffer_init(struct drm_device *dev,
  7422. struct intel_framebuffer *intel_fb,
  7423. struct drm_mode_fb_cmd2 *mode_cmd,
  7424. struct drm_i915_gem_object *obj)
  7425. {
  7426. int ret;
  7427. if (obj->tiling_mode == I915_TILING_Y) {
  7428. DRM_DEBUG("hardware does not support tiling Y\n");
  7429. return -EINVAL;
  7430. }
  7431. if (mode_cmd->pitches[0] & 63) {
  7432. DRM_DEBUG("pitch (%d) must be at least 64 byte aligned\n",
  7433. mode_cmd->pitches[0]);
  7434. return -EINVAL;
  7435. }
  7436. /* FIXME <= Gen4 stride limits are bit unclear */
  7437. if (mode_cmd->pitches[0] > 32768) {
  7438. DRM_DEBUG("pitch (%d) must be at less than 32768\n",
  7439. mode_cmd->pitches[0]);
  7440. return -EINVAL;
  7441. }
  7442. if (obj->tiling_mode != I915_TILING_NONE &&
  7443. mode_cmd->pitches[0] != obj->stride) {
  7444. DRM_DEBUG("pitch (%d) must match tiling stride (%d)\n",
  7445. mode_cmd->pitches[0], obj->stride);
  7446. return -EINVAL;
  7447. }
  7448. /* Reject formats not supported by any plane early. */
  7449. switch (mode_cmd->pixel_format) {
  7450. case DRM_FORMAT_C8:
  7451. case DRM_FORMAT_RGB565:
  7452. case DRM_FORMAT_XRGB8888:
  7453. case DRM_FORMAT_ARGB8888:
  7454. break;
  7455. case DRM_FORMAT_XRGB1555:
  7456. case DRM_FORMAT_ARGB1555:
  7457. if (INTEL_INFO(dev)->gen > 3) {
  7458. DRM_DEBUG("invalid format: 0x%08x\n", mode_cmd->pixel_format);
  7459. return -EINVAL;
  7460. }
  7461. break;
  7462. case DRM_FORMAT_XBGR8888:
  7463. case DRM_FORMAT_ABGR8888:
  7464. case DRM_FORMAT_XRGB2101010:
  7465. case DRM_FORMAT_ARGB2101010:
  7466. case DRM_FORMAT_XBGR2101010:
  7467. case DRM_FORMAT_ABGR2101010:
  7468. if (INTEL_INFO(dev)->gen < 4) {
  7469. DRM_DEBUG("invalid format: 0x%08x\n", mode_cmd->pixel_format);
  7470. return -EINVAL;
  7471. }
  7472. break;
  7473. case DRM_FORMAT_YUYV:
  7474. case DRM_FORMAT_UYVY:
  7475. case DRM_FORMAT_YVYU:
  7476. case DRM_FORMAT_VYUY:
  7477. if (INTEL_INFO(dev)->gen < 5) {
  7478. DRM_DEBUG("invalid format: 0x%08x\n", mode_cmd->pixel_format);
  7479. return -EINVAL;
  7480. }
  7481. break;
  7482. default:
  7483. DRM_DEBUG("unsupported pixel format 0x%08x\n", mode_cmd->pixel_format);
  7484. return -EINVAL;
  7485. }
  7486. /* FIXME need to adjust LINOFF/TILEOFF accordingly. */
  7487. if (mode_cmd->offsets[0] != 0)
  7488. return -EINVAL;
  7489. drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
  7490. intel_fb->obj = obj;
  7491. ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
  7492. if (ret) {
  7493. DRM_ERROR("framebuffer init failed %d\n", ret);
  7494. return ret;
  7495. }
  7496. return 0;
  7497. }
  7498. static struct drm_framebuffer *
  7499. intel_user_framebuffer_create(struct drm_device *dev,
  7500. struct drm_file *filp,
  7501. struct drm_mode_fb_cmd2 *mode_cmd)
  7502. {
  7503. struct drm_i915_gem_object *obj;
  7504. obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
  7505. mode_cmd->handles[0]));
  7506. if (&obj->base == NULL)
  7507. return ERR_PTR(-ENOENT);
  7508. return intel_framebuffer_create(dev, mode_cmd, obj);
  7509. }
  7510. static const struct drm_mode_config_funcs intel_mode_funcs = {
  7511. .fb_create = intel_user_framebuffer_create,
  7512. .output_poll_changed = intel_fb_output_poll_changed,
  7513. };
  7514. /* Set up chip specific display functions */
  7515. static void intel_init_display(struct drm_device *dev)
  7516. {
  7517. struct drm_i915_private *dev_priv = dev->dev_private;
  7518. if (HAS_PCH_SPLIT(dev) || IS_G4X(dev))
  7519. dev_priv->display.find_dpll = g4x_find_best_dpll;
  7520. else if (IS_VALLEYVIEW(dev))
  7521. dev_priv->display.find_dpll = vlv_find_best_dpll;
  7522. else if (IS_PINEVIEW(dev))
  7523. dev_priv->display.find_dpll = pnv_find_best_dpll;
  7524. else
  7525. dev_priv->display.find_dpll = i9xx_find_best_dpll;
  7526. if (HAS_DDI(dev)) {
  7527. dev_priv->display.get_pipe_config = haswell_get_pipe_config;
  7528. dev_priv->display.crtc_mode_set = haswell_crtc_mode_set;
  7529. dev_priv->display.crtc_enable = haswell_crtc_enable;
  7530. dev_priv->display.crtc_disable = haswell_crtc_disable;
  7531. dev_priv->display.off = haswell_crtc_off;
  7532. dev_priv->display.update_plane = ironlake_update_plane;
  7533. } else if (HAS_PCH_SPLIT(dev)) {
  7534. dev_priv->display.get_pipe_config = ironlake_get_pipe_config;
  7535. dev_priv->display.crtc_mode_set = ironlake_crtc_mode_set;
  7536. dev_priv->display.crtc_enable = ironlake_crtc_enable;
  7537. dev_priv->display.crtc_disable = ironlake_crtc_disable;
  7538. dev_priv->display.off = ironlake_crtc_off;
  7539. dev_priv->display.update_plane = ironlake_update_plane;
  7540. } else if (IS_VALLEYVIEW(dev)) {
  7541. dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
  7542. dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
  7543. dev_priv->display.crtc_enable = valleyview_crtc_enable;
  7544. dev_priv->display.crtc_disable = i9xx_crtc_disable;
  7545. dev_priv->display.off = i9xx_crtc_off;
  7546. dev_priv->display.update_plane = i9xx_update_plane;
  7547. } else {
  7548. dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
  7549. dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
  7550. dev_priv->display.crtc_enable = i9xx_crtc_enable;
  7551. dev_priv->display.crtc_disable = i9xx_crtc_disable;
  7552. dev_priv->display.off = i9xx_crtc_off;
  7553. dev_priv->display.update_plane = i9xx_update_plane;
  7554. }
  7555. /* Returns the core display clock speed */
  7556. if (IS_VALLEYVIEW(dev))
  7557. dev_priv->display.get_display_clock_speed =
  7558. valleyview_get_display_clock_speed;
  7559. else if (IS_I945G(dev) || (IS_G33(dev) && !IS_PINEVIEW_M(dev)))
  7560. dev_priv->display.get_display_clock_speed =
  7561. i945_get_display_clock_speed;
  7562. else if (IS_I915G(dev))
  7563. dev_priv->display.get_display_clock_speed =
  7564. i915_get_display_clock_speed;
  7565. else if (IS_I945GM(dev) || IS_845G(dev) || IS_PINEVIEW_M(dev))
  7566. dev_priv->display.get_display_clock_speed =
  7567. i9xx_misc_get_display_clock_speed;
  7568. else if (IS_I915GM(dev))
  7569. dev_priv->display.get_display_clock_speed =
  7570. i915gm_get_display_clock_speed;
  7571. else if (IS_I865G(dev))
  7572. dev_priv->display.get_display_clock_speed =
  7573. i865_get_display_clock_speed;
  7574. else if (IS_I85X(dev))
  7575. dev_priv->display.get_display_clock_speed =
  7576. i855_get_display_clock_speed;
  7577. else /* 852, 830 */
  7578. dev_priv->display.get_display_clock_speed =
  7579. i830_get_display_clock_speed;
  7580. if (HAS_PCH_SPLIT(dev)) {
  7581. if (IS_GEN5(dev)) {
  7582. dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
  7583. dev_priv->display.write_eld = ironlake_write_eld;
  7584. } else if (IS_GEN6(dev)) {
  7585. dev_priv->display.fdi_link_train = gen6_fdi_link_train;
  7586. dev_priv->display.write_eld = ironlake_write_eld;
  7587. } else if (IS_IVYBRIDGE(dev)) {
  7588. /* FIXME: detect B0+ stepping and use auto training */
  7589. dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
  7590. dev_priv->display.write_eld = ironlake_write_eld;
  7591. dev_priv->display.modeset_global_resources =
  7592. ivb_modeset_global_resources;
  7593. } else if (IS_HASWELL(dev)) {
  7594. dev_priv->display.fdi_link_train = hsw_fdi_link_train;
  7595. dev_priv->display.write_eld = haswell_write_eld;
  7596. dev_priv->display.modeset_global_resources =
  7597. haswell_modeset_global_resources;
  7598. }
  7599. } else if (IS_G4X(dev)) {
  7600. dev_priv->display.write_eld = g4x_write_eld;
  7601. }
  7602. /* Default just returns -ENODEV to indicate unsupported */
  7603. dev_priv->display.queue_flip = intel_default_queue_flip;
  7604. switch (INTEL_INFO(dev)->gen) {
  7605. case 2:
  7606. dev_priv->display.queue_flip = intel_gen2_queue_flip;
  7607. break;
  7608. case 3:
  7609. dev_priv->display.queue_flip = intel_gen3_queue_flip;
  7610. break;
  7611. case 4:
  7612. case 5:
  7613. dev_priv->display.queue_flip = intel_gen4_queue_flip;
  7614. break;
  7615. case 6:
  7616. dev_priv->display.queue_flip = intel_gen6_queue_flip;
  7617. break;
  7618. case 7:
  7619. dev_priv->display.queue_flip = intel_gen7_queue_flip;
  7620. break;
  7621. }
  7622. }
  7623. /*
  7624. * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
  7625. * resume, or other times. This quirk makes sure that's the case for
  7626. * affected systems.
  7627. */
  7628. static void quirk_pipea_force(struct drm_device *dev)
  7629. {
  7630. struct drm_i915_private *dev_priv = dev->dev_private;
  7631. dev_priv->quirks |= QUIRK_PIPEA_FORCE;
  7632. DRM_INFO("applying pipe a force quirk\n");
  7633. }
  7634. /*
  7635. * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
  7636. */
  7637. static void quirk_ssc_force_disable(struct drm_device *dev)
  7638. {
  7639. struct drm_i915_private *dev_priv = dev->dev_private;
  7640. dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
  7641. DRM_INFO("applying lvds SSC disable quirk\n");
  7642. }
  7643. /*
  7644. * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
  7645. * brightness value
  7646. */
  7647. static void quirk_invert_brightness(struct drm_device *dev)
  7648. {
  7649. struct drm_i915_private *dev_priv = dev->dev_private;
  7650. dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
  7651. DRM_INFO("applying inverted panel brightness quirk\n");
  7652. }
  7653. struct intel_quirk {
  7654. int device;
  7655. int subsystem_vendor;
  7656. int subsystem_device;
  7657. void (*hook)(struct drm_device *dev);
  7658. };
  7659. /* For systems that don't have a meaningful PCI subdevice/subvendor ID */
  7660. struct intel_dmi_quirk {
  7661. void (*hook)(struct drm_device *dev);
  7662. const struct dmi_system_id (*dmi_id_list)[];
  7663. };
  7664. static int intel_dmi_reverse_brightness(const struct dmi_system_id *id)
  7665. {
  7666. DRM_INFO("Backlight polarity reversed on %s\n", id->ident);
  7667. return 1;
  7668. }
  7669. static const struct intel_dmi_quirk intel_dmi_quirks[] = {
  7670. {
  7671. .dmi_id_list = &(const struct dmi_system_id[]) {
  7672. {
  7673. .callback = intel_dmi_reverse_brightness,
  7674. .ident = "NCR Corporation",
  7675. .matches = {DMI_MATCH(DMI_SYS_VENDOR, "NCR Corporation"),
  7676. DMI_MATCH(DMI_PRODUCT_NAME, ""),
  7677. },
  7678. },
  7679. { } /* terminating entry */
  7680. },
  7681. .hook = quirk_invert_brightness,
  7682. },
  7683. };
  7684. static struct intel_quirk intel_quirks[] = {
  7685. /* HP Mini needs pipe A force quirk (LP: #322104) */
  7686. { 0x27ae, 0x103c, 0x361a, quirk_pipea_force },
  7687. /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
  7688. { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
  7689. /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
  7690. { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
  7691. /* 830/845 need to leave pipe A & dpll A up */
  7692. { 0x2562, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
  7693. { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
  7694. /* Lenovo U160 cannot use SSC on LVDS */
  7695. { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
  7696. /* Sony Vaio Y cannot use SSC on LVDS */
  7697. { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
  7698. /* Acer Aspire 5734Z must invert backlight brightness */
  7699. { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
  7700. /* Acer/eMachines G725 */
  7701. { 0x2a42, 0x1025, 0x0210, quirk_invert_brightness },
  7702. /* Acer/eMachines e725 */
  7703. { 0x2a42, 0x1025, 0x0212, quirk_invert_brightness },
  7704. /* Acer/Packard Bell NCL20 */
  7705. { 0x2a42, 0x1025, 0x034b, quirk_invert_brightness },
  7706. /* Acer Aspire 4736Z */
  7707. { 0x2a42, 0x1025, 0x0260, quirk_invert_brightness },
  7708. };
  7709. static void intel_init_quirks(struct drm_device *dev)
  7710. {
  7711. struct pci_dev *d = dev->pdev;
  7712. int i;
  7713. for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
  7714. struct intel_quirk *q = &intel_quirks[i];
  7715. if (d->device == q->device &&
  7716. (d->subsystem_vendor == q->subsystem_vendor ||
  7717. q->subsystem_vendor == PCI_ANY_ID) &&
  7718. (d->subsystem_device == q->subsystem_device ||
  7719. q->subsystem_device == PCI_ANY_ID))
  7720. q->hook(dev);
  7721. }
  7722. for (i = 0; i < ARRAY_SIZE(intel_dmi_quirks); i++) {
  7723. if (dmi_check_system(*intel_dmi_quirks[i].dmi_id_list) != 0)
  7724. intel_dmi_quirks[i].hook(dev);
  7725. }
  7726. }
  7727. /* Disable the VGA plane that we never use */
  7728. static void i915_disable_vga(struct drm_device *dev)
  7729. {
  7730. struct drm_i915_private *dev_priv = dev->dev_private;
  7731. u8 sr1;
  7732. u32 vga_reg = i915_vgacntrl_reg(dev);
  7733. vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
  7734. outb(SR01, VGA_SR_INDEX);
  7735. sr1 = inb(VGA_SR_DATA);
  7736. outb(sr1 | 1<<5, VGA_SR_DATA);
  7737. vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
  7738. udelay(300);
  7739. I915_WRITE(vga_reg, VGA_DISP_DISABLE);
  7740. POSTING_READ(vga_reg);
  7741. }
  7742. void intel_modeset_init_hw(struct drm_device *dev)
  7743. {
  7744. intel_init_power_well(dev);
  7745. intel_prepare_ddi(dev);
  7746. intel_init_clock_gating(dev);
  7747. mutex_lock(&dev->struct_mutex);
  7748. intel_enable_gt_powersave(dev);
  7749. mutex_unlock(&dev->struct_mutex);
  7750. }
  7751. void intel_modeset_suspend_hw(struct drm_device *dev)
  7752. {
  7753. intel_suspend_hw(dev);
  7754. }
  7755. void intel_modeset_init(struct drm_device *dev)
  7756. {
  7757. struct drm_i915_private *dev_priv = dev->dev_private;
  7758. int i, j, ret;
  7759. drm_mode_config_init(dev);
  7760. dev->mode_config.min_width = 0;
  7761. dev->mode_config.min_height = 0;
  7762. dev->mode_config.preferred_depth = 24;
  7763. dev->mode_config.prefer_shadow = 1;
  7764. dev->mode_config.funcs = &intel_mode_funcs;
  7765. intel_init_quirks(dev);
  7766. intel_init_pm(dev);
  7767. if (INTEL_INFO(dev)->num_pipes == 0)
  7768. return;
  7769. intel_init_display(dev);
  7770. if (IS_GEN2(dev)) {
  7771. dev->mode_config.max_width = 2048;
  7772. dev->mode_config.max_height = 2048;
  7773. } else if (IS_GEN3(dev)) {
  7774. dev->mode_config.max_width = 4096;
  7775. dev->mode_config.max_height = 4096;
  7776. } else {
  7777. dev->mode_config.max_width = 8192;
  7778. dev->mode_config.max_height = 8192;
  7779. }
  7780. dev->mode_config.fb_base = dev_priv->gtt.mappable_base;
  7781. DRM_DEBUG_KMS("%d display pipe%s available.\n",
  7782. INTEL_INFO(dev)->num_pipes,
  7783. INTEL_INFO(dev)->num_pipes > 1 ? "s" : "");
  7784. for (i = 0; i < INTEL_INFO(dev)->num_pipes; i++) {
  7785. intel_crtc_init(dev, i);
  7786. for (j = 0; j < dev_priv->num_plane; j++) {
  7787. ret = intel_plane_init(dev, i, j);
  7788. if (ret)
  7789. DRM_DEBUG_KMS("pipe %c sprite %c init failed: %d\n",
  7790. pipe_name(i), sprite_name(i, j), ret);
  7791. }
  7792. }
  7793. intel_cpu_pll_init(dev);
  7794. intel_pch_pll_init(dev);
  7795. /* Just disable it once at startup */
  7796. i915_disable_vga(dev);
  7797. intel_setup_outputs(dev);
  7798. /* Just in case the BIOS is doing something questionable. */
  7799. intel_disable_fbc(dev);
  7800. }
  7801. static void
  7802. intel_connector_break_all_links(struct intel_connector *connector)
  7803. {
  7804. connector->base.dpms = DRM_MODE_DPMS_OFF;
  7805. connector->base.encoder = NULL;
  7806. connector->encoder->connectors_active = false;
  7807. connector->encoder->base.crtc = NULL;
  7808. }
  7809. static void intel_enable_pipe_a(struct drm_device *dev)
  7810. {
  7811. struct intel_connector *connector;
  7812. struct drm_connector *crt = NULL;
  7813. struct intel_load_detect_pipe load_detect_temp;
  7814. /* We can't just switch on the pipe A, we need to set things up with a
  7815. * proper mode and output configuration. As a gross hack, enable pipe A
  7816. * by enabling the load detect pipe once. */
  7817. list_for_each_entry(connector,
  7818. &dev->mode_config.connector_list,
  7819. base.head) {
  7820. if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
  7821. crt = &connector->base;
  7822. break;
  7823. }
  7824. }
  7825. if (!crt)
  7826. return;
  7827. if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp))
  7828. intel_release_load_detect_pipe(crt, &load_detect_temp);
  7829. }
  7830. static bool
  7831. intel_check_plane_mapping(struct intel_crtc *crtc)
  7832. {
  7833. struct drm_device *dev = crtc->base.dev;
  7834. struct drm_i915_private *dev_priv = dev->dev_private;
  7835. u32 reg, val;
  7836. if (INTEL_INFO(dev)->num_pipes == 1)
  7837. return true;
  7838. reg = DSPCNTR(!crtc->plane);
  7839. val = I915_READ(reg);
  7840. if ((val & DISPLAY_PLANE_ENABLE) &&
  7841. (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
  7842. return false;
  7843. return true;
  7844. }
  7845. static void intel_sanitize_crtc(struct intel_crtc *crtc)
  7846. {
  7847. struct drm_device *dev = crtc->base.dev;
  7848. struct drm_i915_private *dev_priv = dev->dev_private;
  7849. u32 reg;
  7850. /* Clear any frame start delays used for debugging left by the BIOS */
  7851. reg = PIPECONF(crtc->config.cpu_transcoder);
  7852. I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
  7853. /* We need to sanitize the plane -> pipe mapping first because this will
  7854. * disable the crtc (and hence change the state) if it is wrong. Note
  7855. * that gen4+ has a fixed plane -> pipe mapping. */
  7856. if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) {
  7857. struct intel_connector *connector;
  7858. bool plane;
  7859. DRM_DEBUG_KMS("[CRTC:%d] wrong plane connection detected!\n",
  7860. crtc->base.base.id);
  7861. /* Pipe has the wrong plane attached and the plane is active.
  7862. * Temporarily change the plane mapping and disable everything
  7863. * ... */
  7864. plane = crtc->plane;
  7865. crtc->plane = !plane;
  7866. dev_priv->display.crtc_disable(&crtc->base);
  7867. crtc->plane = plane;
  7868. /* ... and break all links. */
  7869. list_for_each_entry(connector, &dev->mode_config.connector_list,
  7870. base.head) {
  7871. if (connector->encoder->base.crtc != &crtc->base)
  7872. continue;
  7873. intel_connector_break_all_links(connector);
  7874. }
  7875. WARN_ON(crtc->active);
  7876. crtc->base.enabled = false;
  7877. }
  7878. if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
  7879. crtc->pipe == PIPE_A && !crtc->active) {
  7880. /* BIOS forgot to enable pipe A, this mostly happens after
  7881. * resume. Force-enable the pipe to fix this, the update_dpms
  7882. * call below we restore the pipe to the right state, but leave
  7883. * the required bits on. */
  7884. intel_enable_pipe_a(dev);
  7885. }
  7886. /* Adjust the state of the output pipe according to whether we
  7887. * have active connectors/encoders. */
  7888. intel_crtc_update_dpms(&crtc->base);
  7889. if (crtc->active != crtc->base.enabled) {
  7890. struct intel_encoder *encoder;
  7891. /* This can happen either due to bugs in the get_hw_state
  7892. * functions or because the pipe is force-enabled due to the
  7893. * pipe A quirk. */
  7894. DRM_DEBUG_KMS("[CRTC:%d] hw state adjusted, was %s, now %s\n",
  7895. crtc->base.base.id,
  7896. crtc->base.enabled ? "enabled" : "disabled",
  7897. crtc->active ? "enabled" : "disabled");
  7898. crtc->base.enabled = crtc->active;
  7899. /* Because we only establish the connector -> encoder ->
  7900. * crtc links if something is active, this means the
  7901. * crtc is now deactivated. Break the links. connector
  7902. * -> encoder links are only establish when things are
  7903. * actually up, hence no need to break them. */
  7904. WARN_ON(crtc->active);
  7905. for_each_encoder_on_crtc(dev, &crtc->base, encoder) {
  7906. WARN_ON(encoder->connectors_active);
  7907. encoder->base.crtc = NULL;
  7908. }
  7909. }
  7910. }
  7911. static void intel_sanitize_encoder(struct intel_encoder *encoder)
  7912. {
  7913. struct intel_connector *connector;
  7914. struct drm_device *dev = encoder->base.dev;
  7915. /* We need to check both for a crtc link (meaning that the
  7916. * encoder is active and trying to read from a pipe) and the
  7917. * pipe itself being active. */
  7918. bool has_active_crtc = encoder->base.crtc &&
  7919. to_intel_crtc(encoder->base.crtc)->active;
  7920. if (encoder->connectors_active && !has_active_crtc) {
  7921. DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
  7922. encoder->base.base.id,
  7923. drm_get_encoder_name(&encoder->base));
  7924. /* Connector is active, but has no active pipe. This is
  7925. * fallout from our resume register restoring. Disable
  7926. * the encoder manually again. */
  7927. if (encoder->base.crtc) {
  7928. DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
  7929. encoder->base.base.id,
  7930. drm_get_encoder_name(&encoder->base));
  7931. encoder->disable(encoder);
  7932. }
  7933. /* Inconsistent output/port/pipe state happens presumably due to
  7934. * a bug in one of the get_hw_state functions. Or someplace else
  7935. * in our code, like the register restore mess on resume. Clamp
  7936. * things to off as a safer default. */
  7937. list_for_each_entry(connector,
  7938. &dev->mode_config.connector_list,
  7939. base.head) {
  7940. if (connector->encoder != encoder)
  7941. continue;
  7942. intel_connector_break_all_links(connector);
  7943. }
  7944. }
  7945. /* Enabled encoders without active connectors will be fixed in
  7946. * the crtc fixup. */
  7947. }
  7948. void i915_redisable_vga(struct drm_device *dev)
  7949. {
  7950. struct drm_i915_private *dev_priv = dev->dev_private;
  7951. u32 vga_reg = i915_vgacntrl_reg(dev);
  7952. if (I915_READ(vga_reg) != VGA_DISP_DISABLE) {
  7953. DRM_DEBUG_KMS("Something enabled VGA plane, disabling it\n");
  7954. i915_disable_vga(dev);
  7955. }
  7956. }
  7957. /* Scan out the current hw modeset state, sanitizes it and maps it into the drm
  7958. * and i915 state tracking structures. */
  7959. void intel_modeset_setup_hw_state(struct drm_device *dev,
  7960. bool force_restore)
  7961. {
  7962. struct drm_i915_private *dev_priv = dev->dev_private;
  7963. enum pipe pipe;
  7964. struct drm_plane *plane;
  7965. struct intel_crtc *crtc;
  7966. struct intel_encoder *encoder;
  7967. struct intel_connector *connector;
  7968. list_for_each_entry(crtc, &dev->mode_config.crtc_list,
  7969. base.head) {
  7970. memset(&crtc->config, 0, sizeof(crtc->config));
  7971. crtc->active = dev_priv->display.get_pipe_config(crtc,
  7972. &crtc->config);
  7973. crtc->base.enabled = crtc->active;
  7974. DRM_DEBUG_KMS("[CRTC:%d] hw state readout: %s\n",
  7975. crtc->base.base.id,
  7976. crtc->active ? "enabled" : "disabled");
  7977. }
  7978. if (HAS_DDI(dev))
  7979. intel_ddi_setup_hw_pll_state(dev);
  7980. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  7981. base.head) {
  7982. pipe = 0;
  7983. if (encoder->get_hw_state(encoder, &pipe)) {
  7984. crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
  7985. encoder->base.crtc = &crtc->base;
  7986. if (encoder->get_config)
  7987. encoder->get_config(encoder, &crtc->config);
  7988. } else {
  7989. encoder->base.crtc = NULL;
  7990. }
  7991. encoder->connectors_active = false;
  7992. DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe=%i\n",
  7993. encoder->base.base.id,
  7994. drm_get_encoder_name(&encoder->base),
  7995. encoder->base.crtc ? "enabled" : "disabled",
  7996. pipe);
  7997. }
  7998. list_for_each_entry(connector, &dev->mode_config.connector_list,
  7999. base.head) {
  8000. if (connector->get_hw_state(connector)) {
  8001. connector->base.dpms = DRM_MODE_DPMS_ON;
  8002. connector->encoder->connectors_active = true;
  8003. connector->base.encoder = &connector->encoder->base;
  8004. } else {
  8005. connector->base.dpms = DRM_MODE_DPMS_OFF;
  8006. connector->base.encoder = NULL;
  8007. }
  8008. DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
  8009. connector->base.base.id,
  8010. drm_get_connector_name(&connector->base),
  8011. connector->base.encoder ? "enabled" : "disabled");
  8012. }
  8013. /* HW state is read out, now we need to sanitize this mess. */
  8014. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  8015. base.head) {
  8016. intel_sanitize_encoder(encoder);
  8017. }
  8018. for_each_pipe(pipe) {
  8019. crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
  8020. intel_sanitize_crtc(crtc);
  8021. intel_dump_pipe_config(crtc, &crtc->config, "[setup_hw_state]");
  8022. }
  8023. if (force_restore) {
  8024. /*
  8025. * We need to use raw interfaces for restoring state to avoid
  8026. * checking (bogus) intermediate states.
  8027. */
  8028. for_each_pipe(pipe) {
  8029. struct drm_crtc *crtc =
  8030. dev_priv->pipe_to_crtc_mapping[pipe];
  8031. __intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y,
  8032. crtc->fb);
  8033. }
  8034. list_for_each_entry(plane, &dev->mode_config.plane_list, head)
  8035. intel_plane_restore(plane);
  8036. i915_redisable_vga(dev);
  8037. } else {
  8038. intel_modeset_update_staged_output_state(dev);
  8039. }
  8040. intel_modeset_check_state(dev);
  8041. drm_mode_config_reset(dev);
  8042. }
  8043. void intel_modeset_gem_init(struct drm_device *dev)
  8044. {
  8045. intel_modeset_init_hw(dev);
  8046. intel_setup_overlay(dev);
  8047. intel_modeset_setup_hw_state(dev, false);
  8048. }
  8049. void intel_modeset_cleanup(struct drm_device *dev)
  8050. {
  8051. struct drm_i915_private *dev_priv = dev->dev_private;
  8052. struct drm_crtc *crtc;
  8053. struct intel_crtc *intel_crtc;
  8054. /*
  8055. * Interrupts and polling as the first thing to avoid creating havoc.
  8056. * Too much stuff here (turning of rps, connectors, ...) would
  8057. * experience fancy races otherwise.
  8058. */
  8059. drm_irq_uninstall(dev);
  8060. cancel_work_sync(&dev_priv->hotplug_work);
  8061. /*
  8062. * Due to the hpd irq storm handling the hotplug work can re-arm the
  8063. * poll handlers. Hence disable polling after hpd handling is shut down.
  8064. */
  8065. drm_kms_helper_poll_fini(dev);
  8066. mutex_lock(&dev->struct_mutex);
  8067. intel_unregister_dsm_handler();
  8068. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  8069. /* Skip inactive CRTCs */
  8070. if (!crtc->fb)
  8071. continue;
  8072. intel_crtc = to_intel_crtc(crtc);
  8073. intel_increase_pllclock(crtc);
  8074. }
  8075. intel_disable_fbc(dev);
  8076. intel_disable_gt_powersave(dev);
  8077. ironlake_teardown_rc6(dev);
  8078. mutex_unlock(&dev->struct_mutex);
  8079. /* flush any delayed tasks or pending work */
  8080. flush_scheduled_work();
  8081. /* destroy backlight, if any, before the connectors */
  8082. intel_panel_destroy_backlight(dev);
  8083. drm_mode_config_cleanup(dev);
  8084. intel_cleanup_overlay(dev);
  8085. }
  8086. /*
  8087. * Return which encoder is currently attached for connector.
  8088. */
  8089. struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
  8090. {
  8091. return &intel_attached_encoder(connector)->base;
  8092. }
  8093. void intel_connector_attach_encoder(struct intel_connector *connector,
  8094. struct intel_encoder *encoder)
  8095. {
  8096. connector->encoder = encoder;
  8097. drm_mode_connector_attach_encoder(&connector->base,
  8098. &encoder->base);
  8099. }
  8100. /*
  8101. * set vga decode state - true == enable VGA decode
  8102. */
  8103. int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
  8104. {
  8105. struct drm_i915_private *dev_priv = dev->dev_private;
  8106. u16 gmch_ctrl;
  8107. pci_read_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, &gmch_ctrl);
  8108. if (state)
  8109. gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
  8110. else
  8111. gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
  8112. pci_write_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, gmch_ctrl);
  8113. return 0;
  8114. }
  8115. #ifdef CONFIG_DEBUG_FS
  8116. #include <linux/seq_file.h>
  8117. struct intel_display_error_state {
  8118. u32 power_well_driver;
  8119. struct intel_cursor_error_state {
  8120. u32 control;
  8121. u32 position;
  8122. u32 base;
  8123. u32 size;
  8124. } cursor[I915_MAX_PIPES];
  8125. struct intel_pipe_error_state {
  8126. enum transcoder cpu_transcoder;
  8127. u32 conf;
  8128. u32 source;
  8129. u32 htotal;
  8130. u32 hblank;
  8131. u32 hsync;
  8132. u32 vtotal;
  8133. u32 vblank;
  8134. u32 vsync;
  8135. } pipe[I915_MAX_PIPES];
  8136. struct intel_plane_error_state {
  8137. u32 control;
  8138. u32 stride;
  8139. u32 size;
  8140. u32 pos;
  8141. u32 addr;
  8142. u32 surface;
  8143. u32 tile_offset;
  8144. } plane[I915_MAX_PIPES];
  8145. };
  8146. struct intel_display_error_state *
  8147. intel_display_capture_error_state(struct drm_device *dev)
  8148. {
  8149. drm_i915_private_t *dev_priv = dev->dev_private;
  8150. struct intel_display_error_state *error;
  8151. enum transcoder cpu_transcoder;
  8152. int i;
  8153. error = kmalloc(sizeof(*error), GFP_ATOMIC);
  8154. if (error == NULL)
  8155. return NULL;
  8156. if (HAS_POWER_WELL(dev))
  8157. error->power_well_driver = I915_READ(HSW_PWR_WELL_DRIVER);
  8158. for_each_pipe(i) {
  8159. cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv, i);
  8160. error->pipe[i].cpu_transcoder = cpu_transcoder;
  8161. if (INTEL_INFO(dev)->gen <= 6 || IS_VALLEYVIEW(dev)) {
  8162. error->cursor[i].control = I915_READ(CURCNTR(i));
  8163. error->cursor[i].position = I915_READ(CURPOS(i));
  8164. error->cursor[i].base = I915_READ(CURBASE(i));
  8165. } else {
  8166. error->cursor[i].control = I915_READ(CURCNTR_IVB(i));
  8167. error->cursor[i].position = I915_READ(CURPOS_IVB(i));
  8168. error->cursor[i].base = I915_READ(CURBASE_IVB(i));
  8169. }
  8170. error->plane[i].control = I915_READ(DSPCNTR(i));
  8171. error->plane[i].stride = I915_READ(DSPSTRIDE(i));
  8172. if (INTEL_INFO(dev)->gen <= 3) {
  8173. error->plane[i].size = I915_READ(DSPSIZE(i));
  8174. error->plane[i].pos = I915_READ(DSPPOS(i));
  8175. }
  8176. if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
  8177. error->plane[i].addr = I915_READ(DSPADDR(i));
  8178. if (INTEL_INFO(dev)->gen >= 4) {
  8179. error->plane[i].surface = I915_READ(DSPSURF(i));
  8180. error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
  8181. }
  8182. error->pipe[i].conf = I915_READ(PIPECONF(cpu_transcoder));
  8183. error->pipe[i].source = I915_READ(PIPESRC(i));
  8184. error->pipe[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
  8185. error->pipe[i].hblank = I915_READ(HBLANK(cpu_transcoder));
  8186. error->pipe[i].hsync = I915_READ(HSYNC(cpu_transcoder));
  8187. error->pipe[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
  8188. error->pipe[i].vblank = I915_READ(VBLANK(cpu_transcoder));
  8189. error->pipe[i].vsync = I915_READ(VSYNC(cpu_transcoder));
  8190. }
  8191. /* In the code above we read the registers without checking if the power
  8192. * well was on, so here we have to clear the FPGA_DBG_RM_NOCLAIM bit to
  8193. * prevent the next I915_WRITE from detecting it and printing an error
  8194. * message. */
  8195. if (HAS_POWER_WELL(dev))
  8196. I915_WRITE_NOTRACE(FPGA_DBG, FPGA_DBG_RM_NOCLAIM);
  8197. return error;
  8198. }
  8199. #define err_printf(e, ...) i915_error_printf(e, __VA_ARGS__)
  8200. void
  8201. intel_display_print_error_state(struct drm_i915_error_state_buf *m,
  8202. struct drm_device *dev,
  8203. struct intel_display_error_state *error)
  8204. {
  8205. int i;
  8206. err_printf(m, "Num Pipes: %d\n", INTEL_INFO(dev)->num_pipes);
  8207. if (HAS_POWER_WELL(dev))
  8208. err_printf(m, "PWR_WELL_CTL2: %08x\n",
  8209. error->power_well_driver);
  8210. for_each_pipe(i) {
  8211. err_printf(m, "Pipe [%d]:\n", i);
  8212. err_printf(m, " CPU transcoder: %c\n",
  8213. transcoder_name(error->pipe[i].cpu_transcoder));
  8214. err_printf(m, " CONF: %08x\n", error->pipe[i].conf);
  8215. err_printf(m, " SRC: %08x\n", error->pipe[i].source);
  8216. err_printf(m, " HTOTAL: %08x\n", error->pipe[i].htotal);
  8217. err_printf(m, " HBLANK: %08x\n", error->pipe[i].hblank);
  8218. err_printf(m, " HSYNC: %08x\n", error->pipe[i].hsync);
  8219. err_printf(m, " VTOTAL: %08x\n", error->pipe[i].vtotal);
  8220. err_printf(m, " VBLANK: %08x\n", error->pipe[i].vblank);
  8221. err_printf(m, " VSYNC: %08x\n", error->pipe[i].vsync);
  8222. err_printf(m, "Plane [%d]:\n", i);
  8223. err_printf(m, " CNTR: %08x\n", error->plane[i].control);
  8224. err_printf(m, " STRIDE: %08x\n", error->plane[i].stride);
  8225. if (INTEL_INFO(dev)->gen <= 3) {
  8226. err_printf(m, " SIZE: %08x\n", error->plane[i].size);
  8227. err_printf(m, " POS: %08x\n", error->plane[i].pos);
  8228. }
  8229. if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
  8230. err_printf(m, " ADDR: %08x\n", error->plane[i].addr);
  8231. if (INTEL_INFO(dev)->gen >= 4) {
  8232. err_printf(m, " SURF: %08x\n", error->plane[i].surface);
  8233. err_printf(m, " TILEOFF: %08x\n", error->plane[i].tile_offset);
  8234. }
  8235. err_printf(m, "Cursor [%d]:\n", i);
  8236. err_printf(m, " CNTR: %08x\n", error->cursor[i].control);
  8237. err_printf(m, " POS: %08x\n", error->cursor[i].position);
  8238. err_printf(m, " BASE: %08x\n", error->cursor[i].base);
  8239. }
  8240. }
  8241. #endif