slub_def.h 8.3 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304
  1. #ifndef _LINUX_SLUB_DEF_H
  2. #define _LINUX_SLUB_DEF_H
  3. /*
  4. * SLUB : A Slab allocator without object queues.
  5. *
  6. * (C) 2007 SGI, Christoph Lameter
  7. */
  8. #include <linux/types.h>
  9. #include <linux/gfp.h>
  10. #include <linux/workqueue.h>
  11. #include <linux/kobject.h>
  12. #include <linux/kmemleak.h>
  13. enum stat_item {
  14. ALLOC_FASTPATH, /* Allocation from cpu slab */
  15. ALLOC_SLOWPATH, /* Allocation by getting a new cpu slab */
  16. FREE_FASTPATH, /* Free to cpu slub */
  17. FREE_SLOWPATH, /* Freeing not to cpu slab */
  18. FREE_FROZEN, /* Freeing to frozen slab */
  19. FREE_ADD_PARTIAL, /* Freeing moves slab to partial list */
  20. FREE_REMOVE_PARTIAL, /* Freeing removes last object */
  21. ALLOC_FROM_PARTIAL, /* Cpu slab acquired from partial list */
  22. ALLOC_SLAB, /* Cpu slab acquired from page allocator */
  23. ALLOC_REFILL, /* Refill cpu slab from slab freelist */
  24. FREE_SLAB, /* Slab freed to the page allocator */
  25. CPUSLAB_FLUSH, /* Abandoning of the cpu slab */
  26. DEACTIVATE_FULL, /* Cpu slab was full when deactivated */
  27. DEACTIVATE_EMPTY, /* Cpu slab was empty when deactivated */
  28. DEACTIVATE_TO_HEAD, /* Cpu slab was moved to the head of partials */
  29. DEACTIVATE_TO_TAIL, /* Cpu slab was moved to the tail of partials */
  30. DEACTIVATE_REMOTE_FREES,/* Slab contained remotely freed objects */
  31. ORDER_FALLBACK, /* Number of times fallback was necessary */
  32. NR_SLUB_STAT_ITEMS };
  33. struct kmem_cache_cpu {
  34. void **freelist; /* Pointer to next available object */
  35. #ifdef CONFIG_CMPXCHG_LOCAL
  36. unsigned long tid; /* Globally unique transaction id */
  37. #endif
  38. struct page *page; /* The slab from which we are allocating */
  39. int node; /* The node of the page (or -1 for debug) */
  40. #ifdef CONFIG_SLUB_STATS
  41. unsigned stat[NR_SLUB_STAT_ITEMS];
  42. #endif
  43. };
  44. struct kmem_cache_node {
  45. spinlock_t list_lock; /* Protect partial list and nr_partial */
  46. unsigned long nr_partial;
  47. struct list_head partial;
  48. #ifdef CONFIG_SLUB_DEBUG
  49. atomic_long_t nr_slabs;
  50. atomic_long_t total_objects;
  51. struct list_head full;
  52. #endif
  53. };
  54. /*
  55. * Word size structure that can be atomically updated or read and that
  56. * contains both the order and the number of objects that a slab of the
  57. * given order would contain.
  58. */
  59. struct kmem_cache_order_objects {
  60. unsigned long x;
  61. };
  62. /*
  63. * Slab cache management.
  64. */
  65. struct kmem_cache {
  66. struct kmem_cache_cpu __percpu *cpu_slab;
  67. /* Used for retriving partial slabs etc */
  68. unsigned long flags;
  69. unsigned long min_partial;
  70. int size; /* The size of an object including meta data */
  71. int objsize; /* The size of an object without meta data */
  72. int offset; /* Free pointer offset. */
  73. struct kmem_cache_order_objects oo;
  74. /* Allocation and freeing of slabs */
  75. struct kmem_cache_order_objects max;
  76. struct kmem_cache_order_objects min;
  77. gfp_t allocflags; /* gfp flags to use on each alloc */
  78. int refcount; /* Refcount for slab cache destroy */
  79. void (*ctor)(void *);
  80. int inuse; /* Offset to metadata */
  81. int align; /* Alignment */
  82. const char *name; /* Name (only for display!) */
  83. struct list_head list; /* List of slab caches */
  84. #ifdef CONFIG_SYSFS
  85. struct kobject kobj; /* For sysfs */
  86. #endif
  87. #ifdef CONFIG_NUMA
  88. /*
  89. * Defragmentation by allocating from a remote node.
  90. */
  91. int remote_node_defrag_ratio;
  92. #endif
  93. struct kmem_cache_node *node[MAX_NUMNODES];
  94. };
  95. /*
  96. * Kmalloc subsystem.
  97. */
  98. #if defined(ARCH_DMA_MINALIGN) && ARCH_DMA_MINALIGN > 8
  99. #define KMALLOC_MIN_SIZE ARCH_DMA_MINALIGN
  100. #else
  101. #define KMALLOC_MIN_SIZE 8
  102. #endif
  103. #define KMALLOC_SHIFT_LOW ilog2(KMALLOC_MIN_SIZE)
  104. #ifdef ARCH_DMA_MINALIGN
  105. #define ARCH_KMALLOC_MINALIGN ARCH_DMA_MINALIGN
  106. #else
  107. #define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
  108. #endif
  109. #ifndef ARCH_SLAB_MINALIGN
  110. #define ARCH_SLAB_MINALIGN __alignof__(unsigned long long)
  111. #endif
  112. /*
  113. * Maximum kmalloc object size handled by SLUB. Larger object allocations
  114. * are passed through to the page allocator. The page allocator "fastpath"
  115. * is relatively slow so we need this value sufficiently high so that
  116. * performance critical objects are allocated through the SLUB fastpath.
  117. *
  118. * This should be dropped to PAGE_SIZE / 2 once the page allocator
  119. * "fastpath" becomes competitive with the slab allocator fastpaths.
  120. */
  121. #define SLUB_MAX_SIZE (2 * PAGE_SIZE)
  122. #define SLUB_PAGE_SHIFT (PAGE_SHIFT + 2)
  123. #ifdef CONFIG_ZONE_DMA
  124. #define SLUB_DMA __GFP_DMA
  125. #else
  126. /* Disable DMA functionality */
  127. #define SLUB_DMA (__force gfp_t)0
  128. #endif
  129. /*
  130. * We keep the general caches in an array of slab caches that are used for
  131. * 2^x bytes of allocations.
  132. */
  133. extern struct kmem_cache *kmalloc_caches[SLUB_PAGE_SHIFT];
  134. /*
  135. * Sorry that the following has to be that ugly but some versions of GCC
  136. * have trouble with constant propagation and loops.
  137. */
  138. static __always_inline int kmalloc_index(size_t size)
  139. {
  140. if (!size)
  141. return 0;
  142. if (size <= KMALLOC_MIN_SIZE)
  143. return KMALLOC_SHIFT_LOW;
  144. if (KMALLOC_MIN_SIZE <= 32 && size > 64 && size <= 96)
  145. return 1;
  146. if (KMALLOC_MIN_SIZE <= 64 && size > 128 && size <= 192)
  147. return 2;
  148. if (size <= 8) return 3;
  149. if (size <= 16) return 4;
  150. if (size <= 32) return 5;
  151. if (size <= 64) return 6;
  152. if (size <= 128) return 7;
  153. if (size <= 256) return 8;
  154. if (size <= 512) return 9;
  155. if (size <= 1024) return 10;
  156. if (size <= 2 * 1024) return 11;
  157. if (size <= 4 * 1024) return 12;
  158. /*
  159. * The following is only needed to support architectures with a larger page
  160. * size than 4k.
  161. */
  162. if (size <= 8 * 1024) return 13;
  163. if (size <= 16 * 1024) return 14;
  164. if (size <= 32 * 1024) return 15;
  165. if (size <= 64 * 1024) return 16;
  166. if (size <= 128 * 1024) return 17;
  167. if (size <= 256 * 1024) return 18;
  168. if (size <= 512 * 1024) return 19;
  169. if (size <= 1024 * 1024) return 20;
  170. if (size <= 2 * 1024 * 1024) return 21;
  171. return -1;
  172. /*
  173. * What we really wanted to do and cannot do because of compiler issues is:
  174. * int i;
  175. * for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++)
  176. * if (size <= (1 << i))
  177. * return i;
  178. */
  179. }
  180. /*
  181. * Find the slab cache for a given combination of allocation flags and size.
  182. *
  183. * This ought to end up with a global pointer to the right cache
  184. * in kmalloc_caches.
  185. */
  186. static __always_inline struct kmem_cache *kmalloc_slab(size_t size)
  187. {
  188. int index = kmalloc_index(size);
  189. if (index == 0)
  190. return NULL;
  191. return kmalloc_caches[index];
  192. }
  193. void *kmem_cache_alloc(struct kmem_cache *, gfp_t);
  194. void *__kmalloc(size_t size, gfp_t flags);
  195. static __always_inline void *
  196. kmalloc_order(size_t size, gfp_t flags, unsigned int order)
  197. {
  198. void *ret = (void *) __get_free_pages(flags | __GFP_COMP, order);
  199. kmemleak_alloc(ret, size, 1, flags);
  200. return ret;
  201. }
  202. #ifdef CONFIG_TRACING
  203. extern void *
  204. kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size);
  205. extern void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order);
  206. #else
  207. static __always_inline void *
  208. kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
  209. {
  210. return kmem_cache_alloc(s, gfpflags);
  211. }
  212. static __always_inline void *
  213. kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
  214. {
  215. return kmalloc_order(size, flags, order);
  216. }
  217. #endif
  218. static __always_inline void *kmalloc_large(size_t size, gfp_t flags)
  219. {
  220. unsigned int order = get_order(size);
  221. return kmalloc_order_trace(size, flags, order);
  222. }
  223. static __always_inline void *kmalloc(size_t size, gfp_t flags)
  224. {
  225. if (__builtin_constant_p(size)) {
  226. if (size > SLUB_MAX_SIZE)
  227. return kmalloc_large(size, flags);
  228. if (!(flags & SLUB_DMA)) {
  229. struct kmem_cache *s = kmalloc_slab(size);
  230. if (!s)
  231. return ZERO_SIZE_PTR;
  232. return kmem_cache_alloc_trace(s, flags, size);
  233. }
  234. }
  235. return __kmalloc(size, flags);
  236. }
  237. #ifdef CONFIG_NUMA
  238. void *__kmalloc_node(size_t size, gfp_t flags, int node);
  239. void *kmem_cache_alloc_node(struct kmem_cache *, gfp_t flags, int node);
  240. #ifdef CONFIG_TRACING
  241. extern void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
  242. gfp_t gfpflags,
  243. int node, size_t size);
  244. #else
  245. static __always_inline void *
  246. kmem_cache_alloc_node_trace(struct kmem_cache *s,
  247. gfp_t gfpflags,
  248. int node, size_t size)
  249. {
  250. return kmem_cache_alloc_node(s, gfpflags, node);
  251. }
  252. #endif
  253. static __always_inline void *kmalloc_node(size_t size, gfp_t flags, int node)
  254. {
  255. if (__builtin_constant_p(size) &&
  256. size <= SLUB_MAX_SIZE && !(flags & SLUB_DMA)) {
  257. struct kmem_cache *s = kmalloc_slab(size);
  258. if (!s)
  259. return ZERO_SIZE_PTR;
  260. return kmem_cache_alloc_node_trace(s, flags, node, size);
  261. }
  262. return __kmalloc_node(size, flags, node);
  263. }
  264. #endif
  265. #endif /* _LINUX_SLUB_DEF_H */