intel_sdvo.c 59 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050
  1. /*
  2. * Copyright 2006 Dave Airlie <airlied@linux.ie>
  3. * Copyright © 2006-2007 Intel Corporation
  4. * Jesse Barnes <jesse.barnes@intel.com>
  5. *
  6. * Permission is hereby granted, free of charge, to any person obtaining a
  7. * copy of this software and associated documentation files (the "Software"),
  8. * to deal in the Software without restriction, including without limitation
  9. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  10. * and/or sell copies of the Software, and to permit persons to whom the
  11. * Software is furnished to do so, subject to the following conditions:
  12. *
  13. * The above copyright notice and this permission notice (including the next
  14. * paragraph) shall be included in all copies or substantial portions of the
  15. * Software.
  16. *
  17. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  18. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  19. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  20. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  21. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  22. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
  23. * DEALINGS IN THE SOFTWARE.
  24. *
  25. * Authors:
  26. * Eric Anholt <eric@anholt.net>
  27. */
  28. #include <linux/i2c.h>
  29. #include <linux/delay.h>
  30. #include "drmP.h"
  31. #include "drm.h"
  32. #include "drm_crtc.h"
  33. #include "intel_drv.h"
  34. #include "i915_drm.h"
  35. #include "i915_drv.h"
  36. #include "intel_sdvo_regs.h"
  37. #undef SDVO_DEBUG
  38. struct intel_sdvo_priv {
  39. u8 slave_addr;
  40. /* Register for the SDVO device: SDVOB or SDVOC */
  41. int output_device;
  42. /* Active outputs controlled by this SDVO output */
  43. uint16_t controlled_output;
  44. /*
  45. * Capabilities of the SDVO device returned by
  46. * i830_sdvo_get_capabilities()
  47. */
  48. struct intel_sdvo_caps caps;
  49. /* Pixel clock limitations reported by the SDVO device, in kHz */
  50. int pixel_clock_min, pixel_clock_max;
  51. /**
  52. * This is set if we're going to treat the device as TV-out.
  53. *
  54. * While we have these nice friendly flags for output types that ought
  55. * to decide this for us, the S-Video output on our HDMI+S-Video card
  56. * shows up as RGB1 (VGA).
  57. */
  58. bool is_tv;
  59. /**
  60. * This is set if we treat the device as HDMI, instead of DVI.
  61. */
  62. bool is_hdmi;
  63. /**
  64. * This is set if we detect output of sdvo device as LVDS.
  65. */
  66. bool is_lvds;
  67. /**
  68. * This is sdvo flags for input timing.
  69. */
  70. uint8_t sdvo_flags;
  71. /**
  72. * This is sdvo fixed pannel mode pointer
  73. */
  74. struct drm_display_mode *sdvo_lvds_fixed_mode;
  75. /**
  76. * Returned SDTV resolutions allowed for the current format, if the
  77. * device reported it.
  78. */
  79. struct intel_sdvo_sdtv_resolution_reply sdtv_resolutions;
  80. /**
  81. * Current selected TV format.
  82. *
  83. * This is stored in the same structure that's passed to the device, for
  84. * convenience.
  85. */
  86. struct intel_sdvo_tv_format tv_format;
  87. /*
  88. * supported encoding mode, used to determine whether HDMI is
  89. * supported
  90. */
  91. struct intel_sdvo_encode encode;
  92. /* DDC bus used by this SDVO output */
  93. uint8_t ddc_bus;
  94. int save_sdvo_mult;
  95. u16 save_active_outputs;
  96. struct intel_sdvo_dtd save_input_dtd_1, save_input_dtd_2;
  97. struct intel_sdvo_dtd save_output_dtd[16];
  98. u32 save_SDVOX;
  99. };
  100. /**
  101. * Writes the SDVOB or SDVOC with the given value, but always writes both
  102. * SDVOB and SDVOC to work around apparent hardware issues (according to
  103. * comments in the BIOS).
  104. */
  105. static void intel_sdvo_write_sdvox(struct intel_output *intel_output, u32 val)
  106. {
  107. struct drm_device *dev = intel_output->base.dev;
  108. struct drm_i915_private *dev_priv = dev->dev_private;
  109. struct intel_sdvo_priv *sdvo_priv = intel_output->dev_priv;
  110. u32 bval = val, cval = val;
  111. int i;
  112. if (sdvo_priv->output_device == SDVOB) {
  113. cval = I915_READ(SDVOC);
  114. } else {
  115. bval = I915_READ(SDVOB);
  116. }
  117. /*
  118. * Write the registers twice for luck. Sometimes,
  119. * writing them only once doesn't appear to 'stick'.
  120. * The BIOS does this too. Yay, magic
  121. */
  122. for (i = 0; i < 2; i++)
  123. {
  124. I915_WRITE(SDVOB, bval);
  125. I915_READ(SDVOB);
  126. I915_WRITE(SDVOC, cval);
  127. I915_READ(SDVOC);
  128. }
  129. }
  130. static bool intel_sdvo_read_byte(struct intel_output *intel_output, u8 addr,
  131. u8 *ch)
  132. {
  133. struct intel_sdvo_priv *sdvo_priv = intel_output->dev_priv;
  134. u8 out_buf[2];
  135. u8 buf[2];
  136. int ret;
  137. struct i2c_msg msgs[] = {
  138. {
  139. .addr = sdvo_priv->slave_addr >> 1,
  140. .flags = 0,
  141. .len = 1,
  142. .buf = out_buf,
  143. },
  144. {
  145. .addr = sdvo_priv->slave_addr >> 1,
  146. .flags = I2C_M_RD,
  147. .len = 1,
  148. .buf = buf,
  149. }
  150. };
  151. out_buf[0] = addr;
  152. out_buf[1] = 0;
  153. if ((ret = i2c_transfer(intel_output->i2c_bus, msgs, 2)) == 2)
  154. {
  155. *ch = buf[0];
  156. return true;
  157. }
  158. DRM_DEBUG_KMS("i2c transfer returned %d\n", ret);
  159. return false;
  160. }
  161. static bool intel_sdvo_write_byte(struct intel_output *intel_output, int addr,
  162. u8 ch)
  163. {
  164. struct intel_sdvo_priv *sdvo_priv = intel_output->dev_priv;
  165. u8 out_buf[2];
  166. struct i2c_msg msgs[] = {
  167. {
  168. .addr = sdvo_priv->slave_addr >> 1,
  169. .flags = 0,
  170. .len = 2,
  171. .buf = out_buf,
  172. }
  173. };
  174. out_buf[0] = addr;
  175. out_buf[1] = ch;
  176. if (i2c_transfer(intel_output->i2c_bus, msgs, 1) == 1)
  177. {
  178. return true;
  179. }
  180. return false;
  181. }
  182. #define SDVO_CMD_NAME_ENTRY(cmd) {cmd, #cmd}
  183. /** Mapping of command numbers to names, for debug output */
  184. static const struct _sdvo_cmd_name {
  185. u8 cmd;
  186. char *name;
  187. } sdvo_cmd_names[] = {
  188. SDVO_CMD_NAME_ENTRY(SDVO_CMD_RESET),
  189. SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_DEVICE_CAPS),
  190. SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_FIRMWARE_REV),
  191. SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_TRAINED_INPUTS),
  192. SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_ACTIVE_OUTPUTS),
  193. SDVO_CMD_NAME_ENTRY(SDVO_CMD_SET_ACTIVE_OUTPUTS),
  194. SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_IN_OUT_MAP),
  195. SDVO_CMD_NAME_ENTRY(SDVO_CMD_SET_IN_OUT_MAP),
  196. SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_ATTACHED_DISPLAYS),
  197. SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_HOT_PLUG_SUPPORT),
  198. SDVO_CMD_NAME_ENTRY(SDVO_CMD_SET_ACTIVE_HOT_PLUG),
  199. SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_ACTIVE_HOT_PLUG),
  200. SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_INTERRUPT_EVENT_SOURCE),
  201. SDVO_CMD_NAME_ENTRY(SDVO_CMD_SET_TARGET_INPUT),
  202. SDVO_CMD_NAME_ENTRY(SDVO_CMD_SET_TARGET_OUTPUT),
  203. SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_INPUT_TIMINGS_PART1),
  204. SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_INPUT_TIMINGS_PART2),
  205. SDVO_CMD_NAME_ENTRY(SDVO_CMD_SET_INPUT_TIMINGS_PART1),
  206. SDVO_CMD_NAME_ENTRY(SDVO_CMD_SET_INPUT_TIMINGS_PART2),
  207. SDVO_CMD_NAME_ENTRY(SDVO_CMD_SET_INPUT_TIMINGS_PART1),
  208. SDVO_CMD_NAME_ENTRY(SDVO_CMD_SET_OUTPUT_TIMINGS_PART1),
  209. SDVO_CMD_NAME_ENTRY(SDVO_CMD_SET_OUTPUT_TIMINGS_PART2),
  210. SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_OUTPUT_TIMINGS_PART1),
  211. SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_OUTPUT_TIMINGS_PART2),
  212. SDVO_CMD_NAME_ENTRY(SDVO_CMD_CREATE_PREFERRED_INPUT_TIMING),
  213. SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_PREFERRED_INPUT_TIMING_PART1),
  214. SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_PREFERRED_INPUT_TIMING_PART2),
  215. SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_INPUT_PIXEL_CLOCK_RANGE),
  216. SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_OUTPUT_PIXEL_CLOCK_RANGE),
  217. SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_SUPPORTED_CLOCK_RATE_MULTS),
  218. SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_CLOCK_RATE_MULT),
  219. SDVO_CMD_NAME_ENTRY(SDVO_CMD_SET_CLOCK_RATE_MULT),
  220. SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_SUPPORTED_TV_FORMATS),
  221. SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_TV_FORMAT),
  222. SDVO_CMD_NAME_ENTRY(SDVO_CMD_SET_TV_FORMAT),
  223. SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_SUPPORTED_POWER_STATES),
  224. SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_POWER_STATE),
  225. SDVO_CMD_NAME_ENTRY(SDVO_CMD_SET_ENCODER_POWER_STATE),
  226. SDVO_CMD_NAME_ENTRY(SDVO_CMD_SET_DISPLAY_POWER_STATE),
  227. SDVO_CMD_NAME_ENTRY(SDVO_CMD_SET_CONTROL_BUS_SWITCH),
  228. SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_SDTV_RESOLUTION_SUPPORT),
  229. SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_SCALED_HDTV_RESOLUTION_SUPPORT),
  230. SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_SUPPORTED_ENHANCEMENTS),
  231. /* HDMI op code */
  232. SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_SUPP_ENCODE),
  233. SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_ENCODE),
  234. SDVO_CMD_NAME_ENTRY(SDVO_CMD_SET_ENCODE),
  235. SDVO_CMD_NAME_ENTRY(SDVO_CMD_SET_PIXEL_REPLI),
  236. SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_PIXEL_REPLI),
  237. SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_COLORIMETRY_CAP),
  238. SDVO_CMD_NAME_ENTRY(SDVO_CMD_SET_COLORIMETRY),
  239. SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_COLORIMETRY),
  240. SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_AUDIO_ENCRYPT_PREFER),
  241. SDVO_CMD_NAME_ENTRY(SDVO_CMD_SET_AUDIO_STAT),
  242. SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_AUDIO_STAT),
  243. SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_HBUF_INDEX),
  244. SDVO_CMD_NAME_ENTRY(SDVO_CMD_SET_HBUF_INDEX),
  245. SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_HBUF_INFO),
  246. SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_HBUF_AV_SPLIT),
  247. SDVO_CMD_NAME_ENTRY(SDVO_CMD_SET_HBUF_AV_SPLIT),
  248. SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_HBUF_TXRATE),
  249. SDVO_CMD_NAME_ENTRY(SDVO_CMD_SET_HBUF_TXRATE),
  250. SDVO_CMD_NAME_ENTRY(SDVO_CMD_SET_HBUF_DATA),
  251. SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_HBUF_DATA),
  252. };
  253. #define SDVO_NAME(dev_priv) ((dev_priv)->output_device == SDVOB ? "SDVOB" : "SDVOC")
  254. #define SDVO_PRIV(output) ((struct intel_sdvo_priv *) (output)->dev_priv)
  255. #ifdef SDVO_DEBUG
  256. static void intel_sdvo_debug_write(struct intel_output *intel_output, u8 cmd,
  257. void *args, int args_len)
  258. {
  259. struct intel_sdvo_priv *sdvo_priv = intel_output->dev_priv;
  260. int i;
  261. DRM_DEBUG_KMS("%s: W: %02X ",
  262. SDVO_NAME(sdvo_priv), cmd);
  263. for (i = 0; i < args_len; i++)
  264. DRM_LOG_KMS("%02X ", ((u8 *)args)[i]);
  265. for (; i < 8; i++)
  266. DRM_LOG_KMS(" ");
  267. for (i = 0; i < sizeof(sdvo_cmd_names) / sizeof(sdvo_cmd_names[0]); i++) {
  268. if (cmd == sdvo_cmd_names[i].cmd) {
  269. DRM_LOG_KMS("(%s)", sdvo_cmd_names[i].name);
  270. break;
  271. }
  272. }
  273. if (i == sizeof(sdvo_cmd_names)/ sizeof(sdvo_cmd_names[0]))
  274. DRM_LOG_KMS("(%02X)", cmd);
  275. DRM_LOG_KMS("\n");
  276. }
  277. #else
  278. #define intel_sdvo_debug_write(o, c, a, l)
  279. #endif
  280. static void intel_sdvo_write_cmd(struct intel_output *intel_output, u8 cmd,
  281. void *args, int args_len)
  282. {
  283. int i;
  284. intel_sdvo_debug_write(intel_output, cmd, args, args_len);
  285. for (i = 0; i < args_len; i++) {
  286. intel_sdvo_write_byte(intel_output, SDVO_I2C_ARG_0 - i,
  287. ((u8*)args)[i]);
  288. }
  289. intel_sdvo_write_byte(intel_output, SDVO_I2C_OPCODE, cmd);
  290. }
  291. #ifdef SDVO_DEBUG
  292. static const char *cmd_status_names[] = {
  293. "Power on",
  294. "Success",
  295. "Not supported",
  296. "Invalid arg",
  297. "Pending",
  298. "Target not specified",
  299. "Scaling not supported"
  300. };
  301. static void intel_sdvo_debug_response(struct intel_output *intel_output,
  302. void *response, int response_len,
  303. u8 status)
  304. {
  305. struct intel_sdvo_priv *sdvo_priv = intel_output->dev_priv;
  306. int i;
  307. DRM_DEBUG_KMS("%s: R: ", SDVO_NAME(sdvo_priv));
  308. for (i = 0; i < response_len; i++)
  309. DRM_LOG_KMS("%02X ", ((u8 *)response)[i]);
  310. for (; i < 8; i++)
  311. DRM_LOG_KMS(" ");
  312. if (status <= SDVO_CMD_STATUS_SCALING_NOT_SUPP)
  313. DRM_LOG_KMS("(%s)", cmd_status_names[status]);
  314. else
  315. DRM_LOG_KMS("(??? %d)", status);
  316. DRM_LOG_KMS("\n");
  317. }
  318. #else
  319. #define intel_sdvo_debug_response(o, r, l, s)
  320. #endif
  321. static u8 intel_sdvo_read_response(struct intel_output *intel_output,
  322. void *response, int response_len)
  323. {
  324. int i;
  325. u8 status;
  326. u8 retry = 50;
  327. while (retry--) {
  328. /* Read the command response */
  329. for (i = 0; i < response_len; i++) {
  330. intel_sdvo_read_byte(intel_output,
  331. SDVO_I2C_RETURN_0 + i,
  332. &((u8 *)response)[i]);
  333. }
  334. /* read the return status */
  335. intel_sdvo_read_byte(intel_output, SDVO_I2C_CMD_STATUS,
  336. &status);
  337. intel_sdvo_debug_response(intel_output, response, response_len,
  338. status);
  339. if (status != SDVO_CMD_STATUS_PENDING)
  340. return status;
  341. mdelay(50);
  342. }
  343. return status;
  344. }
  345. static int intel_sdvo_get_pixel_multiplier(struct drm_display_mode *mode)
  346. {
  347. if (mode->clock >= 100000)
  348. return 1;
  349. else if (mode->clock >= 50000)
  350. return 2;
  351. else
  352. return 4;
  353. }
  354. /**
  355. * Don't check status code from this as it switches the bus back to the
  356. * SDVO chips which defeats the purpose of doing a bus switch in the first
  357. * place.
  358. */
  359. static void intel_sdvo_set_control_bus_switch(struct intel_output *intel_output,
  360. u8 target)
  361. {
  362. intel_sdvo_write_cmd(intel_output, SDVO_CMD_SET_CONTROL_BUS_SWITCH, &target, 1);
  363. }
  364. static bool intel_sdvo_set_target_input(struct intel_output *intel_output, bool target_0, bool target_1)
  365. {
  366. struct intel_sdvo_set_target_input_args targets = {0};
  367. u8 status;
  368. if (target_0 && target_1)
  369. return SDVO_CMD_STATUS_NOTSUPP;
  370. if (target_1)
  371. targets.target_1 = 1;
  372. intel_sdvo_write_cmd(intel_output, SDVO_CMD_SET_TARGET_INPUT, &targets,
  373. sizeof(targets));
  374. status = intel_sdvo_read_response(intel_output, NULL, 0);
  375. return (status == SDVO_CMD_STATUS_SUCCESS);
  376. }
  377. /**
  378. * Return whether each input is trained.
  379. *
  380. * This function is making an assumption about the layout of the response,
  381. * which should be checked against the docs.
  382. */
  383. static bool intel_sdvo_get_trained_inputs(struct intel_output *intel_output, bool *input_1, bool *input_2)
  384. {
  385. struct intel_sdvo_get_trained_inputs_response response;
  386. u8 status;
  387. intel_sdvo_write_cmd(intel_output, SDVO_CMD_GET_TRAINED_INPUTS, NULL, 0);
  388. status = intel_sdvo_read_response(intel_output, &response, sizeof(response));
  389. if (status != SDVO_CMD_STATUS_SUCCESS)
  390. return false;
  391. *input_1 = response.input0_trained;
  392. *input_2 = response.input1_trained;
  393. return true;
  394. }
  395. static bool intel_sdvo_get_active_outputs(struct intel_output *intel_output,
  396. u16 *outputs)
  397. {
  398. u8 status;
  399. intel_sdvo_write_cmd(intel_output, SDVO_CMD_GET_ACTIVE_OUTPUTS, NULL, 0);
  400. status = intel_sdvo_read_response(intel_output, outputs, sizeof(*outputs));
  401. return (status == SDVO_CMD_STATUS_SUCCESS);
  402. }
  403. static bool intel_sdvo_set_active_outputs(struct intel_output *intel_output,
  404. u16 outputs)
  405. {
  406. u8 status;
  407. intel_sdvo_write_cmd(intel_output, SDVO_CMD_SET_ACTIVE_OUTPUTS, &outputs,
  408. sizeof(outputs));
  409. status = intel_sdvo_read_response(intel_output, NULL, 0);
  410. return (status == SDVO_CMD_STATUS_SUCCESS);
  411. }
  412. static bool intel_sdvo_set_encoder_power_state(struct intel_output *intel_output,
  413. int mode)
  414. {
  415. u8 status, state = SDVO_ENCODER_STATE_ON;
  416. switch (mode) {
  417. case DRM_MODE_DPMS_ON:
  418. state = SDVO_ENCODER_STATE_ON;
  419. break;
  420. case DRM_MODE_DPMS_STANDBY:
  421. state = SDVO_ENCODER_STATE_STANDBY;
  422. break;
  423. case DRM_MODE_DPMS_SUSPEND:
  424. state = SDVO_ENCODER_STATE_SUSPEND;
  425. break;
  426. case DRM_MODE_DPMS_OFF:
  427. state = SDVO_ENCODER_STATE_OFF;
  428. break;
  429. }
  430. intel_sdvo_write_cmd(intel_output, SDVO_CMD_SET_ENCODER_POWER_STATE, &state,
  431. sizeof(state));
  432. status = intel_sdvo_read_response(intel_output, NULL, 0);
  433. return (status == SDVO_CMD_STATUS_SUCCESS);
  434. }
  435. static bool intel_sdvo_get_input_pixel_clock_range(struct intel_output *intel_output,
  436. int *clock_min,
  437. int *clock_max)
  438. {
  439. struct intel_sdvo_pixel_clock_range clocks;
  440. u8 status;
  441. intel_sdvo_write_cmd(intel_output, SDVO_CMD_GET_INPUT_PIXEL_CLOCK_RANGE,
  442. NULL, 0);
  443. status = intel_sdvo_read_response(intel_output, &clocks, sizeof(clocks));
  444. if (status != SDVO_CMD_STATUS_SUCCESS)
  445. return false;
  446. /* Convert the values from units of 10 kHz to kHz. */
  447. *clock_min = clocks.min * 10;
  448. *clock_max = clocks.max * 10;
  449. return true;
  450. }
  451. static bool intel_sdvo_set_target_output(struct intel_output *intel_output,
  452. u16 outputs)
  453. {
  454. u8 status;
  455. intel_sdvo_write_cmd(intel_output, SDVO_CMD_SET_TARGET_OUTPUT, &outputs,
  456. sizeof(outputs));
  457. status = intel_sdvo_read_response(intel_output, NULL, 0);
  458. return (status == SDVO_CMD_STATUS_SUCCESS);
  459. }
  460. static bool intel_sdvo_get_timing(struct intel_output *intel_output, u8 cmd,
  461. struct intel_sdvo_dtd *dtd)
  462. {
  463. u8 status;
  464. intel_sdvo_write_cmd(intel_output, cmd, NULL, 0);
  465. status = intel_sdvo_read_response(intel_output, &dtd->part1,
  466. sizeof(dtd->part1));
  467. if (status != SDVO_CMD_STATUS_SUCCESS)
  468. return false;
  469. intel_sdvo_write_cmd(intel_output, cmd + 1, NULL, 0);
  470. status = intel_sdvo_read_response(intel_output, &dtd->part2,
  471. sizeof(dtd->part2));
  472. if (status != SDVO_CMD_STATUS_SUCCESS)
  473. return false;
  474. return true;
  475. }
  476. static bool intel_sdvo_get_input_timing(struct intel_output *intel_output,
  477. struct intel_sdvo_dtd *dtd)
  478. {
  479. return intel_sdvo_get_timing(intel_output,
  480. SDVO_CMD_GET_INPUT_TIMINGS_PART1, dtd);
  481. }
  482. static bool intel_sdvo_get_output_timing(struct intel_output *intel_output,
  483. struct intel_sdvo_dtd *dtd)
  484. {
  485. return intel_sdvo_get_timing(intel_output,
  486. SDVO_CMD_GET_OUTPUT_TIMINGS_PART1, dtd);
  487. }
  488. static bool intel_sdvo_set_timing(struct intel_output *intel_output, u8 cmd,
  489. struct intel_sdvo_dtd *dtd)
  490. {
  491. u8 status;
  492. intel_sdvo_write_cmd(intel_output, cmd, &dtd->part1, sizeof(dtd->part1));
  493. status = intel_sdvo_read_response(intel_output, NULL, 0);
  494. if (status != SDVO_CMD_STATUS_SUCCESS)
  495. return false;
  496. intel_sdvo_write_cmd(intel_output, cmd + 1, &dtd->part2, sizeof(dtd->part2));
  497. status = intel_sdvo_read_response(intel_output, NULL, 0);
  498. if (status != SDVO_CMD_STATUS_SUCCESS)
  499. return false;
  500. return true;
  501. }
  502. static bool intel_sdvo_set_input_timing(struct intel_output *intel_output,
  503. struct intel_sdvo_dtd *dtd)
  504. {
  505. return intel_sdvo_set_timing(intel_output,
  506. SDVO_CMD_SET_INPUT_TIMINGS_PART1, dtd);
  507. }
  508. static bool intel_sdvo_set_output_timing(struct intel_output *intel_output,
  509. struct intel_sdvo_dtd *dtd)
  510. {
  511. return intel_sdvo_set_timing(intel_output,
  512. SDVO_CMD_SET_OUTPUT_TIMINGS_PART1, dtd);
  513. }
  514. static bool
  515. intel_sdvo_create_preferred_input_timing(struct intel_output *output,
  516. uint16_t clock,
  517. uint16_t width,
  518. uint16_t height)
  519. {
  520. struct intel_sdvo_preferred_input_timing_args args;
  521. struct intel_sdvo_priv *sdvo_priv = output->dev_priv;
  522. uint8_t status;
  523. memset(&args, 0, sizeof(args));
  524. args.clock = clock;
  525. args.width = width;
  526. args.height = height;
  527. args.interlace = 0;
  528. if (sdvo_priv->is_lvds &&
  529. (sdvo_priv->sdvo_lvds_fixed_mode->hdisplay != width ||
  530. sdvo_priv->sdvo_lvds_fixed_mode->vdisplay != height))
  531. args.scaled = 1;
  532. intel_sdvo_write_cmd(output, SDVO_CMD_CREATE_PREFERRED_INPUT_TIMING,
  533. &args, sizeof(args));
  534. status = intel_sdvo_read_response(output, NULL, 0);
  535. if (status != SDVO_CMD_STATUS_SUCCESS)
  536. return false;
  537. return true;
  538. }
  539. static bool intel_sdvo_get_preferred_input_timing(struct intel_output *output,
  540. struct intel_sdvo_dtd *dtd)
  541. {
  542. bool status;
  543. intel_sdvo_write_cmd(output, SDVO_CMD_GET_PREFERRED_INPUT_TIMING_PART1,
  544. NULL, 0);
  545. status = intel_sdvo_read_response(output, &dtd->part1,
  546. sizeof(dtd->part1));
  547. if (status != SDVO_CMD_STATUS_SUCCESS)
  548. return false;
  549. intel_sdvo_write_cmd(output, SDVO_CMD_GET_PREFERRED_INPUT_TIMING_PART2,
  550. NULL, 0);
  551. status = intel_sdvo_read_response(output, &dtd->part2,
  552. sizeof(dtd->part2));
  553. if (status != SDVO_CMD_STATUS_SUCCESS)
  554. return false;
  555. return false;
  556. }
  557. static int intel_sdvo_get_clock_rate_mult(struct intel_output *intel_output)
  558. {
  559. u8 response, status;
  560. intel_sdvo_write_cmd(intel_output, SDVO_CMD_GET_CLOCK_RATE_MULT, NULL, 0);
  561. status = intel_sdvo_read_response(intel_output, &response, 1);
  562. if (status != SDVO_CMD_STATUS_SUCCESS) {
  563. DRM_DEBUG_KMS("Couldn't get SDVO clock rate multiplier\n");
  564. return SDVO_CLOCK_RATE_MULT_1X;
  565. } else {
  566. DRM_DEBUG_KMS("Current clock rate multiplier: %d\n", response);
  567. }
  568. return response;
  569. }
  570. static bool intel_sdvo_set_clock_rate_mult(struct intel_output *intel_output, u8 val)
  571. {
  572. u8 status;
  573. intel_sdvo_write_cmd(intel_output, SDVO_CMD_SET_CLOCK_RATE_MULT, &val, 1);
  574. status = intel_sdvo_read_response(intel_output, NULL, 0);
  575. if (status != SDVO_CMD_STATUS_SUCCESS)
  576. return false;
  577. return true;
  578. }
  579. static void intel_sdvo_get_dtd_from_mode(struct intel_sdvo_dtd *dtd,
  580. struct drm_display_mode *mode)
  581. {
  582. uint16_t width, height;
  583. uint16_t h_blank_len, h_sync_len, v_blank_len, v_sync_len;
  584. uint16_t h_sync_offset, v_sync_offset;
  585. width = mode->crtc_hdisplay;
  586. height = mode->crtc_vdisplay;
  587. /* do some mode translations */
  588. h_blank_len = mode->crtc_hblank_end - mode->crtc_hblank_start;
  589. h_sync_len = mode->crtc_hsync_end - mode->crtc_hsync_start;
  590. v_blank_len = mode->crtc_vblank_end - mode->crtc_vblank_start;
  591. v_sync_len = mode->crtc_vsync_end - mode->crtc_vsync_start;
  592. h_sync_offset = mode->crtc_hsync_start - mode->crtc_hblank_start;
  593. v_sync_offset = mode->crtc_vsync_start - mode->crtc_vblank_start;
  594. dtd->part1.clock = mode->clock / 10;
  595. dtd->part1.h_active = width & 0xff;
  596. dtd->part1.h_blank = h_blank_len & 0xff;
  597. dtd->part1.h_high = (((width >> 8) & 0xf) << 4) |
  598. ((h_blank_len >> 8) & 0xf);
  599. dtd->part1.v_active = height & 0xff;
  600. dtd->part1.v_blank = v_blank_len & 0xff;
  601. dtd->part1.v_high = (((height >> 8) & 0xf) << 4) |
  602. ((v_blank_len >> 8) & 0xf);
  603. dtd->part2.h_sync_off = h_sync_offset & 0xff;
  604. dtd->part2.h_sync_width = h_sync_len & 0xff;
  605. dtd->part2.v_sync_off_width = (v_sync_offset & 0xf) << 4 |
  606. (v_sync_len & 0xf);
  607. dtd->part2.sync_off_width_high = ((h_sync_offset & 0x300) >> 2) |
  608. ((h_sync_len & 0x300) >> 4) | ((v_sync_offset & 0x30) >> 2) |
  609. ((v_sync_len & 0x30) >> 4);
  610. dtd->part2.dtd_flags = 0x18;
  611. if (mode->flags & DRM_MODE_FLAG_PHSYNC)
  612. dtd->part2.dtd_flags |= 0x2;
  613. if (mode->flags & DRM_MODE_FLAG_PVSYNC)
  614. dtd->part2.dtd_flags |= 0x4;
  615. dtd->part2.sdvo_flags = 0;
  616. dtd->part2.v_sync_off_high = v_sync_offset & 0xc0;
  617. dtd->part2.reserved = 0;
  618. }
  619. static void intel_sdvo_get_mode_from_dtd(struct drm_display_mode * mode,
  620. struct intel_sdvo_dtd *dtd)
  621. {
  622. mode->hdisplay = dtd->part1.h_active;
  623. mode->hdisplay += ((dtd->part1.h_high >> 4) & 0x0f) << 8;
  624. mode->hsync_start = mode->hdisplay + dtd->part2.h_sync_off;
  625. mode->hsync_start += (dtd->part2.sync_off_width_high & 0xc0) << 2;
  626. mode->hsync_end = mode->hsync_start + dtd->part2.h_sync_width;
  627. mode->hsync_end += (dtd->part2.sync_off_width_high & 0x30) << 4;
  628. mode->htotal = mode->hdisplay + dtd->part1.h_blank;
  629. mode->htotal += (dtd->part1.h_high & 0xf) << 8;
  630. mode->vdisplay = dtd->part1.v_active;
  631. mode->vdisplay += ((dtd->part1.v_high >> 4) & 0x0f) << 8;
  632. mode->vsync_start = mode->vdisplay;
  633. mode->vsync_start += (dtd->part2.v_sync_off_width >> 4) & 0xf;
  634. mode->vsync_start += (dtd->part2.sync_off_width_high & 0x0c) << 2;
  635. mode->vsync_start += dtd->part2.v_sync_off_high & 0xc0;
  636. mode->vsync_end = mode->vsync_start +
  637. (dtd->part2.v_sync_off_width & 0xf);
  638. mode->vsync_end += (dtd->part2.sync_off_width_high & 0x3) << 4;
  639. mode->vtotal = mode->vdisplay + dtd->part1.v_blank;
  640. mode->vtotal += (dtd->part1.v_high & 0xf) << 8;
  641. mode->clock = dtd->part1.clock * 10;
  642. mode->flags &= ~(DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC);
  643. if (dtd->part2.dtd_flags & 0x2)
  644. mode->flags |= DRM_MODE_FLAG_PHSYNC;
  645. if (dtd->part2.dtd_flags & 0x4)
  646. mode->flags |= DRM_MODE_FLAG_PVSYNC;
  647. }
  648. static bool intel_sdvo_get_supp_encode(struct intel_output *output,
  649. struct intel_sdvo_encode *encode)
  650. {
  651. uint8_t status;
  652. intel_sdvo_write_cmd(output, SDVO_CMD_GET_SUPP_ENCODE, NULL, 0);
  653. status = intel_sdvo_read_response(output, encode, sizeof(*encode));
  654. if (status != SDVO_CMD_STATUS_SUCCESS) { /* non-support means DVI */
  655. memset(encode, 0, sizeof(*encode));
  656. return false;
  657. }
  658. return true;
  659. }
  660. static bool intel_sdvo_set_encode(struct intel_output *output, uint8_t mode)
  661. {
  662. uint8_t status;
  663. intel_sdvo_write_cmd(output, SDVO_CMD_SET_ENCODE, &mode, 1);
  664. status = intel_sdvo_read_response(output, NULL, 0);
  665. return (status == SDVO_CMD_STATUS_SUCCESS);
  666. }
  667. static bool intel_sdvo_set_colorimetry(struct intel_output *output,
  668. uint8_t mode)
  669. {
  670. uint8_t status;
  671. intel_sdvo_write_cmd(output, SDVO_CMD_SET_COLORIMETRY, &mode, 1);
  672. status = intel_sdvo_read_response(output, NULL, 0);
  673. return (status == SDVO_CMD_STATUS_SUCCESS);
  674. }
  675. #if 0
  676. static void intel_sdvo_dump_hdmi_buf(struct intel_output *output)
  677. {
  678. int i, j;
  679. uint8_t set_buf_index[2];
  680. uint8_t av_split;
  681. uint8_t buf_size;
  682. uint8_t buf[48];
  683. uint8_t *pos;
  684. intel_sdvo_write_cmd(output, SDVO_CMD_GET_HBUF_AV_SPLIT, NULL, 0);
  685. intel_sdvo_read_response(output, &av_split, 1);
  686. for (i = 0; i <= av_split; i++) {
  687. set_buf_index[0] = i; set_buf_index[1] = 0;
  688. intel_sdvo_write_cmd(output, SDVO_CMD_SET_HBUF_INDEX,
  689. set_buf_index, 2);
  690. intel_sdvo_write_cmd(output, SDVO_CMD_GET_HBUF_INFO, NULL, 0);
  691. intel_sdvo_read_response(output, &buf_size, 1);
  692. pos = buf;
  693. for (j = 0; j <= buf_size; j += 8) {
  694. intel_sdvo_write_cmd(output, SDVO_CMD_GET_HBUF_DATA,
  695. NULL, 0);
  696. intel_sdvo_read_response(output, pos, 8);
  697. pos += 8;
  698. }
  699. }
  700. }
  701. #endif
  702. static void intel_sdvo_set_hdmi_buf(struct intel_output *output, int index,
  703. uint8_t *data, int8_t size, uint8_t tx_rate)
  704. {
  705. uint8_t set_buf_index[2];
  706. set_buf_index[0] = index;
  707. set_buf_index[1] = 0;
  708. intel_sdvo_write_cmd(output, SDVO_CMD_SET_HBUF_INDEX, set_buf_index, 2);
  709. for (; size > 0; size -= 8) {
  710. intel_sdvo_write_cmd(output, SDVO_CMD_SET_HBUF_DATA, data, 8);
  711. data += 8;
  712. }
  713. intel_sdvo_write_cmd(output, SDVO_CMD_SET_HBUF_TXRATE, &tx_rate, 1);
  714. }
  715. static uint8_t intel_sdvo_calc_hbuf_csum(uint8_t *data, uint8_t size)
  716. {
  717. uint8_t csum = 0;
  718. int i;
  719. for (i = 0; i < size; i++)
  720. csum += data[i];
  721. return 0x100 - csum;
  722. }
  723. #define DIP_TYPE_AVI 0x82
  724. #define DIP_VERSION_AVI 0x2
  725. #define DIP_LEN_AVI 13
  726. struct dip_infoframe {
  727. uint8_t type;
  728. uint8_t version;
  729. uint8_t len;
  730. uint8_t checksum;
  731. union {
  732. struct {
  733. /* Packet Byte #1 */
  734. uint8_t S:2;
  735. uint8_t B:2;
  736. uint8_t A:1;
  737. uint8_t Y:2;
  738. uint8_t rsvd1:1;
  739. /* Packet Byte #2 */
  740. uint8_t R:4;
  741. uint8_t M:2;
  742. uint8_t C:2;
  743. /* Packet Byte #3 */
  744. uint8_t SC:2;
  745. uint8_t Q:2;
  746. uint8_t EC:3;
  747. uint8_t ITC:1;
  748. /* Packet Byte #4 */
  749. uint8_t VIC:7;
  750. uint8_t rsvd2:1;
  751. /* Packet Byte #5 */
  752. uint8_t PR:4;
  753. uint8_t rsvd3:4;
  754. /* Packet Byte #6~13 */
  755. uint16_t top_bar_end;
  756. uint16_t bottom_bar_start;
  757. uint16_t left_bar_end;
  758. uint16_t right_bar_start;
  759. } avi;
  760. struct {
  761. /* Packet Byte #1 */
  762. uint8_t channel_count:3;
  763. uint8_t rsvd1:1;
  764. uint8_t coding_type:4;
  765. /* Packet Byte #2 */
  766. uint8_t sample_size:2; /* SS0, SS1 */
  767. uint8_t sample_frequency:3;
  768. uint8_t rsvd2:3;
  769. /* Packet Byte #3 */
  770. uint8_t coding_type_private:5;
  771. uint8_t rsvd3:3;
  772. /* Packet Byte #4 */
  773. uint8_t channel_allocation;
  774. /* Packet Byte #5 */
  775. uint8_t rsvd4:3;
  776. uint8_t level_shift:4;
  777. uint8_t downmix_inhibit:1;
  778. } audio;
  779. uint8_t payload[28];
  780. } __attribute__ ((packed)) u;
  781. } __attribute__((packed));
  782. static void intel_sdvo_set_avi_infoframe(struct intel_output *output,
  783. struct drm_display_mode * mode)
  784. {
  785. struct dip_infoframe avi_if = {
  786. .type = DIP_TYPE_AVI,
  787. .version = DIP_VERSION_AVI,
  788. .len = DIP_LEN_AVI,
  789. };
  790. avi_if.checksum = intel_sdvo_calc_hbuf_csum((uint8_t *)&avi_if,
  791. 4 + avi_if.len);
  792. intel_sdvo_set_hdmi_buf(output, 1, (uint8_t *)&avi_if, 4 + avi_if.len,
  793. SDVO_HBUF_TX_VSYNC);
  794. }
  795. static void intel_sdvo_set_tv_format(struct intel_output *output)
  796. {
  797. struct intel_sdvo_priv *sdvo_priv = output->dev_priv;
  798. struct intel_sdvo_tv_format *format, unset;
  799. u8 status;
  800. format = &sdvo_priv->tv_format;
  801. memset(&unset, 0, sizeof(unset));
  802. if (memcmp(format, &unset, sizeof(*format))) {
  803. DRM_DEBUG_KMS("%s: Choosing default TV format of NTSC-M\n",
  804. SDVO_NAME(sdvo_priv));
  805. format->ntsc_m = 1;
  806. intel_sdvo_write_cmd(output, SDVO_CMD_SET_TV_FORMAT, format,
  807. sizeof(*format));
  808. status = intel_sdvo_read_response(output, NULL, 0);
  809. if (status != SDVO_CMD_STATUS_SUCCESS)
  810. DRM_DEBUG_KMS("%s: Failed to set TV format\n",
  811. SDVO_NAME(sdvo_priv));
  812. }
  813. }
  814. static bool intel_sdvo_mode_fixup(struct drm_encoder *encoder,
  815. struct drm_display_mode *mode,
  816. struct drm_display_mode *adjusted_mode)
  817. {
  818. struct intel_output *output = enc_to_intel_output(encoder);
  819. struct intel_sdvo_priv *dev_priv = output->dev_priv;
  820. if (dev_priv->is_tv) {
  821. struct intel_sdvo_dtd output_dtd;
  822. bool success;
  823. /* We need to construct preferred input timings based on our
  824. * output timings. To do that, we have to set the output
  825. * timings, even though this isn't really the right place in
  826. * the sequence to do it. Oh well.
  827. */
  828. /* Set output timings */
  829. intel_sdvo_get_dtd_from_mode(&output_dtd, mode);
  830. intel_sdvo_set_target_output(output,
  831. dev_priv->controlled_output);
  832. intel_sdvo_set_output_timing(output, &output_dtd);
  833. /* Set the input timing to the screen. Assume always input 0. */
  834. intel_sdvo_set_target_input(output, true, false);
  835. success = intel_sdvo_create_preferred_input_timing(output,
  836. mode->clock / 10,
  837. mode->hdisplay,
  838. mode->vdisplay);
  839. if (success) {
  840. struct intel_sdvo_dtd input_dtd;
  841. intel_sdvo_get_preferred_input_timing(output,
  842. &input_dtd);
  843. intel_sdvo_get_mode_from_dtd(adjusted_mode, &input_dtd);
  844. dev_priv->sdvo_flags = input_dtd.part2.sdvo_flags;
  845. drm_mode_set_crtcinfo(adjusted_mode, 0);
  846. mode->clock = adjusted_mode->clock;
  847. adjusted_mode->clock *=
  848. intel_sdvo_get_pixel_multiplier(mode);
  849. } else {
  850. return false;
  851. }
  852. } else if (dev_priv->is_lvds) {
  853. struct intel_sdvo_dtd output_dtd;
  854. bool success;
  855. drm_mode_set_crtcinfo(dev_priv->sdvo_lvds_fixed_mode, 0);
  856. /* Set output timings */
  857. intel_sdvo_get_dtd_from_mode(&output_dtd,
  858. dev_priv->sdvo_lvds_fixed_mode);
  859. intel_sdvo_set_target_output(output,
  860. dev_priv->controlled_output);
  861. intel_sdvo_set_output_timing(output, &output_dtd);
  862. /* Set the input timing to the screen. Assume always input 0. */
  863. intel_sdvo_set_target_input(output, true, false);
  864. success = intel_sdvo_create_preferred_input_timing(
  865. output,
  866. mode->clock / 10,
  867. mode->hdisplay,
  868. mode->vdisplay);
  869. if (success) {
  870. struct intel_sdvo_dtd input_dtd;
  871. intel_sdvo_get_preferred_input_timing(output,
  872. &input_dtd);
  873. intel_sdvo_get_mode_from_dtd(adjusted_mode, &input_dtd);
  874. dev_priv->sdvo_flags = input_dtd.part2.sdvo_flags;
  875. drm_mode_set_crtcinfo(adjusted_mode, 0);
  876. mode->clock = adjusted_mode->clock;
  877. adjusted_mode->clock *=
  878. intel_sdvo_get_pixel_multiplier(mode);
  879. } else {
  880. return false;
  881. }
  882. } else {
  883. /* Make the CRTC code factor in the SDVO pixel multiplier. The
  884. * SDVO device will be told of the multiplier during mode_set.
  885. */
  886. adjusted_mode->clock *= intel_sdvo_get_pixel_multiplier(mode);
  887. }
  888. return true;
  889. }
  890. static void intel_sdvo_mode_set(struct drm_encoder *encoder,
  891. struct drm_display_mode *mode,
  892. struct drm_display_mode *adjusted_mode)
  893. {
  894. struct drm_device *dev = encoder->dev;
  895. struct drm_i915_private *dev_priv = dev->dev_private;
  896. struct drm_crtc *crtc = encoder->crtc;
  897. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  898. struct intel_output *output = enc_to_intel_output(encoder);
  899. struct intel_sdvo_priv *sdvo_priv = output->dev_priv;
  900. u32 sdvox = 0;
  901. int sdvo_pixel_multiply;
  902. struct intel_sdvo_in_out_map in_out;
  903. struct intel_sdvo_dtd input_dtd;
  904. u8 status;
  905. if (!mode)
  906. return;
  907. /* First, set the input mapping for the first input to our controlled
  908. * output. This is only correct if we're a single-input device, in
  909. * which case the first input is the output from the appropriate SDVO
  910. * channel on the motherboard. In a two-input device, the first input
  911. * will be SDVOB and the second SDVOC.
  912. */
  913. in_out.in0 = sdvo_priv->controlled_output;
  914. in_out.in1 = 0;
  915. intel_sdvo_write_cmd(output, SDVO_CMD_SET_IN_OUT_MAP,
  916. &in_out, sizeof(in_out));
  917. status = intel_sdvo_read_response(output, NULL, 0);
  918. if (sdvo_priv->is_hdmi) {
  919. intel_sdvo_set_avi_infoframe(output, mode);
  920. sdvox |= SDVO_AUDIO_ENABLE;
  921. }
  922. /* We have tried to get input timing in mode_fixup, and filled into
  923. adjusted_mode */
  924. if (sdvo_priv->is_tv || sdvo_priv->is_lvds) {
  925. intel_sdvo_get_dtd_from_mode(&input_dtd, adjusted_mode);
  926. input_dtd.part2.sdvo_flags = sdvo_priv->sdvo_flags;
  927. } else
  928. intel_sdvo_get_dtd_from_mode(&input_dtd, mode);
  929. /* If it's a TV, we already set the output timing in mode_fixup.
  930. * Otherwise, the output timing is equal to the input timing.
  931. */
  932. if (!sdvo_priv->is_tv && !sdvo_priv->is_lvds) {
  933. /* Set the output timing to the screen */
  934. intel_sdvo_set_target_output(output,
  935. sdvo_priv->controlled_output);
  936. intel_sdvo_set_output_timing(output, &input_dtd);
  937. }
  938. /* Set the input timing to the screen. Assume always input 0. */
  939. intel_sdvo_set_target_input(output, true, false);
  940. if (sdvo_priv->is_tv)
  941. intel_sdvo_set_tv_format(output);
  942. /* We would like to use intel_sdvo_create_preferred_input_timing() to
  943. * provide the device with a timing it can support, if it supports that
  944. * feature. However, presumably we would need to adjust the CRTC to
  945. * output the preferred timing, and we don't support that currently.
  946. */
  947. #if 0
  948. success = intel_sdvo_create_preferred_input_timing(output, clock,
  949. width, height);
  950. if (success) {
  951. struct intel_sdvo_dtd *input_dtd;
  952. intel_sdvo_get_preferred_input_timing(output, &input_dtd);
  953. intel_sdvo_set_input_timing(output, &input_dtd);
  954. }
  955. #else
  956. intel_sdvo_set_input_timing(output, &input_dtd);
  957. #endif
  958. switch (intel_sdvo_get_pixel_multiplier(mode)) {
  959. case 1:
  960. intel_sdvo_set_clock_rate_mult(output,
  961. SDVO_CLOCK_RATE_MULT_1X);
  962. break;
  963. case 2:
  964. intel_sdvo_set_clock_rate_mult(output,
  965. SDVO_CLOCK_RATE_MULT_2X);
  966. break;
  967. case 4:
  968. intel_sdvo_set_clock_rate_mult(output,
  969. SDVO_CLOCK_RATE_MULT_4X);
  970. break;
  971. }
  972. /* Set the SDVO control regs. */
  973. if (IS_I965G(dev)) {
  974. sdvox |= SDVO_BORDER_ENABLE |
  975. SDVO_VSYNC_ACTIVE_HIGH |
  976. SDVO_HSYNC_ACTIVE_HIGH;
  977. } else {
  978. sdvox |= I915_READ(sdvo_priv->output_device);
  979. switch (sdvo_priv->output_device) {
  980. case SDVOB:
  981. sdvox &= SDVOB_PRESERVE_MASK;
  982. break;
  983. case SDVOC:
  984. sdvox &= SDVOC_PRESERVE_MASK;
  985. break;
  986. }
  987. sdvox |= (9 << 19) | SDVO_BORDER_ENABLE;
  988. }
  989. if (intel_crtc->pipe == 1)
  990. sdvox |= SDVO_PIPE_B_SELECT;
  991. sdvo_pixel_multiply = intel_sdvo_get_pixel_multiplier(mode);
  992. if (IS_I965G(dev)) {
  993. /* done in crtc_mode_set as the dpll_md reg must be written early */
  994. } else if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
  995. /* done in crtc_mode_set as it lives inside the dpll register */
  996. } else {
  997. sdvox |= (sdvo_pixel_multiply - 1) << SDVO_PORT_MULTIPLY_SHIFT;
  998. }
  999. if (sdvo_priv->sdvo_flags & SDVO_NEED_TO_STALL)
  1000. sdvox |= SDVO_STALL_SELECT;
  1001. intel_sdvo_write_sdvox(output, sdvox);
  1002. }
  1003. static void intel_sdvo_dpms(struct drm_encoder *encoder, int mode)
  1004. {
  1005. struct drm_device *dev = encoder->dev;
  1006. struct drm_i915_private *dev_priv = dev->dev_private;
  1007. struct intel_output *intel_output = enc_to_intel_output(encoder);
  1008. struct intel_sdvo_priv *sdvo_priv = intel_output->dev_priv;
  1009. u32 temp;
  1010. if (mode != DRM_MODE_DPMS_ON) {
  1011. intel_sdvo_set_active_outputs(intel_output, 0);
  1012. if (0)
  1013. intel_sdvo_set_encoder_power_state(intel_output, mode);
  1014. if (mode == DRM_MODE_DPMS_OFF) {
  1015. temp = I915_READ(sdvo_priv->output_device);
  1016. if ((temp & SDVO_ENABLE) != 0) {
  1017. intel_sdvo_write_sdvox(intel_output, temp & ~SDVO_ENABLE);
  1018. }
  1019. }
  1020. } else {
  1021. bool input1, input2;
  1022. int i;
  1023. u8 status;
  1024. temp = I915_READ(sdvo_priv->output_device);
  1025. if ((temp & SDVO_ENABLE) == 0)
  1026. intel_sdvo_write_sdvox(intel_output, temp | SDVO_ENABLE);
  1027. for (i = 0; i < 2; i++)
  1028. intel_wait_for_vblank(dev);
  1029. status = intel_sdvo_get_trained_inputs(intel_output, &input1,
  1030. &input2);
  1031. /* Warn if the device reported failure to sync.
  1032. * A lot of SDVO devices fail to notify of sync, but it's
  1033. * a given it the status is a success, we succeeded.
  1034. */
  1035. if (status == SDVO_CMD_STATUS_SUCCESS && !input1) {
  1036. DRM_DEBUG_KMS("First %s output reported failure to "
  1037. "sync\n", SDVO_NAME(sdvo_priv));
  1038. }
  1039. if (0)
  1040. intel_sdvo_set_encoder_power_state(intel_output, mode);
  1041. intel_sdvo_set_active_outputs(intel_output, sdvo_priv->controlled_output);
  1042. }
  1043. return;
  1044. }
  1045. static void intel_sdvo_save(struct drm_connector *connector)
  1046. {
  1047. struct drm_device *dev = connector->dev;
  1048. struct drm_i915_private *dev_priv = dev->dev_private;
  1049. struct intel_output *intel_output = to_intel_output(connector);
  1050. struct intel_sdvo_priv *sdvo_priv = intel_output->dev_priv;
  1051. int o;
  1052. sdvo_priv->save_sdvo_mult = intel_sdvo_get_clock_rate_mult(intel_output);
  1053. intel_sdvo_get_active_outputs(intel_output, &sdvo_priv->save_active_outputs);
  1054. if (sdvo_priv->caps.sdvo_inputs_mask & 0x1) {
  1055. intel_sdvo_set_target_input(intel_output, true, false);
  1056. intel_sdvo_get_input_timing(intel_output,
  1057. &sdvo_priv->save_input_dtd_1);
  1058. }
  1059. if (sdvo_priv->caps.sdvo_inputs_mask & 0x2) {
  1060. intel_sdvo_set_target_input(intel_output, false, true);
  1061. intel_sdvo_get_input_timing(intel_output,
  1062. &sdvo_priv->save_input_dtd_2);
  1063. }
  1064. for (o = SDVO_OUTPUT_FIRST; o <= SDVO_OUTPUT_LAST; o++)
  1065. {
  1066. u16 this_output = (1 << o);
  1067. if (sdvo_priv->caps.output_flags & this_output)
  1068. {
  1069. intel_sdvo_set_target_output(intel_output, this_output);
  1070. intel_sdvo_get_output_timing(intel_output,
  1071. &sdvo_priv->save_output_dtd[o]);
  1072. }
  1073. }
  1074. if (sdvo_priv->is_tv) {
  1075. /* XXX: Save TV format/enhancements. */
  1076. }
  1077. sdvo_priv->save_SDVOX = I915_READ(sdvo_priv->output_device);
  1078. }
  1079. static void intel_sdvo_restore(struct drm_connector *connector)
  1080. {
  1081. struct drm_device *dev = connector->dev;
  1082. struct intel_output *intel_output = to_intel_output(connector);
  1083. struct intel_sdvo_priv *sdvo_priv = intel_output->dev_priv;
  1084. int o;
  1085. int i;
  1086. bool input1, input2;
  1087. u8 status;
  1088. intel_sdvo_set_active_outputs(intel_output, 0);
  1089. for (o = SDVO_OUTPUT_FIRST; o <= SDVO_OUTPUT_LAST; o++)
  1090. {
  1091. u16 this_output = (1 << o);
  1092. if (sdvo_priv->caps.output_flags & this_output) {
  1093. intel_sdvo_set_target_output(intel_output, this_output);
  1094. intel_sdvo_set_output_timing(intel_output, &sdvo_priv->save_output_dtd[o]);
  1095. }
  1096. }
  1097. if (sdvo_priv->caps.sdvo_inputs_mask & 0x1) {
  1098. intel_sdvo_set_target_input(intel_output, true, false);
  1099. intel_sdvo_set_input_timing(intel_output, &sdvo_priv->save_input_dtd_1);
  1100. }
  1101. if (sdvo_priv->caps.sdvo_inputs_mask & 0x2) {
  1102. intel_sdvo_set_target_input(intel_output, false, true);
  1103. intel_sdvo_set_input_timing(intel_output, &sdvo_priv->save_input_dtd_2);
  1104. }
  1105. intel_sdvo_set_clock_rate_mult(intel_output, sdvo_priv->save_sdvo_mult);
  1106. if (sdvo_priv->is_tv) {
  1107. /* XXX: Restore TV format/enhancements. */
  1108. }
  1109. intel_sdvo_write_sdvox(intel_output, sdvo_priv->save_SDVOX);
  1110. if (sdvo_priv->save_SDVOX & SDVO_ENABLE)
  1111. {
  1112. for (i = 0; i < 2; i++)
  1113. intel_wait_for_vblank(dev);
  1114. status = intel_sdvo_get_trained_inputs(intel_output, &input1, &input2);
  1115. if (status == SDVO_CMD_STATUS_SUCCESS && !input1)
  1116. DRM_DEBUG_KMS("First %s output reported failure to "
  1117. "sync\n", SDVO_NAME(sdvo_priv));
  1118. }
  1119. intel_sdvo_set_active_outputs(intel_output, sdvo_priv->save_active_outputs);
  1120. }
  1121. static int intel_sdvo_mode_valid(struct drm_connector *connector,
  1122. struct drm_display_mode *mode)
  1123. {
  1124. struct intel_output *intel_output = to_intel_output(connector);
  1125. struct intel_sdvo_priv *sdvo_priv = intel_output->dev_priv;
  1126. if (mode->flags & DRM_MODE_FLAG_DBLSCAN)
  1127. return MODE_NO_DBLESCAN;
  1128. if (sdvo_priv->pixel_clock_min > mode->clock)
  1129. return MODE_CLOCK_LOW;
  1130. if (sdvo_priv->pixel_clock_max < mode->clock)
  1131. return MODE_CLOCK_HIGH;
  1132. if (sdvo_priv->is_lvds == true) {
  1133. if (sdvo_priv->sdvo_lvds_fixed_mode == NULL)
  1134. return MODE_PANEL;
  1135. if (mode->hdisplay > sdvo_priv->sdvo_lvds_fixed_mode->hdisplay)
  1136. return MODE_PANEL;
  1137. if (mode->vdisplay > sdvo_priv->sdvo_lvds_fixed_mode->vdisplay)
  1138. return MODE_PANEL;
  1139. }
  1140. return MODE_OK;
  1141. }
  1142. static bool intel_sdvo_get_capabilities(struct intel_output *intel_output, struct intel_sdvo_caps *caps)
  1143. {
  1144. u8 status;
  1145. intel_sdvo_write_cmd(intel_output, SDVO_CMD_GET_DEVICE_CAPS, NULL, 0);
  1146. status = intel_sdvo_read_response(intel_output, caps, sizeof(*caps));
  1147. if (status != SDVO_CMD_STATUS_SUCCESS)
  1148. return false;
  1149. return true;
  1150. }
  1151. struct drm_connector* intel_sdvo_find(struct drm_device *dev, int sdvoB)
  1152. {
  1153. struct drm_connector *connector = NULL;
  1154. struct intel_output *iout = NULL;
  1155. struct intel_sdvo_priv *sdvo;
  1156. /* find the sdvo connector */
  1157. list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
  1158. iout = to_intel_output(connector);
  1159. if (iout->type != INTEL_OUTPUT_SDVO)
  1160. continue;
  1161. sdvo = iout->dev_priv;
  1162. if (sdvo->output_device == SDVOB && sdvoB)
  1163. return connector;
  1164. if (sdvo->output_device == SDVOC && !sdvoB)
  1165. return connector;
  1166. }
  1167. return NULL;
  1168. }
  1169. int intel_sdvo_supports_hotplug(struct drm_connector *connector)
  1170. {
  1171. u8 response[2];
  1172. u8 status;
  1173. struct intel_output *intel_output;
  1174. DRM_DEBUG_KMS("\n");
  1175. if (!connector)
  1176. return 0;
  1177. intel_output = to_intel_output(connector);
  1178. intel_sdvo_write_cmd(intel_output, SDVO_CMD_GET_HOT_PLUG_SUPPORT, NULL, 0);
  1179. status = intel_sdvo_read_response(intel_output, &response, 2);
  1180. if (response[0] !=0)
  1181. return 1;
  1182. return 0;
  1183. }
  1184. void intel_sdvo_set_hotplug(struct drm_connector *connector, int on)
  1185. {
  1186. u8 response[2];
  1187. u8 status;
  1188. struct intel_output *intel_output = to_intel_output(connector);
  1189. intel_sdvo_write_cmd(intel_output, SDVO_CMD_GET_ACTIVE_HOT_PLUG, NULL, 0);
  1190. intel_sdvo_read_response(intel_output, &response, 2);
  1191. if (on) {
  1192. intel_sdvo_write_cmd(intel_output, SDVO_CMD_GET_HOT_PLUG_SUPPORT, NULL, 0);
  1193. status = intel_sdvo_read_response(intel_output, &response, 2);
  1194. intel_sdvo_write_cmd(intel_output, SDVO_CMD_SET_ACTIVE_HOT_PLUG, &response, 2);
  1195. } else {
  1196. response[0] = 0;
  1197. response[1] = 0;
  1198. intel_sdvo_write_cmd(intel_output, SDVO_CMD_SET_ACTIVE_HOT_PLUG, &response, 2);
  1199. }
  1200. intel_sdvo_write_cmd(intel_output, SDVO_CMD_GET_ACTIVE_HOT_PLUG, NULL, 0);
  1201. intel_sdvo_read_response(intel_output, &response, 2);
  1202. }
  1203. static void
  1204. intel_sdvo_hdmi_sink_detect(struct drm_connector *connector)
  1205. {
  1206. struct intel_output *intel_output = to_intel_output(connector);
  1207. struct intel_sdvo_priv *sdvo_priv = intel_output->dev_priv;
  1208. struct edid *edid = NULL;
  1209. edid = drm_get_edid(&intel_output->base,
  1210. intel_output->ddc_bus);
  1211. if (edid != NULL) {
  1212. sdvo_priv->is_hdmi = drm_detect_hdmi_monitor(edid);
  1213. kfree(edid);
  1214. intel_output->base.display_info.raw_edid = NULL;
  1215. }
  1216. }
  1217. static enum drm_connector_status intel_sdvo_detect(struct drm_connector *connector)
  1218. {
  1219. u8 response[2];
  1220. u8 status;
  1221. struct intel_output *intel_output = to_intel_output(connector);
  1222. intel_sdvo_write_cmd(intel_output, SDVO_CMD_GET_ATTACHED_DISPLAYS, NULL, 0);
  1223. status = intel_sdvo_read_response(intel_output, &response, 2);
  1224. DRM_DEBUG_KMS("SDVO response %d %d\n", response[0], response[1]);
  1225. if (status != SDVO_CMD_STATUS_SUCCESS)
  1226. return connector_status_unknown;
  1227. if ((response[0] != 0) || (response[1] != 0)) {
  1228. intel_sdvo_hdmi_sink_detect(connector);
  1229. return connector_status_connected;
  1230. } else
  1231. return connector_status_disconnected;
  1232. }
  1233. static void intel_sdvo_get_ddc_modes(struct drm_connector *connector)
  1234. {
  1235. struct intel_output *intel_output = to_intel_output(connector);
  1236. /* set the bus switch and get the modes */
  1237. intel_ddc_get_modes(intel_output);
  1238. #if 0
  1239. struct drm_device *dev = encoder->dev;
  1240. struct drm_i915_private *dev_priv = dev->dev_private;
  1241. /* Mac mini hack. On this device, I get DDC through the analog, which
  1242. * load-detects as disconnected. I fail to DDC through the SDVO DDC,
  1243. * but it does load-detect as connected. So, just steal the DDC bits
  1244. * from analog when we fail at finding it the right way.
  1245. */
  1246. crt = xf86_config->output[0];
  1247. intel_output = crt->driver_private;
  1248. if (intel_output->type == I830_OUTPUT_ANALOG &&
  1249. crt->funcs->detect(crt) == XF86OutputStatusDisconnected) {
  1250. I830I2CInit(pScrn, &intel_output->pDDCBus, GPIOA, "CRTDDC_A");
  1251. edid_mon = xf86OutputGetEDID(crt, intel_output->pDDCBus);
  1252. xf86DestroyI2CBusRec(intel_output->pDDCBus, true, true);
  1253. }
  1254. if (edid_mon) {
  1255. xf86OutputSetEDID(output, edid_mon);
  1256. modes = xf86OutputGetEDIDModes(output);
  1257. }
  1258. #endif
  1259. }
  1260. /**
  1261. * This function checks the current TV format, and chooses a default if
  1262. * it hasn't been set.
  1263. */
  1264. static void
  1265. intel_sdvo_check_tv_format(struct intel_output *output)
  1266. {
  1267. struct intel_sdvo_priv *dev_priv = output->dev_priv;
  1268. struct intel_sdvo_tv_format format;
  1269. uint8_t status;
  1270. intel_sdvo_write_cmd(output, SDVO_CMD_GET_TV_FORMAT, NULL, 0);
  1271. status = intel_sdvo_read_response(output, &format, sizeof(format));
  1272. if (status != SDVO_CMD_STATUS_SUCCESS)
  1273. return;
  1274. memcpy(&dev_priv->tv_format, &format, sizeof(format));
  1275. }
  1276. /*
  1277. * Set of SDVO TV modes.
  1278. * Note! This is in reply order (see loop in get_tv_modes).
  1279. * XXX: all 60Hz refresh?
  1280. */
  1281. struct drm_display_mode sdvo_tv_modes[] = {
  1282. { DRM_MODE("320x200", DRM_MODE_TYPE_DRIVER, 5815, 320, 321, 384,
  1283. 416, 0, 200, 201, 232, 233, 0,
  1284. DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
  1285. { DRM_MODE("320x240", DRM_MODE_TYPE_DRIVER, 6814, 320, 321, 384,
  1286. 416, 0, 240, 241, 272, 273, 0,
  1287. DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
  1288. { DRM_MODE("400x300", DRM_MODE_TYPE_DRIVER, 9910, 400, 401, 464,
  1289. 496, 0, 300, 301, 332, 333, 0,
  1290. DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
  1291. { DRM_MODE("640x350", DRM_MODE_TYPE_DRIVER, 16913, 640, 641, 704,
  1292. 736, 0, 350, 351, 382, 383, 0,
  1293. DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
  1294. { DRM_MODE("640x400", DRM_MODE_TYPE_DRIVER, 19121, 640, 641, 704,
  1295. 736, 0, 400, 401, 432, 433, 0,
  1296. DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
  1297. { DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 22654, 640, 641, 704,
  1298. 736, 0, 480, 481, 512, 513, 0,
  1299. DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
  1300. { DRM_MODE("704x480", DRM_MODE_TYPE_DRIVER, 24624, 704, 705, 768,
  1301. 800, 0, 480, 481, 512, 513, 0,
  1302. DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
  1303. { DRM_MODE("704x576", DRM_MODE_TYPE_DRIVER, 29232, 704, 705, 768,
  1304. 800, 0, 576, 577, 608, 609, 0,
  1305. DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
  1306. { DRM_MODE("720x350", DRM_MODE_TYPE_DRIVER, 18751, 720, 721, 784,
  1307. 816, 0, 350, 351, 382, 383, 0,
  1308. DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
  1309. { DRM_MODE("720x400", DRM_MODE_TYPE_DRIVER, 21199, 720, 721, 784,
  1310. 816, 0, 400, 401, 432, 433, 0,
  1311. DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
  1312. { DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 25116, 720, 721, 784,
  1313. 816, 0, 480, 481, 512, 513, 0,
  1314. DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
  1315. { DRM_MODE("720x540", DRM_MODE_TYPE_DRIVER, 28054, 720, 721, 784,
  1316. 816, 0, 540, 541, 572, 573, 0,
  1317. DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
  1318. { DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 29816, 720, 721, 784,
  1319. 816, 0, 576, 577, 608, 609, 0,
  1320. DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
  1321. { DRM_MODE("768x576", DRM_MODE_TYPE_DRIVER, 31570, 768, 769, 832,
  1322. 864, 0, 576, 577, 608, 609, 0,
  1323. DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
  1324. { DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 34030, 800, 801, 864,
  1325. 896, 0, 600, 601, 632, 633, 0,
  1326. DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
  1327. { DRM_MODE("832x624", DRM_MODE_TYPE_DRIVER, 36581, 832, 833, 896,
  1328. 928, 0, 624, 625, 656, 657, 0,
  1329. DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
  1330. { DRM_MODE("920x766", DRM_MODE_TYPE_DRIVER, 48707, 920, 921, 984,
  1331. 1016, 0, 766, 767, 798, 799, 0,
  1332. DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
  1333. { DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 53827, 1024, 1025, 1088,
  1334. 1120, 0, 768, 769, 800, 801, 0,
  1335. DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
  1336. { DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 87265, 1280, 1281, 1344,
  1337. 1376, 0, 1024, 1025, 1056, 1057, 0,
  1338. DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
  1339. };
  1340. static void intel_sdvo_get_tv_modes(struct drm_connector *connector)
  1341. {
  1342. struct intel_output *output = to_intel_output(connector);
  1343. struct intel_sdvo_priv *sdvo_priv = output->dev_priv;
  1344. struct intel_sdvo_sdtv_resolution_request tv_res;
  1345. uint32_t reply = 0;
  1346. uint8_t status;
  1347. int i = 0;
  1348. intel_sdvo_check_tv_format(output);
  1349. /* Read the list of supported input resolutions for the selected TV
  1350. * format.
  1351. */
  1352. memset(&tv_res, 0, sizeof(tv_res));
  1353. memcpy(&tv_res, &sdvo_priv->tv_format, sizeof(tv_res));
  1354. intel_sdvo_write_cmd(output, SDVO_CMD_GET_SDTV_RESOLUTION_SUPPORT,
  1355. &tv_res, sizeof(tv_res));
  1356. status = intel_sdvo_read_response(output, &reply, 3);
  1357. if (status != SDVO_CMD_STATUS_SUCCESS)
  1358. return;
  1359. for (i = 0; i < ARRAY_SIZE(sdvo_tv_modes); i++)
  1360. if (reply & (1 << i)) {
  1361. struct drm_display_mode *nmode;
  1362. nmode = drm_mode_duplicate(connector->dev,
  1363. &sdvo_tv_modes[i]);
  1364. if (nmode)
  1365. drm_mode_probed_add(connector, nmode);
  1366. }
  1367. }
  1368. static void intel_sdvo_get_lvds_modes(struct drm_connector *connector)
  1369. {
  1370. struct intel_output *intel_output = to_intel_output(connector);
  1371. struct drm_i915_private *dev_priv = connector->dev->dev_private;
  1372. struct intel_sdvo_priv *sdvo_priv = intel_output->dev_priv;
  1373. struct drm_display_mode *newmode;
  1374. /*
  1375. * Attempt to get the mode list from DDC.
  1376. * Assume that the preferred modes are
  1377. * arranged in priority order.
  1378. */
  1379. intel_ddc_get_modes(intel_output);
  1380. if (list_empty(&connector->probed_modes) == false)
  1381. goto end;
  1382. /* Fetch modes from VBT */
  1383. if (dev_priv->sdvo_lvds_vbt_mode != NULL) {
  1384. newmode = drm_mode_duplicate(connector->dev,
  1385. dev_priv->sdvo_lvds_vbt_mode);
  1386. if (newmode != NULL) {
  1387. /* Guarantee the mode is preferred */
  1388. newmode->type = (DRM_MODE_TYPE_PREFERRED |
  1389. DRM_MODE_TYPE_DRIVER);
  1390. drm_mode_probed_add(connector, newmode);
  1391. }
  1392. }
  1393. end:
  1394. list_for_each_entry(newmode, &connector->probed_modes, head) {
  1395. if (newmode->type & DRM_MODE_TYPE_PREFERRED) {
  1396. sdvo_priv->sdvo_lvds_fixed_mode =
  1397. drm_mode_duplicate(connector->dev, newmode);
  1398. break;
  1399. }
  1400. }
  1401. }
  1402. static int intel_sdvo_get_modes(struct drm_connector *connector)
  1403. {
  1404. struct intel_output *output = to_intel_output(connector);
  1405. struct intel_sdvo_priv *sdvo_priv = output->dev_priv;
  1406. if (sdvo_priv->is_tv)
  1407. intel_sdvo_get_tv_modes(connector);
  1408. else if (sdvo_priv->is_lvds == true)
  1409. intel_sdvo_get_lvds_modes(connector);
  1410. else
  1411. intel_sdvo_get_ddc_modes(connector);
  1412. if (list_empty(&connector->probed_modes))
  1413. return 0;
  1414. return 1;
  1415. }
  1416. static void intel_sdvo_destroy(struct drm_connector *connector)
  1417. {
  1418. struct intel_output *intel_output = to_intel_output(connector);
  1419. struct intel_sdvo_priv *sdvo_priv = intel_output->dev_priv;
  1420. if (intel_output->i2c_bus)
  1421. intel_i2c_destroy(intel_output->i2c_bus);
  1422. if (intel_output->ddc_bus)
  1423. intel_i2c_destroy(intel_output->ddc_bus);
  1424. if (sdvo_priv->sdvo_lvds_fixed_mode != NULL)
  1425. drm_mode_destroy(connector->dev,
  1426. sdvo_priv->sdvo_lvds_fixed_mode);
  1427. drm_sysfs_connector_remove(connector);
  1428. drm_connector_cleanup(connector);
  1429. kfree(intel_output);
  1430. }
  1431. static const struct drm_encoder_helper_funcs intel_sdvo_helper_funcs = {
  1432. .dpms = intel_sdvo_dpms,
  1433. .mode_fixup = intel_sdvo_mode_fixup,
  1434. .prepare = intel_encoder_prepare,
  1435. .mode_set = intel_sdvo_mode_set,
  1436. .commit = intel_encoder_commit,
  1437. };
  1438. static const struct drm_connector_funcs intel_sdvo_connector_funcs = {
  1439. .dpms = drm_helper_connector_dpms,
  1440. .save = intel_sdvo_save,
  1441. .restore = intel_sdvo_restore,
  1442. .detect = intel_sdvo_detect,
  1443. .fill_modes = drm_helper_probe_single_connector_modes,
  1444. .destroy = intel_sdvo_destroy,
  1445. };
  1446. static const struct drm_connector_helper_funcs intel_sdvo_connector_helper_funcs = {
  1447. .get_modes = intel_sdvo_get_modes,
  1448. .mode_valid = intel_sdvo_mode_valid,
  1449. .best_encoder = intel_best_encoder,
  1450. };
  1451. static void intel_sdvo_enc_destroy(struct drm_encoder *encoder)
  1452. {
  1453. drm_encoder_cleanup(encoder);
  1454. }
  1455. static const struct drm_encoder_funcs intel_sdvo_enc_funcs = {
  1456. .destroy = intel_sdvo_enc_destroy,
  1457. };
  1458. /**
  1459. * Choose the appropriate DDC bus for control bus switch command for this
  1460. * SDVO output based on the controlled output.
  1461. *
  1462. * DDC bus number assignment is in a priority order of RGB outputs, then TMDS
  1463. * outputs, then LVDS outputs.
  1464. */
  1465. static void
  1466. intel_sdvo_select_ddc_bus(struct intel_sdvo_priv *dev_priv)
  1467. {
  1468. uint16_t mask = 0;
  1469. unsigned int num_bits;
  1470. /* Make a mask of outputs less than or equal to our own priority in the
  1471. * list.
  1472. */
  1473. switch (dev_priv->controlled_output) {
  1474. case SDVO_OUTPUT_LVDS1:
  1475. mask |= SDVO_OUTPUT_LVDS1;
  1476. case SDVO_OUTPUT_LVDS0:
  1477. mask |= SDVO_OUTPUT_LVDS0;
  1478. case SDVO_OUTPUT_TMDS1:
  1479. mask |= SDVO_OUTPUT_TMDS1;
  1480. case SDVO_OUTPUT_TMDS0:
  1481. mask |= SDVO_OUTPUT_TMDS0;
  1482. case SDVO_OUTPUT_RGB1:
  1483. mask |= SDVO_OUTPUT_RGB1;
  1484. case SDVO_OUTPUT_RGB0:
  1485. mask |= SDVO_OUTPUT_RGB0;
  1486. break;
  1487. }
  1488. /* Count bits to find what number we are in the priority list. */
  1489. mask &= dev_priv->caps.output_flags;
  1490. num_bits = hweight16(mask);
  1491. if (num_bits > 3) {
  1492. /* if more than 3 outputs, default to DDC bus 3 for now */
  1493. num_bits = 3;
  1494. }
  1495. /* Corresponds to SDVO_CONTROL_BUS_DDCx */
  1496. dev_priv->ddc_bus = 1 << num_bits;
  1497. }
  1498. static bool
  1499. intel_sdvo_get_digital_encoding_mode(struct intel_output *output)
  1500. {
  1501. struct intel_sdvo_priv *sdvo_priv = output->dev_priv;
  1502. uint8_t status;
  1503. intel_sdvo_set_target_output(output, sdvo_priv->controlled_output);
  1504. intel_sdvo_write_cmd(output, SDVO_CMD_GET_ENCODE, NULL, 0);
  1505. status = intel_sdvo_read_response(output, &sdvo_priv->is_hdmi, 1);
  1506. if (status != SDVO_CMD_STATUS_SUCCESS)
  1507. return false;
  1508. return true;
  1509. }
  1510. static struct intel_output *
  1511. intel_sdvo_chan_to_intel_output(struct intel_i2c_chan *chan)
  1512. {
  1513. struct drm_device *dev = chan->drm_dev;
  1514. struct drm_connector *connector;
  1515. struct intel_output *intel_output = NULL;
  1516. list_for_each_entry(connector,
  1517. &dev->mode_config.connector_list, head) {
  1518. if (to_intel_output(connector)->ddc_bus == &chan->adapter) {
  1519. intel_output = to_intel_output(connector);
  1520. break;
  1521. }
  1522. }
  1523. return intel_output;
  1524. }
  1525. static int intel_sdvo_master_xfer(struct i2c_adapter *i2c_adap,
  1526. struct i2c_msg msgs[], int num)
  1527. {
  1528. struct intel_output *intel_output;
  1529. struct intel_sdvo_priv *sdvo_priv;
  1530. struct i2c_algo_bit_data *algo_data;
  1531. const struct i2c_algorithm *algo;
  1532. algo_data = (struct i2c_algo_bit_data *)i2c_adap->algo_data;
  1533. intel_output =
  1534. intel_sdvo_chan_to_intel_output(
  1535. (struct intel_i2c_chan *)(algo_data->data));
  1536. if (intel_output == NULL)
  1537. return -EINVAL;
  1538. sdvo_priv = intel_output->dev_priv;
  1539. algo = intel_output->i2c_bus->algo;
  1540. intel_sdvo_set_control_bus_switch(intel_output, sdvo_priv->ddc_bus);
  1541. return algo->master_xfer(i2c_adap, msgs, num);
  1542. }
  1543. static struct i2c_algorithm intel_sdvo_i2c_bit_algo = {
  1544. .master_xfer = intel_sdvo_master_xfer,
  1545. };
  1546. static u8
  1547. intel_sdvo_get_slave_addr(struct drm_device *dev, int output_device)
  1548. {
  1549. struct drm_i915_private *dev_priv = dev->dev_private;
  1550. struct sdvo_device_mapping *my_mapping, *other_mapping;
  1551. if (output_device == SDVOB) {
  1552. my_mapping = &dev_priv->sdvo_mappings[0];
  1553. other_mapping = &dev_priv->sdvo_mappings[1];
  1554. } else {
  1555. my_mapping = &dev_priv->sdvo_mappings[1];
  1556. other_mapping = &dev_priv->sdvo_mappings[0];
  1557. }
  1558. /* If the BIOS described our SDVO device, take advantage of it. */
  1559. if (my_mapping->slave_addr)
  1560. return my_mapping->slave_addr;
  1561. /* If the BIOS only described a different SDVO device, use the
  1562. * address that it isn't using.
  1563. */
  1564. if (other_mapping->slave_addr) {
  1565. if (other_mapping->slave_addr == 0x70)
  1566. return 0x72;
  1567. else
  1568. return 0x70;
  1569. }
  1570. /* No SDVO device info is found for another DVO port,
  1571. * so use mapping assumption we had before BIOS parsing.
  1572. */
  1573. if (output_device == SDVOB)
  1574. return 0x70;
  1575. else
  1576. return 0x72;
  1577. }
  1578. bool intel_sdvo_init(struct drm_device *dev, int output_device)
  1579. {
  1580. struct drm_connector *connector;
  1581. struct intel_output *intel_output;
  1582. struct intel_sdvo_priv *sdvo_priv;
  1583. int connector_type;
  1584. u8 ch[0x40];
  1585. int i;
  1586. int encoder_type;
  1587. intel_output = kcalloc(sizeof(struct intel_output)+sizeof(struct intel_sdvo_priv), 1, GFP_KERNEL);
  1588. if (!intel_output) {
  1589. return false;
  1590. }
  1591. sdvo_priv = (struct intel_sdvo_priv *)(intel_output + 1);
  1592. sdvo_priv->output_device = output_device;
  1593. intel_output->dev_priv = sdvo_priv;
  1594. intel_output->type = INTEL_OUTPUT_SDVO;
  1595. /* setup the DDC bus. */
  1596. if (output_device == SDVOB)
  1597. intel_output->i2c_bus = intel_i2c_create(dev, GPIOE, "SDVOCTRL_E for SDVOB");
  1598. else
  1599. intel_output->i2c_bus = intel_i2c_create(dev, GPIOE, "SDVOCTRL_E for SDVOC");
  1600. if (!intel_output->i2c_bus)
  1601. goto err_inteloutput;
  1602. sdvo_priv->slave_addr = intel_sdvo_get_slave_addr(dev, output_device);
  1603. /* Save the bit-banging i2c functionality for use by the DDC wrapper */
  1604. intel_sdvo_i2c_bit_algo.functionality = intel_output->i2c_bus->algo->functionality;
  1605. /* Read the regs to test if we can talk to the device */
  1606. for (i = 0; i < 0x40; i++) {
  1607. if (!intel_sdvo_read_byte(intel_output, i, &ch[i])) {
  1608. DRM_DEBUG_KMS("No SDVO device found on SDVO%c\n",
  1609. output_device == SDVOB ? 'B' : 'C');
  1610. goto err_i2c;
  1611. }
  1612. }
  1613. /* setup the DDC bus. */
  1614. if (output_device == SDVOB)
  1615. intel_output->ddc_bus = intel_i2c_create(dev, GPIOE, "SDVOB DDC BUS");
  1616. else
  1617. intel_output->ddc_bus = intel_i2c_create(dev, GPIOE, "SDVOC DDC BUS");
  1618. if (intel_output->ddc_bus == NULL)
  1619. goto err_i2c;
  1620. /* Wrap with our custom algo which switches to DDC mode */
  1621. intel_output->ddc_bus->algo = &intel_sdvo_i2c_bit_algo;
  1622. /* In defaut case sdvo lvds is false */
  1623. sdvo_priv->is_lvds = false;
  1624. intel_sdvo_get_capabilities(intel_output, &sdvo_priv->caps);
  1625. if (sdvo_priv->caps.output_flags &
  1626. (SDVO_OUTPUT_TMDS0 | SDVO_OUTPUT_TMDS1)) {
  1627. if (sdvo_priv->caps.output_flags & SDVO_OUTPUT_TMDS0)
  1628. sdvo_priv->controlled_output = SDVO_OUTPUT_TMDS0;
  1629. else
  1630. sdvo_priv->controlled_output = SDVO_OUTPUT_TMDS1;
  1631. encoder_type = DRM_MODE_ENCODER_TMDS;
  1632. connector_type = DRM_MODE_CONNECTOR_DVID;
  1633. if (intel_sdvo_get_supp_encode(intel_output,
  1634. &sdvo_priv->encode) &&
  1635. intel_sdvo_get_digital_encoding_mode(intel_output) &&
  1636. sdvo_priv->is_hdmi) {
  1637. /* enable hdmi encoding mode if supported */
  1638. intel_sdvo_set_encode(intel_output, SDVO_ENCODE_HDMI);
  1639. intel_sdvo_set_colorimetry(intel_output,
  1640. SDVO_COLORIMETRY_RGB256);
  1641. connector_type = DRM_MODE_CONNECTOR_HDMIA;
  1642. }
  1643. }
  1644. else if (sdvo_priv->caps.output_flags & SDVO_OUTPUT_SVID0)
  1645. {
  1646. sdvo_priv->controlled_output = SDVO_OUTPUT_SVID0;
  1647. encoder_type = DRM_MODE_ENCODER_TVDAC;
  1648. connector_type = DRM_MODE_CONNECTOR_SVIDEO;
  1649. sdvo_priv->is_tv = true;
  1650. intel_output->needs_tv_clock = true;
  1651. }
  1652. else if (sdvo_priv->caps.output_flags & SDVO_OUTPUT_RGB0)
  1653. {
  1654. sdvo_priv->controlled_output = SDVO_OUTPUT_RGB0;
  1655. encoder_type = DRM_MODE_ENCODER_DAC;
  1656. connector_type = DRM_MODE_CONNECTOR_VGA;
  1657. }
  1658. else if (sdvo_priv->caps.output_flags & SDVO_OUTPUT_RGB1)
  1659. {
  1660. sdvo_priv->controlled_output = SDVO_OUTPUT_RGB1;
  1661. encoder_type = DRM_MODE_ENCODER_DAC;
  1662. connector_type = DRM_MODE_CONNECTOR_VGA;
  1663. }
  1664. else if (sdvo_priv->caps.output_flags & SDVO_OUTPUT_LVDS0)
  1665. {
  1666. sdvo_priv->controlled_output = SDVO_OUTPUT_LVDS0;
  1667. encoder_type = DRM_MODE_ENCODER_LVDS;
  1668. connector_type = DRM_MODE_CONNECTOR_LVDS;
  1669. sdvo_priv->is_lvds = true;
  1670. }
  1671. else if (sdvo_priv->caps.output_flags & SDVO_OUTPUT_LVDS1)
  1672. {
  1673. sdvo_priv->controlled_output = SDVO_OUTPUT_LVDS1;
  1674. encoder_type = DRM_MODE_ENCODER_LVDS;
  1675. connector_type = DRM_MODE_CONNECTOR_LVDS;
  1676. sdvo_priv->is_lvds = true;
  1677. }
  1678. else
  1679. {
  1680. unsigned char bytes[2];
  1681. sdvo_priv->controlled_output = 0;
  1682. memcpy (bytes, &sdvo_priv->caps.output_flags, 2);
  1683. DRM_DEBUG_KMS("%s: Unknown SDVO output type (0x%02x%02x)\n",
  1684. SDVO_NAME(sdvo_priv),
  1685. bytes[0], bytes[1]);
  1686. encoder_type = DRM_MODE_ENCODER_NONE;
  1687. connector_type = DRM_MODE_CONNECTOR_Unknown;
  1688. goto err_i2c;
  1689. }
  1690. connector = &intel_output->base;
  1691. drm_connector_init(dev, connector, &intel_sdvo_connector_funcs,
  1692. connector_type);
  1693. drm_connector_helper_add(connector, &intel_sdvo_connector_helper_funcs);
  1694. connector->interlace_allowed = 0;
  1695. connector->doublescan_allowed = 0;
  1696. connector->display_info.subpixel_order = SubPixelHorizontalRGB;
  1697. drm_encoder_init(dev, &intel_output->enc, &intel_sdvo_enc_funcs, encoder_type);
  1698. drm_encoder_helper_add(&intel_output->enc, &intel_sdvo_helper_funcs);
  1699. drm_mode_connector_attach_encoder(&intel_output->base, &intel_output->enc);
  1700. drm_sysfs_connector_add(connector);
  1701. intel_sdvo_select_ddc_bus(sdvo_priv);
  1702. /* Set the input timing to the screen. Assume always input 0. */
  1703. intel_sdvo_set_target_input(intel_output, true, false);
  1704. intel_sdvo_get_input_pixel_clock_range(intel_output,
  1705. &sdvo_priv->pixel_clock_min,
  1706. &sdvo_priv->pixel_clock_max);
  1707. DRM_DEBUG_KMS("%s device VID/DID: %02X:%02X.%02X, "
  1708. "clock range %dMHz - %dMHz, "
  1709. "input 1: %c, input 2: %c, "
  1710. "output 1: %c, output 2: %c\n",
  1711. SDVO_NAME(sdvo_priv),
  1712. sdvo_priv->caps.vendor_id, sdvo_priv->caps.device_id,
  1713. sdvo_priv->caps.device_rev_id,
  1714. sdvo_priv->pixel_clock_min / 1000,
  1715. sdvo_priv->pixel_clock_max / 1000,
  1716. (sdvo_priv->caps.sdvo_inputs_mask & 0x1) ? 'Y' : 'N',
  1717. (sdvo_priv->caps.sdvo_inputs_mask & 0x2) ? 'Y' : 'N',
  1718. /* check currently supported outputs */
  1719. sdvo_priv->caps.output_flags &
  1720. (SDVO_OUTPUT_TMDS0 | SDVO_OUTPUT_RGB0) ? 'Y' : 'N',
  1721. sdvo_priv->caps.output_flags &
  1722. (SDVO_OUTPUT_TMDS1 | SDVO_OUTPUT_RGB1) ? 'Y' : 'N');
  1723. return true;
  1724. err_i2c:
  1725. if (intel_output->ddc_bus != NULL)
  1726. intel_i2c_destroy(intel_output->ddc_bus);
  1727. if (intel_output->i2c_bus != NULL)
  1728. intel_i2c_destroy(intel_output->i2c_bus);
  1729. err_inteloutput:
  1730. kfree(intel_output);
  1731. return false;
  1732. }