setup_64.c 32 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259
  1. /*
  2. * Copyright (C) 1995 Linus Torvalds
  3. */
  4. /*
  5. * This file handles the architecture-dependent parts of initialization
  6. */
  7. #include <linux/errno.h>
  8. #include <linux/sched.h>
  9. #include <linux/kernel.h>
  10. #include <linux/mm.h>
  11. #include <linux/stddef.h>
  12. #include <linux/unistd.h>
  13. #include <linux/ptrace.h>
  14. #include <linux/slab.h>
  15. #include <linux/user.h>
  16. #include <linux/a.out.h>
  17. #include <linux/screen_info.h>
  18. #include <linux/ioport.h>
  19. #include <linux/delay.h>
  20. #include <linux/init.h>
  21. #include <linux/initrd.h>
  22. #include <linux/highmem.h>
  23. #include <linux/bootmem.h>
  24. #include <linux/module.h>
  25. #include <asm/processor.h>
  26. #include <linux/console.h>
  27. #include <linux/seq_file.h>
  28. #include <linux/crash_dump.h>
  29. #include <linux/root_dev.h>
  30. #include <linux/pci.h>
  31. #include <linux/efi.h>
  32. #include <linux/acpi.h>
  33. #include <linux/kallsyms.h>
  34. #include <linux/edd.h>
  35. #include <linux/mmzone.h>
  36. #include <linux/kexec.h>
  37. #include <linux/cpufreq.h>
  38. #include <linux/dmi.h>
  39. #include <linux/dma-mapping.h>
  40. #include <linux/ctype.h>
  41. #include <linux/uaccess.h>
  42. #include <asm/mtrr.h>
  43. #include <asm/uaccess.h>
  44. #include <asm/system.h>
  45. #include <asm/vsyscall.h>
  46. #include <asm/io.h>
  47. #include <asm/smp.h>
  48. #include <asm/msr.h>
  49. #include <asm/desc.h>
  50. #include <video/edid.h>
  51. #include <asm/e820.h>
  52. #include <asm/dma.h>
  53. #include <asm/gart.h>
  54. #include <asm/mpspec.h>
  55. #include <asm/mmu_context.h>
  56. #include <asm/proto.h>
  57. #include <asm/setup.h>
  58. #include <asm/mach_apic.h>
  59. #include <asm/numa.h>
  60. #include <asm/sections.h>
  61. #include <asm/dmi.h>
  62. #include <asm/cacheflush.h>
  63. #include <asm/mce.h>
  64. #include <asm/ds.h>
  65. #include <asm/topology.h>
  66. #ifdef CONFIG_PARAVIRT
  67. #include <asm/paravirt.h>
  68. #else
  69. #define ARCH_SETUP
  70. #endif
  71. /*
  72. * Machine setup..
  73. */
  74. struct cpuinfo_x86 boot_cpu_data __read_mostly;
  75. EXPORT_SYMBOL(boot_cpu_data);
  76. __u32 cleared_cpu_caps[NCAPINTS] __cpuinitdata;
  77. unsigned long mmu_cr4_features;
  78. /* Boot loader ID as an integer, for the benefit of proc_dointvec */
  79. int bootloader_type;
  80. unsigned long saved_video_mode;
  81. int force_mwait __cpuinitdata;
  82. /*
  83. * Early DMI memory
  84. */
  85. int dmi_alloc_index;
  86. char dmi_alloc_data[DMI_MAX_DATA];
  87. /*
  88. * Setup options
  89. */
  90. struct screen_info screen_info;
  91. EXPORT_SYMBOL(screen_info);
  92. struct sys_desc_table_struct {
  93. unsigned short length;
  94. unsigned char table[0];
  95. };
  96. struct edid_info edid_info;
  97. EXPORT_SYMBOL_GPL(edid_info);
  98. extern int root_mountflags;
  99. char __initdata command_line[COMMAND_LINE_SIZE];
  100. struct resource standard_io_resources[] = {
  101. { .name = "dma1", .start = 0x00, .end = 0x1f,
  102. .flags = IORESOURCE_BUSY | IORESOURCE_IO },
  103. { .name = "pic1", .start = 0x20, .end = 0x21,
  104. .flags = IORESOURCE_BUSY | IORESOURCE_IO },
  105. { .name = "timer0", .start = 0x40, .end = 0x43,
  106. .flags = IORESOURCE_BUSY | IORESOURCE_IO },
  107. { .name = "timer1", .start = 0x50, .end = 0x53,
  108. .flags = IORESOURCE_BUSY | IORESOURCE_IO },
  109. { .name = "keyboard", .start = 0x60, .end = 0x6f,
  110. .flags = IORESOURCE_BUSY | IORESOURCE_IO },
  111. { .name = "dma page reg", .start = 0x80, .end = 0x8f,
  112. .flags = IORESOURCE_BUSY | IORESOURCE_IO },
  113. { .name = "pic2", .start = 0xa0, .end = 0xa1,
  114. .flags = IORESOURCE_BUSY | IORESOURCE_IO },
  115. { .name = "dma2", .start = 0xc0, .end = 0xdf,
  116. .flags = IORESOURCE_BUSY | IORESOURCE_IO },
  117. { .name = "fpu", .start = 0xf0, .end = 0xff,
  118. .flags = IORESOURCE_BUSY | IORESOURCE_IO }
  119. };
  120. #define IORESOURCE_RAM (IORESOURCE_BUSY | IORESOURCE_MEM)
  121. static struct resource data_resource = {
  122. .name = "Kernel data",
  123. .start = 0,
  124. .end = 0,
  125. .flags = IORESOURCE_RAM,
  126. };
  127. static struct resource code_resource = {
  128. .name = "Kernel code",
  129. .start = 0,
  130. .end = 0,
  131. .flags = IORESOURCE_RAM,
  132. };
  133. static struct resource bss_resource = {
  134. .name = "Kernel bss",
  135. .start = 0,
  136. .end = 0,
  137. .flags = IORESOURCE_RAM,
  138. };
  139. static void __cpuinit early_identify_cpu(struct cpuinfo_x86 *c);
  140. #ifdef CONFIG_PROC_VMCORE
  141. /* elfcorehdr= specifies the location of elf core header
  142. * stored by the crashed kernel. This option will be passed
  143. * by kexec loader to the capture kernel.
  144. */
  145. static int __init setup_elfcorehdr(char *arg)
  146. {
  147. char *end;
  148. if (!arg)
  149. return -EINVAL;
  150. elfcorehdr_addr = memparse(arg, &end);
  151. return end > arg ? 0 : -EINVAL;
  152. }
  153. early_param("elfcorehdr", setup_elfcorehdr);
  154. #endif
  155. #ifndef CONFIG_NUMA
  156. static void __init
  157. contig_initmem_init(unsigned long start_pfn, unsigned long end_pfn)
  158. {
  159. unsigned long bootmap_size, bootmap;
  160. bootmap_size = bootmem_bootmap_pages(end_pfn)<<PAGE_SHIFT;
  161. bootmap = find_e820_area(0, end_pfn<<PAGE_SHIFT, bootmap_size);
  162. if (bootmap == -1L)
  163. panic("Cannot find bootmem map of size %ld\n", bootmap_size);
  164. bootmap_size = init_bootmem(bootmap >> PAGE_SHIFT, end_pfn);
  165. e820_register_active_regions(0, start_pfn, end_pfn);
  166. free_bootmem_with_active_regions(0, end_pfn);
  167. reserve_bootmem(bootmap, bootmap_size);
  168. }
  169. #endif
  170. #if defined(CONFIG_EDD) || defined(CONFIG_EDD_MODULE)
  171. struct edd edd;
  172. #ifdef CONFIG_EDD_MODULE
  173. EXPORT_SYMBOL(edd);
  174. #endif
  175. /**
  176. * copy_edd() - Copy the BIOS EDD information
  177. * from boot_params into a safe place.
  178. *
  179. */
  180. static inline void copy_edd(void)
  181. {
  182. memcpy(edd.mbr_signature, boot_params.edd_mbr_sig_buffer,
  183. sizeof(edd.mbr_signature));
  184. memcpy(edd.edd_info, boot_params.eddbuf, sizeof(edd.edd_info));
  185. edd.mbr_signature_nr = boot_params.edd_mbr_sig_buf_entries;
  186. edd.edd_info_nr = boot_params.eddbuf_entries;
  187. }
  188. #else
  189. static inline void copy_edd(void)
  190. {
  191. }
  192. #endif
  193. #ifdef CONFIG_KEXEC
  194. static void __init reserve_crashkernel(void)
  195. {
  196. unsigned long long free_mem;
  197. unsigned long long crash_size, crash_base;
  198. int ret;
  199. free_mem =
  200. ((unsigned long long)max_low_pfn - min_low_pfn) << PAGE_SHIFT;
  201. ret = parse_crashkernel(boot_command_line, free_mem,
  202. &crash_size, &crash_base);
  203. if (ret == 0 && crash_size) {
  204. if (crash_base > 0) {
  205. printk(KERN_INFO "Reserving %ldMB of memory at %ldMB "
  206. "for crashkernel (System RAM: %ldMB)\n",
  207. (unsigned long)(crash_size >> 20),
  208. (unsigned long)(crash_base >> 20),
  209. (unsigned long)(free_mem >> 20));
  210. crashk_res.start = crash_base;
  211. crashk_res.end = crash_base + crash_size - 1;
  212. reserve_bootmem(crash_base, crash_size);
  213. } else
  214. printk(KERN_INFO "crashkernel reservation failed - "
  215. "you have to specify a base address\n");
  216. }
  217. }
  218. #else
  219. static inline void __init reserve_crashkernel(void)
  220. {}
  221. #endif
  222. /* Overridden in paravirt.c if CONFIG_PARAVIRT */
  223. void __attribute__((weak)) __init memory_setup(void)
  224. {
  225. machine_specific_memory_setup();
  226. }
  227. void __init setup_arch(char **cmdline_p)
  228. {
  229. unsigned i;
  230. printk(KERN_INFO "Command line: %s\n", boot_command_line);
  231. ROOT_DEV = old_decode_dev(boot_params.hdr.root_dev);
  232. screen_info = boot_params.screen_info;
  233. edid_info = boot_params.edid_info;
  234. saved_video_mode = boot_params.hdr.vid_mode;
  235. bootloader_type = boot_params.hdr.type_of_loader;
  236. #ifdef CONFIG_BLK_DEV_RAM
  237. rd_image_start = boot_params.hdr.ram_size & RAMDISK_IMAGE_START_MASK;
  238. rd_prompt = ((boot_params.hdr.ram_size & RAMDISK_PROMPT_FLAG) != 0);
  239. rd_doload = ((boot_params.hdr.ram_size & RAMDISK_LOAD_FLAG) != 0);
  240. #endif
  241. #ifdef CONFIG_EFI
  242. if (!strncmp((char *)&boot_params.efi_info.efi_loader_signature,
  243. "EL64", 4))
  244. efi_enabled = 1;
  245. #endif
  246. ARCH_SETUP
  247. memory_setup();
  248. copy_edd();
  249. if (!boot_params.hdr.root_flags)
  250. root_mountflags &= ~MS_RDONLY;
  251. init_mm.start_code = (unsigned long) &_text;
  252. init_mm.end_code = (unsigned long) &_etext;
  253. init_mm.end_data = (unsigned long) &_edata;
  254. init_mm.brk = (unsigned long) &_end;
  255. code_resource.start = virt_to_phys(&_text);
  256. code_resource.end = virt_to_phys(&_etext)-1;
  257. data_resource.start = virt_to_phys(&_etext);
  258. data_resource.end = virt_to_phys(&_edata)-1;
  259. bss_resource.start = virt_to_phys(&__bss_start);
  260. bss_resource.end = virt_to_phys(&__bss_stop)-1;
  261. early_identify_cpu(&boot_cpu_data);
  262. strlcpy(command_line, boot_command_line, COMMAND_LINE_SIZE);
  263. *cmdline_p = command_line;
  264. parse_early_param();
  265. finish_e820_parsing();
  266. early_gart_iommu_check();
  267. e820_register_active_regions(0, 0, -1UL);
  268. /*
  269. * partially used pages are not usable - thus
  270. * we are rounding upwards:
  271. */
  272. end_pfn = e820_end_of_ram();
  273. /* update e820 for memory not covered by WB MTRRs */
  274. mtrr_bp_init();
  275. if (mtrr_trim_uncached_memory(end_pfn)) {
  276. e820_register_active_regions(0, 0, -1UL);
  277. end_pfn = e820_end_of_ram();
  278. }
  279. num_physpages = end_pfn;
  280. check_efer();
  281. init_memory_mapping(0, (end_pfn_map << PAGE_SHIFT));
  282. if (efi_enabled)
  283. efi_init();
  284. dmi_scan_machine();
  285. io_delay_init();
  286. #ifdef CONFIG_SMP
  287. /* setup to use the early static init tables during kernel startup */
  288. x86_cpu_to_apicid_early_ptr = (void *)&x86_cpu_to_apicid_init;
  289. x86_bios_cpu_apicid_early_ptr = (void *)&x86_bios_cpu_apicid_init;
  290. #ifdef CONFIG_NUMA
  291. x86_cpu_to_node_map_early_ptr = (void *)&x86_cpu_to_node_map_init;
  292. #endif
  293. x86_bios_cpu_apicid_early_ptr = (void *)&x86_bios_cpu_apicid_init;
  294. #endif
  295. #ifdef CONFIG_ACPI
  296. /*
  297. * Initialize the ACPI boot-time table parser (gets the RSDP and SDT).
  298. * Call this early for SRAT node setup.
  299. */
  300. acpi_boot_table_init();
  301. #endif
  302. /* How many end-of-memory variables you have, grandma! */
  303. max_low_pfn = end_pfn;
  304. max_pfn = end_pfn;
  305. high_memory = (void *)__va(end_pfn * PAGE_SIZE - 1) + 1;
  306. /* Remove active ranges so rediscovery with NUMA-awareness happens */
  307. remove_all_active_ranges();
  308. #ifdef CONFIG_ACPI_NUMA
  309. /*
  310. * Parse SRAT to discover nodes.
  311. */
  312. acpi_numa_init();
  313. #endif
  314. #ifdef CONFIG_NUMA
  315. numa_initmem_init(0, end_pfn);
  316. #else
  317. contig_initmem_init(0, end_pfn);
  318. #endif
  319. early_res_to_bootmem();
  320. #ifdef CONFIG_ACPI_SLEEP
  321. /*
  322. * Reserve low memory region for sleep support.
  323. */
  324. acpi_reserve_bootmem();
  325. #endif
  326. if (efi_enabled) {
  327. efi_map_memmap();
  328. efi_reserve_bootmem();
  329. }
  330. /*
  331. * Find and reserve possible boot-time SMP configuration:
  332. */
  333. find_smp_config();
  334. #ifdef CONFIG_BLK_DEV_INITRD
  335. if (boot_params.hdr.type_of_loader && boot_params.hdr.ramdisk_image) {
  336. unsigned long ramdisk_image = boot_params.hdr.ramdisk_image;
  337. unsigned long ramdisk_size = boot_params.hdr.ramdisk_size;
  338. unsigned long ramdisk_end = ramdisk_image + ramdisk_size;
  339. unsigned long end_of_mem = end_pfn << PAGE_SHIFT;
  340. if (ramdisk_end <= end_of_mem) {
  341. reserve_bootmem_generic(ramdisk_image, ramdisk_size);
  342. initrd_start = ramdisk_image + PAGE_OFFSET;
  343. initrd_end = initrd_start+ramdisk_size;
  344. } else {
  345. /* Assumes everything on node 0 */
  346. free_bootmem(ramdisk_image, ramdisk_size);
  347. printk(KERN_ERR "initrd extends beyond end of memory "
  348. "(0x%08lx > 0x%08lx)\ndisabling initrd\n",
  349. ramdisk_end, end_of_mem);
  350. initrd_start = 0;
  351. }
  352. }
  353. #endif
  354. reserve_crashkernel();
  355. paging_init();
  356. map_vsyscall();
  357. early_quirks();
  358. /*
  359. * set this early, so we dont allocate cpu0
  360. * if MADT list doesnt list BSP first
  361. * mpparse.c/MP_processor_info() allocates logical cpu numbers.
  362. */
  363. cpu_set(0, cpu_present_map);
  364. #ifdef CONFIG_ACPI
  365. /*
  366. * Read APIC and some other early information from ACPI tables.
  367. */
  368. acpi_boot_init();
  369. #endif
  370. init_cpu_to_node();
  371. /*
  372. * get boot-time SMP configuration:
  373. */
  374. if (smp_found_config)
  375. get_smp_config();
  376. init_apic_mappings();
  377. ioapic_init_mappings();
  378. /*
  379. * We trust e820 completely. No explicit ROM probing in memory.
  380. */
  381. e820_reserve_resources(&code_resource, &data_resource, &bss_resource);
  382. e820_mark_nosave_regions();
  383. /* request I/O space for devices used on all i[345]86 PCs */
  384. for (i = 0; i < ARRAY_SIZE(standard_io_resources); i++)
  385. request_resource(&ioport_resource, &standard_io_resources[i]);
  386. e820_setup_gap();
  387. #ifdef CONFIG_VT
  388. #if defined(CONFIG_VGA_CONSOLE)
  389. if (!efi_enabled || (efi_mem_type(0xa0000) != EFI_CONVENTIONAL_MEMORY))
  390. conswitchp = &vga_con;
  391. #elif defined(CONFIG_DUMMY_CONSOLE)
  392. conswitchp = &dummy_con;
  393. #endif
  394. #endif
  395. }
  396. static int __cpuinit get_model_name(struct cpuinfo_x86 *c)
  397. {
  398. unsigned int *v;
  399. if (c->extended_cpuid_level < 0x80000004)
  400. return 0;
  401. v = (unsigned int *) c->x86_model_id;
  402. cpuid(0x80000002, &v[0], &v[1], &v[2], &v[3]);
  403. cpuid(0x80000003, &v[4], &v[5], &v[6], &v[7]);
  404. cpuid(0x80000004, &v[8], &v[9], &v[10], &v[11]);
  405. c->x86_model_id[48] = 0;
  406. return 1;
  407. }
  408. static void __cpuinit display_cacheinfo(struct cpuinfo_x86 *c)
  409. {
  410. unsigned int n, dummy, eax, ebx, ecx, edx;
  411. n = c->extended_cpuid_level;
  412. if (n >= 0x80000005) {
  413. cpuid(0x80000005, &dummy, &ebx, &ecx, &edx);
  414. printk(KERN_INFO "CPU: L1 I Cache: %dK (%d bytes/line), "
  415. "D cache %dK (%d bytes/line)\n",
  416. edx>>24, edx&0xFF, ecx>>24, ecx&0xFF);
  417. c->x86_cache_size = (ecx>>24) + (edx>>24);
  418. /* On K8 L1 TLB is inclusive, so don't count it */
  419. c->x86_tlbsize = 0;
  420. }
  421. if (n >= 0x80000006) {
  422. cpuid(0x80000006, &dummy, &ebx, &ecx, &edx);
  423. ecx = cpuid_ecx(0x80000006);
  424. c->x86_cache_size = ecx >> 16;
  425. c->x86_tlbsize += ((ebx >> 16) & 0xfff) + (ebx & 0xfff);
  426. printk(KERN_INFO "CPU: L2 Cache: %dK (%d bytes/line)\n",
  427. c->x86_cache_size, ecx & 0xFF);
  428. }
  429. if (n >= 0x80000008) {
  430. cpuid(0x80000008, &eax, &dummy, &dummy, &dummy);
  431. c->x86_virt_bits = (eax >> 8) & 0xff;
  432. c->x86_phys_bits = eax & 0xff;
  433. }
  434. }
  435. #ifdef CONFIG_NUMA
  436. static int nearby_node(int apicid)
  437. {
  438. int i, node;
  439. for (i = apicid - 1; i >= 0; i--) {
  440. node = apicid_to_node[i];
  441. if (node != NUMA_NO_NODE && node_online(node))
  442. return node;
  443. }
  444. for (i = apicid + 1; i < MAX_LOCAL_APIC; i++) {
  445. node = apicid_to_node[i];
  446. if (node != NUMA_NO_NODE && node_online(node))
  447. return node;
  448. }
  449. return first_node(node_online_map); /* Shouldn't happen */
  450. }
  451. #endif
  452. /*
  453. * On a AMD dual core setup the lower bits of the APIC id distingush the cores.
  454. * Assumes number of cores is a power of two.
  455. */
  456. static void __init amd_detect_cmp(struct cpuinfo_x86 *c)
  457. {
  458. #ifdef CONFIG_SMP
  459. unsigned bits;
  460. #ifdef CONFIG_NUMA
  461. int cpu = smp_processor_id();
  462. int node = 0;
  463. unsigned apicid = hard_smp_processor_id();
  464. #endif
  465. bits = c->x86_coreid_bits;
  466. /* Low order bits define the core id (index of core in socket) */
  467. c->cpu_core_id = c->phys_proc_id & ((1 << bits)-1);
  468. /* Convert the APIC ID into the socket ID */
  469. c->phys_proc_id = phys_pkg_id(bits);
  470. #ifdef CONFIG_NUMA
  471. node = c->phys_proc_id;
  472. if (apicid_to_node[apicid] != NUMA_NO_NODE)
  473. node = apicid_to_node[apicid];
  474. if (!node_online(node)) {
  475. /* Two possibilities here:
  476. - The CPU is missing memory and no node was created.
  477. In that case try picking one from a nearby CPU
  478. - The APIC IDs differ from the HyperTransport node IDs
  479. which the K8 northbridge parsing fills in.
  480. Assume they are all increased by a constant offset,
  481. but in the same order as the HT nodeids.
  482. If that doesn't result in a usable node fall back to the
  483. path for the previous case. */
  484. int ht_nodeid = apicid - (cpu_data(0).phys_proc_id << bits);
  485. if (ht_nodeid >= 0 &&
  486. apicid_to_node[ht_nodeid] != NUMA_NO_NODE)
  487. node = apicid_to_node[ht_nodeid];
  488. /* Pick a nearby node */
  489. if (!node_online(node))
  490. node = nearby_node(apicid);
  491. }
  492. numa_set_node(cpu, node);
  493. printk(KERN_INFO "CPU %d/%x -> Node %d\n", cpu, apicid, node);
  494. #endif
  495. #endif
  496. }
  497. static void __cpuinit early_init_amd_mc(struct cpuinfo_x86 *c)
  498. {
  499. #ifdef CONFIG_SMP
  500. unsigned bits, ecx;
  501. /* Multi core CPU? */
  502. if (c->extended_cpuid_level < 0x80000008)
  503. return;
  504. ecx = cpuid_ecx(0x80000008);
  505. c->x86_max_cores = (ecx & 0xff) + 1;
  506. /* CPU telling us the core id bits shift? */
  507. bits = (ecx >> 12) & 0xF;
  508. /* Otherwise recompute */
  509. if (bits == 0) {
  510. while ((1 << bits) < c->x86_max_cores)
  511. bits++;
  512. }
  513. c->x86_coreid_bits = bits;
  514. #endif
  515. }
  516. #define ENABLE_C1E_MASK 0x18000000
  517. #define CPUID_PROCESSOR_SIGNATURE 1
  518. #define CPUID_XFAM 0x0ff00000
  519. #define CPUID_XFAM_K8 0x00000000
  520. #define CPUID_XFAM_10H 0x00100000
  521. #define CPUID_XFAM_11H 0x00200000
  522. #define CPUID_XMOD 0x000f0000
  523. #define CPUID_XMOD_REV_F 0x00040000
  524. /* AMD systems with C1E don't have a working lAPIC timer. Check for that. */
  525. static __cpuinit int amd_apic_timer_broken(void)
  526. {
  527. u32 lo, hi, eax = cpuid_eax(CPUID_PROCESSOR_SIGNATURE);
  528. switch (eax & CPUID_XFAM) {
  529. case CPUID_XFAM_K8:
  530. if ((eax & CPUID_XMOD) < CPUID_XMOD_REV_F)
  531. break;
  532. case CPUID_XFAM_10H:
  533. case CPUID_XFAM_11H:
  534. rdmsr(MSR_K8_ENABLE_C1E, lo, hi);
  535. if (lo & ENABLE_C1E_MASK)
  536. return 1;
  537. break;
  538. default:
  539. /* err on the side of caution */
  540. return 1;
  541. }
  542. return 0;
  543. }
  544. static void __cpuinit early_init_amd(struct cpuinfo_x86 *c)
  545. {
  546. early_init_amd_mc(c);
  547. /* c->x86_power is 8000_0007 edx. Bit 8 is constant TSC */
  548. if (c->x86_power & (1<<8))
  549. set_cpu_cap(c, X86_FEATURE_CONSTANT_TSC);
  550. }
  551. static void __cpuinit init_amd(struct cpuinfo_x86 *c)
  552. {
  553. unsigned level;
  554. #ifdef CONFIG_SMP
  555. unsigned long value;
  556. /*
  557. * Disable TLB flush filter by setting HWCR.FFDIS on K8
  558. * bit 6 of msr C001_0015
  559. *
  560. * Errata 63 for SH-B3 steppings
  561. * Errata 122 for all steppings (F+ have it disabled by default)
  562. */
  563. if (c->x86 == 15) {
  564. rdmsrl(MSR_K8_HWCR, value);
  565. value |= 1 << 6;
  566. wrmsrl(MSR_K8_HWCR, value);
  567. }
  568. #endif
  569. /* Bit 31 in normal CPUID used for nonstandard 3DNow ID;
  570. 3DNow is IDd by bit 31 in extended CPUID (1*32+31) anyway */
  571. clear_bit(0*32+31, (unsigned long *)&c->x86_capability);
  572. /* On C+ stepping K8 rep microcode works well for copy/memset */
  573. level = cpuid_eax(1);
  574. if (c->x86 == 15 && ((level >= 0x0f48 && level < 0x0f50) ||
  575. level >= 0x0f58))
  576. set_cpu_cap(c, X86_FEATURE_REP_GOOD);
  577. if (c->x86 == 0x10 || c->x86 == 0x11)
  578. set_cpu_cap(c, X86_FEATURE_REP_GOOD);
  579. /* Enable workaround for FXSAVE leak */
  580. if (c->x86 >= 6)
  581. set_cpu_cap(c, X86_FEATURE_FXSAVE_LEAK);
  582. level = get_model_name(c);
  583. if (!level) {
  584. switch (c->x86) {
  585. case 15:
  586. /* Should distinguish Models here, but this is only
  587. a fallback anyways. */
  588. strcpy(c->x86_model_id, "Hammer");
  589. break;
  590. }
  591. }
  592. display_cacheinfo(c);
  593. /* Multi core CPU? */
  594. if (c->extended_cpuid_level >= 0x80000008)
  595. amd_detect_cmp(c);
  596. if (c->extended_cpuid_level >= 0x80000006 &&
  597. (cpuid_edx(0x80000006) & 0xf000))
  598. num_cache_leaves = 4;
  599. else
  600. num_cache_leaves = 3;
  601. if (c->x86 == 0xf || c->x86 == 0x10 || c->x86 == 0x11)
  602. set_cpu_cap(c, X86_FEATURE_K8);
  603. /* MFENCE stops RDTSC speculation */
  604. set_cpu_cap(c, X86_FEATURE_MFENCE_RDTSC);
  605. if (amd_apic_timer_broken())
  606. disable_apic_timer = 1;
  607. }
  608. void __cpuinit detect_ht(struct cpuinfo_x86 *c)
  609. {
  610. #ifdef CONFIG_SMP
  611. u32 eax, ebx, ecx, edx;
  612. int index_msb, core_bits;
  613. cpuid(1, &eax, &ebx, &ecx, &edx);
  614. if (!cpu_has(c, X86_FEATURE_HT))
  615. return;
  616. if (cpu_has(c, X86_FEATURE_CMP_LEGACY))
  617. goto out;
  618. smp_num_siblings = (ebx & 0xff0000) >> 16;
  619. if (smp_num_siblings == 1) {
  620. printk(KERN_INFO "CPU: Hyper-Threading is disabled\n");
  621. } else if (smp_num_siblings > 1) {
  622. if (smp_num_siblings > NR_CPUS) {
  623. printk(KERN_WARNING "CPU: Unsupported number of "
  624. "siblings %d", smp_num_siblings);
  625. smp_num_siblings = 1;
  626. return;
  627. }
  628. index_msb = get_count_order(smp_num_siblings);
  629. c->phys_proc_id = phys_pkg_id(index_msb);
  630. smp_num_siblings = smp_num_siblings / c->x86_max_cores;
  631. index_msb = get_count_order(smp_num_siblings);
  632. core_bits = get_count_order(c->x86_max_cores);
  633. c->cpu_core_id = phys_pkg_id(index_msb) &
  634. ((1 << core_bits) - 1);
  635. }
  636. out:
  637. if ((c->x86_max_cores * smp_num_siblings) > 1) {
  638. printk(KERN_INFO "CPU: Physical Processor ID: %d\n",
  639. c->phys_proc_id);
  640. printk(KERN_INFO "CPU: Processor Core ID: %d\n",
  641. c->cpu_core_id);
  642. }
  643. #endif
  644. }
  645. /*
  646. * find out the number of processor cores on the die
  647. */
  648. static int __cpuinit intel_num_cpu_cores(struct cpuinfo_x86 *c)
  649. {
  650. unsigned int eax, t;
  651. if (c->cpuid_level < 4)
  652. return 1;
  653. cpuid_count(4, 0, &eax, &t, &t, &t);
  654. if (eax & 0x1f)
  655. return ((eax >> 26) + 1);
  656. else
  657. return 1;
  658. }
  659. static void srat_detect_node(void)
  660. {
  661. #ifdef CONFIG_NUMA
  662. unsigned node;
  663. int cpu = smp_processor_id();
  664. int apicid = hard_smp_processor_id();
  665. /* Don't do the funky fallback heuristics the AMD version employs
  666. for now. */
  667. node = apicid_to_node[apicid];
  668. if (node == NUMA_NO_NODE)
  669. node = first_node(node_online_map);
  670. numa_set_node(cpu, node);
  671. printk(KERN_INFO "CPU %d/%x -> Node %d\n", cpu, apicid, node);
  672. #endif
  673. }
  674. static void __cpuinit early_init_intel(struct cpuinfo_x86 *c)
  675. {
  676. if ((c->x86 == 0xf && c->x86_model >= 0x03) ||
  677. (c->x86 == 0x6 && c->x86_model >= 0x0e))
  678. set_bit(X86_FEATURE_CONSTANT_TSC, &c->x86_capability);
  679. }
  680. static void __cpuinit init_intel(struct cpuinfo_x86 *c)
  681. {
  682. /* Cache sizes */
  683. unsigned n;
  684. init_intel_cacheinfo(c);
  685. if (c->cpuid_level > 9) {
  686. unsigned eax = cpuid_eax(10);
  687. /* Check for version and the number of counters */
  688. if ((eax & 0xff) && (((eax>>8) & 0xff) > 1))
  689. set_cpu_cap(c, X86_FEATURE_ARCH_PERFMON);
  690. }
  691. if (cpu_has_ds) {
  692. unsigned int l1, l2;
  693. rdmsr(MSR_IA32_MISC_ENABLE, l1, l2);
  694. if (!(l1 & (1<<11)))
  695. set_cpu_cap(c, X86_FEATURE_BTS);
  696. if (!(l1 & (1<<12)))
  697. set_cpu_cap(c, X86_FEATURE_PEBS);
  698. }
  699. if (cpu_has_bts)
  700. ds_init_intel(c);
  701. n = c->extended_cpuid_level;
  702. if (n >= 0x80000008) {
  703. unsigned eax = cpuid_eax(0x80000008);
  704. c->x86_virt_bits = (eax >> 8) & 0xff;
  705. c->x86_phys_bits = eax & 0xff;
  706. /* CPUID workaround for Intel 0F34 CPU */
  707. if (c->x86_vendor == X86_VENDOR_INTEL &&
  708. c->x86 == 0xF && c->x86_model == 0x3 &&
  709. c->x86_mask == 0x4)
  710. c->x86_phys_bits = 36;
  711. }
  712. if (c->x86 == 15)
  713. c->x86_cache_alignment = c->x86_clflush_size * 2;
  714. if ((c->x86 == 0xf && c->x86_model >= 0x03) ||
  715. (c->x86 == 0x6 && c->x86_model >= 0x0e))
  716. set_cpu_cap(c, X86_FEATURE_CONSTANT_TSC);
  717. if (c->x86 == 6)
  718. set_cpu_cap(c, X86_FEATURE_REP_GOOD);
  719. set_cpu_cap(c, X86_FEATURE_LFENCE_RDTSC);
  720. c->x86_max_cores = intel_num_cpu_cores(c);
  721. srat_detect_node();
  722. }
  723. static void __cpuinit get_cpu_vendor(struct cpuinfo_x86 *c)
  724. {
  725. char *v = c->x86_vendor_id;
  726. if (!strcmp(v, "AuthenticAMD"))
  727. c->x86_vendor = X86_VENDOR_AMD;
  728. else if (!strcmp(v, "GenuineIntel"))
  729. c->x86_vendor = X86_VENDOR_INTEL;
  730. else
  731. c->x86_vendor = X86_VENDOR_UNKNOWN;
  732. }
  733. struct cpu_model_info {
  734. int vendor;
  735. int family;
  736. char *model_names[16];
  737. };
  738. /* Do some early cpuid on the boot CPU to get some parameter that are
  739. needed before check_bugs. Everything advanced is in identify_cpu
  740. below. */
  741. static void __cpuinit early_identify_cpu(struct cpuinfo_x86 *c)
  742. {
  743. u32 tfms, xlvl;
  744. c->loops_per_jiffy = loops_per_jiffy;
  745. c->x86_cache_size = -1;
  746. c->x86_vendor = X86_VENDOR_UNKNOWN;
  747. c->x86_model = c->x86_mask = 0; /* So far unknown... */
  748. c->x86_vendor_id[0] = '\0'; /* Unset */
  749. c->x86_model_id[0] = '\0'; /* Unset */
  750. c->x86_clflush_size = 64;
  751. c->x86_cache_alignment = c->x86_clflush_size;
  752. c->x86_max_cores = 1;
  753. c->x86_coreid_bits = 0;
  754. c->extended_cpuid_level = 0;
  755. memset(&c->x86_capability, 0, sizeof c->x86_capability);
  756. /* Get vendor name */
  757. cpuid(0x00000000, (unsigned int *)&c->cpuid_level,
  758. (unsigned int *)&c->x86_vendor_id[0],
  759. (unsigned int *)&c->x86_vendor_id[8],
  760. (unsigned int *)&c->x86_vendor_id[4]);
  761. get_cpu_vendor(c);
  762. /* Initialize the standard set of capabilities */
  763. /* Note that the vendor-specific code below might override */
  764. /* Intel-defined flags: level 0x00000001 */
  765. if (c->cpuid_level >= 0x00000001) {
  766. __u32 misc;
  767. cpuid(0x00000001, &tfms, &misc, &c->x86_capability[4],
  768. &c->x86_capability[0]);
  769. c->x86 = (tfms >> 8) & 0xf;
  770. c->x86_model = (tfms >> 4) & 0xf;
  771. c->x86_mask = tfms & 0xf;
  772. if (c->x86 == 0xf)
  773. c->x86 += (tfms >> 20) & 0xff;
  774. if (c->x86 >= 0x6)
  775. c->x86_model += ((tfms >> 16) & 0xF) << 4;
  776. if (c->x86_capability[0] & (1<<19))
  777. c->x86_clflush_size = ((misc >> 8) & 0xff) * 8;
  778. } else {
  779. /* Have CPUID level 0 only - unheard of */
  780. c->x86 = 4;
  781. }
  782. #ifdef CONFIG_SMP
  783. c->phys_proc_id = (cpuid_ebx(1) >> 24) & 0xff;
  784. #endif
  785. /* AMD-defined flags: level 0x80000001 */
  786. xlvl = cpuid_eax(0x80000000);
  787. c->extended_cpuid_level = xlvl;
  788. if ((xlvl & 0xffff0000) == 0x80000000) {
  789. if (xlvl >= 0x80000001) {
  790. c->x86_capability[1] = cpuid_edx(0x80000001);
  791. c->x86_capability[6] = cpuid_ecx(0x80000001);
  792. }
  793. if (xlvl >= 0x80000004)
  794. get_model_name(c); /* Default name */
  795. }
  796. /* Transmeta-defined flags: level 0x80860001 */
  797. xlvl = cpuid_eax(0x80860000);
  798. if ((xlvl & 0xffff0000) == 0x80860000) {
  799. /* Don't set x86_cpuid_level here for now to not confuse. */
  800. if (xlvl >= 0x80860001)
  801. c->x86_capability[2] = cpuid_edx(0x80860001);
  802. }
  803. c->extended_cpuid_level = cpuid_eax(0x80000000);
  804. if (c->extended_cpuid_level >= 0x80000007)
  805. c->x86_power = cpuid_edx(0x80000007);
  806. switch (c->x86_vendor) {
  807. case X86_VENDOR_AMD:
  808. early_init_amd(c);
  809. break;
  810. case X86_VENDOR_INTEL:
  811. early_init_intel(c);
  812. break;
  813. }
  814. }
  815. /*
  816. * This does the hard work of actually picking apart the CPU stuff...
  817. */
  818. void __cpuinit identify_cpu(struct cpuinfo_x86 *c)
  819. {
  820. int i;
  821. early_identify_cpu(c);
  822. init_scattered_cpuid_features(c);
  823. c->apicid = phys_pkg_id(0);
  824. /*
  825. * Vendor-specific initialization. In this section we
  826. * canonicalize the feature flags, meaning if there are
  827. * features a certain CPU supports which CPUID doesn't
  828. * tell us, CPUID claiming incorrect flags, or other bugs,
  829. * we handle them here.
  830. *
  831. * At the end of this section, c->x86_capability better
  832. * indicate the features this CPU genuinely supports!
  833. */
  834. switch (c->x86_vendor) {
  835. case X86_VENDOR_AMD:
  836. init_amd(c);
  837. break;
  838. case X86_VENDOR_INTEL:
  839. init_intel(c);
  840. break;
  841. case X86_VENDOR_UNKNOWN:
  842. default:
  843. display_cacheinfo(c);
  844. break;
  845. }
  846. detect_ht(c);
  847. /*
  848. * On SMP, boot_cpu_data holds the common feature set between
  849. * all CPUs; so make sure that we indicate which features are
  850. * common between the CPUs. The first time this routine gets
  851. * executed, c == &boot_cpu_data.
  852. */
  853. if (c != &boot_cpu_data) {
  854. /* AND the already accumulated flags with these */
  855. for (i = 0; i < NCAPINTS; i++)
  856. boot_cpu_data.x86_capability[i] &= c->x86_capability[i];
  857. }
  858. /* Clear all flags overriden by options */
  859. for (i = 0; i < NCAPINTS; i++)
  860. c->x86_capability[i] ^= cleared_cpu_caps[i];
  861. #ifdef CONFIG_X86_MCE
  862. mcheck_init(c);
  863. #endif
  864. select_idle_routine(c);
  865. if (c != &boot_cpu_data)
  866. mtrr_ap_init();
  867. #ifdef CONFIG_NUMA
  868. numa_add_cpu(smp_processor_id());
  869. #endif
  870. }
  871. static __init int setup_noclflush(char *arg)
  872. {
  873. setup_clear_cpu_cap(X86_FEATURE_CLFLSH);
  874. return 1;
  875. }
  876. __setup("noclflush", setup_noclflush);
  877. void __cpuinit print_cpu_info(struct cpuinfo_x86 *c)
  878. {
  879. if (c->x86_model_id[0])
  880. printk(KERN_INFO "%s", c->x86_model_id);
  881. if (c->x86_mask || c->cpuid_level >= 0)
  882. printk(KERN_CONT " stepping %02x\n", c->x86_mask);
  883. else
  884. printk(KERN_CONT "\n");
  885. }
  886. static __init int setup_disablecpuid(char *arg)
  887. {
  888. int bit;
  889. if (get_option(&arg, &bit) && bit < NCAPINTS*32)
  890. setup_clear_cpu_cap(bit);
  891. else
  892. return 0;
  893. return 1;
  894. }
  895. __setup("clearcpuid=", setup_disablecpuid);
  896. /*
  897. * Get CPU information for use by the procfs.
  898. */
  899. static int show_cpuinfo(struct seq_file *m, void *v)
  900. {
  901. struct cpuinfo_x86 *c = v;
  902. int cpu = 0, i;
  903. /*
  904. * These flag bits must match the definitions in <asm/cpufeature.h>.
  905. * NULL means this bit is undefined or reserved; either way it doesn't
  906. * have meaning as far as Linux is concerned. Note that it's important
  907. * to realize there is a difference between this table and CPUID -- if
  908. * applications want to get the raw CPUID data, they should access
  909. * /dev/cpu/<cpu_nr>/cpuid instead.
  910. */
  911. static const char *const x86_cap_flags[] = {
  912. /* Intel-defined */
  913. "fpu", "vme", "de", "pse", "tsc", "msr", "pae", "mce",
  914. "cx8", "apic", NULL, "sep", "mtrr", "pge", "mca", "cmov",
  915. "pat", "pse36", "pn", "clflush", NULL, "dts", "acpi", "mmx",
  916. "fxsr", "sse", "sse2", "ss", "ht", "tm", "ia64", "pbe",
  917. /* AMD-defined */
  918. NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
  919. NULL, NULL, NULL, "syscall", NULL, NULL, NULL, NULL,
  920. NULL, NULL, NULL, NULL, "nx", NULL, "mmxext", NULL,
  921. NULL, "fxsr_opt", "pdpe1gb", "rdtscp", NULL, "lm",
  922. "3dnowext", "3dnow",
  923. /* Transmeta-defined */
  924. "recovery", "longrun", NULL, "lrti", NULL, NULL, NULL, NULL,
  925. NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
  926. NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
  927. NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
  928. /* Other (Linux-defined) */
  929. "cxmmx", "k6_mtrr", "cyrix_arr", "centaur_mcr",
  930. NULL, NULL, NULL, NULL,
  931. "constant_tsc", "up", NULL, "arch_perfmon",
  932. "pebs", "bts", NULL, "sync_rdtsc",
  933. "rep_good", NULL, NULL, NULL, NULL, NULL, NULL, NULL,
  934. NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
  935. /* Intel-defined (#2) */
  936. "pni", NULL, NULL, "monitor", "ds_cpl", "vmx", "smx", "est",
  937. "tm2", "ssse3", "cid", NULL, NULL, "cx16", "xtpr", NULL,
  938. NULL, NULL, "dca", "sse4_1", "sse4_2", NULL, NULL, "popcnt",
  939. NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
  940. /* VIA/Cyrix/Centaur-defined */
  941. NULL, NULL, "rng", "rng_en", NULL, NULL, "ace", "ace_en",
  942. "ace2", "ace2_en", "phe", "phe_en", "pmm", "pmm_en", NULL, NULL,
  943. NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
  944. NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
  945. /* AMD-defined (#2) */
  946. "lahf_lm", "cmp_legacy", "svm", "extapic",
  947. "cr8_legacy", "abm", "sse4a", "misalignsse",
  948. "3dnowprefetch", "osvw", "ibs", "sse5",
  949. "skinit", "wdt", NULL, NULL,
  950. NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
  951. NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
  952. /* Auxiliary (Linux-defined) */
  953. "ida", NULL, NULL, NULL, NULL, NULL, NULL, NULL,
  954. NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
  955. NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
  956. NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
  957. };
  958. static const char *const x86_power_flags[] = {
  959. "ts", /* temperature sensor */
  960. "fid", /* frequency id control */
  961. "vid", /* voltage id control */
  962. "ttp", /* thermal trip */
  963. "tm",
  964. "stc",
  965. "100mhzsteps",
  966. "hwpstate",
  967. "", /* tsc invariant mapped to constant_tsc */
  968. /* nothing */
  969. };
  970. #ifdef CONFIG_SMP
  971. cpu = c->cpu_index;
  972. #endif
  973. seq_printf(m, "processor\t: %u\n"
  974. "vendor_id\t: %s\n"
  975. "cpu family\t: %d\n"
  976. "model\t\t: %d\n"
  977. "model name\t: %s\n",
  978. (unsigned)cpu,
  979. c->x86_vendor_id[0] ? c->x86_vendor_id : "unknown",
  980. c->x86,
  981. (int)c->x86_model,
  982. c->x86_model_id[0] ? c->x86_model_id : "unknown");
  983. if (c->x86_mask || c->cpuid_level >= 0)
  984. seq_printf(m, "stepping\t: %d\n", c->x86_mask);
  985. else
  986. seq_printf(m, "stepping\t: unknown\n");
  987. if (cpu_has(c, X86_FEATURE_TSC)) {
  988. unsigned int freq = cpufreq_quick_get((unsigned)cpu);
  989. if (!freq)
  990. freq = cpu_khz;
  991. seq_printf(m, "cpu MHz\t\t: %u.%03u\n",
  992. freq / 1000, (freq % 1000));
  993. }
  994. /* Cache size */
  995. if (c->x86_cache_size >= 0)
  996. seq_printf(m, "cache size\t: %d KB\n", c->x86_cache_size);
  997. #ifdef CONFIG_SMP
  998. if (smp_num_siblings * c->x86_max_cores > 1) {
  999. seq_printf(m, "physical id\t: %d\n", c->phys_proc_id);
  1000. seq_printf(m, "siblings\t: %d\n",
  1001. cpus_weight(per_cpu(cpu_core_map, cpu)));
  1002. seq_printf(m, "core id\t\t: %d\n", c->cpu_core_id);
  1003. seq_printf(m, "cpu cores\t: %d\n", c->booted_cores);
  1004. }
  1005. #endif
  1006. seq_printf(m,
  1007. "fpu\t\t: yes\n"
  1008. "fpu_exception\t: yes\n"
  1009. "cpuid level\t: %d\n"
  1010. "wp\t\t: yes\n"
  1011. "flags\t\t:",
  1012. c->cpuid_level);
  1013. for (i = 0; i < 32*NCAPINTS; i++)
  1014. if (cpu_has(c, i) && x86_cap_flags[i] != NULL)
  1015. seq_printf(m, " %s", x86_cap_flags[i]);
  1016. seq_printf(m, "\nbogomips\t: %lu.%02lu\n",
  1017. c->loops_per_jiffy/(500000/HZ),
  1018. (c->loops_per_jiffy/(5000/HZ)) % 100);
  1019. if (c->x86_tlbsize > 0)
  1020. seq_printf(m, "TLB size\t: %d 4K pages\n", c->x86_tlbsize);
  1021. seq_printf(m, "clflush size\t: %d\n", c->x86_clflush_size);
  1022. seq_printf(m, "cache_alignment\t: %d\n", c->x86_cache_alignment);
  1023. seq_printf(m, "address sizes\t: %u bits physical, %u bits virtual\n",
  1024. c->x86_phys_bits, c->x86_virt_bits);
  1025. seq_printf(m, "power management:");
  1026. for (i = 0; i < 32; i++) {
  1027. if (c->x86_power & (1 << i)) {
  1028. if (i < ARRAY_SIZE(x86_power_flags) &&
  1029. x86_power_flags[i])
  1030. seq_printf(m, "%s%s",
  1031. x86_power_flags[i][0]?" ":"",
  1032. x86_power_flags[i]);
  1033. else
  1034. seq_printf(m, " [%d]", i);
  1035. }
  1036. }
  1037. seq_printf(m, "\n\n");
  1038. return 0;
  1039. }
  1040. static void *c_start(struct seq_file *m, loff_t *pos)
  1041. {
  1042. if (*pos == 0) /* just in case, cpu 0 is not the first */
  1043. *pos = first_cpu(cpu_online_map);
  1044. if ((*pos) < NR_CPUS && cpu_online(*pos))
  1045. return &cpu_data(*pos);
  1046. return NULL;
  1047. }
  1048. static void *c_next(struct seq_file *m, void *v, loff_t *pos)
  1049. {
  1050. *pos = next_cpu(*pos, cpu_online_map);
  1051. return c_start(m, pos);
  1052. }
  1053. static void c_stop(struct seq_file *m, void *v)
  1054. {
  1055. }
  1056. const struct seq_operations cpuinfo_op = {
  1057. .start = c_start,
  1058. .next = c_next,
  1059. .stop = c_stop,
  1060. .show = show_cpuinfo,
  1061. };