ctatc.c 40 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597
  1. /**
  2. * Copyright (C) 2008, Creative Technology Ltd. All Rights Reserved.
  3. *
  4. * This source file is released under GPL v2 license (no other versions).
  5. * See the COPYING file included in the main directory of this source
  6. * distribution for the license terms and conditions.
  7. *
  8. * @File ctatc.c
  9. *
  10. * @Brief
  11. * This file contains the implementation of the device resource management
  12. * object.
  13. *
  14. * @Author Liu Chun
  15. * @Date Mar 28 2008
  16. */
  17. #include "ctatc.h"
  18. #include "ctpcm.h"
  19. #include "ctmixer.h"
  20. #include "cthardware.h"
  21. #include "ctsrc.h"
  22. #include "ctamixer.h"
  23. #include "ctdaio.h"
  24. #include <linux/delay.h>
  25. #include <sound/pcm.h>
  26. #include <sound/control.h>
  27. #include <sound/asoundef.h>
  28. #define MONO_SUM_SCALE 0x19a8 /* 2^(-0.5) in 14-bit floating format */
  29. #define DAIONUM 7
  30. #define MAX_MULTI_CHN 8
  31. #define IEC958_DEFAULT_CON ((IEC958_AES0_NONAUDIO \
  32. | IEC958_AES0_CON_NOT_COPYRIGHT) \
  33. | ((IEC958_AES1_CON_MIXER \
  34. | IEC958_AES1_CON_ORIGINAL) << 8) \
  35. | (0x10 << 16) \
  36. | ((IEC958_AES3_CON_FS_48000) << 24))
  37. static const struct ct_atc_chip_sub_details atc_sub_details[NUM_CTCARDS] = {
  38. [CTSB0760] = {.subsys = PCI_SUBDEVICE_ID_CREATIVE_SB0760,
  39. .nm_model = "SB076x"},
  40. [CTHENDRIX] = {.subsys = PCI_SUBDEVICE_ID_CREATIVE_HENDRIX,
  41. .nm_model = "Hendrix"},
  42. [CTSB08801] = {.subsys = PCI_SUBDEVICE_ID_CREATIVE_SB08801,
  43. .nm_model = "SB0880"},
  44. [CTSB08802] = {.subsys = PCI_SUBDEVICE_ID_CREATIVE_SB08802,
  45. .nm_model = "SB0880"},
  46. [CTSB08803] = {.subsys = PCI_SUBDEVICE_ID_CREATIVE_SB08803,
  47. .nm_model = "SB0880"}
  48. };
  49. static struct ct_atc_chip_details atc_chip_details[] = {
  50. {.vendor = PCI_VENDOR_ID_CREATIVE,
  51. .device = PCI_DEVICE_ID_CREATIVE_20K1,
  52. .sub_details = NULL,
  53. .nm_card = "X-Fi 20k1"},
  54. {.vendor = PCI_VENDOR_ID_CREATIVE,
  55. .device = PCI_DEVICE_ID_CREATIVE_20K2,
  56. .sub_details = atc_sub_details,
  57. .nm_card = "X-Fi 20k2"},
  58. {} /* terminator */
  59. };
  60. static struct {
  61. int (*create)(struct ct_atc *atc,
  62. enum CTALSADEVS device, const char *device_name);
  63. int (*destroy)(void *alsa_dev);
  64. const char *public_name;
  65. } alsa_dev_funcs[NUM_CTALSADEVS] = {
  66. [FRONT] = { .create = ct_alsa_pcm_create,
  67. .destroy = NULL,
  68. .public_name = "Front/WaveIn"},
  69. [REAR] = { .create = ct_alsa_pcm_create,
  70. .destroy = NULL,
  71. .public_name = "Rear"},
  72. [CLFE] = { .create = ct_alsa_pcm_create,
  73. .destroy = NULL,
  74. .public_name = "Center/LFE"},
  75. [SURROUND] = { .create = ct_alsa_pcm_create,
  76. .destroy = NULL,
  77. .public_name = "Surround"},
  78. [IEC958] = { .create = ct_alsa_pcm_create,
  79. .destroy = NULL,
  80. .public_name = "IEC958 Non-audio"},
  81. [MIXER] = { .create = ct_alsa_mix_create,
  82. .destroy = NULL,
  83. .public_name = "Mixer"}
  84. };
  85. typedef int (*create_t)(void *, void **);
  86. typedef int (*destroy_t)(void *);
  87. static struct {
  88. int (*create)(void *hw, void **rmgr);
  89. int (*destroy)(void *mgr);
  90. } rsc_mgr_funcs[NUM_RSCTYP] = {
  91. [SRC] = { .create = (create_t)src_mgr_create,
  92. .destroy = (destroy_t)src_mgr_destroy },
  93. [SRCIMP] = { .create = (create_t)srcimp_mgr_create,
  94. .destroy = (destroy_t)srcimp_mgr_destroy },
  95. [AMIXER] = { .create = (create_t)amixer_mgr_create,
  96. .destroy = (destroy_t)amixer_mgr_destroy },
  97. [SUM] = { .create = (create_t)sum_mgr_create,
  98. .destroy = (destroy_t)sum_mgr_destroy },
  99. [DAIO] = { .create = (create_t)daio_mgr_create,
  100. .destroy = (destroy_t)daio_mgr_destroy }
  101. };
  102. static int
  103. atc_pcm_release_resources(struct ct_atc *atc, struct ct_atc_pcm *apcm);
  104. /* *
  105. * Only mono and interleaved modes are supported now.
  106. * Always allocates a contiguous channel block.
  107. * */
  108. static int ct_map_audio_buffer(struct ct_atc *atc, struct ct_atc_pcm *apcm)
  109. {
  110. struct snd_pcm_runtime *runtime;
  111. struct ct_vm *vm;
  112. if (NULL == apcm->substream)
  113. return 0;
  114. runtime = apcm->substream->runtime;
  115. vm = atc->vm;
  116. apcm->vm_block = vm->map(vm, runtime->dma_area, runtime->dma_bytes);
  117. if (NULL == apcm->vm_block)
  118. return -ENOENT;
  119. return 0;
  120. }
  121. static void ct_unmap_audio_buffer(struct ct_atc *atc, struct ct_atc_pcm *apcm)
  122. {
  123. struct ct_vm *vm;
  124. if (NULL == apcm->vm_block)
  125. return;
  126. vm = atc->vm;
  127. vm->unmap(vm, apcm->vm_block);
  128. apcm->vm_block = NULL;
  129. }
  130. static unsigned long atc_get_ptp_phys(struct ct_atc *atc, int index)
  131. {
  132. struct ct_vm *vm;
  133. void *kvirt_addr;
  134. unsigned long phys_addr;
  135. vm = atc->vm;
  136. kvirt_addr = vm->get_ptp_virt(vm, index);
  137. if (kvirt_addr == NULL)
  138. phys_addr = (~0UL);
  139. else
  140. phys_addr = virt_to_phys(kvirt_addr);
  141. return phys_addr;
  142. }
  143. static unsigned int convert_format(snd_pcm_format_t snd_format)
  144. {
  145. switch (snd_format) {
  146. case SNDRV_PCM_FORMAT_U8:
  147. case SNDRV_PCM_FORMAT_S8:
  148. return SRC_SF_U8;
  149. case SNDRV_PCM_FORMAT_S16_LE:
  150. case SNDRV_PCM_FORMAT_U16_LE:
  151. return SRC_SF_S16;
  152. case SNDRV_PCM_FORMAT_S24_3LE:
  153. return SRC_SF_S24;
  154. case SNDRV_PCM_FORMAT_S24_LE:
  155. case SNDRV_PCM_FORMAT_S32_LE:
  156. return SRC_SF_S32;
  157. default:
  158. printk(KERN_ERR "ctxfi: not recognized snd format is %d \n",
  159. snd_format);
  160. return SRC_SF_S16;
  161. }
  162. }
  163. static unsigned int
  164. atc_get_pitch(unsigned int input_rate, unsigned int output_rate)
  165. {
  166. unsigned int pitch = 0;
  167. int b = 0;
  168. /* get pitch and convert to fixed-point 8.24 format. */
  169. pitch = (input_rate / output_rate) << 24;
  170. input_rate %= output_rate;
  171. input_rate /= 100;
  172. output_rate /= 100;
  173. for (b = 31; ((b >= 0) && !(input_rate >> b)); )
  174. b--;
  175. if (b >= 0) {
  176. input_rate <<= (31 - b);
  177. input_rate /= output_rate;
  178. b = 24 - (31 - b);
  179. if (b >= 0)
  180. input_rate <<= b;
  181. else
  182. input_rate >>= -b;
  183. pitch |= input_rate;
  184. }
  185. return pitch;
  186. }
  187. static int select_rom(unsigned int pitch)
  188. {
  189. if ((pitch > 0x00428f5c) && (pitch < 0x01b851ec)) {
  190. /* 0.26 <= pitch <= 1.72 */
  191. return 1;
  192. } else if ((0x01d66666 == pitch) || (0x01d66667 == pitch)) {
  193. /* pitch == 1.8375 */
  194. return 2;
  195. } else if (0x02000000 == pitch) {
  196. /* pitch == 2 */
  197. return 3;
  198. } else if ((pitch >= 0x0) && (pitch <= 0x08000000)) {
  199. /* 0 <= pitch <= 8 */
  200. return 0;
  201. } else {
  202. return -ENOENT;
  203. }
  204. }
  205. static int atc_pcm_playback_prepare(struct ct_atc *atc, struct ct_atc_pcm *apcm)
  206. {
  207. struct src_mgr *src_mgr = atc->rsc_mgrs[SRC];
  208. struct amixer_mgr *amixer_mgr = atc->rsc_mgrs[AMIXER];
  209. struct src_desc desc = {0};
  210. struct amixer_desc mix_dsc = {0};
  211. struct src *src = NULL;
  212. struct amixer *amixer = NULL;
  213. int err = 0;
  214. int n_amixer = apcm->substream->runtime->channels, i = 0;
  215. int device = apcm->substream->pcm->device;
  216. unsigned int pitch = 0;
  217. unsigned long flags;
  218. if (NULL != apcm->src) {
  219. /* Prepared pcm playback */
  220. return 0;
  221. }
  222. /* Get SRC resource */
  223. desc.multi = apcm->substream->runtime->channels;
  224. desc.msr = atc->msr;
  225. desc.mode = MEMRD;
  226. err = src_mgr->get_src(src_mgr, &desc, (struct src **)&apcm->src);
  227. if (err)
  228. goto error1;
  229. pitch = atc_get_pitch(apcm->substream->runtime->rate,
  230. (atc->rsr * atc->msr));
  231. src = apcm->src;
  232. src->ops->set_pitch(src, pitch);
  233. src->ops->set_rom(src, select_rom(pitch));
  234. src->ops->set_sf(src, convert_format(apcm->substream->runtime->format));
  235. src->ops->set_pm(src, (src->ops->next_interleave(src) != NULL));
  236. /* Get AMIXER resource */
  237. n_amixer = (n_amixer < 2) ? 2 : n_amixer;
  238. apcm->amixers = kzalloc(sizeof(void *)*n_amixer, GFP_KERNEL);
  239. if (NULL == apcm->amixers) {
  240. err = -ENOMEM;
  241. goto error1;
  242. }
  243. mix_dsc.msr = atc->msr;
  244. for (i = 0, apcm->n_amixer = 0; i < n_amixer; i++) {
  245. err = amixer_mgr->get_amixer(amixer_mgr, &mix_dsc,
  246. (struct amixer **)&apcm->amixers[i]);
  247. if (err)
  248. goto error1;
  249. apcm->n_amixer++;
  250. }
  251. /* Set up device virtual mem map */
  252. err = ct_map_audio_buffer(atc, apcm);
  253. if (err < 0)
  254. goto error1;
  255. /* Connect resources */
  256. src = apcm->src;
  257. for (i = 0; i < n_amixer; i++) {
  258. amixer = apcm->amixers[i];
  259. spin_lock_irqsave(&atc->atc_lock, flags);
  260. amixer->ops->setup(amixer, &src->rsc,
  261. INIT_VOL, atc->pcm[i+device*2]);
  262. spin_unlock_irqrestore(&atc->atc_lock, flags);
  263. src = src->ops->next_interleave(src);
  264. if (NULL == src)
  265. src = apcm->src;
  266. }
  267. return 0;
  268. error1:
  269. atc_pcm_release_resources(atc, apcm);
  270. return err;
  271. }
  272. static int
  273. atc_pcm_release_resources(struct ct_atc *atc, struct ct_atc_pcm *apcm)
  274. {
  275. struct src_mgr *src_mgr = atc->rsc_mgrs[SRC];
  276. struct srcimp_mgr *srcimp_mgr = atc->rsc_mgrs[SRCIMP];
  277. struct amixer_mgr *amixer_mgr = atc->rsc_mgrs[AMIXER];
  278. struct sum_mgr *sum_mgr = atc->rsc_mgrs[SUM];
  279. struct srcimp *srcimp = NULL;
  280. int i = 0;
  281. if (NULL != apcm->srcimps) {
  282. for (i = 0; i < apcm->n_srcimp; i++) {
  283. srcimp = apcm->srcimps[i];
  284. srcimp->ops->unmap(srcimp);
  285. srcimp_mgr->put_srcimp(srcimp_mgr, srcimp);
  286. apcm->srcimps[i] = NULL;
  287. }
  288. kfree(apcm->srcimps);
  289. apcm->srcimps = NULL;
  290. }
  291. if (NULL != apcm->srccs) {
  292. for (i = 0; i < apcm->n_srcc; i++) {
  293. src_mgr->put_src(src_mgr, apcm->srccs[i]);
  294. apcm->srccs[i] = NULL;
  295. }
  296. kfree(apcm->srccs);
  297. apcm->srccs = NULL;
  298. }
  299. if (NULL != apcm->amixers) {
  300. for (i = 0; i < apcm->n_amixer; i++) {
  301. amixer_mgr->put_amixer(amixer_mgr, apcm->amixers[i]);
  302. apcm->amixers[i] = NULL;
  303. }
  304. kfree(apcm->amixers);
  305. apcm->amixers = NULL;
  306. }
  307. if (NULL != apcm->mono) {
  308. sum_mgr->put_sum(sum_mgr, apcm->mono);
  309. apcm->mono = NULL;
  310. }
  311. if (NULL != apcm->src) {
  312. src_mgr->put_src(src_mgr, apcm->src);
  313. apcm->src = NULL;
  314. }
  315. if (NULL != apcm->vm_block) {
  316. /* Undo device virtual mem map */
  317. ct_unmap_audio_buffer(atc, apcm);
  318. apcm->vm_block = NULL;
  319. }
  320. return 0;
  321. }
  322. static int atc_pcm_playback_start(struct ct_atc *atc, struct ct_atc_pcm *apcm)
  323. {
  324. unsigned int max_cisz = 0;
  325. struct src *src = apcm->src;
  326. max_cisz = src->multi * src->rsc.msr;
  327. max_cisz = 0x80 * (max_cisz < 8 ? max_cisz : 8);
  328. src->ops->set_sa(src, apcm->vm_block->addr);
  329. src->ops->set_la(src, apcm->vm_block->addr + apcm->vm_block->size);
  330. src->ops->set_ca(src, apcm->vm_block->addr + max_cisz);
  331. src->ops->set_cisz(src, max_cisz);
  332. src->ops->set_bm(src, 1);
  333. src->ops->set_state(src, SRC_STATE_INIT);
  334. src->ops->commit_write(src);
  335. return 0;
  336. }
  337. static int atc_pcm_stop(struct ct_atc *atc, struct ct_atc_pcm *apcm)
  338. {
  339. struct src *src = NULL;
  340. int i = 0;
  341. src = apcm->src;
  342. src->ops->set_bm(src, 0);
  343. src->ops->set_state(src, SRC_STATE_OFF);
  344. src->ops->commit_write(src);
  345. if (NULL != apcm->srccs) {
  346. for (i = 0; i < apcm->n_srcc; i++) {
  347. src = apcm->srccs[i];
  348. src->ops->set_bm(src, 0);
  349. src->ops->set_state(src, SRC_STATE_OFF);
  350. src->ops->commit_write(src);
  351. }
  352. }
  353. apcm->started = 0;
  354. return 0;
  355. }
  356. static int
  357. atc_pcm_playback_position(struct ct_atc *atc, struct ct_atc_pcm *apcm)
  358. {
  359. struct src *src = apcm->src;
  360. u32 size = 0, max_cisz = 0;
  361. int position = 0;
  362. position = src->ops->get_ca(src);
  363. size = apcm->vm_block->size;
  364. max_cisz = src->multi * src->rsc.msr;
  365. max_cisz = 128 * (max_cisz < 8 ? max_cisz : 8);
  366. return (position + size - max_cisz - apcm->vm_block->addr) % size;
  367. }
  368. struct src_node_conf_t {
  369. unsigned int pitch;
  370. unsigned int msr:8;
  371. unsigned int mix_msr:8;
  372. unsigned int imp_msr:8;
  373. unsigned int vo:1;
  374. };
  375. static void setup_src_node_conf(struct ct_atc *atc, struct ct_atc_pcm *apcm,
  376. struct src_node_conf_t *conf, int *n_srcc)
  377. {
  378. unsigned int pitch = 0;
  379. /* get pitch and convert to fixed-point 8.24 format. */
  380. pitch = atc_get_pitch((atc->rsr * atc->msr),
  381. apcm->substream->runtime->rate);
  382. *n_srcc = 0;
  383. if (1 == atc->msr) {
  384. *n_srcc = apcm->substream->runtime->channels;
  385. conf[0].pitch = pitch;
  386. conf[0].mix_msr = conf[0].imp_msr = conf[0].msr = 1;
  387. conf[0].vo = 1;
  388. } else if (2 == atc->msr) {
  389. if (0x8000000 < pitch) {
  390. /* Need two-stage SRCs, SRCIMPs and
  391. * AMIXERs for converting format */
  392. conf[0].pitch = (atc->msr << 24);
  393. conf[0].msr = conf[0].mix_msr = 1;
  394. conf[0].imp_msr = atc->msr;
  395. conf[0].vo = 0;
  396. conf[1].pitch = atc_get_pitch(atc->rsr,
  397. apcm->substream->runtime->rate);
  398. conf[1].msr = conf[1].mix_msr = conf[1].imp_msr = 1;
  399. conf[1].vo = 1;
  400. *n_srcc = apcm->substream->runtime->channels * 2;
  401. } else if (0x1000000 < pitch) {
  402. /* Need one-stage SRCs, SRCIMPs and
  403. * AMIXERs for converting format */
  404. conf[0].pitch = pitch;
  405. conf[0].msr = conf[0].mix_msr
  406. = conf[0].imp_msr = atc->msr;
  407. conf[0].vo = 1;
  408. *n_srcc = apcm->substream->runtime->channels;
  409. }
  410. }
  411. }
  412. static int
  413. atc_pcm_capture_get_resources(struct ct_atc *atc, struct ct_atc_pcm *apcm)
  414. {
  415. struct src_mgr *src_mgr = atc->rsc_mgrs[SRC];
  416. struct srcimp_mgr *srcimp_mgr = atc->rsc_mgrs[SRCIMP];
  417. struct amixer_mgr *amixer_mgr = atc->rsc_mgrs[AMIXER];
  418. struct sum_mgr *sum_mgr = atc->rsc_mgrs[SUM];
  419. struct src_desc src_dsc = {0};
  420. struct src *src = NULL;
  421. struct srcimp_desc srcimp_dsc = {0};
  422. struct srcimp *srcimp = NULL;
  423. struct amixer_desc mix_dsc = {0};
  424. struct sum_desc sum_dsc = {0};
  425. unsigned int pitch = 0;
  426. int multi = 0, err = 0, i = 0;
  427. int n_srcimp = 0, n_amixer = 0, n_srcc = 0, n_sum = 0;
  428. struct src_node_conf_t src_node_conf[2] = {{0} };
  429. /* The numbers of converting SRCs and SRCIMPs should be determined
  430. * by pitch value. */
  431. multi = apcm->substream->runtime->channels;
  432. /* get pitch and convert to fixed-point 8.24 format. */
  433. pitch = atc_get_pitch((atc->rsr * atc->msr),
  434. apcm->substream->runtime->rate);
  435. setup_src_node_conf(atc, apcm, src_node_conf, &n_srcc);
  436. n_sum = (1 == multi) ? 1 : 0;
  437. n_amixer += n_sum * 2 + n_srcc;
  438. n_srcimp += n_srcc;
  439. if ((multi > 1) && (0x8000000 >= pitch)) {
  440. /* Need extra AMIXERs and SRCIMPs for special treatment
  441. * of interleaved recording of conjugate channels */
  442. n_amixer += multi * atc->msr;
  443. n_srcimp += multi * atc->msr;
  444. } else {
  445. n_srcimp += multi;
  446. }
  447. if (n_srcc) {
  448. apcm->srccs = kzalloc(sizeof(void *)*n_srcc, GFP_KERNEL);
  449. if (NULL == apcm->srccs)
  450. return -ENOMEM;
  451. }
  452. if (n_amixer) {
  453. apcm->amixers = kzalloc(sizeof(void *)*n_amixer, GFP_KERNEL);
  454. if (NULL == apcm->amixers) {
  455. err = -ENOMEM;
  456. goto error1;
  457. }
  458. }
  459. apcm->srcimps = kzalloc(sizeof(void *)*n_srcimp, GFP_KERNEL);
  460. if (NULL == apcm->srcimps) {
  461. err = -ENOMEM;
  462. goto error1;
  463. }
  464. /* Allocate SRCs for sample rate conversion if needed */
  465. src_dsc.multi = 1;
  466. src_dsc.mode = ARCRW;
  467. for (i = 0, apcm->n_srcc = 0; i < n_srcc; i++) {
  468. src_dsc.msr = src_node_conf[i/multi].msr;
  469. err = src_mgr->get_src(src_mgr, &src_dsc,
  470. (struct src **)&apcm->srccs[i]);
  471. if (err)
  472. goto error1;
  473. src = apcm->srccs[i];
  474. pitch = src_node_conf[i/multi].pitch;
  475. src->ops->set_pitch(src, pitch);
  476. src->ops->set_rom(src, select_rom(pitch));
  477. src->ops->set_vo(src, src_node_conf[i/multi].vo);
  478. apcm->n_srcc++;
  479. }
  480. /* Allocate AMIXERs for routing SRCs of conversion if needed */
  481. for (i = 0, apcm->n_amixer = 0; i < n_amixer; i++) {
  482. if (i < (n_sum*2))
  483. mix_dsc.msr = atc->msr;
  484. else if (i < (n_sum*2+n_srcc))
  485. mix_dsc.msr = src_node_conf[(i-n_sum*2)/multi].mix_msr;
  486. else
  487. mix_dsc.msr = 1;
  488. err = amixer_mgr->get_amixer(amixer_mgr, &mix_dsc,
  489. (struct amixer **)&apcm->amixers[i]);
  490. if (err)
  491. goto error1;
  492. apcm->n_amixer++;
  493. }
  494. /* Allocate a SUM resource to mix all input channels together */
  495. sum_dsc.msr = atc->msr;
  496. err = sum_mgr->get_sum(sum_mgr, &sum_dsc, (struct sum **)&apcm->mono);
  497. if (err)
  498. goto error1;
  499. pitch = atc_get_pitch((atc->rsr * atc->msr),
  500. apcm->substream->runtime->rate);
  501. /* Allocate SRCIMP resources */
  502. for (i = 0, apcm->n_srcimp = 0; i < n_srcimp; i++) {
  503. if (i < (n_srcc))
  504. srcimp_dsc.msr = src_node_conf[i/multi].imp_msr;
  505. else if (1 == multi)
  506. srcimp_dsc.msr = (pitch <= 0x8000000) ? atc->msr : 1;
  507. else
  508. srcimp_dsc.msr = 1;
  509. err = srcimp_mgr->get_srcimp(srcimp_mgr, &srcimp_dsc, &srcimp);
  510. if (err)
  511. goto error1;
  512. apcm->srcimps[i] = srcimp;
  513. apcm->n_srcimp++;
  514. }
  515. /* Allocate a SRC for writing data to host memory */
  516. src_dsc.multi = apcm->substream->runtime->channels;
  517. src_dsc.msr = 1;
  518. src_dsc.mode = MEMWR;
  519. err = src_mgr->get_src(src_mgr, &src_dsc, (struct src **)&apcm->src);
  520. if (err)
  521. goto error1;
  522. src = apcm->src;
  523. src->ops->set_pitch(src, pitch);
  524. /* Set up device virtual mem map */
  525. err = ct_map_audio_buffer(atc, apcm);
  526. if (err < 0)
  527. goto error1;
  528. return 0;
  529. error1:
  530. atc_pcm_release_resources(atc, apcm);
  531. return err;
  532. }
  533. static int atc_pcm_capture_prepare(struct ct_atc *atc, struct ct_atc_pcm *apcm)
  534. {
  535. struct src *src = NULL;
  536. struct amixer *amixer = NULL;
  537. struct srcimp *srcimp = NULL;
  538. struct ct_mixer *mixer = atc->mixer;
  539. struct sum *mono = NULL;
  540. struct rsc *out_ports[8] = {NULL};
  541. int err = 0, i = 0, j = 0, n_sum = 0, multi = 0;
  542. unsigned int pitch = 0;
  543. int mix_base = 0, imp_base = 0;
  544. if (NULL != apcm->src) {
  545. /* Prepared pcm capture */
  546. return 0;
  547. }
  548. /* Get needed resources. */
  549. err = atc_pcm_capture_get_resources(atc, apcm);
  550. if (err)
  551. return err;
  552. /* Connect resources */
  553. mixer->get_output_ports(mixer, MIX_PCMO_FRONT,
  554. &out_ports[0], &out_ports[1]);
  555. multi = apcm->substream->runtime->channels;
  556. if (1 == multi) {
  557. mono = apcm->mono;
  558. for (i = 0; i < 2; i++) {
  559. amixer = apcm->amixers[i];
  560. amixer->ops->setup(amixer, out_ports[i],
  561. MONO_SUM_SCALE, mono);
  562. }
  563. out_ports[0] = &mono->rsc;
  564. n_sum = 1;
  565. mix_base = n_sum * 2;
  566. }
  567. for (i = 0; i < apcm->n_srcc; i++) {
  568. src = apcm->srccs[i];
  569. srcimp = apcm->srcimps[imp_base+i];
  570. amixer = apcm->amixers[mix_base+i];
  571. srcimp->ops->map(srcimp, src, out_ports[i%multi]);
  572. amixer->ops->setup(amixer, &src->rsc, INIT_VOL, NULL);
  573. out_ports[i%multi] = &amixer->rsc;
  574. }
  575. pitch = atc_get_pitch((atc->rsr * atc->msr),
  576. apcm->substream->runtime->rate);
  577. if ((multi > 1) && (pitch <= 0x8000000)) {
  578. /* Special connection for interleaved
  579. * recording with conjugate channels */
  580. for (i = 0; i < multi; i++) {
  581. out_ports[i]->ops->master(out_ports[i]);
  582. for (j = 0; j < atc->msr; j++) {
  583. amixer = apcm->amixers[apcm->n_srcc+j*multi+i];
  584. amixer->ops->set_input(amixer, out_ports[i]);
  585. amixer->ops->set_scale(amixer, INIT_VOL);
  586. amixer->ops->set_sum(amixer, NULL);
  587. amixer->ops->commit_raw_write(amixer);
  588. out_ports[i]->ops->next_conj(out_ports[i]);
  589. srcimp = apcm->srcimps[apcm->n_srcc+j*multi+i];
  590. srcimp->ops->map(srcimp, apcm->src,
  591. &amixer->rsc);
  592. }
  593. }
  594. } else {
  595. for (i = 0; i < multi; i++) {
  596. srcimp = apcm->srcimps[apcm->n_srcc+i];
  597. srcimp->ops->map(srcimp, apcm->src, out_ports[i]);
  598. }
  599. }
  600. return 0;
  601. }
  602. static int atc_pcm_capture_start(struct ct_atc *atc, struct ct_atc_pcm *apcm)
  603. {
  604. struct src *src = NULL;
  605. struct src_mgr *src_mgr = atc->rsc_mgrs[SRC];
  606. int i = 0, multi = 0;
  607. if (apcm->started)
  608. return 0;
  609. apcm->started = 1;
  610. multi = apcm->substream->runtime->channels;
  611. /* Set up converting SRCs */
  612. for (i = 0; i < apcm->n_srcc; i++) {
  613. src = apcm->srccs[i];
  614. src->ops->set_pm(src, ((i%multi) != (multi-1)));
  615. src_mgr->src_disable(src_mgr, src);
  616. }
  617. /* Set up recording SRC */
  618. src = apcm->src;
  619. src->ops->set_sf(src, convert_format(apcm->substream->runtime->format));
  620. src->ops->set_sa(src, apcm->vm_block->addr);
  621. src->ops->set_la(src, apcm->vm_block->addr + apcm->vm_block->size);
  622. src->ops->set_ca(src, apcm->vm_block->addr);
  623. src_mgr->src_disable(src_mgr, src);
  624. /* Disable relevant SRCs firstly */
  625. src_mgr->commit_write(src_mgr);
  626. /* Enable SRCs respectively */
  627. for (i = 0; i < apcm->n_srcc; i++) {
  628. src = apcm->srccs[i];
  629. src->ops->set_state(src, SRC_STATE_RUN);
  630. src->ops->commit_write(src);
  631. src_mgr->src_enable_s(src_mgr, src);
  632. }
  633. src = apcm->src;
  634. src->ops->set_bm(src, 1);
  635. src->ops->set_state(src, SRC_STATE_RUN);
  636. src->ops->commit_write(src);
  637. src_mgr->src_enable_s(src_mgr, src);
  638. /* Enable relevant SRCs synchronously */
  639. src_mgr->commit_write(src_mgr);
  640. return 0;
  641. }
  642. static int
  643. atc_pcm_capture_position(struct ct_atc *atc, struct ct_atc_pcm *apcm)
  644. {
  645. struct src *src = apcm->src;
  646. return src->ops->get_ca(src) - apcm->vm_block->addr;
  647. }
  648. static int spdif_passthru_playback_get_resources(struct ct_atc *atc,
  649. struct ct_atc_pcm *apcm)
  650. {
  651. struct src_mgr *src_mgr = atc->rsc_mgrs[SRC];
  652. struct amixer_mgr *amixer_mgr = atc->rsc_mgrs[AMIXER];
  653. struct src_desc desc = {0};
  654. struct amixer_desc mix_dsc = {0};
  655. struct src *src = NULL;
  656. int err = 0;
  657. int n_amixer = apcm->substream->runtime->channels, i = 0;
  658. unsigned int pitch = 0, rsr = atc->pll_rate;
  659. /* Get SRC resource */
  660. desc.multi = apcm->substream->runtime->channels;
  661. desc.msr = 1;
  662. while (apcm->substream->runtime->rate > (rsr * desc.msr))
  663. desc.msr <<= 1;
  664. desc.mode = MEMRD;
  665. err = src_mgr->get_src(src_mgr, &desc, (struct src **)&apcm->src);
  666. if (err)
  667. goto error1;
  668. pitch = atc_get_pitch(apcm->substream->runtime->rate, (rsr * desc.msr));
  669. src = apcm->src;
  670. src->ops->set_pitch(src, pitch);
  671. src->ops->set_rom(src, select_rom(pitch));
  672. src->ops->set_sf(src, convert_format(apcm->substream->runtime->format));
  673. src->ops->set_pm(src, (src->ops->next_interleave(src) != NULL));
  674. src->ops->set_bp(src, 1);
  675. /* Get AMIXER resource */
  676. n_amixer = (n_amixer < 2) ? 2 : n_amixer;
  677. apcm->amixers = kzalloc(sizeof(void *)*n_amixer, GFP_KERNEL);
  678. if (NULL == apcm->amixers) {
  679. err = -ENOMEM;
  680. goto error1;
  681. }
  682. mix_dsc.msr = desc.msr;
  683. for (i = 0, apcm->n_amixer = 0; i < n_amixer; i++) {
  684. err = amixer_mgr->get_amixer(amixer_mgr, &mix_dsc,
  685. (struct amixer **)&apcm->amixers[i]);
  686. if (err)
  687. goto error1;
  688. apcm->n_amixer++;
  689. }
  690. /* Set up device virtual mem map */
  691. err = ct_map_audio_buffer(atc, apcm);
  692. if (err < 0)
  693. goto error1;
  694. return 0;
  695. error1:
  696. atc_pcm_release_resources(atc, apcm);
  697. return err;
  698. }
  699. static int
  700. spdif_passthru_playback_setup(struct ct_atc *atc, struct ct_atc_pcm *apcm)
  701. {
  702. struct dao *dao = container_of(atc->daios[SPDIFOO], struct dao, daio);
  703. unsigned long flags;
  704. unsigned int rate = apcm->substream->runtime->rate;
  705. unsigned int status = 0;
  706. int err = 0;
  707. unsigned char iec958_con_fs = 0;
  708. switch (rate) {
  709. case 48000:
  710. iec958_con_fs = IEC958_AES3_CON_FS_48000;
  711. break;
  712. case 44100:
  713. iec958_con_fs = IEC958_AES3_CON_FS_44100;
  714. break;
  715. case 32000:
  716. iec958_con_fs = IEC958_AES3_CON_FS_32000;
  717. break;
  718. default:
  719. return -ENOENT;
  720. }
  721. spin_lock_irqsave(&atc->atc_lock, flags);
  722. dao->ops->get_spos(dao, &status);
  723. if (((status >> 24) & IEC958_AES3_CON_FS) != iec958_con_fs) {
  724. status &= ((~IEC958_AES3_CON_FS) << 24);
  725. status |= (iec958_con_fs << 24);
  726. dao->ops->set_spos(dao, status);
  727. dao->ops->commit_write(dao);
  728. }
  729. if ((rate != atc->pll_rate) && (32000 != rate)) {
  730. err = ((struct hw *)atc->hw)->pll_init(atc->hw, rate);
  731. atc->pll_rate = err ? 0 : rate;
  732. }
  733. spin_unlock_irqrestore(&atc->atc_lock, flags);
  734. return err;
  735. }
  736. static int
  737. spdif_passthru_playback_prepare(struct ct_atc *atc, struct ct_atc_pcm *apcm)
  738. {
  739. struct src *src = NULL;
  740. struct amixer *amixer = NULL;
  741. struct dao *dao = NULL;
  742. int err = 0;
  743. int i = 0;
  744. unsigned long flags;
  745. if (NULL != apcm->src)
  746. return 0;
  747. /* Configure SPDIFOO and PLL to passthrough mode;
  748. * determine pll_rate. */
  749. err = spdif_passthru_playback_setup(atc, apcm);
  750. if (err)
  751. return err;
  752. /* Get needed resources. */
  753. err = spdif_passthru_playback_get_resources(atc, apcm);
  754. if (err)
  755. return err;
  756. /* Connect resources */
  757. src = apcm->src;
  758. for (i = 0; i < apcm->n_amixer; i++) {
  759. amixer = apcm->amixers[i];
  760. amixer->ops->setup(amixer, &src->rsc, INIT_VOL, NULL);
  761. src = src->ops->next_interleave(src);
  762. if (NULL == src)
  763. src = apcm->src;
  764. }
  765. /* Connect to SPDIFOO */
  766. spin_lock_irqsave(&atc->atc_lock, flags);
  767. dao = container_of(atc->daios[SPDIFOO], struct dao, daio);
  768. amixer = apcm->amixers[0];
  769. dao->ops->set_left_input(dao, &amixer->rsc);
  770. amixer = apcm->amixers[1];
  771. dao->ops->set_right_input(dao, &amixer->rsc);
  772. spin_unlock_irqrestore(&atc->atc_lock, flags);
  773. return 0;
  774. }
  775. static int atc_select_line_in(struct ct_atc *atc)
  776. {
  777. struct hw *hw = atc->hw;
  778. struct ct_mixer *mixer = atc->mixer;
  779. struct src *src = NULL;
  780. if (hw->is_adc_source_selected(hw, ADC_LINEIN))
  781. return 0;
  782. mixer->set_input_left(mixer, MIX_MIC_IN, NULL);
  783. mixer->set_input_right(mixer, MIX_MIC_IN, NULL);
  784. hw->select_adc_source(hw, ADC_LINEIN);
  785. src = atc->srcs[2];
  786. mixer->set_input_left(mixer, MIX_LINE_IN, &src->rsc);
  787. src = atc->srcs[3];
  788. mixer->set_input_right(mixer, MIX_LINE_IN, &src->rsc);
  789. return 0;
  790. }
  791. static int atc_select_mic_in(struct ct_atc *atc)
  792. {
  793. struct hw *hw = atc->hw;
  794. struct ct_mixer *mixer = atc->mixer;
  795. struct src *src = NULL;
  796. if (hw->is_adc_source_selected(hw, ADC_MICIN))
  797. return 0;
  798. mixer->set_input_left(mixer, MIX_LINE_IN, NULL);
  799. mixer->set_input_right(mixer, MIX_LINE_IN, NULL);
  800. hw->select_adc_source(hw, ADC_MICIN);
  801. src = atc->srcs[2];
  802. mixer->set_input_left(mixer, MIX_MIC_IN, &src->rsc);
  803. src = atc->srcs[3];
  804. mixer->set_input_right(mixer, MIX_MIC_IN, &src->rsc);
  805. return 0;
  806. }
  807. static int atc_have_digit_io_switch(struct ct_atc *atc)
  808. {
  809. struct hw *hw = atc->hw;
  810. return hw->have_digit_io_switch(hw);
  811. }
  812. static int atc_select_digit_io(struct ct_atc *atc)
  813. {
  814. struct hw *hw = atc->hw;
  815. if (hw->is_adc_source_selected(hw, ADC_NONE))
  816. return 0;
  817. hw->select_adc_source(hw, ADC_NONE);
  818. return 0;
  819. }
  820. static int atc_daio_unmute(struct ct_atc *atc, unsigned char state, int type)
  821. {
  822. struct daio_mgr *daio_mgr = atc->rsc_mgrs[DAIO];
  823. if (state)
  824. daio_mgr->daio_enable(daio_mgr, atc->daios[type]);
  825. else
  826. daio_mgr->daio_disable(daio_mgr, atc->daios[type]);
  827. daio_mgr->commit_write(daio_mgr);
  828. return 0;
  829. }
  830. static int
  831. atc_dao_get_status(struct ct_atc *atc, unsigned int *status, int type)
  832. {
  833. struct dao *dao = container_of(atc->daios[type], struct dao, daio);
  834. return dao->ops->get_spos(dao, status);
  835. }
  836. static int
  837. atc_dao_set_status(struct ct_atc *atc, unsigned int status, int type)
  838. {
  839. struct dao *dao = container_of(atc->daios[type], struct dao, daio);
  840. dao->ops->set_spos(dao, status);
  841. dao->ops->commit_write(dao);
  842. return 0;
  843. }
  844. static int atc_line_front_unmute(struct ct_atc *atc, unsigned char state)
  845. {
  846. return atc_daio_unmute(atc, state, LINEO1);
  847. }
  848. static int atc_line_surround_unmute(struct ct_atc *atc, unsigned char state)
  849. {
  850. return atc_daio_unmute(atc, state, LINEO4);
  851. }
  852. static int atc_line_clfe_unmute(struct ct_atc *atc, unsigned char state)
  853. {
  854. return atc_daio_unmute(atc, state, LINEO3);
  855. }
  856. static int atc_line_rear_unmute(struct ct_atc *atc, unsigned char state)
  857. {
  858. return atc_daio_unmute(atc, state, LINEO2);
  859. }
  860. static int atc_line_in_unmute(struct ct_atc *atc, unsigned char state)
  861. {
  862. return atc_daio_unmute(atc, state, LINEIM);
  863. }
  864. static int atc_spdif_out_unmute(struct ct_atc *atc, unsigned char state)
  865. {
  866. return atc_daio_unmute(atc, state, SPDIFOO);
  867. }
  868. static int atc_spdif_in_unmute(struct ct_atc *atc, unsigned char state)
  869. {
  870. return atc_daio_unmute(atc, state, SPDIFIO);
  871. }
  872. static int atc_spdif_out_get_status(struct ct_atc *atc, unsigned int *status)
  873. {
  874. return atc_dao_get_status(atc, status, SPDIFOO);
  875. }
  876. static int atc_spdif_out_set_status(struct ct_atc *atc, unsigned int status)
  877. {
  878. return atc_dao_set_status(atc, status, SPDIFOO);
  879. }
  880. static int atc_spdif_out_passthru(struct ct_atc *atc, unsigned char state)
  881. {
  882. unsigned long flags;
  883. struct dao_desc da_dsc = {0};
  884. struct dao *dao = NULL;
  885. int err = 0;
  886. struct ct_mixer *mixer = atc->mixer;
  887. struct rsc *rscs[2] = {NULL};
  888. unsigned int spos = 0;
  889. spin_lock_irqsave(&atc->atc_lock, flags);
  890. dao = container_of(atc->daios[SPDIFOO], struct dao, daio);
  891. da_dsc.msr = state ? 1 : atc->msr;
  892. da_dsc.passthru = state ? 1 : 0;
  893. err = dao->ops->reinit(dao, &da_dsc);
  894. if (state) {
  895. spos = IEC958_DEFAULT_CON;
  896. } else {
  897. mixer->get_output_ports(mixer, MIX_SPDIF_OUT,
  898. &rscs[0], &rscs[1]);
  899. dao->ops->set_left_input(dao, rscs[0]);
  900. dao->ops->set_right_input(dao, rscs[1]);
  901. /* Restore PLL to atc->rsr if needed. */
  902. if (atc->pll_rate != atc->rsr) {
  903. err = ((struct hw *)atc->hw)->pll_init(atc->hw,
  904. atc->rsr);
  905. atc->pll_rate = err ? 0 : atc->rsr;
  906. }
  907. }
  908. dao->ops->set_spos(dao, spos);
  909. dao->ops->commit_write(dao);
  910. spin_unlock_irqrestore(&atc->atc_lock, flags);
  911. return err;
  912. }
  913. static int ct_atc_destroy(struct ct_atc *atc)
  914. {
  915. struct daio_mgr *daio_mgr = NULL;
  916. struct dao *dao = NULL;
  917. struct dai *dai = NULL;
  918. struct daio *daio = NULL;
  919. struct sum_mgr *sum_mgr = NULL;
  920. struct src_mgr *src_mgr = NULL;
  921. struct srcimp_mgr *srcimp_mgr = NULL;
  922. struct srcimp *srcimp = NULL;
  923. struct ct_mixer *mixer = NULL;
  924. int i = 0;
  925. if (NULL == atc)
  926. return 0;
  927. /* Stop hardware and disable all interrupts */
  928. if (NULL != atc->hw)
  929. ((struct hw *)atc->hw)->card_stop(atc->hw);
  930. /* Destroy internal mixer objects */
  931. if (NULL != atc->mixer) {
  932. mixer = atc->mixer;
  933. mixer->set_input_left(mixer, MIX_LINE_IN, NULL);
  934. mixer->set_input_right(mixer, MIX_LINE_IN, NULL);
  935. mixer->set_input_left(mixer, MIX_MIC_IN, NULL);
  936. mixer->set_input_right(mixer, MIX_MIC_IN, NULL);
  937. mixer->set_input_left(mixer, MIX_SPDIF_IN, NULL);
  938. mixer->set_input_right(mixer, MIX_SPDIF_IN, NULL);
  939. ct_mixer_destroy(atc->mixer);
  940. }
  941. if (NULL != atc->daios) {
  942. daio_mgr = (struct daio_mgr *)atc->rsc_mgrs[DAIO];
  943. for (i = 0; i < atc->n_daio; i++) {
  944. daio = atc->daios[i];
  945. if (daio->type < LINEIM) {
  946. dao = container_of(daio, struct dao, daio);
  947. dao->ops->clear_left_input(dao);
  948. dao->ops->clear_right_input(dao);
  949. } else {
  950. dai = container_of(daio, struct dai, daio);
  951. /* some thing to do for dai ... */
  952. }
  953. daio_mgr->put_daio(daio_mgr, daio);
  954. }
  955. kfree(atc->daios);
  956. }
  957. if (NULL != atc->pcm) {
  958. sum_mgr = atc->rsc_mgrs[SUM];
  959. for (i = 0; i < atc->n_pcm; i++)
  960. sum_mgr->put_sum(sum_mgr, atc->pcm[i]);
  961. kfree(atc->pcm);
  962. }
  963. if (NULL != atc->srcs) {
  964. src_mgr = atc->rsc_mgrs[SRC];
  965. for (i = 0; i < atc->n_src; i++)
  966. src_mgr->put_src(src_mgr, atc->srcs[i]);
  967. kfree(atc->srcs);
  968. }
  969. if (NULL != atc->srcimps) {
  970. srcimp_mgr = atc->rsc_mgrs[SRCIMP];
  971. for (i = 0; i < atc->n_srcimp; i++) {
  972. srcimp = atc->srcimps[i];
  973. srcimp->ops->unmap(srcimp);
  974. srcimp_mgr->put_srcimp(srcimp_mgr, atc->srcimps[i]);
  975. }
  976. kfree(atc->srcimps);
  977. }
  978. for (i = 0; i < NUM_RSCTYP; i++) {
  979. if ((NULL != rsc_mgr_funcs[i].destroy) &&
  980. (NULL != atc->rsc_mgrs[i]))
  981. rsc_mgr_funcs[i].destroy(atc->rsc_mgrs[i]);
  982. }
  983. if (NULL != atc->hw)
  984. destroy_hw_obj((struct hw *)atc->hw);
  985. /* Destroy device virtual memory manager object */
  986. if (NULL != atc->vm) {
  987. ct_vm_destroy(atc->vm);
  988. atc->vm = NULL;
  989. }
  990. kfree(atc);
  991. return 0;
  992. }
  993. static int atc_dev_free(struct snd_device *dev)
  994. {
  995. struct ct_atc *atc = dev->device_data;
  996. return ct_atc_destroy(atc);
  997. }
  998. static int atc_identify_card(struct ct_atc *atc)
  999. {
  1000. u16 subsys;
  1001. u8 revision;
  1002. struct pci_dev *pci = atc->pci;
  1003. const struct ct_atc_chip_details *d;
  1004. enum CTCARDS i;
  1005. subsys = pci->subsystem_device;
  1006. revision = pci->revision;
  1007. atc->chip_details = NULL;
  1008. atc->model = NUM_CTCARDS;
  1009. for (d = atc_chip_details; d->vendor; d++) {
  1010. if (d->vendor != pci->vendor || d->device != pci->device)
  1011. continue;
  1012. if (NULL == d->sub_details) {
  1013. atc->chip_details = d;
  1014. break;
  1015. }
  1016. for (i = 0; i < NUM_CTCARDS; i++) {
  1017. if ((d->sub_details[i].subsys == subsys) ||
  1018. (((subsys & 0x6000) == 0x6000) &&
  1019. ((d->sub_details[i].subsys & 0x6000) == 0x6000))) {
  1020. atc->model = i;
  1021. break;
  1022. }
  1023. }
  1024. if (i >= NUM_CTCARDS)
  1025. continue;
  1026. atc->chip_details = d;
  1027. break;
  1028. /* not take revision into consideration now */
  1029. }
  1030. if (!d->vendor)
  1031. return -ENOENT;
  1032. return 0;
  1033. }
  1034. static int ct_create_alsa_devs(struct ct_atc *atc)
  1035. {
  1036. enum CTALSADEVS i;
  1037. struct hw *hw = atc->hw;
  1038. int err;
  1039. switch (hw->get_chip_type(hw)) {
  1040. case ATC20K1:
  1041. alsa_dev_funcs[MIXER].public_name = "20K1";
  1042. break;
  1043. case ATC20K2:
  1044. alsa_dev_funcs[MIXER].public_name = "20K2";
  1045. break;
  1046. default:
  1047. alsa_dev_funcs[MIXER].public_name = "Unknown";
  1048. break;
  1049. }
  1050. for (i = 0; i < NUM_CTALSADEVS; i++) {
  1051. if (NULL == alsa_dev_funcs[i].create)
  1052. continue;
  1053. err = alsa_dev_funcs[i].create(atc, i,
  1054. alsa_dev_funcs[i].public_name);
  1055. if (err) {
  1056. printk(KERN_ERR "ctxfi: "
  1057. "Creating alsa device %d failed!\n", i);
  1058. return err;
  1059. }
  1060. }
  1061. return 0;
  1062. }
  1063. static int atc_create_hw_devs(struct ct_atc *atc)
  1064. {
  1065. struct hw *hw = NULL;
  1066. struct card_conf info = {0};
  1067. int i = 0, err = 0;
  1068. err = create_hw_obj(atc->pci, &hw);
  1069. if (err) {
  1070. printk(KERN_ERR "Failed to create hw obj!!!\n");
  1071. return err;
  1072. }
  1073. atc->hw = hw;
  1074. /* Initialize card hardware. */
  1075. info.rsr = atc->rsr;
  1076. info.msr = atc->msr;
  1077. info.vm_pgt_phys = atc_get_ptp_phys(atc, 0);
  1078. err = hw->card_init(hw, &info);
  1079. if (err < 0)
  1080. return err;
  1081. for (i = 0; i < NUM_RSCTYP; i++) {
  1082. if (NULL == rsc_mgr_funcs[i].create)
  1083. continue;
  1084. err = rsc_mgr_funcs[i].create(atc->hw, &atc->rsc_mgrs[i]);
  1085. if (err) {
  1086. printk(KERN_ERR "ctxfi: "
  1087. "Failed to create rsc_mgr %d!!!\n", i);
  1088. return err;
  1089. }
  1090. }
  1091. return 0;
  1092. }
  1093. static int atc_get_resources(struct ct_atc *atc)
  1094. {
  1095. struct daio_desc da_desc = {0};
  1096. struct daio_mgr *daio_mgr = NULL;
  1097. struct src_desc src_dsc = {0};
  1098. struct src_mgr *src_mgr = NULL;
  1099. struct srcimp_desc srcimp_dsc = {0};
  1100. struct srcimp_mgr *srcimp_mgr = NULL;
  1101. struct sum_desc sum_dsc = {0};
  1102. struct sum_mgr *sum_mgr = NULL;
  1103. int err = 0, i = 0;
  1104. unsigned short subsys_id;
  1105. atc->daios = kzalloc(sizeof(void *)*(DAIONUM), GFP_KERNEL);
  1106. if (NULL == atc->daios)
  1107. return -ENOMEM;
  1108. atc->srcs = kzalloc(sizeof(void *)*(2*2), GFP_KERNEL);
  1109. if (NULL == atc->srcs)
  1110. return -ENOMEM;
  1111. atc->srcimps = kzalloc(sizeof(void *)*(2*2), GFP_KERNEL);
  1112. if (NULL == atc->srcimps)
  1113. return -ENOMEM;
  1114. atc->pcm = kzalloc(sizeof(void *)*(2*4), GFP_KERNEL);
  1115. if (NULL == atc->pcm)
  1116. return -ENOMEM;
  1117. daio_mgr = (struct daio_mgr *)atc->rsc_mgrs[DAIO];
  1118. da_desc.msr = atc->msr;
  1119. for (i = 0, atc->n_daio = 0; i < DAIONUM-1; i++) {
  1120. da_desc.type = i;
  1121. err = daio_mgr->get_daio(daio_mgr, &da_desc,
  1122. (struct daio **)&atc->daios[i]);
  1123. if (err) {
  1124. printk(KERN_ERR "ctxfi: Failed to get DAIO "
  1125. "resource %d!!!\n", i);
  1126. return err;
  1127. }
  1128. atc->n_daio++;
  1129. }
  1130. subsys_id = atc->pci->subsystem_device;
  1131. if ((subsys_id == 0x0029) || (subsys_id == 0x0031)) {
  1132. /* SB073x cards */
  1133. da_desc.type = SPDIFI1;
  1134. } else {
  1135. da_desc.type = SPDIFIO;
  1136. }
  1137. err = daio_mgr->get_daio(daio_mgr, &da_desc,
  1138. (struct daio **)&atc->daios[i]);
  1139. if (err) {
  1140. printk(KERN_ERR "ctxfi: Failed to get S/PDIF-in resource!!!\n");
  1141. return err;
  1142. }
  1143. atc->n_daio++;
  1144. src_mgr = atc->rsc_mgrs[SRC];
  1145. src_dsc.multi = 1;
  1146. src_dsc.msr = atc->msr;
  1147. src_dsc.mode = ARCRW;
  1148. for (i = 0, atc->n_src = 0; i < (2*2); i++) {
  1149. err = src_mgr->get_src(src_mgr, &src_dsc,
  1150. (struct src **)&atc->srcs[i]);
  1151. if (err)
  1152. return err;
  1153. atc->n_src++;
  1154. }
  1155. srcimp_mgr = atc->rsc_mgrs[SRCIMP];
  1156. srcimp_dsc.msr = 8; /* SRCIMPs for S/PDIFIn SRT */
  1157. for (i = 0, atc->n_srcimp = 0; i < (2*1); i++) {
  1158. err = srcimp_mgr->get_srcimp(srcimp_mgr, &srcimp_dsc,
  1159. (struct srcimp **)&atc->srcimps[i]);
  1160. if (err)
  1161. return err;
  1162. atc->n_srcimp++;
  1163. }
  1164. srcimp_dsc.msr = 8; /* SRCIMPs for LINE/MICIn SRT */
  1165. for (i = 0; i < (2*1); i++) {
  1166. err = srcimp_mgr->get_srcimp(srcimp_mgr, &srcimp_dsc,
  1167. (struct srcimp **)&atc->srcimps[2*1+i]);
  1168. if (err)
  1169. return err;
  1170. atc->n_srcimp++;
  1171. }
  1172. sum_mgr = atc->rsc_mgrs[SUM];
  1173. sum_dsc.msr = atc->msr;
  1174. for (i = 0, atc->n_pcm = 0; i < (2*4); i++) {
  1175. err = sum_mgr->get_sum(sum_mgr, &sum_dsc,
  1176. (struct sum **)&atc->pcm[i]);
  1177. if (err)
  1178. return err;
  1179. atc->n_pcm++;
  1180. }
  1181. err = ct_mixer_create(atc, (struct ct_mixer **)&atc->mixer);
  1182. if (err) {
  1183. printk(KERN_ERR "ctxfi: Failed to create mixer obj!!!\n");
  1184. return err;
  1185. }
  1186. return 0;
  1187. }
  1188. static void
  1189. atc_connect_dai(struct src_mgr *src_mgr, struct dai *dai,
  1190. struct src **srcs, struct srcimp **srcimps)
  1191. {
  1192. struct rsc *rscs[2] = {NULL};
  1193. struct src *src = NULL;
  1194. struct srcimp *srcimp = NULL;
  1195. int i = 0;
  1196. rscs[0] = &dai->daio.rscl;
  1197. rscs[1] = &dai->daio.rscr;
  1198. for (i = 0; i < 2; i++) {
  1199. src = srcs[i];
  1200. srcimp = srcimps[i];
  1201. srcimp->ops->map(srcimp, src, rscs[i]);
  1202. src_mgr->src_disable(src_mgr, src);
  1203. }
  1204. src_mgr->commit_write(src_mgr); /* Actually disable SRCs */
  1205. src = srcs[0];
  1206. src->ops->set_pm(src, 1);
  1207. for (i = 0; i < 2; i++) {
  1208. src = srcs[i];
  1209. src->ops->set_state(src, SRC_STATE_RUN);
  1210. src->ops->commit_write(src);
  1211. src_mgr->src_enable_s(src_mgr, src);
  1212. }
  1213. dai->ops->set_srt_srcl(dai, &(srcs[0]->rsc));
  1214. dai->ops->set_srt_srcr(dai, &(srcs[1]->rsc));
  1215. dai->ops->set_enb_src(dai, 1);
  1216. dai->ops->set_enb_srt(dai, 1);
  1217. dai->ops->commit_write(dai);
  1218. src_mgr->commit_write(src_mgr); /* Synchronously enable SRCs */
  1219. }
  1220. static void atc_connect_resources(struct ct_atc *atc)
  1221. {
  1222. struct dai *dai = NULL;
  1223. struct dao *dao = NULL;
  1224. struct src *src = NULL;
  1225. struct sum *sum = NULL;
  1226. struct ct_mixer *mixer = NULL;
  1227. struct rsc *rscs[2] = {NULL};
  1228. int i = 0, j = 0;
  1229. mixer = atc->mixer;
  1230. for (i = MIX_WAVE_FRONT, j = LINEO1; i <= MIX_SPDIF_OUT; i++, j++) {
  1231. mixer->get_output_ports(mixer, i, &rscs[0], &rscs[1]);
  1232. dao = container_of(atc->daios[j], struct dao, daio);
  1233. dao->ops->set_left_input(dao, rscs[0]);
  1234. dao->ops->set_right_input(dao, rscs[1]);
  1235. }
  1236. dai = container_of(atc->daios[LINEIM], struct dai, daio);
  1237. atc_connect_dai(atc->rsc_mgrs[SRC], dai,
  1238. (struct src **)&atc->srcs[2],
  1239. (struct srcimp **)&atc->srcimps[2]);
  1240. src = atc->srcs[2];
  1241. mixer->set_input_left(mixer, MIX_LINE_IN, &src->rsc);
  1242. src = atc->srcs[3];
  1243. mixer->set_input_right(mixer, MIX_LINE_IN, &src->rsc);
  1244. dai = container_of(atc->daios[SPDIFIO], struct dai, daio);
  1245. atc_connect_dai(atc->rsc_mgrs[SRC], dai,
  1246. (struct src **)&atc->srcs[0],
  1247. (struct srcimp **)&atc->srcimps[0]);
  1248. src = atc->srcs[0];
  1249. mixer->set_input_left(mixer, MIX_SPDIF_IN, &src->rsc);
  1250. src = atc->srcs[1];
  1251. mixer->set_input_right(mixer, MIX_SPDIF_IN, &src->rsc);
  1252. for (i = MIX_PCMI_FRONT, j = 0; i <= MIX_PCMI_SURROUND; i++, j += 2) {
  1253. sum = atc->pcm[j];
  1254. mixer->set_input_left(mixer, i, &sum->rsc);
  1255. sum = atc->pcm[j+1];
  1256. mixer->set_input_right(mixer, i, &sum->rsc);
  1257. }
  1258. }
  1259. static void atc_set_ops(struct ct_atc *atc)
  1260. {
  1261. /* Set operations */
  1262. atc->map_audio_buffer = ct_map_audio_buffer;
  1263. atc->unmap_audio_buffer = ct_unmap_audio_buffer;
  1264. atc->pcm_playback_prepare = atc_pcm_playback_prepare;
  1265. atc->pcm_release_resources = atc_pcm_release_resources;
  1266. atc->pcm_playback_start = atc_pcm_playback_start;
  1267. atc->pcm_playback_stop = atc_pcm_stop;
  1268. atc->pcm_playback_position = atc_pcm_playback_position;
  1269. atc->pcm_capture_prepare = atc_pcm_capture_prepare;
  1270. atc->pcm_capture_start = atc_pcm_capture_start;
  1271. atc->pcm_capture_stop = atc_pcm_stop;
  1272. atc->pcm_capture_position = atc_pcm_capture_position;
  1273. atc->spdif_passthru_playback_prepare = spdif_passthru_playback_prepare;
  1274. atc->get_ptp_phys = atc_get_ptp_phys;
  1275. atc->select_line_in = atc_select_line_in;
  1276. atc->select_mic_in = atc_select_mic_in;
  1277. atc->select_digit_io = atc_select_digit_io;
  1278. atc->line_front_unmute = atc_line_front_unmute;
  1279. atc->line_surround_unmute = atc_line_surround_unmute;
  1280. atc->line_clfe_unmute = atc_line_clfe_unmute;
  1281. atc->line_rear_unmute = atc_line_rear_unmute;
  1282. atc->line_in_unmute = atc_line_in_unmute;
  1283. atc->spdif_out_unmute = atc_spdif_out_unmute;
  1284. atc->spdif_in_unmute = atc_spdif_in_unmute;
  1285. atc->spdif_out_get_status = atc_spdif_out_get_status;
  1286. atc->spdif_out_set_status = atc_spdif_out_set_status;
  1287. atc->spdif_out_passthru = atc_spdif_out_passthru;
  1288. atc->have_digit_io_switch = atc_have_digit_io_switch;
  1289. }
  1290. /**
  1291. * ct_atc_create - create and initialize a hardware manager
  1292. * @card: corresponding alsa card object
  1293. * @pci: corresponding kernel pci device object
  1294. * @ratc: return created object address in it
  1295. *
  1296. * Creates and initializes a hardware manager.
  1297. *
  1298. * Creates kmallocated ct_atc structure. Initializes hardware.
  1299. * Returns 0 if suceeds, or negative error code if fails.
  1300. */
  1301. int ct_atc_create(struct snd_card *card, struct pci_dev *pci,
  1302. unsigned int rsr, unsigned int msr, struct ct_atc **ratc)
  1303. {
  1304. struct ct_atc *atc = NULL;
  1305. static struct snd_device_ops ops = {
  1306. .dev_free = atc_dev_free,
  1307. };
  1308. int err = 0;
  1309. *ratc = NULL;
  1310. atc = kzalloc(sizeof(*atc), GFP_KERNEL);
  1311. if (NULL == atc)
  1312. return -ENOMEM;
  1313. atc->card = card;
  1314. atc->pci = pci;
  1315. atc->rsr = rsr;
  1316. atc->msr = msr;
  1317. /* Set operations */
  1318. atc_set_ops(atc);
  1319. spin_lock_init(&atc->atc_lock);
  1320. /* Find card model */
  1321. err = atc_identify_card(atc);
  1322. if (err < 0) {
  1323. printk(KERN_ERR "ctatc: Card not recognised\n");
  1324. goto error1;
  1325. }
  1326. /* Set up device virtual memory management object */
  1327. err = ct_vm_create(&atc->vm);
  1328. if (err < 0)
  1329. goto error1;
  1330. /* Create all atc hw devices */
  1331. err = atc_create_hw_devs(atc);
  1332. if (err < 0)
  1333. goto error1;
  1334. /* Get resources */
  1335. err = atc_get_resources(atc);
  1336. if (err < 0)
  1337. goto error1;
  1338. /* Build topology */
  1339. atc_connect_resources(atc);
  1340. atc->create_alsa_devs = ct_create_alsa_devs;
  1341. err = snd_device_new(card, SNDRV_DEV_LOWLEVEL, atc, &ops);
  1342. if (err < 0)
  1343. goto error1;
  1344. snd_card_set_dev(card, &pci->dev);
  1345. *ratc = atc;
  1346. return 0;
  1347. error1:
  1348. ct_atc_destroy(atc);
  1349. printk(KERN_ERR "ctxfi: Something wrong!!!\n");
  1350. return err;
  1351. }