dw_spi.c 22 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942
  1. /*
  2. * dw_spi.c - Designware SPI core controller driver (refer pxa2xx_spi.c)
  3. *
  4. * Copyright (c) 2009, Intel Corporation.
  5. *
  6. * This program is free software; you can redistribute it and/or modify it
  7. * under the terms and conditions of the GNU General Public License,
  8. * version 2, as published by the Free Software Foundation.
  9. *
  10. * This program is distributed in the hope it will be useful, but WITHOUT
  11. * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12. * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
  13. * more details.
  14. *
  15. * You should have received a copy of the GNU General Public License along with
  16. * this program; if not, write to the Free Software Foundation, Inc.,
  17. * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
  18. */
  19. #include <linux/dma-mapping.h>
  20. #include <linux/interrupt.h>
  21. #include <linux/highmem.h>
  22. #include <linux/delay.h>
  23. #include <linux/slab.h>
  24. #include <linux/spi/spi.h>
  25. #include "dw_spi.h"
  26. #ifdef CONFIG_DEBUG_FS
  27. #include <linux/debugfs.h>
  28. #endif
  29. #define START_STATE ((void *)0)
  30. #define RUNNING_STATE ((void *)1)
  31. #define DONE_STATE ((void *)2)
  32. #define ERROR_STATE ((void *)-1)
  33. #define QUEUE_RUNNING 0
  34. #define QUEUE_STOPPED 1
  35. #define MRST_SPI_DEASSERT 0
  36. #define MRST_SPI_ASSERT 1
  37. /* Slave spi_dev related */
  38. struct chip_data {
  39. u16 cr0;
  40. u8 cs; /* chip select pin */
  41. u8 n_bytes; /* current is a 1/2/4 byte op */
  42. u8 tmode; /* TR/TO/RO/EEPROM */
  43. u8 type; /* SPI/SSP/MicroWire */
  44. u8 poll_mode; /* 1 means use poll mode */
  45. u32 dma_width;
  46. u32 rx_threshold;
  47. u32 tx_threshold;
  48. u8 enable_dma;
  49. u8 bits_per_word;
  50. u16 clk_div; /* baud rate divider */
  51. u32 speed_hz; /* baud rate */
  52. void (*cs_control)(u32 command);
  53. };
  54. #ifdef CONFIG_DEBUG_FS
  55. static int spi_show_regs_open(struct inode *inode, struct file *file)
  56. {
  57. file->private_data = inode->i_private;
  58. return 0;
  59. }
  60. #define SPI_REGS_BUFSIZE 1024
  61. static ssize_t spi_show_regs(struct file *file, char __user *user_buf,
  62. size_t count, loff_t *ppos)
  63. {
  64. struct dw_spi *dws;
  65. char *buf;
  66. u32 len = 0;
  67. ssize_t ret;
  68. dws = file->private_data;
  69. buf = kzalloc(SPI_REGS_BUFSIZE, GFP_KERNEL);
  70. if (!buf)
  71. return 0;
  72. len += snprintf(buf + len, SPI_REGS_BUFSIZE - len,
  73. "MRST SPI0 registers:\n");
  74. len += snprintf(buf + len, SPI_REGS_BUFSIZE - len,
  75. "=================================\n");
  76. len += snprintf(buf + len, SPI_REGS_BUFSIZE - len,
  77. "CTRL0: \t\t0x%08x\n", dw_readl(dws, ctrl0));
  78. len += snprintf(buf + len, SPI_REGS_BUFSIZE - len,
  79. "CTRL1: \t\t0x%08x\n", dw_readl(dws, ctrl1));
  80. len += snprintf(buf + len, SPI_REGS_BUFSIZE - len,
  81. "SSIENR: \t0x%08x\n", dw_readl(dws, ssienr));
  82. len += snprintf(buf + len, SPI_REGS_BUFSIZE - len,
  83. "SER: \t\t0x%08x\n", dw_readl(dws, ser));
  84. len += snprintf(buf + len, SPI_REGS_BUFSIZE - len,
  85. "BAUDR: \t\t0x%08x\n", dw_readl(dws, baudr));
  86. len += snprintf(buf + len, SPI_REGS_BUFSIZE - len,
  87. "TXFTLR: \t0x%08x\n", dw_readl(dws, txfltr));
  88. len += snprintf(buf + len, SPI_REGS_BUFSIZE - len,
  89. "RXFTLR: \t0x%08x\n", dw_readl(dws, rxfltr));
  90. len += snprintf(buf + len, SPI_REGS_BUFSIZE - len,
  91. "TXFLR: \t\t0x%08x\n", dw_readl(dws, txflr));
  92. len += snprintf(buf + len, SPI_REGS_BUFSIZE - len,
  93. "RXFLR: \t\t0x%08x\n", dw_readl(dws, rxflr));
  94. len += snprintf(buf + len, SPI_REGS_BUFSIZE - len,
  95. "SR: \t\t0x%08x\n", dw_readl(dws, sr));
  96. len += snprintf(buf + len, SPI_REGS_BUFSIZE - len,
  97. "IMR: \t\t0x%08x\n", dw_readl(dws, imr));
  98. len += snprintf(buf + len, SPI_REGS_BUFSIZE - len,
  99. "ISR: \t\t0x%08x\n", dw_readl(dws, isr));
  100. len += snprintf(buf + len, SPI_REGS_BUFSIZE - len,
  101. "DMACR: \t\t0x%08x\n", dw_readl(dws, dmacr));
  102. len += snprintf(buf + len, SPI_REGS_BUFSIZE - len,
  103. "DMATDLR: \t0x%08x\n", dw_readl(dws, dmatdlr));
  104. len += snprintf(buf + len, SPI_REGS_BUFSIZE - len,
  105. "DMARDLR: \t0x%08x\n", dw_readl(dws, dmardlr));
  106. len += snprintf(buf + len, SPI_REGS_BUFSIZE - len,
  107. "=================================\n");
  108. ret = simple_read_from_buffer(user_buf, count, ppos, buf, len);
  109. kfree(buf);
  110. return ret;
  111. }
  112. static const struct file_operations mrst_spi_regs_ops = {
  113. .owner = THIS_MODULE,
  114. .open = spi_show_regs_open,
  115. .read = spi_show_regs,
  116. .llseek = default_llseek,
  117. };
  118. static int mrst_spi_debugfs_init(struct dw_spi *dws)
  119. {
  120. dws->debugfs = debugfs_create_dir("mrst_spi", NULL);
  121. if (!dws->debugfs)
  122. return -ENOMEM;
  123. debugfs_create_file("registers", S_IFREG | S_IRUGO,
  124. dws->debugfs, (void *)dws, &mrst_spi_regs_ops);
  125. return 0;
  126. }
  127. static void mrst_spi_debugfs_remove(struct dw_spi *dws)
  128. {
  129. if (dws->debugfs)
  130. debugfs_remove_recursive(dws->debugfs);
  131. }
  132. #else
  133. static inline int mrst_spi_debugfs_init(struct dw_spi *dws)
  134. {
  135. return 0;
  136. }
  137. static inline void mrst_spi_debugfs_remove(struct dw_spi *dws)
  138. {
  139. }
  140. #endif /* CONFIG_DEBUG_FS */
  141. static void wait_till_not_busy(struct dw_spi *dws)
  142. {
  143. unsigned long end = jiffies + 1 + usecs_to_jiffies(5000);
  144. while (time_before(jiffies, end)) {
  145. if (!(dw_readw(dws, sr) & SR_BUSY))
  146. return;
  147. cpu_relax();
  148. }
  149. dev_err(&dws->master->dev,
  150. "DW SPI: Status keeps busy for 5000us after a read/write!\n");
  151. }
  152. static int dw_writer(struct dw_spi *dws)
  153. {
  154. u16 txw = 0;
  155. if (!(dw_readw(dws, sr) & SR_TF_NOT_FULL)
  156. || (dws->tx == dws->tx_end))
  157. return 0;
  158. /* Set the tx word if the transfer's original "tx" is not null */
  159. if (dws->tx_end - dws->len) {
  160. if (dws->n_bytes == 1)
  161. txw = *(u8 *)(dws->tx);
  162. else
  163. txw = *(u16 *)(dws->tx);
  164. }
  165. dw_writew(dws, dr, txw);
  166. dws->tx += dws->n_bytes;
  167. wait_till_not_busy(dws);
  168. return 1;
  169. }
  170. static int dw_reader(struct dw_spi *dws)
  171. {
  172. u16 rxw;
  173. while ((dw_readw(dws, sr) & SR_RF_NOT_EMPT)
  174. && (dws->rx < dws->rx_end)) {
  175. rxw = dw_readw(dws, dr);
  176. /* Care rx only if the transfer's original "rx" is not null */
  177. if (dws->rx_end - dws->len) {
  178. if (dws->n_bytes == 1)
  179. *(u8 *)(dws->rx) = rxw;
  180. else
  181. *(u16 *)(dws->rx) = rxw;
  182. }
  183. dws->rx += dws->n_bytes;
  184. }
  185. wait_till_not_busy(dws);
  186. return dws->rx == dws->rx_end;
  187. }
  188. static void *next_transfer(struct dw_spi *dws)
  189. {
  190. struct spi_message *msg = dws->cur_msg;
  191. struct spi_transfer *trans = dws->cur_transfer;
  192. /* Move to next transfer */
  193. if (trans->transfer_list.next != &msg->transfers) {
  194. dws->cur_transfer =
  195. list_entry(trans->transfer_list.next,
  196. struct spi_transfer,
  197. transfer_list);
  198. return RUNNING_STATE;
  199. } else
  200. return DONE_STATE;
  201. }
  202. /*
  203. * Note: first step is the protocol driver prepares
  204. * a dma-capable memory, and this func just need translate
  205. * the virt addr to physical
  206. */
  207. static int map_dma_buffers(struct dw_spi *dws)
  208. {
  209. if (!dws->cur_msg->is_dma_mapped
  210. || !dws->dma_inited
  211. || !dws->cur_chip->enable_dma
  212. || !dws->dma_ops)
  213. return 0;
  214. if (dws->cur_transfer->tx_dma)
  215. dws->tx_dma = dws->cur_transfer->tx_dma;
  216. if (dws->cur_transfer->rx_dma)
  217. dws->rx_dma = dws->cur_transfer->rx_dma;
  218. return 1;
  219. }
  220. /* Caller already set message->status; dma and pio irqs are blocked */
  221. static void giveback(struct dw_spi *dws)
  222. {
  223. struct spi_transfer *last_transfer;
  224. unsigned long flags;
  225. struct spi_message *msg;
  226. spin_lock_irqsave(&dws->lock, flags);
  227. msg = dws->cur_msg;
  228. dws->cur_msg = NULL;
  229. dws->cur_transfer = NULL;
  230. dws->prev_chip = dws->cur_chip;
  231. dws->cur_chip = NULL;
  232. dws->dma_mapped = 0;
  233. queue_work(dws->workqueue, &dws->pump_messages);
  234. spin_unlock_irqrestore(&dws->lock, flags);
  235. last_transfer = list_entry(msg->transfers.prev,
  236. struct spi_transfer,
  237. transfer_list);
  238. if (!last_transfer->cs_change && dws->cs_control)
  239. dws->cs_control(MRST_SPI_DEASSERT);
  240. msg->state = NULL;
  241. if (msg->complete)
  242. msg->complete(msg->context);
  243. }
  244. static void int_error_stop(struct dw_spi *dws, const char *msg)
  245. {
  246. /* Stop the hw */
  247. spi_enable_chip(dws, 0);
  248. dev_err(&dws->master->dev, "%s\n", msg);
  249. dws->cur_msg->state = ERROR_STATE;
  250. tasklet_schedule(&dws->pump_transfers);
  251. }
  252. void dw_spi_xfer_done(struct dw_spi *dws)
  253. {
  254. /* Update total byte transfered return count actual bytes read */
  255. dws->cur_msg->actual_length += dws->len;
  256. /* Move to next transfer */
  257. dws->cur_msg->state = next_transfer(dws);
  258. /* Handle end of message */
  259. if (dws->cur_msg->state == DONE_STATE) {
  260. dws->cur_msg->status = 0;
  261. giveback(dws);
  262. } else
  263. tasklet_schedule(&dws->pump_transfers);
  264. }
  265. EXPORT_SYMBOL_GPL(dw_spi_xfer_done);
  266. static irqreturn_t interrupt_transfer(struct dw_spi *dws)
  267. {
  268. u16 irq_status, irq_mask = 0x3f;
  269. u32 int_level = dws->fifo_len / 2;
  270. u32 left;
  271. irq_status = dw_readw(dws, isr) & irq_mask;
  272. /* Error handling */
  273. if (irq_status & (SPI_INT_TXOI | SPI_INT_RXOI | SPI_INT_RXUI)) {
  274. dw_readw(dws, txoicr);
  275. dw_readw(dws, rxoicr);
  276. dw_readw(dws, rxuicr);
  277. int_error_stop(dws, "interrupt_transfer: fifo overrun");
  278. return IRQ_HANDLED;
  279. }
  280. if (irq_status & SPI_INT_TXEI) {
  281. spi_mask_intr(dws, SPI_INT_TXEI);
  282. left = (dws->tx_end - dws->tx) / dws->n_bytes;
  283. left = (left > int_level) ? int_level : left;
  284. while (left--)
  285. dw_writer(dws);
  286. dw_reader(dws);
  287. /* Re-enable the IRQ if there is still data left to tx */
  288. if (dws->tx_end > dws->tx)
  289. spi_umask_intr(dws, SPI_INT_TXEI);
  290. else
  291. dw_spi_xfer_done(dws);
  292. }
  293. return IRQ_HANDLED;
  294. }
  295. static irqreturn_t dw_spi_irq(int irq, void *dev_id)
  296. {
  297. struct dw_spi *dws = dev_id;
  298. u16 irq_status, irq_mask = 0x3f;
  299. irq_status = dw_readw(dws, isr) & irq_mask;
  300. if (!irq_status)
  301. return IRQ_NONE;
  302. if (!dws->cur_msg) {
  303. spi_mask_intr(dws, SPI_INT_TXEI);
  304. /* Never fail */
  305. return IRQ_HANDLED;
  306. }
  307. return dws->transfer_handler(dws);
  308. }
  309. /* Must be called inside pump_transfers() */
  310. static void poll_transfer(struct dw_spi *dws)
  311. {
  312. while (dw_writer(dws))
  313. dw_reader(dws);
  314. /*
  315. * There is a possibility that the last word of a transaction
  316. * will be lost if data is not ready. Re-read to solve this issue.
  317. */
  318. dw_reader(dws);
  319. dw_spi_xfer_done(dws);
  320. }
  321. static void pump_transfers(unsigned long data)
  322. {
  323. struct dw_spi *dws = (struct dw_spi *)data;
  324. struct spi_message *message = NULL;
  325. struct spi_transfer *transfer = NULL;
  326. struct spi_transfer *previous = NULL;
  327. struct spi_device *spi = NULL;
  328. struct chip_data *chip = NULL;
  329. u8 bits = 0;
  330. u8 imask = 0;
  331. u8 cs_change = 0;
  332. u16 txint_level = 0;
  333. u16 clk_div = 0;
  334. u32 speed = 0;
  335. u32 cr0 = 0;
  336. /* Get current state information */
  337. message = dws->cur_msg;
  338. transfer = dws->cur_transfer;
  339. chip = dws->cur_chip;
  340. spi = message->spi;
  341. if (unlikely(!chip->clk_div))
  342. chip->clk_div = dws->max_freq / chip->speed_hz;
  343. if (message->state == ERROR_STATE) {
  344. message->status = -EIO;
  345. goto early_exit;
  346. }
  347. /* Handle end of message */
  348. if (message->state == DONE_STATE) {
  349. message->status = 0;
  350. goto early_exit;
  351. }
  352. /* Delay if requested at end of transfer*/
  353. if (message->state == RUNNING_STATE) {
  354. previous = list_entry(transfer->transfer_list.prev,
  355. struct spi_transfer,
  356. transfer_list);
  357. if (previous->delay_usecs)
  358. udelay(previous->delay_usecs);
  359. }
  360. dws->n_bytes = chip->n_bytes;
  361. dws->dma_width = chip->dma_width;
  362. dws->cs_control = chip->cs_control;
  363. dws->rx_dma = transfer->rx_dma;
  364. dws->tx_dma = transfer->tx_dma;
  365. dws->tx = (void *)transfer->tx_buf;
  366. dws->tx_end = dws->tx + transfer->len;
  367. dws->rx = transfer->rx_buf;
  368. dws->rx_end = dws->rx + transfer->len;
  369. dws->cs_change = transfer->cs_change;
  370. dws->len = dws->cur_transfer->len;
  371. if (chip != dws->prev_chip)
  372. cs_change = 1;
  373. cr0 = chip->cr0;
  374. /* Handle per transfer options for bpw and speed */
  375. if (transfer->speed_hz) {
  376. speed = chip->speed_hz;
  377. if (transfer->speed_hz != speed) {
  378. speed = transfer->speed_hz;
  379. if (speed > dws->max_freq) {
  380. printk(KERN_ERR "MRST SPI0: unsupported"
  381. "freq: %dHz\n", speed);
  382. message->status = -EIO;
  383. goto early_exit;
  384. }
  385. /* clk_div doesn't support odd number */
  386. clk_div = dws->max_freq / speed;
  387. clk_div = (clk_div + 1) & 0xfffe;
  388. chip->speed_hz = speed;
  389. chip->clk_div = clk_div;
  390. }
  391. }
  392. if (transfer->bits_per_word) {
  393. bits = transfer->bits_per_word;
  394. switch (bits) {
  395. case 8:
  396. dws->n_bytes = 1;
  397. dws->dma_width = 1;
  398. break;
  399. case 16:
  400. dws->n_bytes = 2;
  401. dws->dma_width = 2;
  402. break;
  403. default:
  404. printk(KERN_ERR "MRST SPI0: unsupported bits:"
  405. "%db\n", bits);
  406. message->status = -EIO;
  407. goto early_exit;
  408. }
  409. cr0 = (bits - 1)
  410. | (chip->type << SPI_FRF_OFFSET)
  411. | (spi->mode << SPI_MODE_OFFSET)
  412. | (chip->tmode << SPI_TMOD_OFFSET);
  413. }
  414. message->state = RUNNING_STATE;
  415. /*
  416. * Adjust transfer mode if necessary. Requires platform dependent
  417. * chipselect mechanism.
  418. */
  419. if (dws->cs_control) {
  420. if (dws->rx && dws->tx)
  421. chip->tmode = SPI_TMOD_TR;
  422. else if (dws->rx)
  423. chip->tmode = SPI_TMOD_RO;
  424. else
  425. chip->tmode = SPI_TMOD_TO;
  426. cr0 &= ~SPI_TMOD_MASK;
  427. cr0 |= (chip->tmode << SPI_TMOD_OFFSET);
  428. }
  429. /* Check if current transfer is a DMA transaction */
  430. dws->dma_mapped = map_dma_buffers(dws);
  431. /*
  432. * Interrupt mode
  433. * we only need set the TXEI IRQ, as TX/RX always happen syncronizely
  434. */
  435. if (!dws->dma_mapped && !chip->poll_mode) {
  436. int templen = dws->len / dws->n_bytes;
  437. txint_level = dws->fifo_len / 2;
  438. txint_level = (templen > txint_level) ? txint_level : templen;
  439. imask |= SPI_INT_TXEI;
  440. dws->transfer_handler = interrupt_transfer;
  441. }
  442. /*
  443. * Reprogram registers only if
  444. * 1. chip select changes
  445. * 2. clk_div is changed
  446. * 3. control value changes
  447. */
  448. if (dw_readw(dws, ctrl0) != cr0 || cs_change || clk_div || imask) {
  449. spi_enable_chip(dws, 0);
  450. if (dw_readw(dws, ctrl0) != cr0)
  451. dw_writew(dws, ctrl0, cr0);
  452. spi_set_clk(dws, clk_div ? clk_div : chip->clk_div);
  453. spi_chip_sel(dws, spi->chip_select);
  454. /* Set the interrupt mask, for poll mode just disable all int */
  455. spi_mask_intr(dws, 0xff);
  456. if (imask)
  457. spi_umask_intr(dws, imask);
  458. if (txint_level)
  459. dw_writew(dws, txfltr, txint_level);
  460. spi_enable_chip(dws, 1);
  461. if (cs_change)
  462. dws->prev_chip = chip;
  463. }
  464. if (dws->dma_mapped)
  465. dws->dma_ops->dma_transfer(dws, cs_change);
  466. if (chip->poll_mode)
  467. poll_transfer(dws);
  468. return;
  469. early_exit:
  470. giveback(dws);
  471. return;
  472. }
  473. static void pump_messages(struct work_struct *work)
  474. {
  475. struct dw_spi *dws =
  476. container_of(work, struct dw_spi, pump_messages);
  477. unsigned long flags;
  478. /* Lock queue and check for queue work */
  479. spin_lock_irqsave(&dws->lock, flags);
  480. if (list_empty(&dws->queue) || dws->run == QUEUE_STOPPED) {
  481. dws->busy = 0;
  482. spin_unlock_irqrestore(&dws->lock, flags);
  483. return;
  484. }
  485. /* Make sure we are not already running a message */
  486. if (dws->cur_msg) {
  487. spin_unlock_irqrestore(&dws->lock, flags);
  488. return;
  489. }
  490. /* Extract head of queue */
  491. dws->cur_msg = list_entry(dws->queue.next, struct spi_message, queue);
  492. list_del_init(&dws->cur_msg->queue);
  493. /* Initial message state*/
  494. dws->cur_msg->state = START_STATE;
  495. dws->cur_transfer = list_entry(dws->cur_msg->transfers.next,
  496. struct spi_transfer,
  497. transfer_list);
  498. dws->cur_chip = spi_get_ctldata(dws->cur_msg->spi);
  499. /* Mark as busy and launch transfers */
  500. tasklet_schedule(&dws->pump_transfers);
  501. dws->busy = 1;
  502. spin_unlock_irqrestore(&dws->lock, flags);
  503. }
  504. /* spi_device use this to queue in their spi_msg */
  505. static int dw_spi_transfer(struct spi_device *spi, struct spi_message *msg)
  506. {
  507. struct dw_spi *dws = spi_master_get_devdata(spi->master);
  508. unsigned long flags;
  509. spin_lock_irqsave(&dws->lock, flags);
  510. if (dws->run == QUEUE_STOPPED) {
  511. spin_unlock_irqrestore(&dws->lock, flags);
  512. return -ESHUTDOWN;
  513. }
  514. msg->actual_length = 0;
  515. msg->status = -EINPROGRESS;
  516. msg->state = START_STATE;
  517. list_add_tail(&msg->queue, &dws->queue);
  518. if (dws->run == QUEUE_RUNNING && !dws->busy) {
  519. if (dws->cur_transfer || dws->cur_msg)
  520. queue_work(dws->workqueue,
  521. &dws->pump_messages);
  522. else {
  523. /* If no other data transaction in air, just go */
  524. spin_unlock_irqrestore(&dws->lock, flags);
  525. pump_messages(&dws->pump_messages);
  526. return 0;
  527. }
  528. }
  529. spin_unlock_irqrestore(&dws->lock, flags);
  530. return 0;
  531. }
  532. /* This may be called twice for each spi dev */
  533. static int dw_spi_setup(struct spi_device *spi)
  534. {
  535. struct dw_spi_chip *chip_info = NULL;
  536. struct chip_data *chip;
  537. if (spi->bits_per_word != 8 && spi->bits_per_word != 16)
  538. return -EINVAL;
  539. /* Only alloc on first setup */
  540. chip = spi_get_ctldata(spi);
  541. if (!chip) {
  542. chip = kzalloc(sizeof(struct chip_data), GFP_KERNEL);
  543. if (!chip)
  544. return -ENOMEM;
  545. }
  546. /*
  547. * Protocol drivers may change the chip settings, so...
  548. * if chip_info exists, use it
  549. */
  550. chip_info = spi->controller_data;
  551. /* chip_info doesn't always exist */
  552. if (chip_info) {
  553. if (chip_info->cs_control)
  554. chip->cs_control = chip_info->cs_control;
  555. chip->poll_mode = chip_info->poll_mode;
  556. chip->type = chip_info->type;
  557. chip->rx_threshold = 0;
  558. chip->tx_threshold = 0;
  559. chip->enable_dma = chip_info->enable_dma;
  560. }
  561. if (spi->bits_per_word <= 8) {
  562. chip->n_bytes = 1;
  563. chip->dma_width = 1;
  564. } else if (spi->bits_per_word <= 16) {
  565. chip->n_bytes = 2;
  566. chip->dma_width = 2;
  567. } else {
  568. /* Never take >16b case for MRST SPIC */
  569. dev_err(&spi->dev, "invalid wordsize\n");
  570. return -EINVAL;
  571. }
  572. chip->bits_per_word = spi->bits_per_word;
  573. if (!spi->max_speed_hz) {
  574. dev_err(&spi->dev, "No max speed HZ parameter\n");
  575. return -EINVAL;
  576. }
  577. chip->speed_hz = spi->max_speed_hz;
  578. chip->tmode = 0; /* Tx & Rx */
  579. /* Default SPI mode is SCPOL = 0, SCPH = 0 */
  580. chip->cr0 = (chip->bits_per_word - 1)
  581. | (chip->type << SPI_FRF_OFFSET)
  582. | (spi->mode << SPI_MODE_OFFSET)
  583. | (chip->tmode << SPI_TMOD_OFFSET);
  584. spi_set_ctldata(spi, chip);
  585. return 0;
  586. }
  587. static void dw_spi_cleanup(struct spi_device *spi)
  588. {
  589. struct chip_data *chip = spi_get_ctldata(spi);
  590. kfree(chip);
  591. }
  592. static int __devinit init_queue(struct dw_spi *dws)
  593. {
  594. INIT_LIST_HEAD(&dws->queue);
  595. spin_lock_init(&dws->lock);
  596. dws->run = QUEUE_STOPPED;
  597. dws->busy = 0;
  598. tasklet_init(&dws->pump_transfers,
  599. pump_transfers, (unsigned long)dws);
  600. INIT_WORK(&dws->pump_messages, pump_messages);
  601. dws->workqueue = create_singlethread_workqueue(
  602. dev_name(dws->master->dev.parent));
  603. if (dws->workqueue == NULL)
  604. return -EBUSY;
  605. return 0;
  606. }
  607. static int start_queue(struct dw_spi *dws)
  608. {
  609. unsigned long flags;
  610. spin_lock_irqsave(&dws->lock, flags);
  611. if (dws->run == QUEUE_RUNNING || dws->busy) {
  612. spin_unlock_irqrestore(&dws->lock, flags);
  613. return -EBUSY;
  614. }
  615. dws->run = QUEUE_RUNNING;
  616. dws->cur_msg = NULL;
  617. dws->cur_transfer = NULL;
  618. dws->cur_chip = NULL;
  619. dws->prev_chip = NULL;
  620. spin_unlock_irqrestore(&dws->lock, flags);
  621. queue_work(dws->workqueue, &dws->pump_messages);
  622. return 0;
  623. }
  624. static int stop_queue(struct dw_spi *dws)
  625. {
  626. unsigned long flags;
  627. unsigned limit = 50;
  628. int status = 0;
  629. spin_lock_irqsave(&dws->lock, flags);
  630. dws->run = QUEUE_STOPPED;
  631. while (!list_empty(&dws->queue) && dws->busy && limit--) {
  632. spin_unlock_irqrestore(&dws->lock, flags);
  633. msleep(10);
  634. spin_lock_irqsave(&dws->lock, flags);
  635. }
  636. if (!list_empty(&dws->queue) || dws->busy)
  637. status = -EBUSY;
  638. spin_unlock_irqrestore(&dws->lock, flags);
  639. return status;
  640. }
  641. static int destroy_queue(struct dw_spi *dws)
  642. {
  643. int status;
  644. status = stop_queue(dws);
  645. if (status != 0)
  646. return status;
  647. destroy_workqueue(dws->workqueue);
  648. return 0;
  649. }
  650. /* Restart the controller, disable all interrupts, clean rx fifo */
  651. static void spi_hw_init(struct dw_spi *dws)
  652. {
  653. spi_enable_chip(dws, 0);
  654. spi_mask_intr(dws, 0xff);
  655. spi_enable_chip(dws, 1);
  656. /*
  657. * Try to detect the FIFO depth if not set by interface driver,
  658. * the depth could be from 2 to 256 from HW spec
  659. */
  660. if (!dws->fifo_len) {
  661. u32 fifo;
  662. for (fifo = 2; fifo <= 257; fifo++) {
  663. dw_writew(dws, txfltr, fifo);
  664. if (fifo != dw_readw(dws, txfltr))
  665. break;
  666. }
  667. dws->fifo_len = (fifo == 257) ? 0 : fifo;
  668. dw_writew(dws, txfltr, 0);
  669. }
  670. }
  671. int __devinit dw_spi_add_host(struct dw_spi *dws)
  672. {
  673. struct spi_master *master;
  674. int ret;
  675. BUG_ON(dws == NULL);
  676. master = spi_alloc_master(dws->parent_dev, 0);
  677. if (!master) {
  678. ret = -ENOMEM;
  679. goto exit;
  680. }
  681. dws->master = master;
  682. dws->type = SSI_MOTO_SPI;
  683. dws->prev_chip = NULL;
  684. dws->dma_inited = 0;
  685. dws->dma_addr = (dma_addr_t)(dws->paddr + 0x60);
  686. ret = request_irq(dws->irq, dw_spi_irq, IRQF_SHARED,
  687. "dw_spi", dws);
  688. if (ret < 0) {
  689. dev_err(&master->dev, "can not get IRQ\n");
  690. goto err_free_master;
  691. }
  692. master->mode_bits = SPI_CPOL | SPI_CPHA;
  693. master->bus_num = dws->bus_num;
  694. master->num_chipselect = dws->num_cs;
  695. master->cleanup = dw_spi_cleanup;
  696. master->setup = dw_spi_setup;
  697. master->transfer = dw_spi_transfer;
  698. /* Basic HW init */
  699. spi_hw_init(dws);
  700. if (dws->dma_ops && dws->dma_ops->dma_init) {
  701. ret = dws->dma_ops->dma_init(dws);
  702. if (ret) {
  703. dev_warn(&master->dev, "DMA init failed\n");
  704. dws->dma_inited = 0;
  705. }
  706. }
  707. /* Initial and start queue */
  708. ret = init_queue(dws);
  709. if (ret) {
  710. dev_err(&master->dev, "problem initializing queue\n");
  711. goto err_diable_hw;
  712. }
  713. ret = start_queue(dws);
  714. if (ret) {
  715. dev_err(&master->dev, "problem starting queue\n");
  716. goto err_diable_hw;
  717. }
  718. spi_master_set_devdata(master, dws);
  719. ret = spi_register_master(master);
  720. if (ret) {
  721. dev_err(&master->dev, "problem registering spi master\n");
  722. goto err_queue_alloc;
  723. }
  724. mrst_spi_debugfs_init(dws);
  725. return 0;
  726. err_queue_alloc:
  727. destroy_queue(dws);
  728. if (dws->dma_ops && dws->dma_ops->dma_exit)
  729. dws->dma_ops->dma_exit(dws);
  730. err_diable_hw:
  731. spi_enable_chip(dws, 0);
  732. free_irq(dws->irq, dws);
  733. err_free_master:
  734. spi_master_put(master);
  735. exit:
  736. return ret;
  737. }
  738. EXPORT_SYMBOL_GPL(dw_spi_add_host);
  739. void __devexit dw_spi_remove_host(struct dw_spi *dws)
  740. {
  741. int status = 0;
  742. if (!dws)
  743. return;
  744. mrst_spi_debugfs_remove(dws);
  745. /* Remove the queue */
  746. status = destroy_queue(dws);
  747. if (status != 0)
  748. dev_err(&dws->master->dev, "dw_spi_remove: workqueue will not "
  749. "complete, message memory not freed\n");
  750. if (dws->dma_ops && dws->dma_ops->dma_exit)
  751. dws->dma_ops->dma_exit(dws);
  752. spi_enable_chip(dws, 0);
  753. /* Disable clk */
  754. spi_set_clk(dws, 0);
  755. free_irq(dws->irq, dws);
  756. /* Disconnect from the SPI framework */
  757. spi_unregister_master(dws->master);
  758. }
  759. EXPORT_SYMBOL_GPL(dw_spi_remove_host);
  760. int dw_spi_suspend_host(struct dw_spi *dws)
  761. {
  762. int ret = 0;
  763. ret = stop_queue(dws);
  764. if (ret)
  765. return ret;
  766. spi_enable_chip(dws, 0);
  767. spi_set_clk(dws, 0);
  768. return ret;
  769. }
  770. EXPORT_SYMBOL_GPL(dw_spi_suspend_host);
  771. int dw_spi_resume_host(struct dw_spi *dws)
  772. {
  773. int ret;
  774. spi_hw_init(dws);
  775. ret = start_queue(dws);
  776. if (ret)
  777. dev_err(&dws->master->dev, "fail to start queue (%d)\n", ret);
  778. return ret;
  779. }
  780. EXPORT_SYMBOL_GPL(dw_spi_resume_host);
  781. MODULE_AUTHOR("Feng Tang <feng.tang@intel.com>");
  782. MODULE_DESCRIPTION("Driver for DesignWare SPI controller core");
  783. MODULE_LICENSE("GPL v2");