pci.c 18 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745
  1. /*
  2. * pci.c - Low-Level PCI Access in IA-64
  3. *
  4. * Derived from bios32.c of i386 tree.
  5. *
  6. * (c) Copyright 2002, 2005 Hewlett-Packard Development Company, L.P.
  7. * David Mosberger-Tang <davidm@hpl.hp.com>
  8. * Bjorn Helgaas <bjorn.helgaas@hp.com>
  9. * Copyright (C) 2004 Silicon Graphics, Inc.
  10. *
  11. * Note: Above list of copyright holders is incomplete...
  12. */
  13. #include <linux/config.h>
  14. #include <linux/acpi.h>
  15. #include <linux/types.h>
  16. #include <linux/kernel.h>
  17. #include <linux/pci.h>
  18. #include <linux/init.h>
  19. #include <linux/ioport.h>
  20. #include <linux/slab.h>
  21. #include <linux/smp_lock.h>
  22. #include <linux/spinlock.h>
  23. #include <asm/machvec.h>
  24. #include <asm/page.h>
  25. #include <asm/system.h>
  26. #include <asm/io.h>
  27. #include <asm/sal.h>
  28. #include <asm/smp.h>
  29. #include <asm/irq.h>
  30. #include <asm/hw_irq.h>
  31. /*
  32. * Low-level SAL-based PCI configuration access functions. Note that SAL
  33. * calls are already serialized (via sal_lock), so we don't need another
  34. * synchronization mechanism here.
  35. */
  36. #define PCI_SAL_ADDRESS(seg, bus, devfn, reg) \
  37. (((u64) seg << 24) | (bus << 16) | (devfn << 8) | (reg))
  38. /* SAL 3.2 adds support for extended config space. */
  39. #define PCI_SAL_EXT_ADDRESS(seg, bus, devfn, reg) \
  40. (((u64) seg << 28) | (bus << 20) | (devfn << 12) | (reg))
  41. static int
  42. pci_sal_read (unsigned int seg, unsigned int bus, unsigned int devfn,
  43. int reg, int len, u32 *value)
  44. {
  45. u64 addr, data = 0;
  46. int mode, result;
  47. if (!value || (seg > 65535) || (bus > 255) || (devfn > 255) || (reg > 4095))
  48. return -EINVAL;
  49. if ((seg | reg) <= 255) {
  50. addr = PCI_SAL_ADDRESS(seg, bus, devfn, reg);
  51. mode = 0;
  52. } else {
  53. addr = PCI_SAL_EXT_ADDRESS(seg, bus, devfn, reg);
  54. mode = 1;
  55. }
  56. result = ia64_sal_pci_config_read(addr, mode, len, &data);
  57. if (result != 0)
  58. return -EINVAL;
  59. *value = (u32) data;
  60. return 0;
  61. }
  62. static int
  63. pci_sal_write (unsigned int seg, unsigned int bus, unsigned int devfn,
  64. int reg, int len, u32 value)
  65. {
  66. u64 addr;
  67. int mode, result;
  68. if ((seg > 65535) || (bus > 255) || (devfn > 255) || (reg > 4095))
  69. return -EINVAL;
  70. if ((seg | reg) <= 255) {
  71. addr = PCI_SAL_ADDRESS(seg, bus, devfn, reg);
  72. mode = 0;
  73. } else {
  74. addr = PCI_SAL_EXT_ADDRESS(seg, bus, devfn, reg);
  75. mode = 1;
  76. }
  77. result = ia64_sal_pci_config_write(addr, mode, len, value);
  78. if (result != 0)
  79. return -EINVAL;
  80. return 0;
  81. }
  82. static struct pci_raw_ops pci_sal_ops = {
  83. .read = pci_sal_read,
  84. .write = pci_sal_write
  85. };
  86. struct pci_raw_ops *raw_pci_ops = &pci_sal_ops;
  87. static int
  88. pci_read (struct pci_bus *bus, unsigned int devfn, int where, int size, u32 *value)
  89. {
  90. return raw_pci_ops->read(pci_domain_nr(bus), bus->number,
  91. devfn, where, size, value);
  92. }
  93. static int
  94. pci_write (struct pci_bus *bus, unsigned int devfn, int where, int size, u32 value)
  95. {
  96. return raw_pci_ops->write(pci_domain_nr(bus), bus->number,
  97. devfn, where, size, value);
  98. }
  99. struct pci_ops pci_root_ops = {
  100. .read = pci_read,
  101. .write = pci_write,
  102. };
  103. /* Called by ACPI when it finds a new root bus. */
  104. static struct pci_controller * __devinit
  105. alloc_pci_controller (int seg)
  106. {
  107. struct pci_controller *controller;
  108. controller = kmalloc(sizeof(*controller), GFP_KERNEL);
  109. if (!controller)
  110. return NULL;
  111. memset(controller, 0, sizeof(*controller));
  112. controller->segment = seg;
  113. controller->node = -1;
  114. return controller;
  115. }
  116. static u64 __devinit
  117. add_io_space (struct acpi_resource_address64 *addr)
  118. {
  119. u64 offset;
  120. int sparse = 0;
  121. int i;
  122. if (addr->address_translation_offset == 0)
  123. return IO_SPACE_BASE(0); /* part of legacy IO space */
  124. if (addr->attribute.io.translation_attribute == ACPI_SPARSE_TRANSLATION)
  125. sparse = 1;
  126. offset = (u64) ioremap(addr->address_translation_offset, 0);
  127. for (i = 0; i < num_io_spaces; i++)
  128. if (io_space[i].mmio_base == offset &&
  129. io_space[i].sparse == sparse)
  130. return IO_SPACE_BASE(i);
  131. if (num_io_spaces == MAX_IO_SPACES) {
  132. printk("Too many IO port spaces\n");
  133. return ~0;
  134. }
  135. i = num_io_spaces++;
  136. io_space[i].mmio_base = offset;
  137. io_space[i].sparse = sparse;
  138. return IO_SPACE_BASE(i);
  139. }
  140. static acpi_status __devinit resource_to_window(struct acpi_resource *resource,
  141. struct acpi_resource_address64 *addr)
  142. {
  143. acpi_status status;
  144. /*
  145. * We're only interested in _CRS descriptors that are
  146. * - address space descriptors for memory or I/O space
  147. * - non-zero size
  148. * - producers, i.e., the address space is routed downstream,
  149. * not consumed by the bridge itself
  150. */
  151. status = acpi_resource_to_address64(resource, addr);
  152. if (ACPI_SUCCESS(status) &&
  153. (addr->resource_type == ACPI_MEMORY_RANGE ||
  154. addr->resource_type == ACPI_IO_RANGE) &&
  155. addr->address_length &&
  156. addr->producer_consumer == ACPI_PRODUCER)
  157. return AE_OK;
  158. return AE_ERROR;
  159. }
  160. static acpi_status __devinit
  161. count_window (struct acpi_resource *resource, void *data)
  162. {
  163. unsigned int *windows = (unsigned int *) data;
  164. struct acpi_resource_address64 addr;
  165. acpi_status status;
  166. status = resource_to_window(resource, &addr);
  167. if (ACPI_SUCCESS(status))
  168. (*windows)++;
  169. return AE_OK;
  170. }
  171. struct pci_root_info {
  172. struct pci_controller *controller;
  173. char *name;
  174. };
  175. static __devinit acpi_status add_window(struct acpi_resource *res, void *data)
  176. {
  177. struct pci_root_info *info = data;
  178. struct pci_window *window;
  179. struct acpi_resource_address64 addr;
  180. acpi_status status;
  181. unsigned long flags, offset = 0;
  182. struct resource *root;
  183. /* Return AE_OK for non-window resources to keep scanning for more */
  184. status = resource_to_window(res, &addr);
  185. if (!ACPI_SUCCESS(status))
  186. return AE_OK;
  187. if (addr.resource_type == ACPI_MEMORY_RANGE) {
  188. flags = IORESOURCE_MEM;
  189. root = &iomem_resource;
  190. offset = addr.address_translation_offset;
  191. } else if (addr.resource_type == ACPI_IO_RANGE) {
  192. flags = IORESOURCE_IO;
  193. root = &ioport_resource;
  194. offset = add_io_space(&addr);
  195. if (offset == ~0)
  196. return AE_OK;
  197. } else
  198. return AE_OK;
  199. window = &info->controller->window[info->controller->windows++];
  200. window->resource.name = info->name;
  201. window->resource.flags = flags;
  202. window->resource.start = addr.min_address_range + offset;
  203. window->resource.end = addr.max_address_range + offset;
  204. window->resource.child = NULL;
  205. window->offset = offset;
  206. if (insert_resource(root, &window->resource)) {
  207. printk(KERN_ERR "alloc 0x%lx-0x%lx from %s for %s failed\n",
  208. window->resource.start, window->resource.end,
  209. root->name, info->name);
  210. }
  211. return AE_OK;
  212. }
  213. static void __devinit
  214. pcibios_setup_root_windows(struct pci_bus *bus, struct pci_controller *ctrl)
  215. {
  216. int i, j;
  217. j = 0;
  218. for (i = 0; i < ctrl->windows; i++) {
  219. struct resource *res = &ctrl->window[i].resource;
  220. /* HP's firmware has a hack to work around a Windows bug.
  221. * Ignore these tiny memory ranges */
  222. if ((res->flags & IORESOURCE_MEM) &&
  223. (res->end - res->start < 16))
  224. continue;
  225. if (j >= PCI_BUS_NUM_RESOURCES) {
  226. printk("Ignoring range [%lx-%lx] (%lx)\n", res->start,
  227. res->end, res->flags);
  228. continue;
  229. }
  230. bus->resource[j++] = res;
  231. }
  232. }
  233. struct pci_bus * __devinit
  234. pci_acpi_scan_root(struct acpi_device *device, int domain, int bus)
  235. {
  236. struct pci_root_info info;
  237. struct pci_controller *controller;
  238. unsigned int windows = 0;
  239. struct pci_bus *pbus;
  240. char *name;
  241. int pxm;
  242. controller = alloc_pci_controller(domain);
  243. if (!controller)
  244. goto out1;
  245. controller->acpi_handle = device->handle;
  246. pxm = acpi_get_pxm(controller->acpi_handle);
  247. #ifdef CONFIG_NUMA
  248. if (pxm >= 0)
  249. controller->node = pxm_to_nid_map[pxm];
  250. #endif
  251. acpi_walk_resources(device->handle, METHOD_NAME__CRS, count_window,
  252. &windows);
  253. controller->window = kmalloc_node(sizeof(*controller->window) * windows,
  254. GFP_KERNEL, controller->node);
  255. if (!controller->window)
  256. goto out2;
  257. name = kmalloc(16, GFP_KERNEL);
  258. if (!name)
  259. goto out3;
  260. sprintf(name, "PCI Bus %04x:%02x", domain, bus);
  261. info.controller = controller;
  262. info.name = name;
  263. acpi_walk_resources(device->handle, METHOD_NAME__CRS, add_window,
  264. &info);
  265. pbus = pci_scan_bus_parented(NULL, bus, &pci_root_ops, controller);
  266. if (pbus)
  267. pcibios_setup_root_windows(pbus, controller);
  268. return pbus;
  269. out3:
  270. kfree(controller->window);
  271. out2:
  272. kfree(controller);
  273. out1:
  274. return NULL;
  275. }
  276. void pcibios_resource_to_bus(struct pci_dev *dev,
  277. struct pci_bus_region *region, struct resource *res)
  278. {
  279. struct pci_controller *controller = PCI_CONTROLLER(dev);
  280. unsigned long offset = 0;
  281. int i;
  282. for (i = 0; i < controller->windows; i++) {
  283. struct pci_window *window = &controller->window[i];
  284. if (!(window->resource.flags & res->flags))
  285. continue;
  286. if (window->resource.start > res->start)
  287. continue;
  288. if (window->resource.end < res->end)
  289. continue;
  290. offset = window->offset;
  291. break;
  292. }
  293. region->start = res->start - offset;
  294. region->end = res->end - offset;
  295. }
  296. EXPORT_SYMBOL(pcibios_resource_to_bus);
  297. void pcibios_bus_to_resource(struct pci_dev *dev,
  298. struct resource *res, struct pci_bus_region *region)
  299. {
  300. struct pci_controller *controller = PCI_CONTROLLER(dev);
  301. unsigned long offset = 0;
  302. int i;
  303. for (i = 0; i < controller->windows; i++) {
  304. struct pci_window *window = &controller->window[i];
  305. if (!(window->resource.flags & res->flags))
  306. continue;
  307. if (window->resource.start - window->offset > region->start)
  308. continue;
  309. if (window->resource.end - window->offset < region->end)
  310. continue;
  311. offset = window->offset;
  312. break;
  313. }
  314. res->start = region->start + offset;
  315. res->end = region->end + offset;
  316. }
  317. EXPORT_SYMBOL(pcibios_bus_to_resource);
  318. static int __devinit is_valid_resource(struct pci_dev *dev, int idx)
  319. {
  320. unsigned int i, type_mask = IORESOURCE_IO | IORESOURCE_MEM;
  321. struct resource *devr = &dev->resource[idx];
  322. if (!dev->bus)
  323. return 0;
  324. for (i=0; i<PCI_BUS_NUM_RESOURCES; i++) {
  325. struct resource *busr = dev->bus->resource[i];
  326. if (!busr || ((busr->flags ^ devr->flags) & type_mask))
  327. continue;
  328. if ((devr->start) && (devr->start >= busr->start) &&
  329. (devr->end <= busr->end))
  330. return 1;
  331. }
  332. return 0;
  333. }
  334. static void __devinit pcibios_fixup_device_resources(struct pci_dev *dev)
  335. {
  336. struct pci_bus_region region;
  337. int i;
  338. int limit = (dev->hdr_type == PCI_HEADER_TYPE_NORMAL) ? \
  339. PCI_BRIDGE_RESOURCES : PCI_NUM_RESOURCES;
  340. for (i = 0; i < limit; i++) {
  341. if (!dev->resource[i].flags)
  342. continue;
  343. region.start = dev->resource[i].start;
  344. region.end = dev->resource[i].end;
  345. pcibios_bus_to_resource(dev, &dev->resource[i], &region);
  346. if ((is_valid_resource(dev, i)))
  347. pci_claim_resource(dev, i);
  348. }
  349. }
  350. /*
  351. * Called after each bus is probed, but before its children are examined.
  352. */
  353. void __devinit
  354. pcibios_fixup_bus (struct pci_bus *b)
  355. {
  356. struct pci_dev *dev;
  357. if (b->self) {
  358. pci_read_bridge_bases(b);
  359. pcibios_fixup_device_resources(b->self);
  360. }
  361. list_for_each_entry(dev, &b->devices, bus_list)
  362. pcibios_fixup_device_resources(dev);
  363. return;
  364. }
  365. void __devinit
  366. pcibios_update_irq (struct pci_dev *dev, int irq)
  367. {
  368. pci_write_config_byte(dev, PCI_INTERRUPT_LINE, irq);
  369. /* ??? FIXME -- record old value for shutdown. */
  370. }
  371. static inline int
  372. pcibios_enable_resources (struct pci_dev *dev, int mask)
  373. {
  374. u16 cmd, old_cmd;
  375. int idx;
  376. struct resource *r;
  377. unsigned long type_mask = IORESOURCE_IO | IORESOURCE_MEM;
  378. if (!dev)
  379. return -EINVAL;
  380. pci_read_config_word(dev, PCI_COMMAND, &cmd);
  381. old_cmd = cmd;
  382. for (idx=0; idx<PCI_NUM_RESOURCES; idx++) {
  383. /* Only set up the desired resources. */
  384. if (!(mask & (1 << idx)))
  385. continue;
  386. r = &dev->resource[idx];
  387. if (!(r->flags & type_mask))
  388. continue;
  389. if ((idx == PCI_ROM_RESOURCE) &&
  390. (!(r->flags & IORESOURCE_ROM_ENABLE)))
  391. continue;
  392. if (!r->start && r->end) {
  393. printk(KERN_ERR
  394. "PCI: Device %s not available because of resource collisions\n",
  395. pci_name(dev));
  396. return -EINVAL;
  397. }
  398. if (r->flags & IORESOURCE_IO)
  399. cmd |= PCI_COMMAND_IO;
  400. if (r->flags & IORESOURCE_MEM)
  401. cmd |= PCI_COMMAND_MEMORY;
  402. }
  403. if (cmd != old_cmd) {
  404. printk("PCI: Enabling device %s (%04x -> %04x)\n", pci_name(dev), old_cmd, cmd);
  405. pci_write_config_word(dev, PCI_COMMAND, cmd);
  406. }
  407. return 0;
  408. }
  409. int
  410. pcibios_enable_device (struct pci_dev *dev, int mask)
  411. {
  412. int ret;
  413. ret = pcibios_enable_resources(dev, mask);
  414. if (ret < 0)
  415. return ret;
  416. return acpi_pci_irq_enable(dev);
  417. }
  418. void
  419. pcibios_disable_device (struct pci_dev *dev)
  420. {
  421. acpi_pci_irq_disable(dev);
  422. }
  423. void
  424. pcibios_align_resource (void *data, struct resource *res,
  425. unsigned long size, unsigned long align)
  426. {
  427. }
  428. /*
  429. * PCI BIOS setup, always defaults to SAL interface
  430. */
  431. char * __init
  432. pcibios_setup (char *str)
  433. {
  434. return NULL;
  435. }
  436. int
  437. pci_mmap_page_range (struct pci_dev *dev, struct vm_area_struct *vma,
  438. enum pci_mmap_state mmap_state, int write_combine)
  439. {
  440. /*
  441. * I/O space cannot be accessed via normal processor loads and
  442. * stores on this platform.
  443. */
  444. if (mmap_state == pci_mmap_io)
  445. /*
  446. * XXX we could relax this for I/O spaces for which ACPI
  447. * indicates that the space is 1-to-1 mapped. But at the
  448. * moment, we don't support multiple PCI address spaces and
  449. * the legacy I/O space is not 1-to-1 mapped, so this is moot.
  450. */
  451. return -EINVAL;
  452. /*
  453. * Leave vm_pgoff as-is, the PCI space address is the physical
  454. * address on this platform.
  455. */
  456. vma->vm_flags |= (VM_SHM | VM_RESERVED | VM_IO);
  457. if (write_combine && efi_range_is_wc(vma->vm_start,
  458. vma->vm_end - vma->vm_start))
  459. vma->vm_page_prot = pgprot_writecombine(vma->vm_page_prot);
  460. else
  461. vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
  462. if (remap_pfn_range(vma, vma->vm_start, vma->vm_pgoff,
  463. vma->vm_end - vma->vm_start, vma->vm_page_prot))
  464. return -EAGAIN;
  465. return 0;
  466. }
  467. /**
  468. * ia64_pci_get_legacy_mem - generic legacy mem routine
  469. * @bus: bus to get legacy memory base address for
  470. *
  471. * Find the base of legacy memory for @bus. This is typically the first
  472. * megabyte of bus address space for @bus or is simply 0 on platforms whose
  473. * chipsets support legacy I/O and memory routing. Returns the base address
  474. * or an error pointer if an error occurred.
  475. *
  476. * This is the ia64 generic version of this routine. Other platforms
  477. * are free to override it with a machine vector.
  478. */
  479. char *ia64_pci_get_legacy_mem(struct pci_bus *bus)
  480. {
  481. return (char *)__IA64_UNCACHED_OFFSET;
  482. }
  483. /**
  484. * pci_mmap_legacy_page_range - map legacy memory space to userland
  485. * @bus: bus whose legacy space we're mapping
  486. * @vma: vma passed in by mmap
  487. *
  488. * Map legacy memory space for this device back to userspace using a machine
  489. * vector to get the base address.
  490. */
  491. int
  492. pci_mmap_legacy_page_range(struct pci_bus *bus, struct vm_area_struct *vma)
  493. {
  494. char *addr;
  495. addr = pci_get_legacy_mem(bus);
  496. if (IS_ERR(addr))
  497. return PTR_ERR(addr);
  498. vma->vm_pgoff += (unsigned long)addr >> PAGE_SHIFT;
  499. vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
  500. vma->vm_flags |= (VM_SHM | VM_RESERVED | VM_IO);
  501. if (remap_pfn_range(vma, vma->vm_start, vma->vm_pgoff,
  502. vma->vm_end - vma->vm_start, vma->vm_page_prot))
  503. return -EAGAIN;
  504. return 0;
  505. }
  506. /**
  507. * ia64_pci_legacy_read - read from legacy I/O space
  508. * @bus: bus to read
  509. * @port: legacy port value
  510. * @val: caller allocated storage for returned value
  511. * @size: number of bytes to read
  512. *
  513. * Simply reads @size bytes from @port and puts the result in @val.
  514. *
  515. * Again, this (and the write routine) are generic versions that can be
  516. * overridden by the platform. This is necessary on platforms that don't
  517. * support legacy I/O routing or that hard fail on legacy I/O timeouts.
  518. */
  519. int ia64_pci_legacy_read(struct pci_bus *bus, u16 port, u32 *val, u8 size)
  520. {
  521. int ret = size;
  522. switch (size) {
  523. case 1:
  524. *val = inb(port);
  525. break;
  526. case 2:
  527. *val = inw(port);
  528. break;
  529. case 4:
  530. *val = inl(port);
  531. break;
  532. default:
  533. ret = -EINVAL;
  534. break;
  535. }
  536. return ret;
  537. }
  538. /**
  539. * ia64_pci_legacy_write - perform a legacy I/O write
  540. * @bus: bus pointer
  541. * @port: port to write
  542. * @val: value to write
  543. * @size: number of bytes to write from @val
  544. *
  545. * Simply writes @size bytes of @val to @port.
  546. */
  547. int ia64_pci_legacy_write(struct pci_dev *bus, u16 port, u32 val, u8 size)
  548. {
  549. int ret = 0;
  550. switch (size) {
  551. case 1:
  552. outb(val, port);
  553. break;
  554. case 2:
  555. outw(val, port);
  556. break;
  557. case 4:
  558. outl(val, port);
  559. break;
  560. default:
  561. ret = -EINVAL;
  562. break;
  563. }
  564. return ret;
  565. }
  566. /**
  567. * pci_cacheline_size - determine cacheline size for PCI devices
  568. * @dev: void
  569. *
  570. * We want to use the line-size of the outer-most cache. We assume
  571. * that this line-size is the same for all CPUs.
  572. *
  573. * Code mostly taken from arch/ia64/kernel/palinfo.c:cache_info().
  574. *
  575. * RETURNS: An appropriate -ERRNO error value on eror, or zero for success.
  576. */
  577. static unsigned long
  578. pci_cacheline_size (void)
  579. {
  580. u64 levels, unique_caches;
  581. s64 status;
  582. pal_cache_config_info_t cci;
  583. static u8 cacheline_size;
  584. if (cacheline_size)
  585. return cacheline_size;
  586. status = ia64_pal_cache_summary(&levels, &unique_caches);
  587. if (status != 0) {
  588. printk(KERN_ERR "%s: ia64_pal_cache_summary() failed (status=%ld)\n",
  589. __FUNCTION__, status);
  590. return SMP_CACHE_BYTES;
  591. }
  592. status = ia64_pal_cache_config_info(levels - 1, /* cache_type (data_or_unified)= */ 2,
  593. &cci);
  594. if (status != 0) {
  595. printk(KERN_ERR "%s: ia64_pal_cache_config_info() failed (status=%ld)\n",
  596. __FUNCTION__, status);
  597. return SMP_CACHE_BYTES;
  598. }
  599. cacheline_size = 1 << cci.pcci_line_size;
  600. return cacheline_size;
  601. }
  602. /**
  603. * pcibios_prep_mwi - helper function for drivers/pci/pci.c:pci_set_mwi()
  604. * @dev: the PCI device for which MWI is enabled
  605. *
  606. * For ia64, we can get the cacheline sizes from PAL.
  607. *
  608. * RETURNS: An appropriate -ERRNO error value on eror, or zero for success.
  609. */
  610. int
  611. pcibios_prep_mwi (struct pci_dev *dev)
  612. {
  613. unsigned long desired_linesize, current_linesize;
  614. int rc = 0;
  615. u8 pci_linesize;
  616. desired_linesize = pci_cacheline_size();
  617. pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &pci_linesize);
  618. current_linesize = 4 * pci_linesize;
  619. if (desired_linesize != current_linesize) {
  620. printk(KERN_WARNING "PCI: slot %s has incorrect PCI cache line size of %lu bytes,",
  621. pci_name(dev), current_linesize);
  622. if (current_linesize > desired_linesize) {
  623. printk(" expected %lu bytes instead\n", desired_linesize);
  624. rc = -EINVAL;
  625. } else {
  626. printk(" correcting to %lu\n", desired_linesize);
  627. pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, desired_linesize / 4);
  628. }
  629. }
  630. return rc;
  631. }
  632. int pci_vector_resources(int last, int nr_released)
  633. {
  634. int count = nr_released;
  635. count += (IA64_LAST_DEVICE_VECTOR - last);
  636. return count;
  637. }