security.c 28 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122
  1. /*
  2. * Security plug functions
  3. *
  4. * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com>
  5. * Copyright (C) 2001-2002 Greg Kroah-Hartman <greg@kroah.com>
  6. * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com>
  7. *
  8. * This program is free software; you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation; either version 2 of the License, or
  11. * (at your option) any later version.
  12. */
  13. #include <linux/capability.h>
  14. #include <linux/module.h>
  15. #include <linux/init.h>
  16. #include <linux/kernel.h>
  17. #include <linux/security.h>
  18. /* things that live in dummy.c */
  19. extern struct security_operations dummy_security_ops;
  20. extern void security_fixup_ops(struct security_operations *ops);
  21. struct security_operations *security_ops; /* Initialized to NULL */
  22. /* amount of vm to protect from userspace access */
  23. unsigned long mmap_min_addr = CONFIG_SECURITY_DEFAULT_MMAP_MIN_ADDR;
  24. static inline int verify(struct security_operations *ops)
  25. {
  26. /* verify the security_operations structure exists */
  27. if (!ops)
  28. return -EINVAL;
  29. security_fixup_ops(ops);
  30. return 0;
  31. }
  32. static void __init do_security_initcalls(void)
  33. {
  34. initcall_t *call;
  35. call = __security_initcall_start;
  36. while (call < __security_initcall_end) {
  37. (*call) ();
  38. call++;
  39. }
  40. }
  41. /**
  42. * security_init - initializes the security framework
  43. *
  44. * This should be called early in the kernel initialization sequence.
  45. */
  46. int __init security_init(void)
  47. {
  48. printk(KERN_INFO "Security Framework initialized\n");
  49. if (verify(&dummy_security_ops)) {
  50. printk(KERN_ERR "%s could not verify "
  51. "dummy_security_ops structure.\n", __func__);
  52. return -EIO;
  53. }
  54. security_ops = &dummy_security_ops;
  55. do_security_initcalls();
  56. return 0;
  57. }
  58. /**
  59. * register_security - registers a security framework with the kernel
  60. * @ops: a pointer to the struct security_options that is to be registered
  61. *
  62. * This function is to allow a security module to register itself with the
  63. * kernel security subsystem. Some rudimentary checking is done on the @ops
  64. * value passed to this function.
  65. *
  66. * If there is already a security module registered with the kernel,
  67. * an error will be returned. Otherwise 0 is returned on success.
  68. */
  69. int register_security(struct security_operations *ops)
  70. {
  71. if (verify(ops)) {
  72. printk(KERN_DEBUG "%s could not verify "
  73. "security_operations structure.\n", __func__);
  74. return -EINVAL;
  75. }
  76. if (security_ops != &dummy_security_ops)
  77. return -EAGAIN;
  78. security_ops = ops;
  79. return 0;
  80. }
  81. /**
  82. * mod_reg_security - allows security modules to be "stacked"
  83. * @name: a pointer to a string with the name of the security_options to be registered
  84. * @ops: a pointer to the struct security_options that is to be registered
  85. *
  86. * This function allows security modules to be stacked if the currently loaded
  87. * security module allows this to happen. It passes the @name and @ops to the
  88. * register_security function of the currently loaded security module.
  89. *
  90. * The return value depends on the currently loaded security module, with 0 as
  91. * success.
  92. */
  93. int mod_reg_security(const char *name, struct security_operations *ops)
  94. {
  95. if (verify(ops)) {
  96. printk(KERN_INFO "%s could not verify "
  97. "security operations.\n", __func__);
  98. return -EINVAL;
  99. }
  100. if (ops == security_ops) {
  101. printk(KERN_INFO "%s security operations "
  102. "already registered.\n", __func__);
  103. return -EINVAL;
  104. }
  105. return security_ops->register_security(name, ops);
  106. }
  107. /* Security operations */
  108. int security_ptrace(struct task_struct *parent, struct task_struct *child)
  109. {
  110. return security_ops->ptrace(parent, child);
  111. }
  112. int security_capget(struct task_struct *target,
  113. kernel_cap_t *effective,
  114. kernel_cap_t *inheritable,
  115. kernel_cap_t *permitted)
  116. {
  117. return security_ops->capget(target, effective, inheritable, permitted);
  118. }
  119. int security_capset_check(struct task_struct *target,
  120. kernel_cap_t *effective,
  121. kernel_cap_t *inheritable,
  122. kernel_cap_t *permitted)
  123. {
  124. return security_ops->capset_check(target, effective, inheritable, permitted);
  125. }
  126. void security_capset_set(struct task_struct *target,
  127. kernel_cap_t *effective,
  128. kernel_cap_t *inheritable,
  129. kernel_cap_t *permitted)
  130. {
  131. security_ops->capset_set(target, effective, inheritable, permitted);
  132. }
  133. int security_capable(struct task_struct *tsk, int cap)
  134. {
  135. return security_ops->capable(tsk, cap);
  136. }
  137. int security_acct(struct file *file)
  138. {
  139. return security_ops->acct(file);
  140. }
  141. int security_sysctl(struct ctl_table *table, int op)
  142. {
  143. return security_ops->sysctl(table, op);
  144. }
  145. int security_quotactl(int cmds, int type, int id, struct super_block *sb)
  146. {
  147. return security_ops->quotactl(cmds, type, id, sb);
  148. }
  149. int security_quota_on(struct dentry *dentry)
  150. {
  151. return security_ops->quota_on(dentry);
  152. }
  153. int security_syslog(int type)
  154. {
  155. return security_ops->syslog(type);
  156. }
  157. int security_settime(struct timespec *ts, struct timezone *tz)
  158. {
  159. return security_ops->settime(ts, tz);
  160. }
  161. int security_vm_enough_memory(long pages)
  162. {
  163. return security_ops->vm_enough_memory(current->mm, pages);
  164. }
  165. int security_vm_enough_memory_mm(struct mm_struct *mm, long pages)
  166. {
  167. return security_ops->vm_enough_memory(mm, pages);
  168. }
  169. int security_bprm_alloc(struct linux_binprm *bprm)
  170. {
  171. return security_ops->bprm_alloc_security(bprm);
  172. }
  173. void security_bprm_free(struct linux_binprm *bprm)
  174. {
  175. security_ops->bprm_free_security(bprm);
  176. }
  177. void security_bprm_apply_creds(struct linux_binprm *bprm, int unsafe)
  178. {
  179. security_ops->bprm_apply_creds(bprm, unsafe);
  180. }
  181. void security_bprm_post_apply_creds(struct linux_binprm *bprm)
  182. {
  183. security_ops->bprm_post_apply_creds(bprm);
  184. }
  185. int security_bprm_set(struct linux_binprm *bprm)
  186. {
  187. return security_ops->bprm_set_security(bprm);
  188. }
  189. int security_bprm_check(struct linux_binprm *bprm)
  190. {
  191. return security_ops->bprm_check_security(bprm);
  192. }
  193. int security_bprm_secureexec(struct linux_binprm *bprm)
  194. {
  195. return security_ops->bprm_secureexec(bprm);
  196. }
  197. int security_sb_alloc(struct super_block *sb)
  198. {
  199. return security_ops->sb_alloc_security(sb);
  200. }
  201. void security_sb_free(struct super_block *sb)
  202. {
  203. security_ops->sb_free_security(sb);
  204. }
  205. int security_sb_copy_data(char *orig, char *copy)
  206. {
  207. return security_ops->sb_copy_data(orig, copy);
  208. }
  209. EXPORT_SYMBOL(security_sb_copy_data);
  210. int security_sb_kern_mount(struct super_block *sb, void *data)
  211. {
  212. return security_ops->sb_kern_mount(sb, data);
  213. }
  214. int security_sb_statfs(struct dentry *dentry)
  215. {
  216. return security_ops->sb_statfs(dentry);
  217. }
  218. int security_sb_mount(char *dev_name, struct nameidata *nd,
  219. char *type, unsigned long flags, void *data)
  220. {
  221. return security_ops->sb_mount(dev_name, nd, type, flags, data);
  222. }
  223. int security_sb_check_sb(struct vfsmount *mnt, struct nameidata *nd)
  224. {
  225. return security_ops->sb_check_sb(mnt, nd);
  226. }
  227. int security_sb_umount(struct vfsmount *mnt, int flags)
  228. {
  229. return security_ops->sb_umount(mnt, flags);
  230. }
  231. void security_sb_umount_close(struct vfsmount *mnt)
  232. {
  233. security_ops->sb_umount_close(mnt);
  234. }
  235. void security_sb_umount_busy(struct vfsmount *mnt)
  236. {
  237. security_ops->sb_umount_busy(mnt);
  238. }
  239. void security_sb_post_remount(struct vfsmount *mnt, unsigned long flags, void *data)
  240. {
  241. security_ops->sb_post_remount(mnt, flags, data);
  242. }
  243. void security_sb_post_addmount(struct vfsmount *mnt, struct nameidata *mountpoint_nd)
  244. {
  245. security_ops->sb_post_addmount(mnt, mountpoint_nd);
  246. }
  247. int security_sb_pivotroot(struct nameidata *old_nd, struct nameidata *new_nd)
  248. {
  249. return security_ops->sb_pivotroot(old_nd, new_nd);
  250. }
  251. void security_sb_post_pivotroot(struct nameidata *old_nd, struct nameidata *new_nd)
  252. {
  253. security_ops->sb_post_pivotroot(old_nd, new_nd);
  254. }
  255. int security_sb_get_mnt_opts(const struct super_block *sb,
  256. struct security_mnt_opts *opts)
  257. {
  258. return security_ops->sb_get_mnt_opts(sb, opts);
  259. }
  260. int security_sb_set_mnt_opts(struct super_block *sb,
  261. struct security_mnt_opts *opts)
  262. {
  263. return security_ops->sb_set_mnt_opts(sb, opts);
  264. }
  265. EXPORT_SYMBOL(security_sb_set_mnt_opts);
  266. void security_sb_clone_mnt_opts(const struct super_block *oldsb,
  267. struct super_block *newsb)
  268. {
  269. security_ops->sb_clone_mnt_opts(oldsb, newsb);
  270. }
  271. EXPORT_SYMBOL(security_sb_clone_mnt_opts);
  272. int security_sb_parse_opts_str(char *options, struct security_mnt_opts *opts)
  273. {
  274. return security_ops->sb_parse_opts_str(options, opts);
  275. }
  276. EXPORT_SYMBOL(security_sb_parse_opts_str);
  277. int security_inode_alloc(struct inode *inode)
  278. {
  279. inode->i_security = NULL;
  280. return security_ops->inode_alloc_security(inode);
  281. }
  282. void security_inode_free(struct inode *inode)
  283. {
  284. security_ops->inode_free_security(inode);
  285. }
  286. int security_inode_init_security(struct inode *inode, struct inode *dir,
  287. char **name, void **value, size_t *len)
  288. {
  289. if (unlikely(IS_PRIVATE(inode)))
  290. return -EOPNOTSUPP;
  291. return security_ops->inode_init_security(inode, dir, name, value, len);
  292. }
  293. EXPORT_SYMBOL(security_inode_init_security);
  294. int security_inode_create(struct inode *dir, struct dentry *dentry, int mode)
  295. {
  296. if (unlikely(IS_PRIVATE(dir)))
  297. return 0;
  298. return security_ops->inode_create(dir, dentry, mode);
  299. }
  300. int security_inode_link(struct dentry *old_dentry, struct inode *dir,
  301. struct dentry *new_dentry)
  302. {
  303. if (unlikely(IS_PRIVATE(old_dentry->d_inode)))
  304. return 0;
  305. return security_ops->inode_link(old_dentry, dir, new_dentry);
  306. }
  307. int security_inode_unlink(struct inode *dir, struct dentry *dentry)
  308. {
  309. if (unlikely(IS_PRIVATE(dentry->d_inode)))
  310. return 0;
  311. return security_ops->inode_unlink(dir, dentry);
  312. }
  313. int security_inode_symlink(struct inode *dir, struct dentry *dentry,
  314. const char *old_name)
  315. {
  316. if (unlikely(IS_PRIVATE(dir)))
  317. return 0;
  318. return security_ops->inode_symlink(dir, dentry, old_name);
  319. }
  320. int security_inode_mkdir(struct inode *dir, struct dentry *dentry, int mode)
  321. {
  322. if (unlikely(IS_PRIVATE(dir)))
  323. return 0;
  324. return security_ops->inode_mkdir(dir, dentry, mode);
  325. }
  326. int security_inode_rmdir(struct inode *dir, struct dentry *dentry)
  327. {
  328. if (unlikely(IS_PRIVATE(dentry->d_inode)))
  329. return 0;
  330. return security_ops->inode_rmdir(dir, dentry);
  331. }
  332. int security_inode_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
  333. {
  334. if (unlikely(IS_PRIVATE(dir)))
  335. return 0;
  336. return security_ops->inode_mknod(dir, dentry, mode, dev);
  337. }
  338. int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry,
  339. struct inode *new_dir, struct dentry *new_dentry)
  340. {
  341. if (unlikely(IS_PRIVATE(old_dentry->d_inode) ||
  342. (new_dentry->d_inode && IS_PRIVATE(new_dentry->d_inode))))
  343. return 0;
  344. return security_ops->inode_rename(old_dir, old_dentry,
  345. new_dir, new_dentry);
  346. }
  347. int security_inode_readlink(struct dentry *dentry)
  348. {
  349. if (unlikely(IS_PRIVATE(dentry->d_inode)))
  350. return 0;
  351. return security_ops->inode_readlink(dentry);
  352. }
  353. int security_inode_follow_link(struct dentry *dentry, struct nameidata *nd)
  354. {
  355. if (unlikely(IS_PRIVATE(dentry->d_inode)))
  356. return 0;
  357. return security_ops->inode_follow_link(dentry, nd);
  358. }
  359. int security_inode_permission(struct inode *inode, int mask, struct nameidata *nd)
  360. {
  361. if (unlikely(IS_PRIVATE(inode)))
  362. return 0;
  363. return security_ops->inode_permission(inode, mask, nd);
  364. }
  365. int security_inode_setattr(struct dentry *dentry, struct iattr *attr)
  366. {
  367. if (unlikely(IS_PRIVATE(dentry->d_inode)))
  368. return 0;
  369. return security_ops->inode_setattr(dentry, attr);
  370. }
  371. int security_inode_getattr(struct vfsmount *mnt, struct dentry *dentry)
  372. {
  373. if (unlikely(IS_PRIVATE(dentry->d_inode)))
  374. return 0;
  375. return security_ops->inode_getattr(mnt, dentry);
  376. }
  377. void security_inode_delete(struct inode *inode)
  378. {
  379. if (unlikely(IS_PRIVATE(inode)))
  380. return;
  381. security_ops->inode_delete(inode);
  382. }
  383. int security_inode_setxattr(struct dentry *dentry, char *name,
  384. void *value, size_t size, int flags)
  385. {
  386. if (unlikely(IS_PRIVATE(dentry->d_inode)))
  387. return 0;
  388. return security_ops->inode_setxattr(dentry, name, value, size, flags);
  389. }
  390. void security_inode_post_setxattr(struct dentry *dentry, char *name,
  391. void *value, size_t size, int flags)
  392. {
  393. if (unlikely(IS_PRIVATE(dentry->d_inode)))
  394. return;
  395. security_ops->inode_post_setxattr(dentry, name, value, size, flags);
  396. }
  397. int security_inode_getxattr(struct dentry *dentry, char *name)
  398. {
  399. if (unlikely(IS_PRIVATE(dentry->d_inode)))
  400. return 0;
  401. return security_ops->inode_getxattr(dentry, name);
  402. }
  403. int security_inode_listxattr(struct dentry *dentry)
  404. {
  405. if (unlikely(IS_PRIVATE(dentry->d_inode)))
  406. return 0;
  407. return security_ops->inode_listxattr(dentry);
  408. }
  409. int security_inode_removexattr(struct dentry *dentry, char *name)
  410. {
  411. if (unlikely(IS_PRIVATE(dentry->d_inode)))
  412. return 0;
  413. return security_ops->inode_removexattr(dentry, name);
  414. }
  415. int security_inode_need_killpriv(struct dentry *dentry)
  416. {
  417. return security_ops->inode_need_killpriv(dentry);
  418. }
  419. int security_inode_killpriv(struct dentry *dentry)
  420. {
  421. return security_ops->inode_killpriv(dentry);
  422. }
  423. int security_inode_getsecurity(const struct inode *inode, const char *name, void **buffer, bool alloc)
  424. {
  425. if (unlikely(IS_PRIVATE(inode)))
  426. return 0;
  427. return security_ops->inode_getsecurity(inode, name, buffer, alloc);
  428. }
  429. int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags)
  430. {
  431. if (unlikely(IS_PRIVATE(inode)))
  432. return 0;
  433. return security_ops->inode_setsecurity(inode, name, value, size, flags);
  434. }
  435. int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
  436. {
  437. if (unlikely(IS_PRIVATE(inode)))
  438. return 0;
  439. return security_ops->inode_listsecurity(inode, buffer, buffer_size);
  440. }
  441. void security_inode_getsecid(const struct inode *inode, u32 *secid)
  442. {
  443. security_ops->inode_getsecid(inode, secid);
  444. }
  445. int security_file_permission(struct file *file, int mask)
  446. {
  447. return security_ops->file_permission(file, mask);
  448. }
  449. int security_file_alloc(struct file *file)
  450. {
  451. return security_ops->file_alloc_security(file);
  452. }
  453. void security_file_free(struct file *file)
  454. {
  455. security_ops->file_free_security(file);
  456. }
  457. int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
  458. {
  459. return security_ops->file_ioctl(file, cmd, arg);
  460. }
  461. int security_file_mmap(struct file *file, unsigned long reqprot,
  462. unsigned long prot, unsigned long flags,
  463. unsigned long addr, unsigned long addr_only)
  464. {
  465. return security_ops->file_mmap(file, reqprot, prot, flags, addr, addr_only);
  466. }
  467. int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot,
  468. unsigned long prot)
  469. {
  470. return security_ops->file_mprotect(vma, reqprot, prot);
  471. }
  472. int security_file_lock(struct file *file, unsigned int cmd)
  473. {
  474. return security_ops->file_lock(file, cmd);
  475. }
  476. int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
  477. {
  478. return security_ops->file_fcntl(file, cmd, arg);
  479. }
  480. int security_file_set_fowner(struct file *file)
  481. {
  482. return security_ops->file_set_fowner(file);
  483. }
  484. int security_file_send_sigiotask(struct task_struct *tsk,
  485. struct fown_struct *fown, int sig)
  486. {
  487. return security_ops->file_send_sigiotask(tsk, fown, sig);
  488. }
  489. int security_file_receive(struct file *file)
  490. {
  491. return security_ops->file_receive(file);
  492. }
  493. int security_dentry_open(struct file *file)
  494. {
  495. return security_ops->dentry_open(file);
  496. }
  497. int security_task_create(unsigned long clone_flags)
  498. {
  499. return security_ops->task_create(clone_flags);
  500. }
  501. int security_task_alloc(struct task_struct *p)
  502. {
  503. return security_ops->task_alloc_security(p);
  504. }
  505. void security_task_free(struct task_struct *p)
  506. {
  507. security_ops->task_free_security(p);
  508. }
  509. int security_task_setuid(uid_t id0, uid_t id1, uid_t id2, int flags)
  510. {
  511. return security_ops->task_setuid(id0, id1, id2, flags);
  512. }
  513. int security_task_post_setuid(uid_t old_ruid, uid_t old_euid,
  514. uid_t old_suid, int flags)
  515. {
  516. return security_ops->task_post_setuid(old_ruid, old_euid, old_suid, flags);
  517. }
  518. int security_task_setgid(gid_t id0, gid_t id1, gid_t id2, int flags)
  519. {
  520. return security_ops->task_setgid(id0, id1, id2, flags);
  521. }
  522. int security_task_setpgid(struct task_struct *p, pid_t pgid)
  523. {
  524. return security_ops->task_setpgid(p, pgid);
  525. }
  526. int security_task_getpgid(struct task_struct *p)
  527. {
  528. return security_ops->task_getpgid(p);
  529. }
  530. int security_task_getsid(struct task_struct *p)
  531. {
  532. return security_ops->task_getsid(p);
  533. }
  534. void security_task_getsecid(struct task_struct *p, u32 *secid)
  535. {
  536. security_ops->task_getsecid(p, secid);
  537. }
  538. EXPORT_SYMBOL(security_task_getsecid);
  539. int security_task_setgroups(struct group_info *group_info)
  540. {
  541. return security_ops->task_setgroups(group_info);
  542. }
  543. int security_task_setnice(struct task_struct *p, int nice)
  544. {
  545. return security_ops->task_setnice(p, nice);
  546. }
  547. int security_task_setioprio(struct task_struct *p, int ioprio)
  548. {
  549. return security_ops->task_setioprio(p, ioprio);
  550. }
  551. int security_task_getioprio(struct task_struct *p)
  552. {
  553. return security_ops->task_getioprio(p);
  554. }
  555. int security_task_setrlimit(unsigned int resource, struct rlimit *new_rlim)
  556. {
  557. return security_ops->task_setrlimit(resource, new_rlim);
  558. }
  559. int security_task_setscheduler(struct task_struct *p,
  560. int policy, struct sched_param *lp)
  561. {
  562. return security_ops->task_setscheduler(p, policy, lp);
  563. }
  564. int security_task_getscheduler(struct task_struct *p)
  565. {
  566. return security_ops->task_getscheduler(p);
  567. }
  568. int security_task_movememory(struct task_struct *p)
  569. {
  570. return security_ops->task_movememory(p);
  571. }
  572. int security_task_kill(struct task_struct *p, struct siginfo *info,
  573. int sig, u32 secid)
  574. {
  575. return security_ops->task_kill(p, info, sig, secid);
  576. }
  577. int security_task_wait(struct task_struct *p)
  578. {
  579. return security_ops->task_wait(p);
  580. }
  581. int security_task_prctl(int option, unsigned long arg2, unsigned long arg3,
  582. unsigned long arg4, unsigned long arg5)
  583. {
  584. return security_ops->task_prctl(option, arg2, arg3, arg4, arg5);
  585. }
  586. void security_task_reparent_to_init(struct task_struct *p)
  587. {
  588. security_ops->task_reparent_to_init(p);
  589. }
  590. void security_task_to_inode(struct task_struct *p, struct inode *inode)
  591. {
  592. security_ops->task_to_inode(p, inode);
  593. }
  594. int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
  595. {
  596. return security_ops->ipc_permission(ipcp, flag);
  597. }
  598. void security_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
  599. {
  600. security_ops->ipc_getsecid(ipcp, secid);
  601. }
  602. int security_msg_msg_alloc(struct msg_msg *msg)
  603. {
  604. return security_ops->msg_msg_alloc_security(msg);
  605. }
  606. void security_msg_msg_free(struct msg_msg *msg)
  607. {
  608. security_ops->msg_msg_free_security(msg);
  609. }
  610. int security_msg_queue_alloc(struct msg_queue *msq)
  611. {
  612. return security_ops->msg_queue_alloc_security(msq);
  613. }
  614. void security_msg_queue_free(struct msg_queue *msq)
  615. {
  616. security_ops->msg_queue_free_security(msq);
  617. }
  618. int security_msg_queue_associate(struct msg_queue *msq, int msqflg)
  619. {
  620. return security_ops->msg_queue_associate(msq, msqflg);
  621. }
  622. int security_msg_queue_msgctl(struct msg_queue *msq, int cmd)
  623. {
  624. return security_ops->msg_queue_msgctl(msq, cmd);
  625. }
  626. int security_msg_queue_msgsnd(struct msg_queue *msq,
  627. struct msg_msg *msg, int msqflg)
  628. {
  629. return security_ops->msg_queue_msgsnd(msq, msg, msqflg);
  630. }
  631. int security_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg,
  632. struct task_struct *target, long type, int mode)
  633. {
  634. return security_ops->msg_queue_msgrcv(msq, msg, target, type, mode);
  635. }
  636. int security_shm_alloc(struct shmid_kernel *shp)
  637. {
  638. return security_ops->shm_alloc_security(shp);
  639. }
  640. void security_shm_free(struct shmid_kernel *shp)
  641. {
  642. security_ops->shm_free_security(shp);
  643. }
  644. int security_shm_associate(struct shmid_kernel *shp, int shmflg)
  645. {
  646. return security_ops->shm_associate(shp, shmflg);
  647. }
  648. int security_shm_shmctl(struct shmid_kernel *shp, int cmd)
  649. {
  650. return security_ops->shm_shmctl(shp, cmd);
  651. }
  652. int security_shm_shmat(struct shmid_kernel *shp, char __user *shmaddr, int shmflg)
  653. {
  654. return security_ops->shm_shmat(shp, shmaddr, shmflg);
  655. }
  656. int security_sem_alloc(struct sem_array *sma)
  657. {
  658. return security_ops->sem_alloc_security(sma);
  659. }
  660. void security_sem_free(struct sem_array *sma)
  661. {
  662. security_ops->sem_free_security(sma);
  663. }
  664. int security_sem_associate(struct sem_array *sma, int semflg)
  665. {
  666. return security_ops->sem_associate(sma, semflg);
  667. }
  668. int security_sem_semctl(struct sem_array *sma, int cmd)
  669. {
  670. return security_ops->sem_semctl(sma, cmd);
  671. }
  672. int security_sem_semop(struct sem_array *sma, struct sembuf *sops,
  673. unsigned nsops, int alter)
  674. {
  675. return security_ops->sem_semop(sma, sops, nsops, alter);
  676. }
  677. void security_d_instantiate(struct dentry *dentry, struct inode *inode)
  678. {
  679. if (unlikely(inode && IS_PRIVATE(inode)))
  680. return;
  681. security_ops->d_instantiate(dentry, inode);
  682. }
  683. EXPORT_SYMBOL(security_d_instantiate);
  684. int security_getprocattr(struct task_struct *p, char *name, char **value)
  685. {
  686. return security_ops->getprocattr(p, name, value);
  687. }
  688. int security_setprocattr(struct task_struct *p, char *name, void *value, size_t size)
  689. {
  690. return security_ops->setprocattr(p, name, value, size);
  691. }
  692. int security_netlink_send(struct sock *sk, struct sk_buff *skb)
  693. {
  694. return security_ops->netlink_send(sk, skb);
  695. }
  696. int security_netlink_recv(struct sk_buff *skb, int cap)
  697. {
  698. return security_ops->netlink_recv(skb, cap);
  699. }
  700. EXPORT_SYMBOL(security_netlink_recv);
  701. int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
  702. {
  703. return security_ops->secid_to_secctx(secid, secdata, seclen);
  704. }
  705. EXPORT_SYMBOL(security_secid_to_secctx);
  706. int security_secctx_to_secid(char *secdata, u32 seclen, u32 *secid)
  707. {
  708. return security_ops->secctx_to_secid(secdata, seclen, secid);
  709. }
  710. EXPORT_SYMBOL(security_secctx_to_secid);
  711. void security_release_secctx(char *secdata, u32 seclen)
  712. {
  713. return security_ops->release_secctx(secdata, seclen);
  714. }
  715. EXPORT_SYMBOL(security_release_secctx);
  716. #ifdef CONFIG_SECURITY_NETWORK
  717. int security_unix_stream_connect(struct socket *sock, struct socket *other,
  718. struct sock *newsk)
  719. {
  720. return security_ops->unix_stream_connect(sock, other, newsk);
  721. }
  722. EXPORT_SYMBOL(security_unix_stream_connect);
  723. int security_unix_may_send(struct socket *sock, struct socket *other)
  724. {
  725. return security_ops->unix_may_send(sock, other);
  726. }
  727. EXPORT_SYMBOL(security_unix_may_send);
  728. int security_socket_create(int family, int type, int protocol, int kern)
  729. {
  730. return security_ops->socket_create(family, type, protocol, kern);
  731. }
  732. int security_socket_post_create(struct socket *sock, int family,
  733. int type, int protocol, int kern)
  734. {
  735. return security_ops->socket_post_create(sock, family, type,
  736. protocol, kern);
  737. }
  738. int security_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
  739. {
  740. return security_ops->socket_bind(sock, address, addrlen);
  741. }
  742. int security_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
  743. {
  744. return security_ops->socket_connect(sock, address, addrlen);
  745. }
  746. int security_socket_listen(struct socket *sock, int backlog)
  747. {
  748. return security_ops->socket_listen(sock, backlog);
  749. }
  750. int security_socket_accept(struct socket *sock, struct socket *newsock)
  751. {
  752. return security_ops->socket_accept(sock, newsock);
  753. }
  754. void security_socket_post_accept(struct socket *sock, struct socket *newsock)
  755. {
  756. security_ops->socket_post_accept(sock, newsock);
  757. }
  758. int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size)
  759. {
  760. return security_ops->socket_sendmsg(sock, msg, size);
  761. }
  762. int security_socket_recvmsg(struct socket *sock, struct msghdr *msg,
  763. int size, int flags)
  764. {
  765. return security_ops->socket_recvmsg(sock, msg, size, flags);
  766. }
  767. int security_socket_getsockname(struct socket *sock)
  768. {
  769. return security_ops->socket_getsockname(sock);
  770. }
  771. int security_socket_getpeername(struct socket *sock)
  772. {
  773. return security_ops->socket_getpeername(sock);
  774. }
  775. int security_socket_getsockopt(struct socket *sock, int level, int optname)
  776. {
  777. return security_ops->socket_getsockopt(sock, level, optname);
  778. }
  779. int security_socket_setsockopt(struct socket *sock, int level, int optname)
  780. {
  781. return security_ops->socket_setsockopt(sock, level, optname);
  782. }
  783. int security_socket_shutdown(struct socket *sock, int how)
  784. {
  785. return security_ops->socket_shutdown(sock, how);
  786. }
  787. int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
  788. {
  789. return security_ops->socket_sock_rcv_skb(sk, skb);
  790. }
  791. EXPORT_SYMBOL(security_sock_rcv_skb);
  792. int security_socket_getpeersec_stream(struct socket *sock, char __user *optval,
  793. int __user *optlen, unsigned len)
  794. {
  795. return security_ops->socket_getpeersec_stream(sock, optval, optlen, len);
  796. }
  797. int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
  798. {
  799. return security_ops->socket_getpeersec_dgram(sock, skb, secid);
  800. }
  801. EXPORT_SYMBOL(security_socket_getpeersec_dgram);
  802. int security_sk_alloc(struct sock *sk, int family, gfp_t priority)
  803. {
  804. return security_ops->sk_alloc_security(sk, family, priority);
  805. }
  806. void security_sk_free(struct sock *sk)
  807. {
  808. return security_ops->sk_free_security(sk);
  809. }
  810. void security_sk_clone(const struct sock *sk, struct sock *newsk)
  811. {
  812. return security_ops->sk_clone_security(sk, newsk);
  813. }
  814. void security_sk_classify_flow(struct sock *sk, struct flowi *fl)
  815. {
  816. security_ops->sk_getsecid(sk, &fl->secid);
  817. }
  818. EXPORT_SYMBOL(security_sk_classify_flow);
  819. void security_req_classify_flow(const struct request_sock *req, struct flowi *fl)
  820. {
  821. security_ops->req_classify_flow(req, fl);
  822. }
  823. EXPORT_SYMBOL(security_req_classify_flow);
  824. void security_sock_graft(struct sock *sk, struct socket *parent)
  825. {
  826. security_ops->sock_graft(sk, parent);
  827. }
  828. EXPORT_SYMBOL(security_sock_graft);
  829. int security_inet_conn_request(struct sock *sk,
  830. struct sk_buff *skb, struct request_sock *req)
  831. {
  832. return security_ops->inet_conn_request(sk, skb, req);
  833. }
  834. EXPORT_SYMBOL(security_inet_conn_request);
  835. void security_inet_csk_clone(struct sock *newsk,
  836. const struct request_sock *req)
  837. {
  838. security_ops->inet_csk_clone(newsk, req);
  839. }
  840. void security_inet_conn_established(struct sock *sk,
  841. struct sk_buff *skb)
  842. {
  843. security_ops->inet_conn_established(sk, skb);
  844. }
  845. #endif /* CONFIG_SECURITY_NETWORK */
  846. #ifdef CONFIG_SECURITY_NETWORK_XFRM
  847. int security_xfrm_policy_alloc(struct xfrm_policy *xp, struct xfrm_user_sec_ctx *sec_ctx)
  848. {
  849. return security_ops->xfrm_policy_alloc_security(xp, sec_ctx);
  850. }
  851. EXPORT_SYMBOL(security_xfrm_policy_alloc);
  852. int security_xfrm_policy_clone(struct xfrm_policy *old, struct xfrm_policy *new)
  853. {
  854. return security_ops->xfrm_policy_clone_security(old, new);
  855. }
  856. void security_xfrm_policy_free(struct xfrm_policy *xp)
  857. {
  858. security_ops->xfrm_policy_free_security(xp);
  859. }
  860. EXPORT_SYMBOL(security_xfrm_policy_free);
  861. int security_xfrm_policy_delete(struct xfrm_policy *xp)
  862. {
  863. return security_ops->xfrm_policy_delete_security(xp);
  864. }
  865. int security_xfrm_state_alloc(struct xfrm_state *x, struct xfrm_user_sec_ctx *sec_ctx)
  866. {
  867. return security_ops->xfrm_state_alloc_security(x, sec_ctx, 0);
  868. }
  869. EXPORT_SYMBOL(security_xfrm_state_alloc);
  870. int security_xfrm_state_alloc_acquire(struct xfrm_state *x,
  871. struct xfrm_sec_ctx *polsec, u32 secid)
  872. {
  873. if (!polsec)
  874. return 0;
  875. /*
  876. * We want the context to be taken from secid which is usually
  877. * from the sock.
  878. */
  879. return security_ops->xfrm_state_alloc_security(x, NULL, secid);
  880. }
  881. int security_xfrm_state_delete(struct xfrm_state *x)
  882. {
  883. return security_ops->xfrm_state_delete_security(x);
  884. }
  885. EXPORT_SYMBOL(security_xfrm_state_delete);
  886. void security_xfrm_state_free(struct xfrm_state *x)
  887. {
  888. security_ops->xfrm_state_free_security(x);
  889. }
  890. int security_xfrm_policy_lookup(struct xfrm_policy *xp, u32 fl_secid, u8 dir)
  891. {
  892. return security_ops->xfrm_policy_lookup(xp, fl_secid, dir);
  893. }
  894. int security_xfrm_state_pol_flow_match(struct xfrm_state *x,
  895. struct xfrm_policy *xp, struct flowi *fl)
  896. {
  897. return security_ops->xfrm_state_pol_flow_match(x, xp, fl);
  898. }
  899. int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid)
  900. {
  901. return security_ops->xfrm_decode_session(skb, secid, 1);
  902. }
  903. void security_skb_classify_flow(struct sk_buff *skb, struct flowi *fl)
  904. {
  905. int rc = security_ops->xfrm_decode_session(skb, &fl->secid, 0);
  906. BUG_ON(rc);
  907. }
  908. EXPORT_SYMBOL(security_skb_classify_flow);
  909. #endif /* CONFIG_SECURITY_NETWORK_XFRM */
  910. #ifdef CONFIG_KEYS
  911. int security_key_alloc(struct key *key, struct task_struct *tsk, unsigned long flags)
  912. {
  913. return security_ops->key_alloc(key, tsk, flags);
  914. }
  915. void security_key_free(struct key *key)
  916. {
  917. security_ops->key_free(key);
  918. }
  919. int security_key_permission(key_ref_t key_ref,
  920. struct task_struct *context, key_perm_t perm)
  921. {
  922. return security_ops->key_permission(key_ref, context, perm);
  923. }
  924. #endif /* CONFIG_KEYS */