perf_counter.c 28 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228
  1. /*
  2. * Performance counter x86 architecture code
  3. *
  4. * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
  5. * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
  6. * Copyright (C) 2009 Jaswinder Singh Rajput
  7. * Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter
  8. * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
  9. *
  10. * For licencing details see kernel-base/COPYING
  11. */
  12. #include <linux/perf_counter.h>
  13. #include <linux/capability.h>
  14. #include <linux/notifier.h>
  15. #include <linux/hardirq.h>
  16. #include <linux/kprobes.h>
  17. #include <linux/module.h>
  18. #include <linux/kdebug.h>
  19. #include <linux/sched.h>
  20. #include <linux/uaccess.h>
  21. #include <asm/apic.h>
  22. #include <asm/stacktrace.h>
  23. #include <asm/nmi.h>
  24. static u64 perf_counter_mask __read_mostly;
  25. struct cpu_hw_counters {
  26. struct perf_counter *counters[X86_PMC_IDX_MAX];
  27. unsigned long used_mask[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
  28. unsigned long active_mask[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
  29. unsigned long interrupts;
  30. int enabled;
  31. };
  32. /*
  33. * struct x86_pmu - generic x86 pmu
  34. */
  35. struct x86_pmu {
  36. const char *name;
  37. int version;
  38. int (*handle_irq)(struct pt_regs *, int);
  39. void (*disable_all)(void);
  40. void (*enable_all)(void);
  41. void (*enable)(struct hw_perf_counter *, int);
  42. void (*disable)(struct hw_perf_counter *, int);
  43. unsigned eventsel;
  44. unsigned perfctr;
  45. u64 (*event_map)(int);
  46. u64 (*raw_event)(u64);
  47. int max_events;
  48. int num_counters;
  49. int num_counters_fixed;
  50. int counter_bits;
  51. u64 counter_mask;
  52. u64 max_period;
  53. u64 intel_ctrl;
  54. };
  55. static struct x86_pmu x86_pmu __read_mostly;
  56. static DEFINE_PER_CPU(struct cpu_hw_counters, cpu_hw_counters) = {
  57. .enabled = 1,
  58. };
  59. /*
  60. * Intel PerfMon v3. Used on Core2 and later.
  61. */
  62. static const u64 intel_perfmon_event_map[] =
  63. {
  64. [PERF_COUNT_CPU_CYCLES] = 0x003c,
  65. [PERF_COUNT_INSTRUCTIONS] = 0x00c0,
  66. [PERF_COUNT_CACHE_REFERENCES] = 0x4f2e,
  67. [PERF_COUNT_CACHE_MISSES] = 0x412e,
  68. [PERF_COUNT_BRANCH_INSTRUCTIONS] = 0x00c4,
  69. [PERF_COUNT_BRANCH_MISSES] = 0x00c5,
  70. [PERF_COUNT_BUS_CYCLES] = 0x013c,
  71. };
  72. static u64 intel_pmu_event_map(int event)
  73. {
  74. return intel_perfmon_event_map[event];
  75. }
  76. static u64 intel_pmu_raw_event(u64 event)
  77. {
  78. #define CORE_EVNTSEL_EVENT_MASK 0x000000FFULL
  79. #define CORE_EVNTSEL_UNIT_MASK 0x0000FF00ULL
  80. #define CORE_EVNTSEL_EDGE_MASK 0x00040000ULL
  81. #define CORE_EVNTSEL_INV_MASK 0x00800000ULL
  82. #define CORE_EVNTSEL_COUNTER_MASK 0xFF000000ULL
  83. #define CORE_EVNTSEL_MASK \
  84. (CORE_EVNTSEL_EVENT_MASK | \
  85. CORE_EVNTSEL_UNIT_MASK | \
  86. CORE_EVNTSEL_EDGE_MASK | \
  87. CORE_EVNTSEL_INV_MASK | \
  88. CORE_EVNTSEL_COUNTER_MASK)
  89. return event & CORE_EVNTSEL_MASK;
  90. }
  91. /*
  92. * AMD Performance Monitor K7 and later.
  93. */
  94. static const u64 amd_perfmon_event_map[] =
  95. {
  96. [PERF_COUNT_CPU_CYCLES] = 0x0076,
  97. [PERF_COUNT_INSTRUCTIONS] = 0x00c0,
  98. [PERF_COUNT_CACHE_REFERENCES] = 0x0080,
  99. [PERF_COUNT_CACHE_MISSES] = 0x0081,
  100. [PERF_COUNT_BRANCH_INSTRUCTIONS] = 0x00c4,
  101. [PERF_COUNT_BRANCH_MISSES] = 0x00c5,
  102. };
  103. static u64 amd_pmu_event_map(int event)
  104. {
  105. return amd_perfmon_event_map[event];
  106. }
  107. static u64 amd_pmu_raw_event(u64 event)
  108. {
  109. #define K7_EVNTSEL_EVENT_MASK 0x7000000FFULL
  110. #define K7_EVNTSEL_UNIT_MASK 0x00000FF00ULL
  111. #define K7_EVNTSEL_EDGE_MASK 0x000040000ULL
  112. #define K7_EVNTSEL_INV_MASK 0x000800000ULL
  113. #define K7_EVNTSEL_COUNTER_MASK 0x0FF000000ULL
  114. #define K7_EVNTSEL_MASK \
  115. (K7_EVNTSEL_EVENT_MASK | \
  116. K7_EVNTSEL_UNIT_MASK | \
  117. K7_EVNTSEL_EDGE_MASK | \
  118. K7_EVNTSEL_INV_MASK | \
  119. K7_EVNTSEL_COUNTER_MASK)
  120. return event & K7_EVNTSEL_MASK;
  121. }
  122. /*
  123. * Propagate counter elapsed time into the generic counter.
  124. * Can only be executed on the CPU where the counter is active.
  125. * Returns the delta events processed.
  126. */
  127. static u64
  128. x86_perf_counter_update(struct perf_counter *counter,
  129. struct hw_perf_counter *hwc, int idx)
  130. {
  131. int shift = 64 - x86_pmu.counter_bits;
  132. u64 prev_raw_count, new_raw_count;
  133. s64 delta;
  134. /*
  135. * Careful: an NMI might modify the previous counter value.
  136. *
  137. * Our tactic to handle this is to first atomically read and
  138. * exchange a new raw count - then add that new-prev delta
  139. * count to the generic counter atomically:
  140. */
  141. again:
  142. prev_raw_count = atomic64_read(&hwc->prev_count);
  143. rdmsrl(hwc->counter_base + idx, new_raw_count);
  144. if (atomic64_cmpxchg(&hwc->prev_count, prev_raw_count,
  145. new_raw_count) != prev_raw_count)
  146. goto again;
  147. /*
  148. * Now we have the new raw value and have updated the prev
  149. * timestamp already. We can now calculate the elapsed delta
  150. * (counter-)time and add that to the generic counter.
  151. *
  152. * Careful, not all hw sign-extends above the physical width
  153. * of the count.
  154. */
  155. delta = (new_raw_count << shift) - (prev_raw_count << shift);
  156. delta >>= shift;
  157. atomic64_add(delta, &counter->count);
  158. atomic64_sub(delta, &hwc->period_left);
  159. return new_raw_count;
  160. }
  161. static atomic_t active_counters;
  162. static DEFINE_MUTEX(pmc_reserve_mutex);
  163. static bool reserve_pmc_hardware(void)
  164. {
  165. int i;
  166. if (nmi_watchdog == NMI_LOCAL_APIC)
  167. disable_lapic_nmi_watchdog();
  168. for (i = 0; i < x86_pmu.num_counters; i++) {
  169. if (!reserve_perfctr_nmi(x86_pmu.perfctr + i))
  170. goto perfctr_fail;
  171. }
  172. for (i = 0; i < x86_pmu.num_counters; i++) {
  173. if (!reserve_evntsel_nmi(x86_pmu.eventsel + i))
  174. goto eventsel_fail;
  175. }
  176. return true;
  177. eventsel_fail:
  178. for (i--; i >= 0; i--)
  179. release_evntsel_nmi(x86_pmu.eventsel + i);
  180. i = x86_pmu.num_counters;
  181. perfctr_fail:
  182. for (i--; i >= 0; i--)
  183. release_perfctr_nmi(x86_pmu.perfctr + i);
  184. if (nmi_watchdog == NMI_LOCAL_APIC)
  185. enable_lapic_nmi_watchdog();
  186. return false;
  187. }
  188. static void release_pmc_hardware(void)
  189. {
  190. int i;
  191. for (i = 0; i < x86_pmu.num_counters; i++) {
  192. release_perfctr_nmi(x86_pmu.perfctr + i);
  193. release_evntsel_nmi(x86_pmu.eventsel + i);
  194. }
  195. if (nmi_watchdog == NMI_LOCAL_APIC)
  196. enable_lapic_nmi_watchdog();
  197. }
  198. static void hw_perf_counter_destroy(struct perf_counter *counter)
  199. {
  200. if (atomic_dec_and_mutex_lock(&active_counters, &pmc_reserve_mutex)) {
  201. release_pmc_hardware();
  202. mutex_unlock(&pmc_reserve_mutex);
  203. }
  204. }
  205. static inline int x86_pmu_initialized(void)
  206. {
  207. return x86_pmu.handle_irq != NULL;
  208. }
  209. /*
  210. * Setup the hardware configuration for a given hw_event_type
  211. */
  212. static int __hw_perf_counter_init(struct perf_counter *counter)
  213. {
  214. struct perf_counter_hw_event *hw_event = &counter->hw_event;
  215. struct hw_perf_counter *hwc = &counter->hw;
  216. int err;
  217. if (!x86_pmu_initialized())
  218. return -ENODEV;
  219. err = 0;
  220. if (!atomic_inc_not_zero(&active_counters)) {
  221. mutex_lock(&pmc_reserve_mutex);
  222. if (atomic_read(&active_counters) == 0 && !reserve_pmc_hardware())
  223. err = -EBUSY;
  224. else
  225. atomic_inc(&active_counters);
  226. mutex_unlock(&pmc_reserve_mutex);
  227. }
  228. if (err)
  229. return err;
  230. /*
  231. * Generate PMC IRQs:
  232. * (keep 'enabled' bit clear for now)
  233. */
  234. hwc->config = ARCH_PERFMON_EVENTSEL_INT;
  235. /*
  236. * Count user and OS events unless requested not to.
  237. */
  238. if (!hw_event->exclude_user)
  239. hwc->config |= ARCH_PERFMON_EVENTSEL_USR;
  240. if (!hw_event->exclude_kernel)
  241. hwc->config |= ARCH_PERFMON_EVENTSEL_OS;
  242. if (!hwc->sample_period)
  243. hwc->sample_period = x86_pmu.max_period;
  244. atomic64_set(&hwc->period_left,
  245. min(x86_pmu.max_period, hwc->sample_period));
  246. /*
  247. * Raw event type provide the config in the event structure
  248. */
  249. if (perf_event_raw(hw_event)) {
  250. hwc->config |= x86_pmu.raw_event(perf_event_config(hw_event));
  251. } else {
  252. if (perf_event_id(hw_event) >= x86_pmu.max_events)
  253. return -EINVAL;
  254. /*
  255. * The generic map:
  256. */
  257. hwc->config |= x86_pmu.event_map(perf_event_id(hw_event));
  258. }
  259. counter->destroy = hw_perf_counter_destroy;
  260. return 0;
  261. }
  262. static void intel_pmu_disable_all(void)
  263. {
  264. wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0);
  265. }
  266. static void amd_pmu_disable_all(void)
  267. {
  268. struct cpu_hw_counters *cpuc = &__get_cpu_var(cpu_hw_counters);
  269. int idx;
  270. if (!cpuc->enabled)
  271. return;
  272. cpuc->enabled = 0;
  273. /*
  274. * ensure we write the disable before we start disabling the
  275. * counters proper, so that amd_pmu_enable_counter() does the
  276. * right thing.
  277. */
  278. barrier();
  279. for (idx = 0; idx < x86_pmu.num_counters; idx++) {
  280. u64 val;
  281. if (!test_bit(idx, cpuc->active_mask))
  282. continue;
  283. rdmsrl(MSR_K7_EVNTSEL0 + idx, val);
  284. if (!(val & ARCH_PERFMON_EVENTSEL0_ENABLE))
  285. continue;
  286. val &= ~ARCH_PERFMON_EVENTSEL0_ENABLE;
  287. wrmsrl(MSR_K7_EVNTSEL0 + idx, val);
  288. }
  289. }
  290. void hw_perf_disable(void)
  291. {
  292. if (!x86_pmu_initialized())
  293. return;
  294. return x86_pmu.disable_all();
  295. }
  296. static void intel_pmu_enable_all(void)
  297. {
  298. wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, x86_pmu.intel_ctrl);
  299. }
  300. static void amd_pmu_enable_all(void)
  301. {
  302. struct cpu_hw_counters *cpuc = &__get_cpu_var(cpu_hw_counters);
  303. int idx;
  304. if (cpuc->enabled)
  305. return;
  306. cpuc->enabled = 1;
  307. barrier();
  308. for (idx = 0; idx < x86_pmu.num_counters; idx++) {
  309. u64 val;
  310. if (!test_bit(idx, cpuc->active_mask))
  311. continue;
  312. rdmsrl(MSR_K7_EVNTSEL0 + idx, val);
  313. if (val & ARCH_PERFMON_EVENTSEL0_ENABLE)
  314. continue;
  315. val |= ARCH_PERFMON_EVENTSEL0_ENABLE;
  316. wrmsrl(MSR_K7_EVNTSEL0 + idx, val);
  317. }
  318. }
  319. void hw_perf_enable(void)
  320. {
  321. if (!x86_pmu_initialized())
  322. return;
  323. x86_pmu.enable_all();
  324. }
  325. static inline u64 intel_pmu_get_status(void)
  326. {
  327. u64 status;
  328. rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
  329. return status;
  330. }
  331. static inline void intel_pmu_ack_status(u64 ack)
  332. {
  333. wrmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, ack);
  334. }
  335. static inline void x86_pmu_enable_counter(struct hw_perf_counter *hwc, int idx)
  336. {
  337. int err;
  338. err = checking_wrmsrl(hwc->config_base + idx,
  339. hwc->config | ARCH_PERFMON_EVENTSEL0_ENABLE);
  340. }
  341. static inline void x86_pmu_disable_counter(struct hw_perf_counter *hwc, int idx)
  342. {
  343. int err;
  344. err = checking_wrmsrl(hwc->config_base + idx,
  345. hwc->config);
  346. }
  347. static inline void
  348. intel_pmu_disable_fixed(struct hw_perf_counter *hwc, int __idx)
  349. {
  350. int idx = __idx - X86_PMC_IDX_FIXED;
  351. u64 ctrl_val, mask;
  352. int err;
  353. mask = 0xfULL << (idx * 4);
  354. rdmsrl(hwc->config_base, ctrl_val);
  355. ctrl_val &= ~mask;
  356. err = checking_wrmsrl(hwc->config_base, ctrl_val);
  357. }
  358. static inline void
  359. intel_pmu_disable_counter(struct hw_perf_counter *hwc, int idx)
  360. {
  361. if (unlikely(hwc->config_base == MSR_ARCH_PERFMON_FIXED_CTR_CTRL)) {
  362. intel_pmu_disable_fixed(hwc, idx);
  363. return;
  364. }
  365. x86_pmu_disable_counter(hwc, idx);
  366. }
  367. static inline void
  368. amd_pmu_disable_counter(struct hw_perf_counter *hwc, int idx)
  369. {
  370. x86_pmu_disable_counter(hwc, idx);
  371. }
  372. static DEFINE_PER_CPU(u64, prev_left[X86_PMC_IDX_MAX]);
  373. /*
  374. * Set the next IRQ period, based on the hwc->period_left value.
  375. * To be called with the counter disabled in hw:
  376. */
  377. static void
  378. x86_perf_counter_set_period(struct perf_counter *counter,
  379. struct hw_perf_counter *hwc, int idx)
  380. {
  381. s64 left = atomic64_read(&hwc->period_left);
  382. s64 period = min(x86_pmu.max_period, hwc->sample_period);
  383. int err;
  384. /*
  385. * If we are way outside a reasoable range then just skip forward:
  386. */
  387. if (unlikely(left <= -period)) {
  388. left = period;
  389. atomic64_set(&hwc->period_left, left);
  390. }
  391. if (unlikely(left <= 0)) {
  392. left += period;
  393. atomic64_set(&hwc->period_left, left);
  394. }
  395. /*
  396. * Quirk: certain CPUs dont like it if just 1 event is left:
  397. */
  398. if (unlikely(left < 2))
  399. left = 2;
  400. per_cpu(prev_left[idx], smp_processor_id()) = left;
  401. /*
  402. * The hw counter starts counting from this counter offset,
  403. * mark it to be able to extra future deltas:
  404. */
  405. atomic64_set(&hwc->prev_count, (u64)-left);
  406. err = checking_wrmsrl(hwc->counter_base + idx,
  407. (u64)(-left) & x86_pmu.counter_mask);
  408. }
  409. static inline void
  410. intel_pmu_enable_fixed(struct hw_perf_counter *hwc, int __idx)
  411. {
  412. int idx = __idx - X86_PMC_IDX_FIXED;
  413. u64 ctrl_val, bits, mask;
  414. int err;
  415. /*
  416. * Enable IRQ generation (0x8),
  417. * and enable ring-3 counting (0x2) and ring-0 counting (0x1)
  418. * if requested:
  419. */
  420. bits = 0x8ULL;
  421. if (hwc->config & ARCH_PERFMON_EVENTSEL_USR)
  422. bits |= 0x2;
  423. if (hwc->config & ARCH_PERFMON_EVENTSEL_OS)
  424. bits |= 0x1;
  425. bits <<= (idx * 4);
  426. mask = 0xfULL << (idx * 4);
  427. rdmsrl(hwc->config_base, ctrl_val);
  428. ctrl_val &= ~mask;
  429. ctrl_val |= bits;
  430. err = checking_wrmsrl(hwc->config_base, ctrl_val);
  431. }
  432. static void intel_pmu_enable_counter(struct hw_perf_counter *hwc, int idx)
  433. {
  434. if (unlikely(hwc->config_base == MSR_ARCH_PERFMON_FIXED_CTR_CTRL)) {
  435. intel_pmu_enable_fixed(hwc, idx);
  436. return;
  437. }
  438. x86_pmu_enable_counter(hwc, idx);
  439. }
  440. static void amd_pmu_enable_counter(struct hw_perf_counter *hwc, int idx)
  441. {
  442. struct cpu_hw_counters *cpuc = &__get_cpu_var(cpu_hw_counters);
  443. if (cpuc->enabled)
  444. x86_pmu_enable_counter(hwc, idx);
  445. else
  446. x86_pmu_disable_counter(hwc, idx);
  447. }
  448. static int
  449. fixed_mode_idx(struct perf_counter *counter, struct hw_perf_counter *hwc)
  450. {
  451. unsigned int event;
  452. if (!x86_pmu.num_counters_fixed)
  453. return -1;
  454. event = hwc->config & ARCH_PERFMON_EVENT_MASK;
  455. if (unlikely(event == x86_pmu.event_map(PERF_COUNT_INSTRUCTIONS)))
  456. return X86_PMC_IDX_FIXED_INSTRUCTIONS;
  457. if (unlikely(event == x86_pmu.event_map(PERF_COUNT_CPU_CYCLES)))
  458. return X86_PMC_IDX_FIXED_CPU_CYCLES;
  459. if (unlikely(event == x86_pmu.event_map(PERF_COUNT_BUS_CYCLES)))
  460. return X86_PMC_IDX_FIXED_BUS_CYCLES;
  461. return -1;
  462. }
  463. /*
  464. * Find a PMC slot for the freshly enabled / scheduled in counter:
  465. */
  466. static int x86_pmu_enable(struct perf_counter *counter)
  467. {
  468. struct cpu_hw_counters *cpuc = &__get_cpu_var(cpu_hw_counters);
  469. struct hw_perf_counter *hwc = &counter->hw;
  470. int idx;
  471. idx = fixed_mode_idx(counter, hwc);
  472. if (idx >= 0) {
  473. /*
  474. * Try to get the fixed counter, if that is already taken
  475. * then try to get a generic counter:
  476. */
  477. if (test_and_set_bit(idx, cpuc->used_mask))
  478. goto try_generic;
  479. hwc->config_base = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
  480. /*
  481. * We set it so that counter_base + idx in wrmsr/rdmsr maps to
  482. * MSR_ARCH_PERFMON_FIXED_CTR0 ... CTR2:
  483. */
  484. hwc->counter_base =
  485. MSR_ARCH_PERFMON_FIXED_CTR0 - X86_PMC_IDX_FIXED;
  486. hwc->idx = idx;
  487. } else {
  488. idx = hwc->idx;
  489. /* Try to get the previous generic counter again */
  490. if (test_and_set_bit(idx, cpuc->used_mask)) {
  491. try_generic:
  492. idx = find_first_zero_bit(cpuc->used_mask,
  493. x86_pmu.num_counters);
  494. if (idx == x86_pmu.num_counters)
  495. return -EAGAIN;
  496. set_bit(idx, cpuc->used_mask);
  497. hwc->idx = idx;
  498. }
  499. hwc->config_base = x86_pmu.eventsel;
  500. hwc->counter_base = x86_pmu.perfctr;
  501. }
  502. perf_counters_lapic_init();
  503. x86_pmu.disable(hwc, idx);
  504. cpuc->counters[idx] = counter;
  505. set_bit(idx, cpuc->active_mask);
  506. x86_perf_counter_set_period(counter, hwc, idx);
  507. x86_pmu.enable(hwc, idx);
  508. return 0;
  509. }
  510. static void x86_pmu_unthrottle(struct perf_counter *counter)
  511. {
  512. struct cpu_hw_counters *cpuc = &__get_cpu_var(cpu_hw_counters);
  513. struct hw_perf_counter *hwc = &counter->hw;
  514. if (WARN_ON_ONCE(hwc->idx >= X86_PMC_IDX_MAX ||
  515. cpuc->counters[hwc->idx] != counter))
  516. return;
  517. x86_pmu.enable(hwc, hwc->idx);
  518. }
  519. void perf_counter_print_debug(void)
  520. {
  521. u64 ctrl, status, overflow, pmc_ctrl, pmc_count, prev_left, fixed;
  522. struct cpu_hw_counters *cpuc;
  523. unsigned long flags;
  524. int cpu, idx;
  525. if (!x86_pmu.num_counters)
  526. return;
  527. local_irq_save(flags);
  528. cpu = smp_processor_id();
  529. cpuc = &per_cpu(cpu_hw_counters, cpu);
  530. if (x86_pmu.version >= 2) {
  531. rdmsrl(MSR_CORE_PERF_GLOBAL_CTRL, ctrl);
  532. rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
  533. rdmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, overflow);
  534. rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR_CTRL, fixed);
  535. pr_info("\n");
  536. pr_info("CPU#%d: ctrl: %016llx\n", cpu, ctrl);
  537. pr_info("CPU#%d: status: %016llx\n", cpu, status);
  538. pr_info("CPU#%d: overflow: %016llx\n", cpu, overflow);
  539. pr_info("CPU#%d: fixed: %016llx\n", cpu, fixed);
  540. }
  541. pr_info("CPU#%d: used: %016llx\n", cpu, *(u64 *)cpuc->used_mask);
  542. for (idx = 0; idx < x86_pmu.num_counters; idx++) {
  543. rdmsrl(x86_pmu.eventsel + idx, pmc_ctrl);
  544. rdmsrl(x86_pmu.perfctr + idx, pmc_count);
  545. prev_left = per_cpu(prev_left[idx], cpu);
  546. pr_info("CPU#%d: gen-PMC%d ctrl: %016llx\n",
  547. cpu, idx, pmc_ctrl);
  548. pr_info("CPU#%d: gen-PMC%d count: %016llx\n",
  549. cpu, idx, pmc_count);
  550. pr_info("CPU#%d: gen-PMC%d left: %016llx\n",
  551. cpu, idx, prev_left);
  552. }
  553. for (idx = 0; idx < x86_pmu.num_counters_fixed; idx++) {
  554. rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, pmc_count);
  555. pr_info("CPU#%d: fixed-PMC%d count: %016llx\n",
  556. cpu, idx, pmc_count);
  557. }
  558. local_irq_restore(flags);
  559. }
  560. static void x86_pmu_disable(struct perf_counter *counter)
  561. {
  562. struct cpu_hw_counters *cpuc = &__get_cpu_var(cpu_hw_counters);
  563. struct hw_perf_counter *hwc = &counter->hw;
  564. int idx = hwc->idx;
  565. /*
  566. * Must be done before we disable, otherwise the nmi handler
  567. * could reenable again:
  568. */
  569. clear_bit(idx, cpuc->active_mask);
  570. x86_pmu.disable(hwc, idx);
  571. /*
  572. * Make sure the cleared pointer becomes visible before we
  573. * (potentially) free the counter:
  574. */
  575. barrier();
  576. /*
  577. * Drain the remaining delta count out of a counter
  578. * that we are disabling:
  579. */
  580. x86_perf_counter_update(counter, hwc, idx);
  581. cpuc->counters[idx] = NULL;
  582. clear_bit(idx, cpuc->used_mask);
  583. }
  584. /*
  585. * Save and restart an expired counter. Called by NMI contexts,
  586. * so it has to be careful about preempting normal counter ops:
  587. */
  588. static void intel_pmu_save_and_restart(struct perf_counter *counter)
  589. {
  590. struct hw_perf_counter *hwc = &counter->hw;
  591. int idx = hwc->idx;
  592. x86_perf_counter_update(counter, hwc, idx);
  593. x86_perf_counter_set_period(counter, hwc, idx);
  594. if (counter->state == PERF_COUNTER_STATE_ACTIVE)
  595. intel_pmu_enable_counter(hwc, idx);
  596. }
  597. static void intel_pmu_reset(void)
  598. {
  599. unsigned long flags;
  600. int idx;
  601. if (!x86_pmu.num_counters)
  602. return;
  603. local_irq_save(flags);
  604. printk("clearing PMU state on CPU#%d\n", smp_processor_id());
  605. for (idx = 0; idx < x86_pmu.num_counters; idx++) {
  606. checking_wrmsrl(x86_pmu.eventsel + idx, 0ull);
  607. checking_wrmsrl(x86_pmu.perfctr + idx, 0ull);
  608. }
  609. for (idx = 0; idx < x86_pmu.num_counters_fixed; idx++) {
  610. checking_wrmsrl(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, 0ull);
  611. }
  612. local_irq_restore(flags);
  613. }
  614. /*
  615. * This handler is triggered by the local APIC, so the APIC IRQ handling
  616. * rules apply:
  617. */
  618. static int intel_pmu_handle_irq(struct pt_regs *regs, int nmi)
  619. {
  620. struct cpu_hw_counters *cpuc;
  621. struct cpu_hw_counters;
  622. int bit, cpu, loops;
  623. u64 ack, status;
  624. cpu = smp_processor_id();
  625. cpuc = &per_cpu(cpu_hw_counters, cpu);
  626. perf_disable();
  627. status = intel_pmu_get_status();
  628. if (!status) {
  629. perf_enable();
  630. return 0;
  631. }
  632. loops = 0;
  633. again:
  634. if (++loops > 100) {
  635. WARN_ONCE(1, "perfcounters: irq loop stuck!\n");
  636. perf_counter_print_debug();
  637. intel_pmu_reset();
  638. perf_enable();
  639. return 1;
  640. }
  641. inc_irq_stat(apic_perf_irqs);
  642. ack = status;
  643. for_each_bit(bit, (unsigned long *)&status, X86_PMC_IDX_MAX) {
  644. struct perf_counter *counter = cpuc->counters[bit];
  645. clear_bit(bit, (unsigned long *) &status);
  646. if (!test_bit(bit, cpuc->active_mask))
  647. continue;
  648. intel_pmu_save_and_restart(counter);
  649. if (perf_counter_overflow(counter, nmi, regs, 0))
  650. intel_pmu_disable_counter(&counter->hw, bit);
  651. }
  652. intel_pmu_ack_status(ack);
  653. /*
  654. * Repeat if there is more work to be done:
  655. */
  656. status = intel_pmu_get_status();
  657. if (status)
  658. goto again;
  659. perf_enable();
  660. return 1;
  661. }
  662. static int amd_pmu_handle_irq(struct pt_regs *regs, int nmi)
  663. {
  664. int cpu, idx, handled = 0;
  665. struct cpu_hw_counters *cpuc;
  666. struct perf_counter *counter;
  667. struct hw_perf_counter *hwc;
  668. u64 val;
  669. cpu = smp_processor_id();
  670. cpuc = &per_cpu(cpu_hw_counters, cpu);
  671. for (idx = 0; idx < x86_pmu.num_counters; idx++) {
  672. if (!test_bit(idx, cpuc->active_mask))
  673. continue;
  674. counter = cpuc->counters[idx];
  675. hwc = &counter->hw;
  676. val = x86_perf_counter_update(counter, hwc, idx);
  677. if (val & (1ULL << (x86_pmu.counter_bits - 1)))
  678. continue;
  679. /* counter overflow */
  680. x86_perf_counter_set_period(counter, hwc, idx);
  681. handled = 1;
  682. inc_irq_stat(apic_perf_irqs);
  683. if (perf_counter_overflow(counter, nmi, regs, 0))
  684. amd_pmu_disable_counter(hwc, idx);
  685. }
  686. return handled;
  687. }
  688. void smp_perf_counter_interrupt(struct pt_regs *regs)
  689. {
  690. irq_enter();
  691. apic_write(APIC_LVTPC, LOCAL_PERF_VECTOR);
  692. ack_APIC_irq();
  693. x86_pmu.handle_irq(regs, 0);
  694. irq_exit();
  695. }
  696. void smp_perf_pending_interrupt(struct pt_regs *regs)
  697. {
  698. irq_enter();
  699. ack_APIC_irq();
  700. inc_irq_stat(apic_pending_irqs);
  701. perf_counter_do_pending();
  702. irq_exit();
  703. }
  704. void set_perf_counter_pending(void)
  705. {
  706. apic->send_IPI_self(LOCAL_PENDING_VECTOR);
  707. }
  708. void perf_counters_lapic_init(void)
  709. {
  710. if (!x86_pmu_initialized())
  711. return;
  712. /*
  713. * Always use NMI for PMU
  714. */
  715. apic_write(APIC_LVTPC, APIC_DM_NMI);
  716. }
  717. static int __kprobes
  718. perf_counter_nmi_handler(struct notifier_block *self,
  719. unsigned long cmd, void *__args)
  720. {
  721. struct die_args *args = __args;
  722. struct pt_regs *regs;
  723. if (!atomic_read(&active_counters))
  724. return NOTIFY_DONE;
  725. switch (cmd) {
  726. case DIE_NMI:
  727. case DIE_NMI_IPI:
  728. break;
  729. default:
  730. return NOTIFY_DONE;
  731. }
  732. regs = args->regs;
  733. apic_write(APIC_LVTPC, APIC_DM_NMI);
  734. /*
  735. * Can't rely on the handled return value to say it was our NMI, two
  736. * counters could trigger 'simultaneously' raising two back-to-back NMIs.
  737. *
  738. * If the first NMI handles both, the latter will be empty and daze
  739. * the CPU.
  740. */
  741. x86_pmu.handle_irq(regs, 1);
  742. return NOTIFY_STOP;
  743. }
  744. static __read_mostly struct notifier_block perf_counter_nmi_notifier = {
  745. .notifier_call = perf_counter_nmi_handler,
  746. .next = NULL,
  747. .priority = 1
  748. };
  749. static struct x86_pmu intel_pmu = {
  750. .name = "Intel",
  751. .handle_irq = intel_pmu_handle_irq,
  752. .disable_all = intel_pmu_disable_all,
  753. .enable_all = intel_pmu_enable_all,
  754. .enable = intel_pmu_enable_counter,
  755. .disable = intel_pmu_disable_counter,
  756. .eventsel = MSR_ARCH_PERFMON_EVENTSEL0,
  757. .perfctr = MSR_ARCH_PERFMON_PERFCTR0,
  758. .event_map = intel_pmu_event_map,
  759. .raw_event = intel_pmu_raw_event,
  760. .max_events = ARRAY_SIZE(intel_perfmon_event_map),
  761. /*
  762. * Intel PMCs cannot be accessed sanely above 32 bit width,
  763. * so we install an artificial 1<<31 period regardless of
  764. * the generic counter period:
  765. */
  766. .max_period = (1ULL << 31) - 1,
  767. };
  768. static struct x86_pmu amd_pmu = {
  769. .name = "AMD",
  770. .handle_irq = amd_pmu_handle_irq,
  771. .disable_all = amd_pmu_disable_all,
  772. .enable_all = amd_pmu_enable_all,
  773. .enable = amd_pmu_enable_counter,
  774. .disable = amd_pmu_disable_counter,
  775. .eventsel = MSR_K7_EVNTSEL0,
  776. .perfctr = MSR_K7_PERFCTR0,
  777. .event_map = amd_pmu_event_map,
  778. .raw_event = amd_pmu_raw_event,
  779. .max_events = ARRAY_SIZE(amd_perfmon_event_map),
  780. .num_counters = 4,
  781. .counter_bits = 48,
  782. .counter_mask = (1ULL << 48) - 1,
  783. /* use highest bit to detect overflow */
  784. .max_period = (1ULL << 47) - 1,
  785. };
  786. static int intel_pmu_init(void)
  787. {
  788. union cpuid10_edx edx;
  789. union cpuid10_eax eax;
  790. unsigned int unused;
  791. unsigned int ebx;
  792. int version;
  793. if (!cpu_has(&boot_cpu_data, X86_FEATURE_ARCH_PERFMON))
  794. return -ENODEV;
  795. /*
  796. * Check whether the Architectural PerfMon supports
  797. * Branch Misses Retired Event or not.
  798. */
  799. cpuid(10, &eax.full, &ebx, &unused, &edx.full);
  800. if (eax.split.mask_length <= ARCH_PERFMON_BRANCH_MISSES_RETIRED)
  801. return -ENODEV;
  802. version = eax.split.version_id;
  803. if (version < 2)
  804. return -ENODEV;
  805. x86_pmu = intel_pmu;
  806. x86_pmu.version = version;
  807. x86_pmu.num_counters = eax.split.num_counters;
  808. /*
  809. * Quirk: v2 perfmon does not report fixed-purpose counters, so
  810. * assume at least 3 counters:
  811. */
  812. x86_pmu.num_counters_fixed = max((int)edx.split.num_counters_fixed, 3);
  813. x86_pmu.counter_bits = eax.split.bit_width;
  814. x86_pmu.counter_mask = (1ULL << eax.split.bit_width) - 1;
  815. rdmsrl(MSR_CORE_PERF_GLOBAL_CTRL, x86_pmu.intel_ctrl);
  816. return 0;
  817. }
  818. static int amd_pmu_init(void)
  819. {
  820. x86_pmu = amd_pmu;
  821. return 0;
  822. }
  823. void __init init_hw_perf_counters(void)
  824. {
  825. int err;
  826. switch (boot_cpu_data.x86_vendor) {
  827. case X86_VENDOR_INTEL:
  828. err = intel_pmu_init();
  829. break;
  830. case X86_VENDOR_AMD:
  831. err = amd_pmu_init();
  832. break;
  833. default:
  834. return;
  835. }
  836. if (err != 0)
  837. return;
  838. pr_info("%s Performance Monitoring support detected.\n", x86_pmu.name);
  839. pr_info("... version: %d\n", x86_pmu.version);
  840. pr_info("... bit width: %d\n", x86_pmu.counter_bits);
  841. pr_info("... num counters: %d\n", x86_pmu.num_counters);
  842. if (x86_pmu.num_counters > X86_PMC_MAX_GENERIC) {
  843. x86_pmu.num_counters = X86_PMC_MAX_GENERIC;
  844. WARN(1, KERN_ERR "hw perf counters %d > max(%d), clipping!",
  845. x86_pmu.num_counters, X86_PMC_MAX_GENERIC);
  846. }
  847. perf_counter_mask = (1 << x86_pmu.num_counters) - 1;
  848. perf_max_counters = x86_pmu.num_counters;
  849. pr_info("... value mask: %016Lx\n", x86_pmu.counter_mask);
  850. pr_info("... max period: %016Lx\n", x86_pmu.max_period);
  851. if (x86_pmu.num_counters_fixed > X86_PMC_MAX_FIXED) {
  852. x86_pmu.num_counters_fixed = X86_PMC_MAX_FIXED;
  853. WARN(1, KERN_ERR "hw perf counters fixed %d > max(%d), clipping!",
  854. x86_pmu.num_counters_fixed, X86_PMC_MAX_FIXED);
  855. }
  856. pr_info("... fixed counters: %d\n", x86_pmu.num_counters_fixed);
  857. perf_counter_mask |=
  858. ((1LL << x86_pmu.num_counters_fixed)-1) << X86_PMC_IDX_FIXED;
  859. pr_info("... counter mask: %016Lx\n", perf_counter_mask);
  860. perf_counters_lapic_init();
  861. register_die_notifier(&perf_counter_nmi_notifier);
  862. }
  863. static inline void x86_pmu_read(struct perf_counter *counter)
  864. {
  865. x86_perf_counter_update(counter, &counter->hw, counter->hw.idx);
  866. }
  867. static const struct pmu pmu = {
  868. .enable = x86_pmu_enable,
  869. .disable = x86_pmu_disable,
  870. .read = x86_pmu_read,
  871. .unthrottle = x86_pmu_unthrottle,
  872. };
  873. const struct pmu *hw_perf_counter_init(struct perf_counter *counter)
  874. {
  875. int err;
  876. err = __hw_perf_counter_init(counter);
  877. if (err)
  878. return ERR_PTR(err);
  879. return &pmu;
  880. }
  881. /*
  882. * callchain support
  883. */
  884. static inline
  885. void callchain_store(struct perf_callchain_entry *entry, unsigned long ip)
  886. {
  887. if (entry->nr < MAX_STACK_DEPTH)
  888. entry->ip[entry->nr++] = ip;
  889. }
  890. static DEFINE_PER_CPU(struct perf_callchain_entry, irq_entry);
  891. static DEFINE_PER_CPU(struct perf_callchain_entry, nmi_entry);
  892. static void
  893. backtrace_warning_symbol(void *data, char *msg, unsigned long symbol)
  894. {
  895. /* Ignore warnings */
  896. }
  897. static void backtrace_warning(void *data, char *msg)
  898. {
  899. /* Ignore warnings */
  900. }
  901. static int backtrace_stack(void *data, char *name)
  902. {
  903. /* Don't bother with IRQ stacks for now */
  904. return -1;
  905. }
  906. static void backtrace_address(void *data, unsigned long addr, int reliable)
  907. {
  908. struct perf_callchain_entry *entry = data;
  909. if (reliable)
  910. callchain_store(entry, addr);
  911. }
  912. static const struct stacktrace_ops backtrace_ops = {
  913. .warning = backtrace_warning,
  914. .warning_symbol = backtrace_warning_symbol,
  915. .stack = backtrace_stack,
  916. .address = backtrace_address,
  917. };
  918. static void
  919. perf_callchain_kernel(struct pt_regs *regs, struct perf_callchain_entry *entry)
  920. {
  921. unsigned long bp;
  922. char *stack;
  923. int nr = entry->nr;
  924. callchain_store(entry, instruction_pointer(regs));
  925. stack = ((char *)regs + sizeof(struct pt_regs));
  926. #ifdef CONFIG_FRAME_POINTER
  927. bp = frame_pointer(regs);
  928. #else
  929. bp = 0;
  930. #endif
  931. dump_trace(NULL, regs, (void *)stack, bp, &backtrace_ops, entry);
  932. entry->kernel = entry->nr - nr;
  933. }
  934. struct stack_frame {
  935. const void __user *next_fp;
  936. unsigned long return_address;
  937. };
  938. static int copy_stack_frame(const void __user *fp, struct stack_frame *frame)
  939. {
  940. int ret;
  941. if (!access_ok(VERIFY_READ, fp, sizeof(*frame)))
  942. return 0;
  943. ret = 1;
  944. pagefault_disable();
  945. if (__copy_from_user_inatomic(frame, fp, sizeof(*frame)))
  946. ret = 0;
  947. pagefault_enable();
  948. return ret;
  949. }
  950. static void
  951. perf_callchain_user(struct pt_regs *regs, struct perf_callchain_entry *entry)
  952. {
  953. struct stack_frame frame;
  954. const void __user *fp;
  955. int nr = entry->nr;
  956. regs = (struct pt_regs *)current->thread.sp0 - 1;
  957. fp = (void __user *)regs->bp;
  958. callchain_store(entry, regs->ip);
  959. while (entry->nr < MAX_STACK_DEPTH) {
  960. frame.next_fp = NULL;
  961. frame.return_address = 0;
  962. if (!copy_stack_frame(fp, &frame))
  963. break;
  964. if ((unsigned long)fp < user_stack_pointer(regs))
  965. break;
  966. callchain_store(entry, frame.return_address);
  967. fp = frame.next_fp;
  968. }
  969. entry->user = entry->nr - nr;
  970. }
  971. static void
  972. perf_do_callchain(struct pt_regs *regs, struct perf_callchain_entry *entry)
  973. {
  974. int is_user;
  975. if (!regs)
  976. return;
  977. is_user = user_mode(regs);
  978. if (!current || current->pid == 0)
  979. return;
  980. if (is_user && current->state != TASK_RUNNING)
  981. return;
  982. if (!is_user)
  983. perf_callchain_kernel(regs, entry);
  984. if (current->mm)
  985. perf_callchain_user(regs, entry);
  986. }
  987. struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
  988. {
  989. struct perf_callchain_entry *entry;
  990. if (in_nmi())
  991. entry = &__get_cpu_var(nmi_entry);
  992. else
  993. entry = &__get_cpu_var(irq_entry);
  994. entry->nr = 0;
  995. entry->hv = 0;
  996. entry->kernel = 0;
  997. entry->user = 0;
  998. perf_do_callchain(regs, entry);
  999. return entry;
  1000. }