xc5000.c 25 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034
  1. /*
  2. * Driver for Xceive XC5000 "QAM/8VSB single chip tuner"
  3. *
  4. * Copyright (c) 2007 Xceive Corporation
  5. * Copyright (c) 2007 Steven Toth <stoth@linuxtv.org>
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License as published by
  9. * the Free Software Foundation; either version 2 of the License, or
  10. * (at your option) any later version.
  11. *
  12. * This program is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  15. *
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program; if not, write to the Free Software
  20. * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  21. */
  22. #include <linux/module.h>
  23. #include <linux/moduleparam.h>
  24. #include <linux/videodev2.h>
  25. #include <linux/delay.h>
  26. #include <linux/dvb/frontend.h>
  27. #include <linux/i2c.h>
  28. #include "dvb_frontend.h"
  29. #include "xc5000.h"
  30. #include "tuner-i2c.h"
  31. static int debug;
  32. module_param(debug, int, 0644);
  33. MODULE_PARM_DESC(debug, "Turn on/off debugging (default:off).");
  34. static int xc5000_load_fw_on_attach;
  35. module_param_named(init_fw, xc5000_load_fw_on_attach, int, 0644);
  36. MODULE_PARM_DESC(init_fw, "Load firmware during driver initialization.");
  37. static DEFINE_MUTEX(xc5000_list_mutex);
  38. static LIST_HEAD(hybrid_tuner_instance_list);
  39. #define dprintk(level,fmt, arg...) if (debug >= level) \
  40. printk(KERN_INFO "%s: " fmt, "xc5000", ## arg)
  41. #define XC5000_DEFAULT_FIRMWARE "dvb-fe-xc5000-1.1.fw"
  42. #define XC5000_DEFAULT_FIRMWARE_SIZE 12332
  43. struct xc5000_priv {
  44. struct xc5000_config *cfg;
  45. struct tuner_i2c_props i2c_props;
  46. struct list_head hybrid_tuner_instance_list;
  47. u32 freq_hz;
  48. u32 bandwidth;
  49. u8 video_standard;
  50. u8 rf_mode;
  51. void *devptr;
  52. };
  53. /* Misc Defines */
  54. #define MAX_TV_STANDARD 23
  55. #define XC_MAX_I2C_WRITE_LENGTH 64
  56. /* Signal Types */
  57. #define XC_RF_MODE_AIR 0
  58. #define XC_RF_MODE_CABLE 1
  59. /* Result codes */
  60. #define XC_RESULT_SUCCESS 0
  61. #define XC_RESULT_RESET_FAILURE 1
  62. #define XC_RESULT_I2C_WRITE_FAILURE 2
  63. #define XC_RESULT_I2C_READ_FAILURE 3
  64. #define XC_RESULT_OUT_OF_RANGE 5
  65. /* Product id */
  66. #define XC_PRODUCT_ID_FW_NOT_LOADED 0x2000
  67. #define XC_PRODUCT_ID_FW_LOADED 0x1388
  68. /* Registers */
  69. #define XREG_INIT 0x00
  70. #define XREG_VIDEO_MODE 0x01
  71. #define XREG_AUDIO_MODE 0x02
  72. #define XREG_RF_FREQ 0x03
  73. #define XREG_D_CODE 0x04
  74. #define XREG_IF_OUT 0x05
  75. #define XREG_SEEK_MODE 0x07
  76. #define XREG_POWER_DOWN 0x0A
  77. #define XREG_SIGNALSOURCE 0x0D /* 0=Air, 1=Cable */
  78. #define XREG_SMOOTHEDCVBS 0x0E
  79. #define XREG_XTALFREQ 0x0F
  80. #define XREG_FINERFFREQ 0x10
  81. #define XREG_DDIMODE 0x11
  82. #define XREG_ADC_ENV 0x00
  83. #define XREG_QUALITY 0x01
  84. #define XREG_FRAME_LINES 0x02
  85. #define XREG_HSYNC_FREQ 0x03
  86. #define XREG_LOCK 0x04
  87. #define XREG_FREQ_ERROR 0x05
  88. #define XREG_SNR 0x06
  89. #define XREG_VERSION 0x07
  90. #define XREG_PRODUCT_ID 0x08
  91. #define XREG_BUSY 0x09
  92. /*
  93. Basic firmware description. This will remain with
  94. the driver for documentation purposes.
  95. This represents an I2C firmware file encoded as a
  96. string of unsigned char. Format is as follows:
  97. char[0 ]=len0_MSB -> len = len_MSB * 256 + len_LSB
  98. char[1 ]=len0_LSB -> length of first write transaction
  99. char[2 ]=data0 -> first byte to be sent
  100. char[3 ]=data1
  101. char[4 ]=data2
  102. char[ ]=...
  103. char[M ]=dataN -> last byte to be sent
  104. char[M+1]=len1_MSB -> len = len_MSB * 256 + len_LSB
  105. char[M+2]=len1_LSB -> length of second write transaction
  106. char[M+3]=data0
  107. char[M+4]=data1
  108. ...
  109. etc.
  110. The [len] value should be interpreted as follows:
  111. len= len_MSB _ len_LSB
  112. len=1111_1111_1111_1111 : End of I2C_SEQUENCE
  113. len=0000_0000_0000_0000 : Reset command: Do hardware reset
  114. len=0NNN_NNNN_NNNN_NNNN : Normal transaction: number of bytes = {1:32767)
  115. len=1WWW_WWWW_WWWW_WWWW : Wait command: wait for {1:32767} ms
  116. For the RESET and WAIT commands, the two following bytes will contain
  117. immediately the length of the following transaction.
  118. */
  119. typedef struct {
  120. char *Name;
  121. u16 AudioMode;
  122. u16 VideoMode;
  123. } XC_TV_STANDARD;
  124. /* Tuner standards */
  125. #define MN_NTSC_PAL_BTSC 0
  126. #define MN_NTSC_PAL_A2 1
  127. #define MN_NTSC_PAL_EIAJ 2
  128. #define MN_NTSC_PAL_Mono 3
  129. #define BG_PAL_A2 4
  130. #define BG_PAL_NICAM 5
  131. #define BG_PAL_MONO 6
  132. #define I_PAL_NICAM 7
  133. #define I_PAL_NICAM_MONO 8
  134. #define DK_PAL_A2 9
  135. #define DK_PAL_NICAM 10
  136. #define DK_PAL_MONO 11
  137. #define DK_SECAM_A2DK1 12
  138. #define DK_SECAM_A2LDK3 13
  139. #define DK_SECAM_A2MONO 14
  140. #define L_SECAM_NICAM 15
  141. #define LC_SECAM_NICAM 16
  142. #define DTV6 17
  143. #define DTV8 18
  144. #define DTV7_8 19
  145. #define DTV7 20
  146. #define FM_Radio_INPUT2 21
  147. #define FM_Radio_INPUT1 22
  148. static XC_TV_STANDARD XC5000_Standard[MAX_TV_STANDARD] = {
  149. {"M/N-NTSC/PAL-BTSC", 0x0400, 0x8020},
  150. {"M/N-NTSC/PAL-A2", 0x0600, 0x8020},
  151. {"M/N-NTSC/PAL-EIAJ", 0x0440, 0x8020},
  152. {"M/N-NTSC/PAL-Mono", 0x0478, 0x8020},
  153. {"B/G-PAL-A2", 0x0A00, 0x8049},
  154. {"B/G-PAL-NICAM", 0x0C04, 0x8049},
  155. {"B/G-PAL-MONO", 0x0878, 0x8059},
  156. {"I-PAL-NICAM", 0x1080, 0x8009},
  157. {"I-PAL-NICAM-MONO", 0x0E78, 0x8009},
  158. {"D/K-PAL-A2", 0x1600, 0x8009},
  159. {"D/K-PAL-NICAM", 0x0E80, 0x8009},
  160. {"D/K-PAL-MONO", 0x1478, 0x8009},
  161. {"D/K-SECAM-A2 DK1", 0x1200, 0x8009},
  162. {"D/K-SECAM-A2 L/DK3",0x0E00, 0x8009},
  163. {"D/K-SECAM-A2 MONO", 0x1478, 0x8009},
  164. {"L-SECAM-NICAM", 0x8E82, 0x0009},
  165. {"L'-SECAM-NICAM", 0x8E82, 0x4009},
  166. {"DTV6", 0x00C0, 0x8002},
  167. {"DTV8", 0x00C0, 0x800B},
  168. {"DTV7/8", 0x00C0, 0x801B},
  169. {"DTV7", 0x00C0, 0x8007},
  170. {"FM Radio-INPUT2", 0x9802, 0x9002},
  171. {"FM Radio-INPUT1", 0x0208, 0x9002}
  172. };
  173. static int xc5000_is_firmware_loaded(struct dvb_frontend *fe);
  174. static int xc5000_writeregs(struct xc5000_priv *priv, u8 *buf, u8 len);
  175. static int xc5000_readregs(struct xc5000_priv *priv, u8 *buf, u8 len);
  176. static void xc5000_TunerReset(struct dvb_frontend *fe);
  177. static int xc_send_i2c_data(struct xc5000_priv *priv, u8 *buf, int len)
  178. {
  179. return xc5000_writeregs(priv, buf, len)
  180. ? XC_RESULT_I2C_WRITE_FAILURE : XC_RESULT_SUCCESS;
  181. }
  182. static int xc_read_i2c_data(struct xc5000_priv *priv, u8 *buf, int len)
  183. {
  184. return xc5000_readregs(priv, buf, len)
  185. ? XC_RESULT_I2C_READ_FAILURE : XC_RESULT_SUCCESS;
  186. }
  187. static int xc_reset(struct dvb_frontend *fe)
  188. {
  189. xc5000_TunerReset(fe);
  190. return XC_RESULT_SUCCESS;
  191. }
  192. static void xc_wait(int wait_ms)
  193. {
  194. msleep(wait_ms);
  195. }
  196. static void xc5000_TunerReset(struct dvb_frontend *fe)
  197. {
  198. struct xc5000_priv *priv = fe->tuner_priv;
  199. int ret;
  200. dprintk(1, "%s()\n", __func__);
  201. if (priv->cfg->tuner_callback) {
  202. ret = priv->cfg->tuner_callback(priv->devptr,
  203. XC5000_TUNER_RESET, 0);
  204. if (ret)
  205. printk(KERN_ERR "xc5000: reset failed\n");
  206. } else
  207. printk(KERN_ERR "xc5000: no tuner reset callback function, fatal\n");
  208. }
  209. static int xc_write_reg(struct xc5000_priv *priv, u16 regAddr, u16 i2cData)
  210. {
  211. u8 buf[4];
  212. int WatchDogTimer = 5;
  213. int result;
  214. buf[0] = (regAddr >> 8) & 0xFF;
  215. buf[1] = regAddr & 0xFF;
  216. buf[2] = (i2cData >> 8) & 0xFF;
  217. buf[3] = i2cData & 0xFF;
  218. result = xc_send_i2c_data(priv, buf, 4);
  219. if (result == XC_RESULT_SUCCESS) {
  220. /* wait for busy flag to clear */
  221. while ((WatchDogTimer > 0) && (result == XC_RESULT_SUCCESS)) {
  222. buf[0] = 0;
  223. buf[1] = XREG_BUSY;
  224. result = xc_send_i2c_data(priv, buf, 2);
  225. if (result == XC_RESULT_SUCCESS) {
  226. result = xc_read_i2c_data(priv, buf, 2);
  227. if (result == XC_RESULT_SUCCESS) {
  228. if ((buf[0] == 0) && (buf[1] == 0)) {
  229. /* busy flag cleared */
  230. break;
  231. } else {
  232. xc_wait(100); /* wait 5 ms */
  233. WatchDogTimer--;
  234. }
  235. }
  236. }
  237. }
  238. }
  239. if (WatchDogTimer < 0)
  240. result = XC_RESULT_I2C_WRITE_FAILURE;
  241. return result;
  242. }
  243. static int xc_read_reg(struct xc5000_priv *priv, u16 regAddr, u16 *i2cData)
  244. {
  245. u8 buf[2];
  246. int result;
  247. buf[0] = (regAddr >> 8) & 0xFF;
  248. buf[1] = regAddr & 0xFF;
  249. result = xc_send_i2c_data(priv, buf, 2);
  250. if (result != XC_RESULT_SUCCESS)
  251. return result;
  252. result = xc_read_i2c_data(priv, buf, 2);
  253. if (result != XC_RESULT_SUCCESS)
  254. return result;
  255. *i2cData = buf[0] * 256 + buf[1];
  256. return result;
  257. }
  258. static int xc_load_i2c_sequence(struct dvb_frontend *fe, const u8 *i2c_sequence)
  259. {
  260. struct xc5000_priv *priv = fe->tuner_priv;
  261. int i, nbytes_to_send, result;
  262. unsigned int len, pos, index;
  263. u8 buf[XC_MAX_I2C_WRITE_LENGTH];
  264. index=0;
  265. while ((i2c_sequence[index]!=0xFF) || (i2c_sequence[index+1]!=0xFF)) {
  266. len = i2c_sequence[index]* 256 + i2c_sequence[index+1];
  267. if (len == 0x0000) {
  268. /* RESET command */
  269. result = xc_reset(fe);
  270. index += 2;
  271. if (result != XC_RESULT_SUCCESS)
  272. return result;
  273. } else if (len & 0x8000) {
  274. /* WAIT command */
  275. xc_wait(len & 0x7FFF);
  276. index += 2;
  277. } else {
  278. /* Send i2c data whilst ensuring individual transactions
  279. * do not exceed XC_MAX_I2C_WRITE_LENGTH bytes.
  280. */
  281. index += 2;
  282. buf[0] = i2c_sequence[index];
  283. buf[1] = i2c_sequence[index + 1];
  284. pos = 2;
  285. while (pos < len) {
  286. if ((len - pos) > XC_MAX_I2C_WRITE_LENGTH - 2) {
  287. nbytes_to_send = XC_MAX_I2C_WRITE_LENGTH;
  288. } else {
  289. nbytes_to_send = (len - pos + 2);
  290. }
  291. for (i=2; i<nbytes_to_send; i++) {
  292. buf[i] = i2c_sequence[index + pos + i - 2];
  293. }
  294. result = xc_send_i2c_data(priv, buf, nbytes_to_send);
  295. if (result != XC_RESULT_SUCCESS)
  296. return result;
  297. pos += nbytes_to_send - 2;
  298. }
  299. index += len;
  300. }
  301. }
  302. return XC_RESULT_SUCCESS;
  303. }
  304. static int xc_initialize(struct xc5000_priv *priv)
  305. {
  306. dprintk(1, "%s()\n", __func__);
  307. return xc_write_reg(priv, XREG_INIT, 0);
  308. }
  309. static int xc_SetTVStandard(struct xc5000_priv *priv,
  310. u16 VideoMode, u16 AudioMode)
  311. {
  312. int ret;
  313. dprintk(1, "%s(0x%04x,0x%04x)\n", __func__, VideoMode, AudioMode);
  314. dprintk(1, "%s() Standard = %s\n",
  315. __func__,
  316. XC5000_Standard[priv->video_standard].Name);
  317. ret = xc_write_reg(priv, XREG_VIDEO_MODE, VideoMode);
  318. if (ret == XC_RESULT_SUCCESS)
  319. ret = xc_write_reg(priv, XREG_AUDIO_MODE, AudioMode);
  320. return ret;
  321. }
  322. static int xc_shutdown(struct xc5000_priv *priv)
  323. {
  324. return XC_RESULT_SUCCESS;
  325. /* Fixme: cannot bring tuner back alive once shutdown
  326. * without reloading the driver modules.
  327. * return xc_write_reg(priv, XREG_POWER_DOWN, 0);
  328. */
  329. }
  330. static int xc_SetSignalSource(struct xc5000_priv *priv, u16 rf_mode)
  331. {
  332. dprintk(1, "%s(%d) Source = %s\n", __func__, rf_mode,
  333. rf_mode == XC_RF_MODE_AIR ? "ANTENNA" : "CABLE");
  334. if ((rf_mode != XC_RF_MODE_AIR) && (rf_mode != XC_RF_MODE_CABLE))
  335. {
  336. rf_mode = XC_RF_MODE_CABLE;
  337. printk(KERN_ERR
  338. "%s(), Invalid mode, defaulting to CABLE",
  339. __func__);
  340. }
  341. return xc_write_reg(priv, XREG_SIGNALSOURCE, rf_mode);
  342. }
  343. static const struct dvb_tuner_ops xc5000_tuner_ops;
  344. static int xc_set_RF_frequency(struct xc5000_priv *priv, u32 freq_hz)
  345. {
  346. u16 freq_code;
  347. dprintk(1, "%s(%u)\n", __func__, freq_hz);
  348. if ((freq_hz > xc5000_tuner_ops.info.frequency_max) ||
  349. (freq_hz < xc5000_tuner_ops.info.frequency_min))
  350. return XC_RESULT_OUT_OF_RANGE;
  351. freq_code = (u16)(freq_hz / 15625);
  352. return xc_write_reg(priv, XREG_RF_FREQ, freq_code);
  353. }
  354. static int xc_set_IF_frequency(struct xc5000_priv *priv, u32 freq_khz)
  355. {
  356. u32 freq_code = (freq_khz * 1024)/1000;
  357. dprintk(1, "%s(freq_khz = %d) freq_code = 0x%x\n",
  358. __func__, freq_khz, freq_code);
  359. return xc_write_reg(priv, XREG_IF_OUT, freq_code);
  360. }
  361. static int xc_get_ADC_Envelope(struct xc5000_priv *priv, u16 *adc_envelope)
  362. {
  363. return xc_read_reg(priv, XREG_ADC_ENV, adc_envelope);
  364. }
  365. static int xc_get_frequency_error(struct xc5000_priv *priv, u32 *freq_error_hz)
  366. {
  367. int result;
  368. u16 regData;
  369. u32 tmp;
  370. result = xc_read_reg(priv, XREG_FREQ_ERROR, &regData);
  371. if (result)
  372. return result;
  373. tmp = (u32)regData;
  374. (*freq_error_hz) = (tmp * 15625) / 1000;
  375. return result;
  376. }
  377. static int xc_get_lock_status(struct xc5000_priv *priv, u16 *lock_status)
  378. {
  379. return xc_read_reg(priv, XREG_LOCK, lock_status);
  380. }
  381. static int xc_get_version(struct xc5000_priv *priv,
  382. u8 *hw_majorversion, u8 *hw_minorversion,
  383. u8 *fw_majorversion, u8 *fw_minorversion)
  384. {
  385. u16 data;
  386. int result;
  387. result = xc_read_reg(priv, XREG_VERSION, &data);
  388. if (result)
  389. return result;
  390. (*hw_majorversion) = (data >> 12) & 0x0F;
  391. (*hw_minorversion) = (data >> 8) & 0x0F;
  392. (*fw_majorversion) = (data >> 4) & 0x0F;
  393. (*fw_minorversion) = data & 0x0F;
  394. return 0;
  395. }
  396. static int xc_get_hsync_freq(struct xc5000_priv *priv, u32 *hsync_freq_hz)
  397. {
  398. u16 regData;
  399. int result;
  400. result = xc_read_reg(priv, XREG_HSYNC_FREQ, &regData);
  401. if (result)
  402. return result;
  403. (*hsync_freq_hz) = ((regData & 0x0fff) * 763)/100;
  404. return result;
  405. }
  406. static int xc_get_frame_lines(struct xc5000_priv *priv, u16 *frame_lines)
  407. {
  408. return xc_read_reg(priv, XREG_FRAME_LINES, frame_lines);
  409. }
  410. static int xc_get_quality(struct xc5000_priv *priv, u16 *quality)
  411. {
  412. return xc_read_reg(priv, XREG_QUALITY, quality);
  413. }
  414. static u16 WaitForLock(struct xc5000_priv *priv)
  415. {
  416. u16 lockState = 0;
  417. int watchDogCount = 40;
  418. while ((lockState == 0) && (watchDogCount > 0)) {
  419. xc_get_lock_status(priv, &lockState);
  420. if (lockState != 1) {
  421. xc_wait(5);
  422. watchDogCount--;
  423. }
  424. }
  425. return lockState;
  426. }
  427. static int xc_tune_channel(struct xc5000_priv *priv, u32 freq_hz)
  428. {
  429. int found = 0;
  430. dprintk(1, "%s(%u)\n", __func__, freq_hz);
  431. if (xc_set_RF_frequency(priv, freq_hz) != XC_RESULT_SUCCESS)
  432. return 0;
  433. if (WaitForLock(priv) == 1)
  434. found = 1;
  435. return found;
  436. }
  437. static int xc5000_readreg(struct xc5000_priv *priv, u16 reg, u16 *val)
  438. {
  439. u8 buf[2] = { reg >> 8, reg & 0xff };
  440. u8 bval[2] = { 0, 0 };
  441. struct i2c_msg msg[2] = {
  442. { .addr = priv->i2c_props.addr,
  443. .flags = 0, .buf = &buf[0], .len = 2 },
  444. { .addr = priv->i2c_props.addr,
  445. .flags = I2C_M_RD, .buf = &bval[0], .len = 2 },
  446. };
  447. if (i2c_transfer(priv->i2c_props.adap, msg, 2) != 2) {
  448. printk(KERN_WARNING "xc5000: I2C read failed\n");
  449. return -EREMOTEIO;
  450. }
  451. *val = (bval[0] << 8) | bval[1];
  452. return 0;
  453. }
  454. static int xc5000_writeregs(struct xc5000_priv *priv, u8 *buf, u8 len)
  455. {
  456. struct i2c_msg msg = { .addr = priv->i2c_props.addr,
  457. .flags = 0, .buf = buf, .len = len };
  458. if (i2c_transfer(priv->i2c_props.adap, &msg, 1) != 1) {
  459. printk(KERN_ERR "xc5000: I2C write failed (len=%i)\n",
  460. (int)len);
  461. return -EREMOTEIO;
  462. }
  463. return 0;
  464. }
  465. static int xc5000_readregs(struct xc5000_priv *priv, u8 *buf, u8 len)
  466. {
  467. struct i2c_msg msg = { .addr = priv->i2c_props.addr,
  468. .flags = I2C_M_RD, .buf = buf, .len = len };
  469. if (i2c_transfer(priv->i2c_props.adap, &msg, 1) != 1) {
  470. printk(KERN_ERR "xc5000 I2C read failed (len=%i)\n",(int)len);
  471. return -EREMOTEIO;
  472. }
  473. return 0;
  474. }
  475. static int xc5000_fwupload(struct dvb_frontend* fe)
  476. {
  477. struct xc5000_priv *priv = fe->tuner_priv;
  478. const struct firmware *fw;
  479. int ret;
  480. /* request the firmware, this will block and timeout */
  481. printk(KERN_INFO "xc5000: waiting for firmware upload (%s)...\n",
  482. XC5000_DEFAULT_FIRMWARE);
  483. ret = request_firmware(&fw, XC5000_DEFAULT_FIRMWARE, &priv->i2c_props.adap->dev);
  484. if (ret) {
  485. printk(KERN_ERR "xc5000: Upload failed. (file not found?)\n");
  486. ret = XC_RESULT_RESET_FAILURE;
  487. goto out;
  488. } else {
  489. printk(KERN_INFO "xc5000: firmware read %Zu bytes.\n",
  490. fw->size);
  491. ret = XC_RESULT_SUCCESS;
  492. }
  493. if (fw->size != XC5000_DEFAULT_FIRMWARE_SIZE) {
  494. printk(KERN_ERR "xc5000: firmware incorrect size\n");
  495. ret = XC_RESULT_RESET_FAILURE;
  496. } else {
  497. printk(KERN_INFO "xc5000: firmware upload\n");
  498. ret = xc_load_i2c_sequence(fe, fw->data );
  499. }
  500. out:
  501. release_firmware(fw);
  502. return ret;
  503. }
  504. static void xc_debug_dump(struct xc5000_priv *priv)
  505. {
  506. u16 adc_envelope;
  507. u32 freq_error_hz = 0;
  508. u16 lock_status;
  509. u32 hsync_freq_hz = 0;
  510. u16 frame_lines;
  511. u16 quality;
  512. u8 hw_majorversion = 0, hw_minorversion = 0;
  513. u8 fw_majorversion = 0, fw_minorversion = 0;
  514. /* Wait for stats to stabilize.
  515. * Frame Lines needs two frame times after initial lock
  516. * before it is valid.
  517. */
  518. xc_wait(100);
  519. xc_get_ADC_Envelope(priv, &adc_envelope);
  520. dprintk(1, "*** ADC envelope (0-1023) = %d\n", adc_envelope);
  521. xc_get_frequency_error(priv, &freq_error_hz);
  522. dprintk(1, "*** Frequency error = %d Hz\n", freq_error_hz);
  523. xc_get_lock_status(priv, &lock_status);
  524. dprintk(1, "*** Lock status (0-Wait, 1-Locked, 2-No-signal) = %d\n",
  525. lock_status);
  526. xc_get_version(priv, &hw_majorversion, &hw_minorversion,
  527. &fw_majorversion, &fw_minorversion);
  528. dprintk(1, "*** HW: V%02x.%02x, FW: V%02x.%02x\n",
  529. hw_majorversion, hw_minorversion,
  530. fw_majorversion, fw_minorversion);
  531. xc_get_hsync_freq(priv, &hsync_freq_hz);
  532. dprintk(1, "*** Horizontal sync frequency = %d Hz\n", hsync_freq_hz);
  533. xc_get_frame_lines(priv, &frame_lines);
  534. dprintk(1, "*** Frame lines = %d\n", frame_lines);
  535. xc_get_quality(priv, &quality);
  536. dprintk(1, "*** Quality (0:<8dB, 7:>56dB) = %d\n", quality);
  537. }
  538. static int xc5000_set_params(struct dvb_frontend *fe,
  539. struct dvb_frontend_parameters *params)
  540. {
  541. struct xc5000_priv *priv = fe->tuner_priv;
  542. int ret;
  543. dprintk(1, "%s() frequency=%d (Hz)\n", __func__, params->frequency);
  544. switch(params->u.vsb.modulation) {
  545. case VSB_8:
  546. case VSB_16:
  547. dprintk(1, "%s() VSB modulation\n", __func__);
  548. priv->rf_mode = XC_RF_MODE_AIR;
  549. priv->freq_hz = params->frequency - 1750000;
  550. priv->bandwidth = BANDWIDTH_6_MHZ;
  551. priv->video_standard = DTV6;
  552. break;
  553. case QAM_64:
  554. case QAM_256:
  555. case QAM_AUTO:
  556. dprintk(1, "%s() QAM modulation\n", __func__);
  557. priv->rf_mode = XC_RF_MODE_CABLE;
  558. priv->freq_hz = params->frequency - 1750000;
  559. priv->bandwidth = BANDWIDTH_6_MHZ;
  560. priv->video_standard = DTV6;
  561. break;
  562. default:
  563. return -EINVAL;
  564. }
  565. dprintk(1, "%s() frequency=%d (compensated)\n",
  566. __func__, priv->freq_hz);
  567. ret = xc_SetSignalSource(priv, priv->rf_mode);
  568. if (ret != XC_RESULT_SUCCESS) {
  569. printk(KERN_ERR
  570. "xc5000: xc_SetSignalSource(%d) failed\n",
  571. priv->rf_mode);
  572. return -EREMOTEIO;
  573. }
  574. ret = xc_SetTVStandard(priv,
  575. XC5000_Standard[priv->video_standard].VideoMode,
  576. XC5000_Standard[priv->video_standard].AudioMode);
  577. if (ret != XC_RESULT_SUCCESS) {
  578. printk(KERN_ERR "xc5000: xc_SetTVStandard failed\n");
  579. return -EREMOTEIO;
  580. }
  581. ret = xc_set_IF_frequency(priv, priv->cfg->if_khz);
  582. if (ret != XC_RESULT_SUCCESS) {
  583. printk(KERN_ERR "xc5000: xc_Set_IF_frequency(%d) failed\n",
  584. priv->cfg->if_khz);
  585. return -EIO;
  586. }
  587. xc_tune_channel(priv, priv->freq_hz);
  588. if (debug)
  589. xc_debug_dump(priv);
  590. return 0;
  591. }
  592. static int xc5000_is_firmware_loaded(struct dvb_frontend *fe)
  593. {
  594. struct xc5000_priv *priv = fe->tuner_priv;
  595. int ret;
  596. u16 id;
  597. ret = xc5000_readreg(priv, XREG_PRODUCT_ID, &id);
  598. if (ret == XC_RESULT_SUCCESS) {
  599. if (id == XC_PRODUCT_ID_FW_NOT_LOADED)
  600. ret = XC_RESULT_RESET_FAILURE;
  601. else
  602. ret = XC_RESULT_SUCCESS;
  603. }
  604. dprintk(1, "%s() returns %s id = 0x%x\n", __func__,
  605. ret == XC_RESULT_SUCCESS ? "True" : "False", id);
  606. return ret;
  607. }
  608. static int xc_load_fw_and_init_tuner(struct dvb_frontend *fe);
  609. static int xc5000_set_analog_params(struct dvb_frontend *fe,
  610. struct analog_parameters *params)
  611. {
  612. struct xc5000_priv *priv = fe->tuner_priv;
  613. int ret;
  614. if (xc5000_is_firmware_loaded(fe) != XC_RESULT_SUCCESS)
  615. xc_load_fw_and_init_tuner(fe);
  616. dprintk(1, "%s() frequency=%d (in units of 62.5khz)\n",
  617. __func__, params->frequency);
  618. priv->rf_mode = XC_RF_MODE_CABLE; /* Fix me: it could be air. */
  619. /* params->frequency is in units of 62.5khz */
  620. priv->freq_hz = params->frequency * 62500;
  621. /* FIX ME: Some video standards may have several possible audio
  622. standards. We simply default to one of them here.
  623. */
  624. if(params->std & V4L2_STD_MN) {
  625. /* default to BTSC audio standard */
  626. priv->video_standard = MN_NTSC_PAL_BTSC;
  627. goto tune_channel;
  628. }
  629. if(params->std & V4L2_STD_PAL_BG) {
  630. /* default to NICAM audio standard */
  631. priv->video_standard = BG_PAL_NICAM;
  632. goto tune_channel;
  633. }
  634. if(params->std & V4L2_STD_PAL_I) {
  635. /* default to NICAM audio standard */
  636. priv->video_standard = I_PAL_NICAM;
  637. goto tune_channel;
  638. }
  639. if(params->std & V4L2_STD_PAL_DK) {
  640. /* default to NICAM audio standard */
  641. priv->video_standard = DK_PAL_NICAM;
  642. goto tune_channel;
  643. }
  644. if(params->std & V4L2_STD_SECAM_DK) {
  645. /* default to A2 DK1 audio standard */
  646. priv->video_standard = DK_SECAM_A2DK1;
  647. goto tune_channel;
  648. }
  649. if(params->std & V4L2_STD_SECAM_L) {
  650. priv->video_standard = L_SECAM_NICAM;
  651. goto tune_channel;
  652. }
  653. if(params->std & V4L2_STD_SECAM_LC) {
  654. priv->video_standard = LC_SECAM_NICAM;
  655. goto tune_channel;
  656. }
  657. tune_channel:
  658. ret = xc_SetSignalSource(priv, priv->rf_mode);
  659. if (ret != XC_RESULT_SUCCESS) {
  660. printk(KERN_ERR
  661. "xc5000: xc_SetSignalSource(%d) failed\n",
  662. priv->rf_mode);
  663. return -EREMOTEIO;
  664. }
  665. ret = xc_SetTVStandard(priv,
  666. XC5000_Standard[priv->video_standard].VideoMode,
  667. XC5000_Standard[priv->video_standard].AudioMode);
  668. if (ret != XC_RESULT_SUCCESS) {
  669. printk(KERN_ERR "xc5000: xc_SetTVStandard failed\n");
  670. return -EREMOTEIO;
  671. }
  672. xc_tune_channel(priv, priv->freq_hz);
  673. if (debug)
  674. xc_debug_dump(priv);
  675. return 0;
  676. }
  677. static int xc5000_get_frequency(struct dvb_frontend *fe, u32 *freq)
  678. {
  679. struct xc5000_priv *priv = fe->tuner_priv;
  680. dprintk(1, "%s()\n", __func__);
  681. *freq = priv->freq_hz;
  682. return 0;
  683. }
  684. static int xc5000_get_bandwidth(struct dvb_frontend *fe, u32 *bw)
  685. {
  686. struct xc5000_priv *priv = fe->tuner_priv;
  687. dprintk(1, "%s()\n", __func__);
  688. *bw = priv->bandwidth;
  689. return 0;
  690. }
  691. static int xc5000_get_status(struct dvb_frontend *fe, u32 *status)
  692. {
  693. struct xc5000_priv *priv = fe->tuner_priv;
  694. u16 lock_status = 0;
  695. xc_get_lock_status(priv, &lock_status);
  696. dprintk(1, "%s() lock_status = 0x%08x\n", __func__, lock_status);
  697. *status = lock_status;
  698. return 0;
  699. }
  700. static int xc_load_fw_and_init_tuner(struct dvb_frontend *fe)
  701. {
  702. struct xc5000_priv *priv = fe->tuner_priv;
  703. int ret = 0;
  704. if (xc5000_is_firmware_loaded(fe) != XC_RESULT_SUCCESS) {
  705. ret = xc5000_fwupload(fe);
  706. if (ret != XC_RESULT_SUCCESS)
  707. return ret;
  708. }
  709. /* Start the tuner self-calibration process */
  710. ret |= xc_initialize(priv);
  711. /* Wait for calibration to complete.
  712. * We could continue but XC5000 will clock stretch subsequent
  713. * I2C transactions until calibration is complete. This way we
  714. * don't have to rely on clock stretching working.
  715. */
  716. xc_wait( 100 );
  717. /* Default to "CABLE" mode */
  718. ret |= xc_write_reg(priv, XREG_SIGNALSOURCE, XC_RF_MODE_CABLE);
  719. return ret;
  720. }
  721. static int xc5000_sleep(struct dvb_frontend *fe)
  722. {
  723. struct xc5000_priv *priv = fe->tuner_priv;
  724. int ret;
  725. dprintk(1, "%s()\n", __func__);
  726. /* On Pinnacle PCTV HD 800i, the tuner cannot be reinitialized
  727. * once shutdown without reloading the driver. Maybe I am not
  728. * doing something right.
  729. *
  730. */
  731. ret = xc_shutdown(priv);
  732. if(ret != XC_RESULT_SUCCESS) {
  733. printk(KERN_ERR
  734. "xc5000: %s() unable to shutdown tuner\n",
  735. __func__);
  736. return -EREMOTEIO;
  737. }
  738. else {
  739. return XC_RESULT_SUCCESS;
  740. }
  741. }
  742. static int xc5000_init(struct dvb_frontend *fe)
  743. {
  744. struct xc5000_priv *priv = fe->tuner_priv;
  745. dprintk(1, "%s()\n", __func__);
  746. if (xc_load_fw_and_init_tuner(fe) != XC_RESULT_SUCCESS) {
  747. printk(KERN_ERR "xc5000: Unable to initialise tuner\n");
  748. return -EREMOTEIO;
  749. }
  750. if (debug)
  751. xc_debug_dump(priv);
  752. return 0;
  753. }
  754. static int xc5000_release(struct dvb_frontend *fe)
  755. {
  756. struct xc5000_priv *priv = fe->tuner_priv;
  757. dprintk(1, "%s()\n", __func__);
  758. mutex_lock(&xc5000_list_mutex);
  759. if (priv)
  760. hybrid_tuner_release_state(priv);
  761. mutex_unlock(&xc5000_list_mutex);
  762. fe->tuner_priv = NULL;
  763. return 0;
  764. }
  765. static const struct dvb_tuner_ops xc5000_tuner_ops = {
  766. .info = {
  767. .name = "Xceive XC5000",
  768. .frequency_min = 1000000,
  769. .frequency_max = 1023000000,
  770. .frequency_step = 50000,
  771. },
  772. .release = xc5000_release,
  773. .init = xc5000_init,
  774. .sleep = xc5000_sleep,
  775. .set_params = xc5000_set_params,
  776. .set_analog_params = xc5000_set_analog_params,
  777. .get_frequency = xc5000_get_frequency,
  778. .get_bandwidth = xc5000_get_bandwidth,
  779. .get_status = xc5000_get_status
  780. };
  781. struct dvb_frontend *xc5000_attach(struct dvb_frontend *fe,
  782. struct i2c_adapter *i2c,
  783. struct xc5000_config *cfg, void *devptr)
  784. {
  785. struct xc5000_priv *priv = NULL;
  786. int instance;
  787. u16 id = 0;
  788. dprintk(1, "%s(%d-%04x)\n", __func__,
  789. i2c ? i2c_adapter_id(i2c) : -1,
  790. cfg ? cfg->i2c_address : -1);
  791. mutex_lock(&xc5000_list_mutex);
  792. instance = hybrid_tuner_request_state(struct xc5000_priv, priv,
  793. hybrid_tuner_instance_list,
  794. i2c, cfg->i2c_address, "xc5000");
  795. switch (instance) {
  796. case 0:
  797. goto fail;
  798. break;
  799. case 1:
  800. /* new tuner instance */
  801. priv->cfg = cfg;
  802. priv->bandwidth = BANDWIDTH_6_MHZ;
  803. priv->devptr = devptr;
  804. fe->tuner_priv = priv;
  805. break;
  806. default:
  807. /* existing tuner instance */
  808. fe->tuner_priv = priv;
  809. break;
  810. }
  811. /* Check if firmware has been loaded. It is possible that another
  812. instance of the driver has loaded the firmware.
  813. */
  814. if (xc5000_readreg(priv, XREG_PRODUCT_ID, &id) != 0)
  815. goto fail;
  816. switch(id) {
  817. case XC_PRODUCT_ID_FW_LOADED:
  818. printk(KERN_INFO
  819. "xc5000: Successfully identified at address 0x%02x\n",
  820. cfg->i2c_address);
  821. printk(KERN_INFO
  822. "xc5000: Firmware has been loaded previously\n");
  823. break;
  824. case XC_PRODUCT_ID_FW_NOT_LOADED:
  825. printk(KERN_INFO
  826. "xc5000: Successfully identified at address 0x%02x\n",
  827. cfg->i2c_address);
  828. printk(KERN_INFO
  829. "xc5000: Firmware has not been loaded previously\n");
  830. break;
  831. default:
  832. printk(KERN_ERR
  833. "xc5000: Device not found at addr 0x%02x (0x%x)\n",
  834. cfg->i2c_address, id);
  835. goto fail;
  836. }
  837. mutex_unlock(&xc5000_list_mutex);
  838. memcpy(&fe->ops.tuner_ops, &xc5000_tuner_ops,
  839. sizeof(struct dvb_tuner_ops));
  840. if (xc5000_load_fw_on_attach)
  841. xc5000_init(fe);
  842. return fe;
  843. fail:
  844. mutex_unlock(&xc5000_list_mutex);
  845. xc5000_release(fe);
  846. return NULL;
  847. }
  848. EXPORT_SYMBOL(xc5000_attach);
  849. MODULE_AUTHOR("Steven Toth");
  850. MODULE_DESCRIPTION("Xceive xc5000 silicon tuner driver");
  851. MODULE_LICENSE("GPL");