discontig.c 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437
  1. /*
  2. * Written by: Patricia Gaughen <gone@us.ibm.com>, IBM Corporation
  3. * August 2002: added remote node KVA remap - Martin J. Bligh
  4. *
  5. * Copyright (C) 2002, IBM Corp.
  6. *
  7. * All rights reserved.
  8. *
  9. * This program is free software; you can redistribute it and/or modify
  10. * it under the terms of the GNU General Public License as published by
  11. * the Free Software Foundation; either version 2 of the License, or
  12. * (at your option) any later version.
  13. *
  14. * This program is distributed in the hope that it will be useful, but
  15. * WITHOUT ANY WARRANTY; without even the implied warranty of
  16. * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
  17. * NON INFRINGEMENT. See the GNU General Public License for more
  18. * details.
  19. *
  20. * You should have received a copy of the GNU General Public License
  21. * along with this program; if not, write to the Free Software
  22. * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  23. */
  24. #include <linux/mm.h>
  25. #include <linux/bootmem.h>
  26. #include <linux/mmzone.h>
  27. #include <linux/highmem.h>
  28. #include <linux/initrd.h>
  29. #include <linux/nodemask.h>
  30. #include <linux/module.h>
  31. #include <linux/kexec.h>
  32. #include <linux/pfn.h>
  33. #include <asm/e820.h>
  34. #include <asm/setup.h>
  35. #include <asm/mmzone.h>
  36. #include <bios_ebda.h>
  37. struct pglist_data *node_data[MAX_NUMNODES] __read_mostly;
  38. EXPORT_SYMBOL(node_data);
  39. bootmem_data_t node0_bdata;
  40. /*
  41. * numa interface - we expect the numa architecture specific code to have
  42. * populated the following initialisation.
  43. *
  44. * 1) node_online_map - the map of all nodes configured (online) in the system
  45. * 2) node_start_pfn - the starting page frame number for a node
  46. * 3) node_end_pfn - the ending page fram number for a node
  47. */
  48. unsigned long node_start_pfn[MAX_NUMNODES] __read_mostly;
  49. unsigned long node_end_pfn[MAX_NUMNODES] __read_mostly;
  50. #ifdef CONFIG_DISCONTIGMEM
  51. /*
  52. * 4) physnode_map - the mapping between a pfn and owning node
  53. * physnode_map keeps track of the physical memory layout of a generic
  54. * numa node on a 256Mb break (each element of the array will
  55. * represent 256Mb of memory and will be marked by the node id. so,
  56. * if the first gig is on node 0, and the second gig is on node 1
  57. * physnode_map will contain:
  58. *
  59. * physnode_map[0-3] = 0;
  60. * physnode_map[4-7] = 1;
  61. * physnode_map[8- ] = -1;
  62. */
  63. s8 physnode_map[MAX_ELEMENTS] __read_mostly = { [0 ... (MAX_ELEMENTS - 1)] = -1};
  64. EXPORT_SYMBOL(physnode_map);
  65. void memory_present(int nid, unsigned long start, unsigned long end)
  66. {
  67. unsigned long pfn;
  68. printk(KERN_INFO "Node: %d, start_pfn: %ld, end_pfn: %ld\n",
  69. nid, start, end);
  70. printk(KERN_DEBUG " Setting physnode_map array to node %d for pfns:\n", nid);
  71. printk(KERN_DEBUG " ");
  72. for (pfn = start; pfn < end; pfn += PAGES_PER_ELEMENT) {
  73. physnode_map[pfn / PAGES_PER_ELEMENT] = nid;
  74. printk("%ld ", pfn);
  75. }
  76. printk("\n");
  77. }
  78. unsigned long node_memmap_size_bytes(int nid, unsigned long start_pfn,
  79. unsigned long end_pfn)
  80. {
  81. unsigned long nr_pages = end_pfn - start_pfn;
  82. if (!nr_pages)
  83. return 0;
  84. return (nr_pages + 1) * sizeof(struct page);
  85. }
  86. #endif
  87. extern unsigned long find_max_low_pfn(void);
  88. extern void find_max_pfn(void);
  89. extern void add_one_highpage_init(struct page *, int, int);
  90. extern struct e820map e820;
  91. extern unsigned long init_pg_tables_end;
  92. extern unsigned long highend_pfn, highstart_pfn;
  93. extern unsigned long max_low_pfn;
  94. extern unsigned long totalram_pages;
  95. extern unsigned long totalhigh_pages;
  96. #define LARGE_PAGE_BYTES (PTRS_PER_PTE * PAGE_SIZE)
  97. unsigned long node_remap_start_pfn[MAX_NUMNODES];
  98. unsigned long node_remap_size[MAX_NUMNODES];
  99. unsigned long node_remap_offset[MAX_NUMNODES];
  100. void *node_remap_start_vaddr[MAX_NUMNODES];
  101. void set_pmd_pfn(unsigned long vaddr, unsigned long pfn, pgprot_t flags);
  102. void *node_remap_end_vaddr[MAX_NUMNODES];
  103. void *node_remap_alloc_vaddr[MAX_NUMNODES];
  104. static unsigned long kva_start_pfn;
  105. static unsigned long kva_pages;
  106. /*
  107. * FLAT - support for basic PC memory model with discontig enabled, essentially
  108. * a single node with all available processors in it with a flat
  109. * memory map.
  110. */
  111. int __init get_memcfg_numa_flat(void)
  112. {
  113. printk("NUMA - single node, flat memory mode\n");
  114. /* Run the memory configuration and find the top of memory. */
  115. find_max_pfn();
  116. node_start_pfn[0] = 0;
  117. node_end_pfn[0] = max_pfn;
  118. memory_present(0, 0, max_pfn);
  119. /* Indicate there is one node available. */
  120. nodes_clear(node_online_map);
  121. node_set_online(0);
  122. return 1;
  123. }
  124. /*
  125. * Find the highest page frame number we have available for the node
  126. */
  127. static void __init find_max_pfn_node(int nid)
  128. {
  129. if (node_end_pfn[nid] > max_pfn)
  130. node_end_pfn[nid] = max_pfn;
  131. /*
  132. * if a user has given mem=XXXX, then we need to make sure
  133. * that the node _starts_ before that, too, not just ends
  134. */
  135. if (node_start_pfn[nid] > max_pfn)
  136. node_start_pfn[nid] = max_pfn;
  137. if (node_start_pfn[nid] > node_end_pfn[nid])
  138. BUG();
  139. }
  140. /* Find the owning node for a pfn. */
  141. int early_pfn_to_nid(unsigned long pfn)
  142. {
  143. int nid;
  144. for_each_node(nid) {
  145. if (node_end_pfn[nid] == 0)
  146. break;
  147. if (node_start_pfn[nid] <= pfn && node_end_pfn[nid] >= pfn)
  148. return nid;
  149. }
  150. return 0;
  151. }
  152. /*
  153. * Allocate memory for the pg_data_t for this node via a crude pre-bootmem
  154. * method. For node zero take this from the bottom of memory, for
  155. * subsequent nodes place them at node_remap_start_vaddr which contains
  156. * node local data in physically node local memory. See setup_memory()
  157. * for details.
  158. */
  159. static void __init allocate_pgdat(int nid)
  160. {
  161. if (nid && node_has_online_mem(nid))
  162. NODE_DATA(nid) = (pg_data_t *)node_remap_start_vaddr[nid];
  163. else {
  164. NODE_DATA(nid) = (pg_data_t *)(__va(min_low_pfn << PAGE_SHIFT));
  165. min_low_pfn += PFN_UP(sizeof(pg_data_t));
  166. }
  167. }
  168. void *alloc_remap(int nid, unsigned long size)
  169. {
  170. void *allocation = node_remap_alloc_vaddr[nid];
  171. size = ALIGN(size, L1_CACHE_BYTES);
  172. if (!allocation || (allocation + size) >= node_remap_end_vaddr[nid])
  173. return 0;
  174. node_remap_alloc_vaddr[nid] += size;
  175. memset(allocation, 0, size);
  176. return allocation;
  177. }
  178. void __init remap_numa_kva(void)
  179. {
  180. void *vaddr;
  181. unsigned long pfn;
  182. int node;
  183. for_each_online_node(node) {
  184. for (pfn=0; pfn < node_remap_size[node]; pfn += PTRS_PER_PTE) {
  185. vaddr = node_remap_start_vaddr[node]+(pfn<<PAGE_SHIFT);
  186. set_pmd_pfn((ulong) vaddr,
  187. node_remap_start_pfn[node] + pfn,
  188. PAGE_KERNEL_LARGE);
  189. }
  190. }
  191. }
  192. static unsigned long calculate_numa_remap_pages(void)
  193. {
  194. int nid;
  195. unsigned long size, reserve_pages = 0;
  196. unsigned long pfn;
  197. for_each_online_node(nid) {
  198. /*
  199. * The acpi/srat node info can show hot-add memroy zones
  200. * where memory could be added but not currently present.
  201. */
  202. if (node_start_pfn[nid] > max_pfn)
  203. continue;
  204. if (node_end_pfn[nid] > max_pfn)
  205. node_end_pfn[nid] = max_pfn;
  206. /* ensure the remap includes space for the pgdat. */
  207. size = node_remap_size[nid] + sizeof(pg_data_t);
  208. /* convert size to large (pmd size) pages, rounding up */
  209. size = (size + LARGE_PAGE_BYTES - 1) / LARGE_PAGE_BYTES;
  210. /* now the roundup is correct, convert to PAGE_SIZE pages */
  211. size = size * PTRS_PER_PTE;
  212. /*
  213. * Validate the region we are allocating only contains valid
  214. * pages.
  215. */
  216. for (pfn = node_end_pfn[nid] - size;
  217. pfn < node_end_pfn[nid]; pfn++)
  218. if (!page_is_ram(pfn))
  219. break;
  220. if (pfn != node_end_pfn[nid])
  221. size = 0;
  222. printk("Reserving %ld pages of KVA for lmem_map of node %d\n",
  223. size, nid);
  224. node_remap_size[nid] = size;
  225. node_remap_offset[nid] = reserve_pages;
  226. reserve_pages += size;
  227. printk("Shrinking node %d from %ld pages to %ld pages\n",
  228. nid, node_end_pfn[nid], node_end_pfn[nid] - size);
  229. if (node_end_pfn[nid] & (PTRS_PER_PTE-1)) {
  230. /*
  231. * Align node_end_pfn[] and node_remap_start_pfn[] to
  232. * pmd boundary. remap_numa_kva will barf otherwise.
  233. */
  234. printk("Shrinking node %d further by %ld pages for proper alignment\n",
  235. nid, node_end_pfn[nid] & (PTRS_PER_PTE-1));
  236. size += node_end_pfn[nid] & (PTRS_PER_PTE-1);
  237. }
  238. node_end_pfn[nid] -= size;
  239. node_remap_start_pfn[nid] = node_end_pfn[nid];
  240. }
  241. printk("Reserving total of %ld pages for numa KVA remap\n",
  242. reserve_pages);
  243. return reserve_pages;
  244. }
  245. extern void setup_bootmem_allocator(void);
  246. unsigned long __init setup_memory(void)
  247. {
  248. int nid;
  249. unsigned long system_start_pfn, system_max_low_pfn;
  250. /*
  251. * When mapping a NUMA machine we allocate the node_mem_map arrays
  252. * from node local memory. They are then mapped directly into KVA
  253. * between zone normal and vmalloc space. Calculate the size of
  254. * this space and use it to adjust the boundry between ZONE_NORMAL
  255. * and ZONE_HIGHMEM.
  256. */
  257. find_max_pfn();
  258. get_memcfg_numa();
  259. kva_pages = calculate_numa_remap_pages();
  260. /* partially used pages are not usable - thus round upwards */
  261. system_start_pfn = min_low_pfn = PFN_UP(init_pg_tables_end);
  262. kva_start_pfn = find_max_low_pfn() - kva_pages;
  263. #ifdef CONFIG_BLK_DEV_INITRD
  264. /* Numa kva area is below the initrd */
  265. if (LOADER_TYPE && INITRD_START)
  266. kva_start_pfn = PFN_DOWN(INITRD_START) - kva_pages;
  267. #endif
  268. kva_start_pfn -= kva_start_pfn & (PTRS_PER_PTE-1);
  269. system_max_low_pfn = max_low_pfn = find_max_low_pfn();
  270. printk("kva_start_pfn ~ %ld find_max_low_pfn() ~ %ld\n",
  271. kva_start_pfn, max_low_pfn);
  272. printk("max_pfn = %ld\n", max_pfn);
  273. #ifdef CONFIG_HIGHMEM
  274. highstart_pfn = highend_pfn = max_pfn;
  275. if (max_pfn > system_max_low_pfn)
  276. highstart_pfn = system_max_low_pfn;
  277. printk(KERN_NOTICE "%ldMB HIGHMEM available.\n",
  278. pages_to_mb(highend_pfn - highstart_pfn));
  279. #endif
  280. printk(KERN_NOTICE "%ldMB LOWMEM available.\n",
  281. pages_to_mb(system_max_low_pfn));
  282. printk("min_low_pfn = %ld, max_low_pfn = %ld, highstart_pfn = %ld\n",
  283. min_low_pfn, max_low_pfn, highstart_pfn);
  284. printk("Low memory ends at vaddr %08lx\n",
  285. (ulong) pfn_to_kaddr(max_low_pfn));
  286. for_each_online_node(nid) {
  287. node_remap_start_vaddr[nid] = pfn_to_kaddr(
  288. kva_start_pfn + node_remap_offset[nid]);
  289. /* Init the node remap allocator */
  290. node_remap_end_vaddr[nid] = node_remap_start_vaddr[nid] +
  291. (node_remap_size[nid] * PAGE_SIZE);
  292. node_remap_alloc_vaddr[nid] = node_remap_start_vaddr[nid] +
  293. ALIGN(sizeof(pg_data_t), PAGE_SIZE);
  294. allocate_pgdat(nid);
  295. printk ("node %d will remap to vaddr %08lx - %08lx\n", nid,
  296. (ulong) node_remap_start_vaddr[nid],
  297. (ulong) pfn_to_kaddr(highstart_pfn
  298. + node_remap_offset[nid] + node_remap_size[nid]));
  299. }
  300. printk("High memory starts at vaddr %08lx\n",
  301. (ulong) pfn_to_kaddr(highstart_pfn));
  302. for_each_online_node(nid)
  303. find_max_pfn_node(nid);
  304. memset(NODE_DATA(0), 0, sizeof(struct pglist_data));
  305. NODE_DATA(0)->bdata = &node0_bdata;
  306. setup_bootmem_allocator();
  307. return max_low_pfn;
  308. }
  309. void __init numa_kva_reserve(void)
  310. {
  311. reserve_bootmem(PFN_PHYS(kva_start_pfn),PFN_PHYS(kva_pages));
  312. }
  313. void __init zone_sizes_init(void)
  314. {
  315. int nid;
  316. for_each_online_node(nid) {
  317. unsigned long zones_size[MAX_NR_ZONES] = {0, };
  318. unsigned long *zholes_size;
  319. unsigned int max_dma;
  320. unsigned long low = max_low_pfn;
  321. unsigned long start = node_start_pfn[nid];
  322. unsigned long high = node_end_pfn[nid];
  323. max_dma = virt_to_phys((char *)MAX_DMA_ADDRESS) >> PAGE_SHIFT;
  324. if (node_has_online_mem(nid)){
  325. if (start > low) {
  326. #ifdef CONFIG_HIGHMEM
  327. BUG_ON(start > high);
  328. zones_size[ZONE_HIGHMEM] = high - start;
  329. #endif
  330. } else {
  331. if (low < max_dma)
  332. zones_size[ZONE_DMA] = low;
  333. else {
  334. BUG_ON(max_dma > low);
  335. BUG_ON(low > high);
  336. zones_size[ZONE_DMA] = max_dma;
  337. zones_size[ZONE_NORMAL] = low - max_dma;
  338. #ifdef CONFIG_HIGHMEM
  339. zones_size[ZONE_HIGHMEM] = high - low;
  340. #endif
  341. }
  342. }
  343. }
  344. zholes_size = get_zholes_size(nid);
  345. free_area_init_node(nid, NODE_DATA(nid), zones_size, start,
  346. zholes_size);
  347. }
  348. return;
  349. }
  350. void __init set_highmem_pages_init(int bad_ppro)
  351. {
  352. #ifdef CONFIG_HIGHMEM
  353. struct zone *zone;
  354. struct page *page;
  355. for_each_zone(zone) {
  356. unsigned long node_pfn, zone_start_pfn, zone_end_pfn;
  357. if (!is_highmem(zone))
  358. continue;
  359. zone_start_pfn = zone->zone_start_pfn;
  360. zone_end_pfn = zone_start_pfn + zone->spanned_pages;
  361. printk("Initializing %s for node %d (%08lx:%08lx)\n",
  362. zone->name, zone_to_nid(zone),
  363. zone_start_pfn, zone_end_pfn);
  364. for (node_pfn = zone_start_pfn; node_pfn < zone_end_pfn; node_pfn++) {
  365. if (!pfn_valid(node_pfn))
  366. continue;
  367. page = pfn_to_page(node_pfn);
  368. add_one_highpage_init(page, node_pfn, bad_ppro);
  369. }
  370. }
  371. totalram_pages += totalhigh_pages;
  372. #endif
  373. }