ste_dma40.c 75 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007
  1. /*
  2. * Copyright (C) Ericsson AB 2007-2008
  3. * Copyright (C) ST-Ericsson SA 2008-2010
  4. * Author: Per Forlin <per.forlin@stericsson.com> for ST-Ericsson
  5. * Author: Jonas Aaberg <jonas.aberg@stericsson.com> for ST-Ericsson
  6. * License terms: GNU General Public License (GPL) version 2
  7. */
  8. #include <linux/dma-mapping.h>
  9. #include <linux/kernel.h>
  10. #include <linux/slab.h>
  11. #include <linux/dmaengine.h>
  12. #include <linux/platform_device.h>
  13. #include <linux/clk.h>
  14. #include <linux/delay.h>
  15. #include <linux/err.h>
  16. #include <linux/amba/bus.h>
  17. #include <plat/ste_dma40.h>
  18. #include "ste_dma40_ll.h"
  19. #define D40_NAME "dma40"
  20. #define D40_PHY_CHAN -1
  21. /* For masking out/in 2 bit channel positions */
  22. #define D40_CHAN_POS(chan) (2 * (chan / 2))
  23. #define D40_CHAN_POS_MASK(chan) (0x3 << D40_CHAN_POS(chan))
  24. /* Maximum iterations taken before giving up suspending a channel */
  25. #define D40_SUSPEND_MAX_IT 500
  26. /* Hardware requirement on LCLA alignment */
  27. #define LCLA_ALIGNMENT 0x40000
  28. /* Max number of links per event group */
  29. #define D40_LCLA_LINK_PER_EVENT_GRP 128
  30. #define D40_LCLA_END D40_LCLA_LINK_PER_EVENT_GRP
  31. /* Attempts before giving up to trying to get pages that are aligned */
  32. #define MAX_LCLA_ALLOC_ATTEMPTS 256
  33. /* Bit markings for allocation map */
  34. #define D40_ALLOC_FREE (1 << 31)
  35. #define D40_ALLOC_PHY (1 << 30)
  36. #define D40_ALLOC_LOG_FREE 0
  37. /**
  38. * enum 40_command - The different commands and/or statuses.
  39. *
  40. * @D40_DMA_STOP: DMA channel command STOP or status STOPPED,
  41. * @D40_DMA_RUN: The DMA channel is RUNNING of the command RUN.
  42. * @D40_DMA_SUSPEND_REQ: Request the DMA to SUSPEND as soon as possible.
  43. * @D40_DMA_SUSPENDED: The DMA channel is SUSPENDED.
  44. */
  45. enum d40_command {
  46. D40_DMA_STOP = 0,
  47. D40_DMA_RUN = 1,
  48. D40_DMA_SUSPEND_REQ = 2,
  49. D40_DMA_SUSPENDED = 3
  50. };
  51. /**
  52. * struct d40_lli_pool - Structure for keeping LLIs in memory
  53. *
  54. * @base: Pointer to memory area when the pre_alloc_lli's are not large
  55. * enough, IE bigger than the most common case, 1 dst and 1 src. NULL if
  56. * pre_alloc_lli is used.
  57. * @dma_addr: DMA address, if mapped
  58. * @size: The size in bytes of the memory at base or the size of pre_alloc_lli.
  59. * @pre_alloc_lli: Pre allocated area for the most common case of transfers,
  60. * one buffer to one buffer.
  61. */
  62. struct d40_lli_pool {
  63. void *base;
  64. int size;
  65. dma_addr_t dma_addr;
  66. /* Space for dst and src, plus an extra for padding */
  67. u8 pre_alloc_lli[3 * sizeof(struct d40_phy_lli)];
  68. };
  69. /**
  70. * struct d40_desc - A descriptor is one DMA job.
  71. *
  72. * @lli_phy: LLI settings for physical channel. Both src and dst=
  73. * points into the lli_pool, to base if lli_len > 1 or to pre_alloc_lli if
  74. * lli_len equals one.
  75. * @lli_log: Same as above but for logical channels.
  76. * @lli_pool: The pool with two entries pre-allocated.
  77. * @lli_len: Number of llis of current descriptor.
  78. * @lli_current: Number of transferred llis.
  79. * @lcla_alloc: Number of LCLA entries allocated.
  80. * @txd: DMA engine struct. Used for among other things for communication
  81. * during a transfer.
  82. * @node: List entry.
  83. * @is_in_client_list: true if the client owns this descriptor.
  84. * the previous one.
  85. *
  86. * This descriptor is used for both logical and physical transfers.
  87. */
  88. struct d40_desc {
  89. /* LLI physical */
  90. struct d40_phy_lli_bidir lli_phy;
  91. /* LLI logical */
  92. struct d40_log_lli_bidir lli_log;
  93. struct d40_lli_pool lli_pool;
  94. int lli_len;
  95. int lli_current;
  96. int lcla_alloc;
  97. struct dma_async_tx_descriptor txd;
  98. struct list_head node;
  99. bool is_in_client_list;
  100. bool cyclic;
  101. };
  102. /**
  103. * struct d40_lcla_pool - LCLA pool settings and data.
  104. *
  105. * @base: The virtual address of LCLA. 18 bit aligned.
  106. * @base_unaligned: The orignal kmalloc pointer, if kmalloc is used.
  107. * This pointer is only there for clean-up on error.
  108. * @pages: The number of pages needed for all physical channels.
  109. * Only used later for clean-up on error
  110. * @lock: Lock to protect the content in this struct.
  111. * @alloc_map: big map over which LCLA entry is own by which job.
  112. */
  113. struct d40_lcla_pool {
  114. void *base;
  115. dma_addr_t dma_addr;
  116. void *base_unaligned;
  117. int pages;
  118. spinlock_t lock;
  119. struct d40_desc **alloc_map;
  120. };
  121. /**
  122. * struct d40_phy_res - struct for handling eventlines mapped to physical
  123. * channels.
  124. *
  125. * @lock: A lock protection this entity.
  126. * @num: The physical channel number of this entity.
  127. * @allocated_src: Bit mapped to show which src event line's are mapped to
  128. * this physical channel. Can also be free or physically allocated.
  129. * @allocated_dst: Same as for src but is dst.
  130. * allocated_dst and allocated_src uses the D40_ALLOC* defines as well as
  131. * event line number.
  132. */
  133. struct d40_phy_res {
  134. spinlock_t lock;
  135. int num;
  136. u32 allocated_src;
  137. u32 allocated_dst;
  138. };
  139. struct d40_base;
  140. /**
  141. * struct d40_chan - Struct that describes a channel.
  142. *
  143. * @lock: A spinlock to protect this struct.
  144. * @log_num: The logical number, if any of this channel.
  145. * @completed: Starts with 1, after first interrupt it is set to dma engine's
  146. * current cookie.
  147. * @pending_tx: The number of pending transfers. Used between interrupt handler
  148. * and tasklet.
  149. * @busy: Set to true when transfer is ongoing on this channel.
  150. * @phy_chan: Pointer to physical channel which this instance runs on. If this
  151. * point is NULL, then the channel is not allocated.
  152. * @chan: DMA engine handle.
  153. * @tasklet: Tasklet that gets scheduled from interrupt context to complete a
  154. * transfer and call client callback.
  155. * @client: Cliented owned descriptor list.
  156. * @pending_queue: Submitted jobs, to be issued by issue_pending()
  157. * @active: Active descriptor.
  158. * @queue: Queued jobs.
  159. * @dma_cfg: The client configuration of this dma channel.
  160. * @configured: whether the dma_cfg configuration is valid
  161. * @base: Pointer to the device instance struct.
  162. * @src_def_cfg: Default cfg register setting for src.
  163. * @dst_def_cfg: Default cfg register setting for dst.
  164. * @log_def: Default logical channel settings.
  165. * @lcla: Space for one dst src pair for logical channel transfers.
  166. * @lcpa: Pointer to dst and src lcpa settings.
  167. * @runtime_addr: runtime configured address.
  168. * @runtime_direction: runtime configured direction.
  169. *
  170. * This struct can either "be" a logical or a physical channel.
  171. */
  172. struct d40_chan {
  173. spinlock_t lock;
  174. int log_num;
  175. /* ID of the most recent completed transfer */
  176. int completed;
  177. int pending_tx;
  178. bool busy;
  179. struct d40_phy_res *phy_chan;
  180. struct dma_chan chan;
  181. struct tasklet_struct tasklet;
  182. struct list_head client;
  183. struct list_head pending_queue;
  184. struct list_head active;
  185. struct list_head queue;
  186. struct stedma40_chan_cfg dma_cfg;
  187. bool configured;
  188. struct d40_base *base;
  189. /* Default register configurations */
  190. u32 src_def_cfg;
  191. u32 dst_def_cfg;
  192. struct d40_def_lcsp log_def;
  193. struct d40_log_lli_full *lcpa;
  194. /* Runtime reconfiguration */
  195. dma_addr_t runtime_addr;
  196. enum dma_data_direction runtime_direction;
  197. };
  198. /**
  199. * struct d40_base - The big global struct, one for each probe'd instance.
  200. *
  201. * @interrupt_lock: Lock used to make sure one interrupt is handle a time.
  202. * @execmd_lock: Lock for execute command usage since several channels share
  203. * the same physical register.
  204. * @dev: The device structure.
  205. * @virtbase: The virtual base address of the DMA's register.
  206. * @rev: silicon revision detected.
  207. * @clk: Pointer to the DMA clock structure.
  208. * @phy_start: Physical memory start of the DMA registers.
  209. * @phy_size: Size of the DMA register map.
  210. * @irq: The IRQ number.
  211. * @num_phy_chans: The number of physical channels. Read from HW. This
  212. * is the number of available channels for this driver, not counting "Secure
  213. * mode" allocated physical channels.
  214. * @num_log_chans: The number of logical channels. Calculated from
  215. * num_phy_chans.
  216. * @dma_both: dma_device channels that can do both memcpy and slave transfers.
  217. * @dma_slave: dma_device channels that can do only do slave transfers.
  218. * @dma_memcpy: dma_device channels that can do only do memcpy transfers.
  219. * @log_chans: Room for all possible logical channels in system.
  220. * @lookup_log_chans: Used to map interrupt number to logical channel. Points
  221. * to log_chans entries.
  222. * @lookup_phy_chans: Used to map interrupt number to physical channel. Points
  223. * to phy_chans entries.
  224. * @plat_data: Pointer to provided platform_data which is the driver
  225. * configuration.
  226. * @phy_res: Vector containing all physical channels.
  227. * @lcla_pool: lcla pool settings and data.
  228. * @lcpa_base: The virtual mapped address of LCPA.
  229. * @phy_lcpa: The physical address of the LCPA.
  230. * @lcpa_size: The size of the LCPA area.
  231. * @desc_slab: cache for descriptors.
  232. */
  233. struct d40_base {
  234. spinlock_t interrupt_lock;
  235. spinlock_t execmd_lock;
  236. struct device *dev;
  237. void __iomem *virtbase;
  238. u8 rev:4;
  239. struct clk *clk;
  240. phys_addr_t phy_start;
  241. resource_size_t phy_size;
  242. int irq;
  243. int num_phy_chans;
  244. int num_log_chans;
  245. struct dma_device dma_both;
  246. struct dma_device dma_slave;
  247. struct dma_device dma_memcpy;
  248. struct d40_chan *phy_chans;
  249. struct d40_chan *log_chans;
  250. struct d40_chan **lookup_log_chans;
  251. struct d40_chan **lookup_phy_chans;
  252. struct stedma40_platform_data *plat_data;
  253. /* Physical half channels */
  254. struct d40_phy_res *phy_res;
  255. struct d40_lcla_pool lcla_pool;
  256. void *lcpa_base;
  257. dma_addr_t phy_lcpa;
  258. resource_size_t lcpa_size;
  259. struct kmem_cache *desc_slab;
  260. };
  261. /**
  262. * struct d40_interrupt_lookup - lookup table for interrupt handler
  263. *
  264. * @src: Interrupt mask register.
  265. * @clr: Interrupt clear register.
  266. * @is_error: true if this is an error interrupt.
  267. * @offset: start delta in the lookup_log_chans in d40_base. If equals to
  268. * D40_PHY_CHAN, the lookup_phy_chans shall be used instead.
  269. */
  270. struct d40_interrupt_lookup {
  271. u32 src;
  272. u32 clr;
  273. bool is_error;
  274. int offset;
  275. };
  276. /**
  277. * struct d40_reg_val - simple lookup struct
  278. *
  279. * @reg: The register.
  280. * @val: The value that belongs to the register in reg.
  281. */
  282. struct d40_reg_val {
  283. unsigned int reg;
  284. unsigned int val;
  285. };
  286. static struct device *chan2dev(struct d40_chan *d40c)
  287. {
  288. return &d40c->chan.dev->device;
  289. }
  290. static bool chan_is_physical(struct d40_chan *chan)
  291. {
  292. return chan->log_num == D40_PHY_CHAN;
  293. }
  294. static bool chan_is_logical(struct d40_chan *chan)
  295. {
  296. return !chan_is_physical(chan);
  297. }
  298. static void __iomem *chan_base(struct d40_chan *chan)
  299. {
  300. return chan->base->virtbase + D40_DREG_PCBASE +
  301. chan->phy_chan->num * D40_DREG_PCDELTA;
  302. }
  303. #define d40_err(dev, format, arg...) \
  304. dev_err(dev, "[%s] " format, __func__, ## arg)
  305. #define chan_err(d40c, format, arg...) \
  306. d40_err(chan2dev(d40c), format, ## arg)
  307. static int d40_pool_lli_alloc(struct d40_chan *d40c, struct d40_desc *d40d,
  308. int lli_len)
  309. {
  310. bool is_log = chan_is_logical(d40c);
  311. u32 align;
  312. void *base;
  313. if (is_log)
  314. align = sizeof(struct d40_log_lli);
  315. else
  316. align = sizeof(struct d40_phy_lli);
  317. if (lli_len == 1) {
  318. base = d40d->lli_pool.pre_alloc_lli;
  319. d40d->lli_pool.size = sizeof(d40d->lli_pool.pre_alloc_lli);
  320. d40d->lli_pool.base = NULL;
  321. } else {
  322. d40d->lli_pool.size = lli_len * 2 * align;
  323. base = kmalloc(d40d->lli_pool.size + align, GFP_NOWAIT);
  324. d40d->lli_pool.base = base;
  325. if (d40d->lli_pool.base == NULL)
  326. return -ENOMEM;
  327. }
  328. if (is_log) {
  329. d40d->lli_log.src = PTR_ALIGN(base, align);
  330. d40d->lli_log.dst = d40d->lli_log.src + lli_len;
  331. d40d->lli_pool.dma_addr = 0;
  332. } else {
  333. d40d->lli_phy.src = PTR_ALIGN(base, align);
  334. d40d->lli_phy.dst = d40d->lli_phy.src + lli_len;
  335. d40d->lli_pool.dma_addr = dma_map_single(d40c->base->dev,
  336. d40d->lli_phy.src,
  337. d40d->lli_pool.size,
  338. DMA_TO_DEVICE);
  339. if (dma_mapping_error(d40c->base->dev,
  340. d40d->lli_pool.dma_addr)) {
  341. kfree(d40d->lli_pool.base);
  342. d40d->lli_pool.base = NULL;
  343. d40d->lli_pool.dma_addr = 0;
  344. return -ENOMEM;
  345. }
  346. }
  347. return 0;
  348. }
  349. static void d40_pool_lli_free(struct d40_chan *d40c, struct d40_desc *d40d)
  350. {
  351. if (d40d->lli_pool.dma_addr)
  352. dma_unmap_single(d40c->base->dev, d40d->lli_pool.dma_addr,
  353. d40d->lli_pool.size, DMA_TO_DEVICE);
  354. kfree(d40d->lli_pool.base);
  355. d40d->lli_pool.base = NULL;
  356. d40d->lli_pool.size = 0;
  357. d40d->lli_log.src = NULL;
  358. d40d->lli_log.dst = NULL;
  359. d40d->lli_phy.src = NULL;
  360. d40d->lli_phy.dst = NULL;
  361. }
  362. static int d40_lcla_alloc_one(struct d40_chan *d40c,
  363. struct d40_desc *d40d)
  364. {
  365. unsigned long flags;
  366. int i;
  367. int ret = -EINVAL;
  368. int p;
  369. spin_lock_irqsave(&d40c->base->lcla_pool.lock, flags);
  370. p = d40c->phy_chan->num * D40_LCLA_LINK_PER_EVENT_GRP;
  371. /*
  372. * Allocate both src and dst at the same time, therefore the half
  373. * start on 1 since 0 can't be used since zero is used as end marker.
  374. */
  375. for (i = 1 ; i < D40_LCLA_LINK_PER_EVENT_GRP / 2; i++) {
  376. if (!d40c->base->lcla_pool.alloc_map[p + i]) {
  377. d40c->base->lcla_pool.alloc_map[p + i] = d40d;
  378. d40d->lcla_alloc++;
  379. ret = i;
  380. break;
  381. }
  382. }
  383. spin_unlock_irqrestore(&d40c->base->lcla_pool.lock, flags);
  384. return ret;
  385. }
  386. static int d40_lcla_free_all(struct d40_chan *d40c,
  387. struct d40_desc *d40d)
  388. {
  389. unsigned long flags;
  390. int i;
  391. int ret = -EINVAL;
  392. if (chan_is_physical(d40c))
  393. return 0;
  394. spin_lock_irqsave(&d40c->base->lcla_pool.lock, flags);
  395. for (i = 1 ; i < D40_LCLA_LINK_PER_EVENT_GRP / 2; i++) {
  396. if (d40c->base->lcla_pool.alloc_map[d40c->phy_chan->num *
  397. D40_LCLA_LINK_PER_EVENT_GRP + i] == d40d) {
  398. d40c->base->lcla_pool.alloc_map[d40c->phy_chan->num *
  399. D40_LCLA_LINK_PER_EVENT_GRP + i] = NULL;
  400. d40d->lcla_alloc--;
  401. if (d40d->lcla_alloc == 0) {
  402. ret = 0;
  403. break;
  404. }
  405. }
  406. }
  407. spin_unlock_irqrestore(&d40c->base->lcla_pool.lock, flags);
  408. return ret;
  409. }
  410. static void d40_desc_remove(struct d40_desc *d40d)
  411. {
  412. list_del(&d40d->node);
  413. }
  414. static struct d40_desc *d40_desc_get(struct d40_chan *d40c)
  415. {
  416. struct d40_desc *desc = NULL;
  417. if (!list_empty(&d40c->client)) {
  418. struct d40_desc *d;
  419. struct d40_desc *_d;
  420. list_for_each_entry_safe(d, _d, &d40c->client, node)
  421. if (async_tx_test_ack(&d->txd)) {
  422. d40_pool_lli_free(d40c, d);
  423. d40_desc_remove(d);
  424. desc = d;
  425. memset(desc, 0, sizeof(*desc));
  426. break;
  427. }
  428. }
  429. if (!desc)
  430. desc = kmem_cache_zalloc(d40c->base->desc_slab, GFP_NOWAIT);
  431. if (desc)
  432. INIT_LIST_HEAD(&desc->node);
  433. return desc;
  434. }
  435. static void d40_desc_free(struct d40_chan *d40c, struct d40_desc *d40d)
  436. {
  437. d40_pool_lli_free(d40c, d40d);
  438. d40_lcla_free_all(d40c, d40d);
  439. kmem_cache_free(d40c->base->desc_slab, d40d);
  440. }
  441. static void d40_desc_submit(struct d40_chan *d40c, struct d40_desc *desc)
  442. {
  443. list_add_tail(&desc->node, &d40c->active);
  444. }
  445. static void d40_phy_lli_load(struct d40_chan *chan, struct d40_desc *desc)
  446. {
  447. struct d40_phy_lli *lli_dst = desc->lli_phy.dst;
  448. struct d40_phy_lli *lli_src = desc->lli_phy.src;
  449. void __iomem *base = chan_base(chan);
  450. writel(lli_src->reg_cfg, base + D40_CHAN_REG_SSCFG);
  451. writel(lli_src->reg_elt, base + D40_CHAN_REG_SSELT);
  452. writel(lli_src->reg_ptr, base + D40_CHAN_REG_SSPTR);
  453. writel(lli_src->reg_lnk, base + D40_CHAN_REG_SSLNK);
  454. writel(lli_dst->reg_cfg, base + D40_CHAN_REG_SDCFG);
  455. writel(lli_dst->reg_elt, base + D40_CHAN_REG_SDELT);
  456. writel(lli_dst->reg_ptr, base + D40_CHAN_REG_SDPTR);
  457. writel(lli_dst->reg_lnk, base + D40_CHAN_REG_SDLNK);
  458. }
  459. static void d40_log_lli_to_lcxa(struct d40_chan *chan, struct d40_desc *desc)
  460. {
  461. struct d40_lcla_pool *pool = &chan->base->lcla_pool;
  462. struct d40_log_lli_bidir *lli = &desc->lli_log;
  463. int lli_current = desc->lli_current;
  464. int lli_len = desc->lli_len;
  465. bool cyclic = desc->cyclic;
  466. int curr_lcla = -EINVAL;
  467. int first_lcla = 0;
  468. bool linkback;
  469. /*
  470. * We may have partially running cyclic transfers, in case we did't get
  471. * enough LCLA entries.
  472. */
  473. linkback = cyclic && lli_current == 0;
  474. /*
  475. * For linkback, we need one LCLA even with only one link, because we
  476. * can't link back to the one in LCPA space
  477. */
  478. if (linkback || (lli_len - lli_current > 1)) {
  479. curr_lcla = d40_lcla_alloc_one(chan, desc);
  480. first_lcla = curr_lcla;
  481. }
  482. /*
  483. * For linkback, we normally load the LCPA in the loop since we need to
  484. * link it to the second LCLA and not the first. However, if we
  485. * couldn't even get a first LCLA, then we have to run in LCPA and
  486. * reload manually.
  487. */
  488. if (!linkback || curr_lcla == -EINVAL) {
  489. unsigned int flags = 0;
  490. if (curr_lcla == -EINVAL)
  491. flags |= LLI_TERM_INT;
  492. d40_log_lli_lcpa_write(chan->lcpa,
  493. &lli->dst[lli_current],
  494. &lli->src[lli_current],
  495. curr_lcla,
  496. flags);
  497. lli_current++;
  498. }
  499. if (curr_lcla < 0)
  500. goto out;
  501. for (; lli_current < lli_len; lli_current++) {
  502. unsigned int lcla_offset = chan->phy_chan->num * 1024 +
  503. 8 * curr_lcla * 2;
  504. struct d40_log_lli *lcla = pool->base + lcla_offset;
  505. unsigned int flags = 0;
  506. int next_lcla;
  507. if (lli_current + 1 < lli_len)
  508. next_lcla = d40_lcla_alloc_one(chan, desc);
  509. else
  510. next_lcla = linkback ? first_lcla : -EINVAL;
  511. if (cyclic || next_lcla == -EINVAL)
  512. flags |= LLI_TERM_INT;
  513. if (linkback && curr_lcla == first_lcla) {
  514. /* First link goes in both LCPA and LCLA */
  515. d40_log_lli_lcpa_write(chan->lcpa,
  516. &lli->dst[lli_current],
  517. &lli->src[lli_current],
  518. next_lcla, flags);
  519. }
  520. /*
  521. * One unused LCLA in the cyclic case if the very first
  522. * next_lcla fails...
  523. */
  524. d40_log_lli_lcla_write(lcla,
  525. &lli->dst[lli_current],
  526. &lli->src[lli_current],
  527. next_lcla, flags);
  528. dma_sync_single_range_for_device(chan->base->dev,
  529. pool->dma_addr, lcla_offset,
  530. 2 * sizeof(struct d40_log_lli),
  531. DMA_TO_DEVICE);
  532. curr_lcla = next_lcla;
  533. if (curr_lcla == -EINVAL || curr_lcla == first_lcla) {
  534. lli_current++;
  535. break;
  536. }
  537. }
  538. out:
  539. desc->lli_current = lli_current;
  540. }
  541. static void d40_desc_load(struct d40_chan *d40c, struct d40_desc *d40d)
  542. {
  543. if (chan_is_physical(d40c)) {
  544. d40_phy_lli_load(d40c, d40d);
  545. d40d->lli_current = d40d->lli_len;
  546. } else
  547. d40_log_lli_to_lcxa(d40c, d40d);
  548. }
  549. static struct d40_desc *d40_first_active_get(struct d40_chan *d40c)
  550. {
  551. struct d40_desc *d;
  552. if (list_empty(&d40c->active))
  553. return NULL;
  554. d = list_first_entry(&d40c->active,
  555. struct d40_desc,
  556. node);
  557. return d;
  558. }
  559. static void d40_desc_queue(struct d40_chan *d40c, struct d40_desc *desc)
  560. {
  561. list_add_tail(&desc->node, &d40c->pending_queue);
  562. }
  563. static struct d40_desc *d40_first_pending(struct d40_chan *d40c)
  564. {
  565. struct d40_desc *d;
  566. if (list_empty(&d40c->pending_queue))
  567. return NULL;
  568. d = list_first_entry(&d40c->pending_queue,
  569. struct d40_desc,
  570. node);
  571. return d;
  572. }
  573. static struct d40_desc *d40_first_queued(struct d40_chan *d40c)
  574. {
  575. struct d40_desc *d;
  576. if (list_empty(&d40c->queue))
  577. return NULL;
  578. d = list_first_entry(&d40c->queue,
  579. struct d40_desc,
  580. node);
  581. return d;
  582. }
  583. static int d40_psize_2_burst_size(bool is_log, int psize)
  584. {
  585. if (is_log) {
  586. if (psize == STEDMA40_PSIZE_LOG_1)
  587. return 1;
  588. } else {
  589. if (psize == STEDMA40_PSIZE_PHY_1)
  590. return 1;
  591. }
  592. return 2 << psize;
  593. }
  594. /*
  595. * The dma only supports transmitting packages up to
  596. * STEDMA40_MAX_SEG_SIZE << data_width. Calculate the total number of
  597. * dma elements required to send the entire sg list
  598. */
  599. static int d40_size_2_dmalen(int size, u32 data_width1, u32 data_width2)
  600. {
  601. int dmalen;
  602. u32 max_w = max(data_width1, data_width2);
  603. u32 min_w = min(data_width1, data_width2);
  604. u32 seg_max = ALIGN(STEDMA40_MAX_SEG_SIZE << min_w, 1 << max_w);
  605. if (seg_max > STEDMA40_MAX_SEG_SIZE)
  606. seg_max -= (1 << max_w);
  607. if (!IS_ALIGNED(size, 1 << max_w))
  608. return -EINVAL;
  609. if (size <= seg_max)
  610. dmalen = 1;
  611. else {
  612. dmalen = size / seg_max;
  613. if (dmalen * seg_max < size)
  614. dmalen++;
  615. }
  616. return dmalen;
  617. }
  618. static int d40_sg_2_dmalen(struct scatterlist *sgl, int sg_len,
  619. u32 data_width1, u32 data_width2)
  620. {
  621. struct scatterlist *sg;
  622. int i;
  623. int len = 0;
  624. int ret;
  625. for_each_sg(sgl, sg, sg_len, i) {
  626. ret = d40_size_2_dmalen(sg_dma_len(sg),
  627. data_width1, data_width2);
  628. if (ret < 0)
  629. return ret;
  630. len += ret;
  631. }
  632. return len;
  633. }
  634. /* Support functions for logical channels */
  635. static int d40_channel_execute_command(struct d40_chan *d40c,
  636. enum d40_command command)
  637. {
  638. u32 status;
  639. int i;
  640. void __iomem *active_reg;
  641. int ret = 0;
  642. unsigned long flags;
  643. u32 wmask;
  644. spin_lock_irqsave(&d40c->base->execmd_lock, flags);
  645. if (d40c->phy_chan->num % 2 == 0)
  646. active_reg = d40c->base->virtbase + D40_DREG_ACTIVE;
  647. else
  648. active_reg = d40c->base->virtbase + D40_DREG_ACTIVO;
  649. if (command == D40_DMA_SUSPEND_REQ) {
  650. status = (readl(active_reg) &
  651. D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
  652. D40_CHAN_POS(d40c->phy_chan->num);
  653. if (status == D40_DMA_SUSPENDED || status == D40_DMA_STOP)
  654. goto done;
  655. }
  656. wmask = 0xffffffff & ~(D40_CHAN_POS_MASK(d40c->phy_chan->num));
  657. writel(wmask | (command << D40_CHAN_POS(d40c->phy_chan->num)),
  658. active_reg);
  659. if (command == D40_DMA_SUSPEND_REQ) {
  660. for (i = 0 ; i < D40_SUSPEND_MAX_IT; i++) {
  661. status = (readl(active_reg) &
  662. D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
  663. D40_CHAN_POS(d40c->phy_chan->num);
  664. cpu_relax();
  665. /*
  666. * Reduce the number of bus accesses while
  667. * waiting for the DMA to suspend.
  668. */
  669. udelay(3);
  670. if (status == D40_DMA_STOP ||
  671. status == D40_DMA_SUSPENDED)
  672. break;
  673. }
  674. if (i == D40_SUSPEND_MAX_IT) {
  675. chan_err(d40c,
  676. "unable to suspend the chl %d (log: %d) status %x\n",
  677. d40c->phy_chan->num, d40c->log_num,
  678. status);
  679. dump_stack();
  680. ret = -EBUSY;
  681. }
  682. }
  683. done:
  684. spin_unlock_irqrestore(&d40c->base->execmd_lock, flags);
  685. return ret;
  686. }
  687. static void d40_term_all(struct d40_chan *d40c)
  688. {
  689. struct d40_desc *d40d;
  690. /* Release active descriptors */
  691. while ((d40d = d40_first_active_get(d40c))) {
  692. d40_desc_remove(d40d);
  693. d40_desc_free(d40c, d40d);
  694. }
  695. /* Release queued descriptors waiting for transfer */
  696. while ((d40d = d40_first_queued(d40c))) {
  697. d40_desc_remove(d40d);
  698. d40_desc_free(d40c, d40d);
  699. }
  700. /* Release pending descriptors */
  701. while ((d40d = d40_first_pending(d40c))) {
  702. d40_desc_remove(d40d);
  703. d40_desc_free(d40c, d40d);
  704. }
  705. d40c->pending_tx = 0;
  706. d40c->busy = false;
  707. }
  708. static void __d40_config_set_event(struct d40_chan *d40c, bool enable,
  709. u32 event, int reg)
  710. {
  711. void __iomem *addr = chan_base(d40c) + reg;
  712. int tries;
  713. if (!enable) {
  714. writel((D40_DEACTIVATE_EVENTLINE << D40_EVENTLINE_POS(event))
  715. | ~D40_EVENTLINE_MASK(event), addr);
  716. return;
  717. }
  718. /*
  719. * The hardware sometimes doesn't register the enable when src and dst
  720. * event lines are active on the same logical channel. Retry to ensure
  721. * it does. Usually only one retry is sufficient.
  722. */
  723. tries = 100;
  724. while (--tries) {
  725. writel((D40_ACTIVATE_EVENTLINE << D40_EVENTLINE_POS(event))
  726. | ~D40_EVENTLINE_MASK(event), addr);
  727. if (readl(addr) & D40_EVENTLINE_MASK(event))
  728. break;
  729. }
  730. if (tries != 99)
  731. dev_dbg(chan2dev(d40c),
  732. "[%s] workaround enable S%cLNK (%d tries)\n",
  733. __func__, reg == D40_CHAN_REG_SSLNK ? 'S' : 'D',
  734. 100 - tries);
  735. WARN_ON(!tries);
  736. }
  737. static void d40_config_set_event(struct d40_chan *d40c, bool do_enable)
  738. {
  739. unsigned long flags;
  740. spin_lock_irqsave(&d40c->phy_chan->lock, flags);
  741. /* Enable event line connected to device (or memcpy) */
  742. if ((d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) ||
  743. (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_PERIPH)) {
  744. u32 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.src_dev_type);
  745. __d40_config_set_event(d40c, do_enable, event,
  746. D40_CHAN_REG_SSLNK);
  747. }
  748. if (d40c->dma_cfg.dir != STEDMA40_PERIPH_TO_MEM) {
  749. u32 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dst_dev_type);
  750. __d40_config_set_event(d40c, do_enable, event,
  751. D40_CHAN_REG_SDLNK);
  752. }
  753. spin_unlock_irqrestore(&d40c->phy_chan->lock, flags);
  754. }
  755. static u32 d40_chan_has_events(struct d40_chan *d40c)
  756. {
  757. void __iomem *chanbase = chan_base(d40c);
  758. u32 val;
  759. val = readl(chanbase + D40_CHAN_REG_SSLNK);
  760. val |= readl(chanbase + D40_CHAN_REG_SDLNK);
  761. return val;
  762. }
  763. static u32 d40_get_prmo(struct d40_chan *d40c)
  764. {
  765. static const unsigned int phy_map[] = {
  766. [STEDMA40_PCHAN_BASIC_MODE]
  767. = D40_DREG_PRMO_PCHAN_BASIC,
  768. [STEDMA40_PCHAN_MODULO_MODE]
  769. = D40_DREG_PRMO_PCHAN_MODULO,
  770. [STEDMA40_PCHAN_DOUBLE_DST_MODE]
  771. = D40_DREG_PRMO_PCHAN_DOUBLE_DST,
  772. };
  773. static const unsigned int log_map[] = {
  774. [STEDMA40_LCHAN_SRC_PHY_DST_LOG]
  775. = D40_DREG_PRMO_LCHAN_SRC_PHY_DST_LOG,
  776. [STEDMA40_LCHAN_SRC_LOG_DST_PHY]
  777. = D40_DREG_PRMO_LCHAN_SRC_LOG_DST_PHY,
  778. [STEDMA40_LCHAN_SRC_LOG_DST_LOG]
  779. = D40_DREG_PRMO_LCHAN_SRC_LOG_DST_LOG,
  780. };
  781. if (chan_is_physical(d40c))
  782. return phy_map[d40c->dma_cfg.mode_opt];
  783. else
  784. return log_map[d40c->dma_cfg.mode_opt];
  785. }
  786. static void d40_config_write(struct d40_chan *d40c)
  787. {
  788. u32 addr_base;
  789. u32 var;
  790. /* Odd addresses are even addresses + 4 */
  791. addr_base = (d40c->phy_chan->num % 2) * 4;
  792. /* Setup channel mode to logical or physical */
  793. var = ((u32)(chan_is_logical(d40c)) + 1) <<
  794. D40_CHAN_POS(d40c->phy_chan->num);
  795. writel(var, d40c->base->virtbase + D40_DREG_PRMSE + addr_base);
  796. /* Setup operational mode option register */
  797. var = d40_get_prmo(d40c) << D40_CHAN_POS(d40c->phy_chan->num);
  798. writel(var, d40c->base->virtbase + D40_DREG_PRMOE + addr_base);
  799. if (chan_is_logical(d40c)) {
  800. int lidx = (d40c->phy_chan->num << D40_SREG_ELEM_LOG_LIDX_POS)
  801. & D40_SREG_ELEM_LOG_LIDX_MASK;
  802. void __iomem *chanbase = chan_base(d40c);
  803. /* Set default config for CFG reg */
  804. writel(d40c->src_def_cfg, chanbase + D40_CHAN_REG_SSCFG);
  805. writel(d40c->dst_def_cfg, chanbase + D40_CHAN_REG_SDCFG);
  806. /* Set LIDX for lcla */
  807. writel(lidx, chanbase + D40_CHAN_REG_SSELT);
  808. writel(lidx, chanbase + D40_CHAN_REG_SDELT);
  809. }
  810. }
  811. static u32 d40_residue(struct d40_chan *d40c)
  812. {
  813. u32 num_elt;
  814. if (chan_is_logical(d40c))
  815. num_elt = (readl(&d40c->lcpa->lcsp2) & D40_MEM_LCSP2_ECNT_MASK)
  816. >> D40_MEM_LCSP2_ECNT_POS;
  817. else {
  818. u32 val = readl(chan_base(d40c) + D40_CHAN_REG_SDELT);
  819. num_elt = (val & D40_SREG_ELEM_PHY_ECNT_MASK)
  820. >> D40_SREG_ELEM_PHY_ECNT_POS;
  821. }
  822. return num_elt * (1 << d40c->dma_cfg.dst_info.data_width);
  823. }
  824. static bool d40_tx_is_linked(struct d40_chan *d40c)
  825. {
  826. bool is_link;
  827. if (chan_is_logical(d40c))
  828. is_link = readl(&d40c->lcpa->lcsp3) & D40_MEM_LCSP3_DLOS_MASK;
  829. else
  830. is_link = readl(chan_base(d40c) + D40_CHAN_REG_SDLNK)
  831. & D40_SREG_LNK_PHYS_LNK_MASK;
  832. return is_link;
  833. }
  834. static int d40_pause(struct d40_chan *d40c)
  835. {
  836. int res = 0;
  837. unsigned long flags;
  838. if (!d40c->busy)
  839. return 0;
  840. spin_lock_irqsave(&d40c->lock, flags);
  841. res = d40_channel_execute_command(d40c, D40_DMA_SUSPEND_REQ);
  842. if (res == 0) {
  843. if (chan_is_logical(d40c)) {
  844. d40_config_set_event(d40c, false);
  845. /* Resume the other logical channels if any */
  846. if (d40_chan_has_events(d40c))
  847. res = d40_channel_execute_command(d40c,
  848. D40_DMA_RUN);
  849. }
  850. }
  851. spin_unlock_irqrestore(&d40c->lock, flags);
  852. return res;
  853. }
  854. static int d40_resume(struct d40_chan *d40c)
  855. {
  856. int res = 0;
  857. unsigned long flags;
  858. if (!d40c->busy)
  859. return 0;
  860. spin_lock_irqsave(&d40c->lock, flags);
  861. if (d40c->base->rev == 0)
  862. if (chan_is_logical(d40c)) {
  863. res = d40_channel_execute_command(d40c,
  864. D40_DMA_SUSPEND_REQ);
  865. goto no_suspend;
  866. }
  867. /* If bytes left to transfer or linked tx resume job */
  868. if (d40_residue(d40c) || d40_tx_is_linked(d40c)) {
  869. if (chan_is_logical(d40c))
  870. d40_config_set_event(d40c, true);
  871. res = d40_channel_execute_command(d40c, D40_DMA_RUN);
  872. }
  873. no_suspend:
  874. spin_unlock_irqrestore(&d40c->lock, flags);
  875. return res;
  876. }
  877. static int d40_terminate_all(struct d40_chan *chan)
  878. {
  879. unsigned long flags;
  880. int ret = 0;
  881. ret = d40_pause(chan);
  882. if (!ret && chan_is_physical(chan))
  883. ret = d40_channel_execute_command(chan, D40_DMA_STOP);
  884. spin_lock_irqsave(&chan->lock, flags);
  885. d40_term_all(chan);
  886. spin_unlock_irqrestore(&chan->lock, flags);
  887. return ret;
  888. }
  889. static dma_cookie_t d40_tx_submit(struct dma_async_tx_descriptor *tx)
  890. {
  891. struct d40_chan *d40c = container_of(tx->chan,
  892. struct d40_chan,
  893. chan);
  894. struct d40_desc *d40d = container_of(tx, struct d40_desc, txd);
  895. unsigned long flags;
  896. spin_lock_irqsave(&d40c->lock, flags);
  897. d40c->chan.cookie++;
  898. if (d40c->chan.cookie < 0)
  899. d40c->chan.cookie = 1;
  900. d40d->txd.cookie = d40c->chan.cookie;
  901. d40_desc_queue(d40c, d40d);
  902. spin_unlock_irqrestore(&d40c->lock, flags);
  903. return tx->cookie;
  904. }
  905. static int d40_start(struct d40_chan *d40c)
  906. {
  907. if (d40c->base->rev == 0) {
  908. int err;
  909. if (chan_is_logical(d40c)) {
  910. err = d40_channel_execute_command(d40c,
  911. D40_DMA_SUSPEND_REQ);
  912. if (err)
  913. return err;
  914. }
  915. }
  916. if (chan_is_logical(d40c))
  917. d40_config_set_event(d40c, true);
  918. return d40_channel_execute_command(d40c, D40_DMA_RUN);
  919. }
  920. static struct d40_desc *d40_queue_start(struct d40_chan *d40c)
  921. {
  922. struct d40_desc *d40d;
  923. int err;
  924. /* Start queued jobs, if any */
  925. d40d = d40_first_queued(d40c);
  926. if (d40d != NULL) {
  927. d40c->busy = true;
  928. /* Remove from queue */
  929. d40_desc_remove(d40d);
  930. /* Add to active queue */
  931. d40_desc_submit(d40c, d40d);
  932. /* Initiate DMA job */
  933. d40_desc_load(d40c, d40d);
  934. /* Start dma job */
  935. err = d40_start(d40c);
  936. if (err)
  937. return NULL;
  938. }
  939. return d40d;
  940. }
  941. /* called from interrupt context */
  942. static void dma_tc_handle(struct d40_chan *d40c)
  943. {
  944. struct d40_desc *d40d;
  945. /* Get first active entry from list */
  946. d40d = d40_first_active_get(d40c);
  947. if (d40d == NULL)
  948. return;
  949. if (d40d->cyclic) {
  950. /*
  951. * If this was a paritially loaded list, we need to reloaded
  952. * it, and only when the list is completed. We need to check
  953. * for done because the interrupt will hit for every link, and
  954. * not just the last one.
  955. */
  956. if (d40d->lli_current < d40d->lli_len
  957. && !d40_tx_is_linked(d40c)
  958. && !d40_residue(d40c)) {
  959. d40_lcla_free_all(d40c, d40d);
  960. d40_desc_load(d40c, d40d);
  961. (void) d40_start(d40c);
  962. if (d40d->lli_current == d40d->lli_len)
  963. d40d->lli_current = 0;
  964. }
  965. } else {
  966. d40_lcla_free_all(d40c, d40d);
  967. if (d40d->lli_current < d40d->lli_len) {
  968. d40_desc_load(d40c, d40d);
  969. /* Start dma job */
  970. (void) d40_start(d40c);
  971. return;
  972. }
  973. if (d40_queue_start(d40c) == NULL)
  974. d40c->busy = false;
  975. }
  976. d40c->pending_tx++;
  977. tasklet_schedule(&d40c->tasklet);
  978. }
  979. static void dma_tasklet(unsigned long data)
  980. {
  981. struct d40_chan *d40c = (struct d40_chan *) data;
  982. struct d40_desc *d40d;
  983. unsigned long flags;
  984. dma_async_tx_callback callback;
  985. void *callback_param;
  986. spin_lock_irqsave(&d40c->lock, flags);
  987. /* Get first active entry from list */
  988. d40d = d40_first_active_get(d40c);
  989. if (d40d == NULL)
  990. goto err;
  991. if (!d40d->cyclic)
  992. d40c->completed = d40d->txd.cookie;
  993. /*
  994. * If terminating a channel pending_tx is set to zero.
  995. * This prevents any finished active jobs to return to the client.
  996. */
  997. if (d40c->pending_tx == 0) {
  998. spin_unlock_irqrestore(&d40c->lock, flags);
  999. return;
  1000. }
  1001. /* Callback to client */
  1002. callback = d40d->txd.callback;
  1003. callback_param = d40d->txd.callback_param;
  1004. if (!d40d->cyclic) {
  1005. if (async_tx_test_ack(&d40d->txd)) {
  1006. d40_pool_lli_free(d40c, d40d);
  1007. d40_desc_remove(d40d);
  1008. d40_desc_free(d40c, d40d);
  1009. } else {
  1010. if (!d40d->is_in_client_list) {
  1011. d40_desc_remove(d40d);
  1012. d40_lcla_free_all(d40c, d40d);
  1013. list_add_tail(&d40d->node, &d40c->client);
  1014. d40d->is_in_client_list = true;
  1015. }
  1016. }
  1017. }
  1018. d40c->pending_tx--;
  1019. if (d40c->pending_tx)
  1020. tasklet_schedule(&d40c->tasklet);
  1021. spin_unlock_irqrestore(&d40c->lock, flags);
  1022. if (callback && (d40d->txd.flags & DMA_PREP_INTERRUPT))
  1023. callback(callback_param);
  1024. return;
  1025. err:
  1026. /* Rescue manoeuvre if receiving double interrupts */
  1027. if (d40c->pending_tx > 0)
  1028. d40c->pending_tx--;
  1029. spin_unlock_irqrestore(&d40c->lock, flags);
  1030. }
  1031. static irqreturn_t d40_handle_interrupt(int irq, void *data)
  1032. {
  1033. static const struct d40_interrupt_lookup il[] = {
  1034. {D40_DREG_LCTIS0, D40_DREG_LCICR0, false, 0},
  1035. {D40_DREG_LCTIS1, D40_DREG_LCICR1, false, 32},
  1036. {D40_DREG_LCTIS2, D40_DREG_LCICR2, false, 64},
  1037. {D40_DREG_LCTIS3, D40_DREG_LCICR3, false, 96},
  1038. {D40_DREG_LCEIS0, D40_DREG_LCICR0, true, 0},
  1039. {D40_DREG_LCEIS1, D40_DREG_LCICR1, true, 32},
  1040. {D40_DREG_LCEIS2, D40_DREG_LCICR2, true, 64},
  1041. {D40_DREG_LCEIS3, D40_DREG_LCICR3, true, 96},
  1042. {D40_DREG_PCTIS, D40_DREG_PCICR, false, D40_PHY_CHAN},
  1043. {D40_DREG_PCEIS, D40_DREG_PCICR, true, D40_PHY_CHAN},
  1044. };
  1045. int i;
  1046. u32 regs[ARRAY_SIZE(il)];
  1047. u32 idx;
  1048. u32 row;
  1049. long chan = -1;
  1050. struct d40_chan *d40c;
  1051. unsigned long flags;
  1052. struct d40_base *base = data;
  1053. spin_lock_irqsave(&base->interrupt_lock, flags);
  1054. /* Read interrupt status of both logical and physical channels */
  1055. for (i = 0; i < ARRAY_SIZE(il); i++)
  1056. regs[i] = readl(base->virtbase + il[i].src);
  1057. for (;;) {
  1058. chan = find_next_bit((unsigned long *)regs,
  1059. BITS_PER_LONG * ARRAY_SIZE(il), chan + 1);
  1060. /* No more set bits found? */
  1061. if (chan == BITS_PER_LONG * ARRAY_SIZE(il))
  1062. break;
  1063. row = chan / BITS_PER_LONG;
  1064. idx = chan & (BITS_PER_LONG - 1);
  1065. /* ACK interrupt */
  1066. writel(1 << idx, base->virtbase + il[row].clr);
  1067. if (il[row].offset == D40_PHY_CHAN)
  1068. d40c = base->lookup_phy_chans[idx];
  1069. else
  1070. d40c = base->lookup_log_chans[il[row].offset + idx];
  1071. spin_lock(&d40c->lock);
  1072. if (!il[row].is_error)
  1073. dma_tc_handle(d40c);
  1074. else
  1075. d40_err(base->dev, "IRQ chan: %ld offset %d idx %d\n",
  1076. chan, il[row].offset, idx);
  1077. spin_unlock(&d40c->lock);
  1078. }
  1079. spin_unlock_irqrestore(&base->interrupt_lock, flags);
  1080. return IRQ_HANDLED;
  1081. }
  1082. static int d40_validate_conf(struct d40_chan *d40c,
  1083. struct stedma40_chan_cfg *conf)
  1084. {
  1085. int res = 0;
  1086. u32 dst_event_group = D40_TYPE_TO_GROUP(conf->dst_dev_type);
  1087. u32 src_event_group = D40_TYPE_TO_GROUP(conf->src_dev_type);
  1088. bool is_log = conf->mode == STEDMA40_MODE_LOGICAL;
  1089. if (!conf->dir) {
  1090. chan_err(d40c, "Invalid direction.\n");
  1091. res = -EINVAL;
  1092. }
  1093. if (conf->dst_dev_type != STEDMA40_DEV_DST_MEMORY &&
  1094. d40c->base->plat_data->dev_tx[conf->dst_dev_type] == 0 &&
  1095. d40c->runtime_addr == 0) {
  1096. chan_err(d40c, "Invalid TX channel address (%d)\n",
  1097. conf->dst_dev_type);
  1098. res = -EINVAL;
  1099. }
  1100. if (conf->src_dev_type != STEDMA40_DEV_SRC_MEMORY &&
  1101. d40c->base->plat_data->dev_rx[conf->src_dev_type] == 0 &&
  1102. d40c->runtime_addr == 0) {
  1103. chan_err(d40c, "Invalid RX channel address (%d)\n",
  1104. conf->src_dev_type);
  1105. res = -EINVAL;
  1106. }
  1107. if (conf->dir == STEDMA40_MEM_TO_PERIPH &&
  1108. dst_event_group == STEDMA40_DEV_DST_MEMORY) {
  1109. chan_err(d40c, "Invalid dst\n");
  1110. res = -EINVAL;
  1111. }
  1112. if (conf->dir == STEDMA40_PERIPH_TO_MEM &&
  1113. src_event_group == STEDMA40_DEV_SRC_MEMORY) {
  1114. chan_err(d40c, "Invalid src\n");
  1115. res = -EINVAL;
  1116. }
  1117. if (src_event_group == STEDMA40_DEV_SRC_MEMORY &&
  1118. dst_event_group == STEDMA40_DEV_DST_MEMORY && is_log) {
  1119. chan_err(d40c, "No event line\n");
  1120. res = -EINVAL;
  1121. }
  1122. if (conf->dir == STEDMA40_PERIPH_TO_PERIPH &&
  1123. (src_event_group != dst_event_group)) {
  1124. chan_err(d40c, "Invalid event group\n");
  1125. res = -EINVAL;
  1126. }
  1127. if (conf->dir == STEDMA40_PERIPH_TO_PERIPH) {
  1128. /*
  1129. * DMAC HW supports it. Will be added to this driver,
  1130. * in case any dma client requires it.
  1131. */
  1132. chan_err(d40c, "periph to periph not supported\n");
  1133. res = -EINVAL;
  1134. }
  1135. if (d40_psize_2_burst_size(is_log, conf->src_info.psize) *
  1136. (1 << conf->src_info.data_width) !=
  1137. d40_psize_2_burst_size(is_log, conf->dst_info.psize) *
  1138. (1 << conf->dst_info.data_width)) {
  1139. /*
  1140. * The DMAC hardware only supports
  1141. * src (burst x width) == dst (burst x width)
  1142. */
  1143. chan_err(d40c, "src (burst x width) != dst (burst x width)\n");
  1144. res = -EINVAL;
  1145. }
  1146. return res;
  1147. }
  1148. static bool d40_alloc_mask_set(struct d40_phy_res *phy, bool is_src,
  1149. int log_event_line, bool is_log)
  1150. {
  1151. unsigned long flags;
  1152. spin_lock_irqsave(&phy->lock, flags);
  1153. if (!is_log) {
  1154. /* Physical interrupts are masked per physical full channel */
  1155. if (phy->allocated_src == D40_ALLOC_FREE &&
  1156. phy->allocated_dst == D40_ALLOC_FREE) {
  1157. phy->allocated_dst = D40_ALLOC_PHY;
  1158. phy->allocated_src = D40_ALLOC_PHY;
  1159. goto found;
  1160. } else
  1161. goto not_found;
  1162. }
  1163. /* Logical channel */
  1164. if (is_src) {
  1165. if (phy->allocated_src == D40_ALLOC_PHY)
  1166. goto not_found;
  1167. if (phy->allocated_src == D40_ALLOC_FREE)
  1168. phy->allocated_src = D40_ALLOC_LOG_FREE;
  1169. if (!(phy->allocated_src & (1 << log_event_line))) {
  1170. phy->allocated_src |= 1 << log_event_line;
  1171. goto found;
  1172. } else
  1173. goto not_found;
  1174. } else {
  1175. if (phy->allocated_dst == D40_ALLOC_PHY)
  1176. goto not_found;
  1177. if (phy->allocated_dst == D40_ALLOC_FREE)
  1178. phy->allocated_dst = D40_ALLOC_LOG_FREE;
  1179. if (!(phy->allocated_dst & (1 << log_event_line))) {
  1180. phy->allocated_dst |= 1 << log_event_line;
  1181. goto found;
  1182. } else
  1183. goto not_found;
  1184. }
  1185. not_found:
  1186. spin_unlock_irqrestore(&phy->lock, flags);
  1187. return false;
  1188. found:
  1189. spin_unlock_irqrestore(&phy->lock, flags);
  1190. return true;
  1191. }
  1192. static bool d40_alloc_mask_free(struct d40_phy_res *phy, bool is_src,
  1193. int log_event_line)
  1194. {
  1195. unsigned long flags;
  1196. bool is_free = false;
  1197. spin_lock_irqsave(&phy->lock, flags);
  1198. if (!log_event_line) {
  1199. phy->allocated_dst = D40_ALLOC_FREE;
  1200. phy->allocated_src = D40_ALLOC_FREE;
  1201. is_free = true;
  1202. goto out;
  1203. }
  1204. /* Logical channel */
  1205. if (is_src) {
  1206. phy->allocated_src &= ~(1 << log_event_line);
  1207. if (phy->allocated_src == D40_ALLOC_LOG_FREE)
  1208. phy->allocated_src = D40_ALLOC_FREE;
  1209. } else {
  1210. phy->allocated_dst &= ~(1 << log_event_line);
  1211. if (phy->allocated_dst == D40_ALLOC_LOG_FREE)
  1212. phy->allocated_dst = D40_ALLOC_FREE;
  1213. }
  1214. is_free = ((phy->allocated_src | phy->allocated_dst) ==
  1215. D40_ALLOC_FREE);
  1216. out:
  1217. spin_unlock_irqrestore(&phy->lock, flags);
  1218. return is_free;
  1219. }
  1220. static int d40_allocate_channel(struct d40_chan *d40c)
  1221. {
  1222. int dev_type;
  1223. int event_group;
  1224. int event_line;
  1225. struct d40_phy_res *phys;
  1226. int i;
  1227. int j;
  1228. int log_num;
  1229. bool is_src;
  1230. bool is_log = d40c->dma_cfg.mode == STEDMA40_MODE_LOGICAL;
  1231. phys = d40c->base->phy_res;
  1232. if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) {
  1233. dev_type = d40c->dma_cfg.src_dev_type;
  1234. log_num = 2 * dev_type;
  1235. is_src = true;
  1236. } else if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_PERIPH ||
  1237. d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) {
  1238. /* dst event lines are used for logical memcpy */
  1239. dev_type = d40c->dma_cfg.dst_dev_type;
  1240. log_num = 2 * dev_type + 1;
  1241. is_src = false;
  1242. } else
  1243. return -EINVAL;
  1244. event_group = D40_TYPE_TO_GROUP(dev_type);
  1245. event_line = D40_TYPE_TO_EVENT(dev_type);
  1246. if (!is_log) {
  1247. if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) {
  1248. /* Find physical half channel */
  1249. for (i = 0; i < d40c->base->num_phy_chans; i++) {
  1250. if (d40_alloc_mask_set(&phys[i], is_src,
  1251. 0, is_log))
  1252. goto found_phy;
  1253. }
  1254. } else
  1255. for (j = 0; j < d40c->base->num_phy_chans; j += 8) {
  1256. int phy_num = j + event_group * 2;
  1257. for (i = phy_num; i < phy_num + 2; i++) {
  1258. if (d40_alloc_mask_set(&phys[i],
  1259. is_src,
  1260. 0,
  1261. is_log))
  1262. goto found_phy;
  1263. }
  1264. }
  1265. return -EINVAL;
  1266. found_phy:
  1267. d40c->phy_chan = &phys[i];
  1268. d40c->log_num = D40_PHY_CHAN;
  1269. goto out;
  1270. }
  1271. if (dev_type == -1)
  1272. return -EINVAL;
  1273. /* Find logical channel */
  1274. for (j = 0; j < d40c->base->num_phy_chans; j += 8) {
  1275. int phy_num = j + event_group * 2;
  1276. /*
  1277. * Spread logical channels across all available physical rather
  1278. * than pack every logical channel at the first available phy
  1279. * channels.
  1280. */
  1281. if (is_src) {
  1282. for (i = phy_num; i < phy_num + 2; i++) {
  1283. if (d40_alloc_mask_set(&phys[i], is_src,
  1284. event_line, is_log))
  1285. goto found_log;
  1286. }
  1287. } else {
  1288. for (i = phy_num + 1; i >= phy_num; i--) {
  1289. if (d40_alloc_mask_set(&phys[i], is_src,
  1290. event_line, is_log))
  1291. goto found_log;
  1292. }
  1293. }
  1294. }
  1295. return -EINVAL;
  1296. found_log:
  1297. d40c->phy_chan = &phys[i];
  1298. d40c->log_num = log_num;
  1299. out:
  1300. if (is_log)
  1301. d40c->base->lookup_log_chans[d40c->log_num] = d40c;
  1302. else
  1303. d40c->base->lookup_phy_chans[d40c->phy_chan->num] = d40c;
  1304. return 0;
  1305. }
  1306. static int d40_config_memcpy(struct d40_chan *d40c)
  1307. {
  1308. dma_cap_mask_t cap = d40c->chan.device->cap_mask;
  1309. if (dma_has_cap(DMA_MEMCPY, cap) && !dma_has_cap(DMA_SLAVE, cap)) {
  1310. d40c->dma_cfg = *d40c->base->plat_data->memcpy_conf_log;
  1311. d40c->dma_cfg.src_dev_type = STEDMA40_DEV_SRC_MEMORY;
  1312. d40c->dma_cfg.dst_dev_type = d40c->base->plat_data->
  1313. memcpy[d40c->chan.chan_id];
  1314. } else if (dma_has_cap(DMA_MEMCPY, cap) &&
  1315. dma_has_cap(DMA_SLAVE, cap)) {
  1316. d40c->dma_cfg = *d40c->base->plat_data->memcpy_conf_phy;
  1317. } else {
  1318. chan_err(d40c, "No memcpy\n");
  1319. return -EINVAL;
  1320. }
  1321. return 0;
  1322. }
  1323. static int d40_free_dma(struct d40_chan *d40c)
  1324. {
  1325. int res = 0;
  1326. u32 event;
  1327. struct d40_phy_res *phy = d40c->phy_chan;
  1328. bool is_src;
  1329. struct d40_desc *d;
  1330. struct d40_desc *_d;
  1331. /* Terminate all queued and active transfers */
  1332. d40_term_all(d40c);
  1333. /* Release client owned descriptors */
  1334. if (!list_empty(&d40c->client))
  1335. list_for_each_entry_safe(d, _d, &d40c->client, node) {
  1336. d40_pool_lli_free(d40c, d);
  1337. d40_desc_remove(d);
  1338. d40_desc_free(d40c, d);
  1339. }
  1340. if (phy == NULL) {
  1341. chan_err(d40c, "phy == null\n");
  1342. return -EINVAL;
  1343. }
  1344. if (phy->allocated_src == D40_ALLOC_FREE &&
  1345. phy->allocated_dst == D40_ALLOC_FREE) {
  1346. chan_err(d40c, "channel already free\n");
  1347. return -EINVAL;
  1348. }
  1349. if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_PERIPH ||
  1350. d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) {
  1351. event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dst_dev_type);
  1352. is_src = false;
  1353. } else if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) {
  1354. event = D40_TYPE_TO_EVENT(d40c->dma_cfg.src_dev_type);
  1355. is_src = true;
  1356. } else {
  1357. chan_err(d40c, "Unknown direction\n");
  1358. return -EINVAL;
  1359. }
  1360. res = d40_channel_execute_command(d40c, D40_DMA_SUSPEND_REQ);
  1361. if (res) {
  1362. chan_err(d40c, "suspend failed\n");
  1363. return res;
  1364. }
  1365. if (chan_is_logical(d40c)) {
  1366. /* Release logical channel, deactivate the event line */
  1367. d40_config_set_event(d40c, false);
  1368. d40c->base->lookup_log_chans[d40c->log_num] = NULL;
  1369. /*
  1370. * Check if there are more logical allocation
  1371. * on this phy channel.
  1372. */
  1373. if (!d40_alloc_mask_free(phy, is_src, event)) {
  1374. /* Resume the other logical channels if any */
  1375. if (d40_chan_has_events(d40c)) {
  1376. res = d40_channel_execute_command(d40c,
  1377. D40_DMA_RUN);
  1378. if (res) {
  1379. chan_err(d40c,
  1380. "Executing RUN command\n");
  1381. return res;
  1382. }
  1383. }
  1384. return 0;
  1385. }
  1386. } else {
  1387. (void) d40_alloc_mask_free(phy, is_src, 0);
  1388. }
  1389. /* Release physical channel */
  1390. res = d40_channel_execute_command(d40c, D40_DMA_STOP);
  1391. if (res) {
  1392. chan_err(d40c, "Failed to stop channel\n");
  1393. return res;
  1394. }
  1395. d40c->phy_chan = NULL;
  1396. d40c->configured = false;
  1397. d40c->base->lookup_phy_chans[phy->num] = NULL;
  1398. return 0;
  1399. }
  1400. static bool d40_is_paused(struct d40_chan *d40c)
  1401. {
  1402. void __iomem *chanbase = chan_base(d40c);
  1403. bool is_paused = false;
  1404. unsigned long flags;
  1405. void __iomem *active_reg;
  1406. u32 status;
  1407. u32 event;
  1408. spin_lock_irqsave(&d40c->lock, flags);
  1409. if (chan_is_physical(d40c)) {
  1410. if (d40c->phy_chan->num % 2 == 0)
  1411. active_reg = d40c->base->virtbase + D40_DREG_ACTIVE;
  1412. else
  1413. active_reg = d40c->base->virtbase + D40_DREG_ACTIVO;
  1414. status = (readl(active_reg) &
  1415. D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
  1416. D40_CHAN_POS(d40c->phy_chan->num);
  1417. if (status == D40_DMA_SUSPENDED || status == D40_DMA_STOP)
  1418. is_paused = true;
  1419. goto _exit;
  1420. }
  1421. if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_PERIPH ||
  1422. d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) {
  1423. event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dst_dev_type);
  1424. status = readl(chanbase + D40_CHAN_REG_SDLNK);
  1425. } else if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) {
  1426. event = D40_TYPE_TO_EVENT(d40c->dma_cfg.src_dev_type);
  1427. status = readl(chanbase + D40_CHAN_REG_SSLNK);
  1428. } else {
  1429. chan_err(d40c, "Unknown direction\n");
  1430. goto _exit;
  1431. }
  1432. status = (status & D40_EVENTLINE_MASK(event)) >>
  1433. D40_EVENTLINE_POS(event);
  1434. if (status != D40_DMA_RUN)
  1435. is_paused = true;
  1436. _exit:
  1437. spin_unlock_irqrestore(&d40c->lock, flags);
  1438. return is_paused;
  1439. }
  1440. static u32 stedma40_residue(struct dma_chan *chan)
  1441. {
  1442. struct d40_chan *d40c =
  1443. container_of(chan, struct d40_chan, chan);
  1444. u32 bytes_left;
  1445. unsigned long flags;
  1446. spin_lock_irqsave(&d40c->lock, flags);
  1447. bytes_left = d40_residue(d40c);
  1448. spin_unlock_irqrestore(&d40c->lock, flags);
  1449. return bytes_left;
  1450. }
  1451. static int
  1452. d40_prep_sg_log(struct d40_chan *chan, struct d40_desc *desc,
  1453. struct scatterlist *sg_src, struct scatterlist *sg_dst,
  1454. unsigned int sg_len, dma_addr_t src_dev_addr,
  1455. dma_addr_t dst_dev_addr)
  1456. {
  1457. struct stedma40_chan_cfg *cfg = &chan->dma_cfg;
  1458. struct stedma40_half_channel_info *src_info = &cfg->src_info;
  1459. struct stedma40_half_channel_info *dst_info = &cfg->dst_info;
  1460. int ret;
  1461. ret = d40_log_sg_to_lli(sg_src, sg_len,
  1462. src_dev_addr,
  1463. desc->lli_log.src,
  1464. chan->log_def.lcsp1,
  1465. src_info->data_width,
  1466. dst_info->data_width);
  1467. ret = d40_log_sg_to_lli(sg_dst, sg_len,
  1468. dst_dev_addr,
  1469. desc->lli_log.dst,
  1470. chan->log_def.lcsp3,
  1471. dst_info->data_width,
  1472. src_info->data_width);
  1473. return ret < 0 ? ret : 0;
  1474. }
  1475. static int
  1476. d40_prep_sg_phy(struct d40_chan *chan, struct d40_desc *desc,
  1477. struct scatterlist *sg_src, struct scatterlist *sg_dst,
  1478. unsigned int sg_len, dma_addr_t src_dev_addr,
  1479. dma_addr_t dst_dev_addr)
  1480. {
  1481. struct stedma40_chan_cfg *cfg = &chan->dma_cfg;
  1482. struct stedma40_half_channel_info *src_info = &cfg->src_info;
  1483. struct stedma40_half_channel_info *dst_info = &cfg->dst_info;
  1484. unsigned long flags = 0;
  1485. int ret;
  1486. if (desc->cyclic)
  1487. flags |= LLI_CYCLIC | LLI_TERM_INT;
  1488. ret = d40_phy_sg_to_lli(sg_src, sg_len, src_dev_addr,
  1489. desc->lli_phy.src,
  1490. virt_to_phys(desc->lli_phy.src),
  1491. chan->src_def_cfg,
  1492. src_info, dst_info, flags);
  1493. ret = d40_phy_sg_to_lli(sg_dst, sg_len, dst_dev_addr,
  1494. desc->lli_phy.dst,
  1495. virt_to_phys(desc->lli_phy.dst),
  1496. chan->dst_def_cfg,
  1497. dst_info, src_info, flags);
  1498. dma_sync_single_for_device(chan->base->dev, desc->lli_pool.dma_addr,
  1499. desc->lli_pool.size, DMA_TO_DEVICE);
  1500. return ret < 0 ? ret : 0;
  1501. }
  1502. static struct d40_desc *
  1503. d40_prep_desc(struct d40_chan *chan, struct scatterlist *sg,
  1504. unsigned int sg_len, unsigned long dma_flags)
  1505. {
  1506. struct stedma40_chan_cfg *cfg = &chan->dma_cfg;
  1507. struct d40_desc *desc;
  1508. int ret;
  1509. desc = d40_desc_get(chan);
  1510. if (!desc)
  1511. return NULL;
  1512. desc->lli_len = d40_sg_2_dmalen(sg, sg_len, cfg->src_info.data_width,
  1513. cfg->dst_info.data_width);
  1514. if (desc->lli_len < 0) {
  1515. chan_err(chan, "Unaligned size\n");
  1516. goto err;
  1517. }
  1518. ret = d40_pool_lli_alloc(chan, desc, desc->lli_len);
  1519. if (ret < 0) {
  1520. chan_err(chan, "Could not allocate lli\n");
  1521. goto err;
  1522. }
  1523. desc->lli_current = 0;
  1524. desc->txd.flags = dma_flags;
  1525. desc->txd.tx_submit = d40_tx_submit;
  1526. dma_async_tx_descriptor_init(&desc->txd, &chan->chan);
  1527. return desc;
  1528. err:
  1529. d40_desc_free(chan, desc);
  1530. return NULL;
  1531. }
  1532. static dma_addr_t
  1533. d40_get_dev_addr(struct d40_chan *chan, enum dma_data_direction direction)
  1534. {
  1535. struct stedma40_platform_data *plat = chan->base->plat_data;
  1536. struct stedma40_chan_cfg *cfg = &chan->dma_cfg;
  1537. dma_addr_t addr = 0;
  1538. if (chan->runtime_addr)
  1539. return chan->runtime_addr;
  1540. if (direction == DMA_FROM_DEVICE)
  1541. addr = plat->dev_rx[cfg->src_dev_type];
  1542. else if (direction == DMA_TO_DEVICE)
  1543. addr = plat->dev_tx[cfg->dst_dev_type];
  1544. return addr;
  1545. }
  1546. static struct dma_async_tx_descriptor *
  1547. d40_prep_sg(struct dma_chan *dchan, struct scatterlist *sg_src,
  1548. struct scatterlist *sg_dst, unsigned int sg_len,
  1549. enum dma_data_direction direction, unsigned long dma_flags)
  1550. {
  1551. struct d40_chan *chan = container_of(dchan, struct d40_chan, chan);
  1552. dma_addr_t src_dev_addr = 0;
  1553. dma_addr_t dst_dev_addr = 0;
  1554. struct d40_desc *desc;
  1555. unsigned long flags;
  1556. int ret;
  1557. if (!chan->phy_chan) {
  1558. chan_err(chan, "Cannot prepare unallocated channel\n");
  1559. return NULL;
  1560. }
  1561. spin_lock_irqsave(&chan->lock, flags);
  1562. desc = d40_prep_desc(chan, sg_src, sg_len, dma_flags);
  1563. if (desc == NULL)
  1564. goto err;
  1565. if (sg_next(&sg_src[sg_len - 1]) == sg_src)
  1566. desc->cyclic = true;
  1567. if (direction != DMA_NONE) {
  1568. dma_addr_t dev_addr = d40_get_dev_addr(chan, direction);
  1569. if (direction == DMA_FROM_DEVICE)
  1570. src_dev_addr = dev_addr;
  1571. else if (direction == DMA_TO_DEVICE)
  1572. dst_dev_addr = dev_addr;
  1573. }
  1574. if (chan_is_logical(chan))
  1575. ret = d40_prep_sg_log(chan, desc, sg_src, sg_dst,
  1576. sg_len, src_dev_addr, dst_dev_addr);
  1577. else
  1578. ret = d40_prep_sg_phy(chan, desc, sg_src, sg_dst,
  1579. sg_len, src_dev_addr, dst_dev_addr);
  1580. if (ret) {
  1581. chan_err(chan, "Failed to prepare %s sg job: %d\n",
  1582. chan_is_logical(chan) ? "log" : "phy", ret);
  1583. goto err;
  1584. }
  1585. spin_unlock_irqrestore(&chan->lock, flags);
  1586. return &desc->txd;
  1587. err:
  1588. if (desc)
  1589. d40_desc_free(chan, desc);
  1590. spin_unlock_irqrestore(&chan->lock, flags);
  1591. return NULL;
  1592. }
  1593. bool stedma40_filter(struct dma_chan *chan, void *data)
  1594. {
  1595. struct stedma40_chan_cfg *info = data;
  1596. struct d40_chan *d40c =
  1597. container_of(chan, struct d40_chan, chan);
  1598. int err;
  1599. if (data) {
  1600. err = d40_validate_conf(d40c, info);
  1601. if (!err)
  1602. d40c->dma_cfg = *info;
  1603. } else
  1604. err = d40_config_memcpy(d40c);
  1605. if (!err)
  1606. d40c->configured = true;
  1607. return err == 0;
  1608. }
  1609. EXPORT_SYMBOL(stedma40_filter);
  1610. static void __d40_set_prio_rt(struct d40_chan *d40c, int dev_type, bool src)
  1611. {
  1612. bool realtime = d40c->dma_cfg.realtime;
  1613. bool highprio = d40c->dma_cfg.high_priority;
  1614. u32 prioreg = highprio ? D40_DREG_PSEG1 : D40_DREG_PCEG1;
  1615. u32 rtreg = realtime ? D40_DREG_RSEG1 : D40_DREG_RCEG1;
  1616. u32 event = D40_TYPE_TO_EVENT(dev_type);
  1617. u32 group = D40_TYPE_TO_GROUP(dev_type);
  1618. u32 bit = 1 << event;
  1619. /* Destination event lines are stored in the upper halfword */
  1620. if (!src)
  1621. bit <<= 16;
  1622. writel(bit, d40c->base->virtbase + prioreg + group * 4);
  1623. writel(bit, d40c->base->virtbase + rtreg + group * 4);
  1624. }
  1625. static void d40_set_prio_realtime(struct d40_chan *d40c)
  1626. {
  1627. if (d40c->base->rev < 3)
  1628. return;
  1629. if ((d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) ||
  1630. (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_PERIPH))
  1631. __d40_set_prio_rt(d40c, d40c->dma_cfg.src_dev_type, true);
  1632. if ((d40c->dma_cfg.dir == STEDMA40_MEM_TO_PERIPH) ||
  1633. (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_PERIPH))
  1634. __d40_set_prio_rt(d40c, d40c->dma_cfg.dst_dev_type, false);
  1635. }
  1636. /* DMA ENGINE functions */
  1637. static int d40_alloc_chan_resources(struct dma_chan *chan)
  1638. {
  1639. int err;
  1640. unsigned long flags;
  1641. struct d40_chan *d40c =
  1642. container_of(chan, struct d40_chan, chan);
  1643. bool is_free_phy;
  1644. spin_lock_irqsave(&d40c->lock, flags);
  1645. d40c->completed = chan->cookie = 1;
  1646. /* If no dma configuration is set use default configuration (memcpy) */
  1647. if (!d40c->configured) {
  1648. err = d40_config_memcpy(d40c);
  1649. if (err) {
  1650. chan_err(d40c, "Failed to configure memcpy channel\n");
  1651. goto fail;
  1652. }
  1653. }
  1654. is_free_phy = (d40c->phy_chan == NULL);
  1655. err = d40_allocate_channel(d40c);
  1656. if (err) {
  1657. chan_err(d40c, "Failed to allocate channel\n");
  1658. goto fail;
  1659. }
  1660. /* Fill in basic CFG register values */
  1661. d40_phy_cfg(&d40c->dma_cfg, &d40c->src_def_cfg,
  1662. &d40c->dst_def_cfg, chan_is_logical(d40c));
  1663. d40_set_prio_realtime(d40c);
  1664. if (chan_is_logical(d40c)) {
  1665. d40_log_cfg(&d40c->dma_cfg,
  1666. &d40c->log_def.lcsp1, &d40c->log_def.lcsp3);
  1667. if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM)
  1668. d40c->lcpa = d40c->base->lcpa_base +
  1669. d40c->dma_cfg.src_dev_type * D40_LCPA_CHAN_SIZE;
  1670. else
  1671. d40c->lcpa = d40c->base->lcpa_base +
  1672. d40c->dma_cfg.dst_dev_type *
  1673. D40_LCPA_CHAN_SIZE + D40_LCPA_CHAN_DST_DELTA;
  1674. }
  1675. /*
  1676. * Only write channel configuration to the DMA if the physical
  1677. * resource is free. In case of multiple logical channels
  1678. * on the same physical resource, only the first write is necessary.
  1679. */
  1680. if (is_free_phy)
  1681. d40_config_write(d40c);
  1682. fail:
  1683. spin_unlock_irqrestore(&d40c->lock, flags);
  1684. return err;
  1685. }
  1686. static void d40_free_chan_resources(struct dma_chan *chan)
  1687. {
  1688. struct d40_chan *d40c =
  1689. container_of(chan, struct d40_chan, chan);
  1690. int err;
  1691. unsigned long flags;
  1692. if (d40c->phy_chan == NULL) {
  1693. chan_err(d40c, "Cannot free unallocated channel\n");
  1694. return;
  1695. }
  1696. spin_lock_irqsave(&d40c->lock, flags);
  1697. err = d40_free_dma(d40c);
  1698. if (err)
  1699. chan_err(d40c, "Failed to free channel\n");
  1700. spin_unlock_irqrestore(&d40c->lock, flags);
  1701. }
  1702. static struct dma_async_tx_descriptor *d40_prep_memcpy(struct dma_chan *chan,
  1703. dma_addr_t dst,
  1704. dma_addr_t src,
  1705. size_t size,
  1706. unsigned long dma_flags)
  1707. {
  1708. struct scatterlist dst_sg;
  1709. struct scatterlist src_sg;
  1710. sg_init_table(&dst_sg, 1);
  1711. sg_init_table(&src_sg, 1);
  1712. sg_dma_address(&dst_sg) = dst;
  1713. sg_dma_address(&src_sg) = src;
  1714. sg_dma_len(&dst_sg) = size;
  1715. sg_dma_len(&src_sg) = size;
  1716. return d40_prep_sg(chan, &src_sg, &dst_sg, 1, DMA_NONE, dma_flags);
  1717. }
  1718. static struct dma_async_tx_descriptor *
  1719. d40_prep_memcpy_sg(struct dma_chan *chan,
  1720. struct scatterlist *dst_sg, unsigned int dst_nents,
  1721. struct scatterlist *src_sg, unsigned int src_nents,
  1722. unsigned long dma_flags)
  1723. {
  1724. if (dst_nents != src_nents)
  1725. return NULL;
  1726. return d40_prep_sg(chan, src_sg, dst_sg, src_nents, DMA_NONE, dma_flags);
  1727. }
  1728. static struct dma_async_tx_descriptor *d40_prep_slave_sg(struct dma_chan *chan,
  1729. struct scatterlist *sgl,
  1730. unsigned int sg_len,
  1731. enum dma_data_direction direction,
  1732. unsigned long dma_flags)
  1733. {
  1734. if (direction != DMA_FROM_DEVICE && direction != DMA_TO_DEVICE)
  1735. return NULL;
  1736. return d40_prep_sg(chan, sgl, sgl, sg_len, direction, dma_flags);
  1737. }
  1738. static struct dma_async_tx_descriptor *
  1739. dma40_prep_dma_cyclic(struct dma_chan *chan, dma_addr_t dma_addr,
  1740. size_t buf_len, size_t period_len,
  1741. enum dma_data_direction direction)
  1742. {
  1743. unsigned int periods = buf_len / period_len;
  1744. struct dma_async_tx_descriptor *txd;
  1745. struct scatterlist *sg;
  1746. int i;
  1747. sg = kcalloc(periods + 1, sizeof(struct scatterlist), GFP_NOWAIT);
  1748. for (i = 0; i < periods; i++) {
  1749. sg_dma_address(&sg[i]) = dma_addr;
  1750. sg_dma_len(&sg[i]) = period_len;
  1751. dma_addr += period_len;
  1752. }
  1753. sg[periods].offset = 0;
  1754. sg[periods].length = 0;
  1755. sg[periods].page_link =
  1756. ((unsigned long)sg | 0x01) & ~0x02;
  1757. txd = d40_prep_sg(chan, sg, sg, periods, direction,
  1758. DMA_PREP_INTERRUPT);
  1759. kfree(sg);
  1760. return txd;
  1761. }
  1762. static enum dma_status d40_tx_status(struct dma_chan *chan,
  1763. dma_cookie_t cookie,
  1764. struct dma_tx_state *txstate)
  1765. {
  1766. struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
  1767. dma_cookie_t last_used;
  1768. dma_cookie_t last_complete;
  1769. int ret;
  1770. if (d40c->phy_chan == NULL) {
  1771. chan_err(d40c, "Cannot read status of unallocated channel\n");
  1772. return -EINVAL;
  1773. }
  1774. last_complete = d40c->completed;
  1775. last_used = chan->cookie;
  1776. if (d40_is_paused(d40c))
  1777. ret = DMA_PAUSED;
  1778. else
  1779. ret = dma_async_is_complete(cookie, last_complete, last_used);
  1780. dma_set_tx_state(txstate, last_complete, last_used,
  1781. stedma40_residue(chan));
  1782. return ret;
  1783. }
  1784. static void d40_issue_pending(struct dma_chan *chan)
  1785. {
  1786. struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
  1787. unsigned long flags;
  1788. if (d40c->phy_chan == NULL) {
  1789. chan_err(d40c, "Channel is not allocated!\n");
  1790. return;
  1791. }
  1792. spin_lock_irqsave(&d40c->lock, flags);
  1793. list_splice_tail_init(&d40c->pending_queue, &d40c->queue);
  1794. /* Busy means that queued jobs are already being processed */
  1795. if (!d40c->busy)
  1796. (void) d40_queue_start(d40c);
  1797. spin_unlock_irqrestore(&d40c->lock, flags);
  1798. }
  1799. static int
  1800. dma40_config_to_halfchannel(struct d40_chan *d40c,
  1801. struct stedma40_half_channel_info *info,
  1802. enum dma_slave_buswidth width,
  1803. u32 maxburst)
  1804. {
  1805. enum stedma40_periph_data_width addr_width;
  1806. int psize;
  1807. switch (width) {
  1808. case DMA_SLAVE_BUSWIDTH_1_BYTE:
  1809. addr_width = STEDMA40_BYTE_WIDTH;
  1810. break;
  1811. case DMA_SLAVE_BUSWIDTH_2_BYTES:
  1812. addr_width = STEDMA40_HALFWORD_WIDTH;
  1813. break;
  1814. case DMA_SLAVE_BUSWIDTH_4_BYTES:
  1815. addr_width = STEDMA40_WORD_WIDTH;
  1816. break;
  1817. case DMA_SLAVE_BUSWIDTH_8_BYTES:
  1818. addr_width = STEDMA40_DOUBLEWORD_WIDTH;
  1819. break;
  1820. default:
  1821. dev_err(d40c->base->dev,
  1822. "illegal peripheral address width "
  1823. "requested (%d)\n",
  1824. width);
  1825. return -EINVAL;
  1826. }
  1827. if (chan_is_logical(d40c)) {
  1828. if (maxburst >= 16)
  1829. psize = STEDMA40_PSIZE_LOG_16;
  1830. else if (maxburst >= 8)
  1831. psize = STEDMA40_PSIZE_LOG_8;
  1832. else if (maxburst >= 4)
  1833. psize = STEDMA40_PSIZE_LOG_4;
  1834. else
  1835. psize = STEDMA40_PSIZE_LOG_1;
  1836. } else {
  1837. if (maxburst >= 16)
  1838. psize = STEDMA40_PSIZE_PHY_16;
  1839. else if (maxburst >= 8)
  1840. psize = STEDMA40_PSIZE_PHY_8;
  1841. else if (maxburst >= 4)
  1842. psize = STEDMA40_PSIZE_PHY_4;
  1843. else
  1844. psize = STEDMA40_PSIZE_PHY_1;
  1845. }
  1846. info->data_width = addr_width;
  1847. info->psize = psize;
  1848. info->flow_ctrl = STEDMA40_NO_FLOW_CTRL;
  1849. return 0;
  1850. }
  1851. /* Runtime reconfiguration extension */
  1852. static int d40_set_runtime_config(struct dma_chan *chan,
  1853. struct dma_slave_config *config)
  1854. {
  1855. struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
  1856. struct stedma40_chan_cfg *cfg = &d40c->dma_cfg;
  1857. enum dma_slave_buswidth src_addr_width, dst_addr_width;
  1858. dma_addr_t config_addr;
  1859. u32 src_maxburst, dst_maxburst;
  1860. int ret;
  1861. src_addr_width = config->src_addr_width;
  1862. src_maxburst = config->src_maxburst;
  1863. dst_addr_width = config->dst_addr_width;
  1864. dst_maxburst = config->dst_maxburst;
  1865. if (config->direction == DMA_FROM_DEVICE) {
  1866. dma_addr_t dev_addr_rx =
  1867. d40c->base->plat_data->dev_rx[cfg->src_dev_type];
  1868. config_addr = config->src_addr;
  1869. if (dev_addr_rx)
  1870. dev_dbg(d40c->base->dev,
  1871. "channel has a pre-wired RX address %08x "
  1872. "overriding with %08x\n",
  1873. dev_addr_rx, config_addr);
  1874. if (cfg->dir != STEDMA40_PERIPH_TO_MEM)
  1875. dev_dbg(d40c->base->dev,
  1876. "channel was not configured for peripheral "
  1877. "to memory transfer (%d) overriding\n",
  1878. cfg->dir);
  1879. cfg->dir = STEDMA40_PERIPH_TO_MEM;
  1880. /* Configure the memory side */
  1881. if (dst_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED)
  1882. dst_addr_width = src_addr_width;
  1883. if (dst_maxburst == 0)
  1884. dst_maxburst = src_maxburst;
  1885. } else if (config->direction == DMA_TO_DEVICE) {
  1886. dma_addr_t dev_addr_tx =
  1887. d40c->base->plat_data->dev_tx[cfg->dst_dev_type];
  1888. config_addr = config->dst_addr;
  1889. if (dev_addr_tx)
  1890. dev_dbg(d40c->base->dev,
  1891. "channel has a pre-wired TX address %08x "
  1892. "overriding with %08x\n",
  1893. dev_addr_tx, config_addr);
  1894. if (cfg->dir != STEDMA40_MEM_TO_PERIPH)
  1895. dev_dbg(d40c->base->dev,
  1896. "channel was not configured for memory "
  1897. "to peripheral transfer (%d) overriding\n",
  1898. cfg->dir);
  1899. cfg->dir = STEDMA40_MEM_TO_PERIPH;
  1900. /* Configure the memory side */
  1901. if (src_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED)
  1902. src_addr_width = dst_addr_width;
  1903. if (src_maxburst == 0)
  1904. src_maxburst = dst_maxburst;
  1905. } else {
  1906. dev_err(d40c->base->dev,
  1907. "unrecognized channel direction %d\n",
  1908. config->direction);
  1909. return -EINVAL;
  1910. }
  1911. if (src_maxburst * src_addr_width != dst_maxburst * dst_addr_width) {
  1912. dev_err(d40c->base->dev,
  1913. "src/dst width/maxburst mismatch: %d*%d != %d*%d\n",
  1914. src_maxburst,
  1915. src_addr_width,
  1916. dst_maxburst,
  1917. dst_addr_width);
  1918. return -EINVAL;
  1919. }
  1920. ret = dma40_config_to_halfchannel(d40c, &cfg->src_info,
  1921. src_addr_width,
  1922. src_maxburst);
  1923. if (ret)
  1924. return ret;
  1925. ret = dma40_config_to_halfchannel(d40c, &cfg->dst_info,
  1926. dst_addr_width,
  1927. dst_maxburst);
  1928. if (ret)
  1929. return ret;
  1930. /* Fill in register values */
  1931. if (chan_is_logical(d40c))
  1932. d40_log_cfg(cfg, &d40c->log_def.lcsp1, &d40c->log_def.lcsp3);
  1933. else
  1934. d40_phy_cfg(cfg, &d40c->src_def_cfg,
  1935. &d40c->dst_def_cfg, false);
  1936. /* These settings will take precedence later */
  1937. d40c->runtime_addr = config_addr;
  1938. d40c->runtime_direction = config->direction;
  1939. dev_dbg(d40c->base->dev,
  1940. "configured channel %s for %s, data width %d/%d, "
  1941. "maxburst %d/%d elements, LE, no flow control\n",
  1942. dma_chan_name(chan),
  1943. (config->direction == DMA_FROM_DEVICE) ? "RX" : "TX",
  1944. src_addr_width, dst_addr_width,
  1945. src_maxburst, dst_maxburst);
  1946. return 0;
  1947. }
  1948. static int d40_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd,
  1949. unsigned long arg)
  1950. {
  1951. struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
  1952. if (d40c->phy_chan == NULL) {
  1953. chan_err(d40c, "Channel is not allocated!\n");
  1954. return -EINVAL;
  1955. }
  1956. switch (cmd) {
  1957. case DMA_TERMINATE_ALL:
  1958. return d40_terminate_all(d40c);
  1959. case DMA_PAUSE:
  1960. return d40_pause(d40c);
  1961. case DMA_RESUME:
  1962. return d40_resume(d40c);
  1963. case DMA_SLAVE_CONFIG:
  1964. return d40_set_runtime_config(chan,
  1965. (struct dma_slave_config *) arg);
  1966. default:
  1967. break;
  1968. }
  1969. /* Other commands are unimplemented */
  1970. return -ENXIO;
  1971. }
  1972. /* Initialization functions */
  1973. static void __init d40_chan_init(struct d40_base *base, struct dma_device *dma,
  1974. struct d40_chan *chans, int offset,
  1975. int num_chans)
  1976. {
  1977. int i = 0;
  1978. struct d40_chan *d40c;
  1979. INIT_LIST_HEAD(&dma->channels);
  1980. for (i = offset; i < offset + num_chans; i++) {
  1981. d40c = &chans[i];
  1982. d40c->base = base;
  1983. d40c->chan.device = dma;
  1984. spin_lock_init(&d40c->lock);
  1985. d40c->log_num = D40_PHY_CHAN;
  1986. INIT_LIST_HEAD(&d40c->active);
  1987. INIT_LIST_HEAD(&d40c->queue);
  1988. INIT_LIST_HEAD(&d40c->pending_queue);
  1989. INIT_LIST_HEAD(&d40c->client);
  1990. tasklet_init(&d40c->tasklet, dma_tasklet,
  1991. (unsigned long) d40c);
  1992. list_add_tail(&d40c->chan.device_node,
  1993. &dma->channels);
  1994. }
  1995. }
  1996. static void d40_ops_init(struct d40_base *base, struct dma_device *dev)
  1997. {
  1998. if (dma_has_cap(DMA_SLAVE, dev->cap_mask))
  1999. dev->device_prep_slave_sg = d40_prep_slave_sg;
  2000. if (dma_has_cap(DMA_MEMCPY, dev->cap_mask)) {
  2001. dev->device_prep_dma_memcpy = d40_prep_memcpy;
  2002. /*
  2003. * This controller can only access address at even
  2004. * 32bit boundaries, i.e. 2^2
  2005. */
  2006. dev->copy_align = 2;
  2007. }
  2008. if (dma_has_cap(DMA_SG, dev->cap_mask))
  2009. dev->device_prep_dma_sg = d40_prep_memcpy_sg;
  2010. if (dma_has_cap(DMA_CYCLIC, dev->cap_mask))
  2011. dev->device_prep_dma_cyclic = dma40_prep_dma_cyclic;
  2012. dev->device_alloc_chan_resources = d40_alloc_chan_resources;
  2013. dev->device_free_chan_resources = d40_free_chan_resources;
  2014. dev->device_issue_pending = d40_issue_pending;
  2015. dev->device_tx_status = d40_tx_status;
  2016. dev->device_control = d40_control;
  2017. dev->dev = base->dev;
  2018. }
  2019. static int __init d40_dmaengine_init(struct d40_base *base,
  2020. int num_reserved_chans)
  2021. {
  2022. int err ;
  2023. d40_chan_init(base, &base->dma_slave, base->log_chans,
  2024. 0, base->num_log_chans);
  2025. dma_cap_zero(base->dma_slave.cap_mask);
  2026. dma_cap_set(DMA_SLAVE, base->dma_slave.cap_mask);
  2027. dma_cap_set(DMA_CYCLIC, base->dma_slave.cap_mask);
  2028. d40_ops_init(base, &base->dma_slave);
  2029. err = dma_async_device_register(&base->dma_slave);
  2030. if (err) {
  2031. d40_err(base->dev, "Failed to register slave channels\n");
  2032. goto failure1;
  2033. }
  2034. d40_chan_init(base, &base->dma_memcpy, base->log_chans,
  2035. base->num_log_chans, base->plat_data->memcpy_len);
  2036. dma_cap_zero(base->dma_memcpy.cap_mask);
  2037. dma_cap_set(DMA_MEMCPY, base->dma_memcpy.cap_mask);
  2038. dma_cap_set(DMA_SG, base->dma_memcpy.cap_mask);
  2039. d40_ops_init(base, &base->dma_memcpy);
  2040. err = dma_async_device_register(&base->dma_memcpy);
  2041. if (err) {
  2042. d40_err(base->dev,
  2043. "Failed to regsiter memcpy only channels\n");
  2044. goto failure2;
  2045. }
  2046. d40_chan_init(base, &base->dma_both, base->phy_chans,
  2047. 0, num_reserved_chans);
  2048. dma_cap_zero(base->dma_both.cap_mask);
  2049. dma_cap_set(DMA_SLAVE, base->dma_both.cap_mask);
  2050. dma_cap_set(DMA_MEMCPY, base->dma_both.cap_mask);
  2051. dma_cap_set(DMA_SG, base->dma_both.cap_mask);
  2052. dma_cap_set(DMA_CYCLIC, base->dma_slave.cap_mask);
  2053. d40_ops_init(base, &base->dma_both);
  2054. err = dma_async_device_register(&base->dma_both);
  2055. if (err) {
  2056. d40_err(base->dev,
  2057. "Failed to register logical and physical capable channels\n");
  2058. goto failure3;
  2059. }
  2060. return 0;
  2061. failure3:
  2062. dma_async_device_unregister(&base->dma_memcpy);
  2063. failure2:
  2064. dma_async_device_unregister(&base->dma_slave);
  2065. failure1:
  2066. return err;
  2067. }
  2068. /* Initialization functions. */
  2069. static int __init d40_phy_res_init(struct d40_base *base)
  2070. {
  2071. int i;
  2072. int num_phy_chans_avail = 0;
  2073. u32 val[2];
  2074. int odd_even_bit = -2;
  2075. val[0] = readl(base->virtbase + D40_DREG_PRSME);
  2076. val[1] = readl(base->virtbase + D40_DREG_PRSMO);
  2077. for (i = 0; i < base->num_phy_chans; i++) {
  2078. base->phy_res[i].num = i;
  2079. odd_even_bit += 2 * ((i % 2) == 0);
  2080. if (((val[i % 2] >> odd_even_bit) & 3) == 1) {
  2081. /* Mark security only channels as occupied */
  2082. base->phy_res[i].allocated_src = D40_ALLOC_PHY;
  2083. base->phy_res[i].allocated_dst = D40_ALLOC_PHY;
  2084. } else {
  2085. base->phy_res[i].allocated_src = D40_ALLOC_FREE;
  2086. base->phy_res[i].allocated_dst = D40_ALLOC_FREE;
  2087. num_phy_chans_avail++;
  2088. }
  2089. spin_lock_init(&base->phy_res[i].lock);
  2090. }
  2091. /* Mark disabled channels as occupied */
  2092. for (i = 0; base->plat_data->disabled_channels[i] != -1; i++) {
  2093. int chan = base->plat_data->disabled_channels[i];
  2094. base->phy_res[chan].allocated_src = D40_ALLOC_PHY;
  2095. base->phy_res[chan].allocated_dst = D40_ALLOC_PHY;
  2096. num_phy_chans_avail--;
  2097. }
  2098. dev_info(base->dev, "%d of %d physical DMA channels available\n",
  2099. num_phy_chans_avail, base->num_phy_chans);
  2100. /* Verify settings extended vs standard */
  2101. val[0] = readl(base->virtbase + D40_DREG_PRTYP);
  2102. for (i = 0; i < base->num_phy_chans; i++) {
  2103. if (base->phy_res[i].allocated_src == D40_ALLOC_FREE &&
  2104. (val[0] & 0x3) != 1)
  2105. dev_info(base->dev,
  2106. "[%s] INFO: channel %d is misconfigured (%d)\n",
  2107. __func__, i, val[0] & 0x3);
  2108. val[0] = val[0] >> 2;
  2109. }
  2110. return num_phy_chans_avail;
  2111. }
  2112. static struct d40_base * __init d40_hw_detect_init(struct platform_device *pdev)
  2113. {
  2114. struct stedma40_platform_data *plat_data;
  2115. struct clk *clk = NULL;
  2116. void __iomem *virtbase = NULL;
  2117. struct resource *res = NULL;
  2118. struct d40_base *base = NULL;
  2119. int num_log_chans = 0;
  2120. int num_phy_chans;
  2121. int i;
  2122. u32 pid;
  2123. u32 cid;
  2124. u8 rev;
  2125. clk = clk_get(&pdev->dev, NULL);
  2126. if (IS_ERR(clk)) {
  2127. d40_err(&pdev->dev, "No matching clock found\n");
  2128. goto failure;
  2129. }
  2130. clk_enable(clk);
  2131. /* Get IO for DMAC base address */
  2132. res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "base");
  2133. if (!res)
  2134. goto failure;
  2135. if (request_mem_region(res->start, resource_size(res),
  2136. D40_NAME " I/O base") == NULL)
  2137. goto failure;
  2138. virtbase = ioremap(res->start, resource_size(res));
  2139. if (!virtbase)
  2140. goto failure;
  2141. /* This is just a regular AMBA PrimeCell ID actually */
  2142. for (pid = 0, i = 0; i < 4; i++)
  2143. pid |= (readl(virtbase + resource_size(res) - 0x20 + 4 * i)
  2144. & 255) << (i * 8);
  2145. for (cid = 0, i = 0; i < 4; i++)
  2146. cid |= (readl(virtbase + resource_size(res) - 0x10 + 4 * i)
  2147. & 255) << (i * 8);
  2148. if (cid != AMBA_CID) {
  2149. d40_err(&pdev->dev, "Unknown hardware! No PrimeCell ID\n");
  2150. goto failure;
  2151. }
  2152. if (AMBA_MANF_BITS(pid) != AMBA_VENDOR_ST) {
  2153. d40_err(&pdev->dev, "Unknown designer! Got %x wanted %x\n",
  2154. AMBA_MANF_BITS(pid),
  2155. AMBA_VENDOR_ST);
  2156. goto failure;
  2157. }
  2158. /*
  2159. * HW revision:
  2160. * DB8500ed has revision 0
  2161. * ? has revision 1
  2162. * DB8500v1 has revision 2
  2163. * DB8500v2 has revision 3
  2164. */
  2165. rev = AMBA_REV_BITS(pid);
  2166. /* The number of physical channels on this HW */
  2167. num_phy_chans = 4 * (readl(virtbase + D40_DREG_ICFG) & 0x7) + 4;
  2168. dev_info(&pdev->dev, "hardware revision: %d @ 0x%x\n",
  2169. rev, res->start);
  2170. plat_data = pdev->dev.platform_data;
  2171. /* Count the number of logical channels in use */
  2172. for (i = 0; i < plat_data->dev_len; i++)
  2173. if (plat_data->dev_rx[i] != 0)
  2174. num_log_chans++;
  2175. for (i = 0; i < plat_data->dev_len; i++)
  2176. if (plat_data->dev_tx[i] != 0)
  2177. num_log_chans++;
  2178. base = kzalloc(ALIGN(sizeof(struct d40_base), 4) +
  2179. (num_phy_chans + num_log_chans + plat_data->memcpy_len) *
  2180. sizeof(struct d40_chan), GFP_KERNEL);
  2181. if (base == NULL) {
  2182. d40_err(&pdev->dev, "Out of memory\n");
  2183. goto failure;
  2184. }
  2185. base->rev = rev;
  2186. base->clk = clk;
  2187. base->num_phy_chans = num_phy_chans;
  2188. base->num_log_chans = num_log_chans;
  2189. base->phy_start = res->start;
  2190. base->phy_size = resource_size(res);
  2191. base->virtbase = virtbase;
  2192. base->plat_data = plat_data;
  2193. base->dev = &pdev->dev;
  2194. base->phy_chans = ((void *)base) + ALIGN(sizeof(struct d40_base), 4);
  2195. base->log_chans = &base->phy_chans[num_phy_chans];
  2196. base->phy_res = kzalloc(num_phy_chans * sizeof(struct d40_phy_res),
  2197. GFP_KERNEL);
  2198. if (!base->phy_res)
  2199. goto failure;
  2200. base->lookup_phy_chans = kzalloc(num_phy_chans *
  2201. sizeof(struct d40_chan *),
  2202. GFP_KERNEL);
  2203. if (!base->lookup_phy_chans)
  2204. goto failure;
  2205. if (num_log_chans + plat_data->memcpy_len) {
  2206. /*
  2207. * The max number of logical channels are event lines for all
  2208. * src devices and dst devices
  2209. */
  2210. base->lookup_log_chans = kzalloc(plat_data->dev_len * 2 *
  2211. sizeof(struct d40_chan *),
  2212. GFP_KERNEL);
  2213. if (!base->lookup_log_chans)
  2214. goto failure;
  2215. }
  2216. base->lcla_pool.alloc_map = kzalloc(num_phy_chans *
  2217. sizeof(struct d40_desc *) *
  2218. D40_LCLA_LINK_PER_EVENT_GRP,
  2219. GFP_KERNEL);
  2220. if (!base->lcla_pool.alloc_map)
  2221. goto failure;
  2222. base->desc_slab = kmem_cache_create(D40_NAME, sizeof(struct d40_desc),
  2223. 0, SLAB_HWCACHE_ALIGN,
  2224. NULL);
  2225. if (base->desc_slab == NULL)
  2226. goto failure;
  2227. return base;
  2228. failure:
  2229. if (!IS_ERR(clk)) {
  2230. clk_disable(clk);
  2231. clk_put(clk);
  2232. }
  2233. if (virtbase)
  2234. iounmap(virtbase);
  2235. if (res)
  2236. release_mem_region(res->start,
  2237. resource_size(res));
  2238. if (virtbase)
  2239. iounmap(virtbase);
  2240. if (base) {
  2241. kfree(base->lcla_pool.alloc_map);
  2242. kfree(base->lookup_log_chans);
  2243. kfree(base->lookup_phy_chans);
  2244. kfree(base->phy_res);
  2245. kfree(base);
  2246. }
  2247. return NULL;
  2248. }
  2249. static void __init d40_hw_init(struct d40_base *base)
  2250. {
  2251. static const struct d40_reg_val dma_init_reg[] = {
  2252. /* Clock every part of the DMA block from start */
  2253. { .reg = D40_DREG_GCC, .val = 0x0000ff01},
  2254. /* Interrupts on all logical channels */
  2255. { .reg = D40_DREG_LCMIS0, .val = 0xFFFFFFFF},
  2256. { .reg = D40_DREG_LCMIS1, .val = 0xFFFFFFFF},
  2257. { .reg = D40_DREG_LCMIS2, .val = 0xFFFFFFFF},
  2258. { .reg = D40_DREG_LCMIS3, .val = 0xFFFFFFFF},
  2259. { .reg = D40_DREG_LCICR0, .val = 0xFFFFFFFF},
  2260. { .reg = D40_DREG_LCICR1, .val = 0xFFFFFFFF},
  2261. { .reg = D40_DREG_LCICR2, .val = 0xFFFFFFFF},
  2262. { .reg = D40_DREG_LCICR3, .val = 0xFFFFFFFF},
  2263. { .reg = D40_DREG_LCTIS0, .val = 0xFFFFFFFF},
  2264. { .reg = D40_DREG_LCTIS1, .val = 0xFFFFFFFF},
  2265. { .reg = D40_DREG_LCTIS2, .val = 0xFFFFFFFF},
  2266. { .reg = D40_DREG_LCTIS3, .val = 0xFFFFFFFF}
  2267. };
  2268. int i;
  2269. u32 prmseo[2] = {0, 0};
  2270. u32 activeo[2] = {0xFFFFFFFF, 0xFFFFFFFF};
  2271. u32 pcmis = 0;
  2272. u32 pcicr = 0;
  2273. for (i = 0; i < ARRAY_SIZE(dma_init_reg); i++)
  2274. writel(dma_init_reg[i].val,
  2275. base->virtbase + dma_init_reg[i].reg);
  2276. /* Configure all our dma channels to default settings */
  2277. for (i = 0; i < base->num_phy_chans; i++) {
  2278. activeo[i % 2] = activeo[i % 2] << 2;
  2279. if (base->phy_res[base->num_phy_chans - i - 1].allocated_src
  2280. == D40_ALLOC_PHY) {
  2281. activeo[i % 2] |= 3;
  2282. continue;
  2283. }
  2284. /* Enable interrupt # */
  2285. pcmis = (pcmis << 1) | 1;
  2286. /* Clear interrupt # */
  2287. pcicr = (pcicr << 1) | 1;
  2288. /* Set channel to physical mode */
  2289. prmseo[i % 2] = prmseo[i % 2] << 2;
  2290. prmseo[i % 2] |= 1;
  2291. }
  2292. writel(prmseo[1], base->virtbase + D40_DREG_PRMSE);
  2293. writel(prmseo[0], base->virtbase + D40_DREG_PRMSO);
  2294. writel(activeo[1], base->virtbase + D40_DREG_ACTIVE);
  2295. writel(activeo[0], base->virtbase + D40_DREG_ACTIVO);
  2296. /* Write which interrupt to enable */
  2297. writel(pcmis, base->virtbase + D40_DREG_PCMIS);
  2298. /* Write which interrupt to clear */
  2299. writel(pcicr, base->virtbase + D40_DREG_PCICR);
  2300. }
  2301. static int __init d40_lcla_allocate(struct d40_base *base)
  2302. {
  2303. struct d40_lcla_pool *pool = &base->lcla_pool;
  2304. unsigned long *page_list;
  2305. int i, j;
  2306. int ret = 0;
  2307. /*
  2308. * This is somewhat ugly. We need 8192 bytes that are 18 bit aligned,
  2309. * To full fill this hardware requirement without wasting 256 kb
  2310. * we allocate pages until we get an aligned one.
  2311. */
  2312. page_list = kmalloc(sizeof(unsigned long) * MAX_LCLA_ALLOC_ATTEMPTS,
  2313. GFP_KERNEL);
  2314. if (!page_list) {
  2315. ret = -ENOMEM;
  2316. goto failure;
  2317. }
  2318. /* Calculating how many pages that are required */
  2319. base->lcla_pool.pages = SZ_1K * base->num_phy_chans / PAGE_SIZE;
  2320. for (i = 0; i < MAX_LCLA_ALLOC_ATTEMPTS; i++) {
  2321. page_list[i] = __get_free_pages(GFP_KERNEL,
  2322. base->lcla_pool.pages);
  2323. if (!page_list[i]) {
  2324. d40_err(base->dev, "Failed to allocate %d pages.\n",
  2325. base->lcla_pool.pages);
  2326. for (j = 0; j < i; j++)
  2327. free_pages(page_list[j], base->lcla_pool.pages);
  2328. goto failure;
  2329. }
  2330. if ((virt_to_phys((void *)page_list[i]) &
  2331. (LCLA_ALIGNMENT - 1)) == 0)
  2332. break;
  2333. }
  2334. for (j = 0; j < i; j++)
  2335. free_pages(page_list[j], base->lcla_pool.pages);
  2336. if (i < MAX_LCLA_ALLOC_ATTEMPTS) {
  2337. base->lcla_pool.base = (void *)page_list[i];
  2338. } else {
  2339. /*
  2340. * After many attempts and no succees with finding the correct
  2341. * alignment, try with allocating a big buffer.
  2342. */
  2343. dev_warn(base->dev,
  2344. "[%s] Failed to get %d pages @ 18 bit align.\n",
  2345. __func__, base->lcla_pool.pages);
  2346. base->lcla_pool.base_unaligned = kmalloc(SZ_1K *
  2347. base->num_phy_chans +
  2348. LCLA_ALIGNMENT,
  2349. GFP_KERNEL);
  2350. if (!base->lcla_pool.base_unaligned) {
  2351. ret = -ENOMEM;
  2352. goto failure;
  2353. }
  2354. base->lcla_pool.base = PTR_ALIGN(base->lcla_pool.base_unaligned,
  2355. LCLA_ALIGNMENT);
  2356. }
  2357. pool->dma_addr = dma_map_single(base->dev, pool->base,
  2358. SZ_1K * base->num_phy_chans,
  2359. DMA_TO_DEVICE);
  2360. if (dma_mapping_error(base->dev, pool->dma_addr)) {
  2361. pool->dma_addr = 0;
  2362. ret = -ENOMEM;
  2363. goto failure;
  2364. }
  2365. writel(virt_to_phys(base->lcla_pool.base),
  2366. base->virtbase + D40_DREG_LCLA);
  2367. failure:
  2368. kfree(page_list);
  2369. return ret;
  2370. }
  2371. static int __init d40_probe(struct platform_device *pdev)
  2372. {
  2373. int err;
  2374. int ret = -ENOENT;
  2375. struct d40_base *base;
  2376. struct resource *res = NULL;
  2377. int num_reserved_chans;
  2378. u32 val;
  2379. base = d40_hw_detect_init(pdev);
  2380. if (!base)
  2381. goto failure;
  2382. num_reserved_chans = d40_phy_res_init(base);
  2383. platform_set_drvdata(pdev, base);
  2384. spin_lock_init(&base->interrupt_lock);
  2385. spin_lock_init(&base->execmd_lock);
  2386. /* Get IO for logical channel parameter address */
  2387. res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "lcpa");
  2388. if (!res) {
  2389. ret = -ENOENT;
  2390. d40_err(&pdev->dev, "No \"lcpa\" memory resource\n");
  2391. goto failure;
  2392. }
  2393. base->lcpa_size = resource_size(res);
  2394. base->phy_lcpa = res->start;
  2395. if (request_mem_region(res->start, resource_size(res),
  2396. D40_NAME " I/O lcpa") == NULL) {
  2397. ret = -EBUSY;
  2398. d40_err(&pdev->dev,
  2399. "Failed to request LCPA region 0x%x-0x%x\n",
  2400. res->start, res->end);
  2401. goto failure;
  2402. }
  2403. /* We make use of ESRAM memory for this. */
  2404. val = readl(base->virtbase + D40_DREG_LCPA);
  2405. if (res->start != val && val != 0) {
  2406. dev_warn(&pdev->dev,
  2407. "[%s] Mismatch LCPA dma 0x%x, def 0x%x\n",
  2408. __func__, val, res->start);
  2409. } else
  2410. writel(res->start, base->virtbase + D40_DREG_LCPA);
  2411. base->lcpa_base = ioremap(res->start, resource_size(res));
  2412. if (!base->lcpa_base) {
  2413. ret = -ENOMEM;
  2414. d40_err(&pdev->dev, "Failed to ioremap LCPA region\n");
  2415. goto failure;
  2416. }
  2417. ret = d40_lcla_allocate(base);
  2418. if (ret) {
  2419. d40_err(&pdev->dev, "Failed to allocate LCLA area\n");
  2420. goto failure;
  2421. }
  2422. spin_lock_init(&base->lcla_pool.lock);
  2423. base->irq = platform_get_irq(pdev, 0);
  2424. ret = request_irq(base->irq, d40_handle_interrupt, 0, D40_NAME, base);
  2425. if (ret) {
  2426. d40_err(&pdev->dev, "No IRQ defined\n");
  2427. goto failure;
  2428. }
  2429. err = d40_dmaengine_init(base, num_reserved_chans);
  2430. if (err)
  2431. goto failure;
  2432. d40_hw_init(base);
  2433. dev_info(base->dev, "initialized\n");
  2434. return 0;
  2435. failure:
  2436. if (base) {
  2437. if (base->desc_slab)
  2438. kmem_cache_destroy(base->desc_slab);
  2439. if (base->virtbase)
  2440. iounmap(base->virtbase);
  2441. if (base->lcla_pool.dma_addr)
  2442. dma_unmap_single(base->dev, base->lcla_pool.dma_addr,
  2443. SZ_1K * base->num_phy_chans,
  2444. DMA_TO_DEVICE);
  2445. if (!base->lcla_pool.base_unaligned && base->lcla_pool.base)
  2446. free_pages((unsigned long)base->lcla_pool.base,
  2447. base->lcla_pool.pages);
  2448. kfree(base->lcla_pool.base_unaligned);
  2449. if (base->phy_lcpa)
  2450. release_mem_region(base->phy_lcpa,
  2451. base->lcpa_size);
  2452. if (base->phy_start)
  2453. release_mem_region(base->phy_start,
  2454. base->phy_size);
  2455. if (base->clk) {
  2456. clk_disable(base->clk);
  2457. clk_put(base->clk);
  2458. }
  2459. kfree(base->lcla_pool.alloc_map);
  2460. kfree(base->lookup_log_chans);
  2461. kfree(base->lookup_phy_chans);
  2462. kfree(base->phy_res);
  2463. kfree(base);
  2464. }
  2465. d40_err(&pdev->dev, "probe failed\n");
  2466. return ret;
  2467. }
  2468. static struct platform_driver d40_driver = {
  2469. .driver = {
  2470. .owner = THIS_MODULE,
  2471. .name = D40_NAME,
  2472. },
  2473. };
  2474. static int __init stedma40_init(void)
  2475. {
  2476. return platform_driver_probe(&d40_driver, d40_probe);
  2477. }
  2478. subsys_initcall(stedma40_init);