perf_event_intel.c 43 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629
  1. #ifdef CONFIG_CPU_SUP_INTEL
  2. /*
  3. * Per core/cpu state
  4. *
  5. * Used to coordinate shared registers between HT threads or
  6. * among events on a single PMU.
  7. */
  8. struct intel_shared_regs {
  9. struct er_account regs[EXTRA_REG_MAX];
  10. int refcnt; /* per-core: #HT threads */
  11. unsigned core_id; /* per-core: core id */
  12. };
  13. /*
  14. * Intel PerfMon, used on Core and later.
  15. */
  16. static u64 intel_perfmon_event_map[PERF_COUNT_HW_MAX] __read_mostly =
  17. {
  18. [PERF_COUNT_HW_CPU_CYCLES] = 0x003c,
  19. [PERF_COUNT_HW_INSTRUCTIONS] = 0x00c0,
  20. [PERF_COUNT_HW_CACHE_REFERENCES] = 0x4f2e,
  21. [PERF_COUNT_HW_CACHE_MISSES] = 0x412e,
  22. [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = 0x00c4,
  23. [PERF_COUNT_HW_BRANCH_MISSES] = 0x00c5,
  24. [PERF_COUNT_HW_BUS_CYCLES] = 0x013c,
  25. };
  26. static struct event_constraint intel_core_event_constraints[] __read_mostly =
  27. {
  28. INTEL_EVENT_CONSTRAINT(0x11, 0x2), /* FP_ASSIST */
  29. INTEL_EVENT_CONSTRAINT(0x12, 0x2), /* MUL */
  30. INTEL_EVENT_CONSTRAINT(0x13, 0x2), /* DIV */
  31. INTEL_EVENT_CONSTRAINT(0x14, 0x1), /* CYCLES_DIV_BUSY */
  32. INTEL_EVENT_CONSTRAINT(0x19, 0x2), /* DELAYED_BYPASS */
  33. INTEL_EVENT_CONSTRAINT(0xc1, 0x1), /* FP_COMP_INSTR_RET */
  34. EVENT_CONSTRAINT_END
  35. };
  36. static struct event_constraint intel_core2_event_constraints[] __read_mostly =
  37. {
  38. FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
  39. FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
  40. /*
  41. * Core2 has Fixed Counter 2 listed as CPU_CLK_UNHALTED.REF and event
  42. * 0x013c as CPU_CLK_UNHALTED.BUS and specifies there is a fixed
  43. * ratio between these counters.
  44. */
  45. /* FIXED_EVENT_CONSTRAINT(0x013c, 2), CPU_CLK_UNHALTED.REF */
  46. INTEL_EVENT_CONSTRAINT(0x10, 0x1), /* FP_COMP_OPS_EXE */
  47. INTEL_EVENT_CONSTRAINT(0x11, 0x2), /* FP_ASSIST */
  48. INTEL_EVENT_CONSTRAINT(0x12, 0x2), /* MUL */
  49. INTEL_EVENT_CONSTRAINT(0x13, 0x2), /* DIV */
  50. INTEL_EVENT_CONSTRAINT(0x14, 0x1), /* CYCLES_DIV_BUSY */
  51. INTEL_EVENT_CONSTRAINT(0x18, 0x1), /* IDLE_DURING_DIV */
  52. INTEL_EVENT_CONSTRAINT(0x19, 0x2), /* DELAYED_BYPASS */
  53. INTEL_EVENT_CONSTRAINT(0xa1, 0x1), /* RS_UOPS_DISPATCH_CYCLES */
  54. INTEL_EVENT_CONSTRAINT(0xc9, 0x1), /* ITLB_MISS_RETIRED (T30-9) */
  55. INTEL_EVENT_CONSTRAINT(0xcb, 0x1), /* MEM_LOAD_RETIRED */
  56. EVENT_CONSTRAINT_END
  57. };
  58. static struct event_constraint intel_nehalem_event_constraints[] __read_mostly =
  59. {
  60. FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
  61. FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
  62. /* FIXED_EVENT_CONSTRAINT(0x013c, 2), CPU_CLK_UNHALTED.REF */
  63. INTEL_EVENT_CONSTRAINT(0x40, 0x3), /* L1D_CACHE_LD */
  64. INTEL_EVENT_CONSTRAINT(0x41, 0x3), /* L1D_CACHE_ST */
  65. INTEL_EVENT_CONSTRAINT(0x42, 0x3), /* L1D_CACHE_LOCK */
  66. INTEL_EVENT_CONSTRAINT(0x43, 0x3), /* L1D_ALL_REF */
  67. INTEL_EVENT_CONSTRAINT(0x48, 0x3), /* L1D_PEND_MISS */
  68. INTEL_EVENT_CONSTRAINT(0x4e, 0x3), /* L1D_PREFETCH */
  69. INTEL_EVENT_CONSTRAINT(0x51, 0x3), /* L1D */
  70. INTEL_EVENT_CONSTRAINT(0x63, 0x3), /* CACHE_LOCK_CYCLES */
  71. EVENT_CONSTRAINT_END
  72. };
  73. static struct extra_reg intel_nehalem_extra_regs[] __read_mostly =
  74. {
  75. INTEL_EVENT_EXTRA_REG(0xb7, MSR_OFFCORE_RSP_0, 0xffff, RSP_0),
  76. EVENT_EXTRA_END
  77. };
  78. static struct event_constraint intel_westmere_event_constraints[] __read_mostly =
  79. {
  80. FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
  81. FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
  82. /* FIXED_EVENT_CONSTRAINT(0x013c, 2), CPU_CLK_UNHALTED.REF */
  83. INTEL_EVENT_CONSTRAINT(0x51, 0x3), /* L1D */
  84. INTEL_EVENT_CONSTRAINT(0x60, 0x1), /* OFFCORE_REQUESTS_OUTSTANDING */
  85. INTEL_EVENT_CONSTRAINT(0x63, 0x3), /* CACHE_LOCK_CYCLES */
  86. INTEL_EVENT_CONSTRAINT(0xb3, 0x1), /* SNOOPQ_REQUEST_OUTSTANDING */
  87. EVENT_CONSTRAINT_END
  88. };
  89. static struct event_constraint intel_snb_event_constraints[] __read_mostly =
  90. {
  91. FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
  92. FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
  93. /* FIXED_EVENT_CONSTRAINT(0x013c, 2), CPU_CLK_UNHALTED.REF */
  94. INTEL_EVENT_CONSTRAINT(0x48, 0x4), /* L1D_PEND_MISS.PENDING */
  95. INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
  96. INTEL_EVENT_CONSTRAINT(0xcd, 0x8), /* MEM_TRANS_RETIRED.LOAD_LATENCY */
  97. EVENT_CONSTRAINT_END
  98. };
  99. static struct extra_reg intel_westmere_extra_regs[] __read_mostly =
  100. {
  101. INTEL_EVENT_EXTRA_REG(0xb7, MSR_OFFCORE_RSP_0, 0xffff, RSP_0),
  102. INTEL_EVENT_EXTRA_REG(0xbb, MSR_OFFCORE_RSP_1, 0xffff, RSP_1),
  103. EVENT_EXTRA_END
  104. };
  105. static struct event_constraint intel_gen_event_constraints[] __read_mostly =
  106. {
  107. FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
  108. FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
  109. /* FIXED_EVENT_CONSTRAINT(0x013c, 2), CPU_CLK_UNHALTED.REF */
  110. EVENT_CONSTRAINT_END
  111. };
  112. static struct extra_reg intel_snb_extra_regs[] __read_mostly = {
  113. INTEL_EVENT_EXTRA_REG(0xb7, MSR_OFFCORE_RSP_0, 0x3fffffffffull, RSP_0),
  114. INTEL_EVENT_EXTRA_REG(0xbb, MSR_OFFCORE_RSP_1, 0x3fffffffffull, RSP_1),
  115. EVENT_EXTRA_END
  116. };
  117. static u64 intel_pmu_event_map(int hw_event)
  118. {
  119. return intel_perfmon_event_map[hw_event];
  120. }
  121. static __initconst const u64 snb_hw_cache_event_ids
  122. [PERF_COUNT_HW_CACHE_MAX]
  123. [PERF_COUNT_HW_CACHE_OP_MAX]
  124. [PERF_COUNT_HW_CACHE_RESULT_MAX] =
  125. {
  126. [ C(L1D) ] = {
  127. [ C(OP_READ) ] = {
  128. [ C(RESULT_ACCESS) ] = 0xf1d0, /* MEM_UOP_RETIRED.LOADS */
  129. [ C(RESULT_MISS) ] = 0x0151, /* L1D.REPLACEMENT */
  130. },
  131. [ C(OP_WRITE) ] = {
  132. [ C(RESULT_ACCESS) ] = 0xf2d0, /* MEM_UOP_RETIRED.STORES */
  133. [ C(RESULT_MISS) ] = 0x0851, /* L1D.ALL_M_REPLACEMENT */
  134. },
  135. [ C(OP_PREFETCH) ] = {
  136. [ C(RESULT_ACCESS) ] = 0x0,
  137. [ C(RESULT_MISS) ] = 0x024e, /* HW_PRE_REQ.DL1_MISS */
  138. },
  139. },
  140. [ C(L1I ) ] = {
  141. [ C(OP_READ) ] = {
  142. [ C(RESULT_ACCESS) ] = 0x0,
  143. [ C(RESULT_MISS) ] = 0x0280, /* ICACHE.MISSES */
  144. },
  145. [ C(OP_WRITE) ] = {
  146. [ C(RESULT_ACCESS) ] = -1,
  147. [ C(RESULT_MISS) ] = -1,
  148. },
  149. [ C(OP_PREFETCH) ] = {
  150. [ C(RESULT_ACCESS) ] = 0x0,
  151. [ C(RESULT_MISS) ] = 0x0,
  152. },
  153. },
  154. [ C(LL ) ] = {
  155. [ C(OP_READ) ] = {
  156. /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
  157. [ C(RESULT_ACCESS) ] = 0x01b7,
  158. /* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
  159. [ C(RESULT_MISS) ] = 0x01b7,
  160. },
  161. [ C(OP_WRITE) ] = {
  162. /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
  163. [ C(RESULT_ACCESS) ] = 0x01b7,
  164. /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
  165. [ C(RESULT_MISS) ] = 0x01b7,
  166. },
  167. [ C(OP_PREFETCH) ] = {
  168. /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
  169. [ C(RESULT_ACCESS) ] = 0x01b7,
  170. /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
  171. [ C(RESULT_MISS) ] = 0x01b7,
  172. },
  173. },
  174. [ C(DTLB) ] = {
  175. [ C(OP_READ) ] = {
  176. [ C(RESULT_ACCESS) ] = 0x81d0, /* MEM_UOP_RETIRED.ALL_LOADS */
  177. [ C(RESULT_MISS) ] = 0x0108, /* DTLB_LOAD_MISSES.CAUSES_A_WALK */
  178. },
  179. [ C(OP_WRITE) ] = {
  180. [ C(RESULT_ACCESS) ] = 0x82d0, /* MEM_UOP_RETIRED.ALL_STORES */
  181. [ C(RESULT_MISS) ] = 0x0149, /* DTLB_STORE_MISSES.MISS_CAUSES_A_WALK */
  182. },
  183. [ C(OP_PREFETCH) ] = {
  184. [ C(RESULT_ACCESS) ] = 0x0,
  185. [ C(RESULT_MISS) ] = 0x0,
  186. },
  187. },
  188. [ C(ITLB) ] = {
  189. [ C(OP_READ) ] = {
  190. [ C(RESULT_ACCESS) ] = 0x1085, /* ITLB_MISSES.STLB_HIT */
  191. [ C(RESULT_MISS) ] = 0x0185, /* ITLB_MISSES.CAUSES_A_WALK */
  192. },
  193. [ C(OP_WRITE) ] = {
  194. [ C(RESULT_ACCESS) ] = -1,
  195. [ C(RESULT_MISS) ] = -1,
  196. },
  197. [ C(OP_PREFETCH) ] = {
  198. [ C(RESULT_ACCESS) ] = -1,
  199. [ C(RESULT_MISS) ] = -1,
  200. },
  201. },
  202. [ C(BPU ) ] = {
  203. [ C(OP_READ) ] = {
  204. [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
  205. [ C(RESULT_MISS) ] = 0x00c5, /* BR_MISP_RETIRED.ALL_BRANCHES */
  206. },
  207. [ C(OP_WRITE) ] = {
  208. [ C(RESULT_ACCESS) ] = -1,
  209. [ C(RESULT_MISS) ] = -1,
  210. },
  211. [ C(OP_PREFETCH) ] = {
  212. [ C(RESULT_ACCESS) ] = -1,
  213. [ C(RESULT_MISS) ] = -1,
  214. },
  215. },
  216. [ C(NODE) ] = {
  217. [ C(OP_READ) ] = {
  218. [ C(RESULT_ACCESS) ] = -1,
  219. [ C(RESULT_MISS) ] = -1,
  220. },
  221. [ C(OP_WRITE) ] = {
  222. [ C(RESULT_ACCESS) ] = -1,
  223. [ C(RESULT_MISS) ] = -1,
  224. },
  225. [ C(OP_PREFETCH) ] = {
  226. [ C(RESULT_ACCESS) ] = -1,
  227. [ C(RESULT_MISS) ] = -1,
  228. },
  229. },
  230. };
  231. static __initconst const u64 westmere_hw_cache_event_ids
  232. [PERF_COUNT_HW_CACHE_MAX]
  233. [PERF_COUNT_HW_CACHE_OP_MAX]
  234. [PERF_COUNT_HW_CACHE_RESULT_MAX] =
  235. {
  236. [ C(L1D) ] = {
  237. [ C(OP_READ) ] = {
  238. [ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS */
  239. [ C(RESULT_MISS) ] = 0x0151, /* L1D.REPL */
  240. },
  241. [ C(OP_WRITE) ] = {
  242. [ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES */
  243. [ C(RESULT_MISS) ] = 0x0251, /* L1D.M_REPL */
  244. },
  245. [ C(OP_PREFETCH) ] = {
  246. [ C(RESULT_ACCESS) ] = 0x014e, /* L1D_PREFETCH.REQUESTS */
  247. [ C(RESULT_MISS) ] = 0x024e, /* L1D_PREFETCH.MISS */
  248. },
  249. },
  250. [ C(L1I ) ] = {
  251. [ C(OP_READ) ] = {
  252. [ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS */
  253. [ C(RESULT_MISS) ] = 0x0280, /* L1I.MISSES */
  254. },
  255. [ C(OP_WRITE) ] = {
  256. [ C(RESULT_ACCESS) ] = -1,
  257. [ C(RESULT_MISS) ] = -1,
  258. },
  259. [ C(OP_PREFETCH) ] = {
  260. [ C(RESULT_ACCESS) ] = 0x0,
  261. [ C(RESULT_MISS) ] = 0x0,
  262. },
  263. },
  264. [ C(LL ) ] = {
  265. [ C(OP_READ) ] = {
  266. /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
  267. [ C(RESULT_ACCESS) ] = 0x01b7,
  268. /* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
  269. [ C(RESULT_MISS) ] = 0x01b7,
  270. },
  271. /*
  272. * Use RFO, not WRITEBACK, because a write miss would typically occur
  273. * on RFO.
  274. */
  275. [ C(OP_WRITE) ] = {
  276. /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
  277. [ C(RESULT_ACCESS) ] = 0x01b7,
  278. /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
  279. [ C(RESULT_MISS) ] = 0x01b7,
  280. },
  281. [ C(OP_PREFETCH) ] = {
  282. /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
  283. [ C(RESULT_ACCESS) ] = 0x01b7,
  284. /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
  285. [ C(RESULT_MISS) ] = 0x01b7,
  286. },
  287. },
  288. [ C(DTLB) ] = {
  289. [ C(OP_READ) ] = {
  290. [ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS */
  291. [ C(RESULT_MISS) ] = 0x0108, /* DTLB_LOAD_MISSES.ANY */
  292. },
  293. [ C(OP_WRITE) ] = {
  294. [ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES */
  295. [ C(RESULT_MISS) ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS */
  296. },
  297. [ C(OP_PREFETCH) ] = {
  298. [ C(RESULT_ACCESS) ] = 0x0,
  299. [ C(RESULT_MISS) ] = 0x0,
  300. },
  301. },
  302. [ C(ITLB) ] = {
  303. [ C(OP_READ) ] = {
  304. [ C(RESULT_ACCESS) ] = 0x01c0, /* INST_RETIRED.ANY_P */
  305. [ C(RESULT_MISS) ] = 0x0185, /* ITLB_MISSES.ANY */
  306. },
  307. [ C(OP_WRITE) ] = {
  308. [ C(RESULT_ACCESS) ] = -1,
  309. [ C(RESULT_MISS) ] = -1,
  310. },
  311. [ C(OP_PREFETCH) ] = {
  312. [ C(RESULT_ACCESS) ] = -1,
  313. [ C(RESULT_MISS) ] = -1,
  314. },
  315. },
  316. [ C(BPU ) ] = {
  317. [ C(OP_READ) ] = {
  318. [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
  319. [ C(RESULT_MISS) ] = 0x03e8, /* BPU_CLEARS.ANY */
  320. },
  321. [ C(OP_WRITE) ] = {
  322. [ C(RESULT_ACCESS) ] = -1,
  323. [ C(RESULT_MISS) ] = -1,
  324. },
  325. [ C(OP_PREFETCH) ] = {
  326. [ C(RESULT_ACCESS) ] = -1,
  327. [ C(RESULT_MISS) ] = -1,
  328. },
  329. },
  330. [ C(NODE) ] = {
  331. [ C(OP_READ) ] = {
  332. [ C(RESULT_ACCESS) ] = 0x01b7,
  333. [ C(RESULT_MISS) ] = 0x01b7,
  334. },
  335. [ C(OP_WRITE) ] = {
  336. [ C(RESULT_ACCESS) ] = 0x01b7,
  337. [ C(RESULT_MISS) ] = 0x01b7,
  338. },
  339. [ C(OP_PREFETCH) ] = {
  340. [ C(RESULT_ACCESS) ] = 0x01b7,
  341. [ C(RESULT_MISS) ] = 0x01b7,
  342. },
  343. },
  344. };
  345. /*
  346. * Nehalem/Westmere MSR_OFFCORE_RESPONSE bits;
  347. * See IA32 SDM Vol 3B 30.6.1.3
  348. */
  349. #define NHM_DMND_DATA_RD (1 << 0)
  350. #define NHM_DMND_RFO (1 << 1)
  351. #define NHM_DMND_IFETCH (1 << 2)
  352. #define NHM_DMND_WB (1 << 3)
  353. #define NHM_PF_DATA_RD (1 << 4)
  354. #define NHM_PF_DATA_RFO (1 << 5)
  355. #define NHM_PF_IFETCH (1 << 6)
  356. #define NHM_OFFCORE_OTHER (1 << 7)
  357. #define NHM_UNCORE_HIT (1 << 8)
  358. #define NHM_OTHER_CORE_HIT_SNP (1 << 9)
  359. #define NHM_OTHER_CORE_HITM (1 << 10)
  360. /* reserved */
  361. #define NHM_REMOTE_CACHE_FWD (1 << 12)
  362. #define NHM_REMOTE_DRAM (1 << 13)
  363. #define NHM_LOCAL_DRAM (1 << 14)
  364. #define NHM_NON_DRAM (1 << 15)
  365. #define NHM_ALL_DRAM (NHM_REMOTE_DRAM|NHM_LOCAL_DRAM)
  366. #define NHM_DMND_READ (NHM_DMND_DATA_RD)
  367. #define NHM_DMND_WRITE (NHM_DMND_RFO|NHM_DMND_WB)
  368. #define NHM_DMND_PREFETCH (NHM_PF_DATA_RD|NHM_PF_DATA_RFO)
  369. #define NHM_L3_HIT (NHM_UNCORE_HIT|NHM_OTHER_CORE_HIT_SNP|NHM_OTHER_CORE_HITM)
  370. #define NHM_L3_MISS (NHM_NON_DRAM|NHM_ALL_DRAM|NHM_REMOTE_CACHE_FWD)
  371. #define NHM_L3_ACCESS (NHM_L3_HIT|NHM_L3_MISS)
  372. static __initconst const u64 nehalem_hw_cache_extra_regs
  373. [PERF_COUNT_HW_CACHE_MAX]
  374. [PERF_COUNT_HW_CACHE_OP_MAX]
  375. [PERF_COUNT_HW_CACHE_RESULT_MAX] =
  376. {
  377. [ C(LL ) ] = {
  378. [ C(OP_READ) ] = {
  379. [ C(RESULT_ACCESS) ] = NHM_DMND_READ|NHM_L3_ACCESS,
  380. [ C(RESULT_MISS) ] = NHM_DMND_READ|NHM_L3_MISS,
  381. },
  382. [ C(OP_WRITE) ] = {
  383. [ C(RESULT_ACCESS) ] = NHM_DMND_WRITE|NHM_L3_ACCESS,
  384. [ C(RESULT_MISS) ] = NHM_DMND_WRITE|NHM_L3_MISS,
  385. },
  386. [ C(OP_PREFETCH) ] = {
  387. [ C(RESULT_ACCESS) ] = NHM_DMND_PREFETCH|NHM_L3_ACCESS,
  388. [ C(RESULT_MISS) ] = NHM_DMND_PREFETCH|NHM_L3_MISS,
  389. },
  390. },
  391. [ C(NODE) ] = {
  392. [ C(OP_READ) ] = {
  393. [ C(RESULT_ACCESS) ] = NHM_DMND_READ|NHM_ALL_DRAM,
  394. [ C(RESULT_MISS) ] = NHM_DMND_READ|NHM_REMOTE_DRAM,
  395. },
  396. [ C(OP_WRITE) ] = {
  397. [ C(RESULT_ACCESS) ] = NHM_DMND_WRITE|NHM_ALL_DRAM,
  398. [ C(RESULT_MISS) ] = NHM_DMND_WRITE|NHM_REMOTE_DRAM,
  399. },
  400. [ C(OP_PREFETCH) ] = {
  401. [ C(RESULT_ACCESS) ] = NHM_DMND_PREFETCH|NHM_ALL_DRAM,
  402. [ C(RESULT_MISS) ] = NHM_DMND_PREFETCH|NHM_REMOTE_DRAM,
  403. },
  404. },
  405. };
  406. static __initconst const u64 nehalem_hw_cache_event_ids
  407. [PERF_COUNT_HW_CACHE_MAX]
  408. [PERF_COUNT_HW_CACHE_OP_MAX]
  409. [PERF_COUNT_HW_CACHE_RESULT_MAX] =
  410. {
  411. [ C(L1D) ] = {
  412. [ C(OP_READ) ] = {
  413. [ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS */
  414. [ C(RESULT_MISS) ] = 0x0151, /* L1D.REPL */
  415. },
  416. [ C(OP_WRITE) ] = {
  417. [ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES */
  418. [ C(RESULT_MISS) ] = 0x0251, /* L1D.M_REPL */
  419. },
  420. [ C(OP_PREFETCH) ] = {
  421. [ C(RESULT_ACCESS) ] = 0x014e, /* L1D_PREFETCH.REQUESTS */
  422. [ C(RESULT_MISS) ] = 0x024e, /* L1D_PREFETCH.MISS */
  423. },
  424. },
  425. [ C(L1I ) ] = {
  426. [ C(OP_READ) ] = {
  427. [ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS */
  428. [ C(RESULT_MISS) ] = 0x0280, /* L1I.MISSES */
  429. },
  430. [ C(OP_WRITE) ] = {
  431. [ C(RESULT_ACCESS) ] = -1,
  432. [ C(RESULT_MISS) ] = -1,
  433. },
  434. [ C(OP_PREFETCH) ] = {
  435. [ C(RESULT_ACCESS) ] = 0x0,
  436. [ C(RESULT_MISS) ] = 0x0,
  437. },
  438. },
  439. [ C(LL ) ] = {
  440. [ C(OP_READ) ] = {
  441. /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
  442. [ C(RESULT_ACCESS) ] = 0x01b7,
  443. /* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
  444. [ C(RESULT_MISS) ] = 0x01b7,
  445. },
  446. /*
  447. * Use RFO, not WRITEBACK, because a write miss would typically occur
  448. * on RFO.
  449. */
  450. [ C(OP_WRITE) ] = {
  451. /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
  452. [ C(RESULT_ACCESS) ] = 0x01b7,
  453. /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
  454. [ C(RESULT_MISS) ] = 0x01b7,
  455. },
  456. [ C(OP_PREFETCH) ] = {
  457. /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
  458. [ C(RESULT_ACCESS) ] = 0x01b7,
  459. /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
  460. [ C(RESULT_MISS) ] = 0x01b7,
  461. },
  462. },
  463. [ C(DTLB) ] = {
  464. [ C(OP_READ) ] = {
  465. [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI (alias) */
  466. [ C(RESULT_MISS) ] = 0x0108, /* DTLB_LOAD_MISSES.ANY */
  467. },
  468. [ C(OP_WRITE) ] = {
  469. [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI (alias) */
  470. [ C(RESULT_MISS) ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS */
  471. },
  472. [ C(OP_PREFETCH) ] = {
  473. [ C(RESULT_ACCESS) ] = 0x0,
  474. [ C(RESULT_MISS) ] = 0x0,
  475. },
  476. },
  477. [ C(ITLB) ] = {
  478. [ C(OP_READ) ] = {
  479. [ C(RESULT_ACCESS) ] = 0x01c0, /* INST_RETIRED.ANY_P */
  480. [ C(RESULT_MISS) ] = 0x20c8, /* ITLB_MISS_RETIRED */
  481. },
  482. [ C(OP_WRITE) ] = {
  483. [ C(RESULT_ACCESS) ] = -1,
  484. [ C(RESULT_MISS) ] = -1,
  485. },
  486. [ C(OP_PREFETCH) ] = {
  487. [ C(RESULT_ACCESS) ] = -1,
  488. [ C(RESULT_MISS) ] = -1,
  489. },
  490. },
  491. [ C(BPU ) ] = {
  492. [ C(OP_READ) ] = {
  493. [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
  494. [ C(RESULT_MISS) ] = 0x03e8, /* BPU_CLEARS.ANY */
  495. },
  496. [ C(OP_WRITE) ] = {
  497. [ C(RESULT_ACCESS) ] = -1,
  498. [ C(RESULT_MISS) ] = -1,
  499. },
  500. [ C(OP_PREFETCH) ] = {
  501. [ C(RESULT_ACCESS) ] = -1,
  502. [ C(RESULT_MISS) ] = -1,
  503. },
  504. },
  505. [ C(NODE) ] = {
  506. [ C(OP_READ) ] = {
  507. [ C(RESULT_ACCESS) ] = 0x01b7,
  508. [ C(RESULT_MISS) ] = 0x01b7,
  509. },
  510. [ C(OP_WRITE) ] = {
  511. [ C(RESULT_ACCESS) ] = 0x01b7,
  512. [ C(RESULT_MISS) ] = 0x01b7,
  513. },
  514. [ C(OP_PREFETCH) ] = {
  515. [ C(RESULT_ACCESS) ] = 0x01b7,
  516. [ C(RESULT_MISS) ] = 0x01b7,
  517. },
  518. },
  519. };
  520. static __initconst const u64 core2_hw_cache_event_ids
  521. [PERF_COUNT_HW_CACHE_MAX]
  522. [PERF_COUNT_HW_CACHE_OP_MAX]
  523. [PERF_COUNT_HW_CACHE_RESULT_MAX] =
  524. {
  525. [ C(L1D) ] = {
  526. [ C(OP_READ) ] = {
  527. [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI */
  528. [ C(RESULT_MISS) ] = 0x0140, /* L1D_CACHE_LD.I_STATE */
  529. },
  530. [ C(OP_WRITE) ] = {
  531. [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI */
  532. [ C(RESULT_MISS) ] = 0x0141, /* L1D_CACHE_ST.I_STATE */
  533. },
  534. [ C(OP_PREFETCH) ] = {
  535. [ C(RESULT_ACCESS) ] = 0x104e, /* L1D_PREFETCH.REQUESTS */
  536. [ C(RESULT_MISS) ] = 0,
  537. },
  538. },
  539. [ C(L1I ) ] = {
  540. [ C(OP_READ) ] = {
  541. [ C(RESULT_ACCESS) ] = 0x0080, /* L1I.READS */
  542. [ C(RESULT_MISS) ] = 0x0081, /* L1I.MISSES */
  543. },
  544. [ C(OP_WRITE) ] = {
  545. [ C(RESULT_ACCESS) ] = -1,
  546. [ C(RESULT_MISS) ] = -1,
  547. },
  548. [ C(OP_PREFETCH) ] = {
  549. [ C(RESULT_ACCESS) ] = 0,
  550. [ C(RESULT_MISS) ] = 0,
  551. },
  552. },
  553. [ C(LL ) ] = {
  554. [ C(OP_READ) ] = {
  555. [ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI */
  556. [ C(RESULT_MISS) ] = 0x4129, /* L2_LD.ISTATE */
  557. },
  558. [ C(OP_WRITE) ] = {
  559. [ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI */
  560. [ C(RESULT_MISS) ] = 0x412A, /* L2_ST.ISTATE */
  561. },
  562. [ C(OP_PREFETCH) ] = {
  563. [ C(RESULT_ACCESS) ] = 0,
  564. [ C(RESULT_MISS) ] = 0,
  565. },
  566. },
  567. [ C(DTLB) ] = {
  568. [ C(OP_READ) ] = {
  569. [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI (alias) */
  570. [ C(RESULT_MISS) ] = 0x0208, /* DTLB_MISSES.MISS_LD */
  571. },
  572. [ C(OP_WRITE) ] = {
  573. [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI (alias) */
  574. [ C(RESULT_MISS) ] = 0x0808, /* DTLB_MISSES.MISS_ST */
  575. },
  576. [ C(OP_PREFETCH) ] = {
  577. [ C(RESULT_ACCESS) ] = 0,
  578. [ C(RESULT_MISS) ] = 0,
  579. },
  580. },
  581. [ C(ITLB) ] = {
  582. [ C(OP_READ) ] = {
  583. [ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P */
  584. [ C(RESULT_MISS) ] = 0x1282, /* ITLBMISSES */
  585. },
  586. [ C(OP_WRITE) ] = {
  587. [ C(RESULT_ACCESS) ] = -1,
  588. [ C(RESULT_MISS) ] = -1,
  589. },
  590. [ C(OP_PREFETCH) ] = {
  591. [ C(RESULT_ACCESS) ] = -1,
  592. [ C(RESULT_MISS) ] = -1,
  593. },
  594. },
  595. [ C(BPU ) ] = {
  596. [ C(OP_READ) ] = {
  597. [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY */
  598. [ C(RESULT_MISS) ] = 0x00c5, /* BP_INST_RETIRED.MISPRED */
  599. },
  600. [ C(OP_WRITE) ] = {
  601. [ C(RESULT_ACCESS) ] = -1,
  602. [ C(RESULT_MISS) ] = -1,
  603. },
  604. [ C(OP_PREFETCH) ] = {
  605. [ C(RESULT_ACCESS) ] = -1,
  606. [ C(RESULT_MISS) ] = -1,
  607. },
  608. },
  609. };
  610. static __initconst const u64 atom_hw_cache_event_ids
  611. [PERF_COUNT_HW_CACHE_MAX]
  612. [PERF_COUNT_HW_CACHE_OP_MAX]
  613. [PERF_COUNT_HW_CACHE_RESULT_MAX] =
  614. {
  615. [ C(L1D) ] = {
  616. [ C(OP_READ) ] = {
  617. [ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE.LD */
  618. [ C(RESULT_MISS) ] = 0,
  619. },
  620. [ C(OP_WRITE) ] = {
  621. [ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE.ST */
  622. [ C(RESULT_MISS) ] = 0,
  623. },
  624. [ C(OP_PREFETCH) ] = {
  625. [ C(RESULT_ACCESS) ] = 0x0,
  626. [ C(RESULT_MISS) ] = 0,
  627. },
  628. },
  629. [ C(L1I ) ] = {
  630. [ C(OP_READ) ] = {
  631. [ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS */
  632. [ C(RESULT_MISS) ] = 0x0280, /* L1I.MISSES */
  633. },
  634. [ C(OP_WRITE) ] = {
  635. [ C(RESULT_ACCESS) ] = -1,
  636. [ C(RESULT_MISS) ] = -1,
  637. },
  638. [ C(OP_PREFETCH) ] = {
  639. [ C(RESULT_ACCESS) ] = 0,
  640. [ C(RESULT_MISS) ] = 0,
  641. },
  642. },
  643. [ C(LL ) ] = {
  644. [ C(OP_READ) ] = {
  645. [ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI */
  646. [ C(RESULT_MISS) ] = 0x4129, /* L2_LD.ISTATE */
  647. },
  648. [ C(OP_WRITE) ] = {
  649. [ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI */
  650. [ C(RESULT_MISS) ] = 0x412A, /* L2_ST.ISTATE */
  651. },
  652. [ C(OP_PREFETCH) ] = {
  653. [ C(RESULT_ACCESS) ] = 0,
  654. [ C(RESULT_MISS) ] = 0,
  655. },
  656. },
  657. [ C(DTLB) ] = {
  658. [ C(OP_READ) ] = {
  659. [ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE_LD.MESI (alias) */
  660. [ C(RESULT_MISS) ] = 0x0508, /* DTLB_MISSES.MISS_LD */
  661. },
  662. [ C(OP_WRITE) ] = {
  663. [ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE_ST.MESI (alias) */
  664. [ C(RESULT_MISS) ] = 0x0608, /* DTLB_MISSES.MISS_ST */
  665. },
  666. [ C(OP_PREFETCH) ] = {
  667. [ C(RESULT_ACCESS) ] = 0,
  668. [ C(RESULT_MISS) ] = 0,
  669. },
  670. },
  671. [ C(ITLB) ] = {
  672. [ C(OP_READ) ] = {
  673. [ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P */
  674. [ C(RESULT_MISS) ] = 0x0282, /* ITLB.MISSES */
  675. },
  676. [ C(OP_WRITE) ] = {
  677. [ C(RESULT_ACCESS) ] = -1,
  678. [ C(RESULT_MISS) ] = -1,
  679. },
  680. [ C(OP_PREFETCH) ] = {
  681. [ C(RESULT_ACCESS) ] = -1,
  682. [ C(RESULT_MISS) ] = -1,
  683. },
  684. },
  685. [ C(BPU ) ] = {
  686. [ C(OP_READ) ] = {
  687. [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY */
  688. [ C(RESULT_MISS) ] = 0x00c5, /* BP_INST_RETIRED.MISPRED */
  689. },
  690. [ C(OP_WRITE) ] = {
  691. [ C(RESULT_ACCESS) ] = -1,
  692. [ C(RESULT_MISS) ] = -1,
  693. },
  694. [ C(OP_PREFETCH) ] = {
  695. [ C(RESULT_ACCESS) ] = -1,
  696. [ C(RESULT_MISS) ] = -1,
  697. },
  698. },
  699. };
  700. static void intel_pmu_disable_all(void)
  701. {
  702. struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
  703. wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0);
  704. if (test_bit(X86_PMC_IDX_FIXED_BTS, cpuc->active_mask))
  705. intel_pmu_disable_bts();
  706. intel_pmu_pebs_disable_all();
  707. intel_pmu_lbr_disable_all();
  708. }
  709. static void intel_pmu_enable_all(int added)
  710. {
  711. struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
  712. intel_pmu_pebs_enable_all();
  713. intel_pmu_lbr_enable_all();
  714. wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, x86_pmu.intel_ctrl);
  715. if (test_bit(X86_PMC_IDX_FIXED_BTS, cpuc->active_mask)) {
  716. struct perf_event *event =
  717. cpuc->events[X86_PMC_IDX_FIXED_BTS];
  718. if (WARN_ON_ONCE(!event))
  719. return;
  720. intel_pmu_enable_bts(event->hw.config);
  721. }
  722. }
  723. /*
  724. * Workaround for:
  725. * Intel Errata AAK100 (model 26)
  726. * Intel Errata AAP53 (model 30)
  727. * Intel Errata BD53 (model 44)
  728. *
  729. * The official story:
  730. * These chips need to be 'reset' when adding counters by programming the
  731. * magic three (non-counting) events 0x4300B5, 0x4300D2, and 0x4300B1 either
  732. * in sequence on the same PMC or on different PMCs.
  733. *
  734. * In practise it appears some of these events do in fact count, and
  735. * we need to programm all 4 events.
  736. */
  737. static void intel_pmu_nhm_workaround(void)
  738. {
  739. struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
  740. static const unsigned long nhm_magic[4] = {
  741. 0x4300B5,
  742. 0x4300D2,
  743. 0x4300B1,
  744. 0x4300B1
  745. };
  746. struct perf_event *event;
  747. int i;
  748. /*
  749. * The Errata requires below steps:
  750. * 1) Clear MSR_IA32_PEBS_ENABLE and MSR_CORE_PERF_GLOBAL_CTRL;
  751. * 2) Configure 4 PERFEVTSELx with the magic events and clear
  752. * the corresponding PMCx;
  753. * 3) set bit0~bit3 of MSR_CORE_PERF_GLOBAL_CTRL;
  754. * 4) Clear MSR_CORE_PERF_GLOBAL_CTRL;
  755. * 5) Clear 4 pairs of ERFEVTSELx and PMCx;
  756. */
  757. /*
  758. * The real steps we choose are a little different from above.
  759. * A) To reduce MSR operations, we don't run step 1) as they
  760. * are already cleared before this function is called;
  761. * B) Call x86_perf_event_update to save PMCx before configuring
  762. * PERFEVTSELx with magic number;
  763. * C) With step 5), we do clear only when the PERFEVTSELx is
  764. * not used currently.
  765. * D) Call x86_perf_event_set_period to restore PMCx;
  766. */
  767. /* We always operate 4 pairs of PERF Counters */
  768. for (i = 0; i < 4; i++) {
  769. event = cpuc->events[i];
  770. if (event)
  771. x86_perf_event_update(event);
  772. }
  773. for (i = 0; i < 4; i++) {
  774. wrmsrl(MSR_ARCH_PERFMON_EVENTSEL0 + i, nhm_magic[i]);
  775. wrmsrl(MSR_ARCH_PERFMON_PERFCTR0 + i, 0x0);
  776. }
  777. wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0xf);
  778. wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0x0);
  779. for (i = 0; i < 4; i++) {
  780. event = cpuc->events[i];
  781. if (event) {
  782. x86_perf_event_set_period(event);
  783. __x86_pmu_enable_event(&event->hw,
  784. ARCH_PERFMON_EVENTSEL_ENABLE);
  785. } else
  786. wrmsrl(MSR_ARCH_PERFMON_EVENTSEL0 + i, 0x0);
  787. }
  788. }
  789. static void intel_pmu_nhm_enable_all(int added)
  790. {
  791. if (added)
  792. intel_pmu_nhm_workaround();
  793. intel_pmu_enable_all(added);
  794. }
  795. static inline u64 intel_pmu_get_status(void)
  796. {
  797. u64 status;
  798. rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
  799. return status;
  800. }
  801. static inline void intel_pmu_ack_status(u64 ack)
  802. {
  803. wrmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, ack);
  804. }
  805. static void intel_pmu_disable_fixed(struct hw_perf_event *hwc)
  806. {
  807. int idx = hwc->idx - X86_PMC_IDX_FIXED;
  808. u64 ctrl_val, mask;
  809. mask = 0xfULL << (idx * 4);
  810. rdmsrl(hwc->config_base, ctrl_val);
  811. ctrl_val &= ~mask;
  812. wrmsrl(hwc->config_base, ctrl_val);
  813. }
  814. static void intel_pmu_disable_event(struct perf_event *event)
  815. {
  816. struct hw_perf_event *hwc = &event->hw;
  817. if (unlikely(hwc->idx == X86_PMC_IDX_FIXED_BTS)) {
  818. intel_pmu_disable_bts();
  819. intel_pmu_drain_bts_buffer();
  820. return;
  821. }
  822. if (unlikely(hwc->config_base == MSR_ARCH_PERFMON_FIXED_CTR_CTRL)) {
  823. intel_pmu_disable_fixed(hwc);
  824. return;
  825. }
  826. x86_pmu_disable_event(event);
  827. if (unlikely(event->attr.precise_ip))
  828. intel_pmu_pebs_disable(event);
  829. }
  830. static void intel_pmu_enable_fixed(struct hw_perf_event *hwc)
  831. {
  832. int idx = hwc->idx - X86_PMC_IDX_FIXED;
  833. u64 ctrl_val, bits, mask;
  834. /*
  835. * Enable IRQ generation (0x8),
  836. * and enable ring-3 counting (0x2) and ring-0 counting (0x1)
  837. * if requested:
  838. */
  839. bits = 0x8ULL;
  840. if (hwc->config & ARCH_PERFMON_EVENTSEL_USR)
  841. bits |= 0x2;
  842. if (hwc->config & ARCH_PERFMON_EVENTSEL_OS)
  843. bits |= 0x1;
  844. /*
  845. * ANY bit is supported in v3 and up
  846. */
  847. if (x86_pmu.version > 2 && hwc->config & ARCH_PERFMON_EVENTSEL_ANY)
  848. bits |= 0x4;
  849. bits <<= (idx * 4);
  850. mask = 0xfULL << (idx * 4);
  851. rdmsrl(hwc->config_base, ctrl_val);
  852. ctrl_val &= ~mask;
  853. ctrl_val |= bits;
  854. wrmsrl(hwc->config_base, ctrl_val);
  855. }
  856. static void intel_pmu_enable_event(struct perf_event *event)
  857. {
  858. struct hw_perf_event *hwc = &event->hw;
  859. if (unlikely(hwc->idx == X86_PMC_IDX_FIXED_BTS)) {
  860. if (!__this_cpu_read(cpu_hw_events.enabled))
  861. return;
  862. intel_pmu_enable_bts(hwc->config);
  863. return;
  864. }
  865. if (unlikely(hwc->config_base == MSR_ARCH_PERFMON_FIXED_CTR_CTRL)) {
  866. intel_pmu_enable_fixed(hwc);
  867. return;
  868. }
  869. if (unlikely(event->attr.precise_ip))
  870. intel_pmu_pebs_enable(event);
  871. __x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
  872. }
  873. /*
  874. * Save and restart an expired event. Called by NMI contexts,
  875. * so it has to be careful about preempting normal event ops:
  876. */
  877. static int intel_pmu_save_and_restart(struct perf_event *event)
  878. {
  879. x86_perf_event_update(event);
  880. return x86_perf_event_set_period(event);
  881. }
  882. static void intel_pmu_reset(void)
  883. {
  884. struct debug_store *ds = __this_cpu_read(cpu_hw_events.ds);
  885. unsigned long flags;
  886. int idx;
  887. if (!x86_pmu.num_counters)
  888. return;
  889. local_irq_save(flags);
  890. printk("clearing PMU state on CPU#%d\n", smp_processor_id());
  891. for (idx = 0; idx < x86_pmu.num_counters; idx++) {
  892. checking_wrmsrl(x86_pmu_config_addr(idx), 0ull);
  893. checking_wrmsrl(x86_pmu_event_addr(idx), 0ull);
  894. }
  895. for (idx = 0; idx < x86_pmu.num_counters_fixed; idx++)
  896. checking_wrmsrl(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, 0ull);
  897. if (ds)
  898. ds->bts_index = ds->bts_buffer_base;
  899. local_irq_restore(flags);
  900. }
  901. /*
  902. * This handler is triggered by the local APIC, so the APIC IRQ handling
  903. * rules apply:
  904. */
  905. static int intel_pmu_handle_irq(struct pt_regs *regs)
  906. {
  907. struct perf_sample_data data;
  908. struct cpu_hw_events *cpuc;
  909. int bit, loops;
  910. u64 status;
  911. int handled;
  912. perf_sample_data_init(&data, 0);
  913. cpuc = &__get_cpu_var(cpu_hw_events);
  914. /*
  915. * Some chipsets need to unmask the LVTPC in a particular spot
  916. * inside the nmi handler. As a result, the unmasking was pushed
  917. * into all the nmi handlers.
  918. *
  919. * This handler doesn't seem to have any issues with the unmasking
  920. * so it was left at the top.
  921. */
  922. apic_write(APIC_LVTPC, APIC_DM_NMI);
  923. intel_pmu_disable_all();
  924. handled = intel_pmu_drain_bts_buffer();
  925. status = intel_pmu_get_status();
  926. if (!status) {
  927. intel_pmu_enable_all(0);
  928. return handled;
  929. }
  930. loops = 0;
  931. again:
  932. intel_pmu_ack_status(status);
  933. if (++loops > 100) {
  934. WARN_ONCE(1, "perfevents: irq loop stuck!\n");
  935. perf_event_print_debug();
  936. intel_pmu_reset();
  937. goto done;
  938. }
  939. inc_irq_stat(apic_perf_irqs);
  940. intel_pmu_lbr_read();
  941. /*
  942. * PEBS overflow sets bit 62 in the global status register
  943. */
  944. if (__test_and_clear_bit(62, (unsigned long *)&status)) {
  945. handled++;
  946. x86_pmu.drain_pebs(regs);
  947. }
  948. for_each_set_bit(bit, (unsigned long *)&status, X86_PMC_IDX_MAX) {
  949. struct perf_event *event = cpuc->events[bit];
  950. handled++;
  951. if (!test_bit(bit, cpuc->active_mask))
  952. continue;
  953. if (!intel_pmu_save_and_restart(event))
  954. continue;
  955. data.period = event->hw.last_period;
  956. if (perf_event_overflow(event, &data, regs))
  957. x86_pmu_stop(event, 0);
  958. }
  959. /*
  960. * Repeat if there is more work to be done:
  961. */
  962. status = intel_pmu_get_status();
  963. if (status)
  964. goto again;
  965. done:
  966. intel_pmu_enable_all(0);
  967. return handled;
  968. }
  969. static struct event_constraint *
  970. intel_bts_constraints(struct perf_event *event)
  971. {
  972. struct hw_perf_event *hwc = &event->hw;
  973. unsigned int hw_event, bts_event;
  974. if (event->attr.freq)
  975. return NULL;
  976. hw_event = hwc->config & INTEL_ARCH_EVENT_MASK;
  977. bts_event = x86_pmu.event_map(PERF_COUNT_HW_BRANCH_INSTRUCTIONS);
  978. if (unlikely(hw_event == bts_event && hwc->sample_period == 1))
  979. return &bts_constraint;
  980. return NULL;
  981. }
  982. static bool intel_try_alt_er(struct perf_event *event, int orig_idx)
  983. {
  984. if (!(x86_pmu.er_flags & ERF_HAS_RSP_1))
  985. return false;
  986. if (event->hw.extra_reg.idx == EXTRA_REG_RSP_0) {
  987. event->hw.config &= ~INTEL_ARCH_EVENT_MASK;
  988. event->hw.config |= 0x01bb;
  989. event->hw.extra_reg.idx = EXTRA_REG_RSP_1;
  990. event->hw.extra_reg.reg = MSR_OFFCORE_RSP_1;
  991. } else if (event->hw.extra_reg.idx == EXTRA_REG_RSP_1) {
  992. event->hw.config &= ~INTEL_ARCH_EVENT_MASK;
  993. event->hw.config |= 0x01b7;
  994. event->hw.extra_reg.idx = EXTRA_REG_RSP_0;
  995. event->hw.extra_reg.reg = MSR_OFFCORE_RSP_0;
  996. }
  997. if (event->hw.extra_reg.idx == orig_idx)
  998. return false;
  999. return true;
  1000. }
  1001. /*
  1002. * manage allocation of shared extra msr for certain events
  1003. *
  1004. * sharing can be:
  1005. * per-cpu: to be shared between the various events on a single PMU
  1006. * per-core: per-cpu + shared by HT threads
  1007. */
  1008. static struct event_constraint *
  1009. __intel_shared_reg_get_constraints(struct cpu_hw_events *cpuc,
  1010. struct perf_event *event)
  1011. {
  1012. struct event_constraint *c = &emptyconstraint;
  1013. struct hw_perf_event_extra *reg = &event->hw.extra_reg;
  1014. struct er_account *era;
  1015. unsigned long flags;
  1016. int orig_idx = reg->idx;
  1017. /* already allocated shared msr */
  1018. if (reg->alloc)
  1019. return &unconstrained;
  1020. again:
  1021. era = &cpuc->shared_regs->regs[reg->idx];
  1022. /*
  1023. * we use spin_lock_irqsave() to avoid lockdep issues when
  1024. * passing a fake cpuc
  1025. */
  1026. raw_spin_lock_irqsave(&era->lock, flags);
  1027. if (!atomic_read(&era->ref) || era->config == reg->config) {
  1028. /* lock in msr value */
  1029. era->config = reg->config;
  1030. era->reg = reg->reg;
  1031. /* one more user */
  1032. atomic_inc(&era->ref);
  1033. /* no need to reallocate during incremental event scheduling */
  1034. reg->alloc = 1;
  1035. /*
  1036. * All events using extra_reg are unconstrained.
  1037. * Avoids calling x86_get_event_constraints()
  1038. *
  1039. * Must revisit if extra_reg controlling events
  1040. * ever have constraints. Worst case we go through
  1041. * the regular event constraint table.
  1042. */
  1043. c = &unconstrained;
  1044. } else if (intel_try_alt_er(event, orig_idx)) {
  1045. raw_spin_unlock(&era->lock);
  1046. goto again;
  1047. }
  1048. raw_spin_unlock_irqrestore(&era->lock, flags);
  1049. return c;
  1050. }
  1051. static void
  1052. __intel_shared_reg_put_constraints(struct cpu_hw_events *cpuc,
  1053. struct hw_perf_event_extra *reg)
  1054. {
  1055. struct er_account *era;
  1056. /*
  1057. * only put constraint if extra reg was actually
  1058. * allocated. Also takes care of event which do
  1059. * not use an extra shared reg
  1060. */
  1061. if (!reg->alloc)
  1062. return;
  1063. era = &cpuc->shared_regs->regs[reg->idx];
  1064. /* one fewer user */
  1065. atomic_dec(&era->ref);
  1066. /* allocate again next time */
  1067. reg->alloc = 0;
  1068. }
  1069. static struct event_constraint *
  1070. intel_shared_regs_constraints(struct cpu_hw_events *cpuc,
  1071. struct perf_event *event)
  1072. {
  1073. struct event_constraint *c = NULL;
  1074. if (event->hw.extra_reg.idx != EXTRA_REG_NONE)
  1075. c = __intel_shared_reg_get_constraints(cpuc, event);
  1076. return c;
  1077. }
  1078. static struct event_constraint *
  1079. intel_get_event_constraints(struct cpu_hw_events *cpuc, struct perf_event *event)
  1080. {
  1081. struct event_constraint *c;
  1082. c = intel_bts_constraints(event);
  1083. if (c)
  1084. return c;
  1085. c = intel_pebs_constraints(event);
  1086. if (c)
  1087. return c;
  1088. c = intel_shared_regs_constraints(cpuc, event);
  1089. if (c)
  1090. return c;
  1091. return x86_get_event_constraints(cpuc, event);
  1092. }
  1093. static void
  1094. intel_put_shared_regs_event_constraints(struct cpu_hw_events *cpuc,
  1095. struct perf_event *event)
  1096. {
  1097. struct hw_perf_event_extra *reg;
  1098. reg = &event->hw.extra_reg;
  1099. if (reg->idx != EXTRA_REG_NONE)
  1100. __intel_shared_reg_put_constraints(cpuc, reg);
  1101. }
  1102. static void intel_put_event_constraints(struct cpu_hw_events *cpuc,
  1103. struct perf_event *event)
  1104. {
  1105. intel_put_shared_regs_event_constraints(cpuc, event);
  1106. }
  1107. static int intel_pmu_hw_config(struct perf_event *event)
  1108. {
  1109. int ret = x86_pmu_hw_config(event);
  1110. if (ret)
  1111. return ret;
  1112. if (event->attr.precise_ip &&
  1113. (event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
  1114. /*
  1115. * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
  1116. * (0x003c) so that we can use it with PEBS.
  1117. *
  1118. * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
  1119. * PEBS capable. However we can use INST_RETIRED.ANY_P
  1120. * (0x00c0), which is a PEBS capable event, to get the same
  1121. * count.
  1122. *
  1123. * INST_RETIRED.ANY_P counts the number of cycles that retires
  1124. * CNTMASK instructions. By setting CNTMASK to a value (16)
  1125. * larger than the maximum number of instructions that can be
  1126. * retired per cycle (4) and then inverting the condition, we
  1127. * count all cycles that retire 16 or less instructions, which
  1128. * is every cycle.
  1129. *
  1130. * Thereby we gain a PEBS capable cycle counter.
  1131. */
  1132. u64 alt_config = 0x108000c0; /* INST_RETIRED.TOTAL_CYCLES */
  1133. alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
  1134. event->hw.config = alt_config;
  1135. }
  1136. if (event->attr.type != PERF_TYPE_RAW)
  1137. return 0;
  1138. if (!(event->attr.config & ARCH_PERFMON_EVENTSEL_ANY))
  1139. return 0;
  1140. if (x86_pmu.version < 3)
  1141. return -EINVAL;
  1142. if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
  1143. return -EACCES;
  1144. event->hw.config |= ARCH_PERFMON_EVENTSEL_ANY;
  1145. return 0;
  1146. }
  1147. static __initconst const struct x86_pmu core_pmu = {
  1148. .name = "core",
  1149. .handle_irq = x86_pmu_handle_irq,
  1150. .disable_all = x86_pmu_disable_all,
  1151. .enable_all = x86_pmu_enable_all,
  1152. .enable = x86_pmu_enable_event,
  1153. .disable = x86_pmu_disable_event,
  1154. .hw_config = x86_pmu_hw_config,
  1155. .schedule_events = x86_schedule_events,
  1156. .eventsel = MSR_ARCH_PERFMON_EVENTSEL0,
  1157. .perfctr = MSR_ARCH_PERFMON_PERFCTR0,
  1158. .event_map = intel_pmu_event_map,
  1159. .max_events = ARRAY_SIZE(intel_perfmon_event_map),
  1160. .apic = 1,
  1161. /*
  1162. * Intel PMCs cannot be accessed sanely above 32 bit width,
  1163. * so we install an artificial 1<<31 period regardless of
  1164. * the generic event period:
  1165. */
  1166. .max_period = (1ULL << 31) - 1,
  1167. .get_event_constraints = intel_get_event_constraints,
  1168. .put_event_constraints = intel_put_event_constraints,
  1169. .event_constraints = intel_core_event_constraints,
  1170. };
  1171. static struct intel_shared_regs *allocate_shared_regs(int cpu)
  1172. {
  1173. struct intel_shared_regs *regs;
  1174. int i;
  1175. regs = kzalloc_node(sizeof(struct intel_shared_regs),
  1176. GFP_KERNEL, cpu_to_node(cpu));
  1177. if (regs) {
  1178. /*
  1179. * initialize the locks to keep lockdep happy
  1180. */
  1181. for (i = 0; i < EXTRA_REG_MAX; i++)
  1182. raw_spin_lock_init(&regs->regs[i].lock);
  1183. regs->core_id = -1;
  1184. }
  1185. return regs;
  1186. }
  1187. static int intel_pmu_cpu_prepare(int cpu)
  1188. {
  1189. struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
  1190. if (!x86_pmu.extra_regs)
  1191. return NOTIFY_OK;
  1192. cpuc->shared_regs = allocate_shared_regs(cpu);
  1193. if (!cpuc->shared_regs)
  1194. return NOTIFY_BAD;
  1195. return NOTIFY_OK;
  1196. }
  1197. static void intel_pmu_cpu_starting(int cpu)
  1198. {
  1199. struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
  1200. int core_id = topology_core_id(cpu);
  1201. int i;
  1202. init_debug_store_on_cpu(cpu);
  1203. /*
  1204. * Deal with CPUs that don't clear their LBRs on power-up.
  1205. */
  1206. intel_pmu_lbr_reset();
  1207. if (!cpuc->shared_regs || (x86_pmu.er_flags & ERF_NO_HT_SHARING))
  1208. return;
  1209. for_each_cpu(i, topology_thread_cpumask(cpu)) {
  1210. struct intel_shared_regs *pc;
  1211. pc = per_cpu(cpu_hw_events, i).shared_regs;
  1212. if (pc && pc->core_id == core_id) {
  1213. kfree(cpuc->shared_regs);
  1214. cpuc->shared_regs = pc;
  1215. break;
  1216. }
  1217. }
  1218. cpuc->shared_regs->core_id = core_id;
  1219. cpuc->shared_regs->refcnt++;
  1220. }
  1221. static void intel_pmu_cpu_dying(int cpu)
  1222. {
  1223. struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
  1224. struct intel_shared_regs *pc;
  1225. pc = cpuc->shared_regs;
  1226. if (pc) {
  1227. if (pc->core_id == -1 || --pc->refcnt == 0)
  1228. kfree(pc);
  1229. cpuc->shared_regs = NULL;
  1230. }
  1231. fini_debug_store_on_cpu(cpu);
  1232. }
  1233. static __initconst const struct x86_pmu intel_pmu = {
  1234. .name = "Intel",
  1235. .handle_irq = intel_pmu_handle_irq,
  1236. .disable_all = intel_pmu_disable_all,
  1237. .enable_all = intel_pmu_enable_all,
  1238. .enable = intel_pmu_enable_event,
  1239. .disable = intel_pmu_disable_event,
  1240. .hw_config = intel_pmu_hw_config,
  1241. .schedule_events = x86_schedule_events,
  1242. .eventsel = MSR_ARCH_PERFMON_EVENTSEL0,
  1243. .perfctr = MSR_ARCH_PERFMON_PERFCTR0,
  1244. .event_map = intel_pmu_event_map,
  1245. .max_events = ARRAY_SIZE(intel_perfmon_event_map),
  1246. .apic = 1,
  1247. /*
  1248. * Intel PMCs cannot be accessed sanely above 32 bit width,
  1249. * so we install an artificial 1<<31 period regardless of
  1250. * the generic event period:
  1251. */
  1252. .max_period = (1ULL << 31) - 1,
  1253. .get_event_constraints = intel_get_event_constraints,
  1254. .put_event_constraints = intel_put_event_constraints,
  1255. .cpu_prepare = intel_pmu_cpu_prepare,
  1256. .cpu_starting = intel_pmu_cpu_starting,
  1257. .cpu_dying = intel_pmu_cpu_dying,
  1258. };
  1259. static void intel_clovertown_quirks(void)
  1260. {
  1261. /*
  1262. * PEBS is unreliable due to:
  1263. *
  1264. * AJ67 - PEBS may experience CPL leaks
  1265. * AJ68 - PEBS PMI may be delayed by one event
  1266. * AJ69 - GLOBAL_STATUS[62] will only be set when DEBUGCTL[12]
  1267. * AJ106 - FREEZE_LBRS_ON_PMI doesn't work in combination with PEBS
  1268. *
  1269. * AJ67 could be worked around by restricting the OS/USR flags.
  1270. * AJ69 could be worked around by setting PMU_FREEZE_ON_PMI.
  1271. *
  1272. * AJ106 could possibly be worked around by not allowing LBR
  1273. * usage from PEBS, including the fixup.
  1274. * AJ68 could possibly be worked around by always programming
  1275. * a pebs_event_reset[0] value and coping with the lost events.
  1276. *
  1277. * But taken together it might just make sense to not enable PEBS on
  1278. * these chips.
  1279. */
  1280. printk(KERN_WARNING "PEBS disabled due to CPU errata.\n");
  1281. x86_pmu.pebs = 0;
  1282. x86_pmu.pebs_constraints = NULL;
  1283. }
  1284. static __init int intel_pmu_init(void)
  1285. {
  1286. union cpuid10_edx edx;
  1287. union cpuid10_eax eax;
  1288. unsigned int unused;
  1289. unsigned int ebx;
  1290. int version;
  1291. if (!cpu_has(&boot_cpu_data, X86_FEATURE_ARCH_PERFMON)) {
  1292. switch (boot_cpu_data.x86) {
  1293. case 0x6:
  1294. return p6_pmu_init();
  1295. case 0xf:
  1296. return p4_pmu_init();
  1297. }
  1298. return -ENODEV;
  1299. }
  1300. /*
  1301. * Check whether the Architectural PerfMon supports
  1302. * Branch Misses Retired hw_event or not.
  1303. */
  1304. cpuid(10, &eax.full, &ebx, &unused, &edx.full);
  1305. if (eax.split.mask_length <= ARCH_PERFMON_BRANCH_MISSES_RETIRED)
  1306. return -ENODEV;
  1307. version = eax.split.version_id;
  1308. if (version < 2)
  1309. x86_pmu = core_pmu;
  1310. else
  1311. x86_pmu = intel_pmu;
  1312. x86_pmu.version = version;
  1313. x86_pmu.num_counters = eax.split.num_counters;
  1314. x86_pmu.cntval_bits = eax.split.bit_width;
  1315. x86_pmu.cntval_mask = (1ULL << eax.split.bit_width) - 1;
  1316. /*
  1317. * Quirk: v2 perfmon does not report fixed-purpose events, so
  1318. * assume at least 3 events:
  1319. */
  1320. if (version > 1)
  1321. x86_pmu.num_counters_fixed = max((int)edx.split.num_counters_fixed, 3);
  1322. /*
  1323. * v2 and above have a perf capabilities MSR
  1324. */
  1325. if (version > 1) {
  1326. u64 capabilities;
  1327. rdmsrl(MSR_IA32_PERF_CAPABILITIES, capabilities);
  1328. x86_pmu.intel_cap.capabilities = capabilities;
  1329. }
  1330. intel_ds_init();
  1331. /*
  1332. * Install the hw-cache-events table:
  1333. */
  1334. switch (boot_cpu_data.x86_model) {
  1335. case 14: /* 65 nm core solo/duo, "Yonah" */
  1336. pr_cont("Core events, ");
  1337. break;
  1338. case 15: /* original 65 nm celeron/pentium/core2/xeon, "Merom"/"Conroe" */
  1339. x86_pmu.quirks = intel_clovertown_quirks;
  1340. case 22: /* single-core 65 nm celeron/core2solo "Merom-L"/"Conroe-L" */
  1341. case 23: /* current 45 nm celeron/core2/xeon "Penryn"/"Wolfdale" */
  1342. case 29: /* six-core 45 nm xeon "Dunnington" */
  1343. memcpy(hw_cache_event_ids, core2_hw_cache_event_ids,
  1344. sizeof(hw_cache_event_ids));
  1345. intel_pmu_lbr_init_core();
  1346. x86_pmu.event_constraints = intel_core2_event_constraints;
  1347. x86_pmu.pebs_constraints = intel_core2_pebs_event_constraints;
  1348. pr_cont("Core2 events, ");
  1349. break;
  1350. case 26: /* 45 nm nehalem, "Bloomfield" */
  1351. case 30: /* 45 nm nehalem, "Lynnfield" */
  1352. case 46: /* 45 nm nehalem-ex, "Beckton" */
  1353. memcpy(hw_cache_event_ids, nehalem_hw_cache_event_ids,
  1354. sizeof(hw_cache_event_ids));
  1355. memcpy(hw_cache_extra_regs, nehalem_hw_cache_extra_regs,
  1356. sizeof(hw_cache_extra_regs));
  1357. intel_pmu_lbr_init_nhm();
  1358. x86_pmu.event_constraints = intel_nehalem_event_constraints;
  1359. x86_pmu.pebs_constraints = intel_nehalem_pebs_event_constraints;
  1360. x86_pmu.enable_all = intel_pmu_nhm_enable_all;
  1361. x86_pmu.extra_regs = intel_nehalem_extra_regs;
  1362. /* UOPS_ISSUED.STALLED_CYCLES */
  1363. intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] = 0x180010e;
  1364. /* UOPS_EXECUTED.CORE_ACTIVE_CYCLES,c=1,i=1 */
  1365. intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] = 0x1803fb1;
  1366. if (ebx & 0x40) {
  1367. /*
  1368. * Erratum AAJ80 detected, we work it around by using
  1369. * the BR_MISP_EXEC.ANY event. This will over-count
  1370. * branch-misses, but it's still much better than the
  1371. * architectural event which is often completely bogus:
  1372. */
  1373. intel_perfmon_event_map[PERF_COUNT_HW_BRANCH_MISSES] = 0x7f89;
  1374. pr_cont("erratum AAJ80 worked around, ");
  1375. }
  1376. pr_cont("Nehalem events, ");
  1377. break;
  1378. case 28: /* Atom */
  1379. memcpy(hw_cache_event_ids, atom_hw_cache_event_ids,
  1380. sizeof(hw_cache_event_ids));
  1381. intel_pmu_lbr_init_atom();
  1382. x86_pmu.event_constraints = intel_gen_event_constraints;
  1383. x86_pmu.pebs_constraints = intel_atom_pebs_event_constraints;
  1384. pr_cont("Atom events, ");
  1385. break;
  1386. case 37: /* 32 nm nehalem, "Clarkdale" */
  1387. case 44: /* 32 nm nehalem, "Gulftown" */
  1388. case 47: /* 32 nm Xeon E7 */
  1389. memcpy(hw_cache_event_ids, westmere_hw_cache_event_ids,
  1390. sizeof(hw_cache_event_ids));
  1391. memcpy(hw_cache_extra_regs, nehalem_hw_cache_extra_regs,
  1392. sizeof(hw_cache_extra_regs));
  1393. intel_pmu_lbr_init_nhm();
  1394. x86_pmu.event_constraints = intel_westmere_event_constraints;
  1395. x86_pmu.enable_all = intel_pmu_nhm_enable_all;
  1396. x86_pmu.pebs_constraints = intel_westmere_pebs_event_constraints;
  1397. x86_pmu.extra_regs = intel_westmere_extra_regs;
  1398. x86_pmu.er_flags |= ERF_HAS_RSP_1;
  1399. /* UOPS_ISSUED.STALLED_CYCLES */
  1400. intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] = 0x180010e;
  1401. /* UOPS_EXECUTED.CORE_ACTIVE_CYCLES,c=1,i=1 */
  1402. intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] = 0x1803fb1;
  1403. pr_cont("Westmere events, ");
  1404. break;
  1405. case 42: /* SandyBridge */
  1406. memcpy(hw_cache_event_ids, snb_hw_cache_event_ids,
  1407. sizeof(hw_cache_event_ids));
  1408. intel_pmu_lbr_init_nhm();
  1409. x86_pmu.event_constraints = intel_snb_event_constraints;
  1410. x86_pmu.pebs_constraints = intel_snb_pebs_events;
  1411. x86_pmu.extra_regs = intel_snb_extra_regs;
  1412. /* all extra regs are per-cpu when HT is on */
  1413. x86_pmu.er_flags |= ERF_HAS_RSP_1;
  1414. x86_pmu.er_flags |= ERF_NO_HT_SHARING;
  1415. /* UOPS_ISSUED.ANY,c=1,i=1 to count stall cycles */
  1416. intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] = 0x180010e;
  1417. /* UOPS_DISPATCHED.THREAD,c=1,i=1 to count stall cycles*/
  1418. intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] = 0x18001b1;
  1419. pr_cont("SandyBridge events, ");
  1420. break;
  1421. default:
  1422. /*
  1423. * default constraints for v2 and up
  1424. */
  1425. x86_pmu.event_constraints = intel_gen_event_constraints;
  1426. pr_cont("generic architected perfmon, ");
  1427. }
  1428. return 0;
  1429. }
  1430. #else /* CONFIG_CPU_SUP_INTEL */
  1431. static int intel_pmu_init(void)
  1432. {
  1433. return 0;
  1434. }
  1435. static struct intel_shared_regs *allocate_shared_regs(int cpu)
  1436. {
  1437. return NULL;
  1438. }
  1439. #endif /* CONFIG_CPU_SUP_INTEL */