boot.c 48 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444
  1. /*P:010
  2. * A hypervisor allows multiple Operating Systems to run on a single machine.
  3. * To quote David Wheeler: "Any problem in computer science can be solved with
  4. * another layer of indirection."
  5. *
  6. * We keep things simple in two ways. First, we start with a normal Linux
  7. * kernel and insert a module (lg.ko) which allows us to run other Linux
  8. * kernels the same way we'd run processes. We call the first kernel the Host,
  9. * and the others the Guests. The program which sets up and configures Guests
  10. * (such as the example in Documentation/virtual/lguest/lguest.c) is called the
  11. * Launcher.
  12. *
  13. * Secondly, we only run specially modified Guests, not normal kernels: setting
  14. * CONFIG_LGUEST_GUEST to "y" compiles this file into the kernel so it knows
  15. * how to be a Guest at boot time. This means that you can use the same kernel
  16. * you boot normally (ie. as a Host) as a Guest.
  17. *
  18. * These Guests know that they cannot do privileged operations, such as disable
  19. * interrupts, and that they have to ask the Host to do such things explicitly.
  20. * This file consists of all the replacements for such low-level native
  21. * hardware operations: these special Guest versions call the Host.
  22. *
  23. * So how does the kernel know it's a Guest? We'll see that later, but let's
  24. * just say that we end up here where we replace the native functions various
  25. * "paravirt" structures with our Guest versions, then boot like normal.
  26. :*/
  27. /*
  28. * Copyright (C) 2006, Rusty Russell <rusty@rustcorp.com.au> IBM Corporation.
  29. *
  30. * This program is free software; you can redistribute it and/or modify
  31. * it under the terms of the GNU General Public License as published by
  32. * the Free Software Foundation; either version 2 of the License, or
  33. * (at your option) any later version.
  34. *
  35. * This program is distributed in the hope that it will be useful, but
  36. * WITHOUT ANY WARRANTY; without even the implied warranty of
  37. * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
  38. * NON INFRINGEMENT. See the GNU General Public License for more
  39. * details.
  40. *
  41. * You should have received a copy of the GNU General Public License
  42. * along with this program; if not, write to the Free Software
  43. * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  44. */
  45. #include <linux/kernel.h>
  46. #include <linux/start_kernel.h>
  47. #include <linux/string.h>
  48. #include <linux/console.h>
  49. #include <linux/screen_info.h>
  50. #include <linux/irq.h>
  51. #include <linux/interrupt.h>
  52. #include <linux/clocksource.h>
  53. #include <linux/clockchips.h>
  54. #include <linux/lguest.h>
  55. #include <linux/lguest_launcher.h>
  56. #include <linux/virtio_console.h>
  57. #include <linux/pm.h>
  58. #include <asm/apic.h>
  59. #include <asm/lguest.h>
  60. #include <asm/paravirt.h>
  61. #include <asm/param.h>
  62. #include <asm/page.h>
  63. #include <asm/pgtable.h>
  64. #include <asm/desc.h>
  65. #include <asm/setup.h>
  66. #include <asm/e820.h>
  67. #include <asm/mce.h>
  68. #include <asm/io.h>
  69. #include <asm/i387.h>
  70. #include <asm/stackprotector.h>
  71. #include <asm/reboot.h> /* for struct machine_ops */
  72. #include <asm/kvm_para.h>
  73. /*G:010
  74. * Welcome to the Guest!
  75. *
  76. * The Guest in our tale is a simple creature: identical to the Host but
  77. * behaving in simplified but equivalent ways. In particular, the Guest is the
  78. * same kernel as the Host (or at least, built from the same source code).
  79. :*/
  80. struct lguest_data lguest_data = {
  81. .hcall_status = { [0 ... LHCALL_RING_SIZE-1] = 0xFF },
  82. .noirq_start = (u32)lguest_noirq_start,
  83. .noirq_end = (u32)lguest_noirq_end,
  84. .kernel_address = PAGE_OFFSET,
  85. .blocked_interrupts = { 1 }, /* Block timer interrupts */
  86. .syscall_vec = SYSCALL_VECTOR,
  87. };
  88. /*G:037
  89. * async_hcall() is pretty simple: I'm quite proud of it really. We have a
  90. * ring buffer of stored hypercalls which the Host will run though next time we
  91. * do a normal hypercall. Each entry in the ring has 5 slots for the hypercall
  92. * arguments, and a "hcall_status" word which is 0 if the call is ready to go,
  93. * and 255 once the Host has finished with it.
  94. *
  95. * If we come around to a slot which hasn't been finished, then the table is
  96. * full and we just make the hypercall directly. This has the nice side
  97. * effect of causing the Host to run all the stored calls in the ring buffer
  98. * which empties it for next time!
  99. */
  100. static void async_hcall(unsigned long call, unsigned long arg1,
  101. unsigned long arg2, unsigned long arg3,
  102. unsigned long arg4)
  103. {
  104. /* Note: This code assumes we're uniprocessor. */
  105. static unsigned int next_call;
  106. unsigned long flags;
  107. /*
  108. * Disable interrupts if not already disabled: we don't want an
  109. * interrupt handler making a hypercall while we're already doing
  110. * one!
  111. */
  112. local_irq_save(flags);
  113. if (lguest_data.hcall_status[next_call] != 0xFF) {
  114. /* Table full, so do normal hcall which will flush table. */
  115. hcall(call, arg1, arg2, arg3, arg4);
  116. } else {
  117. lguest_data.hcalls[next_call].arg0 = call;
  118. lguest_data.hcalls[next_call].arg1 = arg1;
  119. lguest_data.hcalls[next_call].arg2 = arg2;
  120. lguest_data.hcalls[next_call].arg3 = arg3;
  121. lguest_data.hcalls[next_call].arg4 = arg4;
  122. /* Arguments must all be written before we mark it to go */
  123. wmb();
  124. lguest_data.hcall_status[next_call] = 0;
  125. if (++next_call == LHCALL_RING_SIZE)
  126. next_call = 0;
  127. }
  128. local_irq_restore(flags);
  129. }
  130. /*G:035
  131. * Notice the lazy_hcall() above, rather than hcall(). This is our first real
  132. * optimization trick!
  133. *
  134. * When lazy_mode is set, it means we're allowed to defer all hypercalls and do
  135. * them as a batch when lazy_mode is eventually turned off. Because hypercalls
  136. * are reasonably expensive, batching them up makes sense. For example, a
  137. * large munmap might update dozens of page table entries: that code calls
  138. * paravirt_enter_lazy_mmu(), does the dozen updates, then calls
  139. * lguest_leave_lazy_mode().
  140. *
  141. * So, when we're in lazy mode, we call async_hcall() to store the call for
  142. * future processing:
  143. */
  144. static void lazy_hcall1(unsigned long call, unsigned long arg1)
  145. {
  146. if (paravirt_get_lazy_mode() == PARAVIRT_LAZY_NONE)
  147. hcall(call, arg1, 0, 0, 0);
  148. else
  149. async_hcall(call, arg1, 0, 0, 0);
  150. }
  151. /* You can imagine what lazy_hcall2, 3 and 4 look like. :*/
  152. static void lazy_hcall2(unsigned long call,
  153. unsigned long arg1,
  154. unsigned long arg2)
  155. {
  156. if (paravirt_get_lazy_mode() == PARAVIRT_LAZY_NONE)
  157. hcall(call, arg1, arg2, 0, 0);
  158. else
  159. async_hcall(call, arg1, arg2, 0, 0);
  160. }
  161. static void lazy_hcall3(unsigned long call,
  162. unsigned long arg1,
  163. unsigned long arg2,
  164. unsigned long arg3)
  165. {
  166. if (paravirt_get_lazy_mode() == PARAVIRT_LAZY_NONE)
  167. hcall(call, arg1, arg2, arg3, 0);
  168. else
  169. async_hcall(call, arg1, arg2, arg3, 0);
  170. }
  171. #ifdef CONFIG_X86_PAE
  172. static void lazy_hcall4(unsigned long call,
  173. unsigned long arg1,
  174. unsigned long arg2,
  175. unsigned long arg3,
  176. unsigned long arg4)
  177. {
  178. if (paravirt_get_lazy_mode() == PARAVIRT_LAZY_NONE)
  179. hcall(call, arg1, arg2, arg3, arg4);
  180. else
  181. async_hcall(call, arg1, arg2, arg3, arg4);
  182. }
  183. #endif
  184. /*G:036
  185. * When lazy mode is turned off, we issue the do-nothing hypercall to
  186. * flush any stored calls, and call the generic helper to reset the
  187. * per-cpu lazy mode variable.
  188. */
  189. static void lguest_leave_lazy_mmu_mode(void)
  190. {
  191. hcall(LHCALL_FLUSH_ASYNC, 0, 0, 0, 0);
  192. paravirt_leave_lazy_mmu();
  193. }
  194. /*
  195. * We also catch the end of context switch; we enter lazy mode for much of
  196. * that too, so again we need to flush here.
  197. *
  198. * (Technically, this is lazy CPU mode, and normally we're in lazy MMU
  199. * mode, but unlike Xen, lguest doesn't care about the difference).
  200. */
  201. static void lguest_end_context_switch(struct task_struct *next)
  202. {
  203. hcall(LHCALL_FLUSH_ASYNC, 0, 0, 0, 0);
  204. paravirt_end_context_switch(next);
  205. }
  206. /*G:032
  207. * After that diversion we return to our first native-instruction
  208. * replacements: four functions for interrupt control.
  209. *
  210. * The simplest way of implementing these would be to have "turn interrupts
  211. * off" and "turn interrupts on" hypercalls. Unfortunately, this is too slow:
  212. * these are by far the most commonly called functions of those we override.
  213. *
  214. * So instead we keep an "irq_enabled" field inside our "struct lguest_data",
  215. * which the Guest can update with a single instruction. The Host knows to
  216. * check there before it tries to deliver an interrupt.
  217. */
  218. /*
  219. * save_flags() is expected to return the processor state (ie. "flags"). The
  220. * flags word contains all kind of stuff, but in practice Linux only cares
  221. * about the interrupt flag. Our "save_flags()" just returns that.
  222. */
  223. static unsigned long save_fl(void)
  224. {
  225. return lguest_data.irq_enabled;
  226. }
  227. /* Interrupts go off... */
  228. static void irq_disable(void)
  229. {
  230. lguest_data.irq_enabled = 0;
  231. }
  232. /*
  233. * Let's pause a moment. Remember how I said these are called so often?
  234. * Jeremy Fitzhardinge optimized them so hard early in 2009 that he had to
  235. * break some rules. In particular, these functions are assumed to save their
  236. * own registers if they need to: normal C functions assume they can trash the
  237. * eax register. To use normal C functions, we use
  238. * PV_CALLEE_SAVE_REGS_THUNK(), which pushes %eax onto the stack, calls the
  239. * C function, then restores it.
  240. */
  241. PV_CALLEE_SAVE_REGS_THUNK(save_fl);
  242. PV_CALLEE_SAVE_REGS_THUNK(irq_disable);
  243. /*:*/
  244. /* These are in i386_head.S */
  245. extern void lg_irq_enable(void);
  246. extern void lg_restore_fl(unsigned long flags);
  247. /*M:003
  248. * We could be more efficient in our checking of outstanding interrupts, rather
  249. * than using a branch. One way would be to put the "irq_enabled" field in a
  250. * page by itself, and have the Host write-protect it when an interrupt comes
  251. * in when irqs are disabled. There will then be a page fault as soon as
  252. * interrupts are re-enabled.
  253. *
  254. * A better method is to implement soft interrupt disable generally for x86:
  255. * instead of disabling interrupts, we set a flag. If an interrupt does come
  256. * in, we then disable them for real. This is uncommon, so we could simply use
  257. * a hypercall for interrupt control and not worry about efficiency.
  258. :*/
  259. /*G:034
  260. * The Interrupt Descriptor Table (IDT).
  261. *
  262. * The IDT tells the processor what to do when an interrupt comes in. Each
  263. * entry in the table is a 64-bit descriptor: this holds the privilege level,
  264. * address of the handler, and... well, who cares? The Guest just asks the
  265. * Host to make the change anyway, because the Host controls the real IDT.
  266. */
  267. static void lguest_write_idt_entry(gate_desc *dt,
  268. int entrynum, const gate_desc *g)
  269. {
  270. /*
  271. * The gate_desc structure is 8 bytes long: we hand it to the Host in
  272. * two 32-bit chunks. The whole 32-bit kernel used to hand descriptors
  273. * around like this; typesafety wasn't a big concern in Linux's early
  274. * years.
  275. */
  276. u32 *desc = (u32 *)g;
  277. /* Keep the local copy up to date. */
  278. native_write_idt_entry(dt, entrynum, g);
  279. /* Tell Host about this new entry. */
  280. hcall(LHCALL_LOAD_IDT_ENTRY, entrynum, desc[0], desc[1], 0);
  281. }
  282. /*
  283. * Changing to a different IDT is very rare: we keep the IDT up-to-date every
  284. * time it is written, so we can simply loop through all entries and tell the
  285. * Host about them.
  286. */
  287. static void lguest_load_idt(const struct desc_ptr *desc)
  288. {
  289. unsigned int i;
  290. struct desc_struct *idt = (void *)desc->address;
  291. for (i = 0; i < (desc->size+1)/8; i++)
  292. hcall(LHCALL_LOAD_IDT_ENTRY, i, idt[i].a, idt[i].b, 0);
  293. }
  294. /*
  295. * The Global Descriptor Table.
  296. *
  297. * The Intel architecture defines another table, called the Global Descriptor
  298. * Table (GDT). You tell the CPU where it is (and its size) using the "lgdt"
  299. * instruction, and then several other instructions refer to entries in the
  300. * table. There are three entries which the Switcher needs, so the Host simply
  301. * controls the entire thing and the Guest asks it to make changes using the
  302. * LOAD_GDT hypercall.
  303. *
  304. * This is the exactly like the IDT code.
  305. */
  306. static void lguest_load_gdt(const struct desc_ptr *desc)
  307. {
  308. unsigned int i;
  309. struct desc_struct *gdt = (void *)desc->address;
  310. for (i = 0; i < (desc->size+1)/8; i++)
  311. hcall(LHCALL_LOAD_GDT_ENTRY, i, gdt[i].a, gdt[i].b, 0);
  312. }
  313. /*
  314. * For a single GDT entry which changes, we simply change our copy and
  315. * then tell the host about it.
  316. */
  317. static void lguest_write_gdt_entry(struct desc_struct *dt, int entrynum,
  318. const void *desc, int type)
  319. {
  320. native_write_gdt_entry(dt, entrynum, desc, type);
  321. /* Tell Host about this new entry. */
  322. hcall(LHCALL_LOAD_GDT_ENTRY, entrynum,
  323. dt[entrynum].a, dt[entrynum].b, 0);
  324. }
  325. /*
  326. * There are three "thread local storage" GDT entries which change
  327. * on every context switch (these three entries are how glibc implements
  328. * __thread variables). As an optimization, we have a hypercall
  329. * specifically for this case.
  330. *
  331. * Wouldn't it be nicer to have a general LOAD_GDT_ENTRIES hypercall
  332. * which took a range of entries?
  333. */
  334. static void lguest_load_tls(struct thread_struct *t, unsigned int cpu)
  335. {
  336. /*
  337. * There's one problem which normal hardware doesn't have: the Host
  338. * can't handle us removing entries we're currently using. So we clear
  339. * the GS register here: if it's needed it'll be reloaded anyway.
  340. */
  341. lazy_load_gs(0);
  342. lazy_hcall2(LHCALL_LOAD_TLS, __pa(&t->tls_array), cpu);
  343. }
  344. /*G:038
  345. * That's enough excitement for now, back to ploughing through each of the
  346. * different pv_ops structures (we're about 1/3 of the way through).
  347. *
  348. * This is the Local Descriptor Table, another weird Intel thingy. Linux only
  349. * uses this for some strange applications like Wine. We don't do anything
  350. * here, so they'll get an informative and friendly Segmentation Fault.
  351. */
  352. static void lguest_set_ldt(const void *addr, unsigned entries)
  353. {
  354. }
  355. /*
  356. * This loads a GDT entry into the "Task Register": that entry points to a
  357. * structure called the Task State Segment. Some comments scattered though the
  358. * kernel code indicate that this used for task switching in ages past, along
  359. * with blood sacrifice and astrology.
  360. *
  361. * Now there's nothing interesting in here that we don't get told elsewhere.
  362. * But the native version uses the "ltr" instruction, which makes the Host
  363. * complain to the Guest about a Segmentation Fault and it'll oops. So we
  364. * override the native version with a do-nothing version.
  365. */
  366. static void lguest_load_tr_desc(void)
  367. {
  368. }
  369. /*
  370. * The "cpuid" instruction is a way of querying both the CPU identity
  371. * (manufacturer, model, etc) and its features. It was introduced before the
  372. * Pentium in 1993 and keeps getting extended by both Intel, AMD and others.
  373. * As you might imagine, after a decade and a half this treatment, it is now a
  374. * giant ball of hair. Its entry in the current Intel manual runs to 28 pages.
  375. *
  376. * This instruction even it has its own Wikipedia entry. The Wikipedia entry
  377. * has been translated into 6 languages. I am not making this up!
  378. *
  379. * We could get funky here and identify ourselves as "GenuineLguest", but
  380. * instead we just use the real "cpuid" instruction. Then I pretty much turned
  381. * off feature bits until the Guest booted. (Don't say that: you'll damage
  382. * lguest sales!) Shut up, inner voice! (Hey, just pointing out that this is
  383. * hardly future proof.) No one's listening! They don't like you anyway,
  384. * parenthetic weirdo!
  385. *
  386. * Replacing the cpuid so we can turn features off is great for the kernel, but
  387. * anyone (including userspace) can just use the raw "cpuid" instruction and
  388. * the Host won't even notice since it isn't privileged. So we try not to get
  389. * too worked up about it.
  390. */
  391. static void lguest_cpuid(unsigned int *ax, unsigned int *bx,
  392. unsigned int *cx, unsigned int *dx)
  393. {
  394. int function = *ax;
  395. native_cpuid(ax, bx, cx, dx);
  396. switch (function) {
  397. /*
  398. * CPUID 0 gives the highest legal CPUID number (and the ID string).
  399. * We futureproof our code a little by sticking to known CPUID values.
  400. */
  401. case 0:
  402. if (*ax > 5)
  403. *ax = 5;
  404. break;
  405. /*
  406. * CPUID 1 is a basic feature request.
  407. *
  408. * CX: we only allow kernel to see SSE3, CMPXCHG16B and SSSE3
  409. * DX: SSE, SSE2, FXSR, MMX, CMOV, CMPXCHG8B, TSC, FPU and PAE.
  410. */
  411. case 1:
  412. *cx &= 0x00002201;
  413. *dx &= 0x07808151;
  414. /*
  415. * The Host can do a nice optimization if it knows that the
  416. * kernel mappings (addresses above 0xC0000000 or whatever
  417. * PAGE_OFFSET is set to) haven't changed. But Linux calls
  418. * flush_tlb_user() for both user and kernel mappings unless
  419. * the Page Global Enable (PGE) feature bit is set.
  420. */
  421. *dx |= 0x00002000;
  422. /*
  423. * We also lie, and say we're family id 5. 6 or greater
  424. * leads to a rdmsr in early_init_intel which we can't handle.
  425. * Family ID is returned as bits 8-12 in ax.
  426. */
  427. *ax &= 0xFFFFF0FF;
  428. *ax |= 0x00000500;
  429. break;
  430. /*
  431. * This is used to detect if we're running under KVM. We might be,
  432. * but that's a Host matter, not us. So say we're not.
  433. */
  434. case KVM_CPUID_SIGNATURE:
  435. *bx = *cx = *dx = 0;
  436. break;
  437. /*
  438. * 0x80000000 returns the highest Extended Function, so we futureproof
  439. * like we do above by limiting it to known fields.
  440. */
  441. case 0x80000000:
  442. if (*ax > 0x80000008)
  443. *ax = 0x80000008;
  444. break;
  445. /*
  446. * PAE systems can mark pages as non-executable. Linux calls this the
  447. * NX bit. Intel calls it XD (eXecute Disable), AMD EVP (Enhanced
  448. * Virus Protection). We just switch it off here, since we don't
  449. * support it.
  450. */
  451. case 0x80000001:
  452. *dx &= ~(1 << 20);
  453. break;
  454. }
  455. }
  456. /*
  457. * Intel has four control registers, imaginatively named cr0, cr2, cr3 and cr4.
  458. * I assume there's a cr1, but it hasn't bothered us yet, so we'll not bother
  459. * it. The Host needs to know when the Guest wants to change them, so we have
  460. * a whole series of functions like read_cr0() and write_cr0().
  461. *
  462. * We start with cr0. cr0 allows you to turn on and off all kinds of basic
  463. * features, but Linux only really cares about one: the horrifically-named Task
  464. * Switched (TS) bit at bit 3 (ie. 8)
  465. *
  466. * What does the TS bit do? Well, it causes the CPU to trap (interrupt 7) if
  467. * the floating point unit is used. Which allows us to restore FPU state
  468. * lazily after a task switch, and Linux uses that gratefully, but wouldn't a
  469. * name like "FPUTRAP bit" be a little less cryptic?
  470. *
  471. * We store cr0 locally because the Host never changes it. The Guest sometimes
  472. * wants to read it and we'd prefer not to bother the Host unnecessarily.
  473. */
  474. static unsigned long current_cr0;
  475. static void lguest_write_cr0(unsigned long val)
  476. {
  477. lazy_hcall1(LHCALL_TS, val & X86_CR0_TS);
  478. current_cr0 = val;
  479. }
  480. static unsigned long lguest_read_cr0(void)
  481. {
  482. return current_cr0;
  483. }
  484. /*
  485. * Intel provided a special instruction to clear the TS bit for people too cool
  486. * to use write_cr0() to do it. This "clts" instruction is faster, because all
  487. * the vowels have been optimized out.
  488. */
  489. static void lguest_clts(void)
  490. {
  491. lazy_hcall1(LHCALL_TS, 0);
  492. current_cr0 &= ~X86_CR0_TS;
  493. }
  494. /*
  495. * cr2 is the virtual address of the last page fault, which the Guest only ever
  496. * reads. The Host kindly writes this into our "struct lguest_data", so we
  497. * just read it out of there.
  498. */
  499. static unsigned long lguest_read_cr2(void)
  500. {
  501. return lguest_data.cr2;
  502. }
  503. /* See lguest_set_pte() below. */
  504. static bool cr3_changed = false;
  505. static unsigned long current_cr3;
  506. /*
  507. * cr3 is the current toplevel pagetable page: the principle is the same as
  508. * cr0. Keep a local copy, and tell the Host when it changes.
  509. */
  510. static void lguest_write_cr3(unsigned long cr3)
  511. {
  512. lazy_hcall1(LHCALL_NEW_PGTABLE, cr3);
  513. current_cr3 = cr3;
  514. /* These two page tables are simple, linear, and used during boot */
  515. if (cr3 != __pa(swapper_pg_dir) && cr3 != __pa(initial_page_table))
  516. cr3_changed = true;
  517. }
  518. static unsigned long lguest_read_cr3(void)
  519. {
  520. return current_cr3;
  521. }
  522. /* cr4 is used to enable and disable PGE, but we don't care. */
  523. static unsigned long lguest_read_cr4(void)
  524. {
  525. return 0;
  526. }
  527. static void lguest_write_cr4(unsigned long val)
  528. {
  529. }
  530. /*
  531. * Page Table Handling.
  532. *
  533. * Now would be a good time to take a rest and grab a coffee or similarly
  534. * relaxing stimulant. The easy parts are behind us, and the trek gradually
  535. * winds uphill from here.
  536. *
  537. * Quick refresher: memory is divided into "pages" of 4096 bytes each. The CPU
  538. * maps virtual addresses to physical addresses using "page tables". We could
  539. * use one huge index of 1 million entries: each address is 4 bytes, so that's
  540. * 1024 pages just to hold the page tables. But since most virtual addresses
  541. * are unused, we use a two level index which saves space. The cr3 register
  542. * contains the physical address of the top level "page directory" page, which
  543. * contains physical addresses of up to 1024 second-level pages. Each of these
  544. * second level pages contains up to 1024 physical addresses of actual pages,
  545. * or Page Table Entries (PTEs).
  546. *
  547. * Here's a diagram, where arrows indicate physical addresses:
  548. *
  549. * cr3 ---> +---------+
  550. * | --------->+---------+
  551. * | | | PADDR1 |
  552. * Mid-level | | PADDR2 |
  553. * (PMD) page | | |
  554. * | | Lower-level |
  555. * | | (PTE) page |
  556. * | | | |
  557. * .... ....
  558. *
  559. * So to convert a virtual address to a physical address, we look up the top
  560. * level, which points us to the second level, which gives us the physical
  561. * address of that page. If the top level entry was not present, or the second
  562. * level entry was not present, then the virtual address is invalid (we
  563. * say "the page was not mapped").
  564. *
  565. * Put another way, a 32-bit virtual address is divided up like so:
  566. *
  567. * 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
  568. * |<---- 10 bits ---->|<---- 10 bits ---->|<------ 12 bits ------>|
  569. * Index into top Index into second Offset within page
  570. * page directory page pagetable page
  571. *
  572. * Now, unfortunately, this isn't the whole story: Intel added Physical Address
  573. * Extension (PAE) to allow 32 bit systems to use 64GB of memory (ie. 36 bits).
  574. * These are held in 64-bit page table entries, so we can now only fit 512
  575. * entries in a page, and the neat three-level tree breaks down.
  576. *
  577. * The result is a four level page table:
  578. *
  579. * cr3 --> [ 4 Upper ]
  580. * [ Level ]
  581. * [ Entries ]
  582. * [(PUD Page)]---> +---------+
  583. * | --------->+---------+
  584. * | | | PADDR1 |
  585. * Mid-level | | PADDR2 |
  586. * (PMD) page | | |
  587. * | | Lower-level |
  588. * | | (PTE) page |
  589. * | | | |
  590. * .... ....
  591. *
  592. *
  593. * And the virtual address is decoded as:
  594. *
  595. * 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
  596. * |<-2->|<--- 9 bits ---->|<---- 9 bits --->|<------ 12 bits ------>|
  597. * Index into Index into mid Index into lower Offset within page
  598. * top entries directory page pagetable page
  599. *
  600. * It's too hard to switch between these two formats at runtime, so Linux only
  601. * supports one or the other depending on whether CONFIG_X86_PAE is set. Many
  602. * distributions turn it on, and not just for people with silly amounts of
  603. * memory: the larger PTE entries allow room for the NX bit, which lets the
  604. * kernel disable execution of pages and increase security.
  605. *
  606. * This was a problem for lguest, which couldn't run on these distributions;
  607. * then Matias Zabaljauregui figured it all out and implemented it, and only a
  608. * handful of puppies were crushed in the process!
  609. *
  610. * Back to our point: the kernel spends a lot of time changing both the
  611. * top-level page directory and lower-level pagetable pages. The Guest doesn't
  612. * know physical addresses, so while it maintains these page tables exactly
  613. * like normal, it also needs to keep the Host informed whenever it makes a
  614. * change: the Host will create the real page tables based on the Guests'.
  615. */
  616. /*
  617. * The Guest calls this after it has set a second-level entry (pte), ie. to map
  618. * a page into a process' address space. We tell the Host the toplevel and
  619. * address this corresponds to. The Guest uses one pagetable per process, so
  620. * we need to tell the Host which one we're changing (mm->pgd).
  621. */
  622. static void lguest_pte_update(struct mm_struct *mm, unsigned long addr,
  623. pte_t *ptep)
  624. {
  625. #ifdef CONFIG_X86_PAE
  626. /* PAE needs to hand a 64 bit page table entry, so it uses two args. */
  627. lazy_hcall4(LHCALL_SET_PTE, __pa(mm->pgd), addr,
  628. ptep->pte_low, ptep->pte_high);
  629. #else
  630. lazy_hcall3(LHCALL_SET_PTE, __pa(mm->pgd), addr, ptep->pte_low);
  631. #endif
  632. }
  633. /* This is the "set and update" combo-meal-deal version. */
  634. static void lguest_set_pte_at(struct mm_struct *mm, unsigned long addr,
  635. pte_t *ptep, pte_t pteval)
  636. {
  637. native_set_pte(ptep, pteval);
  638. lguest_pte_update(mm, addr, ptep);
  639. }
  640. /*
  641. * The Guest calls lguest_set_pud to set a top-level entry and lguest_set_pmd
  642. * to set a middle-level entry when PAE is activated.
  643. *
  644. * Again, we set the entry then tell the Host which page we changed,
  645. * and the index of the entry we changed.
  646. */
  647. #ifdef CONFIG_X86_PAE
  648. static void lguest_set_pud(pud_t *pudp, pud_t pudval)
  649. {
  650. native_set_pud(pudp, pudval);
  651. /* 32 bytes aligned pdpt address and the index. */
  652. lazy_hcall2(LHCALL_SET_PGD, __pa(pudp) & 0xFFFFFFE0,
  653. (__pa(pudp) & 0x1F) / sizeof(pud_t));
  654. }
  655. static void lguest_set_pmd(pmd_t *pmdp, pmd_t pmdval)
  656. {
  657. native_set_pmd(pmdp, pmdval);
  658. lazy_hcall2(LHCALL_SET_PMD, __pa(pmdp) & PAGE_MASK,
  659. (__pa(pmdp) & (PAGE_SIZE - 1)) / sizeof(pmd_t));
  660. }
  661. #else
  662. /* The Guest calls lguest_set_pmd to set a top-level entry when !PAE. */
  663. static void lguest_set_pmd(pmd_t *pmdp, pmd_t pmdval)
  664. {
  665. native_set_pmd(pmdp, pmdval);
  666. lazy_hcall2(LHCALL_SET_PGD, __pa(pmdp) & PAGE_MASK,
  667. (__pa(pmdp) & (PAGE_SIZE - 1)) / sizeof(pmd_t));
  668. }
  669. #endif
  670. /*
  671. * There are a couple of legacy places where the kernel sets a PTE, but we
  672. * don't know the top level any more. This is useless for us, since we don't
  673. * know which pagetable is changing or what address, so we just tell the Host
  674. * to forget all of them. Fortunately, this is very rare.
  675. *
  676. * ... except in early boot when the kernel sets up the initial pagetables,
  677. * which makes booting astonishingly slow: 48 seconds! So we don't even tell
  678. * the Host anything changed until we've done the first real page table switch,
  679. * which brings boot back to 4.3 seconds.
  680. */
  681. static void lguest_set_pte(pte_t *ptep, pte_t pteval)
  682. {
  683. native_set_pte(ptep, pteval);
  684. if (cr3_changed)
  685. lazy_hcall1(LHCALL_FLUSH_TLB, 1);
  686. }
  687. #ifdef CONFIG_X86_PAE
  688. /*
  689. * With 64-bit PTE values, we need to be careful setting them: if we set 32
  690. * bits at a time, the hardware could see a weird half-set entry. These
  691. * versions ensure we update all 64 bits at once.
  692. */
  693. static void lguest_set_pte_atomic(pte_t *ptep, pte_t pte)
  694. {
  695. native_set_pte_atomic(ptep, pte);
  696. if (cr3_changed)
  697. lazy_hcall1(LHCALL_FLUSH_TLB, 1);
  698. }
  699. static void lguest_pte_clear(struct mm_struct *mm, unsigned long addr,
  700. pte_t *ptep)
  701. {
  702. native_pte_clear(mm, addr, ptep);
  703. lguest_pte_update(mm, addr, ptep);
  704. }
  705. static void lguest_pmd_clear(pmd_t *pmdp)
  706. {
  707. lguest_set_pmd(pmdp, __pmd(0));
  708. }
  709. #endif
  710. /*
  711. * Unfortunately for Lguest, the pv_mmu_ops for page tables were based on
  712. * native page table operations. On native hardware you can set a new page
  713. * table entry whenever you want, but if you want to remove one you have to do
  714. * a TLB flush (a TLB is a little cache of page table entries kept by the CPU).
  715. *
  716. * So the lguest_set_pte_at() and lguest_set_pmd() functions above are only
  717. * called when a valid entry is written, not when it's removed (ie. marked not
  718. * present). Instead, this is where we come when the Guest wants to remove a
  719. * page table entry: we tell the Host to set that entry to 0 (ie. the present
  720. * bit is zero).
  721. */
  722. static void lguest_flush_tlb_single(unsigned long addr)
  723. {
  724. /* Simply set it to zero: if it was not, it will fault back in. */
  725. lazy_hcall3(LHCALL_SET_PTE, current_cr3, addr, 0);
  726. }
  727. /*
  728. * This is what happens after the Guest has removed a large number of entries.
  729. * This tells the Host that any of the page table entries for userspace might
  730. * have changed, ie. virtual addresses below PAGE_OFFSET.
  731. */
  732. static void lguest_flush_tlb_user(void)
  733. {
  734. lazy_hcall1(LHCALL_FLUSH_TLB, 0);
  735. }
  736. /*
  737. * This is called when the kernel page tables have changed. That's not very
  738. * common (unless the Guest is using highmem, which makes the Guest extremely
  739. * slow), so it's worth separating this from the user flushing above.
  740. */
  741. static void lguest_flush_tlb_kernel(void)
  742. {
  743. lazy_hcall1(LHCALL_FLUSH_TLB, 1);
  744. }
  745. /*
  746. * The Unadvanced Programmable Interrupt Controller.
  747. *
  748. * This is an attempt to implement the simplest possible interrupt controller.
  749. * I spent some time looking though routines like set_irq_chip_and_handler,
  750. * set_irq_chip_and_handler_name, set_irq_chip_data and set_phasers_to_stun and
  751. * I *think* this is as simple as it gets.
  752. *
  753. * We can tell the Host what interrupts we want blocked ready for using the
  754. * lguest_data.interrupts bitmap, so disabling (aka "masking") them is as
  755. * simple as setting a bit. We don't actually "ack" interrupts as such, we
  756. * just mask and unmask them. I wonder if we should be cleverer?
  757. */
  758. static void disable_lguest_irq(struct irq_data *data)
  759. {
  760. set_bit(data->irq, lguest_data.blocked_interrupts);
  761. }
  762. static void enable_lguest_irq(struct irq_data *data)
  763. {
  764. clear_bit(data->irq, lguest_data.blocked_interrupts);
  765. }
  766. /* This structure describes the lguest IRQ controller. */
  767. static struct irq_chip lguest_irq_controller = {
  768. .name = "lguest",
  769. .irq_mask = disable_lguest_irq,
  770. .irq_mask_ack = disable_lguest_irq,
  771. .irq_unmask = enable_lguest_irq,
  772. };
  773. /*
  774. * This sets up the Interrupt Descriptor Table (IDT) entry for each hardware
  775. * interrupt (except 128, which is used for system calls), and then tells the
  776. * Linux infrastructure that each interrupt is controlled by our level-based
  777. * lguest interrupt controller.
  778. */
  779. static void __init lguest_init_IRQ(void)
  780. {
  781. unsigned int i;
  782. for (i = FIRST_EXTERNAL_VECTOR; i < NR_VECTORS; i++) {
  783. /* Some systems map "vectors" to interrupts weirdly. Not us! */
  784. __this_cpu_write(vector_irq[i], i - FIRST_EXTERNAL_VECTOR);
  785. if (i != SYSCALL_VECTOR)
  786. set_intr_gate(i, interrupt[i - FIRST_EXTERNAL_VECTOR]);
  787. }
  788. /*
  789. * This call is required to set up for 4k stacks, where we have
  790. * separate stacks for hard and soft interrupts.
  791. */
  792. irq_ctx_init(smp_processor_id());
  793. }
  794. /*
  795. * With CONFIG_SPARSE_IRQ, interrupt descriptors are allocated as-needed, so
  796. * rather than set them in lguest_init_IRQ we are called here every time an
  797. * lguest device needs an interrupt.
  798. *
  799. * FIXME: irq_alloc_desc_at() can fail due to lack of memory, we should
  800. * pass that up!
  801. */
  802. void lguest_setup_irq(unsigned int irq)
  803. {
  804. irq_alloc_desc_at(irq, 0);
  805. irq_set_chip_and_handler_name(irq, &lguest_irq_controller,
  806. handle_level_irq, "level");
  807. }
  808. /*
  809. * Time.
  810. *
  811. * It would be far better for everyone if the Guest had its own clock, but
  812. * until then the Host gives us the time on every interrupt.
  813. */
  814. static unsigned long lguest_get_wallclock(void)
  815. {
  816. return lguest_data.time.tv_sec;
  817. }
  818. /*
  819. * The TSC is an Intel thing called the Time Stamp Counter. The Host tells us
  820. * what speed it runs at, or 0 if it's unusable as a reliable clock source.
  821. * This matches what we want here: if we return 0 from this function, the x86
  822. * TSC clock will give up and not register itself.
  823. */
  824. static unsigned long lguest_tsc_khz(void)
  825. {
  826. return lguest_data.tsc_khz;
  827. }
  828. /*
  829. * If we can't use the TSC, the kernel falls back to our lower-priority
  830. * "lguest_clock", where we read the time value given to us by the Host.
  831. */
  832. static cycle_t lguest_clock_read(struct clocksource *cs)
  833. {
  834. unsigned long sec, nsec;
  835. /*
  836. * Since the time is in two parts (seconds and nanoseconds), we risk
  837. * reading it just as it's changing from 99 & 0.999999999 to 100 and 0,
  838. * and getting 99 and 0. As Linux tends to come apart under the stress
  839. * of time travel, we must be careful:
  840. */
  841. do {
  842. /* First we read the seconds part. */
  843. sec = lguest_data.time.tv_sec;
  844. /*
  845. * This read memory barrier tells the compiler and the CPU that
  846. * this can't be reordered: we have to complete the above
  847. * before going on.
  848. */
  849. rmb();
  850. /* Now we read the nanoseconds part. */
  851. nsec = lguest_data.time.tv_nsec;
  852. /* Make sure we've done that. */
  853. rmb();
  854. /* Now if the seconds part has changed, try again. */
  855. } while (unlikely(lguest_data.time.tv_sec != sec));
  856. /* Our lguest clock is in real nanoseconds. */
  857. return sec*1000000000ULL + nsec;
  858. }
  859. /* This is the fallback clocksource: lower priority than the TSC clocksource. */
  860. static struct clocksource lguest_clock = {
  861. .name = "lguest",
  862. .rating = 200,
  863. .read = lguest_clock_read,
  864. .mask = CLOCKSOURCE_MASK(64),
  865. .flags = CLOCK_SOURCE_IS_CONTINUOUS,
  866. };
  867. /*
  868. * We also need a "struct clock_event_device": Linux asks us to set it to go
  869. * off some time in the future. Actually, James Morris figured all this out, I
  870. * just applied the patch.
  871. */
  872. static int lguest_clockevent_set_next_event(unsigned long delta,
  873. struct clock_event_device *evt)
  874. {
  875. /* FIXME: I don't think this can ever happen, but James tells me he had
  876. * to put this code in. Maybe we should remove it now. Anyone? */
  877. if (delta < LG_CLOCK_MIN_DELTA) {
  878. if (printk_ratelimit())
  879. printk(KERN_DEBUG "%s: small delta %lu ns\n",
  880. __func__, delta);
  881. return -ETIME;
  882. }
  883. /* Please wake us this far in the future. */
  884. hcall(LHCALL_SET_CLOCKEVENT, delta, 0, 0, 0);
  885. return 0;
  886. }
  887. static void lguest_clockevent_set_mode(enum clock_event_mode mode,
  888. struct clock_event_device *evt)
  889. {
  890. switch (mode) {
  891. case CLOCK_EVT_MODE_UNUSED:
  892. case CLOCK_EVT_MODE_SHUTDOWN:
  893. /* A 0 argument shuts the clock down. */
  894. hcall(LHCALL_SET_CLOCKEVENT, 0, 0, 0, 0);
  895. break;
  896. case CLOCK_EVT_MODE_ONESHOT:
  897. /* This is what we expect. */
  898. break;
  899. case CLOCK_EVT_MODE_PERIODIC:
  900. BUG();
  901. case CLOCK_EVT_MODE_RESUME:
  902. break;
  903. }
  904. }
  905. /* This describes our primitive timer chip. */
  906. static struct clock_event_device lguest_clockevent = {
  907. .name = "lguest",
  908. .features = CLOCK_EVT_FEAT_ONESHOT,
  909. .set_next_event = lguest_clockevent_set_next_event,
  910. .set_mode = lguest_clockevent_set_mode,
  911. .rating = INT_MAX,
  912. .mult = 1,
  913. .shift = 0,
  914. .min_delta_ns = LG_CLOCK_MIN_DELTA,
  915. .max_delta_ns = LG_CLOCK_MAX_DELTA,
  916. };
  917. /*
  918. * This is the Guest timer interrupt handler (hardware interrupt 0). We just
  919. * call the clockevent infrastructure and it does whatever needs doing.
  920. */
  921. static void lguest_time_irq(unsigned int irq, struct irq_desc *desc)
  922. {
  923. unsigned long flags;
  924. /* Don't interrupt us while this is running. */
  925. local_irq_save(flags);
  926. lguest_clockevent.event_handler(&lguest_clockevent);
  927. local_irq_restore(flags);
  928. }
  929. /*
  930. * At some point in the boot process, we get asked to set up our timing
  931. * infrastructure. The kernel doesn't expect timer interrupts before this, but
  932. * we cleverly initialized the "blocked_interrupts" field of "struct
  933. * lguest_data" so that timer interrupts were blocked until now.
  934. */
  935. static void lguest_time_init(void)
  936. {
  937. /* Set up the timer interrupt (0) to go to our simple timer routine */
  938. lguest_setup_irq(0);
  939. irq_set_handler(0, lguest_time_irq);
  940. clocksource_register_hz(&lguest_clock, NSEC_PER_SEC);
  941. /* We can't set cpumask in the initializer: damn C limitations! Set it
  942. * here and register our timer device. */
  943. lguest_clockevent.cpumask = cpumask_of(0);
  944. clockevents_register_device(&lguest_clockevent);
  945. /* Finally, we unblock the timer interrupt. */
  946. clear_bit(0, lguest_data.blocked_interrupts);
  947. }
  948. /*
  949. * Miscellaneous bits and pieces.
  950. *
  951. * Here is an oddball collection of functions which the Guest needs for things
  952. * to work. They're pretty simple.
  953. */
  954. /*
  955. * The Guest needs to tell the Host what stack it expects traps to use. For
  956. * native hardware, this is part of the Task State Segment mentioned above in
  957. * lguest_load_tr_desc(), but to help hypervisors there's this special call.
  958. *
  959. * We tell the Host the segment we want to use (__KERNEL_DS is the kernel data
  960. * segment), the privilege level (we're privilege level 1, the Host is 0 and
  961. * will not tolerate us trying to use that), the stack pointer, and the number
  962. * of pages in the stack.
  963. */
  964. static void lguest_load_sp0(struct tss_struct *tss,
  965. struct thread_struct *thread)
  966. {
  967. lazy_hcall3(LHCALL_SET_STACK, __KERNEL_DS | 0x1, thread->sp0,
  968. THREAD_SIZE / PAGE_SIZE);
  969. }
  970. /* Let's just say, I wouldn't do debugging under a Guest. */
  971. static void lguest_set_debugreg(int regno, unsigned long value)
  972. {
  973. /* FIXME: Implement */
  974. }
  975. /*
  976. * There are times when the kernel wants to make sure that no memory writes are
  977. * caught in the cache (that they've all reached real hardware devices). This
  978. * doesn't matter for the Guest which has virtual hardware.
  979. *
  980. * On the Pentium 4 and above, cpuid() indicates that the Cache Line Flush
  981. * (clflush) instruction is available and the kernel uses that. Otherwise, it
  982. * uses the older "Write Back and Invalidate Cache" (wbinvd) instruction.
  983. * Unlike clflush, wbinvd can only be run at privilege level 0. So we can
  984. * ignore clflush, but replace wbinvd.
  985. */
  986. static void lguest_wbinvd(void)
  987. {
  988. }
  989. /*
  990. * If the Guest expects to have an Advanced Programmable Interrupt Controller,
  991. * we play dumb by ignoring writes and returning 0 for reads. So it's no
  992. * longer Programmable nor Controlling anything, and I don't think 8 lines of
  993. * code qualifies for Advanced. It will also never interrupt anything. It
  994. * does, however, allow us to get through the Linux boot code.
  995. */
  996. #ifdef CONFIG_X86_LOCAL_APIC
  997. static void lguest_apic_write(u32 reg, u32 v)
  998. {
  999. }
  1000. static u32 lguest_apic_read(u32 reg)
  1001. {
  1002. return 0;
  1003. }
  1004. static u64 lguest_apic_icr_read(void)
  1005. {
  1006. return 0;
  1007. }
  1008. static void lguest_apic_icr_write(u32 low, u32 id)
  1009. {
  1010. /* Warn to see if there's any stray references */
  1011. WARN_ON(1);
  1012. }
  1013. static void lguest_apic_wait_icr_idle(void)
  1014. {
  1015. return;
  1016. }
  1017. static u32 lguest_apic_safe_wait_icr_idle(void)
  1018. {
  1019. return 0;
  1020. }
  1021. static void set_lguest_basic_apic_ops(void)
  1022. {
  1023. apic->read = lguest_apic_read;
  1024. apic->write = lguest_apic_write;
  1025. apic->icr_read = lguest_apic_icr_read;
  1026. apic->icr_write = lguest_apic_icr_write;
  1027. apic->wait_icr_idle = lguest_apic_wait_icr_idle;
  1028. apic->safe_wait_icr_idle = lguest_apic_safe_wait_icr_idle;
  1029. };
  1030. #endif
  1031. /* STOP! Until an interrupt comes in. */
  1032. static void lguest_safe_halt(void)
  1033. {
  1034. hcall(LHCALL_HALT, 0, 0, 0, 0);
  1035. }
  1036. /*
  1037. * The SHUTDOWN hypercall takes a string to describe what's happening, and
  1038. * an argument which says whether this to restart (reboot) the Guest or not.
  1039. *
  1040. * Note that the Host always prefers that the Guest speak in physical addresses
  1041. * rather than virtual addresses, so we use __pa() here.
  1042. */
  1043. static void lguest_power_off(void)
  1044. {
  1045. hcall(LHCALL_SHUTDOWN, __pa("Power down"),
  1046. LGUEST_SHUTDOWN_POWEROFF, 0, 0);
  1047. }
  1048. /*
  1049. * Panicing.
  1050. *
  1051. * Don't. But if you did, this is what happens.
  1052. */
  1053. static int lguest_panic(struct notifier_block *nb, unsigned long l, void *p)
  1054. {
  1055. hcall(LHCALL_SHUTDOWN, __pa(p), LGUEST_SHUTDOWN_POWEROFF, 0, 0);
  1056. /* The hcall won't return, but to keep gcc happy, we're "done". */
  1057. return NOTIFY_DONE;
  1058. }
  1059. static struct notifier_block paniced = {
  1060. .notifier_call = lguest_panic
  1061. };
  1062. /* Setting up memory is fairly easy. */
  1063. static __init char *lguest_memory_setup(void)
  1064. {
  1065. /*
  1066. * The Linux bootloader header contains an "e820" memory map: the
  1067. * Launcher populated the first entry with our memory limit.
  1068. */
  1069. e820_add_region(boot_params.e820_map[0].addr,
  1070. boot_params.e820_map[0].size,
  1071. boot_params.e820_map[0].type);
  1072. /* This string is for the boot messages. */
  1073. return "LGUEST";
  1074. }
  1075. /*
  1076. * We will eventually use the virtio console device to produce console output,
  1077. * but before that is set up we use LHCALL_NOTIFY on normal memory to produce
  1078. * console output.
  1079. */
  1080. static __init int early_put_chars(u32 vtermno, const char *buf, int count)
  1081. {
  1082. char scratch[17];
  1083. unsigned int len = count;
  1084. /* We use a nul-terminated string, so we make a copy. Icky, huh? */
  1085. if (len > sizeof(scratch) - 1)
  1086. len = sizeof(scratch) - 1;
  1087. scratch[len] = '\0';
  1088. memcpy(scratch, buf, len);
  1089. hcall(LHCALL_NOTIFY, __pa(scratch), 0, 0, 0);
  1090. /* This routine returns the number of bytes actually written. */
  1091. return len;
  1092. }
  1093. /*
  1094. * Rebooting also tells the Host we're finished, but the RESTART flag tells the
  1095. * Launcher to reboot us.
  1096. */
  1097. static void lguest_restart(char *reason)
  1098. {
  1099. hcall(LHCALL_SHUTDOWN, __pa(reason), LGUEST_SHUTDOWN_RESTART, 0, 0);
  1100. }
  1101. /*G:050
  1102. * Patching (Powerfully Placating Performance Pedants)
  1103. *
  1104. * We have already seen that pv_ops structures let us replace simple native
  1105. * instructions with calls to the appropriate back end all throughout the
  1106. * kernel. This allows the same kernel to run as a Guest and as a native
  1107. * kernel, but it's slow because of all the indirect branches.
  1108. *
  1109. * Remember that David Wheeler quote about "Any problem in computer science can
  1110. * be solved with another layer of indirection"? The rest of that quote is
  1111. * "... But that usually will create another problem." This is the first of
  1112. * those problems.
  1113. *
  1114. * Our current solution is to allow the paravirt back end to optionally patch
  1115. * over the indirect calls to replace them with something more efficient. We
  1116. * patch two of the simplest of the most commonly called functions: disable
  1117. * interrupts and save interrupts. We usually have 6 or 10 bytes to patch
  1118. * into: the Guest versions of these operations are small enough that we can
  1119. * fit comfortably.
  1120. *
  1121. * First we need assembly templates of each of the patchable Guest operations,
  1122. * and these are in i386_head.S.
  1123. */
  1124. /*G:060 We construct a table from the assembler templates: */
  1125. static const struct lguest_insns
  1126. {
  1127. const char *start, *end;
  1128. } lguest_insns[] = {
  1129. [PARAVIRT_PATCH(pv_irq_ops.irq_disable)] = { lgstart_cli, lgend_cli },
  1130. [PARAVIRT_PATCH(pv_irq_ops.save_fl)] = { lgstart_pushf, lgend_pushf },
  1131. };
  1132. /*
  1133. * Now our patch routine is fairly simple (based on the native one in
  1134. * paravirt.c). If we have a replacement, we copy it in and return how much of
  1135. * the available space we used.
  1136. */
  1137. static unsigned lguest_patch(u8 type, u16 clobber, void *ibuf,
  1138. unsigned long addr, unsigned len)
  1139. {
  1140. unsigned int insn_len;
  1141. /* Don't do anything special if we don't have a replacement */
  1142. if (type >= ARRAY_SIZE(lguest_insns) || !lguest_insns[type].start)
  1143. return paravirt_patch_default(type, clobber, ibuf, addr, len);
  1144. insn_len = lguest_insns[type].end - lguest_insns[type].start;
  1145. /* Similarly if it can't fit (doesn't happen, but let's be thorough). */
  1146. if (len < insn_len)
  1147. return paravirt_patch_default(type, clobber, ibuf, addr, len);
  1148. /* Copy in our instructions. */
  1149. memcpy(ibuf, lguest_insns[type].start, insn_len);
  1150. return insn_len;
  1151. }
  1152. /*G:029
  1153. * Once we get to lguest_init(), we know we're a Guest. The various
  1154. * pv_ops structures in the kernel provide points for (almost) every routine we
  1155. * have to override to avoid privileged instructions.
  1156. */
  1157. __init void lguest_init(void)
  1158. {
  1159. /* We're under lguest. */
  1160. pv_info.name = "lguest";
  1161. /* Paravirt is enabled. */
  1162. pv_info.paravirt_enabled = 1;
  1163. /* We're running at privilege level 1, not 0 as normal. */
  1164. pv_info.kernel_rpl = 1;
  1165. /* Everyone except Xen runs with this set. */
  1166. pv_info.shared_kernel_pmd = 1;
  1167. /*
  1168. * We set up all the lguest overrides for sensitive operations. These
  1169. * are detailed with the operations themselves.
  1170. */
  1171. /* Interrupt-related operations */
  1172. pv_irq_ops.save_fl = PV_CALLEE_SAVE(save_fl);
  1173. pv_irq_ops.restore_fl = __PV_IS_CALLEE_SAVE(lg_restore_fl);
  1174. pv_irq_ops.irq_disable = PV_CALLEE_SAVE(irq_disable);
  1175. pv_irq_ops.irq_enable = __PV_IS_CALLEE_SAVE(lg_irq_enable);
  1176. pv_irq_ops.safe_halt = lguest_safe_halt;
  1177. /* Setup operations */
  1178. pv_init_ops.patch = lguest_patch;
  1179. /* Intercepts of various CPU instructions */
  1180. pv_cpu_ops.load_gdt = lguest_load_gdt;
  1181. pv_cpu_ops.cpuid = lguest_cpuid;
  1182. pv_cpu_ops.load_idt = lguest_load_idt;
  1183. pv_cpu_ops.iret = lguest_iret;
  1184. pv_cpu_ops.load_sp0 = lguest_load_sp0;
  1185. pv_cpu_ops.load_tr_desc = lguest_load_tr_desc;
  1186. pv_cpu_ops.set_ldt = lguest_set_ldt;
  1187. pv_cpu_ops.load_tls = lguest_load_tls;
  1188. pv_cpu_ops.set_debugreg = lguest_set_debugreg;
  1189. pv_cpu_ops.clts = lguest_clts;
  1190. pv_cpu_ops.read_cr0 = lguest_read_cr0;
  1191. pv_cpu_ops.write_cr0 = lguest_write_cr0;
  1192. pv_cpu_ops.read_cr4 = lguest_read_cr4;
  1193. pv_cpu_ops.write_cr4 = lguest_write_cr4;
  1194. pv_cpu_ops.write_gdt_entry = lguest_write_gdt_entry;
  1195. pv_cpu_ops.write_idt_entry = lguest_write_idt_entry;
  1196. pv_cpu_ops.wbinvd = lguest_wbinvd;
  1197. pv_cpu_ops.start_context_switch = paravirt_start_context_switch;
  1198. pv_cpu_ops.end_context_switch = lguest_end_context_switch;
  1199. /* Pagetable management */
  1200. pv_mmu_ops.write_cr3 = lguest_write_cr3;
  1201. pv_mmu_ops.flush_tlb_user = lguest_flush_tlb_user;
  1202. pv_mmu_ops.flush_tlb_single = lguest_flush_tlb_single;
  1203. pv_mmu_ops.flush_tlb_kernel = lguest_flush_tlb_kernel;
  1204. pv_mmu_ops.set_pte = lguest_set_pte;
  1205. pv_mmu_ops.set_pte_at = lguest_set_pte_at;
  1206. pv_mmu_ops.set_pmd = lguest_set_pmd;
  1207. #ifdef CONFIG_X86_PAE
  1208. pv_mmu_ops.set_pte_atomic = lguest_set_pte_atomic;
  1209. pv_mmu_ops.pte_clear = lguest_pte_clear;
  1210. pv_mmu_ops.pmd_clear = lguest_pmd_clear;
  1211. pv_mmu_ops.set_pud = lguest_set_pud;
  1212. #endif
  1213. pv_mmu_ops.read_cr2 = lguest_read_cr2;
  1214. pv_mmu_ops.read_cr3 = lguest_read_cr3;
  1215. pv_mmu_ops.lazy_mode.enter = paravirt_enter_lazy_mmu;
  1216. pv_mmu_ops.lazy_mode.leave = lguest_leave_lazy_mmu_mode;
  1217. pv_mmu_ops.pte_update = lguest_pte_update;
  1218. pv_mmu_ops.pte_update_defer = lguest_pte_update;
  1219. #ifdef CONFIG_X86_LOCAL_APIC
  1220. /* APIC read/write intercepts */
  1221. set_lguest_basic_apic_ops();
  1222. #endif
  1223. x86_init.resources.memory_setup = lguest_memory_setup;
  1224. x86_init.irqs.intr_init = lguest_init_IRQ;
  1225. x86_init.timers.timer_init = lguest_time_init;
  1226. x86_platform.calibrate_tsc = lguest_tsc_khz;
  1227. x86_platform.get_wallclock = lguest_get_wallclock;
  1228. /*
  1229. * Now is a good time to look at the implementations of these functions
  1230. * before returning to the rest of lguest_init().
  1231. */
  1232. /*G:070
  1233. * Now we've seen all the paravirt_ops, we return to
  1234. * lguest_init() where the rest of the fairly chaotic boot setup
  1235. * occurs.
  1236. */
  1237. /*
  1238. * The stack protector is a weird thing where gcc places a canary
  1239. * value on the stack and then checks it on return. This file is
  1240. * compiled with -fno-stack-protector it, so we got this far without
  1241. * problems. The value of the canary is kept at offset 20 from the
  1242. * %gs register, so we need to set that up before calling C functions
  1243. * in other files.
  1244. */
  1245. setup_stack_canary_segment(0);
  1246. /*
  1247. * We could just call load_stack_canary_segment(), but we might as well
  1248. * call switch_to_new_gdt() which loads the whole table and sets up the
  1249. * per-cpu segment descriptor register %fs as well.
  1250. */
  1251. switch_to_new_gdt(0);
  1252. /*
  1253. * The Host<->Guest Switcher lives at the top of our address space, and
  1254. * the Host told us how big it is when we made LGUEST_INIT hypercall:
  1255. * it put the answer in lguest_data.reserve_mem
  1256. */
  1257. reserve_top_address(lguest_data.reserve_mem);
  1258. /*
  1259. * If we don't initialize the lock dependency checker now, it crashes
  1260. * atomic_notifier_chain_register, then paravirt_disable_iospace.
  1261. */
  1262. lockdep_init();
  1263. /* Hook in our special panic hypercall code. */
  1264. atomic_notifier_chain_register(&panic_notifier_list, &paniced);
  1265. /*
  1266. * The IDE code spends about 3 seconds probing for disks: if we reserve
  1267. * all the I/O ports up front it can't get them and so doesn't probe.
  1268. * Other device drivers are similar (but less severe). This cuts the
  1269. * kernel boot time on my machine from 4.1 seconds to 0.45 seconds.
  1270. */
  1271. paravirt_disable_iospace();
  1272. /*
  1273. * This is messy CPU setup stuff which the native boot code does before
  1274. * start_kernel, so we have to do, too:
  1275. */
  1276. cpu_detect(&new_cpu_data);
  1277. /* head.S usually sets up the first capability word, so do it here. */
  1278. new_cpu_data.x86_capability[0] = cpuid_edx(1);
  1279. /* Math is always hard! */
  1280. new_cpu_data.hard_math = 1;
  1281. /* We don't have features. We have puppies! Puppies! */
  1282. #ifdef CONFIG_X86_MCE
  1283. mce_disabled = 1;
  1284. #endif
  1285. #ifdef CONFIG_ACPI
  1286. acpi_disabled = 1;
  1287. #endif
  1288. /*
  1289. * We set the preferred console to "hvc". This is the "hypervisor
  1290. * virtual console" driver written by the PowerPC people, which we also
  1291. * adapted for lguest's use.
  1292. */
  1293. add_preferred_console("hvc", 0, NULL);
  1294. /* Register our very early console. */
  1295. virtio_cons_early_init(early_put_chars);
  1296. /*
  1297. * Last of all, we set the power management poweroff hook to point to
  1298. * the Guest routine to power off, and the reboot hook to our restart
  1299. * routine.
  1300. */
  1301. pm_power_off = lguest_power_off;
  1302. machine_ops.restart = lguest_restart;
  1303. /*
  1304. * Now we're set up, call i386_start_kernel() in head32.c and we proceed
  1305. * to boot as normal. It never returns.
  1306. */
  1307. i386_start_kernel();
  1308. }
  1309. /*
  1310. * This marks the end of stage II of our journey, The Guest.
  1311. *
  1312. * It is now time for us to explore the layer of virtual drivers and complete
  1313. * our understanding of the Guest in "make Drivers".
  1314. */