xhci-mem.c 74 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471
  1. /*
  2. * xHCI host controller driver
  3. *
  4. * Copyright (C) 2008 Intel Corp.
  5. *
  6. * Author: Sarah Sharp
  7. * Some code borrowed from the Linux EHCI driver.
  8. *
  9. * This program is free software; you can redistribute it and/or modify
  10. * it under the terms of the GNU General Public License version 2 as
  11. * published by the Free Software Foundation.
  12. *
  13. * This program is distributed in the hope that it will be useful, but
  14. * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
  15. * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
  16. * for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program; if not, write to the Free Software Foundation,
  20. * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  21. */
  22. #include <linux/usb.h>
  23. #include <linux/pci.h>
  24. #include <linux/slab.h>
  25. #include <linux/dmapool.h>
  26. #include "xhci.h"
  27. /*
  28. * Allocates a generic ring segment from the ring pool, sets the dma address,
  29. * initializes the segment to zero, and sets the private next pointer to NULL.
  30. *
  31. * Section 4.11.1.1:
  32. * "All components of all Command and Transfer TRBs shall be initialized to '0'"
  33. */
  34. static struct xhci_segment *xhci_segment_alloc(struct xhci_hcd *xhci,
  35. unsigned int cycle_state, gfp_t flags)
  36. {
  37. struct xhci_segment *seg;
  38. dma_addr_t dma;
  39. int i;
  40. seg = kzalloc(sizeof *seg, flags);
  41. if (!seg)
  42. return NULL;
  43. seg->trbs = dma_pool_alloc(xhci->segment_pool, flags, &dma);
  44. if (!seg->trbs) {
  45. kfree(seg);
  46. return NULL;
  47. }
  48. memset(seg->trbs, 0, TRB_SEGMENT_SIZE);
  49. /* If the cycle state is 0, set the cycle bit to 1 for all the TRBs */
  50. if (cycle_state == 0) {
  51. for (i = 0; i < TRBS_PER_SEGMENT; i++)
  52. seg->trbs[i].link.control |= TRB_CYCLE;
  53. }
  54. seg->dma = dma;
  55. seg->next = NULL;
  56. return seg;
  57. }
  58. static void xhci_segment_free(struct xhci_hcd *xhci, struct xhci_segment *seg)
  59. {
  60. if (seg->trbs) {
  61. dma_pool_free(xhci->segment_pool, seg->trbs, seg->dma);
  62. seg->trbs = NULL;
  63. }
  64. kfree(seg);
  65. }
  66. static void xhci_free_segments_for_ring(struct xhci_hcd *xhci,
  67. struct xhci_segment *first)
  68. {
  69. struct xhci_segment *seg;
  70. seg = first->next;
  71. while (seg != first) {
  72. struct xhci_segment *next = seg->next;
  73. xhci_segment_free(xhci, seg);
  74. seg = next;
  75. }
  76. xhci_segment_free(xhci, first);
  77. }
  78. /*
  79. * Make the prev segment point to the next segment.
  80. *
  81. * Change the last TRB in the prev segment to be a Link TRB which points to the
  82. * DMA address of the next segment. The caller needs to set any Link TRB
  83. * related flags, such as End TRB, Toggle Cycle, and no snoop.
  84. */
  85. static void xhci_link_segments(struct xhci_hcd *xhci, struct xhci_segment *prev,
  86. struct xhci_segment *next, enum xhci_ring_type type)
  87. {
  88. u32 val;
  89. if (!prev || !next)
  90. return;
  91. prev->next = next;
  92. if (type != TYPE_EVENT) {
  93. prev->trbs[TRBS_PER_SEGMENT-1].link.segment_ptr =
  94. cpu_to_le64(next->dma);
  95. /* Set the last TRB in the segment to have a TRB type ID of Link TRB */
  96. val = le32_to_cpu(prev->trbs[TRBS_PER_SEGMENT-1].link.control);
  97. val &= ~TRB_TYPE_BITMASK;
  98. val |= TRB_TYPE(TRB_LINK);
  99. /* Always set the chain bit with 0.95 hardware */
  100. /* Set chain bit for isoc rings on AMD 0.96 host */
  101. if (xhci_link_trb_quirk(xhci) ||
  102. (type == TYPE_ISOC &&
  103. (xhci->quirks & XHCI_AMD_0x96_HOST)))
  104. val |= TRB_CHAIN;
  105. prev->trbs[TRBS_PER_SEGMENT-1].link.control = cpu_to_le32(val);
  106. }
  107. }
  108. /*
  109. * Link the ring to the new segments.
  110. * Set Toggle Cycle for the new ring if needed.
  111. */
  112. static void xhci_link_rings(struct xhci_hcd *xhci, struct xhci_ring *ring,
  113. struct xhci_segment *first, struct xhci_segment *last,
  114. unsigned int num_segs)
  115. {
  116. struct xhci_segment *next;
  117. if (!ring || !first || !last)
  118. return;
  119. next = ring->enq_seg->next;
  120. xhci_link_segments(xhci, ring->enq_seg, first, ring->type);
  121. xhci_link_segments(xhci, last, next, ring->type);
  122. ring->num_segs += num_segs;
  123. ring->num_trbs_free += (TRBS_PER_SEGMENT - 1) * num_segs;
  124. if (ring->type != TYPE_EVENT && ring->enq_seg == ring->last_seg) {
  125. ring->last_seg->trbs[TRBS_PER_SEGMENT-1].link.control
  126. &= ~cpu_to_le32(LINK_TOGGLE);
  127. last->trbs[TRBS_PER_SEGMENT-1].link.control
  128. |= cpu_to_le32(LINK_TOGGLE);
  129. ring->last_seg = last;
  130. }
  131. }
  132. /* XXX: Do we need the hcd structure in all these functions? */
  133. void xhci_ring_free(struct xhci_hcd *xhci, struct xhci_ring *ring)
  134. {
  135. if (!ring)
  136. return;
  137. if (ring->first_seg)
  138. xhci_free_segments_for_ring(xhci, ring->first_seg);
  139. kfree(ring);
  140. }
  141. static void xhci_initialize_ring_info(struct xhci_ring *ring,
  142. unsigned int cycle_state)
  143. {
  144. /* The ring is empty, so the enqueue pointer == dequeue pointer */
  145. ring->enqueue = ring->first_seg->trbs;
  146. ring->enq_seg = ring->first_seg;
  147. ring->dequeue = ring->enqueue;
  148. ring->deq_seg = ring->first_seg;
  149. /* The ring is initialized to 0. The producer must write 1 to the cycle
  150. * bit to handover ownership of the TRB, so PCS = 1. The consumer must
  151. * compare CCS to the cycle bit to check ownership, so CCS = 1.
  152. *
  153. * New rings are initialized with cycle state equal to 1; if we are
  154. * handling ring expansion, set the cycle state equal to the old ring.
  155. */
  156. ring->cycle_state = cycle_state;
  157. /* Not necessary for new rings, but needed for re-initialized rings */
  158. ring->enq_updates = 0;
  159. ring->deq_updates = 0;
  160. /*
  161. * Each segment has a link TRB, and leave an extra TRB for SW
  162. * accounting purpose
  163. */
  164. ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
  165. }
  166. /* Allocate segments and link them for a ring */
  167. static int xhci_alloc_segments_for_ring(struct xhci_hcd *xhci,
  168. struct xhci_segment **first, struct xhci_segment **last,
  169. unsigned int num_segs, unsigned int cycle_state,
  170. enum xhci_ring_type type, gfp_t flags)
  171. {
  172. struct xhci_segment *prev;
  173. prev = xhci_segment_alloc(xhci, cycle_state, flags);
  174. if (!prev)
  175. return -ENOMEM;
  176. num_segs--;
  177. *first = prev;
  178. while (num_segs > 0) {
  179. struct xhci_segment *next;
  180. next = xhci_segment_alloc(xhci, cycle_state, flags);
  181. if (!next) {
  182. prev = *first;
  183. while (prev) {
  184. next = prev->next;
  185. xhci_segment_free(xhci, prev);
  186. prev = next;
  187. }
  188. return -ENOMEM;
  189. }
  190. xhci_link_segments(xhci, prev, next, type);
  191. prev = next;
  192. num_segs--;
  193. }
  194. xhci_link_segments(xhci, prev, *first, type);
  195. *last = prev;
  196. return 0;
  197. }
  198. /**
  199. * Create a new ring with zero or more segments.
  200. *
  201. * Link each segment together into a ring.
  202. * Set the end flag and the cycle toggle bit on the last segment.
  203. * See section 4.9.1 and figures 15 and 16.
  204. */
  205. static struct xhci_ring *xhci_ring_alloc(struct xhci_hcd *xhci,
  206. unsigned int num_segs, unsigned int cycle_state,
  207. enum xhci_ring_type type, gfp_t flags)
  208. {
  209. struct xhci_ring *ring;
  210. int ret;
  211. ring = kzalloc(sizeof *(ring), flags);
  212. if (!ring)
  213. return NULL;
  214. ring->num_segs = num_segs;
  215. INIT_LIST_HEAD(&ring->td_list);
  216. ring->type = type;
  217. if (num_segs == 0)
  218. return ring;
  219. ret = xhci_alloc_segments_for_ring(xhci, &ring->first_seg,
  220. &ring->last_seg, num_segs, cycle_state, type, flags);
  221. if (ret)
  222. goto fail;
  223. /* Only event ring does not use link TRB */
  224. if (type != TYPE_EVENT) {
  225. /* See section 4.9.2.1 and 6.4.4.1 */
  226. ring->last_seg->trbs[TRBS_PER_SEGMENT - 1].link.control |=
  227. cpu_to_le32(LINK_TOGGLE);
  228. }
  229. xhci_initialize_ring_info(ring, cycle_state);
  230. return ring;
  231. fail:
  232. kfree(ring);
  233. return NULL;
  234. }
  235. void xhci_free_or_cache_endpoint_ring(struct xhci_hcd *xhci,
  236. struct xhci_virt_device *virt_dev,
  237. unsigned int ep_index)
  238. {
  239. int rings_cached;
  240. rings_cached = virt_dev->num_rings_cached;
  241. if (rings_cached < XHCI_MAX_RINGS_CACHED) {
  242. virt_dev->ring_cache[rings_cached] =
  243. virt_dev->eps[ep_index].ring;
  244. virt_dev->num_rings_cached++;
  245. xhci_dbg(xhci, "Cached old ring, "
  246. "%d ring%s cached\n",
  247. virt_dev->num_rings_cached,
  248. (virt_dev->num_rings_cached > 1) ? "s" : "");
  249. } else {
  250. xhci_ring_free(xhci, virt_dev->eps[ep_index].ring);
  251. xhci_dbg(xhci, "Ring cache full (%d rings), "
  252. "freeing ring\n",
  253. virt_dev->num_rings_cached);
  254. }
  255. virt_dev->eps[ep_index].ring = NULL;
  256. }
  257. /* Zero an endpoint ring (except for link TRBs) and move the enqueue and dequeue
  258. * pointers to the beginning of the ring.
  259. */
  260. static void xhci_reinit_cached_ring(struct xhci_hcd *xhci,
  261. struct xhci_ring *ring, unsigned int cycle_state,
  262. enum xhci_ring_type type)
  263. {
  264. struct xhci_segment *seg = ring->first_seg;
  265. int i;
  266. do {
  267. memset(seg->trbs, 0,
  268. sizeof(union xhci_trb)*TRBS_PER_SEGMENT);
  269. if (cycle_state == 0) {
  270. for (i = 0; i < TRBS_PER_SEGMENT; i++)
  271. seg->trbs[i].link.control |= TRB_CYCLE;
  272. }
  273. /* All endpoint rings have link TRBs */
  274. xhci_link_segments(xhci, seg, seg->next, type);
  275. seg = seg->next;
  276. } while (seg != ring->first_seg);
  277. ring->type = type;
  278. xhci_initialize_ring_info(ring, cycle_state);
  279. /* td list should be empty since all URBs have been cancelled,
  280. * but just in case...
  281. */
  282. INIT_LIST_HEAD(&ring->td_list);
  283. }
  284. /*
  285. * Expand an existing ring.
  286. * Look for a cached ring or allocate a new ring which has same segment numbers
  287. * and link the two rings.
  288. */
  289. int xhci_ring_expansion(struct xhci_hcd *xhci, struct xhci_ring *ring,
  290. unsigned int num_trbs, gfp_t flags)
  291. {
  292. struct xhci_segment *first;
  293. struct xhci_segment *last;
  294. unsigned int num_segs;
  295. unsigned int num_segs_needed;
  296. int ret;
  297. num_segs_needed = (num_trbs + (TRBS_PER_SEGMENT - 1) - 1) /
  298. (TRBS_PER_SEGMENT - 1);
  299. /* Allocate number of segments we needed, or double the ring size */
  300. num_segs = ring->num_segs > num_segs_needed ?
  301. ring->num_segs : num_segs_needed;
  302. ret = xhci_alloc_segments_for_ring(xhci, &first, &last,
  303. num_segs, ring->cycle_state, ring->type, flags);
  304. if (ret)
  305. return -ENOMEM;
  306. xhci_link_rings(xhci, ring, first, last, num_segs);
  307. xhci_dbg(xhci, "ring expansion succeed, now has %d segments\n",
  308. ring->num_segs);
  309. return 0;
  310. }
  311. #define CTX_SIZE(_hcc) (HCC_64BYTE_CONTEXT(_hcc) ? 64 : 32)
  312. static struct xhci_container_ctx *xhci_alloc_container_ctx(struct xhci_hcd *xhci,
  313. int type, gfp_t flags)
  314. {
  315. struct xhci_container_ctx *ctx = kzalloc(sizeof(*ctx), flags);
  316. if (!ctx)
  317. return NULL;
  318. BUG_ON((type != XHCI_CTX_TYPE_DEVICE) && (type != XHCI_CTX_TYPE_INPUT));
  319. ctx->type = type;
  320. ctx->size = HCC_64BYTE_CONTEXT(xhci->hcc_params) ? 2048 : 1024;
  321. if (type == XHCI_CTX_TYPE_INPUT)
  322. ctx->size += CTX_SIZE(xhci->hcc_params);
  323. ctx->bytes = dma_pool_alloc(xhci->device_pool, flags, &ctx->dma);
  324. memset(ctx->bytes, 0, ctx->size);
  325. return ctx;
  326. }
  327. static void xhci_free_container_ctx(struct xhci_hcd *xhci,
  328. struct xhci_container_ctx *ctx)
  329. {
  330. if (!ctx)
  331. return;
  332. dma_pool_free(xhci->device_pool, ctx->bytes, ctx->dma);
  333. kfree(ctx);
  334. }
  335. struct xhci_input_control_ctx *xhci_get_input_control_ctx(struct xhci_hcd *xhci,
  336. struct xhci_container_ctx *ctx)
  337. {
  338. BUG_ON(ctx->type != XHCI_CTX_TYPE_INPUT);
  339. return (struct xhci_input_control_ctx *)ctx->bytes;
  340. }
  341. struct xhci_slot_ctx *xhci_get_slot_ctx(struct xhci_hcd *xhci,
  342. struct xhci_container_ctx *ctx)
  343. {
  344. if (ctx->type == XHCI_CTX_TYPE_DEVICE)
  345. return (struct xhci_slot_ctx *)ctx->bytes;
  346. return (struct xhci_slot_ctx *)
  347. (ctx->bytes + CTX_SIZE(xhci->hcc_params));
  348. }
  349. struct xhci_ep_ctx *xhci_get_ep_ctx(struct xhci_hcd *xhci,
  350. struct xhci_container_ctx *ctx,
  351. unsigned int ep_index)
  352. {
  353. /* increment ep index by offset of start of ep ctx array */
  354. ep_index++;
  355. if (ctx->type == XHCI_CTX_TYPE_INPUT)
  356. ep_index++;
  357. return (struct xhci_ep_ctx *)
  358. (ctx->bytes + (ep_index * CTX_SIZE(xhci->hcc_params)));
  359. }
  360. /***************** Streams structures manipulation *************************/
  361. static void xhci_free_stream_ctx(struct xhci_hcd *xhci,
  362. unsigned int num_stream_ctxs,
  363. struct xhci_stream_ctx *stream_ctx, dma_addr_t dma)
  364. {
  365. struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
  366. if (num_stream_ctxs > MEDIUM_STREAM_ARRAY_SIZE)
  367. dma_free_coherent(&pdev->dev,
  368. sizeof(struct xhci_stream_ctx)*num_stream_ctxs,
  369. stream_ctx, dma);
  370. else if (num_stream_ctxs <= SMALL_STREAM_ARRAY_SIZE)
  371. return dma_pool_free(xhci->small_streams_pool,
  372. stream_ctx, dma);
  373. else
  374. return dma_pool_free(xhci->medium_streams_pool,
  375. stream_ctx, dma);
  376. }
  377. /*
  378. * The stream context array for each endpoint with bulk streams enabled can
  379. * vary in size, based on:
  380. * - how many streams the endpoint supports,
  381. * - the maximum primary stream array size the host controller supports,
  382. * - and how many streams the device driver asks for.
  383. *
  384. * The stream context array must be a power of 2, and can be as small as
  385. * 64 bytes or as large as 1MB.
  386. */
  387. static struct xhci_stream_ctx *xhci_alloc_stream_ctx(struct xhci_hcd *xhci,
  388. unsigned int num_stream_ctxs, dma_addr_t *dma,
  389. gfp_t mem_flags)
  390. {
  391. struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
  392. if (num_stream_ctxs > MEDIUM_STREAM_ARRAY_SIZE)
  393. return dma_alloc_coherent(&pdev->dev,
  394. sizeof(struct xhci_stream_ctx)*num_stream_ctxs,
  395. dma, mem_flags);
  396. else if (num_stream_ctxs <= SMALL_STREAM_ARRAY_SIZE)
  397. return dma_pool_alloc(xhci->small_streams_pool,
  398. mem_flags, dma);
  399. else
  400. return dma_pool_alloc(xhci->medium_streams_pool,
  401. mem_flags, dma);
  402. }
  403. struct xhci_ring *xhci_dma_to_transfer_ring(
  404. struct xhci_virt_ep *ep,
  405. u64 address)
  406. {
  407. if (ep->ep_state & EP_HAS_STREAMS)
  408. return radix_tree_lookup(&ep->stream_info->trb_address_map,
  409. address >> TRB_SEGMENT_SHIFT);
  410. return ep->ring;
  411. }
  412. /* Only use this when you know stream_info is valid */
  413. #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
  414. static struct xhci_ring *dma_to_stream_ring(
  415. struct xhci_stream_info *stream_info,
  416. u64 address)
  417. {
  418. return radix_tree_lookup(&stream_info->trb_address_map,
  419. address >> TRB_SEGMENT_SHIFT);
  420. }
  421. #endif /* CONFIG_USB_XHCI_HCD_DEBUGGING */
  422. struct xhci_ring *xhci_stream_id_to_ring(
  423. struct xhci_virt_device *dev,
  424. unsigned int ep_index,
  425. unsigned int stream_id)
  426. {
  427. struct xhci_virt_ep *ep = &dev->eps[ep_index];
  428. if (stream_id == 0)
  429. return ep->ring;
  430. if (!ep->stream_info)
  431. return NULL;
  432. if (stream_id > ep->stream_info->num_streams)
  433. return NULL;
  434. return ep->stream_info->stream_rings[stream_id];
  435. }
  436. #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
  437. static int xhci_test_radix_tree(struct xhci_hcd *xhci,
  438. unsigned int num_streams,
  439. struct xhci_stream_info *stream_info)
  440. {
  441. u32 cur_stream;
  442. struct xhci_ring *cur_ring;
  443. u64 addr;
  444. for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
  445. struct xhci_ring *mapped_ring;
  446. int trb_size = sizeof(union xhci_trb);
  447. cur_ring = stream_info->stream_rings[cur_stream];
  448. for (addr = cur_ring->first_seg->dma;
  449. addr < cur_ring->first_seg->dma + TRB_SEGMENT_SIZE;
  450. addr += trb_size) {
  451. mapped_ring = dma_to_stream_ring(stream_info, addr);
  452. if (cur_ring != mapped_ring) {
  453. xhci_warn(xhci, "WARN: DMA address 0x%08llx "
  454. "didn't map to stream ID %u; "
  455. "mapped to ring %p\n",
  456. (unsigned long long) addr,
  457. cur_stream,
  458. mapped_ring);
  459. return -EINVAL;
  460. }
  461. }
  462. /* One TRB after the end of the ring segment shouldn't return a
  463. * pointer to the current ring (although it may be a part of a
  464. * different ring).
  465. */
  466. mapped_ring = dma_to_stream_ring(stream_info, addr);
  467. if (mapped_ring != cur_ring) {
  468. /* One TRB before should also fail */
  469. addr = cur_ring->first_seg->dma - trb_size;
  470. mapped_ring = dma_to_stream_ring(stream_info, addr);
  471. }
  472. if (mapped_ring == cur_ring) {
  473. xhci_warn(xhci, "WARN: Bad DMA address 0x%08llx "
  474. "mapped to valid stream ID %u; "
  475. "mapped ring = %p\n",
  476. (unsigned long long) addr,
  477. cur_stream,
  478. mapped_ring);
  479. return -EINVAL;
  480. }
  481. }
  482. return 0;
  483. }
  484. #endif /* CONFIG_USB_XHCI_HCD_DEBUGGING */
  485. /*
  486. * Change an endpoint's internal structure so it supports stream IDs. The
  487. * number of requested streams includes stream 0, which cannot be used by device
  488. * drivers.
  489. *
  490. * The number of stream contexts in the stream context array may be bigger than
  491. * the number of streams the driver wants to use. This is because the number of
  492. * stream context array entries must be a power of two.
  493. *
  494. * We need a radix tree for mapping physical addresses of TRBs to which stream
  495. * ID they belong to. We need to do this because the host controller won't tell
  496. * us which stream ring the TRB came from. We could store the stream ID in an
  497. * event data TRB, but that doesn't help us for the cancellation case, since the
  498. * endpoint may stop before it reaches that event data TRB.
  499. *
  500. * The radix tree maps the upper portion of the TRB DMA address to a ring
  501. * segment that has the same upper portion of DMA addresses. For example, say I
  502. * have segments of size 1KB, that are always 64-byte aligned. A segment may
  503. * start at 0x10c91000 and end at 0x10c913f0. If I use the upper 10 bits, the
  504. * key to the stream ID is 0x43244. I can use the DMA address of the TRB to
  505. * pass the radix tree a key to get the right stream ID:
  506. *
  507. * 0x10c90fff >> 10 = 0x43243
  508. * 0x10c912c0 >> 10 = 0x43244
  509. * 0x10c91400 >> 10 = 0x43245
  510. *
  511. * Obviously, only those TRBs with DMA addresses that are within the segment
  512. * will make the radix tree return the stream ID for that ring.
  513. *
  514. * Caveats for the radix tree:
  515. *
  516. * The radix tree uses an unsigned long as a key pair. On 32-bit systems, an
  517. * unsigned long will be 32-bits; on a 64-bit system an unsigned long will be
  518. * 64-bits. Since we only request 32-bit DMA addresses, we can use that as the
  519. * key on 32-bit or 64-bit systems (it would also be fine if we asked for 64-bit
  520. * PCI DMA addresses on a 64-bit system). There might be a problem on 32-bit
  521. * extended systems (where the DMA address can be bigger than 32-bits),
  522. * if we allow the PCI dma mask to be bigger than 32-bits. So don't do that.
  523. */
  524. struct xhci_stream_info *xhci_alloc_stream_info(struct xhci_hcd *xhci,
  525. unsigned int num_stream_ctxs,
  526. unsigned int num_streams, gfp_t mem_flags)
  527. {
  528. struct xhci_stream_info *stream_info;
  529. u32 cur_stream;
  530. struct xhci_ring *cur_ring;
  531. unsigned long key;
  532. u64 addr;
  533. int ret;
  534. xhci_dbg(xhci, "Allocating %u streams and %u "
  535. "stream context array entries.\n",
  536. num_streams, num_stream_ctxs);
  537. if (xhci->cmd_ring_reserved_trbs == MAX_RSVD_CMD_TRBS) {
  538. xhci_dbg(xhci, "Command ring has no reserved TRBs available\n");
  539. return NULL;
  540. }
  541. xhci->cmd_ring_reserved_trbs++;
  542. stream_info = kzalloc(sizeof(struct xhci_stream_info), mem_flags);
  543. if (!stream_info)
  544. goto cleanup_trbs;
  545. stream_info->num_streams = num_streams;
  546. stream_info->num_stream_ctxs = num_stream_ctxs;
  547. /* Initialize the array of virtual pointers to stream rings. */
  548. stream_info->stream_rings = kzalloc(
  549. sizeof(struct xhci_ring *)*num_streams,
  550. mem_flags);
  551. if (!stream_info->stream_rings)
  552. goto cleanup_info;
  553. /* Initialize the array of DMA addresses for stream rings for the HW. */
  554. stream_info->stream_ctx_array = xhci_alloc_stream_ctx(xhci,
  555. num_stream_ctxs, &stream_info->ctx_array_dma,
  556. mem_flags);
  557. if (!stream_info->stream_ctx_array)
  558. goto cleanup_ctx;
  559. memset(stream_info->stream_ctx_array, 0,
  560. sizeof(struct xhci_stream_ctx)*num_stream_ctxs);
  561. /* Allocate everything needed to free the stream rings later */
  562. stream_info->free_streams_command =
  563. xhci_alloc_command(xhci, true, true, mem_flags);
  564. if (!stream_info->free_streams_command)
  565. goto cleanup_ctx;
  566. INIT_RADIX_TREE(&stream_info->trb_address_map, GFP_ATOMIC);
  567. /* Allocate rings for all the streams that the driver will use,
  568. * and add their segment DMA addresses to the radix tree.
  569. * Stream 0 is reserved.
  570. */
  571. for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
  572. stream_info->stream_rings[cur_stream] =
  573. xhci_ring_alloc(xhci, 2, 1, TYPE_STREAM, mem_flags);
  574. cur_ring = stream_info->stream_rings[cur_stream];
  575. if (!cur_ring)
  576. goto cleanup_rings;
  577. cur_ring->stream_id = cur_stream;
  578. /* Set deq ptr, cycle bit, and stream context type */
  579. addr = cur_ring->first_seg->dma |
  580. SCT_FOR_CTX(SCT_PRI_TR) |
  581. cur_ring->cycle_state;
  582. stream_info->stream_ctx_array[cur_stream].stream_ring =
  583. cpu_to_le64(addr);
  584. xhci_dbg(xhci, "Setting stream %d ring ptr to 0x%08llx\n",
  585. cur_stream, (unsigned long long) addr);
  586. key = (unsigned long)
  587. (cur_ring->first_seg->dma >> TRB_SEGMENT_SHIFT);
  588. ret = radix_tree_insert(&stream_info->trb_address_map,
  589. key, cur_ring);
  590. if (ret) {
  591. xhci_ring_free(xhci, cur_ring);
  592. stream_info->stream_rings[cur_stream] = NULL;
  593. goto cleanup_rings;
  594. }
  595. }
  596. /* Leave the other unused stream ring pointers in the stream context
  597. * array initialized to zero. This will cause the xHC to give us an
  598. * error if the device asks for a stream ID we don't have setup (if it
  599. * was any other way, the host controller would assume the ring is
  600. * "empty" and wait forever for data to be queued to that stream ID).
  601. */
  602. #if XHCI_DEBUG
  603. /* Do a little test on the radix tree to make sure it returns the
  604. * correct values.
  605. */
  606. if (xhci_test_radix_tree(xhci, num_streams, stream_info))
  607. goto cleanup_rings;
  608. #endif
  609. return stream_info;
  610. cleanup_rings:
  611. for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
  612. cur_ring = stream_info->stream_rings[cur_stream];
  613. if (cur_ring) {
  614. addr = cur_ring->first_seg->dma;
  615. radix_tree_delete(&stream_info->trb_address_map,
  616. addr >> TRB_SEGMENT_SHIFT);
  617. xhci_ring_free(xhci, cur_ring);
  618. stream_info->stream_rings[cur_stream] = NULL;
  619. }
  620. }
  621. xhci_free_command(xhci, stream_info->free_streams_command);
  622. cleanup_ctx:
  623. kfree(stream_info->stream_rings);
  624. cleanup_info:
  625. kfree(stream_info);
  626. cleanup_trbs:
  627. xhci->cmd_ring_reserved_trbs--;
  628. return NULL;
  629. }
  630. /*
  631. * Sets the MaxPStreams field and the Linear Stream Array field.
  632. * Sets the dequeue pointer to the stream context array.
  633. */
  634. void xhci_setup_streams_ep_input_ctx(struct xhci_hcd *xhci,
  635. struct xhci_ep_ctx *ep_ctx,
  636. struct xhci_stream_info *stream_info)
  637. {
  638. u32 max_primary_streams;
  639. /* MaxPStreams is the number of stream context array entries, not the
  640. * number we're actually using. Must be in 2^(MaxPstreams + 1) format.
  641. * fls(0) = 0, fls(0x1) = 1, fls(0x10) = 2, fls(0x100) = 3, etc.
  642. */
  643. max_primary_streams = fls(stream_info->num_stream_ctxs) - 2;
  644. xhci_dbg(xhci, "Setting number of stream ctx array entries to %u\n",
  645. 1 << (max_primary_streams + 1));
  646. ep_ctx->ep_info &= cpu_to_le32(~EP_MAXPSTREAMS_MASK);
  647. ep_ctx->ep_info |= cpu_to_le32(EP_MAXPSTREAMS(max_primary_streams)
  648. | EP_HAS_LSA);
  649. ep_ctx->deq = cpu_to_le64(stream_info->ctx_array_dma);
  650. }
  651. /*
  652. * Sets the MaxPStreams field and the Linear Stream Array field to 0.
  653. * Reinstalls the "normal" endpoint ring (at its previous dequeue mark,
  654. * not at the beginning of the ring).
  655. */
  656. void xhci_setup_no_streams_ep_input_ctx(struct xhci_hcd *xhci,
  657. struct xhci_ep_ctx *ep_ctx,
  658. struct xhci_virt_ep *ep)
  659. {
  660. dma_addr_t addr;
  661. ep_ctx->ep_info &= cpu_to_le32(~(EP_MAXPSTREAMS_MASK | EP_HAS_LSA));
  662. addr = xhci_trb_virt_to_dma(ep->ring->deq_seg, ep->ring->dequeue);
  663. ep_ctx->deq = cpu_to_le64(addr | ep->ring->cycle_state);
  664. }
  665. /* Frees all stream contexts associated with the endpoint,
  666. *
  667. * Caller should fix the endpoint context streams fields.
  668. */
  669. void xhci_free_stream_info(struct xhci_hcd *xhci,
  670. struct xhci_stream_info *stream_info)
  671. {
  672. int cur_stream;
  673. struct xhci_ring *cur_ring;
  674. dma_addr_t addr;
  675. if (!stream_info)
  676. return;
  677. for (cur_stream = 1; cur_stream < stream_info->num_streams;
  678. cur_stream++) {
  679. cur_ring = stream_info->stream_rings[cur_stream];
  680. if (cur_ring) {
  681. addr = cur_ring->first_seg->dma;
  682. radix_tree_delete(&stream_info->trb_address_map,
  683. addr >> TRB_SEGMENT_SHIFT);
  684. xhci_ring_free(xhci, cur_ring);
  685. stream_info->stream_rings[cur_stream] = NULL;
  686. }
  687. }
  688. xhci_free_command(xhci, stream_info->free_streams_command);
  689. xhci->cmd_ring_reserved_trbs--;
  690. if (stream_info->stream_ctx_array)
  691. xhci_free_stream_ctx(xhci,
  692. stream_info->num_stream_ctxs,
  693. stream_info->stream_ctx_array,
  694. stream_info->ctx_array_dma);
  695. if (stream_info)
  696. kfree(stream_info->stream_rings);
  697. kfree(stream_info);
  698. }
  699. /***************** Device context manipulation *************************/
  700. static void xhci_init_endpoint_timer(struct xhci_hcd *xhci,
  701. struct xhci_virt_ep *ep)
  702. {
  703. init_timer(&ep->stop_cmd_timer);
  704. ep->stop_cmd_timer.data = (unsigned long) ep;
  705. ep->stop_cmd_timer.function = xhci_stop_endpoint_command_watchdog;
  706. ep->xhci = xhci;
  707. }
  708. static void xhci_free_tt_info(struct xhci_hcd *xhci,
  709. struct xhci_virt_device *virt_dev,
  710. int slot_id)
  711. {
  712. struct list_head *tt_list_head;
  713. struct xhci_tt_bw_info *tt_info, *next;
  714. bool slot_found = false;
  715. /* If the device never made it past the Set Address stage,
  716. * it may not have the real_port set correctly.
  717. */
  718. if (virt_dev->real_port == 0 ||
  719. virt_dev->real_port > HCS_MAX_PORTS(xhci->hcs_params1)) {
  720. xhci_dbg(xhci, "Bad real port.\n");
  721. return;
  722. }
  723. tt_list_head = &(xhci->rh_bw[virt_dev->real_port - 1].tts);
  724. list_for_each_entry_safe(tt_info, next, tt_list_head, tt_list) {
  725. /* Multi-TT hubs will have more than one entry */
  726. if (tt_info->slot_id == slot_id) {
  727. slot_found = true;
  728. list_del(&tt_info->tt_list);
  729. kfree(tt_info);
  730. } else if (slot_found) {
  731. break;
  732. }
  733. }
  734. }
  735. int xhci_alloc_tt_info(struct xhci_hcd *xhci,
  736. struct xhci_virt_device *virt_dev,
  737. struct usb_device *hdev,
  738. struct usb_tt *tt, gfp_t mem_flags)
  739. {
  740. struct xhci_tt_bw_info *tt_info;
  741. unsigned int num_ports;
  742. int i, j;
  743. if (!tt->multi)
  744. num_ports = 1;
  745. else
  746. num_ports = hdev->maxchild;
  747. for (i = 0; i < num_ports; i++, tt_info++) {
  748. struct xhci_interval_bw_table *bw_table;
  749. tt_info = kzalloc(sizeof(*tt_info), mem_flags);
  750. if (!tt_info)
  751. goto free_tts;
  752. INIT_LIST_HEAD(&tt_info->tt_list);
  753. list_add(&tt_info->tt_list,
  754. &xhci->rh_bw[virt_dev->real_port - 1].tts);
  755. tt_info->slot_id = virt_dev->udev->slot_id;
  756. if (tt->multi)
  757. tt_info->ttport = i+1;
  758. bw_table = &tt_info->bw_table;
  759. for (j = 0; j < XHCI_MAX_INTERVAL; j++)
  760. INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints);
  761. }
  762. return 0;
  763. free_tts:
  764. xhci_free_tt_info(xhci, virt_dev, virt_dev->udev->slot_id);
  765. return -ENOMEM;
  766. }
  767. /* All the xhci_tds in the ring's TD list should be freed at this point.
  768. * Should be called with xhci->lock held if there is any chance the TT lists
  769. * will be manipulated by the configure endpoint, allocate device, or update
  770. * hub functions while this function is removing the TT entries from the list.
  771. */
  772. void xhci_free_virt_device(struct xhci_hcd *xhci, int slot_id)
  773. {
  774. struct xhci_virt_device *dev;
  775. int i;
  776. int old_active_eps = 0;
  777. /* Slot ID 0 is reserved */
  778. if (slot_id == 0 || !xhci->devs[slot_id])
  779. return;
  780. dev = xhci->devs[slot_id];
  781. xhci->dcbaa->dev_context_ptrs[slot_id] = 0;
  782. if (!dev)
  783. return;
  784. if (dev->tt_info)
  785. old_active_eps = dev->tt_info->active_eps;
  786. for (i = 0; i < 31; ++i) {
  787. if (dev->eps[i].ring)
  788. xhci_ring_free(xhci, dev->eps[i].ring);
  789. if (dev->eps[i].stream_info)
  790. xhci_free_stream_info(xhci,
  791. dev->eps[i].stream_info);
  792. /* Endpoints on the TT/root port lists should have been removed
  793. * when usb_disable_device() was called for the device.
  794. * We can't drop them anyway, because the udev might have gone
  795. * away by this point, and we can't tell what speed it was.
  796. */
  797. if (!list_empty(&dev->eps[i].bw_endpoint_list))
  798. xhci_warn(xhci, "Slot %u endpoint %u "
  799. "not removed from BW list!\n",
  800. slot_id, i);
  801. }
  802. /* If this is a hub, free the TT(s) from the TT list */
  803. xhci_free_tt_info(xhci, dev, slot_id);
  804. /* If necessary, update the number of active TTs on this root port */
  805. xhci_update_tt_active_eps(xhci, dev, old_active_eps);
  806. if (dev->ring_cache) {
  807. for (i = 0; i < dev->num_rings_cached; i++)
  808. xhci_ring_free(xhci, dev->ring_cache[i]);
  809. kfree(dev->ring_cache);
  810. }
  811. if (dev->in_ctx)
  812. xhci_free_container_ctx(xhci, dev->in_ctx);
  813. if (dev->out_ctx)
  814. xhci_free_container_ctx(xhci, dev->out_ctx);
  815. kfree(xhci->devs[slot_id]);
  816. xhci->devs[slot_id] = NULL;
  817. }
  818. int xhci_alloc_virt_device(struct xhci_hcd *xhci, int slot_id,
  819. struct usb_device *udev, gfp_t flags)
  820. {
  821. struct xhci_virt_device *dev;
  822. int i;
  823. /* Slot ID 0 is reserved */
  824. if (slot_id == 0 || xhci->devs[slot_id]) {
  825. xhci_warn(xhci, "Bad Slot ID %d\n", slot_id);
  826. return 0;
  827. }
  828. xhci->devs[slot_id] = kzalloc(sizeof(*xhci->devs[slot_id]), flags);
  829. if (!xhci->devs[slot_id])
  830. return 0;
  831. dev = xhci->devs[slot_id];
  832. /* Allocate the (output) device context that will be used in the HC. */
  833. dev->out_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_DEVICE, flags);
  834. if (!dev->out_ctx)
  835. goto fail;
  836. xhci_dbg(xhci, "Slot %d output ctx = 0x%llx (dma)\n", slot_id,
  837. (unsigned long long)dev->out_ctx->dma);
  838. /* Allocate the (input) device context for address device command */
  839. dev->in_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT, flags);
  840. if (!dev->in_ctx)
  841. goto fail;
  842. xhci_dbg(xhci, "Slot %d input ctx = 0x%llx (dma)\n", slot_id,
  843. (unsigned long long)dev->in_ctx->dma);
  844. /* Initialize the cancellation list and watchdog timers for each ep */
  845. for (i = 0; i < 31; i++) {
  846. xhci_init_endpoint_timer(xhci, &dev->eps[i]);
  847. INIT_LIST_HEAD(&dev->eps[i].cancelled_td_list);
  848. INIT_LIST_HEAD(&dev->eps[i].bw_endpoint_list);
  849. }
  850. /* Allocate endpoint 0 ring */
  851. dev->eps[0].ring = xhci_ring_alloc(xhci, 2, 1, TYPE_CTRL, flags);
  852. if (!dev->eps[0].ring)
  853. goto fail;
  854. /* Allocate pointers to the ring cache */
  855. dev->ring_cache = kzalloc(
  856. sizeof(struct xhci_ring *)*XHCI_MAX_RINGS_CACHED,
  857. flags);
  858. if (!dev->ring_cache)
  859. goto fail;
  860. dev->num_rings_cached = 0;
  861. init_completion(&dev->cmd_completion);
  862. INIT_LIST_HEAD(&dev->cmd_list);
  863. dev->udev = udev;
  864. /* Point to output device context in dcbaa. */
  865. xhci->dcbaa->dev_context_ptrs[slot_id] = cpu_to_le64(dev->out_ctx->dma);
  866. xhci_dbg(xhci, "Set slot id %d dcbaa entry %p to 0x%llx\n",
  867. slot_id,
  868. &xhci->dcbaa->dev_context_ptrs[slot_id],
  869. le64_to_cpu(xhci->dcbaa->dev_context_ptrs[slot_id]));
  870. return 1;
  871. fail:
  872. xhci_free_virt_device(xhci, slot_id);
  873. return 0;
  874. }
  875. void xhci_copy_ep0_dequeue_into_input_ctx(struct xhci_hcd *xhci,
  876. struct usb_device *udev)
  877. {
  878. struct xhci_virt_device *virt_dev;
  879. struct xhci_ep_ctx *ep0_ctx;
  880. struct xhci_ring *ep_ring;
  881. virt_dev = xhci->devs[udev->slot_id];
  882. ep0_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, 0);
  883. ep_ring = virt_dev->eps[0].ring;
  884. /*
  885. * FIXME we don't keep track of the dequeue pointer very well after a
  886. * Set TR dequeue pointer, so we're setting the dequeue pointer of the
  887. * host to our enqueue pointer. This should only be called after a
  888. * configured device has reset, so all control transfers should have
  889. * been completed or cancelled before the reset.
  890. */
  891. ep0_ctx->deq = cpu_to_le64(xhci_trb_virt_to_dma(ep_ring->enq_seg,
  892. ep_ring->enqueue)
  893. | ep_ring->cycle_state);
  894. }
  895. /*
  896. * The xHCI roothub may have ports of differing speeds in any order in the port
  897. * status registers. xhci->port_array provides an array of the port speed for
  898. * each offset into the port status registers.
  899. *
  900. * The xHCI hardware wants to know the roothub port number that the USB device
  901. * is attached to (or the roothub port its ancestor hub is attached to). All we
  902. * know is the index of that port under either the USB 2.0 or the USB 3.0
  903. * roothub, but that doesn't give us the real index into the HW port status
  904. * registers. Call xhci_find_raw_port_number() to get real index.
  905. */
  906. static u32 xhci_find_real_port_number(struct xhci_hcd *xhci,
  907. struct usb_device *udev)
  908. {
  909. struct usb_device *top_dev;
  910. struct usb_hcd *hcd;
  911. if (udev->speed == USB_SPEED_SUPER)
  912. hcd = xhci->shared_hcd;
  913. else
  914. hcd = xhci->main_hcd;
  915. for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
  916. top_dev = top_dev->parent)
  917. /* Found device below root hub */;
  918. return xhci_find_raw_port_number(hcd, top_dev->portnum);
  919. }
  920. /* Setup an xHCI virtual device for a Set Address command */
  921. int xhci_setup_addressable_virt_dev(struct xhci_hcd *xhci, struct usb_device *udev)
  922. {
  923. struct xhci_virt_device *dev;
  924. struct xhci_ep_ctx *ep0_ctx;
  925. struct xhci_slot_ctx *slot_ctx;
  926. u32 port_num;
  927. struct usb_device *top_dev;
  928. dev = xhci->devs[udev->slot_id];
  929. /* Slot ID 0 is reserved */
  930. if (udev->slot_id == 0 || !dev) {
  931. xhci_warn(xhci, "Slot ID %d is not assigned to this device\n",
  932. udev->slot_id);
  933. return -EINVAL;
  934. }
  935. ep0_ctx = xhci_get_ep_ctx(xhci, dev->in_ctx, 0);
  936. slot_ctx = xhci_get_slot_ctx(xhci, dev->in_ctx);
  937. /* 3) Only the control endpoint is valid - one endpoint context */
  938. slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1) | udev->route);
  939. switch (udev->speed) {
  940. case USB_SPEED_SUPER:
  941. slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_SS);
  942. break;
  943. case USB_SPEED_HIGH:
  944. slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_HS);
  945. break;
  946. case USB_SPEED_FULL:
  947. slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_FS);
  948. break;
  949. case USB_SPEED_LOW:
  950. slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_LS);
  951. break;
  952. case USB_SPEED_WIRELESS:
  953. xhci_dbg(xhci, "FIXME xHCI doesn't support wireless speeds\n");
  954. return -EINVAL;
  955. break;
  956. default:
  957. /* Speed was set earlier, this shouldn't happen. */
  958. BUG();
  959. }
  960. /* Find the root hub port this device is under */
  961. port_num = xhci_find_real_port_number(xhci, udev);
  962. if (!port_num)
  963. return -EINVAL;
  964. slot_ctx->dev_info2 |= cpu_to_le32(ROOT_HUB_PORT(port_num));
  965. /* Set the port number in the virtual_device to the faked port number */
  966. for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
  967. top_dev = top_dev->parent)
  968. /* Found device below root hub */;
  969. dev->fake_port = top_dev->portnum;
  970. dev->real_port = port_num;
  971. xhci_dbg(xhci, "Set root hub portnum to %d\n", port_num);
  972. xhci_dbg(xhci, "Set fake root hub portnum to %d\n", dev->fake_port);
  973. /* Find the right bandwidth table that this device will be a part of.
  974. * If this is a full speed device attached directly to a root port (or a
  975. * decendent of one), it counts as a primary bandwidth domain, not a
  976. * secondary bandwidth domain under a TT. An xhci_tt_info structure
  977. * will never be created for the HS root hub.
  978. */
  979. if (!udev->tt || !udev->tt->hub->parent) {
  980. dev->bw_table = &xhci->rh_bw[port_num - 1].bw_table;
  981. } else {
  982. struct xhci_root_port_bw_info *rh_bw;
  983. struct xhci_tt_bw_info *tt_bw;
  984. rh_bw = &xhci->rh_bw[port_num - 1];
  985. /* Find the right TT. */
  986. list_for_each_entry(tt_bw, &rh_bw->tts, tt_list) {
  987. if (tt_bw->slot_id != udev->tt->hub->slot_id)
  988. continue;
  989. if (!dev->udev->tt->multi ||
  990. (udev->tt->multi &&
  991. tt_bw->ttport == dev->udev->ttport)) {
  992. dev->bw_table = &tt_bw->bw_table;
  993. dev->tt_info = tt_bw;
  994. break;
  995. }
  996. }
  997. if (!dev->tt_info)
  998. xhci_warn(xhci, "WARN: Didn't find a matching TT\n");
  999. }
  1000. /* Is this a LS/FS device under an external HS hub? */
  1001. if (udev->tt && udev->tt->hub->parent) {
  1002. slot_ctx->tt_info = cpu_to_le32(udev->tt->hub->slot_id |
  1003. (udev->ttport << 8));
  1004. if (udev->tt->multi)
  1005. slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
  1006. }
  1007. xhci_dbg(xhci, "udev->tt = %p\n", udev->tt);
  1008. xhci_dbg(xhci, "udev->ttport = 0x%x\n", udev->ttport);
  1009. /* Step 4 - ring already allocated */
  1010. /* Step 5 */
  1011. ep0_ctx->ep_info2 = cpu_to_le32(EP_TYPE(CTRL_EP));
  1012. /*
  1013. * XXX: Not sure about wireless USB devices.
  1014. */
  1015. switch (udev->speed) {
  1016. case USB_SPEED_SUPER:
  1017. ep0_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(512));
  1018. break;
  1019. case USB_SPEED_HIGH:
  1020. /* USB core guesses at a 64-byte max packet first for FS devices */
  1021. case USB_SPEED_FULL:
  1022. ep0_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(64));
  1023. break;
  1024. case USB_SPEED_LOW:
  1025. ep0_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(8));
  1026. break;
  1027. case USB_SPEED_WIRELESS:
  1028. xhci_dbg(xhci, "FIXME xHCI doesn't support wireless speeds\n");
  1029. return -EINVAL;
  1030. break;
  1031. default:
  1032. /* New speed? */
  1033. BUG();
  1034. }
  1035. /* EP 0 can handle "burst" sizes of 1, so Max Burst Size field is 0 */
  1036. ep0_ctx->ep_info2 |= cpu_to_le32(MAX_BURST(0) | ERROR_COUNT(3));
  1037. ep0_ctx->deq = cpu_to_le64(dev->eps[0].ring->first_seg->dma |
  1038. dev->eps[0].ring->cycle_state);
  1039. /* Steps 7 and 8 were done in xhci_alloc_virt_device() */
  1040. return 0;
  1041. }
  1042. /*
  1043. * Convert interval expressed as 2^(bInterval - 1) == interval into
  1044. * straight exponent value 2^n == interval.
  1045. *
  1046. */
  1047. static unsigned int xhci_parse_exponent_interval(struct usb_device *udev,
  1048. struct usb_host_endpoint *ep)
  1049. {
  1050. unsigned int interval;
  1051. interval = clamp_val(ep->desc.bInterval, 1, 16) - 1;
  1052. if (interval != ep->desc.bInterval - 1)
  1053. dev_warn(&udev->dev,
  1054. "ep %#x - rounding interval to %d %sframes\n",
  1055. ep->desc.bEndpointAddress,
  1056. 1 << interval,
  1057. udev->speed == USB_SPEED_FULL ? "" : "micro");
  1058. if (udev->speed == USB_SPEED_FULL) {
  1059. /*
  1060. * Full speed isoc endpoints specify interval in frames,
  1061. * not microframes. We are using microframes everywhere,
  1062. * so adjust accordingly.
  1063. */
  1064. interval += 3; /* 1 frame = 2^3 uframes */
  1065. }
  1066. return interval;
  1067. }
  1068. /*
  1069. * Convert bInterval expressed in microframes (in 1-255 range) to exponent of
  1070. * microframes, rounded down to nearest power of 2.
  1071. */
  1072. static unsigned int xhci_microframes_to_exponent(struct usb_device *udev,
  1073. struct usb_host_endpoint *ep, unsigned int desc_interval,
  1074. unsigned int min_exponent, unsigned int max_exponent)
  1075. {
  1076. unsigned int interval;
  1077. interval = fls(desc_interval) - 1;
  1078. interval = clamp_val(interval, min_exponent, max_exponent);
  1079. if ((1 << interval) != desc_interval)
  1080. dev_warn(&udev->dev,
  1081. "ep %#x - rounding interval to %d microframes, ep desc says %d microframes\n",
  1082. ep->desc.bEndpointAddress,
  1083. 1 << interval,
  1084. desc_interval);
  1085. return interval;
  1086. }
  1087. static unsigned int xhci_parse_microframe_interval(struct usb_device *udev,
  1088. struct usb_host_endpoint *ep)
  1089. {
  1090. if (ep->desc.bInterval == 0)
  1091. return 0;
  1092. return xhci_microframes_to_exponent(udev, ep,
  1093. ep->desc.bInterval, 0, 15);
  1094. }
  1095. static unsigned int xhci_parse_frame_interval(struct usb_device *udev,
  1096. struct usb_host_endpoint *ep)
  1097. {
  1098. return xhci_microframes_to_exponent(udev, ep,
  1099. ep->desc.bInterval * 8, 3, 10);
  1100. }
  1101. /* Return the polling or NAK interval.
  1102. *
  1103. * The polling interval is expressed in "microframes". If xHCI's Interval field
  1104. * is set to N, it will service the endpoint every 2^(Interval)*125us.
  1105. *
  1106. * The NAK interval is one NAK per 1 to 255 microframes, or no NAKs if interval
  1107. * is set to 0.
  1108. */
  1109. static unsigned int xhci_get_endpoint_interval(struct usb_device *udev,
  1110. struct usb_host_endpoint *ep)
  1111. {
  1112. unsigned int interval = 0;
  1113. switch (udev->speed) {
  1114. case USB_SPEED_HIGH:
  1115. /* Max NAK rate */
  1116. if (usb_endpoint_xfer_control(&ep->desc) ||
  1117. usb_endpoint_xfer_bulk(&ep->desc)) {
  1118. interval = xhci_parse_microframe_interval(udev, ep);
  1119. break;
  1120. }
  1121. /* Fall through - SS and HS isoc/int have same decoding */
  1122. case USB_SPEED_SUPER:
  1123. if (usb_endpoint_xfer_int(&ep->desc) ||
  1124. usb_endpoint_xfer_isoc(&ep->desc)) {
  1125. interval = xhci_parse_exponent_interval(udev, ep);
  1126. }
  1127. break;
  1128. case USB_SPEED_FULL:
  1129. if (usb_endpoint_xfer_isoc(&ep->desc)) {
  1130. interval = xhci_parse_exponent_interval(udev, ep);
  1131. break;
  1132. }
  1133. /*
  1134. * Fall through for interrupt endpoint interval decoding
  1135. * since it uses the same rules as low speed interrupt
  1136. * endpoints.
  1137. */
  1138. case USB_SPEED_LOW:
  1139. if (usb_endpoint_xfer_int(&ep->desc) ||
  1140. usb_endpoint_xfer_isoc(&ep->desc)) {
  1141. interval = xhci_parse_frame_interval(udev, ep);
  1142. }
  1143. break;
  1144. default:
  1145. BUG();
  1146. }
  1147. return EP_INTERVAL(interval);
  1148. }
  1149. /* The "Mult" field in the endpoint context is only set for SuperSpeed isoc eps.
  1150. * High speed endpoint descriptors can define "the number of additional
  1151. * transaction opportunities per microframe", but that goes in the Max Burst
  1152. * endpoint context field.
  1153. */
  1154. static u32 xhci_get_endpoint_mult(struct usb_device *udev,
  1155. struct usb_host_endpoint *ep)
  1156. {
  1157. if (udev->speed != USB_SPEED_SUPER ||
  1158. !usb_endpoint_xfer_isoc(&ep->desc))
  1159. return 0;
  1160. return ep->ss_ep_comp.bmAttributes;
  1161. }
  1162. static u32 xhci_get_endpoint_type(struct usb_device *udev,
  1163. struct usb_host_endpoint *ep)
  1164. {
  1165. int in;
  1166. u32 type;
  1167. in = usb_endpoint_dir_in(&ep->desc);
  1168. if (usb_endpoint_xfer_control(&ep->desc)) {
  1169. type = EP_TYPE(CTRL_EP);
  1170. } else if (usb_endpoint_xfer_bulk(&ep->desc)) {
  1171. if (in)
  1172. type = EP_TYPE(BULK_IN_EP);
  1173. else
  1174. type = EP_TYPE(BULK_OUT_EP);
  1175. } else if (usb_endpoint_xfer_isoc(&ep->desc)) {
  1176. if (in)
  1177. type = EP_TYPE(ISOC_IN_EP);
  1178. else
  1179. type = EP_TYPE(ISOC_OUT_EP);
  1180. } else if (usb_endpoint_xfer_int(&ep->desc)) {
  1181. if (in)
  1182. type = EP_TYPE(INT_IN_EP);
  1183. else
  1184. type = EP_TYPE(INT_OUT_EP);
  1185. } else {
  1186. BUG();
  1187. }
  1188. return type;
  1189. }
  1190. /* Return the maximum endpoint service interval time (ESIT) payload.
  1191. * Basically, this is the maxpacket size, multiplied by the burst size
  1192. * and mult size.
  1193. */
  1194. static u32 xhci_get_max_esit_payload(struct xhci_hcd *xhci,
  1195. struct usb_device *udev,
  1196. struct usb_host_endpoint *ep)
  1197. {
  1198. int max_burst;
  1199. int max_packet;
  1200. /* Only applies for interrupt or isochronous endpoints */
  1201. if (usb_endpoint_xfer_control(&ep->desc) ||
  1202. usb_endpoint_xfer_bulk(&ep->desc))
  1203. return 0;
  1204. if (udev->speed == USB_SPEED_SUPER)
  1205. return le16_to_cpu(ep->ss_ep_comp.wBytesPerInterval);
  1206. max_packet = GET_MAX_PACKET(usb_endpoint_maxp(&ep->desc));
  1207. max_burst = (usb_endpoint_maxp(&ep->desc) & 0x1800) >> 11;
  1208. /* A 0 in max burst means 1 transfer per ESIT */
  1209. return max_packet * (max_burst + 1);
  1210. }
  1211. /* Set up an endpoint with one ring segment. Do not allocate stream rings.
  1212. * Drivers will have to call usb_alloc_streams() to do that.
  1213. */
  1214. int xhci_endpoint_init(struct xhci_hcd *xhci,
  1215. struct xhci_virt_device *virt_dev,
  1216. struct usb_device *udev,
  1217. struct usb_host_endpoint *ep,
  1218. gfp_t mem_flags)
  1219. {
  1220. unsigned int ep_index;
  1221. struct xhci_ep_ctx *ep_ctx;
  1222. struct xhci_ring *ep_ring;
  1223. unsigned int max_packet;
  1224. unsigned int max_burst;
  1225. enum xhci_ring_type type;
  1226. u32 max_esit_payload;
  1227. ep_index = xhci_get_endpoint_index(&ep->desc);
  1228. ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
  1229. type = usb_endpoint_type(&ep->desc);
  1230. /* Set up the endpoint ring */
  1231. virt_dev->eps[ep_index].new_ring =
  1232. xhci_ring_alloc(xhci, 2, 1, type, mem_flags);
  1233. if (!virt_dev->eps[ep_index].new_ring) {
  1234. /* Attempt to use the ring cache */
  1235. if (virt_dev->num_rings_cached == 0)
  1236. return -ENOMEM;
  1237. virt_dev->eps[ep_index].new_ring =
  1238. virt_dev->ring_cache[virt_dev->num_rings_cached];
  1239. virt_dev->ring_cache[virt_dev->num_rings_cached] = NULL;
  1240. virt_dev->num_rings_cached--;
  1241. xhci_reinit_cached_ring(xhci, virt_dev->eps[ep_index].new_ring,
  1242. 1, type);
  1243. }
  1244. virt_dev->eps[ep_index].skip = false;
  1245. ep_ring = virt_dev->eps[ep_index].new_ring;
  1246. ep_ctx->deq = cpu_to_le64(ep_ring->first_seg->dma | ep_ring->cycle_state);
  1247. ep_ctx->ep_info = cpu_to_le32(xhci_get_endpoint_interval(udev, ep)
  1248. | EP_MULT(xhci_get_endpoint_mult(udev, ep)));
  1249. /* FIXME dig Mult and streams info out of ep companion desc */
  1250. /* Allow 3 retries for everything but isoc;
  1251. * CErr shall be set to 0 for Isoch endpoints.
  1252. */
  1253. if (!usb_endpoint_xfer_isoc(&ep->desc))
  1254. ep_ctx->ep_info2 = cpu_to_le32(ERROR_COUNT(3));
  1255. else
  1256. ep_ctx->ep_info2 = cpu_to_le32(ERROR_COUNT(0));
  1257. ep_ctx->ep_info2 |= cpu_to_le32(xhci_get_endpoint_type(udev, ep));
  1258. /* Set the max packet size and max burst */
  1259. max_packet = GET_MAX_PACKET(usb_endpoint_maxp(&ep->desc));
  1260. max_burst = 0;
  1261. switch (udev->speed) {
  1262. case USB_SPEED_SUPER:
  1263. /* dig out max burst from ep companion desc */
  1264. max_burst = ep->ss_ep_comp.bMaxBurst;
  1265. break;
  1266. case USB_SPEED_HIGH:
  1267. /* Some devices get this wrong */
  1268. if (usb_endpoint_xfer_bulk(&ep->desc))
  1269. max_packet = 512;
  1270. /* bits 11:12 specify the number of additional transaction
  1271. * opportunities per microframe (USB 2.0, section 9.6.6)
  1272. */
  1273. if (usb_endpoint_xfer_isoc(&ep->desc) ||
  1274. usb_endpoint_xfer_int(&ep->desc)) {
  1275. max_burst = (usb_endpoint_maxp(&ep->desc)
  1276. & 0x1800) >> 11;
  1277. }
  1278. break;
  1279. case USB_SPEED_FULL:
  1280. case USB_SPEED_LOW:
  1281. break;
  1282. default:
  1283. BUG();
  1284. }
  1285. ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet) |
  1286. MAX_BURST(max_burst));
  1287. max_esit_payload = xhci_get_max_esit_payload(xhci, udev, ep);
  1288. ep_ctx->tx_info = cpu_to_le32(MAX_ESIT_PAYLOAD_FOR_EP(max_esit_payload));
  1289. /*
  1290. * XXX no idea how to calculate the average TRB buffer length for bulk
  1291. * endpoints, as the driver gives us no clue how big each scatter gather
  1292. * list entry (or buffer) is going to be.
  1293. *
  1294. * For isochronous and interrupt endpoints, we set it to the max
  1295. * available, until we have new API in the USB core to allow drivers to
  1296. * declare how much bandwidth they actually need.
  1297. *
  1298. * Normally, it would be calculated by taking the total of the buffer
  1299. * lengths in the TD and then dividing by the number of TRBs in a TD,
  1300. * including link TRBs, No-op TRBs, and Event data TRBs. Since we don't
  1301. * use Event Data TRBs, and we don't chain in a link TRB on short
  1302. * transfers, we're basically dividing by 1.
  1303. *
  1304. * xHCI 1.0 specification indicates that the Average TRB Length should
  1305. * be set to 8 for control endpoints.
  1306. */
  1307. if (usb_endpoint_xfer_control(&ep->desc) && xhci->hci_version == 0x100)
  1308. ep_ctx->tx_info |= cpu_to_le32(AVG_TRB_LENGTH_FOR_EP(8));
  1309. else
  1310. ep_ctx->tx_info |=
  1311. cpu_to_le32(AVG_TRB_LENGTH_FOR_EP(max_esit_payload));
  1312. /* FIXME Debug endpoint context */
  1313. return 0;
  1314. }
  1315. void xhci_endpoint_zero(struct xhci_hcd *xhci,
  1316. struct xhci_virt_device *virt_dev,
  1317. struct usb_host_endpoint *ep)
  1318. {
  1319. unsigned int ep_index;
  1320. struct xhci_ep_ctx *ep_ctx;
  1321. ep_index = xhci_get_endpoint_index(&ep->desc);
  1322. ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
  1323. ep_ctx->ep_info = 0;
  1324. ep_ctx->ep_info2 = 0;
  1325. ep_ctx->deq = 0;
  1326. ep_ctx->tx_info = 0;
  1327. /* Don't free the endpoint ring until the set interface or configuration
  1328. * request succeeds.
  1329. */
  1330. }
  1331. void xhci_clear_endpoint_bw_info(struct xhci_bw_info *bw_info)
  1332. {
  1333. bw_info->ep_interval = 0;
  1334. bw_info->mult = 0;
  1335. bw_info->num_packets = 0;
  1336. bw_info->max_packet_size = 0;
  1337. bw_info->type = 0;
  1338. bw_info->max_esit_payload = 0;
  1339. }
  1340. void xhci_update_bw_info(struct xhci_hcd *xhci,
  1341. struct xhci_container_ctx *in_ctx,
  1342. struct xhci_input_control_ctx *ctrl_ctx,
  1343. struct xhci_virt_device *virt_dev)
  1344. {
  1345. struct xhci_bw_info *bw_info;
  1346. struct xhci_ep_ctx *ep_ctx;
  1347. unsigned int ep_type;
  1348. int i;
  1349. for (i = 1; i < 31; ++i) {
  1350. bw_info = &virt_dev->eps[i].bw_info;
  1351. /* We can't tell what endpoint type is being dropped, but
  1352. * unconditionally clearing the bandwidth info for non-periodic
  1353. * endpoints should be harmless because the info will never be
  1354. * set in the first place.
  1355. */
  1356. if (!EP_IS_ADDED(ctrl_ctx, i) && EP_IS_DROPPED(ctrl_ctx, i)) {
  1357. /* Dropped endpoint */
  1358. xhci_clear_endpoint_bw_info(bw_info);
  1359. continue;
  1360. }
  1361. if (EP_IS_ADDED(ctrl_ctx, i)) {
  1362. ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, i);
  1363. ep_type = CTX_TO_EP_TYPE(le32_to_cpu(ep_ctx->ep_info2));
  1364. /* Ignore non-periodic endpoints */
  1365. if (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
  1366. ep_type != ISOC_IN_EP &&
  1367. ep_type != INT_IN_EP)
  1368. continue;
  1369. /* Added or changed endpoint */
  1370. bw_info->ep_interval = CTX_TO_EP_INTERVAL(
  1371. le32_to_cpu(ep_ctx->ep_info));
  1372. /* Number of packets and mult are zero-based in the
  1373. * input context, but we want one-based for the
  1374. * interval table.
  1375. */
  1376. bw_info->mult = CTX_TO_EP_MULT(
  1377. le32_to_cpu(ep_ctx->ep_info)) + 1;
  1378. bw_info->num_packets = CTX_TO_MAX_BURST(
  1379. le32_to_cpu(ep_ctx->ep_info2)) + 1;
  1380. bw_info->max_packet_size = MAX_PACKET_DECODED(
  1381. le32_to_cpu(ep_ctx->ep_info2));
  1382. bw_info->type = ep_type;
  1383. bw_info->max_esit_payload = CTX_TO_MAX_ESIT_PAYLOAD(
  1384. le32_to_cpu(ep_ctx->tx_info));
  1385. }
  1386. }
  1387. }
  1388. /* Copy output xhci_ep_ctx to the input xhci_ep_ctx copy.
  1389. * Useful when you want to change one particular aspect of the endpoint and then
  1390. * issue a configure endpoint command.
  1391. */
  1392. void xhci_endpoint_copy(struct xhci_hcd *xhci,
  1393. struct xhci_container_ctx *in_ctx,
  1394. struct xhci_container_ctx *out_ctx,
  1395. unsigned int ep_index)
  1396. {
  1397. struct xhci_ep_ctx *out_ep_ctx;
  1398. struct xhci_ep_ctx *in_ep_ctx;
  1399. out_ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
  1400. in_ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
  1401. in_ep_ctx->ep_info = out_ep_ctx->ep_info;
  1402. in_ep_ctx->ep_info2 = out_ep_ctx->ep_info2;
  1403. in_ep_ctx->deq = out_ep_ctx->deq;
  1404. in_ep_ctx->tx_info = out_ep_ctx->tx_info;
  1405. }
  1406. /* Copy output xhci_slot_ctx to the input xhci_slot_ctx.
  1407. * Useful when you want to change one particular aspect of the endpoint and then
  1408. * issue a configure endpoint command. Only the context entries field matters,
  1409. * but we'll copy the whole thing anyway.
  1410. */
  1411. void xhci_slot_copy(struct xhci_hcd *xhci,
  1412. struct xhci_container_ctx *in_ctx,
  1413. struct xhci_container_ctx *out_ctx)
  1414. {
  1415. struct xhci_slot_ctx *in_slot_ctx;
  1416. struct xhci_slot_ctx *out_slot_ctx;
  1417. in_slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
  1418. out_slot_ctx = xhci_get_slot_ctx(xhci, out_ctx);
  1419. in_slot_ctx->dev_info = out_slot_ctx->dev_info;
  1420. in_slot_ctx->dev_info2 = out_slot_ctx->dev_info2;
  1421. in_slot_ctx->tt_info = out_slot_ctx->tt_info;
  1422. in_slot_ctx->dev_state = out_slot_ctx->dev_state;
  1423. }
  1424. /* Set up the scratchpad buffer array and scratchpad buffers, if needed. */
  1425. static int scratchpad_alloc(struct xhci_hcd *xhci, gfp_t flags)
  1426. {
  1427. int i;
  1428. struct device *dev = xhci_to_hcd(xhci)->self.controller;
  1429. int num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
  1430. xhci_dbg(xhci, "Allocating %d scratchpad buffers\n", num_sp);
  1431. if (!num_sp)
  1432. return 0;
  1433. xhci->scratchpad = kzalloc(sizeof(*xhci->scratchpad), flags);
  1434. if (!xhci->scratchpad)
  1435. goto fail_sp;
  1436. xhci->scratchpad->sp_array = dma_alloc_coherent(dev,
  1437. num_sp * sizeof(u64),
  1438. &xhci->scratchpad->sp_dma, flags);
  1439. if (!xhci->scratchpad->sp_array)
  1440. goto fail_sp2;
  1441. xhci->scratchpad->sp_buffers = kzalloc(sizeof(void *) * num_sp, flags);
  1442. if (!xhci->scratchpad->sp_buffers)
  1443. goto fail_sp3;
  1444. xhci->scratchpad->sp_dma_buffers =
  1445. kzalloc(sizeof(dma_addr_t) * num_sp, flags);
  1446. if (!xhci->scratchpad->sp_dma_buffers)
  1447. goto fail_sp4;
  1448. xhci->dcbaa->dev_context_ptrs[0] = cpu_to_le64(xhci->scratchpad->sp_dma);
  1449. for (i = 0; i < num_sp; i++) {
  1450. dma_addr_t dma;
  1451. void *buf = dma_alloc_coherent(dev, xhci->page_size, &dma,
  1452. flags);
  1453. if (!buf)
  1454. goto fail_sp5;
  1455. xhci->scratchpad->sp_array[i] = dma;
  1456. xhci->scratchpad->sp_buffers[i] = buf;
  1457. xhci->scratchpad->sp_dma_buffers[i] = dma;
  1458. }
  1459. return 0;
  1460. fail_sp5:
  1461. for (i = i - 1; i >= 0; i--) {
  1462. dma_free_coherent(dev, xhci->page_size,
  1463. xhci->scratchpad->sp_buffers[i],
  1464. xhci->scratchpad->sp_dma_buffers[i]);
  1465. }
  1466. kfree(xhci->scratchpad->sp_dma_buffers);
  1467. fail_sp4:
  1468. kfree(xhci->scratchpad->sp_buffers);
  1469. fail_sp3:
  1470. dma_free_coherent(dev, num_sp * sizeof(u64),
  1471. xhci->scratchpad->sp_array,
  1472. xhci->scratchpad->sp_dma);
  1473. fail_sp2:
  1474. kfree(xhci->scratchpad);
  1475. xhci->scratchpad = NULL;
  1476. fail_sp:
  1477. return -ENOMEM;
  1478. }
  1479. static void scratchpad_free(struct xhci_hcd *xhci)
  1480. {
  1481. int num_sp;
  1482. int i;
  1483. struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
  1484. if (!xhci->scratchpad)
  1485. return;
  1486. num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
  1487. for (i = 0; i < num_sp; i++) {
  1488. dma_free_coherent(&pdev->dev, xhci->page_size,
  1489. xhci->scratchpad->sp_buffers[i],
  1490. xhci->scratchpad->sp_dma_buffers[i]);
  1491. }
  1492. kfree(xhci->scratchpad->sp_dma_buffers);
  1493. kfree(xhci->scratchpad->sp_buffers);
  1494. dma_free_coherent(&pdev->dev, num_sp * sizeof(u64),
  1495. xhci->scratchpad->sp_array,
  1496. xhci->scratchpad->sp_dma);
  1497. kfree(xhci->scratchpad);
  1498. xhci->scratchpad = NULL;
  1499. }
  1500. struct xhci_command *xhci_alloc_command(struct xhci_hcd *xhci,
  1501. bool allocate_in_ctx, bool allocate_completion,
  1502. gfp_t mem_flags)
  1503. {
  1504. struct xhci_command *command;
  1505. command = kzalloc(sizeof(*command), mem_flags);
  1506. if (!command)
  1507. return NULL;
  1508. if (allocate_in_ctx) {
  1509. command->in_ctx =
  1510. xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT,
  1511. mem_flags);
  1512. if (!command->in_ctx) {
  1513. kfree(command);
  1514. return NULL;
  1515. }
  1516. }
  1517. if (allocate_completion) {
  1518. command->completion =
  1519. kzalloc(sizeof(struct completion), mem_flags);
  1520. if (!command->completion) {
  1521. xhci_free_container_ctx(xhci, command->in_ctx);
  1522. kfree(command);
  1523. return NULL;
  1524. }
  1525. init_completion(command->completion);
  1526. }
  1527. command->status = 0;
  1528. INIT_LIST_HEAD(&command->cmd_list);
  1529. return command;
  1530. }
  1531. void xhci_urb_free_priv(struct xhci_hcd *xhci, struct urb_priv *urb_priv)
  1532. {
  1533. if (urb_priv) {
  1534. kfree(urb_priv->td[0]);
  1535. kfree(urb_priv);
  1536. }
  1537. }
  1538. void xhci_free_command(struct xhci_hcd *xhci,
  1539. struct xhci_command *command)
  1540. {
  1541. xhci_free_container_ctx(xhci,
  1542. command->in_ctx);
  1543. kfree(command->completion);
  1544. kfree(command);
  1545. }
  1546. void xhci_mem_cleanup(struct xhci_hcd *xhci)
  1547. {
  1548. struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
  1549. struct dev_info *dev_info, *next;
  1550. struct xhci_cd *cur_cd, *next_cd;
  1551. unsigned long flags;
  1552. int size;
  1553. int i, j, num_ports;
  1554. /* Free the Event Ring Segment Table and the actual Event Ring */
  1555. size = sizeof(struct xhci_erst_entry)*(xhci->erst.num_entries);
  1556. if (xhci->erst.entries)
  1557. dma_free_coherent(&pdev->dev, size,
  1558. xhci->erst.entries, xhci->erst.erst_dma_addr);
  1559. xhci->erst.entries = NULL;
  1560. xhci_dbg(xhci, "Freed ERST\n");
  1561. if (xhci->event_ring)
  1562. xhci_ring_free(xhci, xhci->event_ring);
  1563. xhci->event_ring = NULL;
  1564. xhci_dbg(xhci, "Freed event ring\n");
  1565. if (xhci->lpm_command)
  1566. xhci_free_command(xhci, xhci->lpm_command);
  1567. xhci->cmd_ring_reserved_trbs = 0;
  1568. if (xhci->cmd_ring)
  1569. xhci_ring_free(xhci, xhci->cmd_ring);
  1570. xhci->cmd_ring = NULL;
  1571. xhci_dbg(xhci, "Freed command ring\n");
  1572. list_for_each_entry_safe(cur_cd, next_cd,
  1573. &xhci->cancel_cmd_list, cancel_cmd_list) {
  1574. list_del(&cur_cd->cancel_cmd_list);
  1575. kfree(cur_cd);
  1576. }
  1577. for (i = 1; i < MAX_HC_SLOTS; ++i)
  1578. xhci_free_virt_device(xhci, i);
  1579. if (xhci->segment_pool)
  1580. dma_pool_destroy(xhci->segment_pool);
  1581. xhci->segment_pool = NULL;
  1582. xhci_dbg(xhci, "Freed segment pool\n");
  1583. if (xhci->device_pool)
  1584. dma_pool_destroy(xhci->device_pool);
  1585. xhci->device_pool = NULL;
  1586. xhci_dbg(xhci, "Freed device context pool\n");
  1587. if (xhci->small_streams_pool)
  1588. dma_pool_destroy(xhci->small_streams_pool);
  1589. xhci->small_streams_pool = NULL;
  1590. xhci_dbg(xhci, "Freed small stream array pool\n");
  1591. if (xhci->medium_streams_pool)
  1592. dma_pool_destroy(xhci->medium_streams_pool);
  1593. xhci->medium_streams_pool = NULL;
  1594. xhci_dbg(xhci, "Freed medium stream array pool\n");
  1595. if (xhci->dcbaa)
  1596. dma_free_coherent(&pdev->dev, sizeof(*xhci->dcbaa),
  1597. xhci->dcbaa, xhci->dcbaa->dma);
  1598. xhci->dcbaa = NULL;
  1599. scratchpad_free(xhci);
  1600. spin_lock_irqsave(&xhci->lock, flags);
  1601. list_for_each_entry_safe(dev_info, next, &xhci->lpm_failed_devs, list) {
  1602. list_del(&dev_info->list);
  1603. kfree(dev_info);
  1604. }
  1605. spin_unlock_irqrestore(&xhci->lock, flags);
  1606. if (!xhci->rh_bw)
  1607. goto no_bw;
  1608. num_ports = HCS_MAX_PORTS(xhci->hcs_params1);
  1609. for (i = 0; i < num_ports; i++) {
  1610. struct xhci_interval_bw_table *bwt = &xhci->rh_bw[i].bw_table;
  1611. for (j = 0; j < XHCI_MAX_INTERVAL; j++) {
  1612. struct list_head *ep = &bwt->interval_bw[j].endpoints;
  1613. while (!list_empty(ep))
  1614. list_del_init(ep->next);
  1615. }
  1616. }
  1617. for (i = 0; i < num_ports; i++) {
  1618. struct xhci_tt_bw_info *tt, *n;
  1619. list_for_each_entry_safe(tt, n, &xhci->rh_bw[i].tts, tt_list) {
  1620. list_del(&tt->tt_list);
  1621. kfree(tt);
  1622. }
  1623. }
  1624. no_bw:
  1625. xhci->num_usb2_ports = 0;
  1626. xhci->num_usb3_ports = 0;
  1627. xhci->num_active_eps = 0;
  1628. kfree(xhci->usb2_ports);
  1629. kfree(xhci->usb3_ports);
  1630. kfree(xhci->port_array);
  1631. kfree(xhci->rh_bw);
  1632. xhci->page_size = 0;
  1633. xhci->page_shift = 0;
  1634. xhci->bus_state[0].bus_suspended = 0;
  1635. xhci->bus_state[1].bus_suspended = 0;
  1636. }
  1637. static int xhci_test_trb_in_td(struct xhci_hcd *xhci,
  1638. struct xhci_segment *input_seg,
  1639. union xhci_trb *start_trb,
  1640. union xhci_trb *end_trb,
  1641. dma_addr_t input_dma,
  1642. struct xhci_segment *result_seg,
  1643. char *test_name, int test_number)
  1644. {
  1645. unsigned long long start_dma;
  1646. unsigned long long end_dma;
  1647. struct xhci_segment *seg;
  1648. start_dma = xhci_trb_virt_to_dma(input_seg, start_trb);
  1649. end_dma = xhci_trb_virt_to_dma(input_seg, end_trb);
  1650. seg = trb_in_td(input_seg, start_trb, end_trb, input_dma);
  1651. if (seg != result_seg) {
  1652. xhci_warn(xhci, "WARN: %s TRB math test %d failed!\n",
  1653. test_name, test_number);
  1654. xhci_warn(xhci, "Tested TRB math w/ seg %p and "
  1655. "input DMA 0x%llx\n",
  1656. input_seg,
  1657. (unsigned long long) input_dma);
  1658. xhci_warn(xhci, "starting TRB %p (0x%llx DMA), "
  1659. "ending TRB %p (0x%llx DMA)\n",
  1660. start_trb, start_dma,
  1661. end_trb, end_dma);
  1662. xhci_warn(xhci, "Expected seg %p, got seg %p\n",
  1663. result_seg, seg);
  1664. return -1;
  1665. }
  1666. return 0;
  1667. }
  1668. /* TRB math checks for xhci_trb_in_td(), using the command and event rings. */
  1669. static int xhci_check_trb_in_td_math(struct xhci_hcd *xhci, gfp_t mem_flags)
  1670. {
  1671. struct {
  1672. dma_addr_t input_dma;
  1673. struct xhci_segment *result_seg;
  1674. } simple_test_vector [] = {
  1675. /* A zeroed DMA field should fail */
  1676. { 0, NULL },
  1677. /* One TRB before the ring start should fail */
  1678. { xhci->event_ring->first_seg->dma - 16, NULL },
  1679. /* One byte before the ring start should fail */
  1680. { xhci->event_ring->first_seg->dma - 1, NULL },
  1681. /* Starting TRB should succeed */
  1682. { xhci->event_ring->first_seg->dma, xhci->event_ring->first_seg },
  1683. /* Ending TRB should succeed */
  1684. { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16,
  1685. xhci->event_ring->first_seg },
  1686. /* One byte after the ring end should fail */
  1687. { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16 + 1, NULL },
  1688. /* One TRB after the ring end should fail */
  1689. { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT)*16, NULL },
  1690. /* An address of all ones should fail */
  1691. { (dma_addr_t) (~0), NULL },
  1692. };
  1693. struct {
  1694. struct xhci_segment *input_seg;
  1695. union xhci_trb *start_trb;
  1696. union xhci_trb *end_trb;
  1697. dma_addr_t input_dma;
  1698. struct xhci_segment *result_seg;
  1699. } complex_test_vector [] = {
  1700. /* Test feeding a valid DMA address from a different ring */
  1701. { .input_seg = xhci->event_ring->first_seg,
  1702. .start_trb = xhci->event_ring->first_seg->trbs,
  1703. .end_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
  1704. .input_dma = xhci->cmd_ring->first_seg->dma,
  1705. .result_seg = NULL,
  1706. },
  1707. /* Test feeding a valid end TRB from a different ring */
  1708. { .input_seg = xhci->event_ring->first_seg,
  1709. .start_trb = xhci->event_ring->first_seg->trbs,
  1710. .end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
  1711. .input_dma = xhci->cmd_ring->first_seg->dma,
  1712. .result_seg = NULL,
  1713. },
  1714. /* Test feeding a valid start and end TRB from a different ring */
  1715. { .input_seg = xhci->event_ring->first_seg,
  1716. .start_trb = xhci->cmd_ring->first_seg->trbs,
  1717. .end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
  1718. .input_dma = xhci->cmd_ring->first_seg->dma,
  1719. .result_seg = NULL,
  1720. },
  1721. /* TRB in this ring, but after this TD */
  1722. { .input_seg = xhci->event_ring->first_seg,
  1723. .start_trb = &xhci->event_ring->first_seg->trbs[0],
  1724. .end_trb = &xhci->event_ring->first_seg->trbs[3],
  1725. .input_dma = xhci->event_ring->first_seg->dma + 4*16,
  1726. .result_seg = NULL,
  1727. },
  1728. /* TRB in this ring, but before this TD */
  1729. { .input_seg = xhci->event_ring->first_seg,
  1730. .start_trb = &xhci->event_ring->first_seg->trbs[3],
  1731. .end_trb = &xhci->event_ring->first_seg->trbs[6],
  1732. .input_dma = xhci->event_ring->first_seg->dma + 2*16,
  1733. .result_seg = NULL,
  1734. },
  1735. /* TRB in this ring, but after this wrapped TD */
  1736. { .input_seg = xhci->event_ring->first_seg,
  1737. .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
  1738. .end_trb = &xhci->event_ring->first_seg->trbs[1],
  1739. .input_dma = xhci->event_ring->first_seg->dma + 2*16,
  1740. .result_seg = NULL,
  1741. },
  1742. /* TRB in this ring, but before this wrapped TD */
  1743. { .input_seg = xhci->event_ring->first_seg,
  1744. .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
  1745. .end_trb = &xhci->event_ring->first_seg->trbs[1],
  1746. .input_dma = xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 4)*16,
  1747. .result_seg = NULL,
  1748. },
  1749. /* TRB not in this ring, and we have a wrapped TD */
  1750. { .input_seg = xhci->event_ring->first_seg,
  1751. .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
  1752. .end_trb = &xhci->event_ring->first_seg->trbs[1],
  1753. .input_dma = xhci->cmd_ring->first_seg->dma + 2*16,
  1754. .result_seg = NULL,
  1755. },
  1756. };
  1757. unsigned int num_tests;
  1758. int i, ret;
  1759. num_tests = ARRAY_SIZE(simple_test_vector);
  1760. for (i = 0; i < num_tests; i++) {
  1761. ret = xhci_test_trb_in_td(xhci,
  1762. xhci->event_ring->first_seg,
  1763. xhci->event_ring->first_seg->trbs,
  1764. &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
  1765. simple_test_vector[i].input_dma,
  1766. simple_test_vector[i].result_seg,
  1767. "Simple", i);
  1768. if (ret < 0)
  1769. return ret;
  1770. }
  1771. num_tests = ARRAY_SIZE(complex_test_vector);
  1772. for (i = 0; i < num_tests; i++) {
  1773. ret = xhci_test_trb_in_td(xhci,
  1774. complex_test_vector[i].input_seg,
  1775. complex_test_vector[i].start_trb,
  1776. complex_test_vector[i].end_trb,
  1777. complex_test_vector[i].input_dma,
  1778. complex_test_vector[i].result_seg,
  1779. "Complex", i);
  1780. if (ret < 0)
  1781. return ret;
  1782. }
  1783. xhci_dbg(xhci, "TRB math tests passed.\n");
  1784. return 0;
  1785. }
  1786. static void xhci_set_hc_event_deq(struct xhci_hcd *xhci)
  1787. {
  1788. u64 temp;
  1789. dma_addr_t deq;
  1790. deq = xhci_trb_virt_to_dma(xhci->event_ring->deq_seg,
  1791. xhci->event_ring->dequeue);
  1792. if (deq == 0 && !in_interrupt())
  1793. xhci_warn(xhci, "WARN something wrong with SW event ring "
  1794. "dequeue ptr.\n");
  1795. /* Update HC event ring dequeue pointer */
  1796. temp = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
  1797. temp &= ERST_PTR_MASK;
  1798. /* Don't clear the EHB bit (which is RW1C) because
  1799. * there might be more events to service.
  1800. */
  1801. temp &= ~ERST_EHB;
  1802. xhci_dbg(xhci, "// Write event ring dequeue pointer, "
  1803. "preserving EHB bit\n");
  1804. xhci_write_64(xhci, ((u64) deq & (u64) ~ERST_PTR_MASK) | temp,
  1805. &xhci->ir_set->erst_dequeue);
  1806. }
  1807. static void xhci_add_in_port(struct xhci_hcd *xhci, unsigned int num_ports,
  1808. __le32 __iomem *addr, u8 major_revision)
  1809. {
  1810. u32 temp, port_offset, port_count;
  1811. int i;
  1812. if (major_revision > 0x03) {
  1813. xhci_warn(xhci, "Ignoring unknown port speed, "
  1814. "Ext Cap %p, revision = 0x%x\n",
  1815. addr, major_revision);
  1816. /* Ignoring port protocol we can't understand. FIXME */
  1817. return;
  1818. }
  1819. /* Port offset and count in the third dword, see section 7.2 */
  1820. temp = xhci_readl(xhci, addr + 2);
  1821. port_offset = XHCI_EXT_PORT_OFF(temp);
  1822. port_count = XHCI_EXT_PORT_COUNT(temp);
  1823. xhci_dbg(xhci, "Ext Cap %p, port offset = %u, "
  1824. "count = %u, revision = 0x%x\n",
  1825. addr, port_offset, port_count, major_revision);
  1826. /* Port count includes the current port offset */
  1827. if (port_offset == 0 || (port_offset + port_count - 1) > num_ports)
  1828. /* WTF? "Valid values are ‘1’ to MaxPorts" */
  1829. return;
  1830. /* Check the host's USB2 LPM capability */
  1831. if ((xhci->hci_version == 0x96) && (major_revision != 0x03) &&
  1832. (temp & XHCI_L1C)) {
  1833. xhci_dbg(xhci, "xHCI 0.96: support USB2 software lpm\n");
  1834. xhci->sw_lpm_support = 1;
  1835. }
  1836. if ((xhci->hci_version >= 0x100) && (major_revision != 0x03)) {
  1837. xhci_dbg(xhci, "xHCI 1.0: support USB2 software lpm\n");
  1838. xhci->sw_lpm_support = 1;
  1839. if (temp & XHCI_HLC) {
  1840. xhci_dbg(xhci, "xHCI 1.0: support USB2 hardware lpm\n");
  1841. xhci->hw_lpm_support = 1;
  1842. }
  1843. }
  1844. port_offset--;
  1845. for (i = port_offset; i < (port_offset + port_count); i++) {
  1846. /* Duplicate entry. Ignore the port if the revisions differ. */
  1847. if (xhci->port_array[i] != 0) {
  1848. xhci_warn(xhci, "Duplicate port entry, Ext Cap %p,"
  1849. " port %u\n", addr, i);
  1850. xhci_warn(xhci, "Port was marked as USB %u, "
  1851. "duplicated as USB %u\n",
  1852. xhci->port_array[i], major_revision);
  1853. /* Only adjust the roothub port counts if we haven't
  1854. * found a similar duplicate.
  1855. */
  1856. if (xhci->port_array[i] != major_revision &&
  1857. xhci->port_array[i] != DUPLICATE_ENTRY) {
  1858. if (xhci->port_array[i] == 0x03)
  1859. xhci->num_usb3_ports--;
  1860. else
  1861. xhci->num_usb2_ports--;
  1862. xhci->port_array[i] = DUPLICATE_ENTRY;
  1863. }
  1864. /* FIXME: Should we disable the port? */
  1865. continue;
  1866. }
  1867. xhci->port_array[i] = major_revision;
  1868. if (major_revision == 0x03)
  1869. xhci->num_usb3_ports++;
  1870. else
  1871. xhci->num_usb2_ports++;
  1872. }
  1873. /* FIXME: Should we disable ports not in the Extended Capabilities? */
  1874. }
  1875. /*
  1876. * Scan the Extended Capabilities for the "Supported Protocol Capabilities" that
  1877. * specify what speeds each port is supposed to be. We can't count on the port
  1878. * speed bits in the PORTSC register being correct until a device is connected,
  1879. * but we need to set up the two fake roothubs with the correct number of USB
  1880. * 3.0 and USB 2.0 ports at host controller initialization time.
  1881. */
  1882. static int xhci_setup_port_arrays(struct xhci_hcd *xhci, gfp_t flags)
  1883. {
  1884. __le32 __iomem *addr;
  1885. u32 offset;
  1886. unsigned int num_ports;
  1887. int i, j, port_index;
  1888. addr = &xhci->cap_regs->hcc_params;
  1889. offset = XHCI_HCC_EXT_CAPS(xhci_readl(xhci, addr));
  1890. if (offset == 0) {
  1891. xhci_err(xhci, "No Extended Capability registers, "
  1892. "unable to set up roothub.\n");
  1893. return -ENODEV;
  1894. }
  1895. num_ports = HCS_MAX_PORTS(xhci->hcs_params1);
  1896. xhci->port_array = kzalloc(sizeof(*xhci->port_array)*num_ports, flags);
  1897. if (!xhci->port_array)
  1898. return -ENOMEM;
  1899. xhci->rh_bw = kzalloc(sizeof(*xhci->rh_bw)*num_ports, flags);
  1900. if (!xhci->rh_bw)
  1901. return -ENOMEM;
  1902. for (i = 0; i < num_ports; i++) {
  1903. struct xhci_interval_bw_table *bw_table;
  1904. INIT_LIST_HEAD(&xhci->rh_bw[i].tts);
  1905. bw_table = &xhci->rh_bw[i].bw_table;
  1906. for (j = 0; j < XHCI_MAX_INTERVAL; j++)
  1907. INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints);
  1908. }
  1909. /*
  1910. * For whatever reason, the first capability offset is from the
  1911. * capability register base, not from the HCCPARAMS register.
  1912. * See section 5.3.6 for offset calculation.
  1913. */
  1914. addr = &xhci->cap_regs->hc_capbase + offset;
  1915. while (1) {
  1916. u32 cap_id;
  1917. cap_id = xhci_readl(xhci, addr);
  1918. if (XHCI_EXT_CAPS_ID(cap_id) == XHCI_EXT_CAPS_PROTOCOL)
  1919. xhci_add_in_port(xhci, num_ports, addr,
  1920. (u8) XHCI_EXT_PORT_MAJOR(cap_id));
  1921. offset = XHCI_EXT_CAPS_NEXT(cap_id);
  1922. if (!offset || (xhci->num_usb2_ports + xhci->num_usb3_ports)
  1923. == num_ports)
  1924. break;
  1925. /*
  1926. * Once you're into the Extended Capabilities, the offset is
  1927. * always relative to the register holding the offset.
  1928. */
  1929. addr += offset;
  1930. }
  1931. if (xhci->num_usb2_ports == 0 && xhci->num_usb3_ports == 0) {
  1932. xhci_warn(xhci, "No ports on the roothubs?\n");
  1933. return -ENODEV;
  1934. }
  1935. xhci_dbg(xhci, "Found %u USB 2.0 ports and %u USB 3.0 ports.\n",
  1936. xhci->num_usb2_ports, xhci->num_usb3_ports);
  1937. /* Place limits on the number of roothub ports so that the hub
  1938. * descriptors aren't longer than the USB core will allocate.
  1939. */
  1940. if (xhci->num_usb3_ports > 15) {
  1941. xhci_dbg(xhci, "Limiting USB 3.0 roothub ports to 15.\n");
  1942. xhci->num_usb3_ports = 15;
  1943. }
  1944. if (xhci->num_usb2_ports > USB_MAXCHILDREN) {
  1945. xhci_dbg(xhci, "Limiting USB 2.0 roothub ports to %u.\n",
  1946. USB_MAXCHILDREN);
  1947. xhci->num_usb2_ports = USB_MAXCHILDREN;
  1948. }
  1949. /*
  1950. * Note we could have all USB 3.0 ports, or all USB 2.0 ports.
  1951. * Not sure how the USB core will handle a hub with no ports...
  1952. */
  1953. if (xhci->num_usb2_ports) {
  1954. xhci->usb2_ports = kmalloc(sizeof(*xhci->usb2_ports)*
  1955. xhci->num_usb2_ports, flags);
  1956. if (!xhci->usb2_ports)
  1957. return -ENOMEM;
  1958. port_index = 0;
  1959. for (i = 0; i < num_ports; i++) {
  1960. if (xhci->port_array[i] == 0x03 ||
  1961. xhci->port_array[i] == 0 ||
  1962. xhci->port_array[i] == DUPLICATE_ENTRY)
  1963. continue;
  1964. xhci->usb2_ports[port_index] =
  1965. &xhci->op_regs->port_status_base +
  1966. NUM_PORT_REGS*i;
  1967. xhci_dbg(xhci, "USB 2.0 port at index %u, "
  1968. "addr = %p\n", i,
  1969. xhci->usb2_ports[port_index]);
  1970. port_index++;
  1971. if (port_index == xhci->num_usb2_ports)
  1972. break;
  1973. }
  1974. }
  1975. if (xhci->num_usb3_ports) {
  1976. xhci->usb3_ports = kmalloc(sizeof(*xhci->usb3_ports)*
  1977. xhci->num_usb3_ports, flags);
  1978. if (!xhci->usb3_ports)
  1979. return -ENOMEM;
  1980. port_index = 0;
  1981. for (i = 0; i < num_ports; i++)
  1982. if (xhci->port_array[i] == 0x03) {
  1983. xhci->usb3_ports[port_index] =
  1984. &xhci->op_regs->port_status_base +
  1985. NUM_PORT_REGS*i;
  1986. xhci_dbg(xhci, "USB 3.0 port at index %u, "
  1987. "addr = %p\n", i,
  1988. xhci->usb3_ports[port_index]);
  1989. port_index++;
  1990. if (port_index == xhci->num_usb3_ports)
  1991. break;
  1992. }
  1993. }
  1994. return 0;
  1995. }
  1996. int xhci_mem_init(struct xhci_hcd *xhci, gfp_t flags)
  1997. {
  1998. dma_addr_t dma;
  1999. struct device *dev = xhci_to_hcd(xhci)->self.controller;
  2000. unsigned int val, val2;
  2001. u64 val_64;
  2002. struct xhci_segment *seg;
  2003. u32 page_size, temp;
  2004. int i;
  2005. INIT_LIST_HEAD(&xhci->lpm_failed_devs);
  2006. INIT_LIST_HEAD(&xhci->cancel_cmd_list);
  2007. page_size = xhci_readl(xhci, &xhci->op_regs->page_size);
  2008. xhci_dbg(xhci, "Supported page size register = 0x%x\n", page_size);
  2009. for (i = 0; i < 16; i++) {
  2010. if ((0x1 & page_size) != 0)
  2011. break;
  2012. page_size = page_size >> 1;
  2013. }
  2014. if (i < 16)
  2015. xhci_dbg(xhci, "Supported page size of %iK\n", (1 << (i+12)) / 1024);
  2016. else
  2017. xhci_warn(xhci, "WARN: no supported page size\n");
  2018. /* Use 4K pages, since that's common and the minimum the HC supports */
  2019. xhci->page_shift = 12;
  2020. xhci->page_size = 1 << xhci->page_shift;
  2021. xhci_dbg(xhci, "HCD page size set to %iK\n", xhci->page_size / 1024);
  2022. /*
  2023. * Program the Number of Device Slots Enabled field in the CONFIG
  2024. * register with the max value of slots the HC can handle.
  2025. */
  2026. val = HCS_MAX_SLOTS(xhci_readl(xhci, &xhci->cap_regs->hcs_params1));
  2027. xhci_dbg(xhci, "// xHC can handle at most %d device slots.\n",
  2028. (unsigned int) val);
  2029. val2 = xhci_readl(xhci, &xhci->op_regs->config_reg);
  2030. val |= (val2 & ~HCS_SLOTS_MASK);
  2031. xhci_dbg(xhci, "// Setting Max device slots reg = 0x%x.\n",
  2032. (unsigned int) val);
  2033. xhci_writel(xhci, val, &xhci->op_regs->config_reg);
  2034. /*
  2035. * Section 5.4.8 - doorbell array must be
  2036. * "physically contiguous and 64-byte (cache line) aligned".
  2037. */
  2038. xhci->dcbaa = dma_alloc_coherent(dev, sizeof(*xhci->dcbaa), &dma,
  2039. GFP_KERNEL);
  2040. if (!xhci->dcbaa)
  2041. goto fail;
  2042. memset(xhci->dcbaa, 0, sizeof *(xhci->dcbaa));
  2043. xhci->dcbaa->dma = dma;
  2044. xhci_dbg(xhci, "// Device context base array address = 0x%llx (DMA), %p (virt)\n",
  2045. (unsigned long long)xhci->dcbaa->dma, xhci->dcbaa);
  2046. xhci_write_64(xhci, dma, &xhci->op_regs->dcbaa_ptr);
  2047. /*
  2048. * Initialize the ring segment pool. The ring must be a contiguous
  2049. * structure comprised of TRBs. The TRBs must be 16 byte aligned,
  2050. * however, the command ring segment needs 64-byte aligned segments,
  2051. * so we pick the greater alignment need.
  2052. */
  2053. xhci->segment_pool = dma_pool_create("xHCI ring segments", dev,
  2054. TRB_SEGMENT_SIZE, 64, xhci->page_size);
  2055. /* See Table 46 and Note on Figure 55 */
  2056. xhci->device_pool = dma_pool_create("xHCI input/output contexts", dev,
  2057. 2112, 64, xhci->page_size);
  2058. if (!xhci->segment_pool || !xhci->device_pool)
  2059. goto fail;
  2060. /* Linear stream context arrays don't have any boundary restrictions,
  2061. * and only need to be 16-byte aligned.
  2062. */
  2063. xhci->small_streams_pool =
  2064. dma_pool_create("xHCI 256 byte stream ctx arrays",
  2065. dev, SMALL_STREAM_ARRAY_SIZE, 16, 0);
  2066. xhci->medium_streams_pool =
  2067. dma_pool_create("xHCI 1KB stream ctx arrays",
  2068. dev, MEDIUM_STREAM_ARRAY_SIZE, 16, 0);
  2069. /* Any stream context array bigger than MEDIUM_STREAM_ARRAY_SIZE
  2070. * will be allocated with dma_alloc_coherent()
  2071. */
  2072. if (!xhci->small_streams_pool || !xhci->medium_streams_pool)
  2073. goto fail;
  2074. /* Set up the command ring to have one segments for now. */
  2075. xhci->cmd_ring = xhci_ring_alloc(xhci, 1, 1, TYPE_COMMAND, flags);
  2076. if (!xhci->cmd_ring)
  2077. goto fail;
  2078. xhci_dbg(xhci, "Allocated command ring at %p\n", xhci->cmd_ring);
  2079. xhci_dbg(xhci, "First segment DMA is 0x%llx\n",
  2080. (unsigned long long)xhci->cmd_ring->first_seg->dma);
  2081. /* Set the address in the Command Ring Control register */
  2082. val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
  2083. val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
  2084. (xhci->cmd_ring->first_seg->dma & (u64) ~CMD_RING_RSVD_BITS) |
  2085. xhci->cmd_ring->cycle_state;
  2086. xhci_dbg(xhci, "// Setting command ring address to 0x%x\n", val);
  2087. xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
  2088. xhci_dbg_cmd_ptrs(xhci);
  2089. xhci->lpm_command = xhci_alloc_command(xhci, true, true, flags);
  2090. if (!xhci->lpm_command)
  2091. goto fail;
  2092. /* Reserve one command ring TRB for disabling LPM.
  2093. * Since the USB core grabs the shared usb_bus bandwidth mutex before
  2094. * disabling LPM, we only need to reserve one TRB for all devices.
  2095. */
  2096. xhci->cmd_ring_reserved_trbs++;
  2097. val = xhci_readl(xhci, &xhci->cap_regs->db_off);
  2098. val &= DBOFF_MASK;
  2099. xhci_dbg(xhci, "// Doorbell array is located at offset 0x%x"
  2100. " from cap regs base addr\n", val);
  2101. xhci->dba = (void __iomem *) xhci->cap_regs + val;
  2102. xhci_dbg_regs(xhci);
  2103. xhci_print_run_regs(xhci);
  2104. /* Set ir_set to interrupt register set 0 */
  2105. xhci->ir_set = &xhci->run_regs->ir_set[0];
  2106. /*
  2107. * Event ring setup: Allocate a normal ring, but also setup
  2108. * the event ring segment table (ERST). Section 4.9.3.
  2109. */
  2110. xhci_dbg(xhci, "// Allocating event ring\n");
  2111. xhci->event_ring = xhci_ring_alloc(xhci, ERST_NUM_SEGS, 1, TYPE_EVENT,
  2112. flags);
  2113. if (!xhci->event_ring)
  2114. goto fail;
  2115. if (xhci_check_trb_in_td_math(xhci, flags) < 0)
  2116. goto fail;
  2117. xhci->erst.entries = dma_alloc_coherent(dev,
  2118. sizeof(struct xhci_erst_entry) * ERST_NUM_SEGS, &dma,
  2119. GFP_KERNEL);
  2120. if (!xhci->erst.entries)
  2121. goto fail;
  2122. xhci_dbg(xhci, "// Allocated event ring segment table at 0x%llx\n",
  2123. (unsigned long long)dma);
  2124. memset(xhci->erst.entries, 0, sizeof(struct xhci_erst_entry)*ERST_NUM_SEGS);
  2125. xhci->erst.num_entries = ERST_NUM_SEGS;
  2126. xhci->erst.erst_dma_addr = dma;
  2127. xhci_dbg(xhci, "Set ERST to 0; private num segs = %i, virt addr = %p, dma addr = 0x%llx\n",
  2128. xhci->erst.num_entries,
  2129. xhci->erst.entries,
  2130. (unsigned long long)xhci->erst.erst_dma_addr);
  2131. /* set ring base address and size for each segment table entry */
  2132. for (val = 0, seg = xhci->event_ring->first_seg; val < ERST_NUM_SEGS; val++) {
  2133. struct xhci_erst_entry *entry = &xhci->erst.entries[val];
  2134. entry->seg_addr = cpu_to_le64(seg->dma);
  2135. entry->seg_size = cpu_to_le32(TRBS_PER_SEGMENT);
  2136. entry->rsvd = 0;
  2137. seg = seg->next;
  2138. }
  2139. /* set ERST count with the number of entries in the segment table */
  2140. val = xhci_readl(xhci, &xhci->ir_set->erst_size);
  2141. val &= ERST_SIZE_MASK;
  2142. val |= ERST_NUM_SEGS;
  2143. xhci_dbg(xhci, "// Write ERST size = %i to ir_set 0 (some bits preserved)\n",
  2144. val);
  2145. xhci_writel(xhci, val, &xhci->ir_set->erst_size);
  2146. xhci_dbg(xhci, "// Set ERST entries to point to event ring.\n");
  2147. /* set the segment table base address */
  2148. xhci_dbg(xhci, "// Set ERST base address for ir_set 0 = 0x%llx\n",
  2149. (unsigned long long)xhci->erst.erst_dma_addr);
  2150. val_64 = xhci_read_64(xhci, &xhci->ir_set->erst_base);
  2151. val_64 &= ERST_PTR_MASK;
  2152. val_64 |= (xhci->erst.erst_dma_addr & (u64) ~ERST_PTR_MASK);
  2153. xhci_write_64(xhci, val_64, &xhci->ir_set->erst_base);
  2154. /* Set the event ring dequeue address */
  2155. xhci_set_hc_event_deq(xhci);
  2156. xhci_dbg(xhci, "Wrote ERST address to ir_set 0.\n");
  2157. xhci_print_ir_set(xhci, 0);
  2158. /*
  2159. * XXX: Might need to set the Interrupter Moderation Register to
  2160. * something other than the default (~1ms minimum between interrupts).
  2161. * See section 5.5.1.2.
  2162. */
  2163. init_completion(&xhci->addr_dev);
  2164. for (i = 0; i < MAX_HC_SLOTS; ++i)
  2165. xhci->devs[i] = NULL;
  2166. for (i = 0; i < USB_MAXCHILDREN; ++i) {
  2167. xhci->bus_state[0].resume_done[i] = 0;
  2168. xhci->bus_state[1].resume_done[i] = 0;
  2169. }
  2170. if (scratchpad_alloc(xhci, flags))
  2171. goto fail;
  2172. if (xhci_setup_port_arrays(xhci, flags))
  2173. goto fail;
  2174. /* Enable USB 3.0 device notifications for function remote wake, which
  2175. * is necessary for allowing USB 3.0 devices to do remote wakeup from
  2176. * U3 (device suspend).
  2177. */
  2178. temp = xhci_readl(xhci, &xhci->op_regs->dev_notification);
  2179. temp &= ~DEV_NOTE_MASK;
  2180. temp |= DEV_NOTE_FWAKE;
  2181. xhci_writel(xhci, temp, &xhci->op_regs->dev_notification);
  2182. return 0;
  2183. fail:
  2184. xhci_warn(xhci, "Couldn't initialize memory\n");
  2185. xhci_halt(xhci);
  2186. xhci_reset(xhci);
  2187. xhci_mem_cleanup(xhci);
  2188. return -ENOMEM;
  2189. }