driver.c 22 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759
  1. /*
  2. * Intel Wireless WiMAX Connection 2400m
  3. * Generic probe/disconnect, reset and message passing
  4. *
  5. *
  6. * Copyright (C) 2007-2008 Intel Corporation <linux-wimax@intel.com>
  7. * Inaky Perez-Gonzalez <inaky.perez-gonzalez@intel.com>
  8. *
  9. * This program is free software; you can redistribute it and/or
  10. * modify it under the terms of the GNU General Public License version
  11. * 2 as published by the Free Software Foundation.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program; if not, write to the Free Software
  20. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
  21. * 02110-1301, USA.
  22. *
  23. *
  24. * See i2400m.h for driver documentation. This contains helpers for
  25. * the driver model glue [_setup()/_release()], handling device resets
  26. * [_dev_reset_handle()], and the backends for the WiMAX stack ops
  27. * reset [_op_reset()] and message from user [_op_msg_from_user()].
  28. *
  29. * ROADMAP:
  30. *
  31. * i2400m_op_msg_from_user()
  32. * i2400m_msg_to_dev()
  33. * wimax_msg_to_user_send()
  34. *
  35. * i2400m_op_reset()
  36. * i240m->bus_reset()
  37. *
  38. * i2400m_dev_reset_handle()
  39. * __i2400m_dev_reset_handle()
  40. * __i2400m_dev_stop()
  41. * __i2400m_dev_start()
  42. *
  43. * i2400m_setup()
  44. * i2400m_bootrom_init()
  45. * register_netdev()
  46. * i2400m_dev_start()
  47. * __i2400m_dev_start()
  48. * i2400m_dev_bootstrap()
  49. * i2400m_tx_setup()
  50. * i2400m->bus_dev_start()
  51. * i2400m_firmware_check()
  52. * i2400m_check_mac_addr()
  53. * wimax_dev_add()
  54. *
  55. * i2400m_release()
  56. * wimax_dev_rm()
  57. * i2400m_dev_stop()
  58. * __i2400m_dev_stop()
  59. * i2400m_dev_shutdown()
  60. * i2400m->bus_dev_stop()
  61. * i2400m_tx_release()
  62. * unregister_netdev()
  63. */
  64. #include "i2400m.h"
  65. #include <linux/wimax/i2400m.h>
  66. #include <linux/module.h>
  67. #include <linux/moduleparam.h>
  68. #define D_SUBMODULE driver
  69. #include "debug-levels.h"
  70. int i2400m_idle_mode_disabled; /* 0 (idle mode enabled) by default */
  71. module_param_named(idle_mode_disabled, i2400m_idle_mode_disabled, int, 0644);
  72. MODULE_PARM_DESC(idle_mode_disabled,
  73. "If true, the device will not enable idle mode negotiation "
  74. "with the base station (when connected) to save power.");
  75. /**
  76. * i2400m_queue_work - schedule work on a i2400m's queue
  77. *
  78. * @i2400m: device descriptor
  79. *
  80. * @fn: function to run to execute work. It gets passed a 'struct
  81. * work_struct' that is wrapped in a 'struct i2400m_work'. Once
  82. * done, you have to (1) i2400m_put(i2400m_work->i2400m) and then
  83. * (2) kfree(i2400m_work).
  84. *
  85. * @gfp_flags: GFP flags for memory allocation.
  86. *
  87. * @pl: pointer to a payload buffer that you want to pass to the _work
  88. * function. Use this to pack (for example) a struct with extra
  89. * arguments.
  90. *
  91. * @pl_size: size of the payload buffer.
  92. *
  93. * We do this quite often, so this just saves typing; allocate a
  94. * wrapper for a i2400m, get a ref to it, pack arguments and launch
  95. * the work.
  96. *
  97. * A usual workflow is:
  98. *
  99. * struct my_work_args {
  100. * void *something;
  101. * int whatever;
  102. * };
  103. * ...
  104. *
  105. * struct my_work_args my_args = {
  106. * .something = FOO,
  107. * .whaetever = BLAH
  108. * };
  109. * i2400m_queue_work(i2400m, 1, my_work_function, GFP_KERNEL,
  110. * &args, sizeof(args))
  111. *
  112. * And now the work function can unpack the arguments and call the
  113. * real function (or do the job itself):
  114. *
  115. * static
  116. * void my_work_fn((struct work_struct *ws)
  117. * {
  118. * struct i2400m_work *iw =
  119. * container_of(ws, struct i2400m_work, ws);
  120. * struct my_work_args *my_args = (void *) iw->pl;
  121. *
  122. * my_work(iw->i2400m, my_args->something, my_args->whatevert);
  123. * }
  124. */
  125. int i2400m_queue_work(struct i2400m *i2400m,
  126. void (*fn)(struct work_struct *), gfp_t gfp_flags,
  127. const void *pl, size_t pl_size)
  128. {
  129. int result;
  130. struct i2400m_work *iw;
  131. BUG_ON(i2400m->work_queue == NULL);
  132. result = -ENOMEM;
  133. iw = kzalloc(sizeof(*iw) + pl_size, gfp_flags);
  134. if (iw == NULL)
  135. goto error_kzalloc;
  136. iw->i2400m = i2400m_get(i2400m);
  137. memcpy(iw->pl, pl, pl_size);
  138. INIT_WORK(&iw->ws, fn);
  139. result = queue_work(i2400m->work_queue, &iw->ws);
  140. error_kzalloc:
  141. return result;
  142. }
  143. EXPORT_SYMBOL_GPL(i2400m_queue_work);
  144. /*
  145. * Schedule i2400m's specific work on the system's queue.
  146. *
  147. * Used for a few cases where we really need it; otherwise, identical
  148. * to i2400m_queue_work().
  149. *
  150. * Returns < 0 errno code on error, 1 if ok.
  151. *
  152. * If it returns zero, something really bad happened, as it means the
  153. * works struct was already queued, but we have just allocated it, so
  154. * it should not happen.
  155. */
  156. int i2400m_schedule_work(struct i2400m *i2400m,
  157. void (*fn)(struct work_struct *), gfp_t gfp_flags)
  158. {
  159. int result;
  160. struct i2400m_work *iw;
  161. BUG_ON(i2400m->work_queue == NULL);
  162. result = -ENOMEM;
  163. iw = kzalloc(sizeof(*iw), gfp_flags);
  164. if (iw == NULL)
  165. goto error_kzalloc;
  166. iw->i2400m = i2400m_get(i2400m);
  167. INIT_WORK(&iw->ws, fn);
  168. result = schedule_work(&iw->ws);
  169. if (result == 0)
  170. result = -ENXIO;
  171. error_kzalloc:
  172. return result;
  173. }
  174. /*
  175. * WiMAX stack operation: relay a message from user space
  176. *
  177. * @wimax_dev: device descriptor
  178. * @pipe_name: named pipe the message is for
  179. * @msg_buf: pointer to the message bytes
  180. * @msg_len: length of the buffer
  181. * @genl_info: passed by the generic netlink layer
  182. *
  183. * The WiMAX stack will call this function when a message was received
  184. * from user space.
  185. *
  186. * For the i2400m, this is an L3L4 message, as specified in
  187. * include/linux/wimax/i2400m.h, and thus prefixed with a 'struct
  188. * i2400m_l3l4_hdr'. Driver (and device) expect the messages to be
  189. * coded in Little Endian.
  190. *
  191. * This function just verifies that the header declaration and the
  192. * payload are consistent and then deals with it, either forwarding it
  193. * to the device or procesing it locally.
  194. *
  195. * In the i2400m, messages are basically commands that will carry an
  196. * ack, so we use i2400m_msg_to_dev() and then deliver the ack back to
  197. * user space. The rx.c code might intercept the response and use it
  198. * to update the driver's state, but then it will pass it on so it can
  199. * be relayed back to user space.
  200. *
  201. * Note that asynchronous events from the device are processed and
  202. * sent to user space in rx.c.
  203. */
  204. static
  205. int i2400m_op_msg_from_user(struct wimax_dev *wimax_dev,
  206. const char *pipe_name,
  207. const void *msg_buf, size_t msg_len,
  208. const struct genl_info *genl_info)
  209. {
  210. int result;
  211. struct i2400m *i2400m = wimax_dev_to_i2400m(wimax_dev);
  212. struct device *dev = i2400m_dev(i2400m);
  213. struct sk_buff *ack_skb;
  214. d_fnstart(4, dev, "(wimax_dev %p [i2400m %p] msg_buf %p "
  215. "msg_len %zu genl_info %p)\n", wimax_dev, i2400m,
  216. msg_buf, msg_len, genl_info);
  217. ack_skb = i2400m_msg_to_dev(i2400m, msg_buf, msg_len);
  218. result = PTR_ERR(ack_skb);
  219. if (IS_ERR(ack_skb))
  220. goto error_msg_to_dev;
  221. if (unlikely(i2400m->trace_msg_from_user))
  222. wimax_msg(&i2400m->wimax_dev, "trace",
  223. msg_buf, msg_len, GFP_KERNEL);
  224. result = wimax_msg_send(&i2400m->wimax_dev, ack_skb);
  225. error_msg_to_dev:
  226. d_fnend(4, dev, "(wimax_dev %p [i2400m %p] msg_buf %p msg_len %zu "
  227. "genl_info %p) = %d\n", wimax_dev, i2400m, msg_buf, msg_len,
  228. genl_info, result);
  229. return result;
  230. }
  231. /*
  232. * Context to wait for a reset to finalize
  233. */
  234. struct i2400m_reset_ctx {
  235. struct completion completion;
  236. int result;
  237. };
  238. /*
  239. * WiMAX stack operation: reset a device
  240. *
  241. * @wimax_dev: device descriptor
  242. *
  243. * See the documentation for wimax_reset() and wimax_dev->op_reset for
  244. * the requirements of this function. The WiMAX stack guarantees
  245. * serialization on calls to this function.
  246. *
  247. * Do a warm reset on the device; if it fails, resort to a cold reset
  248. * and return -ENODEV. On successful warm reset, we need to block
  249. * until it is complete.
  250. *
  251. * The bus-driver implementation of reset takes care of falling back
  252. * to cold reset if warm fails.
  253. */
  254. static
  255. int i2400m_op_reset(struct wimax_dev *wimax_dev)
  256. {
  257. int result;
  258. struct i2400m *i2400m = wimax_dev_to_i2400m(wimax_dev);
  259. struct device *dev = i2400m_dev(i2400m);
  260. struct i2400m_reset_ctx ctx = {
  261. .completion = COMPLETION_INITIALIZER_ONSTACK(ctx.completion),
  262. .result = 0,
  263. };
  264. d_fnstart(4, dev, "(wimax_dev %p)\n", wimax_dev);
  265. mutex_lock(&i2400m->init_mutex);
  266. i2400m->reset_ctx = &ctx;
  267. mutex_unlock(&i2400m->init_mutex);
  268. result = i2400m->bus_reset(i2400m, I2400M_RT_WARM);
  269. if (result < 0)
  270. goto out;
  271. result = wait_for_completion_timeout(&ctx.completion, 4*HZ);
  272. if (result == 0)
  273. result = -ETIMEDOUT;
  274. else if (result > 0)
  275. result = ctx.result;
  276. /* if result < 0, pass it on */
  277. mutex_lock(&i2400m->init_mutex);
  278. i2400m->reset_ctx = NULL;
  279. mutex_unlock(&i2400m->init_mutex);
  280. out:
  281. d_fnend(4, dev, "(wimax_dev %p) = %d\n", wimax_dev, result);
  282. return result;
  283. }
  284. /*
  285. * Check the MAC address we got from boot mode is ok
  286. *
  287. * @i2400m: device descriptor
  288. *
  289. * Returns: 0 if ok, < 0 errno code on error.
  290. */
  291. static
  292. int i2400m_check_mac_addr(struct i2400m *i2400m)
  293. {
  294. int result;
  295. struct device *dev = i2400m_dev(i2400m);
  296. struct sk_buff *skb;
  297. const struct i2400m_tlv_detailed_device_info *ddi;
  298. struct net_device *net_dev = i2400m->wimax_dev.net_dev;
  299. const unsigned char zeromac[ETH_ALEN] = { 0 };
  300. d_fnstart(3, dev, "(i2400m %p)\n", i2400m);
  301. skb = i2400m_get_device_info(i2400m);
  302. if (IS_ERR(skb)) {
  303. result = PTR_ERR(skb);
  304. dev_err(dev, "Cannot verify MAC address, error reading: %d\n",
  305. result);
  306. goto error;
  307. }
  308. /* Extract MAC addresss */
  309. ddi = (void *) skb->data;
  310. BUILD_BUG_ON(ETH_ALEN != sizeof(ddi->mac_address));
  311. d_printf(2, dev, "GET DEVICE INFO: mac addr "
  312. "%02x:%02x:%02x:%02x:%02x:%02x\n",
  313. ddi->mac_address[0], ddi->mac_address[1],
  314. ddi->mac_address[2], ddi->mac_address[3],
  315. ddi->mac_address[4], ddi->mac_address[5]);
  316. if (!memcmp(net_dev->perm_addr, ddi->mac_address,
  317. sizeof(ddi->mac_address)))
  318. goto ok;
  319. dev_warn(dev, "warning: device reports a different MAC address "
  320. "to that of boot mode's\n");
  321. dev_warn(dev, "device reports %02x:%02x:%02x:%02x:%02x:%02x\n",
  322. ddi->mac_address[0], ddi->mac_address[1],
  323. ddi->mac_address[2], ddi->mac_address[3],
  324. ddi->mac_address[4], ddi->mac_address[5]);
  325. dev_warn(dev, "boot mode reported %02x:%02x:%02x:%02x:%02x:%02x\n",
  326. net_dev->perm_addr[0], net_dev->perm_addr[1],
  327. net_dev->perm_addr[2], net_dev->perm_addr[3],
  328. net_dev->perm_addr[4], net_dev->perm_addr[5]);
  329. if (!memcmp(zeromac, ddi->mac_address, sizeof(zeromac)))
  330. dev_err(dev, "device reports an invalid MAC address, "
  331. "not updating\n");
  332. else {
  333. dev_warn(dev, "updating MAC address\n");
  334. net_dev->addr_len = ETH_ALEN;
  335. memcpy(net_dev->perm_addr, ddi->mac_address, ETH_ALEN);
  336. memcpy(net_dev->dev_addr, ddi->mac_address, ETH_ALEN);
  337. }
  338. ok:
  339. result = 0;
  340. kfree_skb(skb);
  341. error:
  342. d_fnend(3, dev, "(i2400m %p) = %d\n", i2400m, result);
  343. return result;
  344. }
  345. /**
  346. * __i2400m_dev_start - Bring up driver communication with the device
  347. *
  348. * @i2400m: device descriptor
  349. * @flags: boot mode flags
  350. *
  351. * Returns: 0 if ok, < 0 errno code on error.
  352. *
  353. * Uploads firmware and brings up all the resources needed to be able
  354. * to communicate with the device.
  355. *
  356. * TX needs to be setup before the bus-specific code (otherwise on
  357. * shutdown, the bus-tx code could try to access it).
  358. */
  359. static
  360. int __i2400m_dev_start(struct i2400m *i2400m, enum i2400m_bri flags)
  361. {
  362. int result;
  363. struct wimax_dev *wimax_dev = &i2400m->wimax_dev;
  364. struct net_device *net_dev = wimax_dev->net_dev;
  365. struct device *dev = i2400m_dev(i2400m);
  366. int times = 3;
  367. d_fnstart(3, dev, "(i2400m %p)\n", i2400m);
  368. retry:
  369. result = i2400m_dev_bootstrap(i2400m, flags);
  370. if (result < 0) {
  371. dev_err(dev, "cannot bootstrap device: %d\n", result);
  372. goto error_bootstrap;
  373. }
  374. result = i2400m_tx_setup(i2400m);
  375. if (result < 0)
  376. goto error_tx_setup;
  377. result = i2400m->bus_dev_start(i2400m);
  378. if (result < 0)
  379. goto error_bus_dev_start;
  380. i2400m->work_queue = create_singlethread_workqueue(wimax_dev->name);
  381. if (i2400m->work_queue == NULL) {
  382. result = -ENOMEM;
  383. dev_err(dev, "cannot create workqueue\n");
  384. goto error_create_workqueue;
  385. }
  386. result = i2400m_firmware_check(i2400m); /* fw versions ok? */
  387. if (result < 0)
  388. goto error_fw_check;
  389. /* At this point is ok to send commands to the device */
  390. result = i2400m_check_mac_addr(i2400m);
  391. if (result < 0)
  392. goto error_check_mac_addr;
  393. i2400m->ready = 1;
  394. wimax_state_change(wimax_dev, WIMAX_ST_UNINITIALIZED);
  395. result = i2400m_dev_initialize(i2400m);
  396. if (result < 0)
  397. goto error_dev_initialize;
  398. /* At this point, reports will come for the device and set it
  399. * to the right state if it is different than UNINITIALIZED */
  400. d_fnend(3, dev, "(net_dev %p [i2400m %p]) = %d\n",
  401. net_dev, i2400m, result);
  402. return result;
  403. error_dev_initialize:
  404. error_check_mac_addr:
  405. error_fw_check:
  406. destroy_workqueue(i2400m->work_queue);
  407. error_create_workqueue:
  408. i2400m->bus_dev_stop(i2400m);
  409. error_bus_dev_start:
  410. i2400m_tx_release(i2400m);
  411. error_tx_setup:
  412. error_bootstrap:
  413. if (result == -ERESTARTSYS && times-- > 0) {
  414. flags = I2400M_BRI_SOFT;
  415. goto retry;
  416. }
  417. d_fnend(3, dev, "(net_dev %p [i2400m %p]) = %d\n",
  418. net_dev, i2400m, result);
  419. return result;
  420. }
  421. static
  422. int i2400m_dev_start(struct i2400m *i2400m, enum i2400m_bri bm_flags)
  423. {
  424. int result;
  425. mutex_lock(&i2400m->init_mutex); /* Well, start the device */
  426. result = __i2400m_dev_start(i2400m, bm_flags);
  427. if (result >= 0)
  428. i2400m->updown = 1;
  429. mutex_unlock(&i2400m->init_mutex);
  430. return result;
  431. }
  432. /**
  433. * i2400m_dev_stop - Tear down driver communication with the device
  434. *
  435. * @i2400m: device descriptor
  436. *
  437. * Returns: 0 if ok, < 0 errno code on error.
  438. *
  439. * Releases all the resources allocated to communicate with the device.
  440. */
  441. static
  442. void __i2400m_dev_stop(struct i2400m *i2400m)
  443. {
  444. struct wimax_dev *wimax_dev = &i2400m->wimax_dev;
  445. struct device *dev = i2400m_dev(i2400m);
  446. d_fnstart(3, dev, "(i2400m %p)\n", i2400m);
  447. wimax_state_change(wimax_dev, __WIMAX_ST_QUIESCING);
  448. i2400m_dev_shutdown(i2400m);
  449. i2400m->ready = 0;
  450. destroy_workqueue(i2400m->work_queue);
  451. i2400m->bus_dev_stop(i2400m);
  452. i2400m_tx_release(i2400m);
  453. wimax_state_change(wimax_dev, WIMAX_ST_DOWN);
  454. d_fnend(3, dev, "(i2400m %p) = 0\n", i2400m);
  455. }
  456. /*
  457. * Watch out -- we only need to stop if there is a need for it. The
  458. * device could have reset itself and failed to come up again (see
  459. * _i2400m_dev_reset_handle()).
  460. */
  461. static
  462. void i2400m_dev_stop(struct i2400m *i2400m)
  463. {
  464. mutex_lock(&i2400m->init_mutex);
  465. if (i2400m->updown) {
  466. __i2400m_dev_stop(i2400m);
  467. i2400m->updown = 0;
  468. }
  469. mutex_unlock(&i2400m->init_mutex);
  470. }
  471. /*
  472. * The device has rebooted; fix up the device and the driver
  473. *
  474. * Tear down the driver communication with the device, reload the
  475. * firmware and reinitialize the communication with the device.
  476. *
  477. * If someone calls a reset when the device's firmware is down, in
  478. * theory we won't see it because we are not listening. However, just
  479. * in case, leave the code to handle it.
  480. *
  481. * If there is a reset context, use it; this means someone is waiting
  482. * for us to tell him when the reset operation is complete and the
  483. * device is ready to rock again.
  484. *
  485. * NOTE: if we are in the process of bringing up or down the
  486. * communication with the device [running i2400m_dev_start() or
  487. * _stop()], don't do anything, let it fail and handle it.
  488. *
  489. * This function is ran always in a thread context
  490. */
  491. static
  492. void __i2400m_dev_reset_handle(struct work_struct *ws)
  493. {
  494. int result;
  495. struct i2400m_work *iw = container_of(ws, struct i2400m_work, ws);
  496. struct i2400m *i2400m = iw->i2400m;
  497. struct device *dev = i2400m_dev(i2400m);
  498. enum wimax_st wimax_state;
  499. struct i2400m_reset_ctx *ctx = i2400m->reset_ctx;
  500. d_fnstart(3, dev, "(ws %p i2400m %p)\n", ws, i2400m);
  501. result = 0;
  502. if (mutex_trylock(&i2400m->init_mutex) == 0) {
  503. /* We are still in i2400m_dev_start() [let it fail] or
  504. * i2400m_dev_stop() [we are shutting down anyway, so
  505. * ignore it] or we are resetting somewhere else. */
  506. dev_err(dev, "device rebooted\n");
  507. i2400m_msg_to_dev_cancel_wait(i2400m, -ERESTARTSYS);
  508. complete(&i2400m->msg_completion);
  509. goto out;
  510. }
  511. wimax_state = wimax_state_get(&i2400m->wimax_dev);
  512. if (wimax_state < WIMAX_ST_UNINITIALIZED) {
  513. dev_info(dev, "device rebooted: it is down, ignoring\n");
  514. goto out_unlock; /* ifconfig up/down wasn't called */
  515. }
  516. dev_err(dev, "device rebooted: reinitializing driver\n");
  517. __i2400m_dev_stop(i2400m);
  518. i2400m->updown = 0;
  519. result = __i2400m_dev_start(i2400m,
  520. I2400M_BRI_SOFT | I2400M_BRI_MAC_REINIT);
  521. if (result < 0) {
  522. dev_err(dev, "device reboot: cannot start the device: %d\n",
  523. result);
  524. result = i2400m->bus_reset(i2400m, I2400M_RT_BUS);
  525. if (result >= 0)
  526. result = -ENODEV;
  527. } else
  528. i2400m->updown = 1;
  529. out_unlock:
  530. if (i2400m->reset_ctx) {
  531. ctx->result = result;
  532. complete(&ctx->completion);
  533. }
  534. mutex_unlock(&i2400m->init_mutex);
  535. out:
  536. i2400m_put(i2400m);
  537. kfree(iw);
  538. d_fnend(3, dev, "(ws %p i2400m %p) = void\n", ws, i2400m);
  539. return;
  540. }
  541. /**
  542. * i2400m_dev_reset_handle - Handle a device's reset in a thread context
  543. *
  544. * Schedule a device reset handling out on a thread context, so it
  545. * is safe to call from atomic context. We can't use the i2400m's
  546. * queue as we are going to destroy it and reinitialize it as part of
  547. * the driver bringup/bringup process.
  548. *
  549. * See __i2400m_dev_reset_handle() for details; that takes care of
  550. * reinitializing the driver to handle the reset, calling into the
  551. * bus-specific functions ops as needed.
  552. */
  553. int i2400m_dev_reset_handle(struct i2400m *i2400m)
  554. {
  555. return i2400m_schedule_work(i2400m, __i2400m_dev_reset_handle,
  556. GFP_ATOMIC);
  557. }
  558. EXPORT_SYMBOL_GPL(i2400m_dev_reset_handle);
  559. /**
  560. * i2400m_setup - bus-generic setup function for the i2400m device
  561. *
  562. * @i2400m: device descriptor (bus-specific parts have been initialized)
  563. *
  564. * Returns: 0 if ok, < 0 errno code on error.
  565. *
  566. * Initializes the bus-generic parts of the i2400m driver; the
  567. * bus-specific parts have been initialized, function pointers filled
  568. * out by the bus-specific probe function.
  569. *
  570. * As well, this registers the WiMAX and net device nodes. Once this
  571. * function returns, the device is operative and has to be ready to
  572. * receive and send network traffic and WiMAX control operations.
  573. */
  574. int i2400m_setup(struct i2400m *i2400m, enum i2400m_bri bm_flags)
  575. {
  576. int result = -ENODEV;
  577. struct device *dev = i2400m_dev(i2400m);
  578. struct wimax_dev *wimax_dev = &i2400m->wimax_dev;
  579. struct net_device *net_dev = i2400m->wimax_dev.net_dev;
  580. d_fnstart(3, dev, "(i2400m %p)\n", i2400m);
  581. snprintf(wimax_dev->name, sizeof(wimax_dev->name),
  582. "i2400m-%s:%s", dev->bus->name, dev->bus_id);
  583. i2400m->bm_cmd_buf = kzalloc(I2400M_BM_CMD_BUF_SIZE, GFP_KERNEL);
  584. if (i2400m->bm_cmd_buf == NULL) {
  585. dev_err(dev, "cannot allocate USB command buffer\n");
  586. goto error_bm_cmd_kzalloc;
  587. }
  588. i2400m->bm_ack_buf = kzalloc(I2400M_BM_ACK_BUF_SIZE, GFP_KERNEL);
  589. if (i2400m->bm_ack_buf == NULL) {
  590. dev_err(dev, "cannot allocate USB ack buffer\n");
  591. goto error_bm_ack_buf_kzalloc;
  592. }
  593. result = i2400m_bootrom_init(i2400m, bm_flags);
  594. if (result < 0) {
  595. dev_err(dev, "read mac addr: bootrom init "
  596. "failed: %d\n", result);
  597. goto error_bootrom_init;
  598. }
  599. result = i2400m_read_mac_addr(i2400m);
  600. if (result < 0)
  601. goto error_read_mac_addr;
  602. result = register_netdev(net_dev); /* Okey dokey, bring it up */
  603. if (result < 0) {
  604. dev_err(dev, "cannot register i2400m network device: %d\n",
  605. result);
  606. goto error_register_netdev;
  607. }
  608. netif_carrier_off(net_dev);
  609. result = i2400m_dev_start(i2400m, bm_flags);
  610. if (result < 0)
  611. goto error_dev_start;
  612. i2400m->wimax_dev.op_msg_from_user = i2400m_op_msg_from_user;
  613. i2400m->wimax_dev.op_rfkill_sw_toggle = i2400m_op_rfkill_sw_toggle;
  614. i2400m->wimax_dev.op_reset = i2400m_op_reset;
  615. result = wimax_dev_add(&i2400m->wimax_dev, net_dev);
  616. if (result < 0)
  617. goto error_wimax_dev_add;
  618. /* User space needs to do some init stuff */
  619. wimax_state_change(wimax_dev, WIMAX_ST_UNINITIALIZED);
  620. /* Now setup all that requires a registered net and wimax device. */
  621. result = sysfs_create_group(&net_dev->dev.kobj, &i2400m_dev_attr_group);
  622. if (result < 0) {
  623. dev_err(dev, "cannot setup i2400m's sysfs: %d\n", result);
  624. goto error_sysfs_setup;
  625. }
  626. result = i2400m_debugfs_add(i2400m);
  627. if (result < 0) {
  628. dev_err(dev, "cannot setup i2400m's debugfs: %d\n", result);
  629. goto error_debugfs_setup;
  630. }
  631. d_fnend(3, dev, "(i2400m %p) = %d\n", i2400m, result);
  632. return result;
  633. error_debugfs_setup:
  634. sysfs_remove_group(&i2400m->wimax_dev.net_dev->dev.kobj,
  635. &i2400m_dev_attr_group);
  636. error_sysfs_setup:
  637. wimax_dev_rm(&i2400m->wimax_dev);
  638. error_wimax_dev_add:
  639. i2400m_dev_stop(i2400m);
  640. error_dev_start:
  641. unregister_netdev(net_dev);
  642. error_register_netdev:
  643. error_read_mac_addr:
  644. error_bootrom_init:
  645. kfree(i2400m->bm_ack_buf);
  646. error_bm_ack_buf_kzalloc:
  647. kfree(i2400m->bm_cmd_buf);
  648. error_bm_cmd_kzalloc:
  649. d_fnend(3, dev, "(i2400m %p) = %d\n", i2400m, result);
  650. return result;
  651. }
  652. EXPORT_SYMBOL_GPL(i2400m_setup);
  653. /**
  654. * i2400m_release - release the bus-generic driver resources
  655. *
  656. * Sends a disconnect message and undoes any setup done by i2400m_setup()
  657. */
  658. void i2400m_release(struct i2400m *i2400m)
  659. {
  660. struct device *dev = i2400m_dev(i2400m);
  661. d_fnstart(3, dev, "(i2400m %p)\n", i2400m);
  662. netif_stop_queue(i2400m->wimax_dev.net_dev);
  663. i2400m_debugfs_rm(i2400m);
  664. sysfs_remove_group(&i2400m->wimax_dev.net_dev->dev.kobj,
  665. &i2400m_dev_attr_group);
  666. wimax_dev_rm(&i2400m->wimax_dev);
  667. i2400m_dev_stop(i2400m);
  668. unregister_netdev(i2400m->wimax_dev.net_dev);
  669. kfree(i2400m->bm_ack_buf);
  670. kfree(i2400m->bm_cmd_buf);
  671. d_fnend(3, dev, "(i2400m %p) = void\n", i2400m);
  672. }
  673. EXPORT_SYMBOL_GPL(i2400m_release);
  674. /*
  675. * Debug levels control; see debug.h
  676. */
  677. struct d_level D_LEVEL[] = {
  678. D_SUBMODULE_DEFINE(control),
  679. D_SUBMODULE_DEFINE(driver),
  680. D_SUBMODULE_DEFINE(debugfs),
  681. D_SUBMODULE_DEFINE(fw),
  682. D_SUBMODULE_DEFINE(netdev),
  683. D_SUBMODULE_DEFINE(rfkill),
  684. D_SUBMODULE_DEFINE(rx),
  685. D_SUBMODULE_DEFINE(tx),
  686. };
  687. size_t D_LEVEL_SIZE = ARRAY_SIZE(D_LEVEL);
  688. static
  689. int __init i2400m_driver_init(void)
  690. {
  691. return 0;
  692. }
  693. module_init(i2400m_driver_init);
  694. static
  695. void __exit i2400m_driver_exit(void)
  696. {
  697. /* for scheds i2400m_dev_reset_handle() */
  698. flush_scheduled_work();
  699. return;
  700. }
  701. module_exit(i2400m_driver_exit);
  702. MODULE_AUTHOR("Intel Corporation <linux-wimax@intel.com>");
  703. MODULE_DESCRIPTION("Intel 2400M WiMAX networking bus-generic driver");
  704. MODULE_LICENSE("GPL");