xfs_inode.c 121 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118
  1. /*
  2. * Copyright (c) 2000-2006 Silicon Graphics, Inc.
  3. * All Rights Reserved.
  4. *
  5. * This program is free software; you can redistribute it and/or
  6. * modify it under the terms of the GNU General Public License as
  7. * published by the Free Software Foundation.
  8. *
  9. * This program is distributed in the hope that it would be useful,
  10. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. * GNU General Public License for more details.
  13. *
  14. * You should have received a copy of the GNU General Public License
  15. * along with this program; if not, write the Free Software Foundation,
  16. * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
  17. */
  18. #include <linux/log2.h>
  19. #include "xfs.h"
  20. #include "xfs_fs.h"
  21. #include "xfs_types.h"
  22. #include "xfs_bit.h"
  23. #include "xfs_log.h"
  24. #include "xfs_inum.h"
  25. #include "xfs_trans.h"
  26. #include "xfs_trans_priv.h"
  27. #include "xfs_sb.h"
  28. #include "xfs_ag.h"
  29. #include "xfs_mount.h"
  30. #include "xfs_bmap_btree.h"
  31. #include "xfs_alloc_btree.h"
  32. #include "xfs_ialloc_btree.h"
  33. #include "xfs_attr_sf.h"
  34. #include "xfs_dinode.h"
  35. #include "xfs_inode.h"
  36. #include "xfs_buf_item.h"
  37. #include "xfs_inode_item.h"
  38. #include "xfs_btree.h"
  39. #include "xfs_btree_trace.h"
  40. #include "xfs_alloc.h"
  41. #include "xfs_ialloc.h"
  42. #include "xfs_bmap.h"
  43. #include "xfs_error.h"
  44. #include "xfs_utils.h"
  45. #include "xfs_quota.h"
  46. #include "xfs_filestream.h"
  47. #include "xfs_vnodeops.h"
  48. #include "xfs_trace.h"
  49. kmem_zone_t *xfs_ifork_zone;
  50. kmem_zone_t *xfs_inode_zone;
  51. /*
  52. * Used in xfs_itruncate(). This is the maximum number of extents
  53. * freed from a file in a single transaction.
  54. */
  55. #define XFS_ITRUNC_MAX_EXTENTS 2
  56. STATIC int xfs_iflush_int(xfs_inode_t *, xfs_buf_t *);
  57. STATIC int xfs_iformat_local(xfs_inode_t *, xfs_dinode_t *, int, int);
  58. STATIC int xfs_iformat_extents(xfs_inode_t *, xfs_dinode_t *, int);
  59. STATIC int xfs_iformat_btree(xfs_inode_t *, xfs_dinode_t *, int);
  60. #ifdef DEBUG
  61. /*
  62. * Make sure that the extents in the given memory buffer
  63. * are valid.
  64. */
  65. STATIC void
  66. xfs_validate_extents(
  67. xfs_ifork_t *ifp,
  68. int nrecs,
  69. xfs_exntfmt_t fmt)
  70. {
  71. xfs_bmbt_irec_t irec;
  72. xfs_bmbt_rec_host_t rec;
  73. int i;
  74. for (i = 0; i < nrecs; i++) {
  75. xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i);
  76. rec.l0 = get_unaligned(&ep->l0);
  77. rec.l1 = get_unaligned(&ep->l1);
  78. xfs_bmbt_get_all(&rec, &irec);
  79. if (fmt == XFS_EXTFMT_NOSTATE)
  80. ASSERT(irec.br_state == XFS_EXT_NORM);
  81. }
  82. }
  83. #else /* DEBUG */
  84. #define xfs_validate_extents(ifp, nrecs, fmt)
  85. #endif /* DEBUG */
  86. /*
  87. * Check that none of the inode's in the buffer have a next
  88. * unlinked field of 0.
  89. */
  90. #if defined(DEBUG)
  91. void
  92. xfs_inobp_check(
  93. xfs_mount_t *mp,
  94. xfs_buf_t *bp)
  95. {
  96. int i;
  97. int j;
  98. xfs_dinode_t *dip;
  99. j = mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog;
  100. for (i = 0; i < j; i++) {
  101. dip = (xfs_dinode_t *)xfs_buf_offset(bp,
  102. i * mp->m_sb.sb_inodesize);
  103. if (!dip->di_next_unlinked) {
  104. xfs_fs_cmn_err(CE_ALERT, mp,
  105. "Detected a bogus zero next_unlinked field in incore inode buffer 0x%p. About to pop an ASSERT.",
  106. bp);
  107. ASSERT(dip->di_next_unlinked);
  108. }
  109. }
  110. }
  111. #endif
  112. /*
  113. * Find the buffer associated with the given inode map
  114. * We do basic validation checks on the buffer once it has been
  115. * retrieved from disk.
  116. */
  117. STATIC int
  118. xfs_imap_to_bp(
  119. xfs_mount_t *mp,
  120. xfs_trans_t *tp,
  121. struct xfs_imap *imap,
  122. xfs_buf_t **bpp,
  123. uint buf_flags,
  124. uint iget_flags)
  125. {
  126. int error;
  127. int i;
  128. int ni;
  129. xfs_buf_t *bp;
  130. error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, imap->im_blkno,
  131. (int)imap->im_len, buf_flags, &bp);
  132. if (error) {
  133. if (error != EAGAIN) {
  134. cmn_err(CE_WARN,
  135. "xfs_imap_to_bp: xfs_trans_read_buf()returned "
  136. "an error %d on %s. Returning error.",
  137. error, mp->m_fsname);
  138. } else {
  139. ASSERT(buf_flags & XBF_TRYLOCK);
  140. }
  141. return error;
  142. }
  143. /*
  144. * Validate the magic number and version of every inode in the buffer
  145. * (if DEBUG kernel) or the first inode in the buffer, otherwise.
  146. */
  147. #ifdef DEBUG
  148. ni = BBTOB(imap->im_len) >> mp->m_sb.sb_inodelog;
  149. #else /* usual case */
  150. ni = 1;
  151. #endif
  152. for (i = 0; i < ni; i++) {
  153. int di_ok;
  154. xfs_dinode_t *dip;
  155. dip = (xfs_dinode_t *)xfs_buf_offset(bp,
  156. (i << mp->m_sb.sb_inodelog));
  157. di_ok = be16_to_cpu(dip->di_magic) == XFS_DINODE_MAGIC &&
  158. XFS_DINODE_GOOD_VERSION(dip->di_version);
  159. if (unlikely(XFS_TEST_ERROR(!di_ok, mp,
  160. XFS_ERRTAG_ITOBP_INOTOBP,
  161. XFS_RANDOM_ITOBP_INOTOBP))) {
  162. if (iget_flags & XFS_IGET_UNTRUSTED) {
  163. xfs_trans_brelse(tp, bp);
  164. return XFS_ERROR(EINVAL);
  165. }
  166. XFS_CORRUPTION_ERROR("xfs_imap_to_bp",
  167. XFS_ERRLEVEL_HIGH, mp, dip);
  168. #ifdef DEBUG
  169. cmn_err(CE_PANIC,
  170. "Device %s - bad inode magic/vsn "
  171. "daddr %lld #%d (magic=%x)",
  172. XFS_BUFTARG_NAME(mp->m_ddev_targp),
  173. (unsigned long long)imap->im_blkno, i,
  174. be16_to_cpu(dip->di_magic));
  175. #endif
  176. xfs_trans_brelse(tp, bp);
  177. return XFS_ERROR(EFSCORRUPTED);
  178. }
  179. }
  180. xfs_inobp_check(mp, bp);
  181. /*
  182. * Mark the buffer as an inode buffer now that it looks good
  183. */
  184. XFS_BUF_SET_VTYPE(bp, B_FS_INO);
  185. *bpp = bp;
  186. return 0;
  187. }
  188. /*
  189. * This routine is called to map an inode number within a file
  190. * system to the buffer containing the on-disk version of the
  191. * inode. It returns a pointer to the buffer containing the
  192. * on-disk inode in the bpp parameter, and in the dip parameter
  193. * it returns a pointer to the on-disk inode within that buffer.
  194. *
  195. * If a non-zero error is returned, then the contents of bpp and
  196. * dipp are undefined.
  197. *
  198. * Use xfs_imap() to determine the size and location of the
  199. * buffer to read from disk.
  200. */
  201. int
  202. xfs_inotobp(
  203. xfs_mount_t *mp,
  204. xfs_trans_t *tp,
  205. xfs_ino_t ino,
  206. xfs_dinode_t **dipp,
  207. xfs_buf_t **bpp,
  208. int *offset,
  209. uint imap_flags)
  210. {
  211. struct xfs_imap imap;
  212. xfs_buf_t *bp;
  213. int error;
  214. imap.im_blkno = 0;
  215. error = xfs_imap(mp, tp, ino, &imap, imap_flags);
  216. if (error)
  217. return error;
  218. error = xfs_imap_to_bp(mp, tp, &imap, &bp, XBF_LOCK, imap_flags);
  219. if (error)
  220. return error;
  221. *dipp = (xfs_dinode_t *)xfs_buf_offset(bp, imap.im_boffset);
  222. *bpp = bp;
  223. *offset = imap.im_boffset;
  224. return 0;
  225. }
  226. /*
  227. * This routine is called to map an inode to the buffer containing
  228. * the on-disk version of the inode. It returns a pointer to the
  229. * buffer containing the on-disk inode in the bpp parameter, and in
  230. * the dip parameter it returns a pointer to the on-disk inode within
  231. * that buffer.
  232. *
  233. * If a non-zero error is returned, then the contents of bpp and
  234. * dipp are undefined.
  235. *
  236. * The inode is expected to already been mapped to its buffer and read
  237. * in once, thus we can use the mapping information stored in the inode
  238. * rather than calling xfs_imap(). This allows us to avoid the overhead
  239. * of looking at the inode btree for small block file systems
  240. * (see xfs_imap()).
  241. */
  242. int
  243. xfs_itobp(
  244. xfs_mount_t *mp,
  245. xfs_trans_t *tp,
  246. xfs_inode_t *ip,
  247. xfs_dinode_t **dipp,
  248. xfs_buf_t **bpp,
  249. uint buf_flags)
  250. {
  251. xfs_buf_t *bp;
  252. int error;
  253. ASSERT(ip->i_imap.im_blkno != 0);
  254. error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &bp, buf_flags, 0);
  255. if (error)
  256. return error;
  257. if (!bp) {
  258. ASSERT(buf_flags & XBF_TRYLOCK);
  259. ASSERT(tp == NULL);
  260. *bpp = NULL;
  261. return EAGAIN;
  262. }
  263. *dipp = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_imap.im_boffset);
  264. *bpp = bp;
  265. return 0;
  266. }
  267. /*
  268. * Move inode type and inode format specific information from the
  269. * on-disk inode to the in-core inode. For fifos, devs, and sockets
  270. * this means set if_rdev to the proper value. For files, directories,
  271. * and symlinks this means to bring in the in-line data or extent
  272. * pointers. For a file in B-tree format, only the root is immediately
  273. * brought in-core. The rest will be in-lined in if_extents when it
  274. * is first referenced (see xfs_iread_extents()).
  275. */
  276. STATIC int
  277. xfs_iformat(
  278. xfs_inode_t *ip,
  279. xfs_dinode_t *dip)
  280. {
  281. xfs_attr_shortform_t *atp;
  282. int size;
  283. int error;
  284. xfs_fsize_t di_size;
  285. ip->i_df.if_ext_max =
  286. XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
  287. error = 0;
  288. if (unlikely(be32_to_cpu(dip->di_nextents) +
  289. be16_to_cpu(dip->di_anextents) >
  290. be64_to_cpu(dip->di_nblocks))) {
  291. xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
  292. "corrupt dinode %Lu, extent total = %d, nblocks = %Lu.",
  293. (unsigned long long)ip->i_ino,
  294. (int)(be32_to_cpu(dip->di_nextents) +
  295. be16_to_cpu(dip->di_anextents)),
  296. (unsigned long long)
  297. be64_to_cpu(dip->di_nblocks));
  298. XFS_CORRUPTION_ERROR("xfs_iformat(1)", XFS_ERRLEVEL_LOW,
  299. ip->i_mount, dip);
  300. return XFS_ERROR(EFSCORRUPTED);
  301. }
  302. if (unlikely(dip->di_forkoff > ip->i_mount->m_sb.sb_inodesize)) {
  303. xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
  304. "corrupt dinode %Lu, forkoff = 0x%x.",
  305. (unsigned long long)ip->i_ino,
  306. dip->di_forkoff);
  307. XFS_CORRUPTION_ERROR("xfs_iformat(2)", XFS_ERRLEVEL_LOW,
  308. ip->i_mount, dip);
  309. return XFS_ERROR(EFSCORRUPTED);
  310. }
  311. if (unlikely((ip->i_d.di_flags & XFS_DIFLAG_REALTIME) &&
  312. !ip->i_mount->m_rtdev_targp)) {
  313. xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
  314. "corrupt dinode %Lu, has realtime flag set.",
  315. ip->i_ino);
  316. XFS_CORRUPTION_ERROR("xfs_iformat(realtime)",
  317. XFS_ERRLEVEL_LOW, ip->i_mount, dip);
  318. return XFS_ERROR(EFSCORRUPTED);
  319. }
  320. switch (ip->i_d.di_mode & S_IFMT) {
  321. case S_IFIFO:
  322. case S_IFCHR:
  323. case S_IFBLK:
  324. case S_IFSOCK:
  325. if (unlikely(dip->di_format != XFS_DINODE_FMT_DEV)) {
  326. XFS_CORRUPTION_ERROR("xfs_iformat(3)", XFS_ERRLEVEL_LOW,
  327. ip->i_mount, dip);
  328. return XFS_ERROR(EFSCORRUPTED);
  329. }
  330. ip->i_d.di_size = 0;
  331. ip->i_size = 0;
  332. ip->i_df.if_u2.if_rdev = xfs_dinode_get_rdev(dip);
  333. break;
  334. case S_IFREG:
  335. case S_IFLNK:
  336. case S_IFDIR:
  337. switch (dip->di_format) {
  338. case XFS_DINODE_FMT_LOCAL:
  339. /*
  340. * no local regular files yet
  341. */
  342. if (unlikely((be16_to_cpu(dip->di_mode) & S_IFMT) == S_IFREG)) {
  343. xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
  344. "corrupt inode %Lu "
  345. "(local format for regular file).",
  346. (unsigned long long) ip->i_ino);
  347. XFS_CORRUPTION_ERROR("xfs_iformat(4)",
  348. XFS_ERRLEVEL_LOW,
  349. ip->i_mount, dip);
  350. return XFS_ERROR(EFSCORRUPTED);
  351. }
  352. di_size = be64_to_cpu(dip->di_size);
  353. if (unlikely(di_size > XFS_DFORK_DSIZE(dip, ip->i_mount))) {
  354. xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
  355. "corrupt inode %Lu "
  356. "(bad size %Ld for local inode).",
  357. (unsigned long long) ip->i_ino,
  358. (long long) di_size);
  359. XFS_CORRUPTION_ERROR("xfs_iformat(5)",
  360. XFS_ERRLEVEL_LOW,
  361. ip->i_mount, dip);
  362. return XFS_ERROR(EFSCORRUPTED);
  363. }
  364. size = (int)di_size;
  365. error = xfs_iformat_local(ip, dip, XFS_DATA_FORK, size);
  366. break;
  367. case XFS_DINODE_FMT_EXTENTS:
  368. error = xfs_iformat_extents(ip, dip, XFS_DATA_FORK);
  369. break;
  370. case XFS_DINODE_FMT_BTREE:
  371. error = xfs_iformat_btree(ip, dip, XFS_DATA_FORK);
  372. break;
  373. default:
  374. XFS_ERROR_REPORT("xfs_iformat(6)", XFS_ERRLEVEL_LOW,
  375. ip->i_mount);
  376. return XFS_ERROR(EFSCORRUPTED);
  377. }
  378. break;
  379. default:
  380. XFS_ERROR_REPORT("xfs_iformat(7)", XFS_ERRLEVEL_LOW, ip->i_mount);
  381. return XFS_ERROR(EFSCORRUPTED);
  382. }
  383. if (error) {
  384. return error;
  385. }
  386. if (!XFS_DFORK_Q(dip))
  387. return 0;
  388. ASSERT(ip->i_afp == NULL);
  389. ip->i_afp = kmem_zone_zalloc(xfs_ifork_zone, KM_SLEEP);
  390. ip->i_afp->if_ext_max =
  391. XFS_IFORK_ASIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
  392. switch (dip->di_aformat) {
  393. case XFS_DINODE_FMT_LOCAL:
  394. atp = (xfs_attr_shortform_t *)XFS_DFORK_APTR(dip);
  395. size = be16_to_cpu(atp->hdr.totsize);
  396. if (unlikely(size < sizeof(struct xfs_attr_sf_hdr))) {
  397. xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
  398. "corrupt inode %Lu "
  399. "(bad attr fork size %Ld).",
  400. (unsigned long long) ip->i_ino,
  401. (long long) size);
  402. XFS_CORRUPTION_ERROR("xfs_iformat(8)",
  403. XFS_ERRLEVEL_LOW,
  404. ip->i_mount, dip);
  405. return XFS_ERROR(EFSCORRUPTED);
  406. }
  407. error = xfs_iformat_local(ip, dip, XFS_ATTR_FORK, size);
  408. break;
  409. case XFS_DINODE_FMT_EXTENTS:
  410. error = xfs_iformat_extents(ip, dip, XFS_ATTR_FORK);
  411. break;
  412. case XFS_DINODE_FMT_BTREE:
  413. error = xfs_iformat_btree(ip, dip, XFS_ATTR_FORK);
  414. break;
  415. default:
  416. error = XFS_ERROR(EFSCORRUPTED);
  417. break;
  418. }
  419. if (error) {
  420. kmem_zone_free(xfs_ifork_zone, ip->i_afp);
  421. ip->i_afp = NULL;
  422. xfs_idestroy_fork(ip, XFS_DATA_FORK);
  423. }
  424. return error;
  425. }
  426. /*
  427. * The file is in-lined in the on-disk inode.
  428. * If it fits into if_inline_data, then copy
  429. * it there, otherwise allocate a buffer for it
  430. * and copy the data there. Either way, set
  431. * if_data to point at the data.
  432. * If we allocate a buffer for the data, make
  433. * sure that its size is a multiple of 4 and
  434. * record the real size in i_real_bytes.
  435. */
  436. STATIC int
  437. xfs_iformat_local(
  438. xfs_inode_t *ip,
  439. xfs_dinode_t *dip,
  440. int whichfork,
  441. int size)
  442. {
  443. xfs_ifork_t *ifp;
  444. int real_size;
  445. /*
  446. * If the size is unreasonable, then something
  447. * is wrong and we just bail out rather than crash in
  448. * kmem_alloc() or memcpy() below.
  449. */
  450. if (unlikely(size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) {
  451. xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
  452. "corrupt inode %Lu "
  453. "(bad size %d for local fork, size = %d).",
  454. (unsigned long long) ip->i_ino, size,
  455. XFS_DFORK_SIZE(dip, ip->i_mount, whichfork));
  456. XFS_CORRUPTION_ERROR("xfs_iformat_local", XFS_ERRLEVEL_LOW,
  457. ip->i_mount, dip);
  458. return XFS_ERROR(EFSCORRUPTED);
  459. }
  460. ifp = XFS_IFORK_PTR(ip, whichfork);
  461. real_size = 0;
  462. if (size == 0)
  463. ifp->if_u1.if_data = NULL;
  464. else if (size <= sizeof(ifp->if_u2.if_inline_data))
  465. ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
  466. else {
  467. real_size = roundup(size, 4);
  468. ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP);
  469. }
  470. ifp->if_bytes = size;
  471. ifp->if_real_bytes = real_size;
  472. if (size)
  473. memcpy(ifp->if_u1.if_data, XFS_DFORK_PTR(dip, whichfork), size);
  474. ifp->if_flags &= ~XFS_IFEXTENTS;
  475. ifp->if_flags |= XFS_IFINLINE;
  476. return 0;
  477. }
  478. /*
  479. * The file consists of a set of extents all
  480. * of which fit into the on-disk inode.
  481. * If there are few enough extents to fit into
  482. * the if_inline_ext, then copy them there.
  483. * Otherwise allocate a buffer for them and copy
  484. * them into it. Either way, set if_extents
  485. * to point at the extents.
  486. */
  487. STATIC int
  488. xfs_iformat_extents(
  489. xfs_inode_t *ip,
  490. xfs_dinode_t *dip,
  491. int whichfork)
  492. {
  493. xfs_bmbt_rec_t *dp;
  494. xfs_ifork_t *ifp;
  495. int nex;
  496. int size;
  497. int i;
  498. ifp = XFS_IFORK_PTR(ip, whichfork);
  499. nex = XFS_DFORK_NEXTENTS(dip, whichfork);
  500. size = nex * (uint)sizeof(xfs_bmbt_rec_t);
  501. /*
  502. * If the number of extents is unreasonable, then something
  503. * is wrong and we just bail out rather than crash in
  504. * kmem_alloc() or memcpy() below.
  505. */
  506. if (unlikely(size < 0 || size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) {
  507. xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
  508. "corrupt inode %Lu ((a)extents = %d).",
  509. (unsigned long long) ip->i_ino, nex);
  510. XFS_CORRUPTION_ERROR("xfs_iformat_extents(1)", XFS_ERRLEVEL_LOW,
  511. ip->i_mount, dip);
  512. return XFS_ERROR(EFSCORRUPTED);
  513. }
  514. ifp->if_real_bytes = 0;
  515. if (nex == 0)
  516. ifp->if_u1.if_extents = NULL;
  517. else if (nex <= XFS_INLINE_EXTS)
  518. ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
  519. else
  520. xfs_iext_add(ifp, 0, nex);
  521. ifp->if_bytes = size;
  522. if (size) {
  523. dp = (xfs_bmbt_rec_t *) XFS_DFORK_PTR(dip, whichfork);
  524. xfs_validate_extents(ifp, nex, XFS_EXTFMT_INODE(ip));
  525. for (i = 0; i < nex; i++, dp++) {
  526. xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i);
  527. ep->l0 = get_unaligned_be64(&dp->l0);
  528. ep->l1 = get_unaligned_be64(&dp->l1);
  529. }
  530. XFS_BMAP_TRACE_EXLIST(ip, nex, whichfork);
  531. if (whichfork != XFS_DATA_FORK ||
  532. XFS_EXTFMT_INODE(ip) == XFS_EXTFMT_NOSTATE)
  533. if (unlikely(xfs_check_nostate_extents(
  534. ifp, 0, nex))) {
  535. XFS_ERROR_REPORT("xfs_iformat_extents(2)",
  536. XFS_ERRLEVEL_LOW,
  537. ip->i_mount);
  538. return XFS_ERROR(EFSCORRUPTED);
  539. }
  540. }
  541. ifp->if_flags |= XFS_IFEXTENTS;
  542. return 0;
  543. }
  544. /*
  545. * The file has too many extents to fit into
  546. * the inode, so they are in B-tree format.
  547. * Allocate a buffer for the root of the B-tree
  548. * and copy the root into it. The i_extents
  549. * field will remain NULL until all of the
  550. * extents are read in (when they are needed).
  551. */
  552. STATIC int
  553. xfs_iformat_btree(
  554. xfs_inode_t *ip,
  555. xfs_dinode_t *dip,
  556. int whichfork)
  557. {
  558. xfs_bmdr_block_t *dfp;
  559. xfs_ifork_t *ifp;
  560. /* REFERENCED */
  561. int nrecs;
  562. int size;
  563. ifp = XFS_IFORK_PTR(ip, whichfork);
  564. dfp = (xfs_bmdr_block_t *)XFS_DFORK_PTR(dip, whichfork);
  565. size = XFS_BMAP_BROOT_SPACE(dfp);
  566. nrecs = be16_to_cpu(dfp->bb_numrecs);
  567. /*
  568. * blow out if -- fork has less extents than can fit in
  569. * fork (fork shouldn't be a btree format), root btree
  570. * block has more records than can fit into the fork,
  571. * or the number of extents is greater than the number of
  572. * blocks.
  573. */
  574. if (unlikely(XFS_IFORK_NEXTENTS(ip, whichfork) <= ifp->if_ext_max
  575. || XFS_BMDR_SPACE_CALC(nrecs) >
  576. XFS_DFORK_SIZE(dip, ip->i_mount, whichfork)
  577. || XFS_IFORK_NEXTENTS(ip, whichfork) > ip->i_d.di_nblocks)) {
  578. xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
  579. "corrupt inode %Lu (btree).",
  580. (unsigned long long) ip->i_ino);
  581. XFS_ERROR_REPORT("xfs_iformat_btree", XFS_ERRLEVEL_LOW,
  582. ip->i_mount);
  583. return XFS_ERROR(EFSCORRUPTED);
  584. }
  585. ifp->if_broot_bytes = size;
  586. ifp->if_broot = kmem_alloc(size, KM_SLEEP);
  587. ASSERT(ifp->if_broot != NULL);
  588. /*
  589. * Copy and convert from the on-disk structure
  590. * to the in-memory structure.
  591. */
  592. xfs_bmdr_to_bmbt(ip->i_mount, dfp,
  593. XFS_DFORK_SIZE(dip, ip->i_mount, whichfork),
  594. ifp->if_broot, size);
  595. ifp->if_flags &= ~XFS_IFEXTENTS;
  596. ifp->if_flags |= XFS_IFBROOT;
  597. return 0;
  598. }
  599. STATIC void
  600. xfs_dinode_from_disk(
  601. xfs_icdinode_t *to,
  602. xfs_dinode_t *from)
  603. {
  604. to->di_magic = be16_to_cpu(from->di_magic);
  605. to->di_mode = be16_to_cpu(from->di_mode);
  606. to->di_version = from ->di_version;
  607. to->di_format = from->di_format;
  608. to->di_onlink = be16_to_cpu(from->di_onlink);
  609. to->di_uid = be32_to_cpu(from->di_uid);
  610. to->di_gid = be32_to_cpu(from->di_gid);
  611. to->di_nlink = be32_to_cpu(from->di_nlink);
  612. to->di_projid = be16_to_cpu(from->di_projid);
  613. memcpy(to->di_pad, from->di_pad, sizeof(to->di_pad));
  614. to->di_flushiter = be16_to_cpu(from->di_flushiter);
  615. to->di_atime.t_sec = be32_to_cpu(from->di_atime.t_sec);
  616. to->di_atime.t_nsec = be32_to_cpu(from->di_atime.t_nsec);
  617. to->di_mtime.t_sec = be32_to_cpu(from->di_mtime.t_sec);
  618. to->di_mtime.t_nsec = be32_to_cpu(from->di_mtime.t_nsec);
  619. to->di_ctime.t_sec = be32_to_cpu(from->di_ctime.t_sec);
  620. to->di_ctime.t_nsec = be32_to_cpu(from->di_ctime.t_nsec);
  621. to->di_size = be64_to_cpu(from->di_size);
  622. to->di_nblocks = be64_to_cpu(from->di_nblocks);
  623. to->di_extsize = be32_to_cpu(from->di_extsize);
  624. to->di_nextents = be32_to_cpu(from->di_nextents);
  625. to->di_anextents = be16_to_cpu(from->di_anextents);
  626. to->di_forkoff = from->di_forkoff;
  627. to->di_aformat = from->di_aformat;
  628. to->di_dmevmask = be32_to_cpu(from->di_dmevmask);
  629. to->di_dmstate = be16_to_cpu(from->di_dmstate);
  630. to->di_flags = be16_to_cpu(from->di_flags);
  631. to->di_gen = be32_to_cpu(from->di_gen);
  632. }
  633. void
  634. xfs_dinode_to_disk(
  635. xfs_dinode_t *to,
  636. xfs_icdinode_t *from)
  637. {
  638. to->di_magic = cpu_to_be16(from->di_magic);
  639. to->di_mode = cpu_to_be16(from->di_mode);
  640. to->di_version = from ->di_version;
  641. to->di_format = from->di_format;
  642. to->di_onlink = cpu_to_be16(from->di_onlink);
  643. to->di_uid = cpu_to_be32(from->di_uid);
  644. to->di_gid = cpu_to_be32(from->di_gid);
  645. to->di_nlink = cpu_to_be32(from->di_nlink);
  646. to->di_projid = cpu_to_be16(from->di_projid);
  647. memcpy(to->di_pad, from->di_pad, sizeof(to->di_pad));
  648. to->di_flushiter = cpu_to_be16(from->di_flushiter);
  649. to->di_atime.t_sec = cpu_to_be32(from->di_atime.t_sec);
  650. to->di_atime.t_nsec = cpu_to_be32(from->di_atime.t_nsec);
  651. to->di_mtime.t_sec = cpu_to_be32(from->di_mtime.t_sec);
  652. to->di_mtime.t_nsec = cpu_to_be32(from->di_mtime.t_nsec);
  653. to->di_ctime.t_sec = cpu_to_be32(from->di_ctime.t_sec);
  654. to->di_ctime.t_nsec = cpu_to_be32(from->di_ctime.t_nsec);
  655. to->di_size = cpu_to_be64(from->di_size);
  656. to->di_nblocks = cpu_to_be64(from->di_nblocks);
  657. to->di_extsize = cpu_to_be32(from->di_extsize);
  658. to->di_nextents = cpu_to_be32(from->di_nextents);
  659. to->di_anextents = cpu_to_be16(from->di_anextents);
  660. to->di_forkoff = from->di_forkoff;
  661. to->di_aformat = from->di_aformat;
  662. to->di_dmevmask = cpu_to_be32(from->di_dmevmask);
  663. to->di_dmstate = cpu_to_be16(from->di_dmstate);
  664. to->di_flags = cpu_to_be16(from->di_flags);
  665. to->di_gen = cpu_to_be32(from->di_gen);
  666. }
  667. STATIC uint
  668. _xfs_dic2xflags(
  669. __uint16_t di_flags)
  670. {
  671. uint flags = 0;
  672. if (di_flags & XFS_DIFLAG_ANY) {
  673. if (di_flags & XFS_DIFLAG_REALTIME)
  674. flags |= XFS_XFLAG_REALTIME;
  675. if (di_flags & XFS_DIFLAG_PREALLOC)
  676. flags |= XFS_XFLAG_PREALLOC;
  677. if (di_flags & XFS_DIFLAG_IMMUTABLE)
  678. flags |= XFS_XFLAG_IMMUTABLE;
  679. if (di_flags & XFS_DIFLAG_APPEND)
  680. flags |= XFS_XFLAG_APPEND;
  681. if (di_flags & XFS_DIFLAG_SYNC)
  682. flags |= XFS_XFLAG_SYNC;
  683. if (di_flags & XFS_DIFLAG_NOATIME)
  684. flags |= XFS_XFLAG_NOATIME;
  685. if (di_flags & XFS_DIFLAG_NODUMP)
  686. flags |= XFS_XFLAG_NODUMP;
  687. if (di_flags & XFS_DIFLAG_RTINHERIT)
  688. flags |= XFS_XFLAG_RTINHERIT;
  689. if (di_flags & XFS_DIFLAG_PROJINHERIT)
  690. flags |= XFS_XFLAG_PROJINHERIT;
  691. if (di_flags & XFS_DIFLAG_NOSYMLINKS)
  692. flags |= XFS_XFLAG_NOSYMLINKS;
  693. if (di_flags & XFS_DIFLAG_EXTSIZE)
  694. flags |= XFS_XFLAG_EXTSIZE;
  695. if (di_flags & XFS_DIFLAG_EXTSZINHERIT)
  696. flags |= XFS_XFLAG_EXTSZINHERIT;
  697. if (di_flags & XFS_DIFLAG_NODEFRAG)
  698. flags |= XFS_XFLAG_NODEFRAG;
  699. if (di_flags & XFS_DIFLAG_FILESTREAM)
  700. flags |= XFS_XFLAG_FILESTREAM;
  701. }
  702. return flags;
  703. }
  704. uint
  705. xfs_ip2xflags(
  706. xfs_inode_t *ip)
  707. {
  708. xfs_icdinode_t *dic = &ip->i_d;
  709. return _xfs_dic2xflags(dic->di_flags) |
  710. (XFS_IFORK_Q(ip) ? XFS_XFLAG_HASATTR : 0);
  711. }
  712. uint
  713. xfs_dic2xflags(
  714. xfs_dinode_t *dip)
  715. {
  716. return _xfs_dic2xflags(be16_to_cpu(dip->di_flags)) |
  717. (XFS_DFORK_Q(dip) ? XFS_XFLAG_HASATTR : 0);
  718. }
  719. /*
  720. * Read the disk inode attributes into the in-core inode structure.
  721. */
  722. int
  723. xfs_iread(
  724. xfs_mount_t *mp,
  725. xfs_trans_t *tp,
  726. xfs_inode_t *ip,
  727. uint iget_flags)
  728. {
  729. xfs_buf_t *bp;
  730. xfs_dinode_t *dip;
  731. int error;
  732. /*
  733. * Fill in the location information in the in-core inode.
  734. */
  735. error = xfs_imap(mp, tp, ip->i_ino, &ip->i_imap, iget_flags);
  736. if (error)
  737. return error;
  738. /*
  739. * Get pointers to the on-disk inode and the buffer containing it.
  740. */
  741. error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &bp,
  742. XBF_LOCK, iget_flags);
  743. if (error)
  744. return error;
  745. dip = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_imap.im_boffset);
  746. /*
  747. * If we got something that isn't an inode it means someone
  748. * (nfs or dmi) has a stale handle.
  749. */
  750. if (be16_to_cpu(dip->di_magic) != XFS_DINODE_MAGIC) {
  751. #ifdef DEBUG
  752. xfs_fs_cmn_err(CE_ALERT, mp, "xfs_iread: "
  753. "dip->di_magic (0x%x) != "
  754. "XFS_DINODE_MAGIC (0x%x)",
  755. be16_to_cpu(dip->di_magic),
  756. XFS_DINODE_MAGIC);
  757. #endif /* DEBUG */
  758. error = XFS_ERROR(EINVAL);
  759. goto out_brelse;
  760. }
  761. /*
  762. * If the on-disk inode is already linked to a directory
  763. * entry, copy all of the inode into the in-core inode.
  764. * xfs_iformat() handles copying in the inode format
  765. * specific information.
  766. * Otherwise, just get the truly permanent information.
  767. */
  768. if (dip->di_mode) {
  769. xfs_dinode_from_disk(&ip->i_d, dip);
  770. error = xfs_iformat(ip, dip);
  771. if (error) {
  772. #ifdef DEBUG
  773. xfs_fs_cmn_err(CE_ALERT, mp, "xfs_iread: "
  774. "xfs_iformat() returned error %d",
  775. error);
  776. #endif /* DEBUG */
  777. goto out_brelse;
  778. }
  779. } else {
  780. ip->i_d.di_magic = be16_to_cpu(dip->di_magic);
  781. ip->i_d.di_version = dip->di_version;
  782. ip->i_d.di_gen = be32_to_cpu(dip->di_gen);
  783. ip->i_d.di_flushiter = be16_to_cpu(dip->di_flushiter);
  784. /*
  785. * Make sure to pull in the mode here as well in
  786. * case the inode is released without being used.
  787. * This ensures that xfs_inactive() will see that
  788. * the inode is already free and not try to mess
  789. * with the uninitialized part of it.
  790. */
  791. ip->i_d.di_mode = 0;
  792. /*
  793. * Initialize the per-fork minima and maxima for a new
  794. * inode here. xfs_iformat will do it for old inodes.
  795. */
  796. ip->i_df.if_ext_max =
  797. XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
  798. }
  799. /*
  800. * The inode format changed when we moved the link count and
  801. * made it 32 bits long. If this is an old format inode,
  802. * convert it in memory to look like a new one. If it gets
  803. * flushed to disk we will convert back before flushing or
  804. * logging it. We zero out the new projid field and the old link
  805. * count field. We'll handle clearing the pad field (the remains
  806. * of the old uuid field) when we actually convert the inode to
  807. * the new format. We don't change the version number so that we
  808. * can distinguish this from a real new format inode.
  809. */
  810. if (ip->i_d.di_version == 1) {
  811. ip->i_d.di_nlink = ip->i_d.di_onlink;
  812. ip->i_d.di_onlink = 0;
  813. ip->i_d.di_projid = 0;
  814. }
  815. ip->i_delayed_blks = 0;
  816. ip->i_size = ip->i_d.di_size;
  817. /*
  818. * Mark the buffer containing the inode as something to keep
  819. * around for a while. This helps to keep recently accessed
  820. * meta-data in-core longer.
  821. */
  822. XFS_BUF_SET_REF(bp, XFS_INO_REF);
  823. /*
  824. * Use xfs_trans_brelse() to release the buffer containing the
  825. * on-disk inode, because it was acquired with xfs_trans_read_buf()
  826. * in xfs_itobp() above. If tp is NULL, this is just a normal
  827. * brelse(). If we're within a transaction, then xfs_trans_brelse()
  828. * will only release the buffer if it is not dirty within the
  829. * transaction. It will be OK to release the buffer in this case,
  830. * because inodes on disk are never destroyed and we will be
  831. * locking the new in-core inode before putting it in the hash
  832. * table where other processes can find it. Thus we don't have
  833. * to worry about the inode being changed just because we released
  834. * the buffer.
  835. */
  836. out_brelse:
  837. xfs_trans_brelse(tp, bp);
  838. return error;
  839. }
  840. /*
  841. * Read in extents from a btree-format inode.
  842. * Allocate and fill in if_extents. Real work is done in xfs_bmap.c.
  843. */
  844. int
  845. xfs_iread_extents(
  846. xfs_trans_t *tp,
  847. xfs_inode_t *ip,
  848. int whichfork)
  849. {
  850. int error;
  851. xfs_ifork_t *ifp;
  852. xfs_extnum_t nextents;
  853. size_t size;
  854. if (unlikely(XFS_IFORK_FORMAT(ip, whichfork) != XFS_DINODE_FMT_BTREE)) {
  855. XFS_ERROR_REPORT("xfs_iread_extents", XFS_ERRLEVEL_LOW,
  856. ip->i_mount);
  857. return XFS_ERROR(EFSCORRUPTED);
  858. }
  859. nextents = XFS_IFORK_NEXTENTS(ip, whichfork);
  860. size = nextents * sizeof(xfs_bmbt_rec_t);
  861. ifp = XFS_IFORK_PTR(ip, whichfork);
  862. /*
  863. * We know that the size is valid (it's checked in iformat_btree)
  864. */
  865. ifp->if_lastex = NULLEXTNUM;
  866. ifp->if_bytes = ifp->if_real_bytes = 0;
  867. ifp->if_flags |= XFS_IFEXTENTS;
  868. xfs_iext_add(ifp, 0, nextents);
  869. error = xfs_bmap_read_extents(tp, ip, whichfork);
  870. if (error) {
  871. xfs_iext_destroy(ifp);
  872. ifp->if_flags &= ~XFS_IFEXTENTS;
  873. return error;
  874. }
  875. xfs_validate_extents(ifp, nextents, XFS_EXTFMT_INODE(ip));
  876. return 0;
  877. }
  878. /*
  879. * Allocate an inode on disk and return a copy of its in-core version.
  880. * The in-core inode is locked exclusively. Set mode, nlink, and rdev
  881. * appropriately within the inode. The uid and gid for the inode are
  882. * set according to the contents of the given cred structure.
  883. *
  884. * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc()
  885. * has a free inode available, call xfs_iget()
  886. * to obtain the in-core version of the allocated inode. Finally,
  887. * fill in the inode and log its initial contents. In this case,
  888. * ialloc_context would be set to NULL and call_again set to false.
  889. *
  890. * If xfs_dialloc() does not have an available inode,
  891. * it will replenish its supply by doing an allocation. Since we can
  892. * only do one allocation within a transaction without deadlocks, we
  893. * must commit the current transaction before returning the inode itself.
  894. * In this case, therefore, we will set call_again to true and return.
  895. * The caller should then commit the current transaction, start a new
  896. * transaction, and call xfs_ialloc() again to actually get the inode.
  897. *
  898. * To ensure that some other process does not grab the inode that
  899. * was allocated during the first call to xfs_ialloc(), this routine
  900. * also returns the [locked] bp pointing to the head of the freelist
  901. * as ialloc_context. The caller should hold this buffer across
  902. * the commit and pass it back into this routine on the second call.
  903. *
  904. * If we are allocating quota inodes, we do not have a parent inode
  905. * to attach to or associate with (i.e. pip == NULL) because they
  906. * are not linked into the directory structure - they are attached
  907. * directly to the superblock - and so have no parent.
  908. */
  909. int
  910. xfs_ialloc(
  911. xfs_trans_t *tp,
  912. xfs_inode_t *pip,
  913. mode_t mode,
  914. xfs_nlink_t nlink,
  915. xfs_dev_t rdev,
  916. cred_t *cr,
  917. xfs_prid_t prid,
  918. int okalloc,
  919. xfs_buf_t **ialloc_context,
  920. boolean_t *call_again,
  921. xfs_inode_t **ipp)
  922. {
  923. xfs_ino_t ino;
  924. xfs_inode_t *ip;
  925. uint flags;
  926. int error;
  927. timespec_t tv;
  928. int filestreams = 0;
  929. /*
  930. * Call the space management code to pick
  931. * the on-disk inode to be allocated.
  932. */
  933. error = xfs_dialloc(tp, pip ? pip->i_ino : 0, mode, okalloc,
  934. ialloc_context, call_again, &ino);
  935. if (error)
  936. return error;
  937. if (*call_again || ino == NULLFSINO) {
  938. *ipp = NULL;
  939. return 0;
  940. }
  941. ASSERT(*ialloc_context == NULL);
  942. /*
  943. * Get the in-core inode with the lock held exclusively.
  944. * This is because we're setting fields here we need
  945. * to prevent others from looking at until we're done.
  946. */
  947. error = xfs_trans_iget(tp->t_mountp, tp, ino,
  948. XFS_IGET_CREATE, XFS_ILOCK_EXCL, &ip);
  949. if (error)
  950. return error;
  951. ASSERT(ip != NULL);
  952. ip->i_d.di_mode = (__uint16_t)mode;
  953. ip->i_d.di_onlink = 0;
  954. ip->i_d.di_nlink = nlink;
  955. ASSERT(ip->i_d.di_nlink == nlink);
  956. ip->i_d.di_uid = current_fsuid();
  957. ip->i_d.di_gid = current_fsgid();
  958. ip->i_d.di_projid = prid;
  959. memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
  960. /*
  961. * If the superblock version is up to where we support new format
  962. * inodes and this is currently an old format inode, then change
  963. * the inode version number now. This way we only do the conversion
  964. * here rather than here and in the flush/logging code.
  965. */
  966. if (xfs_sb_version_hasnlink(&tp->t_mountp->m_sb) &&
  967. ip->i_d.di_version == 1) {
  968. ip->i_d.di_version = 2;
  969. /*
  970. * We've already zeroed the old link count, the projid field,
  971. * and the pad field.
  972. */
  973. }
  974. /*
  975. * Project ids won't be stored on disk if we are using a version 1 inode.
  976. */
  977. if ((prid != 0) && (ip->i_d.di_version == 1))
  978. xfs_bump_ino_vers2(tp, ip);
  979. if (pip && XFS_INHERIT_GID(pip)) {
  980. ip->i_d.di_gid = pip->i_d.di_gid;
  981. if ((pip->i_d.di_mode & S_ISGID) && (mode & S_IFMT) == S_IFDIR) {
  982. ip->i_d.di_mode |= S_ISGID;
  983. }
  984. }
  985. /*
  986. * If the group ID of the new file does not match the effective group
  987. * ID or one of the supplementary group IDs, the S_ISGID bit is cleared
  988. * (and only if the irix_sgid_inherit compatibility variable is set).
  989. */
  990. if ((irix_sgid_inherit) &&
  991. (ip->i_d.di_mode & S_ISGID) &&
  992. (!in_group_p((gid_t)ip->i_d.di_gid))) {
  993. ip->i_d.di_mode &= ~S_ISGID;
  994. }
  995. ip->i_d.di_size = 0;
  996. ip->i_size = 0;
  997. ip->i_d.di_nextents = 0;
  998. ASSERT(ip->i_d.di_nblocks == 0);
  999. nanotime(&tv);
  1000. ip->i_d.di_mtime.t_sec = (__int32_t)tv.tv_sec;
  1001. ip->i_d.di_mtime.t_nsec = (__int32_t)tv.tv_nsec;
  1002. ip->i_d.di_atime = ip->i_d.di_mtime;
  1003. ip->i_d.di_ctime = ip->i_d.di_mtime;
  1004. /*
  1005. * di_gen will have been taken care of in xfs_iread.
  1006. */
  1007. ip->i_d.di_extsize = 0;
  1008. ip->i_d.di_dmevmask = 0;
  1009. ip->i_d.di_dmstate = 0;
  1010. ip->i_d.di_flags = 0;
  1011. flags = XFS_ILOG_CORE;
  1012. switch (mode & S_IFMT) {
  1013. case S_IFIFO:
  1014. case S_IFCHR:
  1015. case S_IFBLK:
  1016. case S_IFSOCK:
  1017. ip->i_d.di_format = XFS_DINODE_FMT_DEV;
  1018. ip->i_df.if_u2.if_rdev = rdev;
  1019. ip->i_df.if_flags = 0;
  1020. flags |= XFS_ILOG_DEV;
  1021. break;
  1022. case S_IFREG:
  1023. /*
  1024. * we can't set up filestreams until after the VFS inode
  1025. * is set up properly.
  1026. */
  1027. if (pip && xfs_inode_is_filestream(pip))
  1028. filestreams = 1;
  1029. /* fall through */
  1030. case S_IFDIR:
  1031. if (pip && (pip->i_d.di_flags & XFS_DIFLAG_ANY)) {
  1032. uint di_flags = 0;
  1033. if ((mode & S_IFMT) == S_IFDIR) {
  1034. if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
  1035. di_flags |= XFS_DIFLAG_RTINHERIT;
  1036. if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
  1037. di_flags |= XFS_DIFLAG_EXTSZINHERIT;
  1038. ip->i_d.di_extsize = pip->i_d.di_extsize;
  1039. }
  1040. } else if ((mode & S_IFMT) == S_IFREG) {
  1041. if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
  1042. di_flags |= XFS_DIFLAG_REALTIME;
  1043. if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
  1044. di_flags |= XFS_DIFLAG_EXTSIZE;
  1045. ip->i_d.di_extsize = pip->i_d.di_extsize;
  1046. }
  1047. }
  1048. if ((pip->i_d.di_flags & XFS_DIFLAG_NOATIME) &&
  1049. xfs_inherit_noatime)
  1050. di_flags |= XFS_DIFLAG_NOATIME;
  1051. if ((pip->i_d.di_flags & XFS_DIFLAG_NODUMP) &&
  1052. xfs_inherit_nodump)
  1053. di_flags |= XFS_DIFLAG_NODUMP;
  1054. if ((pip->i_d.di_flags & XFS_DIFLAG_SYNC) &&
  1055. xfs_inherit_sync)
  1056. di_flags |= XFS_DIFLAG_SYNC;
  1057. if ((pip->i_d.di_flags & XFS_DIFLAG_NOSYMLINKS) &&
  1058. xfs_inherit_nosymlinks)
  1059. di_flags |= XFS_DIFLAG_NOSYMLINKS;
  1060. if (pip->i_d.di_flags & XFS_DIFLAG_PROJINHERIT)
  1061. di_flags |= XFS_DIFLAG_PROJINHERIT;
  1062. if ((pip->i_d.di_flags & XFS_DIFLAG_NODEFRAG) &&
  1063. xfs_inherit_nodefrag)
  1064. di_flags |= XFS_DIFLAG_NODEFRAG;
  1065. if (pip->i_d.di_flags & XFS_DIFLAG_FILESTREAM)
  1066. di_flags |= XFS_DIFLAG_FILESTREAM;
  1067. ip->i_d.di_flags |= di_flags;
  1068. }
  1069. /* FALLTHROUGH */
  1070. case S_IFLNK:
  1071. ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
  1072. ip->i_df.if_flags = XFS_IFEXTENTS;
  1073. ip->i_df.if_bytes = ip->i_df.if_real_bytes = 0;
  1074. ip->i_df.if_u1.if_extents = NULL;
  1075. break;
  1076. default:
  1077. ASSERT(0);
  1078. }
  1079. /*
  1080. * Attribute fork settings for new inode.
  1081. */
  1082. ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
  1083. ip->i_d.di_anextents = 0;
  1084. /*
  1085. * Log the new values stuffed into the inode.
  1086. */
  1087. xfs_trans_log_inode(tp, ip, flags);
  1088. /* now that we have an i_mode we can setup inode ops and unlock */
  1089. xfs_setup_inode(ip);
  1090. /* now we have set up the vfs inode we can associate the filestream */
  1091. if (filestreams) {
  1092. error = xfs_filestream_associate(pip, ip);
  1093. if (error < 0)
  1094. return -error;
  1095. if (!error)
  1096. xfs_iflags_set(ip, XFS_IFILESTREAM);
  1097. }
  1098. *ipp = ip;
  1099. return 0;
  1100. }
  1101. /*
  1102. * Check to make sure that there are no blocks allocated to the
  1103. * file beyond the size of the file. We don't check this for
  1104. * files with fixed size extents or real time extents, but we
  1105. * at least do it for regular files.
  1106. */
  1107. #ifdef DEBUG
  1108. void
  1109. xfs_isize_check(
  1110. xfs_mount_t *mp,
  1111. xfs_inode_t *ip,
  1112. xfs_fsize_t isize)
  1113. {
  1114. xfs_fileoff_t map_first;
  1115. int nimaps;
  1116. xfs_bmbt_irec_t imaps[2];
  1117. if ((ip->i_d.di_mode & S_IFMT) != S_IFREG)
  1118. return;
  1119. if (XFS_IS_REALTIME_INODE(ip))
  1120. return;
  1121. if (ip->i_d.di_flags & XFS_DIFLAG_EXTSIZE)
  1122. return;
  1123. nimaps = 2;
  1124. map_first = XFS_B_TO_FSB(mp, (xfs_ufsize_t)isize);
  1125. /*
  1126. * The filesystem could be shutting down, so bmapi may return
  1127. * an error.
  1128. */
  1129. if (xfs_bmapi(NULL, ip, map_first,
  1130. (XFS_B_TO_FSB(mp,
  1131. (xfs_ufsize_t)XFS_MAXIOFFSET(mp)) -
  1132. map_first),
  1133. XFS_BMAPI_ENTIRE, NULL, 0, imaps, &nimaps,
  1134. NULL, NULL))
  1135. return;
  1136. ASSERT(nimaps == 1);
  1137. ASSERT(imaps[0].br_startblock == HOLESTARTBLOCK);
  1138. }
  1139. #endif /* DEBUG */
  1140. /*
  1141. * Calculate the last possible buffered byte in a file. This must
  1142. * include data that was buffered beyond the EOF by the write code.
  1143. * This also needs to deal with overflowing the xfs_fsize_t type
  1144. * which can happen for sizes near the limit.
  1145. *
  1146. * We also need to take into account any blocks beyond the EOF. It
  1147. * may be the case that they were buffered by a write which failed.
  1148. * In that case the pages will still be in memory, but the inode size
  1149. * will never have been updated.
  1150. */
  1151. STATIC xfs_fsize_t
  1152. xfs_file_last_byte(
  1153. xfs_inode_t *ip)
  1154. {
  1155. xfs_mount_t *mp;
  1156. xfs_fsize_t last_byte;
  1157. xfs_fileoff_t last_block;
  1158. xfs_fileoff_t size_last_block;
  1159. int error;
  1160. ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL|XFS_IOLOCK_SHARED));
  1161. mp = ip->i_mount;
  1162. /*
  1163. * Only check for blocks beyond the EOF if the extents have
  1164. * been read in. This eliminates the need for the inode lock,
  1165. * and it also saves us from looking when it really isn't
  1166. * necessary.
  1167. */
  1168. if (ip->i_df.if_flags & XFS_IFEXTENTS) {
  1169. xfs_ilock(ip, XFS_ILOCK_SHARED);
  1170. error = xfs_bmap_last_offset(NULL, ip, &last_block,
  1171. XFS_DATA_FORK);
  1172. xfs_iunlock(ip, XFS_ILOCK_SHARED);
  1173. if (error) {
  1174. last_block = 0;
  1175. }
  1176. } else {
  1177. last_block = 0;
  1178. }
  1179. size_last_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)ip->i_size);
  1180. last_block = XFS_FILEOFF_MAX(last_block, size_last_block);
  1181. last_byte = XFS_FSB_TO_B(mp, last_block);
  1182. if (last_byte < 0) {
  1183. return XFS_MAXIOFFSET(mp);
  1184. }
  1185. last_byte += (1 << mp->m_writeio_log);
  1186. if (last_byte < 0) {
  1187. return XFS_MAXIOFFSET(mp);
  1188. }
  1189. return last_byte;
  1190. }
  1191. /*
  1192. * Start the truncation of the file to new_size. The new size
  1193. * must be smaller than the current size. This routine will
  1194. * clear the buffer and page caches of file data in the removed
  1195. * range, and xfs_itruncate_finish() will remove the underlying
  1196. * disk blocks.
  1197. *
  1198. * The inode must have its I/O lock locked EXCLUSIVELY, and it
  1199. * must NOT have the inode lock held at all. This is because we're
  1200. * calling into the buffer/page cache code and we can't hold the
  1201. * inode lock when we do so.
  1202. *
  1203. * We need to wait for any direct I/Os in flight to complete before we
  1204. * proceed with the truncate. This is needed to prevent the extents
  1205. * being read or written by the direct I/Os from being removed while the
  1206. * I/O is in flight as there is no other method of synchronising
  1207. * direct I/O with the truncate operation. Also, because we hold
  1208. * the IOLOCK in exclusive mode, we prevent new direct I/Os from being
  1209. * started until the truncate completes and drops the lock. Essentially,
  1210. * the xfs_ioend_wait() call forms an I/O barrier that provides strict
  1211. * ordering between direct I/Os and the truncate operation.
  1212. *
  1213. * The flags parameter can have either the value XFS_ITRUNC_DEFINITE
  1214. * or XFS_ITRUNC_MAYBE. The XFS_ITRUNC_MAYBE value should be used
  1215. * in the case that the caller is locking things out of order and
  1216. * may not be able to call xfs_itruncate_finish() with the inode lock
  1217. * held without dropping the I/O lock. If the caller must drop the
  1218. * I/O lock before calling xfs_itruncate_finish(), then xfs_itruncate_start()
  1219. * must be called again with all the same restrictions as the initial
  1220. * call.
  1221. */
  1222. int
  1223. xfs_itruncate_start(
  1224. xfs_inode_t *ip,
  1225. uint flags,
  1226. xfs_fsize_t new_size)
  1227. {
  1228. xfs_fsize_t last_byte;
  1229. xfs_off_t toss_start;
  1230. xfs_mount_t *mp;
  1231. int error = 0;
  1232. ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL));
  1233. ASSERT((new_size == 0) || (new_size <= ip->i_size));
  1234. ASSERT((flags == XFS_ITRUNC_DEFINITE) ||
  1235. (flags == XFS_ITRUNC_MAYBE));
  1236. mp = ip->i_mount;
  1237. /* wait for the completion of any pending DIOs */
  1238. if (new_size == 0 || new_size < ip->i_size)
  1239. xfs_ioend_wait(ip);
  1240. /*
  1241. * Call toss_pages or flushinval_pages to get rid of pages
  1242. * overlapping the region being removed. We have to use
  1243. * the less efficient flushinval_pages in the case that the
  1244. * caller may not be able to finish the truncate without
  1245. * dropping the inode's I/O lock. Make sure
  1246. * to catch any pages brought in by buffers overlapping
  1247. * the EOF by searching out beyond the isize by our
  1248. * block size. We round new_size up to a block boundary
  1249. * so that we don't toss things on the same block as
  1250. * new_size but before it.
  1251. *
  1252. * Before calling toss_page or flushinval_pages, make sure to
  1253. * call remapf() over the same region if the file is mapped.
  1254. * This frees up mapped file references to the pages in the
  1255. * given range and for the flushinval_pages case it ensures
  1256. * that we get the latest mapped changes flushed out.
  1257. */
  1258. toss_start = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
  1259. toss_start = XFS_FSB_TO_B(mp, toss_start);
  1260. if (toss_start < 0) {
  1261. /*
  1262. * The place to start tossing is beyond our maximum
  1263. * file size, so there is no way that the data extended
  1264. * out there.
  1265. */
  1266. return 0;
  1267. }
  1268. last_byte = xfs_file_last_byte(ip);
  1269. trace_xfs_itruncate_start(ip, flags, new_size, toss_start, last_byte);
  1270. if (last_byte > toss_start) {
  1271. if (flags & XFS_ITRUNC_DEFINITE) {
  1272. xfs_tosspages(ip, toss_start,
  1273. -1, FI_REMAPF_LOCKED);
  1274. } else {
  1275. error = xfs_flushinval_pages(ip, toss_start,
  1276. -1, FI_REMAPF_LOCKED);
  1277. }
  1278. }
  1279. #ifdef DEBUG
  1280. if (new_size == 0) {
  1281. ASSERT(VN_CACHED(VFS_I(ip)) == 0);
  1282. }
  1283. #endif
  1284. return error;
  1285. }
  1286. /*
  1287. * Shrink the file to the given new_size. The new size must be smaller than
  1288. * the current size. This will free up the underlying blocks in the removed
  1289. * range after a call to xfs_itruncate_start() or xfs_atruncate_start().
  1290. *
  1291. * The transaction passed to this routine must have made a permanent log
  1292. * reservation of at least XFS_ITRUNCATE_LOG_RES. This routine may commit the
  1293. * given transaction and start new ones, so make sure everything involved in
  1294. * the transaction is tidy before calling here. Some transaction will be
  1295. * returned to the caller to be committed. The incoming transaction must
  1296. * already include the inode, and both inode locks must be held exclusively.
  1297. * The inode must also be "held" within the transaction. On return the inode
  1298. * will be "held" within the returned transaction. This routine does NOT
  1299. * require any disk space to be reserved for it within the transaction.
  1300. *
  1301. * The fork parameter must be either xfs_attr_fork or xfs_data_fork, and it
  1302. * indicates the fork which is to be truncated. For the attribute fork we only
  1303. * support truncation to size 0.
  1304. *
  1305. * We use the sync parameter to indicate whether or not the first transaction
  1306. * we perform might have to be synchronous. For the attr fork, it needs to be
  1307. * so if the unlink of the inode is not yet known to be permanent in the log.
  1308. * This keeps us from freeing and reusing the blocks of the attribute fork
  1309. * before the unlink of the inode becomes permanent.
  1310. *
  1311. * For the data fork, we normally have to run synchronously if we're being
  1312. * called out of the inactive path or we're being called out of the create path
  1313. * where we're truncating an existing file. Either way, the truncate needs to
  1314. * be sync so blocks don't reappear in the file with altered data in case of a
  1315. * crash. wsync filesystems can run the first case async because anything that
  1316. * shrinks the inode has to run sync so by the time we're called here from
  1317. * inactive, the inode size is permanently set to 0.
  1318. *
  1319. * Calls from the truncate path always need to be sync unless we're in a wsync
  1320. * filesystem and the file has already been unlinked.
  1321. *
  1322. * The caller is responsible for correctly setting the sync parameter. It gets
  1323. * too hard for us to guess here which path we're being called out of just
  1324. * based on inode state.
  1325. *
  1326. * If we get an error, we must return with the inode locked and linked into the
  1327. * current transaction. This keeps things simple for the higher level code,
  1328. * because it always knows that the inode is locked and held in the transaction
  1329. * that returns to it whether errors occur or not. We don't mark the inode
  1330. * dirty on error so that transactions can be easily aborted if possible.
  1331. */
  1332. int
  1333. xfs_itruncate_finish(
  1334. xfs_trans_t **tp,
  1335. xfs_inode_t *ip,
  1336. xfs_fsize_t new_size,
  1337. int fork,
  1338. int sync)
  1339. {
  1340. xfs_fsblock_t first_block;
  1341. xfs_fileoff_t first_unmap_block;
  1342. xfs_fileoff_t last_block;
  1343. xfs_filblks_t unmap_len=0;
  1344. xfs_mount_t *mp;
  1345. xfs_trans_t *ntp;
  1346. int done;
  1347. int committed;
  1348. xfs_bmap_free_t free_list;
  1349. int error;
  1350. ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_IOLOCK_EXCL));
  1351. ASSERT((new_size == 0) || (new_size <= ip->i_size));
  1352. ASSERT(*tp != NULL);
  1353. ASSERT((*tp)->t_flags & XFS_TRANS_PERM_LOG_RES);
  1354. ASSERT(ip->i_transp == *tp);
  1355. ASSERT(ip->i_itemp != NULL);
  1356. ASSERT(ip->i_itemp->ili_lock_flags == 0);
  1357. ntp = *tp;
  1358. mp = (ntp)->t_mountp;
  1359. ASSERT(! XFS_NOT_DQATTACHED(mp, ip));
  1360. /*
  1361. * We only support truncating the entire attribute fork.
  1362. */
  1363. if (fork == XFS_ATTR_FORK) {
  1364. new_size = 0LL;
  1365. }
  1366. first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
  1367. trace_xfs_itruncate_finish_start(ip, new_size);
  1368. /*
  1369. * The first thing we do is set the size to new_size permanently
  1370. * on disk. This way we don't have to worry about anyone ever
  1371. * being able to look at the data being freed even in the face
  1372. * of a crash. What we're getting around here is the case where
  1373. * we free a block, it is allocated to another file, it is written
  1374. * to, and then we crash. If the new data gets written to the
  1375. * file but the log buffers containing the free and reallocation
  1376. * don't, then we'd end up with garbage in the blocks being freed.
  1377. * As long as we make the new_size permanent before actually
  1378. * freeing any blocks it doesn't matter if they get writtten to.
  1379. *
  1380. * The callers must signal into us whether or not the size
  1381. * setting here must be synchronous. There are a few cases
  1382. * where it doesn't have to be synchronous. Those cases
  1383. * occur if the file is unlinked and we know the unlink is
  1384. * permanent or if the blocks being truncated are guaranteed
  1385. * to be beyond the inode eof (regardless of the link count)
  1386. * and the eof value is permanent. Both of these cases occur
  1387. * only on wsync-mounted filesystems. In those cases, we're
  1388. * guaranteed that no user will ever see the data in the blocks
  1389. * that are being truncated so the truncate can run async.
  1390. * In the free beyond eof case, the file may wind up with
  1391. * more blocks allocated to it than it needs if we crash
  1392. * and that won't get fixed until the next time the file
  1393. * is re-opened and closed but that's ok as that shouldn't
  1394. * be too many blocks.
  1395. *
  1396. * However, we can't just make all wsync xactions run async
  1397. * because there's one call out of the create path that needs
  1398. * to run sync where it's truncating an existing file to size
  1399. * 0 whose size is > 0.
  1400. *
  1401. * It's probably possible to come up with a test in this
  1402. * routine that would correctly distinguish all the above
  1403. * cases from the values of the function parameters and the
  1404. * inode state but for sanity's sake, I've decided to let the
  1405. * layers above just tell us. It's simpler to correctly figure
  1406. * out in the layer above exactly under what conditions we
  1407. * can run async and I think it's easier for others read and
  1408. * follow the logic in case something has to be changed.
  1409. * cscope is your friend -- rcc.
  1410. *
  1411. * The attribute fork is much simpler.
  1412. *
  1413. * For the attribute fork we allow the caller to tell us whether
  1414. * the unlink of the inode that led to this call is yet permanent
  1415. * in the on disk log. If it is not and we will be freeing extents
  1416. * in this inode then we make the first transaction synchronous
  1417. * to make sure that the unlink is permanent by the time we free
  1418. * the blocks.
  1419. */
  1420. if (fork == XFS_DATA_FORK) {
  1421. if (ip->i_d.di_nextents > 0) {
  1422. /*
  1423. * If we are not changing the file size then do
  1424. * not update the on-disk file size - we may be
  1425. * called from xfs_inactive_free_eofblocks(). If we
  1426. * update the on-disk file size and then the system
  1427. * crashes before the contents of the file are
  1428. * flushed to disk then the files may be full of
  1429. * holes (ie NULL files bug).
  1430. */
  1431. if (ip->i_size != new_size) {
  1432. ip->i_d.di_size = new_size;
  1433. ip->i_size = new_size;
  1434. xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
  1435. }
  1436. }
  1437. } else if (sync) {
  1438. ASSERT(!(mp->m_flags & XFS_MOUNT_WSYNC));
  1439. if (ip->i_d.di_anextents > 0)
  1440. xfs_trans_set_sync(ntp);
  1441. }
  1442. ASSERT(fork == XFS_DATA_FORK ||
  1443. (fork == XFS_ATTR_FORK &&
  1444. ((sync && !(mp->m_flags & XFS_MOUNT_WSYNC)) ||
  1445. (sync == 0 && (mp->m_flags & XFS_MOUNT_WSYNC)))));
  1446. /*
  1447. * Since it is possible for space to become allocated beyond
  1448. * the end of the file (in a crash where the space is allocated
  1449. * but the inode size is not yet updated), simply remove any
  1450. * blocks which show up between the new EOF and the maximum
  1451. * possible file size. If the first block to be removed is
  1452. * beyond the maximum file size (ie it is the same as last_block),
  1453. * then there is nothing to do.
  1454. */
  1455. last_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)XFS_MAXIOFFSET(mp));
  1456. ASSERT(first_unmap_block <= last_block);
  1457. done = 0;
  1458. if (last_block == first_unmap_block) {
  1459. done = 1;
  1460. } else {
  1461. unmap_len = last_block - first_unmap_block + 1;
  1462. }
  1463. while (!done) {
  1464. /*
  1465. * Free up up to XFS_ITRUNC_MAX_EXTENTS. xfs_bunmapi()
  1466. * will tell us whether it freed the entire range or
  1467. * not. If this is a synchronous mount (wsync),
  1468. * then we can tell bunmapi to keep all the
  1469. * transactions asynchronous since the unlink
  1470. * transaction that made this inode inactive has
  1471. * already hit the disk. There's no danger of
  1472. * the freed blocks being reused, there being a
  1473. * crash, and the reused blocks suddenly reappearing
  1474. * in this file with garbage in them once recovery
  1475. * runs.
  1476. */
  1477. xfs_bmap_init(&free_list, &first_block);
  1478. error = xfs_bunmapi(ntp, ip,
  1479. first_unmap_block, unmap_len,
  1480. xfs_bmapi_aflag(fork) |
  1481. (sync ? 0 : XFS_BMAPI_ASYNC),
  1482. XFS_ITRUNC_MAX_EXTENTS,
  1483. &first_block, &free_list,
  1484. NULL, &done);
  1485. if (error) {
  1486. /*
  1487. * If the bunmapi call encounters an error,
  1488. * return to the caller where the transaction
  1489. * can be properly aborted. We just need to
  1490. * make sure we're not holding any resources
  1491. * that we were not when we came in.
  1492. */
  1493. xfs_bmap_cancel(&free_list);
  1494. return error;
  1495. }
  1496. /*
  1497. * Duplicate the transaction that has the permanent
  1498. * reservation and commit the old transaction.
  1499. */
  1500. error = xfs_bmap_finish(tp, &free_list, &committed);
  1501. ntp = *tp;
  1502. if (committed)
  1503. xfs_trans_ijoin(ntp, ip);
  1504. if (error) {
  1505. /*
  1506. * If the bmap finish call encounters an error, return
  1507. * to the caller where the transaction can be properly
  1508. * aborted. We just need to make sure we're not
  1509. * holding any resources that we were not when we came
  1510. * in.
  1511. *
  1512. * Aborting from this point might lose some blocks in
  1513. * the file system, but oh well.
  1514. */
  1515. xfs_bmap_cancel(&free_list);
  1516. return error;
  1517. }
  1518. if (committed) {
  1519. /*
  1520. * Mark the inode dirty so it will be logged and
  1521. * moved forward in the log as part of every commit.
  1522. */
  1523. xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
  1524. }
  1525. ntp = xfs_trans_dup(ntp);
  1526. error = xfs_trans_commit(*tp, 0);
  1527. *tp = ntp;
  1528. xfs_trans_ijoin(ntp, ip);
  1529. if (error)
  1530. return error;
  1531. /*
  1532. * transaction commit worked ok so we can drop the extra ticket
  1533. * reference that we gained in xfs_trans_dup()
  1534. */
  1535. xfs_log_ticket_put(ntp->t_ticket);
  1536. error = xfs_trans_reserve(ntp, 0,
  1537. XFS_ITRUNCATE_LOG_RES(mp), 0,
  1538. XFS_TRANS_PERM_LOG_RES,
  1539. XFS_ITRUNCATE_LOG_COUNT);
  1540. if (error)
  1541. return error;
  1542. }
  1543. /*
  1544. * Only update the size in the case of the data fork, but
  1545. * always re-log the inode so that our permanent transaction
  1546. * can keep on rolling it forward in the log.
  1547. */
  1548. if (fork == XFS_DATA_FORK) {
  1549. xfs_isize_check(mp, ip, new_size);
  1550. /*
  1551. * If we are not changing the file size then do
  1552. * not update the on-disk file size - we may be
  1553. * called from xfs_inactive_free_eofblocks(). If we
  1554. * update the on-disk file size and then the system
  1555. * crashes before the contents of the file are
  1556. * flushed to disk then the files may be full of
  1557. * holes (ie NULL files bug).
  1558. */
  1559. if (ip->i_size != new_size) {
  1560. ip->i_d.di_size = new_size;
  1561. ip->i_size = new_size;
  1562. }
  1563. }
  1564. xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
  1565. ASSERT((new_size != 0) ||
  1566. (fork == XFS_ATTR_FORK) ||
  1567. (ip->i_delayed_blks == 0));
  1568. ASSERT((new_size != 0) ||
  1569. (fork == XFS_ATTR_FORK) ||
  1570. (ip->i_d.di_nextents == 0));
  1571. trace_xfs_itruncate_finish_end(ip, new_size);
  1572. return 0;
  1573. }
  1574. /*
  1575. * This is called when the inode's link count goes to 0.
  1576. * We place the on-disk inode on a list in the AGI. It
  1577. * will be pulled from this list when the inode is freed.
  1578. */
  1579. int
  1580. xfs_iunlink(
  1581. xfs_trans_t *tp,
  1582. xfs_inode_t *ip)
  1583. {
  1584. xfs_mount_t *mp;
  1585. xfs_agi_t *agi;
  1586. xfs_dinode_t *dip;
  1587. xfs_buf_t *agibp;
  1588. xfs_buf_t *ibp;
  1589. xfs_agino_t agino;
  1590. short bucket_index;
  1591. int offset;
  1592. int error;
  1593. ASSERT(ip->i_d.di_nlink == 0);
  1594. ASSERT(ip->i_d.di_mode != 0);
  1595. ASSERT(ip->i_transp == tp);
  1596. mp = tp->t_mountp;
  1597. /*
  1598. * Get the agi buffer first. It ensures lock ordering
  1599. * on the list.
  1600. */
  1601. error = xfs_read_agi(mp, tp, XFS_INO_TO_AGNO(mp, ip->i_ino), &agibp);
  1602. if (error)
  1603. return error;
  1604. agi = XFS_BUF_TO_AGI(agibp);
  1605. /*
  1606. * Get the index into the agi hash table for the
  1607. * list this inode will go on.
  1608. */
  1609. agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
  1610. ASSERT(agino != 0);
  1611. bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
  1612. ASSERT(agi->agi_unlinked[bucket_index]);
  1613. ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != agino);
  1614. if (be32_to_cpu(agi->agi_unlinked[bucket_index]) != NULLAGINO) {
  1615. /*
  1616. * There is already another inode in the bucket we need
  1617. * to add ourselves to. Add us at the front of the list.
  1618. * Here we put the head pointer into our next pointer,
  1619. * and then we fall through to point the head at us.
  1620. */
  1621. error = xfs_itobp(mp, tp, ip, &dip, &ibp, XBF_LOCK);
  1622. if (error)
  1623. return error;
  1624. ASSERT(be32_to_cpu(dip->di_next_unlinked) == NULLAGINO);
  1625. /* both on-disk, don't endian flip twice */
  1626. dip->di_next_unlinked = agi->agi_unlinked[bucket_index];
  1627. offset = ip->i_imap.im_boffset +
  1628. offsetof(xfs_dinode_t, di_next_unlinked);
  1629. xfs_trans_inode_buf(tp, ibp);
  1630. xfs_trans_log_buf(tp, ibp, offset,
  1631. (offset + sizeof(xfs_agino_t) - 1));
  1632. xfs_inobp_check(mp, ibp);
  1633. }
  1634. /*
  1635. * Point the bucket head pointer at the inode being inserted.
  1636. */
  1637. ASSERT(agino != 0);
  1638. agi->agi_unlinked[bucket_index] = cpu_to_be32(agino);
  1639. offset = offsetof(xfs_agi_t, agi_unlinked) +
  1640. (sizeof(xfs_agino_t) * bucket_index);
  1641. xfs_trans_log_buf(tp, agibp, offset,
  1642. (offset + sizeof(xfs_agino_t) - 1));
  1643. return 0;
  1644. }
  1645. /*
  1646. * Pull the on-disk inode from the AGI unlinked list.
  1647. */
  1648. STATIC int
  1649. xfs_iunlink_remove(
  1650. xfs_trans_t *tp,
  1651. xfs_inode_t *ip)
  1652. {
  1653. xfs_ino_t next_ino;
  1654. xfs_mount_t *mp;
  1655. xfs_agi_t *agi;
  1656. xfs_dinode_t *dip;
  1657. xfs_buf_t *agibp;
  1658. xfs_buf_t *ibp;
  1659. xfs_agnumber_t agno;
  1660. xfs_agino_t agino;
  1661. xfs_agino_t next_agino;
  1662. xfs_buf_t *last_ibp;
  1663. xfs_dinode_t *last_dip = NULL;
  1664. short bucket_index;
  1665. int offset, last_offset = 0;
  1666. int error;
  1667. mp = tp->t_mountp;
  1668. agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
  1669. /*
  1670. * Get the agi buffer first. It ensures lock ordering
  1671. * on the list.
  1672. */
  1673. error = xfs_read_agi(mp, tp, agno, &agibp);
  1674. if (error)
  1675. return error;
  1676. agi = XFS_BUF_TO_AGI(agibp);
  1677. /*
  1678. * Get the index into the agi hash table for the
  1679. * list this inode will go on.
  1680. */
  1681. agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
  1682. ASSERT(agino != 0);
  1683. bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
  1684. ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != NULLAGINO);
  1685. ASSERT(agi->agi_unlinked[bucket_index]);
  1686. if (be32_to_cpu(agi->agi_unlinked[bucket_index]) == agino) {
  1687. /*
  1688. * We're at the head of the list. Get the inode's
  1689. * on-disk buffer to see if there is anyone after us
  1690. * on the list. Only modify our next pointer if it
  1691. * is not already NULLAGINO. This saves us the overhead
  1692. * of dealing with the buffer when there is no need to
  1693. * change it.
  1694. */
  1695. error = xfs_itobp(mp, tp, ip, &dip, &ibp, XBF_LOCK);
  1696. if (error) {
  1697. cmn_err(CE_WARN,
  1698. "xfs_iunlink_remove: xfs_itobp() returned an error %d on %s. Returning error.",
  1699. error, mp->m_fsname);
  1700. return error;
  1701. }
  1702. next_agino = be32_to_cpu(dip->di_next_unlinked);
  1703. ASSERT(next_agino != 0);
  1704. if (next_agino != NULLAGINO) {
  1705. dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
  1706. offset = ip->i_imap.im_boffset +
  1707. offsetof(xfs_dinode_t, di_next_unlinked);
  1708. xfs_trans_inode_buf(tp, ibp);
  1709. xfs_trans_log_buf(tp, ibp, offset,
  1710. (offset + sizeof(xfs_agino_t) - 1));
  1711. xfs_inobp_check(mp, ibp);
  1712. } else {
  1713. xfs_trans_brelse(tp, ibp);
  1714. }
  1715. /*
  1716. * Point the bucket head pointer at the next inode.
  1717. */
  1718. ASSERT(next_agino != 0);
  1719. ASSERT(next_agino != agino);
  1720. agi->agi_unlinked[bucket_index] = cpu_to_be32(next_agino);
  1721. offset = offsetof(xfs_agi_t, agi_unlinked) +
  1722. (sizeof(xfs_agino_t) * bucket_index);
  1723. xfs_trans_log_buf(tp, agibp, offset,
  1724. (offset + sizeof(xfs_agino_t) - 1));
  1725. } else {
  1726. /*
  1727. * We need to search the list for the inode being freed.
  1728. */
  1729. next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
  1730. last_ibp = NULL;
  1731. while (next_agino != agino) {
  1732. /*
  1733. * If the last inode wasn't the one pointing to
  1734. * us, then release its buffer since we're not
  1735. * going to do anything with it.
  1736. */
  1737. if (last_ibp != NULL) {
  1738. xfs_trans_brelse(tp, last_ibp);
  1739. }
  1740. next_ino = XFS_AGINO_TO_INO(mp, agno, next_agino);
  1741. error = xfs_inotobp(mp, tp, next_ino, &last_dip,
  1742. &last_ibp, &last_offset, 0);
  1743. if (error) {
  1744. cmn_err(CE_WARN,
  1745. "xfs_iunlink_remove: xfs_inotobp() returned an error %d on %s. Returning error.",
  1746. error, mp->m_fsname);
  1747. return error;
  1748. }
  1749. next_agino = be32_to_cpu(last_dip->di_next_unlinked);
  1750. ASSERT(next_agino != NULLAGINO);
  1751. ASSERT(next_agino != 0);
  1752. }
  1753. /*
  1754. * Now last_ibp points to the buffer previous to us on
  1755. * the unlinked list. Pull us from the list.
  1756. */
  1757. error = xfs_itobp(mp, tp, ip, &dip, &ibp, XBF_LOCK);
  1758. if (error) {
  1759. cmn_err(CE_WARN,
  1760. "xfs_iunlink_remove: xfs_itobp() returned an error %d on %s. Returning error.",
  1761. error, mp->m_fsname);
  1762. return error;
  1763. }
  1764. next_agino = be32_to_cpu(dip->di_next_unlinked);
  1765. ASSERT(next_agino != 0);
  1766. ASSERT(next_agino != agino);
  1767. if (next_agino != NULLAGINO) {
  1768. dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
  1769. offset = ip->i_imap.im_boffset +
  1770. offsetof(xfs_dinode_t, di_next_unlinked);
  1771. xfs_trans_inode_buf(tp, ibp);
  1772. xfs_trans_log_buf(tp, ibp, offset,
  1773. (offset + sizeof(xfs_agino_t) - 1));
  1774. xfs_inobp_check(mp, ibp);
  1775. } else {
  1776. xfs_trans_brelse(tp, ibp);
  1777. }
  1778. /*
  1779. * Point the previous inode on the list to the next inode.
  1780. */
  1781. last_dip->di_next_unlinked = cpu_to_be32(next_agino);
  1782. ASSERT(next_agino != 0);
  1783. offset = last_offset + offsetof(xfs_dinode_t, di_next_unlinked);
  1784. xfs_trans_inode_buf(tp, last_ibp);
  1785. xfs_trans_log_buf(tp, last_ibp, offset,
  1786. (offset + sizeof(xfs_agino_t) - 1));
  1787. xfs_inobp_check(mp, last_ibp);
  1788. }
  1789. return 0;
  1790. }
  1791. STATIC void
  1792. xfs_ifree_cluster(
  1793. xfs_inode_t *free_ip,
  1794. xfs_trans_t *tp,
  1795. xfs_ino_t inum)
  1796. {
  1797. xfs_mount_t *mp = free_ip->i_mount;
  1798. int blks_per_cluster;
  1799. int nbufs;
  1800. int ninodes;
  1801. int i, j;
  1802. xfs_daddr_t blkno;
  1803. xfs_buf_t *bp;
  1804. xfs_inode_t *ip;
  1805. xfs_inode_log_item_t *iip;
  1806. xfs_log_item_t *lip;
  1807. struct xfs_perag *pag;
  1808. pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, inum));
  1809. if (mp->m_sb.sb_blocksize >= XFS_INODE_CLUSTER_SIZE(mp)) {
  1810. blks_per_cluster = 1;
  1811. ninodes = mp->m_sb.sb_inopblock;
  1812. nbufs = XFS_IALLOC_BLOCKS(mp);
  1813. } else {
  1814. blks_per_cluster = XFS_INODE_CLUSTER_SIZE(mp) /
  1815. mp->m_sb.sb_blocksize;
  1816. ninodes = blks_per_cluster * mp->m_sb.sb_inopblock;
  1817. nbufs = XFS_IALLOC_BLOCKS(mp) / blks_per_cluster;
  1818. }
  1819. for (j = 0; j < nbufs; j++, inum += ninodes) {
  1820. int found = 0;
  1821. blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum),
  1822. XFS_INO_TO_AGBNO(mp, inum));
  1823. /*
  1824. * We obtain and lock the backing buffer first in the process
  1825. * here, as we have to ensure that any dirty inode that we
  1826. * can't get the flush lock on is attached to the buffer.
  1827. * If we scan the in-memory inodes first, then buffer IO can
  1828. * complete before we get a lock on it, and hence we may fail
  1829. * to mark all the active inodes on the buffer stale.
  1830. */
  1831. bp = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno,
  1832. mp->m_bsize * blks_per_cluster,
  1833. XBF_LOCK);
  1834. /*
  1835. * Walk the inodes already attached to the buffer and mark them
  1836. * stale. These will all have the flush locks held, so an
  1837. * in-memory inode walk can't lock them.
  1838. */
  1839. lip = XFS_BUF_FSPRIVATE(bp, xfs_log_item_t *);
  1840. while (lip) {
  1841. if (lip->li_type == XFS_LI_INODE) {
  1842. iip = (xfs_inode_log_item_t *)lip;
  1843. ASSERT(iip->ili_logged == 1);
  1844. lip->li_cb = xfs_istale_done;
  1845. xfs_trans_ail_copy_lsn(mp->m_ail,
  1846. &iip->ili_flush_lsn,
  1847. &iip->ili_item.li_lsn);
  1848. xfs_iflags_set(iip->ili_inode, XFS_ISTALE);
  1849. found++;
  1850. }
  1851. lip = lip->li_bio_list;
  1852. }
  1853. /*
  1854. * For each inode in memory attempt to add it to the inode
  1855. * buffer and set it up for being staled on buffer IO
  1856. * completion. This is safe as we've locked out tail pushing
  1857. * and flushing by locking the buffer.
  1858. *
  1859. * We have already marked every inode that was part of a
  1860. * transaction stale above, which means there is no point in
  1861. * even trying to lock them.
  1862. */
  1863. for (i = 0; i < ninodes; i++) {
  1864. read_lock(&pag->pag_ici_lock);
  1865. ip = radix_tree_lookup(&pag->pag_ici_root,
  1866. XFS_INO_TO_AGINO(mp, (inum + i)));
  1867. /* Inode not in memory or stale, nothing to do */
  1868. if (!ip || xfs_iflags_test(ip, XFS_ISTALE)) {
  1869. read_unlock(&pag->pag_ici_lock);
  1870. continue;
  1871. }
  1872. /* don't try to lock/unlock the current inode */
  1873. if (ip != free_ip &&
  1874. !xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) {
  1875. read_unlock(&pag->pag_ici_lock);
  1876. continue;
  1877. }
  1878. read_unlock(&pag->pag_ici_lock);
  1879. if (!xfs_iflock_nowait(ip)) {
  1880. if (ip != free_ip)
  1881. xfs_iunlock(ip, XFS_ILOCK_EXCL);
  1882. continue;
  1883. }
  1884. xfs_iflags_set(ip, XFS_ISTALE);
  1885. if (xfs_inode_clean(ip)) {
  1886. ASSERT(ip != free_ip);
  1887. xfs_ifunlock(ip);
  1888. xfs_iunlock(ip, XFS_ILOCK_EXCL);
  1889. continue;
  1890. }
  1891. iip = ip->i_itemp;
  1892. if (!iip) {
  1893. /* inode with unlogged changes only */
  1894. ASSERT(ip != free_ip);
  1895. ip->i_update_core = 0;
  1896. xfs_ifunlock(ip);
  1897. xfs_iunlock(ip, XFS_ILOCK_EXCL);
  1898. continue;
  1899. }
  1900. found++;
  1901. iip->ili_last_fields = iip->ili_format.ilf_fields;
  1902. iip->ili_format.ilf_fields = 0;
  1903. iip->ili_logged = 1;
  1904. xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
  1905. &iip->ili_item.li_lsn);
  1906. xfs_buf_attach_iodone(bp, xfs_istale_done,
  1907. &iip->ili_item);
  1908. if (ip != free_ip)
  1909. xfs_iunlock(ip, XFS_ILOCK_EXCL);
  1910. }
  1911. if (found)
  1912. xfs_trans_stale_inode_buf(tp, bp);
  1913. xfs_trans_binval(tp, bp);
  1914. }
  1915. xfs_perag_put(pag);
  1916. }
  1917. /*
  1918. * This is called to return an inode to the inode free list.
  1919. * The inode should already be truncated to 0 length and have
  1920. * no pages associated with it. This routine also assumes that
  1921. * the inode is already a part of the transaction.
  1922. *
  1923. * The on-disk copy of the inode will have been added to the list
  1924. * of unlinked inodes in the AGI. We need to remove the inode from
  1925. * that list atomically with respect to freeing it here.
  1926. */
  1927. int
  1928. xfs_ifree(
  1929. xfs_trans_t *tp,
  1930. xfs_inode_t *ip,
  1931. xfs_bmap_free_t *flist)
  1932. {
  1933. int error;
  1934. int delete;
  1935. xfs_ino_t first_ino;
  1936. xfs_dinode_t *dip;
  1937. xfs_buf_t *ibp;
  1938. ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
  1939. ASSERT(ip->i_transp == tp);
  1940. ASSERT(ip->i_d.di_nlink == 0);
  1941. ASSERT(ip->i_d.di_nextents == 0);
  1942. ASSERT(ip->i_d.di_anextents == 0);
  1943. ASSERT((ip->i_d.di_size == 0 && ip->i_size == 0) ||
  1944. ((ip->i_d.di_mode & S_IFMT) != S_IFREG));
  1945. ASSERT(ip->i_d.di_nblocks == 0);
  1946. /*
  1947. * Pull the on-disk inode from the AGI unlinked list.
  1948. */
  1949. error = xfs_iunlink_remove(tp, ip);
  1950. if (error != 0) {
  1951. return error;
  1952. }
  1953. error = xfs_difree(tp, ip->i_ino, flist, &delete, &first_ino);
  1954. if (error != 0) {
  1955. return error;
  1956. }
  1957. ip->i_d.di_mode = 0; /* mark incore inode as free */
  1958. ip->i_d.di_flags = 0;
  1959. ip->i_d.di_dmevmask = 0;
  1960. ip->i_d.di_forkoff = 0; /* mark the attr fork not in use */
  1961. ip->i_df.if_ext_max =
  1962. XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
  1963. ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
  1964. ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
  1965. /*
  1966. * Bump the generation count so no one will be confused
  1967. * by reincarnations of this inode.
  1968. */
  1969. ip->i_d.di_gen++;
  1970. xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
  1971. error = xfs_itobp(ip->i_mount, tp, ip, &dip, &ibp, XBF_LOCK);
  1972. if (error)
  1973. return error;
  1974. /*
  1975. * Clear the on-disk di_mode. This is to prevent xfs_bulkstat
  1976. * from picking up this inode when it is reclaimed (its incore state
  1977. * initialzed but not flushed to disk yet). The in-core di_mode is
  1978. * already cleared and a corresponding transaction logged.
  1979. * The hack here just synchronizes the in-core to on-disk
  1980. * di_mode value in advance before the actual inode sync to disk.
  1981. * This is OK because the inode is already unlinked and would never
  1982. * change its di_mode again for this inode generation.
  1983. * This is a temporary hack that would require a proper fix
  1984. * in the future.
  1985. */
  1986. dip->di_mode = 0;
  1987. if (delete) {
  1988. xfs_ifree_cluster(ip, tp, first_ino);
  1989. }
  1990. return 0;
  1991. }
  1992. /*
  1993. * Reallocate the space for if_broot based on the number of records
  1994. * being added or deleted as indicated in rec_diff. Move the records
  1995. * and pointers in if_broot to fit the new size. When shrinking this
  1996. * will eliminate holes between the records and pointers created by
  1997. * the caller. When growing this will create holes to be filled in
  1998. * by the caller.
  1999. *
  2000. * The caller must not request to add more records than would fit in
  2001. * the on-disk inode root. If the if_broot is currently NULL, then
  2002. * if we adding records one will be allocated. The caller must also
  2003. * not request that the number of records go below zero, although
  2004. * it can go to zero.
  2005. *
  2006. * ip -- the inode whose if_broot area is changing
  2007. * ext_diff -- the change in the number of records, positive or negative,
  2008. * requested for the if_broot array.
  2009. */
  2010. void
  2011. xfs_iroot_realloc(
  2012. xfs_inode_t *ip,
  2013. int rec_diff,
  2014. int whichfork)
  2015. {
  2016. struct xfs_mount *mp = ip->i_mount;
  2017. int cur_max;
  2018. xfs_ifork_t *ifp;
  2019. struct xfs_btree_block *new_broot;
  2020. int new_max;
  2021. size_t new_size;
  2022. char *np;
  2023. char *op;
  2024. /*
  2025. * Handle the degenerate case quietly.
  2026. */
  2027. if (rec_diff == 0) {
  2028. return;
  2029. }
  2030. ifp = XFS_IFORK_PTR(ip, whichfork);
  2031. if (rec_diff > 0) {
  2032. /*
  2033. * If there wasn't any memory allocated before, just
  2034. * allocate it now and get out.
  2035. */
  2036. if (ifp->if_broot_bytes == 0) {
  2037. new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(rec_diff);
  2038. ifp->if_broot = kmem_alloc(new_size, KM_SLEEP);
  2039. ifp->if_broot_bytes = (int)new_size;
  2040. return;
  2041. }
  2042. /*
  2043. * If there is already an existing if_broot, then we need
  2044. * to realloc() it and shift the pointers to their new
  2045. * location. The records don't change location because
  2046. * they are kept butted up against the btree block header.
  2047. */
  2048. cur_max = xfs_bmbt_maxrecs(mp, ifp->if_broot_bytes, 0);
  2049. new_max = cur_max + rec_diff;
  2050. new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max);
  2051. ifp->if_broot = kmem_realloc(ifp->if_broot, new_size,
  2052. (size_t)XFS_BMAP_BROOT_SPACE_CALC(cur_max), /* old size */
  2053. KM_SLEEP);
  2054. op = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, ifp->if_broot, 1,
  2055. ifp->if_broot_bytes);
  2056. np = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, ifp->if_broot, 1,
  2057. (int)new_size);
  2058. ifp->if_broot_bytes = (int)new_size;
  2059. ASSERT(ifp->if_broot_bytes <=
  2060. XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ);
  2061. memmove(np, op, cur_max * (uint)sizeof(xfs_dfsbno_t));
  2062. return;
  2063. }
  2064. /*
  2065. * rec_diff is less than 0. In this case, we are shrinking the
  2066. * if_broot buffer. It must already exist. If we go to zero
  2067. * records, just get rid of the root and clear the status bit.
  2068. */
  2069. ASSERT((ifp->if_broot != NULL) && (ifp->if_broot_bytes > 0));
  2070. cur_max = xfs_bmbt_maxrecs(mp, ifp->if_broot_bytes, 0);
  2071. new_max = cur_max + rec_diff;
  2072. ASSERT(new_max >= 0);
  2073. if (new_max > 0)
  2074. new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max);
  2075. else
  2076. new_size = 0;
  2077. if (new_size > 0) {
  2078. new_broot = kmem_alloc(new_size, KM_SLEEP);
  2079. /*
  2080. * First copy over the btree block header.
  2081. */
  2082. memcpy(new_broot, ifp->if_broot, XFS_BTREE_LBLOCK_LEN);
  2083. } else {
  2084. new_broot = NULL;
  2085. ifp->if_flags &= ~XFS_IFBROOT;
  2086. }
  2087. /*
  2088. * Only copy the records and pointers if there are any.
  2089. */
  2090. if (new_max > 0) {
  2091. /*
  2092. * First copy the records.
  2093. */
  2094. op = (char *)XFS_BMBT_REC_ADDR(mp, ifp->if_broot, 1);
  2095. np = (char *)XFS_BMBT_REC_ADDR(mp, new_broot, 1);
  2096. memcpy(np, op, new_max * (uint)sizeof(xfs_bmbt_rec_t));
  2097. /*
  2098. * Then copy the pointers.
  2099. */
  2100. op = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, ifp->if_broot, 1,
  2101. ifp->if_broot_bytes);
  2102. np = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, new_broot, 1,
  2103. (int)new_size);
  2104. memcpy(np, op, new_max * (uint)sizeof(xfs_dfsbno_t));
  2105. }
  2106. kmem_free(ifp->if_broot);
  2107. ifp->if_broot = new_broot;
  2108. ifp->if_broot_bytes = (int)new_size;
  2109. ASSERT(ifp->if_broot_bytes <=
  2110. XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ);
  2111. return;
  2112. }
  2113. /*
  2114. * This is called when the amount of space needed for if_data
  2115. * is increased or decreased. The change in size is indicated by
  2116. * the number of bytes that need to be added or deleted in the
  2117. * byte_diff parameter.
  2118. *
  2119. * If the amount of space needed has decreased below the size of the
  2120. * inline buffer, then switch to using the inline buffer. Otherwise,
  2121. * use kmem_realloc() or kmem_alloc() to adjust the size of the buffer
  2122. * to what is needed.
  2123. *
  2124. * ip -- the inode whose if_data area is changing
  2125. * byte_diff -- the change in the number of bytes, positive or negative,
  2126. * requested for the if_data array.
  2127. */
  2128. void
  2129. xfs_idata_realloc(
  2130. xfs_inode_t *ip,
  2131. int byte_diff,
  2132. int whichfork)
  2133. {
  2134. xfs_ifork_t *ifp;
  2135. int new_size;
  2136. int real_size;
  2137. if (byte_diff == 0) {
  2138. return;
  2139. }
  2140. ifp = XFS_IFORK_PTR(ip, whichfork);
  2141. new_size = (int)ifp->if_bytes + byte_diff;
  2142. ASSERT(new_size >= 0);
  2143. if (new_size == 0) {
  2144. if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
  2145. kmem_free(ifp->if_u1.if_data);
  2146. }
  2147. ifp->if_u1.if_data = NULL;
  2148. real_size = 0;
  2149. } else if (new_size <= sizeof(ifp->if_u2.if_inline_data)) {
  2150. /*
  2151. * If the valid extents/data can fit in if_inline_ext/data,
  2152. * copy them from the malloc'd vector and free it.
  2153. */
  2154. if (ifp->if_u1.if_data == NULL) {
  2155. ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
  2156. } else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
  2157. ASSERT(ifp->if_real_bytes != 0);
  2158. memcpy(ifp->if_u2.if_inline_data, ifp->if_u1.if_data,
  2159. new_size);
  2160. kmem_free(ifp->if_u1.if_data);
  2161. ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
  2162. }
  2163. real_size = 0;
  2164. } else {
  2165. /*
  2166. * Stuck with malloc/realloc.
  2167. * For inline data, the underlying buffer must be
  2168. * a multiple of 4 bytes in size so that it can be
  2169. * logged and stay on word boundaries. We enforce
  2170. * that here.
  2171. */
  2172. real_size = roundup(new_size, 4);
  2173. if (ifp->if_u1.if_data == NULL) {
  2174. ASSERT(ifp->if_real_bytes == 0);
  2175. ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP);
  2176. } else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
  2177. /*
  2178. * Only do the realloc if the underlying size
  2179. * is really changing.
  2180. */
  2181. if (ifp->if_real_bytes != real_size) {
  2182. ifp->if_u1.if_data =
  2183. kmem_realloc(ifp->if_u1.if_data,
  2184. real_size,
  2185. ifp->if_real_bytes,
  2186. KM_SLEEP);
  2187. }
  2188. } else {
  2189. ASSERT(ifp->if_real_bytes == 0);
  2190. ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP);
  2191. memcpy(ifp->if_u1.if_data, ifp->if_u2.if_inline_data,
  2192. ifp->if_bytes);
  2193. }
  2194. }
  2195. ifp->if_real_bytes = real_size;
  2196. ifp->if_bytes = new_size;
  2197. ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork));
  2198. }
  2199. void
  2200. xfs_idestroy_fork(
  2201. xfs_inode_t *ip,
  2202. int whichfork)
  2203. {
  2204. xfs_ifork_t *ifp;
  2205. ifp = XFS_IFORK_PTR(ip, whichfork);
  2206. if (ifp->if_broot != NULL) {
  2207. kmem_free(ifp->if_broot);
  2208. ifp->if_broot = NULL;
  2209. }
  2210. /*
  2211. * If the format is local, then we can't have an extents
  2212. * array so just look for an inline data array. If we're
  2213. * not local then we may or may not have an extents list,
  2214. * so check and free it up if we do.
  2215. */
  2216. if (XFS_IFORK_FORMAT(ip, whichfork) == XFS_DINODE_FMT_LOCAL) {
  2217. if ((ifp->if_u1.if_data != ifp->if_u2.if_inline_data) &&
  2218. (ifp->if_u1.if_data != NULL)) {
  2219. ASSERT(ifp->if_real_bytes != 0);
  2220. kmem_free(ifp->if_u1.if_data);
  2221. ifp->if_u1.if_data = NULL;
  2222. ifp->if_real_bytes = 0;
  2223. }
  2224. } else if ((ifp->if_flags & XFS_IFEXTENTS) &&
  2225. ((ifp->if_flags & XFS_IFEXTIREC) ||
  2226. ((ifp->if_u1.if_extents != NULL) &&
  2227. (ifp->if_u1.if_extents != ifp->if_u2.if_inline_ext)))) {
  2228. ASSERT(ifp->if_real_bytes != 0);
  2229. xfs_iext_destroy(ifp);
  2230. }
  2231. ASSERT(ifp->if_u1.if_extents == NULL ||
  2232. ifp->if_u1.if_extents == ifp->if_u2.if_inline_ext);
  2233. ASSERT(ifp->if_real_bytes == 0);
  2234. if (whichfork == XFS_ATTR_FORK) {
  2235. kmem_zone_free(xfs_ifork_zone, ip->i_afp);
  2236. ip->i_afp = NULL;
  2237. }
  2238. }
  2239. /*
  2240. * This is called to unpin an inode. The caller must have the inode locked
  2241. * in at least shared mode so that the buffer cannot be subsequently pinned
  2242. * once someone is waiting for it to be unpinned.
  2243. */
  2244. static void
  2245. xfs_iunpin_nowait(
  2246. struct xfs_inode *ip)
  2247. {
  2248. ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
  2249. trace_xfs_inode_unpin_nowait(ip, _RET_IP_);
  2250. /* Give the log a push to start the unpinning I/O */
  2251. xfs_log_force_lsn(ip->i_mount, ip->i_itemp->ili_last_lsn, 0);
  2252. }
  2253. void
  2254. xfs_iunpin_wait(
  2255. struct xfs_inode *ip)
  2256. {
  2257. if (xfs_ipincount(ip)) {
  2258. xfs_iunpin_nowait(ip);
  2259. wait_event(ip->i_ipin_wait, (xfs_ipincount(ip) == 0));
  2260. }
  2261. }
  2262. /*
  2263. * xfs_iextents_copy()
  2264. *
  2265. * This is called to copy the REAL extents (as opposed to the delayed
  2266. * allocation extents) from the inode into the given buffer. It
  2267. * returns the number of bytes copied into the buffer.
  2268. *
  2269. * If there are no delayed allocation extents, then we can just
  2270. * memcpy() the extents into the buffer. Otherwise, we need to
  2271. * examine each extent in turn and skip those which are delayed.
  2272. */
  2273. int
  2274. xfs_iextents_copy(
  2275. xfs_inode_t *ip,
  2276. xfs_bmbt_rec_t *dp,
  2277. int whichfork)
  2278. {
  2279. int copied;
  2280. int i;
  2281. xfs_ifork_t *ifp;
  2282. int nrecs;
  2283. xfs_fsblock_t start_block;
  2284. ifp = XFS_IFORK_PTR(ip, whichfork);
  2285. ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
  2286. ASSERT(ifp->if_bytes > 0);
  2287. nrecs = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  2288. XFS_BMAP_TRACE_EXLIST(ip, nrecs, whichfork);
  2289. ASSERT(nrecs > 0);
  2290. /*
  2291. * There are some delayed allocation extents in the
  2292. * inode, so copy the extents one at a time and skip
  2293. * the delayed ones. There must be at least one
  2294. * non-delayed extent.
  2295. */
  2296. copied = 0;
  2297. for (i = 0; i < nrecs; i++) {
  2298. xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i);
  2299. start_block = xfs_bmbt_get_startblock(ep);
  2300. if (isnullstartblock(start_block)) {
  2301. /*
  2302. * It's a delayed allocation extent, so skip it.
  2303. */
  2304. continue;
  2305. }
  2306. /* Translate to on disk format */
  2307. put_unaligned(cpu_to_be64(ep->l0), &dp->l0);
  2308. put_unaligned(cpu_to_be64(ep->l1), &dp->l1);
  2309. dp++;
  2310. copied++;
  2311. }
  2312. ASSERT(copied != 0);
  2313. xfs_validate_extents(ifp, copied, XFS_EXTFMT_INODE(ip));
  2314. return (copied * (uint)sizeof(xfs_bmbt_rec_t));
  2315. }
  2316. /*
  2317. * Each of the following cases stores data into the same region
  2318. * of the on-disk inode, so only one of them can be valid at
  2319. * any given time. While it is possible to have conflicting formats
  2320. * and log flags, e.g. having XFS_ILOG_?DATA set when the fork is
  2321. * in EXTENTS format, this can only happen when the fork has
  2322. * changed formats after being modified but before being flushed.
  2323. * In these cases, the format always takes precedence, because the
  2324. * format indicates the current state of the fork.
  2325. */
  2326. /*ARGSUSED*/
  2327. STATIC void
  2328. xfs_iflush_fork(
  2329. xfs_inode_t *ip,
  2330. xfs_dinode_t *dip,
  2331. xfs_inode_log_item_t *iip,
  2332. int whichfork,
  2333. xfs_buf_t *bp)
  2334. {
  2335. char *cp;
  2336. xfs_ifork_t *ifp;
  2337. xfs_mount_t *mp;
  2338. #ifdef XFS_TRANS_DEBUG
  2339. int first;
  2340. #endif
  2341. static const short brootflag[2] =
  2342. { XFS_ILOG_DBROOT, XFS_ILOG_ABROOT };
  2343. static const short dataflag[2] =
  2344. { XFS_ILOG_DDATA, XFS_ILOG_ADATA };
  2345. static const short extflag[2] =
  2346. { XFS_ILOG_DEXT, XFS_ILOG_AEXT };
  2347. if (!iip)
  2348. return;
  2349. ifp = XFS_IFORK_PTR(ip, whichfork);
  2350. /*
  2351. * This can happen if we gave up in iformat in an error path,
  2352. * for the attribute fork.
  2353. */
  2354. if (!ifp) {
  2355. ASSERT(whichfork == XFS_ATTR_FORK);
  2356. return;
  2357. }
  2358. cp = XFS_DFORK_PTR(dip, whichfork);
  2359. mp = ip->i_mount;
  2360. switch (XFS_IFORK_FORMAT(ip, whichfork)) {
  2361. case XFS_DINODE_FMT_LOCAL:
  2362. if ((iip->ili_format.ilf_fields & dataflag[whichfork]) &&
  2363. (ifp->if_bytes > 0)) {
  2364. ASSERT(ifp->if_u1.if_data != NULL);
  2365. ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork));
  2366. memcpy(cp, ifp->if_u1.if_data, ifp->if_bytes);
  2367. }
  2368. break;
  2369. case XFS_DINODE_FMT_EXTENTS:
  2370. ASSERT((ifp->if_flags & XFS_IFEXTENTS) ||
  2371. !(iip->ili_format.ilf_fields & extflag[whichfork]));
  2372. ASSERT((xfs_iext_get_ext(ifp, 0) != NULL) ||
  2373. (ifp->if_bytes == 0));
  2374. ASSERT((xfs_iext_get_ext(ifp, 0) == NULL) ||
  2375. (ifp->if_bytes > 0));
  2376. if ((iip->ili_format.ilf_fields & extflag[whichfork]) &&
  2377. (ifp->if_bytes > 0)) {
  2378. ASSERT(XFS_IFORK_NEXTENTS(ip, whichfork) > 0);
  2379. (void)xfs_iextents_copy(ip, (xfs_bmbt_rec_t *)cp,
  2380. whichfork);
  2381. }
  2382. break;
  2383. case XFS_DINODE_FMT_BTREE:
  2384. if ((iip->ili_format.ilf_fields & brootflag[whichfork]) &&
  2385. (ifp->if_broot_bytes > 0)) {
  2386. ASSERT(ifp->if_broot != NULL);
  2387. ASSERT(ifp->if_broot_bytes <=
  2388. (XFS_IFORK_SIZE(ip, whichfork) +
  2389. XFS_BROOT_SIZE_ADJ));
  2390. xfs_bmbt_to_bmdr(mp, ifp->if_broot, ifp->if_broot_bytes,
  2391. (xfs_bmdr_block_t *)cp,
  2392. XFS_DFORK_SIZE(dip, mp, whichfork));
  2393. }
  2394. break;
  2395. case XFS_DINODE_FMT_DEV:
  2396. if (iip->ili_format.ilf_fields & XFS_ILOG_DEV) {
  2397. ASSERT(whichfork == XFS_DATA_FORK);
  2398. xfs_dinode_put_rdev(dip, ip->i_df.if_u2.if_rdev);
  2399. }
  2400. break;
  2401. case XFS_DINODE_FMT_UUID:
  2402. if (iip->ili_format.ilf_fields & XFS_ILOG_UUID) {
  2403. ASSERT(whichfork == XFS_DATA_FORK);
  2404. memcpy(XFS_DFORK_DPTR(dip),
  2405. &ip->i_df.if_u2.if_uuid,
  2406. sizeof(uuid_t));
  2407. }
  2408. break;
  2409. default:
  2410. ASSERT(0);
  2411. break;
  2412. }
  2413. }
  2414. STATIC int
  2415. xfs_iflush_cluster(
  2416. xfs_inode_t *ip,
  2417. xfs_buf_t *bp)
  2418. {
  2419. xfs_mount_t *mp = ip->i_mount;
  2420. struct xfs_perag *pag;
  2421. unsigned long first_index, mask;
  2422. unsigned long inodes_per_cluster;
  2423. int ilist_size;
  2424. xfs_inode_t **ilist;
  2425. xfs_inode_t *iq;
  2426. int nr_found;
  2427. int clcount = 0;
  2428. int bufwasdelwri;
  2429. int i;
  2430. pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
  2431. inodes_per_cluster = XFS_INODE_CLUSTER_SIZE(mp) >> mp->m_sb.sb_inodelog;
  2432. ilist_size = inodes_per_cluster * sizeof(xfs_inode_t *);
  2433. ilist = kmem_alloc(ilist_size, KM_MAYFAIL|KM_NOFS);
  2434. if (!ilist)
  2435. goto out_put;
  2436. mask = ~(((XFS_INODE_CLUSTER_SIZE(mp) >> mp->m_sb.sb_inodelog)) - 1);
  2437. first_index = XFS_INO_TO_AGINO(mp, ip->i_ino) & mask;
  2438. read_lock(&pag->pag_ici_lock);
  2439. /* really need a gang lookup range call here */
  2440. nr_found = radix_tree_gang_lookup(&pag->pag_ici_root, (void**)ilist,
  2441. first_index, inodes_per_cluster);
  2442. if (nr_found == 0)
  2443. goto out_free;
  2444. for (i = 0; i < nr_found; i++) {
  2445. iq = ilist[i];
  2446. if (iq == ip)
  2447. continue;
  2448. /* if the inode lies outside this cluster, we're done. */
  2449. if ((XFS_INO_TO_AGINO(mp, iq->i_ino) & mask) != first_index)
  2450. break;
  2451. /*
  2452. * Do an un-protected check to see if the inode is dirty and
  2453. * is a candidate for flushing. These checks will be repeated
  2454. * later after the appropriate locks are acquired.
  2455. */
  2456. if (xfs_inode_clean(iq) && xfs_ipincount(iq) == 0)
  2457. continue;
  2458. /*
  2459. * Try to get locks. If any are unavailable or it is pinned,
  2460. * then this inode cannot be flushed and is skipped.
  2461. */
  2462. if (!xfs_ilock_nowait(iq, XFS_ILOCK_SHARED))
  2463. continue;
  2464. if (!xfs_iflock_nowait(iq)) {
  2465. xfs_iunlock(iq, XFS_ILOCK_SHARED);
  2466. continue;
  2467. }
  2468. if (xfs_ipincount(iq)) {
  2469. xfs_ifunlock(iq);
  2470. xfs_iunlock(iq, XFS_ILOCK_SHARED);
  2471. continue;
  2472. }
  2473. /*
  2474. * arriving here means that this inode can be flushed. First
  2475. * re-check that it's dirty before flushing.
  2476. */
  2477. if (!xfs_inode_clean(iq)) {
  2478. int error;
  2479. error = xfs_iflush_int(iq, bp);
  2480. if (error) {
  2481. xfs_iunlock(iq, XFS_ILOCK_SHARED);
  2482. goto cluster_corrupt_out;
  2483. }
  2484. clcount++;
  2485. } else {
  2486. xfs_ifunlock(iq);
  2487. }
  2488. xfs_iunlock(iq, XFS_ILOCK_SHARED);
  2489. }
  2490. if (clcount) {
  2491. XFS_STATS_INC(xs_icluster_flushcnt);
  2492. XFS_STATS_ADD(xs_icluster_flushinode, clcount);
  2493. }
  2494. out_free:
  2495. read_unlock(&pag->pag_ici_lock);
  2496. kmem_free(ilist);
  2497. out_put:
  2498. xfs_perag_put(pag);
  2499. return 0;
  2500. cluster_corrupt_out:
  2501. /*
  2502. * Corruption detected in the clustering loop. Invalidate the
  2503. * inode buffer and shut down the filesystem.
  2504. */
  2505. read_unlock(&pag->pag_ici_lock);
  2506. /*
  2507. * Clean up the buffer. If it was B_DELWRI, just release it --
  2508. * brelse can handle it with no problems. If not, shut down the
  2509. * filesystem before releasing the buffer.
  2510. */
  2511. bufwasdelwri = XFS_BUF_ISDELAYWRITE(bp);
  2512. if (bufwasdelwri)
  2513. xfs_buf_relse(bp);
  2514. xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
  2515. if (!bufwasdelwri) {
  2516. /*
  2517. * Just like incore_relse: if we have b_iodone functions,
  2518. * mark the buffer as an error and call them. Otherwise
  2519. * mark it as stale and brelse.
  2520. */
  2521. if (XFS_BUF_IODONE_FUNC(bp)) {
  2522. XFS_BUF_CLR_BDSTRAT_FUNC(bp);
  2523. XFS_BUF_UNDONE(bp);
  2524. XFS_BUF_STALE(bp);
  2525. XFS_BUF_ERROR(bp,EIO);
  2526. xfs_biodone(bp);
  2527. } else {
  2528. XFS_BUF_STALE(bp);
  2529. xfs_buf_relse(bp);
  2530. }
  2531. }
  2532. /*
  2533. * Unlocks the flush lock
  2534. */
  2535. xfs_iflush_abort(iq);
  2536. kmem_free(ilist);
  2537. xfs_perag_put(pag);
  2538. return XFS_ERROR(EFSCORRUPTED);
  2539. }
  2540. /*
  2541. * xfs_iflush() will write a modified inode's changes out to the
  2542. * inode's on disk home. The caller must have the inode lock held
  2543. * in at least shared mode and the inode flush completion must be
  2544. * active as well. The inode lock will still be held upon return from
  2545. * the call and the caller is free to unlock it.
  2546. * The inode flush will be completed when the inode reaches the disk.
  2547. * The flags indicate how the inode's buffer should be written out.
  2548. */
  2549. int
  2550. xfs_iflush(
  2551. xfs_inode_t *ip,
  2552. uint flags)
  2553. {
  2554. xfs_inode_log_item_t *iip;
  2555. xfs_buf_t *bp;
  2556. xfs_dinode_t *dip;
  2557. xfs_mount_t *mp;
  2558. int error;
  2559. XFS_STATS_INC(xs_iflush_count);
  2560. ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
  2561. ASSERT(!completion_done(&ip->i_flush));
  2562. ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
  2563. ip->i_d.di_nextents > ip->i_df.if_ext_max);
  2564. iip = ip->i_itemp;
  2565. mp = ip->i_mount;
  2566. /*
  2567. * We can't flush the inode until it is unpinned, so wait for it if we
  2568. * are allowed to block. We know noone new can pin it, because we are
  2569. * holding the inode lock shared and you need to hold it exclusively to
  2570. * pin the inode.
  2571. *
  2572. * If we are not allowed to block, force the log out asynchronously so
  2573. * that when we come back the inode will be unpinned. If other inodes
  2574. * in the same cluster are dirty, they will probably write the inode
  2575. * out for us if they occur after the log force completes.
  2576. */
  2577. if (!(flags & SYNC_WAIT) && xfs_ipincount(ip)) {
  2578. xfs_iunpin_nowait(ip);
  2579. xfs_ifunlock(ip);
  2580. return EAGAIN;
  2581. }
  2582. xfs_iunpin_wait(ip);
  2583. /*
  2584. * For stale inodes we cannot rely on the backing buffer remaining
  2585. * stale in cache for the remaining life of the stale inode and so
  2586. * xfs_itobp() below may give us a buffer that no longer contains
  2587. * inodes below. We have to check this after ensuring the inode is
  2588. * unpinned so that it is safe to reclaim the stale inode after the
  2589. * flush call.
  2590. */
  2591. if (xfs_iflags_test(ip, XFS_ISTALE)) {
  2592. xfs_ifunlock(ip);
  2593. return 0;
  2594. }
  2595. /*
  2596. * This may have been unpinned because the filesystem is shutting
  2597. * down forcibly. If that's the case we must not write this inode
  2598. * to disk, because the log record didn't make it to disk!
  2599. */
  2600. if (XFS_FORCED_SHUTDOWN(mp)) {
  2601. ip->i_update_core = 0;
  2602. if (iip)
  2603. iip->ili_format.ilf_fields = 0;
  2604. xfs_ifunlock(ip);
  2605. return XFS_ERROR(EIO);
  2606. }
  2607. /*
  2608. * Get the buffer containing the on-disk inode.
  2609. */
  2610. error = xfs_itobp(mp, NULL, ip, &dip, &bp,
  2611. (flags & SYNC_WAIT) ? XBF_LOCK : XBF_TRYLOCK);
  2612. if (error || !bp) {
  2613. xfs_ifunlock(ip);
  2614. return error;
  2615. }
  2616. /*
  2617. * First flush out the inode that xfs_iflush was called with.
  2618. */
  2619. error = xfs_iflush_int(ip, bp);
  2620. if (error)
  2621. goto corrupt_out;
  2622. /*
  2623. * If the buffer is pinned then push on the log now so we won't
  2624. * get stuck waiting in the write for too long.
  2625. */
  2626. if (XFS_BUF_ISPINNED(bp))
  2627. xfs_log_force(mp, 0);
  2628. /*
  2629. * inode clustering:
  2630. * see if other inodes can be gathered into this write
  2631. */
  2632. error = xfs_iflush_cluster(ip, bp);
  2633. if (error)
  2634. goto cluster_corrupt_out;
  2635. if (flags & SYNC_WAIT)
  2636. error = xfs_bwrite(mp, bp);
  2637. else
  2638. xfs_bdwrite(mp, bp);
  2639. return error;
  2640. corrupt_out:
  2641. xfs_buf_relse(bp);
  2642. xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
  2643. cluster_corrupt_out:
  2644. /*
  2645. * Unlocks the flush lock
  2646. */
  2647. xfs_iflush_abort(ip);
  2648. return XFS_ERROR(EFSCORRUPTED);
  2649. }
  2650. STATIC int
  2651. xfs_iflush_int(
  2652. xfs_inode_t *ip,
  2653. xfs_buf_t *bp)
  2654. {
  2655. xfs_inode_log_item_t *iip;
  2656. xfs_dinode_t *dip;
  2657. xfs_mount_t *mp;
  2658. #ifdef XFS_TRANS_DEBUG
  2659. int first;
  2660. #endif
  2661. ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
  2662. ASSERT(!completion_done(&ip->i_flush));
  2663. ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
  2664. ip->i_d.di_nextents > ip->i_df.if_ext_max);
  2665. iip = ip->i_itemp;
  2666. mp = ip->i_mount;
  2667. /* set *dip = inode's place in the buffer */
  2668. dip = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_imap.im_boffset);
  2669. /*
  2670. * Clear i_update_core before copying out the data.
  2671. * This is for coordination with our timestamp updates
  2672. * that don't hold the inode lock. They will always
  2673. * update the timestamps BEFORE setting i_update_core,
  2674. * so if we clear i_update_core after they set it we
  2675. * are guaranteed to see their updates to the timestamps.
  2676. * I believe that this depends on strongly ordered memory
  2677. * semantics, but we have that. We use the SYNCHRONIZE
  2678. * macro to make sure that the compiler does not reorder
  2679. * the i_update_core access below the data copy below.
  2680. */
  2681. ip->i_update_core = 0;
  2682. SYNCHRONIZE();
  2683. /*
  2684. * Make sure to get the latest timestamps from the Linux inode.
  2685. */
  2686. xfs_synchronize_times(ip);
  2687. if (XFS_TEST_ERROR(be16_to_cpu(dip->di_magic) != XFS_DINODE_MAGIC,
  2688. mp, XFS_ERRTAG_IFLUSH_1, XFS_RANDOM_IFLUSH_1)) {
  2689. xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
  2690. "xfs_iflush: Bad inode %Lu magic number 0x%x, ptr 0x%p",
  2691. ip->i_ino, be16_to_cpu(dip->di_magic), dip);
  2692. goto corrupt_out;
  2693. }
  2694. if (XFS_TEST_ERROR(ip->i_d.di_magic != XFS_DINODE_MAGIC,
  2695. mp, XFS_ERRTAG_IFLUSH_2, XFS_RANDOM_IFLUSH_2)) {
  2696. xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
  2697. "xfs_iflush: Bad inode %Lu, ptr 0x%p, magic number 0x%x",
  2698. ip->i_ino, ip, ip->i_d.di_magic);
  2699. goto corrupt_out;
  2700. }
  2701. if ((ip->i_d.di_mode & S_IFMT) == S_IFREG) {
  2702. if (XFS_TEST_ERROR(
  2703. (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
  2704. (ip->i_d.di_format != XFS_DINODE_FMT_BTREE),
  2705. mp, XFS_ERRTAG_IFLUSH_3, XFS_RANDOM_IFLUSH_3)) {
  2706. xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
  2707. "xfs_iflush: Bad regular inode %Lu, ptr 0x%p",
  2708. ip->i_ino, ip);
  2709. goto corrupt_out;
  2710. }
  2711. } else if ((ip->i_d.di_mode & S_IFMT) == S_IFDIR) {
  2712. if (XFS_TEST_ERROR(
  2713. (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
  2714. (ip->i_d.di_format != XFS_DINODE_FMT_BTREE) &&
  2715. (ip->i_d.di_format != XFS_DINODE_FMT_LOCAL),
  2716. mp, XFS_ERRTAG_IFLUSH_4, XFS_RANDOM_IFLUSH_4)) {
  2717. xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
  2718. "xfs_iflush: Bad directory inode %Lu, ptr 0x%p",
  2719. ip->i_ino, ip);
  2720. goto corrupt_out;
  2721. }
  2722. }
  2723. if (XFS_TEST_ERROR(ip->i_d.di_nextents + ip->i_d.di_anextents >
  2724. ip->i_d.di_nblocks, mp, XFS_ERRTAG_IFLUSH_5,
  2725. XFS_RANDOM_IFLUSH_5)) {
  2726. xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
  2727. "xfs_iflush: detected corrupt incore inode %Lu, total extents = %d, nblocks = %Ld, ptr 0x%p",
  2728. ip->i_ino,
  2729. ip->i_d.di_nextents + ip->i_d.di_anextents,
  2730. ip->i_d.di_nblocks,
  2731. ip);
  2732. goto corrupt_out;
  2733. }
  2734. if (XFS_TEST_ERROR(ip->i_d.di_forkoff > mp->m_sb.sb_inodesize,
  2735. mp, XFS_ERRTAG_IFLUSH_6, XFS_RANDOM_IFLUSH_6)) {
  2736. xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
  2737. "xfs_iflush: bad inode %Lu, forkoff 0x%x, ptr 0x%p",
  2738. ip->i_ino, ip->i_d.di_forkoff, ip);
  2739. goto corrupt_out;
  2740. }
  2741. /*
  2742. * bump the flush iteration count, used to detect flushes which
  2743. * postdate a log record during recovery.
  2744. */
  2745. ip->i_d.di_flushiter++;
  2746. /*
  2747. * Copy the dirty parts of the inode into the on-disk
  2748. * inode. We always copy out the core of the inode,
  2749. * because if the inode is dirty at all the core must
  2750. * be.
  2751. */
  2752. xfs_dinode_to_disk(dip, &ip->i_d);
  2753. /* Wrap, we never let the log put out DI_MAX_FLUSH */
  2754. if (ip->i_d.di_flushiter == DI_MAX_FLUSH)
  2755. ip->i_d.di_flushiter = 0;
  2756. /*
  2757. * If this is really an old format inode and the superblock version
  2758. * has not been updated to support only new format inodes, then
  2759. * convert back to the old inode format. If the superblock version
  2760. * has been updated, then make the conversion permanent.
  2761. */
  2762. ASSERT(ip->i_d.di_version == 1 || xfs_sb_version_hasnlink(&mp->m_sb));
  2763. if (ip->i_d.di_version == 1) {
  2764. if (!xfs_sb_version_hasnlink(&mp->m_sb)) {
  2765. /*
  2766. * Convert it back.
  2767. */
  2768. ASSERT(ip->i_d.di_nlink <= XFS_MAXLINK_1);
  2769. dip->di_onlink = cpu_to_be16(ip->i_d.di_nlink);
  2770. } else {
  2771. /*
  2772. * The superblock version has already been bumped,
  2773. * so just make the conversion to the new inode
  2774. * format permanent.
  2775. */
  2776. ip->i_d.di_version = 2;
  2777. dip->di_version = 2;
  2778. ip->i_d.di_onlink = 0;
  2779. dip->di_onlink = 0;
  2780. memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
  2781. memset(&(dip->di_pad[0]), 0,
  2782. sizeof(dip->di_pad));
  2783. ASSERT(ip->i_d.di_projid == 0);
  2784. }
  2785. }
  2786. xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK, bp);
  2787. if (XFS_IFORK_Q(ip))
  2788. xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK, bp);
  2789. xfs_inobp_check(mp, bp);
  2790. /*
  2791. * We've recorded everything logged in the inode, so we'd
  2792. * like to clear the ilf_fields bits so we don't log and
  2793. * flush things unnecessarily. However, we can't stop
  2794. * logging all this information until the data we've copied
  2795. * into the disk buffer is written to disk. If we did we might
  2796. * overwrite the copy of the inode in the log with all the
  2797. * data after re-logging only part of it, and in the face of
  2798. * a crash we wouldn't have all the data we need to recover.
  2799. *
  2800. * What we do is move the bits to the ili_last_fields field.
  2801. * When logging the inode, these bits are moved back to the
  2802. * ilf_fields field. In the xfs_iflush_done() routine we
  2803. * clear ili_last_fields, since we know that the information
  2804. * those bits represent is permanently on disk. As long as
  2805. * the flush completes before the inode is logged again, then
  2806. * both ilf_fields and ili_last_fields will be cleared.
  2807. *
  2808. * We can play with the ilf_fields bits here, because the inode
  2809. * lock must be held exclusively in order to set bits there
  2810. * and the flush lock protects the ili_last_fields bits.
  2811. * Set ili_logged so the flush done
  2812. * routine can tell whether or not to look in the AIL.
  2813. * Also, store the current LSN of the inode so that we can tell
  2814. * whether the item has moved in the AIL from xfs_iflush_done().
  2815. * In order to read the lsn we need the AIL lock, because
  2816. * it is a 64 bit value that cannot be read atomically.
  2817. */
  2818. if (iip != NULL && iip->ili_format.ilf_fields != 0) {
  2819. iip->ili_last_fields = iip->ili_format.ilf_fields;
  2820. iip->ili_format.ilf_fields = 0;
  2821. iip->ili_logged = 1;
  2822. xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
  2823. &iip->ili_item.li_lsn);
  2824. /*
  2825. * Attach the function xfs_iflush_done to the inode's
  2826. * buffer. This will remove the inode from the AIL
  2827. * and unlock the inode's flush lock when the inode is
  2828. * completely written to disk.
  2829. */
  2830. xfs_buf_attach_iodone(bp, xfs_iflush_done, &iip->ili_item);
  2831. ASSERT(XFS_BUF_FSPRIVATE(bp, void *) != NULL);
  2832. ASSERT(XFS_BUF_IODONE_FUNC(bp) != NULL);
  2833. } else {
  2834. /*
  2835. * We're flushing an inode which is not in the AIL and has
  2836. * not been logged but has i_update_core set. For this
  2837. * case we can use a B_DELWRI flush and immediately drop
  2838. * the inode flush lock because we can avoid the whole
  2839. * AIL state thing. It's OK to drop the flush lock now,
  2840. * because we've already locked the buffer and to do anything
  2841. * you really need both.
  2842. */
  2843. if (iip != NULL) {
  2844. ASSERT(iip->ili_logged == 0);
  2845. ASSERT(iip->ili_last_fields == 0);
  2846. ASSERT((iip->ili_item.li_flags & XFS_LI_IN_AIL) == 0);
  2847. }
  2848. xfs_ifunlock(ip);
  2849. }
  2850. return 0;
  2851. corrupt_out:
  2852. return XFS_ERROR(EFSCORRUPTED);
  2853. }
  2854. /*
  2855. * Return a pointer to the extent record at file index idx.
  2856. */
  2857. xfs_bmbt_rec_host_t *
  2858. xfs_iext_get_ext(
  2859. xfs_ifork_t *ifp, /* inode fork pointer */
  2860. xfs_extnum_t idx) /* index of target extent */
  2861. {
  2862. ASSERT(idx >= 0);
  2863. if ((ifp->if_flags & XFS_IFEXTIREC) && (idx == 0)) {
  2864. return ifp->if_u1.if_ext_irec->er_extbuf;
  2865. } else if (ifp->if_flags & XFS_IFEXTIREC) {
  2866. xfs_ext_irec_t *erp; /* irec pointer */
  2867. int erp_idx = 0; /* irec index */
  2868. xfs_extnum_t page_idx = idx; /* ext index in target list */
  2869. erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 0);
  2870. return &erp->er_extbuf[page_idx];
  2871. } else if (ifp->if_bytes) {
  2872. return &ifp->if_u1.if_extents[idx];
  2873. } else {
  2874. return NULL;
  2875. }
  2876. }
  2877. /*
  2878. * Insert new item(s) into the extent records for incore inode
  2879. * fork 'ifp'. 'count' new items are inserted at index 'idx'.
  2880. */
  2881. void
  2882. xfs_iext_insert(
  2883. xfs_inode_t *ip, /* incore inode pointer */
  2884. xfs_extnum_t idx, /* starting index of new items */
  2885. xfs_extnum_t count, /* number of inserted items */
  2886. xfs_bmbt_irec_t *new, /* items to insert */
  2887. int state) /* type of extent conversion */
  2888. {
  2889. xfs_ifork_t *ifp = (state & BMAP_ATTRFORK) ? ip->i_afp : &ip->i_df;
  2890. xfs_extnum_t i; /* extent record index */
  2891. trace_xfs_iext_insert(ip, idx, new, state, _RET_IP_);
  2892. ASSERT(ifp->if_flags & XFS_IFEXTENTS);
  2893. xfs_iext_add(ifp, idx, count);
  2894. for (i = idx; i < idx + count; i++, new++)
  2895. xfs_bmbt_set_all(xfs_iext_get_ext(ifp, i), new);
  2896. }
  2897. /*
  2898. * This is called when the amount of space required for incore file
  2899. * extents needs to be increased. The ext_diff parameter stores the
  2900. * number of new extents being added and the idx parameter contains
  2901. * the extent index where the new extents will be added. If the new
  2902. * extents are being appended, then we just need to (re)allocate and
  2903. * initialize the space. Otherwise, if the new extents are being
  2904. * inserted into the middle of the existing entries, a bit more work
  2905. * is required to make room for the new extents to be inserted. The
  2906. * caller is responsible for filling in the new extent entries upon
  2907. * return.
  2908. */
  2909. void
  2910. xfs_iext_add(
  2911. xfs_ifork_t *ifp, /* inode fork pointer */
  2912. xfs_extnum_t idx, /* index to begin adding exts */
  2913. int ext_diff) /* number of extents to add */
  2914. {
  2915. int byte_diff; /* new bytes being added */
  2916. int new_size; /* size of extents after adding */
  2917. xfs_extnum_t nextents; /* number of extents in file */
  2918. nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  2919. ASSERT((idx >= 0) && (idx <= nextents));
  2920. byte_diff = ext_diff * sizeof(xfs_bmbt_rec_t);
  2921. new_size = ifp->if_bytes + byte_diff;
  2922. /*
  2923. * If the new number of extents (nextents + ext_diff)
  2924. * fits inside the inode, then continue to use the inline
  2925. * extent buffer.
  2926. */
  2927. if (nextents + ext_diff <= XFS_INLINE_EXTS) {
  2928. if (idx < nextents) {
  2929. memmove(&ifp->if_u2.if_inline_ext[idx + ext_diff],
  2930. &ifp->if_u2.if_inline_ext[idx],
  2931. (nextents - idx) * sizeof(xfs_bmbt_rec_t));
  2932. memset(&ifp->if_u2.if_inline_ext[idx], 0, byte_diff);
  2933. }
  2934. ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
  2935. ifp->if_real_bytes = 0;
  2936. ifp->if_lastex = nextents + ext_diff;
  2937. }
  2938. /*
  2939. * Otherwise use a linear (direct) extent list.
  2940. * If the extents are currently inside the inode,
  2941. * xfs_iext_realloc_direct will switch us from
  2942. * inline to direct extent allocation mode.
  2943. */
  2944. else if (nextents + ext_diff <= XFS_LINEAR_EXTS) {
  2945. xfs_iext_realloc_direct(ifp, new_size);
  2946. if (idx < nextents) {
  2947. memmove(&ifp->if_u1.if_extents[idx + ext_diff],
  2948. &ifp->if_u1.if_extents[idx],
  2949. (nextents - idx) * sizeof(xfs_bmbt_rec_t));
  2950. memset(&ifp->if_u1.if_extents[idx], 0, byte_diff);
  2951. }
  2952. }
  2953. /* Indirection array */
  2954. else {
  2955. xfs_ext_irec_t *erp;
  2956. int erp_idx = 0;
  2957. int page_idx = idx;
  2958. ASSERT(nextents + ext_diff > XFS_LINEAR_EXTS);
  2959. if (ifp->if_flags & XFS_IFEXTIREC) {
  2960. erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 1);
  2961. } else {
  2962. xfs_iext_irec_init(ifp);
  2963. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  2964. erp = ifp->if_u1.if_ext_irec;
  2965. }
  2966. /* Extents fit in target extent page */
  2967. if (erp && erp->er_extcount + ext_diff <= XFS_LINEAR_EXTS) {
  2968. if (page_idx < erp->er_extcount) {
  2969. memmove(&erp->er_extbuf[page_idx + ext_diff],
  2970. &erp->er_extbuf[page_idx],
  2971. (erp->er_extcount - page_idx) *
  2972. sizeof(xfs_bmbt_rec_t));
  2973. memset(&erp->er_extbuf[page_idx], 0, byte_diff);
  2974. }
  2975. erp->er_extcount += ext_diff;
  2976. xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
  2977. }
  2978. /* Insert a new extent page */
  2979. else if (erp) {
  2980. xfs_iext_add_indirect_multi(ifp,
  2981. erp_idx, page_idx, ext_diff);
  2982. }
  2983. /*
  2984. * If extent(s) are being appended to the last page in
  2985. * the indirection array and the new extent(s) don't fit
  2986. * in the page, then erp is NULL and erp_idx is set to
  2987. * the next index needed in the indirection array.
  2988. */
  2989. else {
  2990. int count = ext_diff;
  2991. while (count) {
  2992. erp = xfs_iext_irec_new(ifp, erp_idx);
  2993. erp->er_extcount = count;
  2994. count -= MIN(count, (int)XFS_LINEAR_EXTS);
  2995. if (count) {
  2996. erp_idx++;
  2997. }
  2998. }
  2999. }
  3000. }
  3001. ifp->if_bytes = new_size;
  3002. }
  3003. /*
  3004. * This is called when incore extents are being added to the indirection
  3005. * array and the new extents do not fit in the target extent list. The
  3006. * erp_idx parameter contains the irec index for the target extent list
  3007. * in the indirection array, and the idx parameter contains the extent
  3008. * index within the list. The number of extents being added is stored
  3009. * in the count parameter.
  3010. *
  3011. * |-------| |-------|
  3012. * | | | | idx - number of extents before idx
  3013. * | idx | | count |
  3014. * | | | | count - number of extents being inserted at idx
  3015. * |-------| |-------|
  3016. * | count | | nex2 | nex2 - number of extents after idx + count
  3017. * |-------| |-------|
  3018. */
  3019. void
  3020. xfs_iext_add_indirect_multi(
  3021. xfs_ifork_t *ifp, /* inode fork pointer */
  3022. int erp_idx, /* target extent irec index */
  3023. xfs_extnum_t idx, /* index within target list */
  3024. int count) /* new extents being added */
  3025. {
  3026. int byte_diff; /* new bytes being added */
  3027. xfs_ext_irec_t *erp; /* pointer to irec entry */
  3028. xfs_extnum_t ext_diff; /* number of extents to add */
  3029. xfs_extnum_t ext_cnt; /* new extents still needed */
  3030. xfs_extnum_t nex2; /* extents after idx + count */
  3031. xfs_bmbt_rec_t *nex2_ep = NULL; /* temp list for nex2 extents */
  3032. int nlists; /* number of irec's (lists) */
  3033. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  3034. erp = &ifp->if_u1.if_ext_irec[erp_idx];
  3035. nex2 = erp->er_extcount - idx;
  3036. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  3037. /*
  3038. * Save second part of target extent list
  3039. * (all extents past */
  3040. if (nex2) {
  3041. byte_diff = nex2 * sizeof(xfs_bmbt_rec_t);
  3042. nex2_ep = (xfs_bmbt_rec_t *) kmem_alloc(byte_diff, KM_NOFS);
  3043. memmove(nex2_ep, &erp->er_extbuf[idx], byte_diff);
  3044. erp->er_extcount -= nex2;
  3045. xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, -nex2);
  3046. memset(&erp->er_extbuf[idx], 0, byte_diff);
  3047. }
  3048. /*
  3049. * Add the new extents to the end of the target
  3050. * list, then allocate new irec record(s) and
  3051. * extent buffer(s) as needed to store the rest
  3052. * of the new extents.
  3053. */
  3054. ext_cnt = count;
  3055. ext_diff = MIN(ext_cnt, (int)XFS_LINEAR_EXTS - erp->er_extcount);
  3056. if (ext_diff) {
  3057. erp->er_extcount += ext_diff;
  3058. xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
  3059. ext_cnt -= ext_diff;
  3060. }
  3061. while (ext_cnt) {
  3062. erp_idx++;
  3063. erp = xfs_iext_irec_new(ifp, erp_idx);
  3064. ext_diff = MIN(ext_cnt, (int)XFS_LINEAR_EXTS);
  3065. erp->er_extcount = ext_diff;
  3066. xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
  3067. ext_cnt -= ext_diff;
  3068. }
  3069. /* Add nex2 extents back to indirection array */
  3070. if (nex2) {
  3071. xfs_extnum_t ext_avail;
  3072. int i;
  3073. byte_diff = nex2 * sizeof(xfs_bmbt_rec_t);
  3074. ext_avail = XFS_LINEAR_EXTS - erp->er_extcount;
  3075. i = 0;
  3076. /*
  3077. * If nex2 extents fit in the current page, append
  3078. * nex2_ep after the new extents.
  3079. */
  3080. if (nex2 <= ext_avail) {
  3081. i = erp->er_extcount;
  3082. }
  3083. /*
  3084. * Otherwise, check if space is available in the
  3085. * next page.
  3086. */
  3087. else if ((erp_idx < nlists - 1) &&
  3088. (nex2 <= (ext_avail = XFS_LINEAR_EXTS -
  3089. ifp->if_u1.if_ext_irec[erp_idx+1].er_extcount))) {
  3090. erp_idx++;
  3091. erp++;
  3092. /* Create a hole for nex2 extents */
  3093. memmove(&erp->er_extbuf[nex2], erp->er_extbuf,
  3094. erp->er_extcount * sizeof(xfs_bmbt_rec_t));
  3095. }
  3096. /*
  3097. * Final choice, create a new extent page for
  3098. * nex2 extents.
  3099. */
  3100. else {
  3101. erp_idx++;
  3102. erp = xfs_iext_irec_new(ifp, erp_idx);
  3103. }
  3104. memmove(&erp->er_extbuf[i], nex2_ep, byte_diff);
  3105. kmem_free(nex2_ep);
  3106. erp->er_extcount += nex2;
  3107. xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, nex2);
  3108. }
  3109. }
  3110. /*
  3111. * This is called when the amount of space required for incore file
  3112. * extents needs to be decreased. The ext_diff parameter stores the
  3113. * number of extents to be removed and the idx parameter contains
  3114. * the extent index where the extents will be removed from.
  3115. *
  3116. * If the amount of space needed has decreased below the linear
  3117. * limit, XFS_IEXT_BUFSZ, then switch to using the contiguous
  3118. * extent array. Otherwise, use kmem_realloc() to adjust the
  3119. * size to what is needed.
  3120. */
  3121. void
  3122. xfs_iext_remove(
  3123. xfs_inode_t *ip, /* incore inode pointer */
  3124. xfs_extnum_t idx, /* index to begin removing exts */
  3125. int ext_diff, /* number of extents to remove */
  3126. int state) /* type of extent conversion */
  3127. {
  3128. xfs_ifork_t *ifp = (state & BMAP_ATTRFORK) ? ip->i_afp : &ip->i_df;
  3129. xfs_extnum_t nextents; /* number of extents in file */
  3130. int new_size; /* size of extents after removal */
  3131. trace_xfs_iext_remove(ip, idx, state, _RET_IP_);
  3132. ASSERT(ext_diff > 0);
  3133. nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  3134. new_size = (nextents - ext_diff) * sizeof(xfs_bmbt_rec_t);
  3135. if (new_size == 0) {
  3136. xfs_iext_destroy(ifp);
  3137. } else if (ifp->if_flags & XFS_IFEXTIREC) {
  3138. xfs_iext_remove_indirect(ifp, idx, ext_diff);
  3139. } else if (ifp->if_real_bytes) {
  3140. xfs_iext_remove_direct(ifp, idx, ext_diff);
  3141. } else {
  3142. xfs_iext_remove_inline(ifp, idx, ext_diff);
  3143. }
  3144. ifp->if_bytes = new_size;
  3145. }
  3146. /*
  3147. * This removes ext_diff extents from the inline buffer, beginning
  3148. * at extent index idx.
  3149. */
  3150. void
  3151. xfs_iext_remove_inline(
  3152. xfs_ifork_t *ifp, /* inode fork pointer */
  3153. xfs_extnum_t idx, /* index to begin removing exts */
  3154. int ext_diff) /* number of extents to remove */
  3155. {
  3156. int nextents; /* number of extents in file */
  3157. ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
  3158. ASSERT(idx < XFS_INLINE_EXTS);
  3159. nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  3160. ASSERT(((nextents - ext_diff) > 0) &&
  3161. (nextents - ext_diff) < XFS_INLINE_EXTS);
  3162. if (idx + ext_diff < nextents) {
  3163. memmove(&ifp->if_u2.if_inline_ext[idx],
  3164. &ifp->if_u2.if_inline_ext[idx + ext_diff],
  3165. (nextents - (idx + ext_diff)) *
  3166. sizeof(xfs_bmbt_rec_t));
  3167. memset(&ifp->if_u2.if_inline_ext[nextents - ext_diff],
  3168. 0, ext_diff * sizeof(xfs_bmbt_rec_t));
  3169. } else {
  3170. memset(&ifp->if_u2.if_inline_ext[idx], 0,
  3171. ext_diff * sizeof(xfs_bmbt_rec_t));
  3172. }
  3173. }
  3174. /*
  3175. * This removes ext_diff extents from a linear (direct) extent list,
  3176. * beginning at extent index idx. If the extents are being removed
  3177. * from the end of the list (ie. truncate) then we just need to re-
  3178. * allocate the list to remove the extra space. Otherwise, if the
  3179. * extents are being removed from the middle of the existing extent
  3180. * entries, then we first need to move the extent records beginning
  3181. * at idx + ext_diff up in the list to overwrite the records being
  3182. * removed, then remove the extra space via kmem_realloc.
  3183. */
  3184. void
  3185. xfs_iext_remove_direct(
  3186. xfs_ifork_t *ifp, /* inode fork pointer */
  3187. xfs_extnum_t idx, /* index to begin removing exts */
  3188. int ext_diff) /* number of extents to remove */
  3189. {
  3190. xfs_extnum_t nextents; /* number of extents in file */
  3191. int new_size; /* size of extents after removal */
  3192. ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
  3193. new_size = ifp->if_bytes -
  3194. (ext_diff * sizeof(xfs_bmbt_rec_t));
  3195. nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  3196. if (new_size == 0) {
  3197. xfs_iext_destroy(ifp);
  3198. return;
  3199. }
  3200. /* Move extents up in the list (if needed) */
  3201. if (idx + ext_diff < nextents) {
  3202. memmove(&ifp->if_u1.if_extents[idx],
  3203. &ifp->if_u1.if_extents[idx + ext_diff],
  3204. (nextents - (idx + ext_diff)) *
  3205. sizeof(xfs_bmbt_rec_t));
  3206. }
  3207. memset(&ifp->if_u1.if_extents[nextents - ext_diff],
  3208. 0, ext_diff * sizeof(xfs_bmbt_rec_t));
  3209. /*
  3210. * Reallocate the direct extent list. If the extents
  3211. * will fit inside the inode then xfs_iext_realloc_direct
  3212. * will switch from direct to inline extent allocation
  3213. * mode for us.
  3214. */
  3215. xfs_iext_realloc_direct(ifp, new_size);
  3216. ifp->if_bytes = new_size;
  3217. }
  3218. /*
  3219. * This is called when incore extents are being removed from the
  3220. * indirection array and the extents being removed span multiple extent
  3221. * buffers. The idx parameter contains the file extent index where we
  3222. * want to begin removing extents, and the count parameter contains
  3223. * how many extents need to be removed.
  3224. *
  3225. * |-------| |-------|
  3226. * | nex1 | | | nex1 - number of extents before idx
  3227. * |-------| | count |
  3228. * | | | | count - number of extents being removed at idx
  3229. * | count | |-------|
  3230. * | | | nex2 | nex2 - number of extents after idx + count
  3231. * |-------| |-------|
  3232. */
  3233. void
  3234. xfs_iext_remove_indirect(
  3235. xfs_ifork_t *ifp, /* inode fork pointer */
  3236. xfs_extnum_t idx, /* index to begin removing extents */
  3237. int count) /* number of extents to remove */
  3238. {
  3239. xfs_ext_irec_t *erp; /* indirection array pointer */
  3240. int erp_idx = 0; /* indirection array index */
  3241. xfs_extnum_t ext_cnt; /* extents left to remove */
  3242. xfs_extnum_t ext_diff; /* extents to remove in current list */
  3243. xfs_extnum_t nex1; /* number of extents before idx */
  3244. xfs_extnum_t nex2; /* extents after idx + count */
  3245. int nlists; /* entries in indirection array */
  3246. int page_idx = idx; /* index in target extent list */
  3247. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  3248. erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 0);
  3249. ASSERT(erp != NULL);
  3250. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  3251. nex1 = page_idx;
  3252. ext_cnt = count;
  3253. while (ext_cnt) {
  3254. nex2 = MAX((erp->er_extcount - (nex1 + ext_cnt)), 0);
  3255. ext_diff = MIN(ext_cnt, (erp->er_extcount - nex1));
  3256. /*
  3257. * Check for deletion of entire list;
  3258. * xfs_iext_irec_remove() updates extent offsets.
  3259. */
  3260. if (ext_diff == erp->er_extcount) {
  3261. xfs_iext_irec_remove(ifp, erp_idx);
  3262. ext_cnt -= ext_diff;
  3263. nex1 = 0;
  3264. if (ext_cnt) {
  3265. ASSERT(erp_idx < ifp->if_real_bytes /
  3266. XFS_IEXT_BUFSZ);
  3267. erp = &ifp->if_u1.if_ext_irec[erp_idx];
  3268. nex1 = 0;
  3269. continue;
  3270. } else {
  3271. break;
  3272. }
  3273. }
  3274. /* Move extents up (if needed) */
  3275. if (nex2) {
  3276. memmove(&erp->er_extbuf[nex1],
  3277. &erp->er_extbuf[nex1 + ext_diff],
  3278. nex2 * sizeof(xfs_bmbt_rec_t));
  3279. }
  3280. /* Zero out rest of page */
  3281. memset(&erp->er_extbuf[nex1 + nex2], 0, (XFS_IEXT_BUFSZ -
  3282. ((nex1 + nex2) * sizeof(xfs_bmbt_rec_t))));
  3283. /* Update remaining counters */
  3284. erp->er_extcount -= ext_diff;
  3285. xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, -ext_diff);
  3286. ext_cnt -= ext_diff;
  3287. nex1 = 0;
  3288. erp_idx++;
  3289. erp++;
  3290. }
  3291. ifp->if_bytes -= count * sizeof(xfs_bmbt_rec_t);
  3292. xfs_iext_irec_compact(ifp);
  3293. }
  3294. /*
  3295. * Create, destroy, or resize a linear (direct) block of extents.
  3296. */
  3297. void
  3298. xfs_iext_realloc_direct(
  3299. xfs_ifork_t *ifp, /* inode fork pointer */
  3300. int new_size) /* new size of extents */
  3301. {
  3302. int rnew_size; /* real new size of extents */
  3303. rnew_size = new_size;
  3304. ASSERT(!(ifp->if_flags & XFS_IFEXTIREC) ||
  3305. ((new_size >= 0) && (new_size <= XFS_IEXT_BUFSZ) &&
  3306. (new_size != ifp->if_real_bytes)));
  3307. /* Free extent records */
  3308. if (new_size == 0) {
  3309. xfs_iext_destroy(ifp);
  3310. }
  3311. /* Resize direct extent list and zero any new bytes */
  3312. else if (ifp->if_real_bytes) {
  3313. /* Check if extents will fit inside the inode */
  3314. if (new_size <= XFS_INLINE_EXTS * sizeof(xfs_bmbt_rec_t)) {
  3315. xfs_iext_direct_to_inline(ifp, new_size /
  3316. (uint)sizeof(xfs_bmbt_rec_t));
  3317. ifp->if_bytes = new_size;
  3318. return;
  3319. }
  3320. if (!is_power_of_2(new_size)){
  3321. rnew_size = roundup_pow_of_two(new_size);
  3322. }
  3323. if (rnew_size != ifp->if_real_bytes) {
  3324. ifp->if_u1.if_extents =
  3325. kmem_realloc(ifp->if_u1.if_extents,
  3326. rnew_size,
  3327. ifp->if_real_bytes, KM_NOFS);
  3328. }
  3329. if (rnew_size > ifp->if_real_bytes) {
  3330. memset(&ifp->if_u1.if_extents[ifp->if_bytes /
  3331. (uint)sizeof(xfs_bmbt_rec_t)], 0,
  3332. rnew_size - ifp->if_real_bytes);
  3333. }
  3334. }
  3335. /*
  3336. * Switch from the inline extent buffer to a direct
  3337. * extent list. Be sure to include the inline extent
  3338. * bytes in new_size.
  3339. */
  3340. else {
  3341. new_size += ifp->if_bytes;
  3342. if (!is_power_of_2(new_size)) {
  3343. rnew_size = roundup_pow_of_two(new_size);
  3344. }
  3345. xfs_iext_inline_to_direct(ifp, rnew_size);
  3346. }
  3347. ifp->if_real_bytes = rnew_size;
  3348. ifp->if_bytes = new_size;
  3349. }
  3350. /*
  3351. * Switch from linear (direct) extent records to inline buffer.
  3352. */
  3353. void
  3354. xfs_iext_direct_to_inline(
  3355. xfs_ifork_t *ifp, /* inode fork pointer */
  3356. xfs_extnum_t nextents) /* number of extents in file */
  3357. {
  3358. ASSERT(ifp->if_flags & XFS_IFEXTENTS);
  3359. ASSERT(nextents <= XFS_INLINE_EXTS);
  3360. /*
  3361. * The inline buffer was zeroed when we switched
  3362. * from inline to direct extent allocation mode,
  3363. * so we don't need to clear it here.
  3364. */
  3365. memcpy(ifp->if_u2.if_inline_ext, ifp->if_u1.if_extents,
  3366. nextents * sizeof(xfs_bmbt_rec_t));
  3367. kmem_free(ifp->if_u1.if_extents);
  3368. ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
  3369. ifp->if_real_bytes = 0;
  3370. }
  3371. /*
  3372. * Switch from inline buffer to linear (direct) extent records.
  3373. * new_size should already be rounded up to the next power of 2
  3374. * by the caller (when appropriate), so use new_size as it is.
  3375. * However, since new_size may be rounded up, we can't update
  3376. * if_bytes here. It is the caller's responsibility to update
  3377. * if_bytes upon return.
  3378. */
  3379. void
  3380. xfs_iext_inline_to_direct(
  3381. xfs_ifork_t *ifp, /* inode fork pointer */
  3382. int new_size) /* number of extents in file */
  3383. {
  3384. ifp->if_u1.if_extents = kmem_alloc(new_size, KM_NOFS);
  3385. memset(ifp->if_u1.if_extents, 0, new_size);
  3386. if (ifp->if_bytes) {
  3387. memcpy(ifp->if_u1.if_extents, ifp->if_u2.if_inline_ext,
  3388. ifp->if_bytes);
  3389. memset(ifp->if_u2.if_inline_ext, 0, XFS_INLINE_EXTS *
  3390. sizeof(xfs_bmbt_rec_t));
  3391. }
  3392. ifp->if_real_bytes = new_size;
  3393. }
  3394. /*
  3395. * Resize an extent indirection array to new_size bytes.
  3396. */
  3397. STATIC void
  3398. xfs_iext_realloc_indirect(
  3399. xfs_ifork_t *ifp, /* inode fork pointer */
  3400. int new_size) /* new indirection array size */
  3401. {
  3402. int nlists; /* number of irec's (ex lists) */
  3403. int size; /* current indirection array size */
  3404. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  3405. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  3406. size = nlists * sizeof(xfs_ext_irec_t);
  3407. ASSERT(ifp->if_real_bytes);
  3408. ASSERT((new_size >= 0) && (new_size != size));
  3409. if (new_size == 0) {
  3410. xfs_iext_destroy(ifp);
  3411. } else {
  3412. ifp->if_u1.if_ext_irec = (xfs_ext_irec_t *)
  3413. kmem_realloc(ifp->if_u1.if_ext_irec,
  3414. new_size, size, KM_NOFS);
  3415. }
  3416. }
  3417. /*
  3418. * Switch from indirection array to linear (direct) extent allocations.
  3419. */
  3420. STATIC void
  3421. xfs_iext_indirect_to_direct(
  3422. xfs_ifork_t *ifp) /* inode fork pointer */
  3423. {
  3424. xfs_bmbt_rec_host_t *ep; /* extent record pointer */
  3425. xfs_extnum_t nextents; /* number of extents in file */
  3426. int size; /* size of file extents */
  3427. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  3428. nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  3429. ASSERT(nextents <= XFS_LINEAR_EXTS);
  3430. size = nextents * sizeof(xfs_bmbt_rec_t);
  3431. xfs_iext_irec_compact_pages(ifp);
  3432. ASSERT(ifp->if_real_bytes == XFS_IEXT_BUFSZ);
  3433. ep = ifp->if_u1.if_ext_irec->er_extbuf;
  3434. kmem_free(ifp->if_u1.if_ext_irec);
  3435. ifp->if_flags &= ~XFS_IFEXTIREC;
  3436. ifp->if_u1.if_extents = ep;
  3437. ifp->if_bytes = size;
  3438. if (nextents < XFS_LINEAR_EXTS) {
  3439. xfs_iext_realloc_direct(ifp, size);
  3440. }
  3441. }
  3442. /*
  3443. * Free incore file extents.
  3444. */
  3445. void
  3446. xfs_iext_destroy(
  3447. xfs_ifork_t *ifp) /* inode fork pointer */
  3448. {
  3449. if (ifp->if_flags & XFS_IFEXTIREC) {
  3450. int erp_idx;
  3451. int nlists;
  3452. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  3453. for (erp_idx = nlists - 1; erp_idx >= 0 ; erp_idx--) {
  3454. xfs_iext_irec_remove(ifp, erp_idx);
  3455. }
  3456. ifp->if_flags &= ~XFS_IFEXTIREC;
  3457. } else if (ifp->if_real_bytes) {
  3458. kmem_free(ifp->if_u1.if_extents);
  3459. } else if (ifp->if_bytes) {
  3460. memset(ifp->if_u2.if_inline_ext, 0, XFS_INLINE_EXTS *
  3461. sizeof(xfs_bmbt_rec_t));
  3462. }
  3463. ifp->if_u1.if_extents = NULL;
  3464. ifp->if_real_bytes = 0;
  3465. ifp->if_bytes = 0;
  3466. }
  3467. /*
  3468. * Return a pointer to the extent record for file system block bno.
  3469. */
  3470. xfs_bmbt_rec_host_t * /* pointer to found extent record */
  3471. xfs_iext_bno_to_ext(
  3472. xfs_ifork_t *ifp, /* inode fork pointer */
  3473. xfs_fileoff_t bno, /* block number to search for */
  3474. xfs_extnum_t *idxp) /* index of target extent */
  3475. {
  3476. xfs_bmbt_rec_host_t *base; /* pointer to first extent */
  3477. xfs_filblks_t blockcount = 0; /* number of blocks in extent */
  3478. xfs_bmbt_rec_host_t *ep = NULL; /* pointer to target extent */
  3479. xfs_ext_irec_t *erp = NULL; /* indirection array pointer */
  3480. int high; /* upper boundary in search */
  3481. xfs_extnum_t idx = 0; /* index of target extent */
  3482. int low; /* lower boundary in search */
  3483. xfs_extnum_t nextents; /* number of file extents */
  3484. xfs_fileoff_t startoff = 0; /* start offset of extent */
  3485. nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  3486. if (nextents == 0) {
  3487. *idxp = 0;
  3488. return NULL;
  3489. }
  3490. low = 0;
  3491. if (ifp->if_flags & XFS_IFEXTIREC) {
  3492. /* Find target extent list */
  3493. int erp_idx = 0;
  3494. erp = xfs_iext_bno_to_irec(ifp, bno, &erp_idx);
  3495. base = erp->er_extbuf;
  3496. high = erp->er_extcount - 1;
  3497. } else {
  3498. base = ifp->if_u1.if_extents;
  3499. high = nextents - 1;
  3500. }
  3501. /* Binary search extent records */
  3502. while (low <= high) {
  3503. idx = (low + high) >> 1;
  3504. ep = base + idx;
  3505. startoff = xfs_bmbt_get_startoff(ep);
  3506. blockcount = xfs_bmbt_get_blockcount(ep);
  3507. if (bno < startoff) {
  3508. high = idx - 1;
  3509. } else if (bno >= startoff + blockcount) {
  3510. low = idx + 1;
  3511. } else {
  3512. /* Convert back to file-based extent index */
  3513. if (ifp->if_flags & XFS_IFEXTIREC) {
  3514. idx += erp->er_extoff;
  3515. }
  3516. *idxp = idx;
  3517. return ep;
  3518. }
  3519. }
  3520. /* Convert back to file-based extent index */
  3521. if (ifp->if_flags & XFS_IFEXTIREC) {
  3522. idx += erp->er_extoff;
  3523. }
  3524. if (bno >= startoff + blockcount) {
  3525. if (++idx == nextents) {
  3526. ep = NULL;
  3527. } else {
  3528. ep = xfs_iext_get_ext(ifp, idx);
  3529. }
  3530. }
  3531. *idxp = idx;
  3532. return ep;
  3533. }
  3534. /*
  3535. * Return a pointer to the indirection array entry containing the
  3536. * extent record for filesystem block bno. Store the index of the
  3537. * target irec in *erp_idxp.
  3538. */
  3539. xfs_ext_irec_t * /* pointer to found extent record */
  3540. xfs_iext_bno_to_irec(
  3541. xfs_ifork_t *ifp, /* inode fork pointer */
  3542. xfs_fileoff_t bno, /* block number to search for */
  3543. int *erp_idxp) /* irec index of target ext list */
  3544. {
  3545. xfs_ext_irec_t *erp = NULL; /* indirection array pointer */
  3546. xfs_ext_irec_t *erp_next; /* next indirection array entry */
  3547. int erp_idx; /* indirection array index */
  3548. int nlists; /* number of extent irec's (lists) */
  3549. int high; /* binary search upper limit */
  3550. int low; /* binary search lower limit */
  3551. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  3552. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  3553. erp_idx = 0;
  3554. low = 0;
  3555. high = nlists - 1;
  3556. while (low <= high) {
  3557. erp_idx = (low + high) >> 1;
  3558. erp = &ifp->if_u1.if_ext_irec[erp_idx];
  3559. erp_next = erp_idx < nlists - 1 ? erp + 1 : NULL;
  3560. if (bno < xfs_bmbt_get_startoff(erp->er_extbuf)) {
  3561. high = erp_idx - 1;
  3562. } else if (erp_next && bno >=
  3563. xfs_bmbt_get_startoff(erp_next->er_extbuf)) {
  3564. low = erp_idx + 1;
  3565. } else {
  3566. break;
  3567. }
  3568. }
  3569. *erp_idxp = erp_idx;
  3570. return erp;
  3571. }
  3572. /*
  3573. * Return a pointer to the indirection array entry containing the
  3574. * extent record at file extent index *idxp. Store the index of the
  3575. * target irec in *erp_idxp and store the page index of the target
  3576. * extent record in *idxp.
  3577. */
  3578. xfs_ext_irec_t *
  3579. xfs_iext_idx_to_irec(
  3580. xfs_ifork_t *ifp, /* inode fork pointer */
  3581. xfs_extnum_t *idxp, /* extent index (file -> page) */
  3582. int *erp_idxp, /* pointer to target irec */
  3583. int realloc) /* new bytes were just added */
  3584. {
  3585. xfs_ext_irec_t *prev; /* pointer to previous irec */
  3586. xfs_ext_irec_t *erp = NULL; /* pointer to current irec */
  3587. int erp_idx; /* indirection array index */
  3588. int nlists; /* number of irec's (ex lists) */
  3589. int high; /* binary search upper limit */
  3590. int low; /* binary search lower limit */
  3591. xfs_extnum_t page_idx = *idxp; /* extent index in target list */
  3592. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  3593. ASSERT(page_idx >= 0 && page_idx <=
  3594. ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t));
  3595. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  3596. erp_idx = 0;
  3597. low = 0;
  3598. high = nlists - 1;
  3599. /* Binary search extent irec's */
  3600. while (low <= high) {
  3601. erp_idx = (low + high) >> 1;
  3602. erp = &ifp->if_u1.if_ext_irec[erp_idx];
  3603. prev = erp_idx > 0 ? erp - 1 : NULL;
  3604. if (page_idx < erp->er_extoff || (page_idx == erp->er_extoff &&
  3605. realloc && prev && prev->er_extcount < XFS_LINEAR_EXTS)) {
  3606. high = erp_idx - 1;
  3607. } else if (page_idx > erp->er_extoff + erp->er_extcount ||
  3608. (page_idx == erp->er_extoff + erp->er_extcount &&
  3609. !realloc)) {
  3610. low = erp_idx + 1;
  3611. } else if (page_idx == erp->er_extoff + erp->er_extcount &&
  3612. erp->er_extcount == XFS_LINEAR_EXTS) {
  3613. ASSERT(realloc);
  3614. page_idx = 0;
  3615. erp_idx++;
  3616. erp = erp_idx < nlists ? erp + 1 : NULL;
  3617. break;
  3618. } else {
  3619. page_idx -= erp->er_extoff;
  3620. break;
  3621. }
  3622. }
  3623. *idxp = page_idx;
  3624. *erp_idxp = erp_idx;
  3625. return(erp);
  3626. }
  3627. /*
  3628. * Allocate and initialize an indirection array once the space needed
  3629. * for incore extents increases above XFS_IEXT_BUFSZ.
  3630. */
  3631. void
  3632. xfs_iext_irec_init(
  3633. xfs_ifork_t *ifp) /* inode fork pointer */
  3634. {
  3635. xfs_ext_irec_t *erp; /* indirection array pointer */
  3636. xfs_extnum_t nextents; /* number of extents in file */
  3637. ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
  3638. nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  3639. ASSERT(nextents <= XFS_LINEAR_EXTS);
  3640. erp = kmem_alloc(sizeof(xfs_ext_irec_t), KM_NOFS);
  3641. if (nextents == 0) {
  3642. ifp->if_u1.if_extents = kmem_alloc(XFS_IEXT_BUFSZ, KM_NOFS);
  3643. } else if (!ifp->if_real_bytes) {
  3644. xfs_iext_inline_to_direct(ifp, XFS_IEXT_BUFSZ);
  3645. } else if (ifp->if_real_bytes < XFS_IEXT_BUFSZ) {
  3646. xfs_iext_realloc_direct(ifp, XFS_IEXT_BUFSZ);
  3647. }
  3648. erp->er_extbuf = ifp->if_u1.if_extents;
  3649. erp->er_extcount = nextents;
  3650. erp->er_extoff = 0;
  3651. ifp->if_flags |= XFS_IFEXTIREC;
  3652. ifp->if_real_bytes = XFS_IEXT_BUFSZ;
  3653. ifp->if_bytes = nextents * sizeof(xfs_bmbt_rec_t);
  3654. ifp->if_u1.if_ext_irec = erp;
  3655. return;
  3656. }
  3657. /*
  3658. * Allocate and initialize a new entry in the indirection array.
  3659. */
  3660. xfs_ext_irec_t *
  3661. xfs_iext_irec_new(
  3662. xfs_ifork_t *ifp, /* inode fork pointer */
  3663. int erp_idx) /* index for new irec */
  3664. {
  3665. xfs_ext_irec_t *erp; /* indirection array pointer */
  3666. int i; /* loop counter */
  3667. int nlists; /* number of irec's (ex lists) */
  3668. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  3669. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  3670. /* Resize indirection array */
  3671. xfs_iext_realloc_indirect(ifp, ++nlists *
  3672. sizeof(xfs_ext_irec_t));
  3673. /*
  3674. * Move records down in the array so the
  3675. * new page can use erp_idx.
  3676. */
  3677. erp = ifp->if_u1.if_ext_irec;
  3678. for (i = nlists - 1; i > erp_idx; i--) {
  3679. memmove(&erp[i], &erp[i-1], sizeof(xfs_ext_irec_t));
  3680. }
  3681. ASSERT(i == erp_idx);
  3682. /* Initialize new extent record */
  3683. erp = ifp->if_u1.if_ext_irec;
  3684. erp[erp_idx].er_extbuf = kmem_alloc(XFS_IEXT_BUFSZ, KM_NOFS);
  3685. ifp->if_real_bytes = nlists * XFS_IEXT_BUFSZ;
  3686. memset(erp[erp_idx].er_extbuf, 0, XFS_IEXT_BUFSZ);
  3687. erp[erp_idx].er_extcount = 0;
  3688. erp[erp_idx].er_extoff = erp_idx > 0 ?
  3689. erp[erp_idx-1].er_extoff + erp[erp_idx-1].er_extcount : 0;
  3690. return (&erp[erp_idx]);
  3691. }
  3692. /*
  3693. * Remove a record from the indirection array.
  3694. */
  3695. void
  3696. xfs_iext_irec_remove(
  3697. xfs_ifork_t *ifp, /* inode fork pointer */
  3698. int erp_idx) /* irec index to remove */
  3699. {
  3700. xfs_ext_irec_t *erp; /* indirection array pointer */
  3701. int i; /* loop counter */
  3702. int nlists; /* number of irec's (ex lists) */
  3703. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  3704. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  3705. erp = &ifp->if_u1.if_ext_irec[erp_idx];
  3706. if (erp->er_extbuf) {
  3707. xfs_iext_irec_update_extoffs(ifp, erp_idx + 1,
  3708. -erp->er_extcount);
  3709. kmem_free(erp->er_extbuf);
  3710. }
  3711. /* Compact extent records */
  3712. erp = ifp->if_u1.if_ext_irec;
  3713. for (i = erp_idx; i < nlists - 1; i++) {
  3714. memmove(&erp[i], &erp[i+1], sizeof(xfs_ext_irec_t));
  3715. }
  3716. /*
  3717. * Manually free the last extent record from the indirection
  3718. * array. A call to xfs_iext_realloc_indirect() with a size
  3719. * of zero would result in a call to xfs_iext_destroy() which
  3720. * would in turn call this function again, creating a nasty
  3721. * infinite loop.
  3722. */
  3723. if (--nlists) {
  3724. xfs_iext_realloc_indirect(ifp,
  3725. nlists * sizeof(xfs_ext_irec_t));
  3726. } else {
  3727. kmem_free(ifp->if_u1.if_ext_irec);
  3728. }
  3729. ifp->if_real_bytes = nlists * XFS_IEXT_BUFSZ;
  3730. }
  3731. /*
  3732. * This is called to clean up large amounts of unused memory allocated
  3733. * by the indirection array. Before compacting anything though, verify
  3734. * that the indirection array is still needed and switch back to the
  3735. * linear extent list (or even the inline buffer) if possible. The
  3736. * compaction policy is as follows:
  3737. *
  3738. * Full Compaction: Extents fit into a single page (or inline buffer)
  3739. * Partial Compaction: Extents occupy less than 50% of allocated space
  3740. * No Compaction: Extents occupy at least 50% of allocated space
  3741. */
  3742. void
  3743. xfs_iext_irec_compact(
  3744. xfs_ifork_t *ifp) /* inode fork pointer */
  3745. {
  3746. xfs_extnum_t nextents; /* number of extents in file */
  3747. int nlists; /* number of irec's (ex lists) */
  3748. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  3749. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  3750. nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  3751. if (nextents == 0) {
  3752. xfs_iext_destroy(ifp);
  3753. } else if (nextents <= XFS_INLINE_EXTS) {
  3754. xfs_iext_indirect_to_direct(ifp);
  3755. xfs_iext_direct_to_inline(ifp, nextents);
  3756. } else if (nextents <= XFS_LINEAR_EXTS) {
  3757. xfs_iext_indirect_to_direct(ifp);
  3758. } else if (nextents < (nlists * XFS_LINEAR_EXTS) >> 1) {
  3759. xfs_iext_irec_compact_pages(ifp);
  3760. }
  3761. }
  3762. /*
  3763. * Combine extents from neighboring extent pages.
  3764. */
  3765. void
  3766. xfs_iext_irec_compact_pages(
  3767. xfs_ifork_t *ifp) /* inode fork pointer */
  3768. {
  3769. xfs_ext_irec_t *erp, *erp_next;/* pointers to irec entries */
  3770. int erp_idx = 0; /* indirection array index */
  3771. int nlists; /* number of irec's (ex lists) */
  3772. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  3773. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  3774. while (erp_idx < nlists - 1) {
  3775. erp = &ifp->if_u1.if_ext_irec[erp_idx];
  3776. erp_next = erp + 1;
  3777. if (erp_next->er_extcount <=
  3778. (XFS_LINEAR_EXTS - erp->er_extcount)) {
  3779. memcpy(&erp->er_extbuf[erp->er_extcount],
  3780. erp_next->er_extbuf, erp_next->er_extcount *
  3781. sizeof(xfs_bmbt_rec_t));
  3782. erp->er_extcount += erp_next->er_extcount;
  3783. /*
  3784. * Free page before removing extent record
  3785. * so er_extoffs don't get modified in
  3786. * xfs_iext_irec_remove.
  3787. */
  3788. kmem_free(erp_next->er_extbuf);
  3789. erp_next->er_extbuf = NULL;
  3790. xfs_iext_irec_remove(ifp, erp_idx + 1);
  3791. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  3792. } else {
  3793. erp_idx++;
  3794. }
  3795. }
  3796. }
  3797. /*
  3798. * This is called to update the er_extoff field in the indirection
  3799. * array when extents have been added or removed from one of the
  3800. * extent lists. erp_idx contains the irec index to begin updating
  3801. * at and ext_diff contains the number of extents that were added
  3802. * or removed.
  3803. */
  3804. void
  3805. xfs_iext_irec_update_extoffs(
  3806. xfs_ifork_t *ifp, /* inode fork pointer */
  3807. int erp_idx, /* irec index to update */
  3808. int ext_diff) /* number of new extents */
  3809. {
  3810. int i; /* loop counter */
  3811. int nlists; /* number of irec's (ex lists */
  3812. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  3813. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  3814. for (i = erp_idx; i < nlists; i++) {
  3815. ifp->if_u1.if_ext_irec[i].er_extoff += ext_diff;
  3816. }
  3817. }