cgroup.c 139 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275
  1. /*
  2. * Generic process-grouping system.
  3. *
  4. * Based originally on the cpuset system, extracted by Paul Menage
  5. * Copyright (C) 2006 Google, Inc
  6. *
  7. * Notifications support
  8. * Copyright (C) 2009 Nokia Corporation
  9. * Author: Kirill A. Shutemov
  10. *
  11. * Copyright notices from the original cpuset code:
  12. * --------------------------------------------------
  13. * Copyright (C) 2003 BULL SA.
  14. * Copyright (C) 2004-2006 Silicon Graphics, Inc.
  15. *
  16. * Portions derived from Patrick Mochel's sysfs code.
  17. * sysfs is Copyright (c) 2001-3 Patrick Mochel
  18. *
  19. * 2003-10-10 Written by Simon Derr.
  20. * 2003-10-22 Updates by Stephen Hemminger.
  21. * 2004 May-July Rework by Paul Jackson.
  22. * ---------------------------------------------------
  23. *
  24. * This file is subject to the terms and conditions of the GNU General Public
  25. * License. See the file COPYING in the main directory of the Linux
  26. * distribution for more details.
  27. */
  28. #include <linux/cgroup.h>
  29. #include <linux/cred.h>
  30. #include <linux/ctype.h>
  31. #include <linux/errno.h>
  32. #include <linux/fs.h>
  33. #include <linux/init_task.h>
  34. #include <linux/kernel.h>
  35. #include <linux/list.h>
  36. #include <linux/mm.h>
  37. #include <linux/mutex.h>
  38. #include <linux/mount.h>
  39. #include <linux/pagemap.h>
  40. #include <linux/proc_fs.h>
  41. #include <linux/rcupdate.h>
  42. #include <linux/sched.h>
  43. #include <linux/backing-dev.h>
  44. #include <linux/seq_file.h>
  45. #include <linux/slab.h>
  46. #include <linux/magic.h>
  47. #include <linux/spinlock.h>
  48. #include <linux/string.h>
  49. #include <linux/sort.h>
  50. #include <linux/kmod.h>
  51. #include <linux/module.h>
  52. #include <linux/delayacct.h>
  53. #include <linux/cgroupstats.h>
  54. #include <linux/hash.h>
  55. #include <linux/namei.h>
  56. #include <linux/pid_namespace.h>
  57. #include <linux/idr.h>
  58. #include <linux/vmalloc.h> /* TODO: replace with more sophisticated array */
  59. #include <linux/eventfd.h>
  60. #include <linux/poll.h>
  61. #include <linux/flex_array.h> /* used in cgroup_attach_proc */
  62. #include <linux/atomic.h>
  63. /*
  64. * cgroup_mutex is the master lock. Any modification to cgroup or its
  65. * hierarchy must be performed while holding it.
  66. *
  67. * cgroup_root_mutex nests inside cgroup_mutex and should be held to modify
  68. * cgroupfs_root of any cgroup hierarchy - subsys list, flags,
  69. * release_agent_path and so on. Modifying requires both cgroup_mutex and
  70. * cgroup_root_mutex. Readers can acquire either of the two. This is to
  71. * break the following locking order cycle.
  72. *
  73. * A. cgroup_mutex -> cred_guard_mutex -> s_type->i_mutex_key -> namespace_sem
  74. * B. namespace_sem -> cgroup_mutex
  75. *
  76. * B happens only through cgroup_show_options() and using cgroup_root_mutex
  77. * breaks it.
  78. */
  79. static DEFINE_MUTEX(cgroup_mutex);
  80. static DEFINE_MUTEX(cgroup_root_mutex);
  81. /*
  82. * Generate an array of cgroup subsystem pointers. At boot time, this is
  83. * populated up to CGROUP_BUILTIN_SUBSYS_COUNT, and modular subsystems are
  84. * registered after that. The mutable section of this array is protected by
  85. * cgroup_mutex.
  86. */
  87. #define SUBSYS(_x) &_x ## _subsys,
  88. static struct cgroup_subsys *subsys[CGROUP_SUBSYS_COUNT] = {
  89. #include <linux/cgroup_subsys.h>
  90. };
  91. #define MAX_CGROUP_ROOT_NAMELEN 64
  92. /*
  93. * A cgroupfs_root represents the root of a cgroup hierarchy,
  94. * and may be associated with a superblock to form an active
  95. * hierarchy
  96. */
  97. struct cgroupfs_root {
  98. struct super_block *sb;
  99. /*
  100. * The bitmask of subsystems intended to be attached to this
  101. * hierarchy
  102. */
  103. unsigned long subsys_bits;
  104. /* Unique id for this hierarchy. */
  105. int hierarchy_id;
  106. /* The bitmask of subsystems currently attached to this hierarchy */
  107. unsigned long actual_subsys_bits;
  108. /* A list running through the attached subsystems */
  109. struct list_head subsys_list;
  110. /* The root cgroup for this hierarchy */
  111. struct cgroup top_cgroup;
  112. /* Tracks how many cgroups are currently defined in hierarchy.*/
  113. int number_of_cgroups;
  114. /* A list running through the active hierarchies */
  115. struct list_head root_list;
  116. /* Hierarchy-specific flags */
  117. unsigned long flags;
  118. /* The path to use for release notifications. */
  119. char release_agent_path[PATH_MAX];
  120. /* The name for this hierarchy - may be empty */
  121. char name[MAX_CGROUP_ROOT_NAMELEN];
  122. };
  123. /*
  124. * The "rootnode" hierarchy is the "dummy hierarchy", reserved for the
  125. * subsystems that are otherwise unattached - it never has more than a
  126. * single cgroup, and all tasks are part of that cgroup.
  127. */
  128. static struct cgroupfs_root rootnode;
  129. /*
  130. * CSS ID -- ID per subsys's Cgroup Subsys State(CSS). used only when
  131. * cgroup_subsys->use_id != 0.
  132. */
  133. #define CSS_ID_MAX (65535)
  134. struct css_id {
  135. /*
  136. * The css to which this ID points. This pointer is set to valid value
  137. * after cgroup is populated. If cgroup is removed, this will be NULL.
  138. * This pointer is expected to be RCU-safe because destroy()
  139. * is called after synchronize_rcu(). But for safe use, css_is_removed()
  140. * css_tryget() should be used for avoiding race.
  141. */
  142. struct cgroup_subsys_state __rcu *css;
  143. /*
  144. * ID of this css.
  145. */
  146. unsigned short id;
  147. /*
  148. * Depth in hierarchy which this ID belongs to.
  149. */
  150. unsigned short depth;
  151. /*
  152. * ID is freed by RCU. (and lookup routine is RCU safe.)
  153. */
  154. struct rcu_head rcu_head;
  155. /*
  156. * Hierarchy of CSS ID belongs to.
  157. */
  158. unsigned short stack[0]; /* Array of Length (depth+1) */
  159. };
  160. /*
  161. * cgroup_event represents events which userspace want to receive.
  162. */
  163. struct cgroup_event {
  164. /*
  165. * Cgroup which the event belongs to.
  166. */
  167. struct cgroup *cgrp;
  168. /*
  169. * Control file which the event associated.
  170. */
  171. struct cftype *cft;
  172. /*
  173. * eventfd to signal userspace about the event.
  174. */
  175. struct eventfd_ctx *eventfd;
  176. /*
  177. * Each of these stored in a list by the cgroup.
  178. */
  179. struct list_head list;
  180. /*
  181. * All fields below needed to unregister event when
  182. * userspace closes eventfd.
  183. */
  184. poll_table pt;
  185. wait_queue_head_t *wqh;
  186. wait_queue_t wait;
  187. struct work_struct remove;
  188. };
  189. /* The list of hierarchy roots */
  190. static LIST_HEAD(roots);
  191. static int root_count;
  192. static DEFINE_IDA(hierarchy_ida);
  193. static int next_hierarchy_id;
  194. static DEFINE_SPINLOCK(hierarchy_id_lock);
  195. /* dummytop is a shorthand for the dummy hierarchy's top cgroup */
  196. #define dummytop (&rootnode.top_cgroup)
  197. /* This flag indicates whether tasks in the fork and exit paths should
  198. * check for fork/exit handlers to call. This avoids us having to do
  199. * extra work in the fork/exit path if none of the subsystems need to
  200. * be called.
  201. */
  202. static int need_forkexit_callback __read_mostly;
  203. #ifdef CONFIG_PROVE_LOCKING
  204. int cgroup_lock_is_held(void)
  205. {
  206. return lockdep_is_held(&cgroup_mutex);
  207. }
  208. #else /* #ifdef CONFIG_PROVE_LOCKING */
  209. int cgroup_lock_is_held(void)
  210. {
  211. return mutex_is_locked(&cgroup_mutex);
  212. }
  213. #endif /* #else #ifdef CONFIG_PROVE_LOCKING */
  214. EXPORT_SYMBOL_GPL(cgroup_lock_is_held);
  215. /* convenient tests for these bits */
  216. inline int cgroup_is_removed(const struct cgroup *cgrp)
  217. {
  218. return test_bit(CGRP_REMOVED, &cgrp->flags);
  219. }
  220. /* bits in struct cgroupfs_root flags field */
  221. enum {
  222. ROOT_NOPREFIX, /* mounted subsystems have no named prefix */
  223. };
  224. static int cgroup_is_releasable(const struct cgroup *cgrp)
  225. {
  226. const int bits =
  227. (1 << CGRP_RELEASABLE) |
  228. (1 << CGRP_NOTIFY_ON_RELEASE);
  229. return (cgrp->flags & bits) == bits;
  230. }
  231. static int notify_on_release(const struct cgroup *cgrp)
  232. {
  233. return test_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
  234. }
  235. static int clone_children(const struct cgroup *cgrp)
  236. {
  237. return test_bit(CGRP_CLONE_CHILDREN, &cgrp->flags);
  238. }
  239. /*
  240. * for_each_subsys() allows you to iterate on each subsystem attached to
  241. * an active hierarchy
  242. */
  243. #define for_each_subsys(_root, _ss) \
  244. list_for_each_entry(_ss, &_root->subsys_list, sibling)
  245. /* for_each_active_root() allows you to iterate across the active hierarchies */
  246. #define for_each_active_root(_root) \
  247. list_for_each_entry(_root, &roots, root_list)
  248. /* the list of cgroups eligible for automatic release. Protected by
  249. * release_list_lock */
  250. static LIST_HEAD(release_list);
  251. static DEFINE_RAW_SPINLOCK(release_list_lock);
  252. static void cgroup_release_agent(struct work_struct *work);
  253. static DECLARE_WORK(release_agent_work, cgroup_release_agent);
  254. static void check_for_release(struct cgroup *cgrp);
  255. /* Link structure for associating css_set objects with cgroups */
  256. struct cg_cgroup_link {
  257. /*
  258. * List running through cg_cgroup_links associated with a
  259. * cgroup, anchored on cgroup->css_sets
  260. */
  261. struct list_head cgrp_link_list;
  262. struct cgroup *cgrp;
  263. /*
  264. * List running through cg_cgroup_links pointing at a
  265. * single css_set object, anchored on css_set->cg_links
  266. */
  267. struct list_head cg_link_list;
  268. struct css_set *cg;
  269. };
  270. /* The default css_set - used by init and its children prior to any
  271. * hierarchies being mounted. It contains a pointer to the root state
  272. * for each subsystem. Also used to anchor the list of css_sets. Not
  273. * reference-counted, to improve performance when child cgroups
  274. * haven't been created.
  275. */
  276. static struct css_set init_css_set;
  277. static struct cg_cgroup_link init_css_set_link;
  278. static int cgroup_init_idr(struct cgroup_subsys *ss,
  279. struct cgroup_subsys_state *css);
  280. /* css_set_lock protects the list of css_set objects, and the
  281. * chain of tasks off each css_set. Nests outside task->alloc_lock
  282. * due to cgroup_iter_start() */
  283. static DEFINE_RWLOCK(css_set_lock);
  284. static int css_set_count;
  285. /*
  286. * hash table for cgroup groups. This improves the performance to find
  287. * an existing css_set. This hash doesn't (currently) take into
  288. * account cgroups in empty hierarchies.
  289. */
  290. #define CSS_SET_HASH_BITS 7
  291. #define CSS_SET_TABLE_SIZE (1 << CSS_SET_HASH_BITS)
  292. static struct hlist_head css_set_table[CSS_SET_TABLE_SIZE];
  293. static struct hlist_head *css_set_hash(struct cgroup_subsys_state *css[])
  294. {
  295. int i;
  296. int index;
  297. unsigned long tmp = 0UL;
  298. for (i = 0; i < CGROUP_SUBSYS_COUNT; i++)
  299. tmp += (unsigned long)css[i];
  300. tmp = (tmp >> 16) ^ tmp;
  301. index = hash_long(tmp, CSS_SET_HASH_BITS);
  302. return &css_set_table[index];
  303. }
  304. /* We don't maintain the lists running through each css_set to its
  305. * task until after the first call to cgroup_iter_start(). This
  306. * reduces the fork()/exit() overhead for people who have cgroups
  307. * compiled into their kernel but not actually in use */
  308. static int use_task_css_set_links __read_mostly;
  309. static void __put_css_set(struct css_set *cg, int taskexit)
  310. {
  311. struct cg_cgroup_link *link;
  312. struct cg_cgroup_link *saved_link;
  313. /*
  314. * Ensure that the refcount doesn't hit zero while any readers
  315. * can see it. Similar to atomic_dec_and_lock(), but for an
  316. * rwlock
  317. */
  318. if (atomic_add_unless(&cg->refcount, -1, 1))
  319. return;
  320. write_lock(&css_set_lock);
  321. if (!atomic_dec_and_test(&cg->refcount)) {
  322. write_unlock(&css_set_lock);
  323. return;
  324. }
  325. /* This css_set is dead. unlink it and release cgroup refcounts */
  326. hlist_del(&cg->hlist);
  327. css_set_count--;
  328. list_for_each_entry_safe(link, saved_link, &cg->cg_links,
  329. cg_link_list) {
  330. struct cgroup *cgrp = link->cgrp;
  331. list_del(&link->cg_link_list);
  332. list_del(&link->cgrp_link_list);
  333. if (atomic_dec_and_test(&cgrp->count) &&
  334. notify_on_release(cgrp)) {
  335. if (taskexit)
  336. set_bit(CGRP_RELEASABLE, &cgrp->flags);
  337. check_for_release(cgrp);
  338. }
  339. kfree(link);
  340. }
  341. write_unlock(&css_set_lock);
  342. kfree_rcu(cg, rcu_head);
  343. }
  344. /*
  345. * refcounted get/put for css_set objects
  346. */
  347. static inline void get_css_set(struct css_set *cg)
  348. {
  349. atomic_inc(&cg->refcount);
  350. }
  351. static inline void put_css_set(struct css_set *cg)
  352. {
  353. __put_css_set(cg, 0);
  354. }
  355. static inline void put_css_set_taskexit(struct css_set *cg)
  356. {
  357. __put_css_set(cg, 1);
  358. }
  359. /*
  360. * compare_css_sets - helper function for find_existing_css_set().
  361. * @cg: candidate css_set being tested
  362. * @old_cg: existing css_set for a task
  363. * @new_cgrp: cgroup that's being entered by the task
  364. * @template: desired set of css pointers in css_set (pre-calculated)
  365. *
  366. * Returns true if "cg" matches "old_cg" except for the hierarchy
  367. * which "new_cgrp" belongs to, for which it should match "new_cgrp".
  368. */
  369. static bool compare_css_sets(struct css_set *cg,
  370. struct css_set *old_cg,
  371. struct cgroup *new_cgrp,
  372. struct cgroup_subsys_state *template[])
  373. {
  374. struct list_head *l1, *l2;
  375. if (memcmp(template, cg->subsys, sizeof(cg->subsys))) {
  376. /* Not all subsystems matched */
  377. return false;
  378. }
  379. /*
  380. * Compare cgroup pointers in order to distinguish between
  381. * different cgroups in heirarchies with no subsystems. We
  382. * could get by with just this check alone (and skip the
  383. * memcmp above) but on most setups the memcmp check will
  384. * avoid the need for this more expensive check on almost all
  385. * candidates.
  386. */
  387. l1 = &cg->cg_links;
  388. l2 = &old_cg->cg_links;
  389. while (1) {
  390. struct cg_cgroup_link *cgl1, *cgl2;
  391. struct cgroup *cg1, *cg2;
  392. l1 = l1->next;
  393. l2 = l2->next;
  394. /* See if we reached the end - both lists are equal length. */
  395. if (l1 == &cg->cg_links) {
  396. BUG_ON(l2 != &old_cg->cg_links);
  397. break;
  398. } else {
  399. BUG_ON(l2 == &old_cg->cg_links);
  400. }
  401. /* Locate the cgroups associated with these links. */
  402. cgl1 = list_entry(l1, struct cg_cgroup_link, cg_link_list);
  403. cgl2 = list_entry(l2, struct cg_cgroup_link, cg_link_list);
  404. cg1 = cgl1->cgrp;
  405. cg2 = cgl2->cgrp;
  406. /* Hierarchies should be linked in the same order. */
  407. BUG_ON(cg1->root != cg2->root);
  408. /*
  409. * If this hierarchy is the hierarchy of the cgroup
  410. * that's changing, then we need to check that this
  411. * css_set points to the new cgroup; if it's any other
  412. * hierarchy, then this css_set should point to the
  413. * same cgroup as the old css_set.
  414. */
  415. if (cg1->root == new_cgrp->root) {
  416. if (cg1 != new_cgrp)
  417. return false;
  418. } else {
  419. if (cg1 != cg2)
  420. return false;
  421. }
  422. }
  423. return true;
  424. }
  425. /*
  426. * find_existing_css_set() is a helper for
  427. * find_css_set(), and checks to see whether an existing
  428. * css_set is suitable.
  429. *
  430. * oldcg: the cgroup group that we're using before the cgroup
  431. * transition
  432. *
  433. * cgrp: the cgroup that we're moving into
  434. *
  435. * template: location in which to build the desired set of subsystem
  436. * state objects for the new cgroup group
  437. */
  438. static struct css_set *find_existing_css_set(
  439. struct css_set *oldcg,
  440. struct cgroup *cgrp,
  441. struct cgroup_subsys_state *template[])
  442. {
  443. int i;
  444. struct cgroupfs_root *root = cgrp->root;
  445. struct hlist_head *hhead;
  446. struct hlist_node *node;
  447. struct css_set *cg;
  448. /*
  449. * Build the set of subsystem state objects that we want to see in the
  450. * new css_set. while subsystems can change globally, the entries here
  451. * won't change, so no need for locking.
  452. */
  453. for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
  454. if (root->subsys_bits & (1UL << i)) {
  455. /* Subsystem is in this hierarchy. So we want
  456. * the subsystem state from the new
  457. * cgroup */
  458. template[i] = cgrp->subsys[i];
  459. } else {
  460. /* Subsystem is not in this hierarchy, so we
  461. * don't want to change the subsystem state */
  462. template[i] = oldcg->subsys[i];
  463. }
  464. }
  465. hhead = css_set_hash(template);
  466. hlist_for_each_entry(cg, node, hhead, hlist) {
  467. if (!compare_css_sets(cg, oldcg, cgrp, template))
  468. continue;
  469. /* This css_set matches what we need */
  470. return cg;
  471. }
  472. /* No existing cgroup group matched */
  473. return NULL;
  474. }
  475. static void free_cg_links(struct list_head *tmp)
  476. {
  477. struct cg_cgroup_link *link;
  478. struct cg_cgroup_link *saved_link;
  479. list_for_each_entry_safe(link, saved_link, tmp, cgrp_link_list) {
  480. list_del(&link->cgrp_link_list);
  481. kfree(link);
  482. }
  483. }
  484. /*
  485. * allocate_cg_links() allocates "count" cg_cgroup_link structures
  486. * and chains them on tmp through their cgrp_link_list fields. Returns 0 on
  487. * success or a negative error
  488. */
  489. static int allocate_cg_links(int count, struct list_head *tmp)
  490. {
  491. struct cg_cgroup_link *link;
  492. int i;
  493. INIT_LIST_HEAD(tmp);
  494. for (i = 0; i < count; i++) {
  495. link = kmalloc(sizeof(*link), GFP_KERNEL);
  496. if (!link) {
  497. free_cg_links(tmp);
  498. return -ENOMEM;
  499. }
  500. list_add(&link->cgrp_link_list, tmp);
  501. }
  502. return 0;
  503. }
  504. /**
  505. * link_css_set - a helper function to link a css_set to a cgroup
  506. * @tmp_cg_links: cg_cgroup_link objects allocated by allocate_cg_links()
  507. * @cg: the css_set to be linked
  508. * @cgrp: the destination cgroup
  509. */
  510. static void link_css_set(struct list_head *tmp_cg_links,
  511. struct css_set *cg, struct cgroup *cgrp)
  512. {
  513. struct cg_cgroup_link *link;
  514. BUG_ON(list_empty(tmp_cg_links));
  515. link = list_first_entry(tmp_cg_links, struct cg_cgroup_link,
  516. cgrp_link_list);
  517. link->cg = cg;
  518. link->cgrp = cgrp;
  519. atomic_inc(&cgrp->count);
  520. list_move(&link->cgrp_link_list, &cgrp->css_sets);
  521. /*
  522. * Always add links to the tail of the list so that the list
  523. * is sorted by order of hierarchy creation
  524. */
  525. list_add_tail(&link->cg_link_list, &cg->cg_links);
  526. }
  527. /*
  528. * find_css_set() takes an existing cgroup group and a
  529. * cgroup object, and returns a css_set object that's
  530. * equivalent to the old group, but with the given cgroup
  531. * substituted into the appropriate hierarchy. Must be called with
  532. * cgroup_mutex held
  533. */
  534. static struct css_set *find_css_set(
  535. struct css_set *oldcg, struct cgroup *cgrp)
  536. {
  537. struct css_set *res;
  538. struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT];
  539. struct list_head tmp_cg_links;
  540. struct hlist_head *hhead;
  541. struct cg_cgroup_link *link;
  542. /* First see if we already have a cgroup group that matches
  543. * the desired set */
  544. read_lock(&css_set_lock);
  545. res = find_existing_css_set(oldcg, cgrp, template);
  546. if (res)
  547. get_css_set(res);
  548. read_unlock(&css_set_lock);
  549. if (res)
  550. return res;
  551. res = kmalloc(sizeof(*res), GFP_KERNEL);
  552. if (!res)
  553. return NULL;
  554. /* Allocate all the cg_cgroup_link objects that we'll need */
  555. if (allocate_cg_links(root_count, &tmp_cg_links) < 0) {
  556. kfree(res);
  557. return NULL;
  558. }
  559. atomic_set(&res->refcount, 1);
  560. INIT_LIST_HEAD(&res->cg_links);
  561. INIT_LIST_HEAD(&res->tasks);
  562. INIT_HLIST_NODE(&res->hlist);
  563. /* Copy the set of subsystem state objects generated in
  564. * find_existing_css_set() */
  565. memcpy(res->subsys, template, sizeof(res->subsys));
  566. write_lock(&css_set_lock);
  567. /* Add reference counts and links from the new css_set. */
  568. list_for_each_entry(link, &oldcg->cg_links, cg_link_list) {
  569. struct cgroup *c = link->cgrp;
  570. if (c->root == cgrp->root)
  571. c = cgrp;
  572. link_css_set(&tmp_cg_links, res, c);
  573. }
  574. BUG_ON(!list_empty(&tmp_cg_links));
  575. css_set_count++;
  576. /* Add this cgroup group to the hash table */
  577. hhead = css_set_hash(res->subsys);
  578. hlist_add_head(&res->hlist, hhead);
  579. write_unlock(&css_set_lock);
  580. return res;
  581. }
  582. /*
  583. * Return the cgroup for "task" from the given hierarchy. Must be
  584. * called with cgroup_mutex held.
  585. */
  586. static struct cgroup *task_cgroup_from_root(struct task_struct *task,
  587. struct cgroupfs_root *root)
  588. {
  589. struct css_set *css;
  590. struct cgroup *res = NULL;
  591. BUG_ON(!mutex_is_locked(&cgroup_mutex));
  592. read_lock(&css_set_lock);
  593. /*
  594. * No need to lock the task - since we hold cgroup_mutex the
  595. * task can't change groups, so the only thing that can happen
  596. * is that it exits and its css is set back to init_css_set.
  597. */
  598. css = task->cgroups;
  599. if (css == &init_css_set) {
  600. res = &root->top_cgroup;
  601. } else {
  602. struct cg_cgroup_link *link;
  603. list_for_each_entry(link, &css->cg_links, cg_link_list) {
  604. struct cgroup *c = link->cgrp;
  605. if (c->root == root) {
  606. res = c;
  607. break;
  608. }
  609. }
  610. }
  611. read_unlock(&css_set_lock);
  612. BUG_ON(!res);
  613. return res;
  614. }
  615. /*
  616. * There is one global cgroup mutex. We also require taking
  617. * task_lock() when dereferencing a task's cgroup subsys pointers.
  618. * See "The task_lock() exception", at the end of this comment.
  619. *
  620. * A task must hold cgroup_mutex to modify cgroups.
  621. *
  622. * Any task can increment and decrement the count field without lock.
  623. * So in general, code holding cgroup_mutex can't rely on the count
  624. * field not changing. However, if the count goes to zero, then only
  625. * cgroup_attach_task() can increment it again. Because a count of zero
  626. * means that no tasks are currently attached, therefore there is no
  627. * way a task attached to that cgroup can fork (the other way to
  628. * increment the count). So code holding cgroup_mutex can safely
  629. * assume that if the count is zero, it will stay zero. Similarly, if
  630. * a task holds cgroup_mutex on a cgroup with zero count, it
  631. * knows that the cgroup won't be removed, as cgroup_rmdir()
  632. * needs that mutex.
  633. *
  634. * The fork and exit callbacks cgroup_fork() and cgroup_exit(), don't
  635. * (usually) take cgroup_mutex. These are the two most performance
  636. * critical pieces of code here. The exception occurs on cgroup_exit(),
  637. * when a task in a notify_on_release cgroup exits. Then cgroup_mutex
  638. * is taken, and if the cgroup count is zero, a usermode call made
  639. * to the release agent with the name of the cgroup (path relative to
  640. * the root of cgroup file system) as the argument.
  641. *
  642. * A cgroup can only be deleted if both its 'count' of using tasks
  643. * is zero, and its list of 'children' cgroups is empty. Since all
  644. * tasks in the system use _some_ cgroup, and since there is always at
  645. * least one task in the system (init, pid == 1), therefore, top_cgroup
  646. * always has either children cgroups and/or using tasks. So we don't
  647. * need a special hack to ensure that top_cgroup cannot be deleted.
  648. *
  649. * The task_lock() exception
  650. *
  651. * The need for this exception arises from the action of
  652. * cgroup_attach_task(), which overwrites one tasks cgroup pointer with
  653. * another. It does so using cgroup_mutex, however there are
  654. * several performance critical places that need to reference
  655. * task->cgroup without the expense of grabbing a system global
  656. * mutex. Therefore except as noted below, when dereferencing or, as
  657. * in cgroup_attach_task(), modifying a task'ss cgroup pointer we use
  658. * task_lock(), which acts on a spinlock (task->alloc_lock) already in
  659. * the task_struct routinely used for such matters.
  660. *
  661. * P.S. One more locking exception. RCU is used to guard the
  662. * update of a tasks cgroup pointer by cgroup_attach_task()
  663. */
  664. /**
  665. * cgroup_lock - lock out any changes to cgroup structures
  666. *
  667. */
  668. void cgroup_lock(void)
  669. {
  670. mutex_lock(&cgroup_mutex);
  671. }
  672. EXPORT_SYMBOL_GPL(cgroup_lock);
  673. /**
  674. * cgroup_unlock - release lock on cgroup changes
  675. *
  676. * Undo the lock taken in a previous cgroup_lock() call.
  677. */
  678. void cgroup_unlock(void)
  679. {
  680. mutex_unlock(&cgroup_mutex);
  681. }
  682. EXPORT_SYMBOL_GPL(cgroup_unlock);
  683. /*
  684. * A couple of forward declarations required, due to cyclic reference loop:
  685. * cgroup_mkdir -> cgroup_create -> cgroup_populate_dir ->
  686. * cgroup_add_file -> cgroup_create_file -> cgroup_dir_inode_operations
  687. * -> cgroup_mkdir.
  688. */
  689. static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, int mode);
  690. static struct dentry *cgroup_lookup(struct inode *, struct dentry *, struct nameidata *);
  691. static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry);
  692. static int cgroup_populate_dir(struct cgroup *cgrp);
  693. static const struct inode_operations cgroup_dir_inode_operations;
  694. static const struct file_operations proc_cgroupstats_operations;
  695. static struct backing_dev_info cgroup_backing_dev_info = {
  696. .name = "cgroup",
  697. .capabilities = BDI_CAP_NO_ACCT_AND_WRITEBACK,
  698. };
  699. static int alloc_css_id(struct cgroup_subsys *ss,
  700. struct cgroup *parent, struct cgroup *child);
  701. static struct inode *cgroup_new_inode(mode_t mode, struct super_block *sb)
  702. {
  703. struct inode *inode = new_inode(sb);
  704. if (inode) {
  705. inode->i_ino = get_next_ino();
  706. inode->i_mode = mode;
  707. inode->i_uid = current_fsuid();
  708. inode->i_gid = current_fsgid();
  709. inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
  710. inode->i_mapping->backing_dev_info = &cgroup_backing_dev_info;
  711. }
  712. return inode;
  713. }
  714. /*
  715. * Call subsys's pre_destroy handler.
  716. * This is called before css refcnt check.
  717. */
  718. static int cgroup_call_pre_destroy(struct cgroup *cgrp)
  719. {
  720. struct cgroup_subsys *ss;
  721. int ret = 0;
  722. for_each_subsys(cgrp->root, ss)
  723. if (ss->pre_destroy) {
  724. ret = ss->pre_destroy(ss, cgrp);
  725. if (ret)
  726. break;
  727. }
  728. return ret;
  729. }
  730. static void cgroup_diput(struct dentry *dentry, struct inode *inode)
  731. {
  732. /* is dentry a directory ? if so, kfree() associated cgroup */
  733. if (S_ISDIR(inode->i_mode)) {
  734. struct cgroup *cgrp = dentry->d_fsdata;
  735. struct cgroup_subsys *ss;
  736. BUG_ON(!(cgroup_is_removed(cgrp)));
  737. /* It's possible for external users to be holding css
  738. * reference counts on a cgroup; css_put() needs to
  739. * be able to access the cgroup after decrementing
  740. * the reference count in order to know if it needs to
  741. * queue the cgroup to be handled by the release
  742. * agent */
  743. synchronize_rcu();
  744. mutex_lock(&cgroup_mutex);
  745. /*
  746. * Release the subsystem state objects.
  747. */
  748. for_each_subsys(cgrp->root, ss)
  749. ss->destroy(ss, cgrp);
  750. cgrp->root->number_of_cgroups--;
  751. mutex_unlock(&cgroup_mutex);
  752. /*
  753. * Drop the active superblock reference that we took when we
  754. * created the cgroup
  755. */
  756. deactivate_super(cgrp->root->sb);
  757. /*
  758. * if we're getting rid of the cgroup, refcount should ensure
  759. * that there are no pidlists left.
  760. */
  761. BUG_ON(!list_empty(&cgrp->pidlists));
  762. kfree_rcu(cgrp, rcu_head);
  763. }
  764. iput(inode);
  765. }
  766. static int cgroup_delete(const struct dentry *d)
  767. {
  768. return 1;
  769. }
  770. static void remove_dir(struct dentry *d)
  771. {
  772. struct dentry *parent = dget(d->d_parent);
  773. d_delete(d);
  774. simple_rmdir(parent->d_inode, d);
  775. dput(parent);
  776. }
  777. static void cgroup_clear_directory(struct dentry *dentry)
  778. {
  779. struct list_head *node;
  780. BUG_ON(!mutex_is_locked(&dentry->d_inode->i_mutex));
  781. spin_lock(&dentry->d_lock);
  782. node = dentry->d_subdirs.next;
  783. while (node != &dentry->d_subdirs) {
  784. struct dentry *d = list_entry(node, struct dentry, d_u.d_child);
  785. spin_lock_nested(&d->d_lock, DENTRY_D_LOCK_NESTED);
  786. list_del_init(node);
  787. if (d->d_inode) {
  788. /* This should never be called on a cgroup
  789. * directory with child cgroups */
  790. BUG_ON(d->d_inode->i_mode & S_IFDIR);
  791. dget_dlock(d);
  792. spin_unlock(&d->d_lock);
  793. spin_unlock(&dentry->d_lock);
  794. d_delete(d);
  795. simple_unlink(dentry->d_inode, d);
  796. dput(d);
  797. spin_lock(&dentry->d_lock);
  798. } else
  799. spin_unlock(&d->d_lock);
  800. node = dentry->d_subdirs.next;
  801. }
  802. spin_unlock(&dentry->d_lock);
  803. }
  804. /*
  805. * NOTE : the dentry must have been dget()'ed
  806. */
  807. static void cgroup_d_remove_dir(struct dentry *dentry)
  808. {
  809. struct dentry *parent;
  810. cgroup_clear_directory(dentry);
  811. parent = dentry->d_parent;
  812. spin_lock(&parent->d_lock);
  813. spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
  814. list_del_init(&dentry->d_u.d_child);
  815. spin_unlock(&dentry->d_lock);
  816. spin_unlock(&parent->d_lock);
  817. remove_dir(dentry);
  818. }
  819. /*
  820. * A queue for waiters to do rmdir() cgroup. A tasks will sleep when
  821. * cgroup->count == 0 && list_empty(&cgroup->children) && subsys has some
  822. * reference to css->refcnt. In general, this refcnt is expected to goes down
  823. * to zero, soon.
  824. *
  825. * CGRP_WAIT_ON_RMDIR flag is set under cgroup's inode->i_mutex;
  826. */
  827. DECLARE_WAIT_QUEUE_HEAD(cgroup_rmdir_waitq);
  828. static void cgroup_wakeup_rmdir_waiter(struct cgroup *cgrp)
  829. {
  830. if (unlikely(test_and_clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags)))
  831. wake_up_all(&cgroup_rmdir_waitq);
  832. }
  833. void cgroup_exclude_rmdir(struct cgroup_subsys_state *css)
  834. {
  835. css_get(css);
  836. }
  837. void cgroup_release_and_wakeup_rmdir(struct cgroup_subsys_state *css)
  838. {
  839. cgroup_wakeup_rmdir_waiter(css->cgroup);
  840. css_put(css);
  841. }
  842. /*
  843. * Call with cgroup_mutex held. Drops reference counts on modules, including
  844. * any duplicate ones that parse_cgroupfs_options took. If this function
  845. * returns an error, no reference counts are touched.
  846. */
  847. static int rebind_subsystems(struct cgroupfs_root *root,
  848. unsigned long final_bits)
  849. {
  850. unsigned long added_bits, removed_bits;
  851. struct cgroup *cgrp = &root->top_cgroup;
  852. int i;
  853. BUG_ON(!mutex_is_locked(&cgroup_mutex));
  854. BUG_ON(!mutex_is_locked(&cgroup_root_mutex));
  855. removed_bits = root->actual_subsys_bits & ~final_bits;
  856. added_bits = final_bits & ~root->actual_subsys_bits;
  857. /* Check that any added subsystems are currently free */
  858. for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
  859. unsigned long bit = 1UL << i;
  860. struct cgroup_subsys *ss = subsys[i];
  861. if (!(bit & added_bits))
  862. continue;
  863. /*
  864. * Nobody should tell us to do a subsys that doesn't exist:
  865. * parse_cgroupfs_options should catch that case and refcounts
  866. * ensure that subsystems won't disappear once selected.
  867. */
  868. BUG_ON(ss == NULL);
  869. if (ss->root != &rootnode) {
  870. /* Subsystem isn't free */
  871. return -EBUSY;
  872. }
  873. }
  874. /* Currently we don't handle adding/removing subsystems when
  875. * any child cgroups exist. This is theoretically supportable
  876. * but involves complex error handling, so it's being left until
  877. * later */
  878. if (root->number_of_cgroups > 1)
  879. return -EBUSY;
  880. /* Process each subsystem */
  881. for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
  882. struct cgroup_subsys *ss = subsys[i];
  883. unsigned long bit = 1UL << i;
  884. if (bit & added_bits) {
  885. /* We're binding this subsystem to this hierarchy */
  886. BUG_ON(ss == NULL);
  887. BUG_ON(cgrp->subsys[i]);
  888. BUG_ON(!dummytop->subsys[i]);
  889. BUG_ON(dummytop->subsys[i]->cgroup != dummytop);
  890. mutex_lock(&ss->hierarchy_mutex);
  891. cgrp->subsys[i] = dummytop->subsys[i];
  892. cgrp->subsys[i]->cgroup = cgrp;
  893. list_move(&ss->sibling, &root->subsys_list);
  894. ss->root = root;
  895. if (ss->bind)
  896. ss->bind(ss, cgrp);
  897. mutex_unlock(&ss->hierarchy_mutex);
  898. /* refcount was already taken, and we're keeping it */
  899. } else if (bit & removed_bits) {
  900. /* We're removing this subsystem */
  901. BUG_ON(ss == NULL);
  902. BUG_ON(cgrp->subsys[i] != dummytop->subsys[i]);
  903. BUG_ON(cgrp->subsys[i]->cgroup != cgrp);
  904. mutex_lock(&ss->hierarchy_mutex);
  905. if (ss->bind)
  906. ss->bind(ss, dummytop);
  907. dummytop->subsys[i]->cgroup = dummytop;
  908. cgrp->subsys[i] = NULL;
  909. subsys[i]->root = &rootnode;
  910. list_move(&ss->sibling, &rootnode.subsys_list);
  911. mutex_unlock(&ss->hierarchy_mutex);
  912. /* subsystem is now free - drop reference on module */
  913. module_put(ss->module);
  914. } else if (bit & final_bits) {
  915. /* Subsystem state should already exist */
  916. BUG_ON(ss == NULL);
  917. BUG_ON(!cgrp->subsys[i]);
  918. /*
  919. * a refcount was taken, but we already had one, so
  920. * drop the extra reference.
  921. */
  922. module_put(ss->module);
  923. #ifdef CONFIG_MODULE_UNLOAD
  924. BUG_ON(ss->module && !module_refcount(ss->module));
  925. #endif
  926. } else {
  927. /* Subsystem state shouldn't exist */
  928. BUG_ON(cgrp->subsys[i]);
  929. }
  930. }
  931. root->subsys_bits = root->actual_subsys_bits = final_bits;
  932. synchronize_rcu();
  933. return 0;
  934. }
  935. static int cgroup_show_options(struct seq_file *seq, struct vfsmount *vfs)
  936. {
  937. struct cgroupfs_root *root = vfs->mnt_sb->s_fs_info;
  938. struct cgroup_subsys *ss;
  939. mutex_lock(&cgroup_root_mutex);
  940. for_each_subsys(root, ss)
  941. seq_printf(seq, ",%s", ss->name);
  942. if (test_bit(ROOT_NOPREFIX, &root->flags))
  943. seq_puts(seq, ",noprefix");
  944. if (strlen(root->release_agent_path))
  945. seq_printf(seq, ",release_agent=%s", root->release_agent_path);
  946. if (clone_children(&root->top_cgroup))
  947. seq_puts(seq, ",clone_children");
  948. if (strlen(root->name))
  949. seq_printf(seq, ",name=%s", root->name);
  950. mutex_unlock(&cgroup_root_mutex);
  951. return 0;
  952. }
  953. struct cgroup_sb_opts {
  954. unsigned long subsys_bits;
  955. unsigned long flags;
  956. char *release_agent;
  957. bool clone_children;
  958. char *name;
  959. /* User explicitly requested empty subsystem */
  960. bool none;
  961. struct cgroupfs_root *new_root;
  962. };
  963. /*
  964. * Convert a hierarchy specifier into a bitmask of subsystems and flags. Call
  965. * with cgroup_mutex held to protect the subsys[] array. This function takes
  966. * refcounts on subsystems to be used, unless it returns error, in which case
  967. * no refcounts are taken.
  968. */
  969. static int parse_cgroupfs_options(char *data, struct cgroup_sb_opts *opts)
  970. {
  971. char *token, *o = data;
  972. bool all_ss = false, one_ss = false;
  973. unsigned long mask = (unsigned long)-1;
  974. int i;
  975. bool module_pin_failed = false;
  976. BUG_ON(!mutex_is_locked(&cgroup_mutex));
  977. #ifdef CONFIG_CPUSETS
  978. mask = ~(1UL << cpuset_subsys_id);
  979. #endif
  980. memset(opts, 0, sizeof(*opts));
  981. while ((token = strsep(&o, ",")) != NULL) {
  982. if (!*token)
  983. return -EINVAL;
  984. if (!strcmp(token, "none")) {
  985. /* Explicitly have no subsystems */
  986. opts->none = true;
  987. continue;
  988. }
  989. if (!strcmp(token, "all")) {
  990. /* Mutually exclusive option 'all' + subsystem name */
  991. if (one_ss)
  992. return -EINVAL;
  993. all_ss = true;
  994. continue;
  995. }
  996. if (!strcmp(token, "noprefix")) {
  997. set_bit(ROOT_NOPREFIX, &opts->flags);
  998. continue;
  999. }
  1000. if (!strcmp(token, "clone_children")) {
  1001. opts->clone_children = true;
  1002. continue;
  1003. }
  1004. if (!strncmp(token, "release_agent=", 14)) {
  1005. /* Specifying two release agents is forbidden */
  1006. if (opts->release_agent)
  1007. return -EINVAL;
  1008. opts->release_agent =
  1009. kstrndup(token + 14, PATH_MAX - 1, GFP_KERNEL);
  1010. if (!opts->release_agent)
  1011. return -ENOMEM;
  1012. continue;
  1013. }
  1014. if (!strncmp(token, "name=", 5)) {
  1015. const char *name = token + 5;
  1016. /* Can't specify an empty name */
  1017. if (!strlen(name))
  1018. return -EINVAL;
  1019. /* Must match [\w.-]+ */
  1020. for (i = 0; i < strlen(name); i++) {
  1021. char c = name[i];
  1022. if (isalnum(c))
  1023. continue;
  1024. if ((c == '.') || (c == '-') || (c == '_'))
  1025. continue;
  1026. return -EINVAL;
  1027. }
  1028. /* Specifying two names is forbidden */
  1029. if (opts->name)
  1030. return -EINVAL;
  1031. opts->name = kstrndup(name,
  1032. MAX_CGROUP_ROOT_NAMELEN - 1,
  1033. GFP_KERNEL);
  1034. if (!opts->name)
  1035. return -ENOMEM;
  1036. continue;
  1037. }
  1038. for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
  1039. struct cgroup_subsys *ss = subsys[i];
  1040. if (ss == NULL)
  1041. continue;
  1042. if (strcmp(token, ss->name))
  1043. continue;
  1044. if (ss->disabled)
  1045. continue;
  1046. /* Mutually exclusive option 'all' + subsystem name */
  1047. if (all_ss)
  1048. return -EINVAL;
  1049. set_bit(i, &opts->subsys_bits);
  1050. one_ss = true;
  1051. break;
  1052. }
  1053. if (i == CGROUP_SUBSYS_COUNT)
  1054. return -ENOENT;
  1055. }
  1056. /*
  1057. * If the 'all' option was specified select all the subsystems,
  1058. * otherwise 'all, 'none' and a subsystem name options were not
  1059. * specified, let's default to 'all'
  1060. */
  1061. if (all_ss || (!all_ss && !one_ss && !opts->none)) {
  1062. for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
  1063. struct cgroup_subsys *ss = subsys[i];
  1064. if (ss == NULL)
  1065. continue;
  1066. if (ss->disabled)
  1067. continue;
  1068. set_bit(i, &opts->subsys_bits);
  1069. }
  1070. }
  1071. /* Consistency checks */
  1072. /*
  1073. * Option noprefix was introduced just for backward compatibility
  1074. * with the old cpuset, so we allow noprefix only if mounting just
  1075. * the cpuset subsystem.
  1076. */
  1077. if (test_bit(ROOT_NOPREFIX, &opts->flags) &&
  1078. (opts->subsys_bits & mask))
  1079. return -EINVAL;
  1080. /* Can't specify "none" and some subsystems */
  1081. if (opts->subsys_bits && opts->none)
  1082. return -EINVAL;
  1083. /*
  1084. * We either have to specify by name or by subsystems. (So all
  1085. * empty hierarchies must have a name).
  1086. */
  1087. if (!opts->subsys_bits && !opts->name)
  1088. return -EINVAL;
  1089. /*
  1090. * Grab references on all the modules we'll need, so the subsystems
  1091. * don't dance around before rebind_subsystems attaches them. This may
  1092. * take duplicate reference counts on a subsystem that's already used,
  1093. * but rebind_subsystems handles this case.
  1094. */
  1095. for (i = CGROUP_BUILTIN_SUBSYS_COUNT; i < CGROUP_SUBSYS_COUNT; i++) {
  1096. unsigned long bit = 1UL << i;
  1097. if (!(bit & opts->subsys_bits))
  1098. continue;
  1099. if (!try_module_get(subsys[i]->module)) {
  1100. module_pin_failed = true;
  1101. break;
  1102. }
  1103. }
  1104. if (module_pin_failed) {
  1105. /*
  1106. * oops, one of the modules was going away. this means that we
  1107. * raced with a module_delete call, and to the user this is
  1108. * essentially a "subsystem doesn't exist" case.
  1109. */
  1110. for (i--; i >= CGROUP_BUILTIN_SUBSYS_COUNT; i--) {
  1111. /* drop refcounts only on the ones we took */
  1112. unsigned long bit = 1UL << i;
  1113. if (!(bit & opts->subsys_bits))
  1114. continue;
  1115. module_put(subsys[i]->module);
  1116. }
  1117. return -ENOENT;
  1118. }
  1119. return 0;
  1120. }
  1121. static void drop_parsed_module_refcounts(unsigned long subsys_bits)
  1122. {
  1123. int i;
  1124. for (i = CGROUP_BUILTIN_SUBSYS_COUNT; i < CGROUP_SUBSYS_COUNT; i++) {
  1125. unsigned long bit = 1UL << i;
  1126. if (!(bit & subsys_bits))
  1127. continue;
  1128. module_put(subsys[i]->module);
  1129. }
  1130. }
  1131. static int cgroup_remount(struct super_block *sb, int *flags, char *data)
  1132. {
  1133. int ret = 0;
  1134. struct cgroupfs_root *root = sb->s_fs_info;
  1135. struct cgroup *cgrp = &root->top_cgroup;
  1136. struct cgroup_sb_opts opts;
  1137. mutex_lock(&cgrp->dentry->d_inode->i_mutex);
  1138. mutex_lock(&cgroup_mutex);
  1139. mutex_lock(&cgroup_root_mutex);
  1140. /* See what subsystems are wanted */
  1141. ret = parse_cgroupfs_options(data, &opts);
  1142. if (ret)
  1143. goto out_unlock;
  1144. /* Don't allow flags or name to change at remount */
  1145. if (opts.flags != root->flags ||
  1146. (opts.name && strcmp(opts.name, root->name))) {
  1147. ret = -EINVAL;
  1148. drop_parsed_module_refcounts(opts.subsys_bits);
  1149. goto out_unlock;
  1150. }
  1151. ret = rebind_subsystems(root, opts.subsys_bits);
  1152. if (ret) {
  1153. drop_parsed_module_refcounts(opts.subsys_bits);
  1154. goto out_unlock;
  1155. }
  1156. /* (re)populate subsystem files */
  1157. cgroup_populate_dir(cgrp);
  1158. if (opts.release_agent)
  1159. strcpy(root->release_agent_path, opts.release_agent);
  1160. out_unlock:
  1161. kfree(opts.release_agent);
  1162. kfree(opts.name);
  1163. mutex_unlock(&cgroup_root_mutex);
  1164. mutex_unlock(&cgroup_mutex);
  1165. mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
  1166. return ret;
  1167. }
  1168. static const struct super_operations cgroup_ops = {
  1169. .statfs = simple_statfs,
  1170. .drop_inode = generic_delete_inode,
  1171. .show_options = cgroup_show_options,
  1172. .remount_fs = cgroup_remount,
  1173. };
  1174. static void init_cgroup_housekeeping(struct cgroup *cgrp)
  1175. {
  1176. INIT_LIST_HEAD(&cgrp->sibling);
  1177. INIT_LIST_HEAD(&cgrp->children);
  1178. INIT_LIST_HEAD(&cgrp->css_sets);
  1179. INIT_LIST_HEAD(&cgrp->release_list);
  1180. INIT_LIST_HEAD(&cgrp->pidlists);
  1181. mutex_init(&cgrp->pidlist_mutex);
  1182. INIT_LIST_HEAD(&cgrp->event_list);
  1183. spin_lock_init(&cgrp->event_list_lock);
  1184. }
  1185. static void init_cgroup_root(struct cgroupfs_root *root)
  1186. {
  1187. struct cgroup *cgrp = &root->top_cgroup;
  1188. INIT_LIST_HEAD(&root->subsys_list);
  1189. INIT_LIST_HEAD(&root->root_list);
  1190. root->number_of_cgroups = 1;
  1191. cgrp->root = root;
  1192. cgrp->top_cgroup = cgrp;
  1193. init_cgroup_housekeeping(cgrp);
  1194. }
  1195. static bool init_root_id(struct cgroupfs_root *root)
  1196. {
  1197. int ret = 0;
  1198. do {
  1199. if (!ida_pre_get(&hierarchy_ida, GFP_KERNEL))
  1200. return false;
  1201. spin_lock(&hierarchy_id_lock);
  1202. /* Try to allocate the next unused ID */
  1203. ret = ida_get_new_above(&hierarchy_ida, next_hierarchy_id,
  1204. &root->hierarchy_id);
  1205. if (ret == -ENOSPC)
  1206. /* Try again starting from 0 */
  1207. ret = ida_get_new(&hierarchy_ida, &root->hierarchy_id);
  1208. if (!ret) {
  1209. next_hierarchy_id = root->hierarchy_id + 1;
  1210. } else if (ret != -EAGAIN) {
  1211. /* Can only get here if the 31-bit IDR is full ... */
  1212. BUG_ON(ret);
  1213. }
  1214. spin_unlock(&hierarchy_id_lock);
  1215. } while (ret);
  1216. return true;
  1217. }
  1218. static int cgroup_test_super(struct super_block *sb, void *data)
  1219. {
  1220. struct cgroup_sb_opts *opts = data;
  1221. struct cgroupfs_root *root = sb->s_fs_info;
  1222. /* If we asked for a name then it must match */
  1223. if (opts->name && strcmp(opts->name, root->name))
  1224. return 0;
  1225. /*
  1226. * If we asked for subsystems (or explicitly for no
  1227. * subsystems) then they must match
  1228. */
  1229. if ((opts->subsys_bits || opts->none)
  1230. && (opts->subsys_bits != root->subsys_bits))
  1231. return 0;
  1232. return 1;
  1233. }
  1234. static struct cgroupfs_root *cgroup_root_from_opts(struct cgroup_sb_opts *opts)
  1235. {
  1236. struct cgroupfs_root *root;
  1237. if (!opts->subsys_bits && !opts->none)
  1238. return NULL;
  1239. root = kzalloc(sizeof(*root), GFP_KERNEL);
  1240. if (!root)
  1241. return ERR_PTR(-ENOMEM);
  1242. if (!init_root_id(root)) {
  1243. kfree(root);
  1244. return ERR_PTR(-ENOMEM);
  1245. }
  1246. init_cgroup_root(root);
  1247. root->subsys_bits = opts->subsys_bits;
  1248. root->flags = opts->flags;
  1249. if (opts->release_agent)
  1250. strcpy(root->release_agent_path, opts->release_agent);
  1251. if (opts->name)
  1252. strcpy(root->name, opts->name);
  1253. if (opts->clone_children)
  1254. set_bit(CGRP_CLONE_CHILDREN, &root->top_cgroup.flags);
  1255. return root;
  1256. }
  1257. static void cgroup_drop_root(struct cgroupfs_root *root)
  1258. {
  1259. if (!root)
  1260. return;
  1261. BUG_ON(!root->hierarchy_id);
  1262. spin_lock(&hierarchy_id_lock);
  1263. ida_remove(&hierarchy_ida, root->hierarchy_id);
  1264. spin_unlock(&hierarchy_id_lock);
  1265. kfree(root);
  1266. }
  1267. static int cgroup_set_super(struct super_block *sb, void *data)
  1268. {
  1269. int ret;
  1270. struct cgroup_sb_opts *opts = data;
  1271. /* If we don't have a new root, we can't set up a new sb */
  1272. if (!opts->new_root)
  1273. return -EINVAL;
  1274. BUG_ON(!opts->subsys_bits && !opts->none);
  1275. ret = set_anon_super(sb, NULL);
  1276. if (ret)
  1277. return ret;
  1278. sb->s_fs_info = opts->new_root;
  1279. opts->new_root->sb = sb;
  1280. sb->s_blocksize = PAGE_CACHE_SIZE;
  1281. sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
  1282. sb->s_magic = CGROUP_SUPER_MAGIC;
  1283. sb->s_op = &cgroup_ops;
  1284. return 0;
  1285. }
  1286. static int cgroup_get_rootdir(struct super_block *sb)
  1287. {
  1288. static const struct dentry_operations cgroup_dops = {
  1289. .d_iput = cgroup_diput,
  1290. .d_delete = cgroup_delete,
  1291. };
  1292. struct inode *inode =
  1293. cgroup_new_inode(S_IFDIR | S_IRUGO | S_IXUGO | S_IWUSR, sb);
  1294. struct dentry *dentry;
  1295. if (!inode)
  1296. return -ENOMEM;
  1297. inode->i_fop = &simple_dir_operations;
  1298. inode->i_op = &cgroup_dir_inode_operations;
  1299. /* directories start off with i_nlink == 2 (for "." entry) */
  1300. inc_nlink(inode);
  1301. dentry = d_alloc_root(inode);
  1302. if (!dentry) {
  1303. iput(inode);
  1304. return -ENOMEM;
  1305. }
  1306. sb->s_root = dentry;
  1307. /* for everything else we want ->d_op set */
  1308. sb->s_d_op = &cgroup_dops;
  1309. return 0;
  1310. }
  1311. static struct dentry *cgroup_mount(struct file_system_type *fs_type,
  1312. int flags, const char *unused_dev_name,
  1313. void *data)
  1314. {
  1315. struct cgroup_sb_opts opts;
  1316. struct cgroupfs_root *root;
  1317. int ret = 0;
  1318. struct super_block *sb;
  1319. struct cgroupfs_root *new_root;
  1320. struct inode *inode;
  1321. /* First find the desired set of subsystems */
  1322. mutex_lock(&cgroup_mutex);
  1323. ret = parse_cgroupfs_options(data, &opts);
  1324. mutex_unlock(&cgroup_mutex);
  1325. if (ret)
  1326. goto out_err;
  1327. /*
  1328. * Allocate a new cgroup root. We may not need it if we're
  1329. * reusing an existing hierarchy.
  1330. */
  1331. new_root = cgroup_root_from_opts(&opts);
  1332. if (IS_ERR(new_root)) {
  1333. ret = PTR_ERR(new_root);
  1334. goto drop_modules;
  1335. }
  1336. opts.new_root = new_root;
  1337. /* Locate an existing or new sb for this hierarchy */
  1338. sb = sget(fs_type, cgroup_test_super, cgroup_set_super, &opts);
  1339. if (IS_ERR(sb)) {
  1340. ret = PTR_ERR(sb);
  1341. cgroup_drop_root(opts.new_root);
  1342. goto drop_modules;
  1343. }
  1344. root = sb->s_fs_info;
  1345. BUG_ON(!root);
  1346. if (root == opts.new_root) {
  1347. /* We used the new root structure, so this is a new hierarchy */
  1348. struct list_head tmp_cg_links;
  1349. struct cgroup *root_cgrp = &root->top_cgroup;
  1350. struct cgroupfs_root *existing_root;
  1351. const struct cred *cred;
  1352. int i;
  1353. BUG_ON(sb->s_root != NULL);
  1354. ret = cgroup_get_rootdir(sb);
  1355. if (ret)
  1356. goto drop_new_super;
  1357. inode = sb->s_root->d_inode;
  1358. mutex_lock(&inode->i_mutex);
  1359. mutex_lock(&cgroup_mutex);
  1360. mutex_lock(&cgroup_root_mutex);
  1361. /* Check for name clashes with existing mounts */
  1362. ret = -EBUSY;
  1363. if (strlen(root->name))
  1364. for_each_active_root(existing_root)
  1365. if (!strcmp(existing_root->name, root->name))
  1366. goto unlock_drop;
  1367. /*
  1368. * We're accessing css_set_count without locking
  1369. * css_set_lock here, but that's OK - it can only be
  1370. * increased by someone holding cgroup_lock, and
  1371. * that's us. The worst that can happen is that we
  1372. * have some link structures left over
  1373. */
  1374. ret = allocate_cg_links(css_set_count, &tmp_cg_links);
  1375. if (ret)
  1376. goto unlock_drop;
  1377. ret = rebind_subsystems(root, root->subsys_bits);
  1378. if (ret == -EBUSY) {
  1379. free_cg_links(&tmp_cg_links);
  1380. goto unlock_drop;
  1381. }
  1382. /*
  1383. * There must be no failure case after here, since rebinding
  1384. * takes care of subsystems' refcounts, which are explicitly
  1385. * dropped in the failure exit path.
  1386. */
  1387. /* EBUSY should be the only error here */
  1388. BUG_ON(ret);
  1389. list_add(&root->root_list, &roots);
  1390. root_count++;
  1391. sb->s_root->d_fsdata = root_cgrp;
  1392. root->top_cgroup.dentry = sb->s_root;
  1393. /* Link the top cgroup in this hierarchy into all
  1394. * the css_set objects */
  1395. write_lock(&css_set_lock);
  1396. for (i = 0; i < CSS_SET_TABLE_SIZE; i++) {
  1397. struct hlist_head *hhead = &css_set_table[i];
  1398. struct hlist_node *node;
  1399. struct css_set *cg;
  1400. hlist_for_each_entry(cg, node, hhead, hlist)
  1401. link_css_set(&tmp_cg_links, cg, root_cgrp);
  1402. }
  1403. write_unlock(&css_set_lock);
  1404. free_cg_links(&tmp_cg_links);
  1405. BUG_ON(!list_empty(&root_cgrp->sibling));
  1406. BUG_ON(!list_empty(&root_cgrp->children));
  1407. BUG_ON(root->number_of_cgroups != 1);
  1408. cred = override_creds(&init_cred);
  1409. cgroup_populate_dir(root_cgrp);
  1410. revert_creds(cred);
  1411. mutex_unlock(&cgroup_root_mutex);
  1412. mutex_unlock(&cgroup_mutex);
  1413. mutex_unlock(&inode->i_mutex);
  1414. } else {
  1415. /*
  1416. * We re-used an existing hierarchy - the new root (if
  1417. * any) is not needed
  1418. */
  1419. cgroup_drop_root(opts.new_root);
  1420. /* no subsys rebinding, so refcounts don't change */
  1421. drop_parsed_module_refcounts(opts.subsys_bits);
  1422. }
  1423. kfree(opts.release_agent);
  1424. kfree(opts.name);
  1425. return dget(sb->s_root);
  1426. unlock_drop:
  1427. mutex_unlock(&cgroup_root_mutex);
  1428. mutex_unlock(&cgroup_mutex);
  1429. mutex_unlock(&inode->i_mutex);
  1430. drop_new_super:
  1431. deactivate_locked_super(sb);
  1432. drop_modules:
  1433. drop_parsed_module_refcounts(opts.subsys_bits);
  1434. out_err:
  1435. kfree(opts.release_agent);
  1436. kfree(opts.name);
  1437. return ERR_PTR(ret);
  1438. }
  1439. static void cgroup_kill_sb(struct super_block *sb) {
  1440. struct cgroupfs_root *root = sb->s_fs_info;
  1441. struct cgroup *cgrp = &root->top_cgroup;
  1442. int ret;
  1443. struct cg_cgroup_link *link;
  1444. struct cg_cgroup_link *saved_link;
  1445. BUG_ON(!root);
  1446. BUG_ON(root->number_of_cgroups != 1);
  1447. BUG_ON(!list_empty(&cgrp->children));
  1448. BUG_ON(!list_empty(&cgrp->sibling));
  1449. mutex_lock(&cgroup_mutex);
  1450. mutex_lock(&cgroup_root_mutex);
  1451. /* Rebind all subsystems back to the default hierarchy */
  1452. ret = rebind_subsystems(root, 0);
  1453. /* Shouldn't be able to fail ... */
  1454. BUG_ON(ret);
  1455. /*
  1456. * Release all the links from css_sets to this hierarchy's
  1457. * root cgroup
  1458. */
  1459. write_lock(&css_set_lock);
  1460. list_for_each_entry_safe(link, saved_link, &cgrp->css_sets,
  1461. cgrp_link_list) {
  1462. list_del(&link->cg_link_list);
  1463. list_del(&link->cgrp_link_list);
  1464. kfree(link);
  1465. }
  1466. write_unlock(&css_set_lock);
  1467. if (!list_empty(&root->root_list)) {
  1468. list_del(&root->root_list);
  1469. root_count--;
  1470. }
  1471. mutex_unlock(&cgroup_root_mutex);
  1472. mutex_unlock(&cgroup_mutex);
  1473. kill_litter_super(sb);
  1474. cgroup_drop_root(root);
  1475. }
  1476. static struct file_system_type cgroup_fs_type = {
  1477. .name = "cgroup",
  1478. .mount = cgroup_mount,
  1479. .kill_sb = cgroup_kill_sb,
  1480. };
  1481. static struct kobject *cgroup_kobj;
  1482. static inline struct cgroup *__d_cgrp(struct dentry *dentry)
  1483. {
  1484. return dentry->d_fsdata;
  1485. }
  1486. static inline struct cftype *__d_cft(struct dentry *dentry)
  1487. {
  1488. return dentry->d_fsdata;
  1489. }
  1490. /**
  1491. * cgroup_path - generate the path of a cgroup
  1492. * @cgrp: the cgroup in question
  1493. * @buf: the buffer to write the path into
  1494. * @buflen: the length of the buffer
  1495. *
  1496. * Called with cgroup_mutex held or else with an RCU-protected cgroup
  1497. * reference. Writes path of cgroup into buf. Returns 0 on success,
  1498. * -errno on error.
  1499. */
  1500. int cgroup_path(const struct cgroup *cgrp, char *buf, int buflen)
  1501. {
  1502. char *start;
  1503. struct dentry *dentry = rcu_dereference_check(cgrp->dentry,
  1504. cgroup_lock_is_held());
  1505. if (!dentry || cgrp == dummytop) {
  1506. /*
  1507. * Inactive subsystems have no dentry for their root
  1508. * cgroup
  1509. */
  1510. strcpy(buf, "/");
  1511. return 0;
  1512. }
  1513. start = buf + buflen;
  1514. *--start = '\0';
  1515. for (;;) {
  1516. int len = dentry->d_name.len;
  1517. if ((start -= len) < buf)
  1518. return -ENAMETOOLONG;
  1519. memcpy(start, dentry->d_name.name, len);
  1520. cgrp = cgrp->parent;
  1521. if (!cgrp)
  1522. break;
  1523. dentry = rcu_dereference_check(cgrp->dentry,
  1524. cgroup_lock_is_held());
  1525. if (!cgrp->parent)
  1526. continue;
  1527. if (--start < buf)
  1528. return -ENAMETOOLONG;
  1529. *start = '/';
  1530. }
  1531. memmove(buf, start, buf + buflen - start);
  1532. return 0;
  1533. }
  1534. EXPORT_SYMBOL_GPL(cgroup_path);
  1535. /*
  1536. * Control Group taskset
  1537. */
  1538. struct task_and_cgroup {
  1539. struct task_struct *task;
  1540. struct cgroup *cgrp;
  1541. };
  1542. struct cgroup_taskset {
  1543. struct task_and_cgroup single;
  1544. struct flex_array *tc_array;
  1545. int tc_array_len;
  1546. int idx;
  1547. struct cgroup *cur_cgrp;
  1548. };
  1549. /**
  1550. * cgroup_taskset_first - reset taskset and return the first task
  1551. * @tset: taskset of interest
  1552. *
  1553. * @tset iteration is initialized and the first task is returned.
  1554. */
  1555. struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset)
  1556. {
  1557. if (tset->tc_array) {
  1558. tset->idx = 0;
  1559. return cgroup_taskset_next(tset);
  1560. } else {
  1561. tset->cur_cgrp = tset->single.cgrp;
  1562. return tset->single.task;
  1563. }
  1564. }
  1565. EXPORT_SYMBOL_GPL(cgroup_taskset_first);
  1566. /**
  1567. * cgroup_taskset_next - iterate to the next task in taskset
  1568. * @tset: taskset of interest
  1569. *
  1570. * Return the next task in @tset. Iteration must have been initialized
  1571. * with cgroup_taskset_first().
  1572. */
  1573. struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset)
  1574. {
  1575. struct task_and_cgroup *tc;
  1576. if (!tset->tc_array || tset->idx >= tset->tc_array_len)
  1577. return NULL;
  1578. tc = flex_array_get(tset->tc_array, tset->idx++);
  1579. tset->cur_cgrp = tc->cgrp;
  1580. return tc->task;
  1581. }
  1582. EXPORT_SYMBOL_GPL(cgroup_taskset_next);
  1583. /**
  1584. * cgroup_taskset_cur_cgroup - return the matching cgroup for the current task
  1585. * @tset: taskset of interest
  1586. *
  1587. * Return the cgroup for the current (last returned) task of @tset. This
  1588. * function must be preceded by either cgroup_taskset_first() or
  1589. * cgroup_taskset_next().
  1590. */
  1591. struct cgroup *cgroup_taskset_cur_cgroup(struct cgroup_taskset *tset)
  1592. {
  1593. return tset->cur_cgrp;
  1594. }
  1595. EXPORT_SYMBOL_GPL(cgroup_taskset_cur_cgroup);
  1596. /**
  1597. * cgroup_taskset_size - return the number of tasks in taskset
  1598. * @tset: taskset of interest
  1599. */
  1600. int cgroup_taskset_size(struct cgroup_taskset *tset)
  1601. {
  1602. return tset->tc_array ? tset->tc_array_len : 1;
  1603. }
  1604. EXPORT_SYMBOL_GPL(cgroup_taskset_size);
  1605. /*
  1606. * cgroup_task_migrate - move a task from one cgroup to another.
  1607. *
  1608. * 'guarantee' is set if the caller promises that a new css_set for the task
  1609. * will already exist. If not set, this function might sleep, and can fail with
  1610. * -ENOMEM. Must be called with cgroup_mutex and threadgroup locked.
  1611. */
  1612. static int cgroup_task_migrate(struct cgroup *cgrp, struct cgroup *oldcgrp,
  1613. struct task_struct *tsk, bool guarantee)
  1614. {
  1615. struct css_set *oldcg;
  1616. struct css_set *newcg;
  1617. /*
  1618. * We are synchronized through threadgroup_lock() against PF_EXITING
  1619. * setting such that we can't race against cgroup_exit() changing the
  1620. * css_set to init_css_set and dropping the old one.
  1621. */
  1622. WARN_ON_ONCE(tsk->flags & PF_EXITING);
  1623. oldcg = tsk->cgroups;
  1624. /* locate or allocate a new css_set for this task. */
  1625. if (guarantee) {
  1626. /* we know the css_set we want already exists. */
  1627. struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT];
  1628. read_lock(&css_set_lock);
  1629. newcg = find_existing_css_set(oldcg, cgrp, template);
  1630. BUG_ON(!newcg);
  1631. get_css_set(newcg);
  1632. read_unlock(&css_set_lock);
  1633. } else {
  1634. might_sleep();
  1635. /* find_css_set will give us newcg already referenced. */
  1636. newcg = find_css_set(oldcg, cgrp);
  1637. if (!newcg)
  1638. return -ENOMEM;
  1639. }
  1640. task_lock(tsk);
  1641. rcu_assign_pointer(tsk->cgroups, newcg);
  1642. task_unlock(tsk);
  1643. /* Update the css_set linked lists if we're using them */
  1644. write_lock(&css_set_lock);
  1645. if (!list_empty(&tsk->cg_list))
  1646. list_move(&tsk->cg_list, &newcg->tasks);
  1647. write_unlock(&css_set_lock);
  1648. /*
  1649. * We just gained a reference on oldcg by taking it from the task. As
  1650. * trading it for newcg is protected by cgroup_mutex, we're safe to drop
  1651. * it here; it will be freed under RCU.
  1652. */
  1653. put_css_set(oldcg);
  1654. set_bit(CGRP_RELEASABLE, &oldcgrp->flags);
  1655. return 0;
  1656. }
  1657. /**
  1658. * cgroup_attach_task - attach task 'tsk' to cgroup 'cgrp'
  1659. * @cgrp: the cgroup the task is attaching to
  1660. * @tsk: the task to be attached
  1661. *
  1662. * Call with cgroup_mutex and threadgroup locked. May take task_lock of
  1663. * @tsk during call.
  1664. */
  1665. int cgroup_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
  1666. {
  1667. int retval;
  1668. struct cgroup_subsys *ss, *failed_ss = NULL;
  1669. struct cgroup *oldcgrp;
  1670. struct cgroupfs_root *root = cgrp->root;
  1671. struct cgroup_taskset tset = { };
  1672. /* @tsk either already exited or can't exit until the end */
  1673. if (tsk->flags & PF_EXITING)
  1674. return -ESRCH;
  1675. /* Nothing to do if the task is already in that cgroup */
  1676. oldcgrp = task_cgroup_from_root(tsk, root);
  1677. if (cgrp == oldcgrp)
  1678. return 0;
  1679. tset.single.task = tsk;
  1680. tset.single.cgrp = oldcgrp;
  1681. for_each_subsys(root, ss) {
  1682. if (ss->can_attach) {
  1683. retval = ss->can_attach(ss, cgrp, &tset);
  1684. if (retval) {
  1685. /*
  1686. * Remember on which subsystem the can_attach()
  1687. * failed, so that we only call cancel_attach()
  1688. * against the subsystems whose can_attach()
  1689. * succeeded. (See below)
  1690. */
  1691. failed_ss = ss;
  1692. goto out;
  1693. }
  1694. }
  1695. }
  1696. retval = cgroup_task_migrate(cgrp, oldcgrp, tsk, false);
  1697. if (retval)
  1698. goto out;
  1699. for_each_subsys(root, ss) {
  1700. if (ss->attach)
  1701. ss->attach(ss, cgrp, &tset);
  1702. }
  1703. synchronize_rcu();
  1704. /*
  1705. * wake up rmdir() waiter. the rmdir should fail since the cgroup
  1706. * is no longer empty.
  1707. */
  1708. cgroup_wakeup_rmdir_waiter(cgrp);
  1709. out:
  1710. if (retval) {
  1711. for_each_subsys(root, ss) {
  1712. if (ss == failed_ss)
  1713. /*
  1714. * This subsystem was the one that failed the
  1715. * can_attach() check earlier, so we don't need
  1716. * to call cancel_attach() against it or any
  1717. * remaining subsystems.
  1718. */
  1719. break;
  1720. if (ss->cancel_attach)
  1721. ss->cancel_attach(ss, cgrp, &tset);
  1722. }
  1723. }
  1724. return retval;
  1725. }
  1726. /**
  1727. * cgroup_attach_task_all - attach task 'tsk' to all cgroups of task 'from'
  1728. * @from: attach to all cgroups of a given task
  1729. * @tsk: the task to be attached
  1730. */
  1731. int cgroup_attach_task_all(struct task_struct *from, struct task_struct *tsk)
  1732. {
  1733. struct cgroupfs_root *root;
  1734. int retval = 0;
  1735. cgroup_lock();
  1736. for_each_active_root(root) {
  1737. struct cgroup *from_cg = task_cgroup_from_root(from, root);
  1738. retval = cgroup_attach_task(from_cg, tsk);
  1739. if (retval)
  1740. break;
  1741. }
  1742. cgroup_unlock();
  1743. return retval;
  1744. }
  1745. EXPORT_SYMBOL_GPL(cgroup_attach_task_all);
  1746. /*
  1747. * cgroup_attach_proc works in two stages, the first of which prefetches all
  1748. * new css_sets needed (to make sure we have enough memory before committing
  1749. * to the move) and stores them in a list of entries of the following type.
  1750. * TODO: possible optimization: use css_set->rcu_head for chaining instead
  1751. */
  1752. struct cg_list_entry {
  1753. struct css_set *cg;
  1754. struct list_head links;
  1755. };
  1756. static bool css_set_check_fetched(struct cgroup *cgrp,
  1757. struct task_struct *tsk, struct css_set *cg,
  1758. struct list_head *newcg_list)
  1759. {
  1760. struct css_set *newcg;
  1761. struct cg_list_entry *cg_entry;
  1762. struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT];
  1763. read_lock(&css_set_lock);
  1764. newcg = find_existing_css_set(cg, cgrp, template);
  1765. read_unlock(&css_set_lock);
  1766. /* doesn't exist at all? */
  1767. if (!newcg)
  1768. return false;
  1769. /* see if it's already in the list */
  1770. list_for_each_entry(cg_entry, newcg_list, links)
  1771. if (cg_entry->cg == newcg)
  1772. return true;
  1773. /* not found */
  1774. return false;
  1775. }
  1776. /*
  1777. * Find the new css_set and store it in the list in preparation for moving the
  1778. * given task to the given cgroup. Returns 0 or -ENOMEM.
  1779. */
  1780. static int css_set_prefetch(struct cgroup *cgrp, struct css_set *cg,
  1781. struct list_head *newcg_list)
  1782. {
  1783. struct css_set *newcg;
  1784. struct cg_list_entry *cg_entry;
  1785. /* ensure a new css_set will exist for this thread */
  1786. newcg = find_css_set(cg, cgrp);
  1787. if (!newcg)
  1788. return -ENOMEM;
  1789. /* add it to the list */
  1790. cg_entry = kmalloc(sizeof(struct cg_list_entry), GFP_KERNEL);
  1791. if (!cg_entry) {
  1792. put_css_set(newcg);
  1793. return -ENOMEM;
  1794. }
  1795. cg_entry->cg = newcg;
  1796. list_add(&cg_entry->links, newcg_list);
  1797. return 0;
  1798. }
  1799. /**
  1800. * cgroup_attach_proc - attach all threads in a threadgroup to a cgroup
  1801. * @cgrp: the cgroup to attach to
  1802. * @leader: the threadgroup leader task_struct of the group to be attached
  1803. *
  1804. * Call holding cgroup_mutex and the group_rwsem of the leader. Will take
  1805. * task_lock of each thread in leader's threadgroup individually in turn.
  1806. */
  1807. int cgroup_attach_proc(struct cgroup *cgrp, struct task_struct *leader)
  1808. {
  1809. int retval, i, group_size;
  1810. struct cgroup_subsys *ss, *failed_ss = NULL;
  1811. /* guaranteed to be initialized later, but the compiler needs this */
  1812. struct css_set *oldcg;
  1813. struct cgroupfs_root *root = cgrp->root;
  1814. /* threadgroup list cursor and array */
  1815. struct task_struct *tsk;
  1816. struct task_and_cgroup *tc;
  1817. struct flex_array *group;
  1818. struct cgroup_taskset tset = { };
  1819. /*
  1820. * we need to make sure we have css_sets for all the tasks we're
  1821. * going to move -before- we actually start moving them, so that in
  1822. * case we get an ENOMEM we can bail out before making any changes.
  1823. */
  1824. struct list_head newcg_list;
  1825. struct cg_list_entry *cg_entry, *temp_nobe;
  1826. /*
  1827. * step 0: in order to do expensive, possibly blocking operations for
  1828. * every thread, we cannot iterate the thread group list, since it needs
  1829. * rcu or tasklist locked. instead, build an array of all threads in the
  1830. * group - group_rwsem prevents new threads from appearing, and if
  1831. * threads exit, this will just be an over-estimate.
  1832. */
  1833. group_size = get_nr_threads(leader);
  1834. /* flex_array supports very large thread-groups better than kmalloc. */
  1835. group = flex_array_alloc(sizeof(*tc), group_size, GFP_KERNEL);
  1836. if (!group)
  1837. return -ENOMEM;
  1838. /* pre-allocate to guarantee space while iterating in rcu read-side. */
  1839. retval = flex_array_prealloc(group, 0, group_size - 1, GFP_KERNEL);
  1840. if (retval)
  1841. goto out_free_group_list;
  1842. /* prevent changes to the threadgroup list while we take a snapshot. */
  1843. read_lock(&tasklist_lock);
  1844. if (!thread_group_leader(leader)) {
  1845. /*
  1846. * a race with de_thread from another thread's exec() may strip
  1847. * us of our leadership, making while_each_thread unsafe to use
  1848. * on this task. if this happens, there is no choice but to
  1849. * throw this task away and try again (from cgroup_procs_write);
  1850. * this is "double-double-toil-and-trouble-check locking".
  1851. */
  1852. read_unlock(&tasklist_lock);
  1853. retval = -EAGAIN;
  1854. goto out_free_group_list;
  1855. }
  1856. tsk = leader;
  1857. i = 0;
  1858. do {
  1859. struct task_and_cgroup ent;
  1860. /* @tsk either already exited or can't exit until the end */
  1861. if (tsk->flags & PF_EXITING)
  1862. continue;
  1863. /* as per above, nr_threads may decrease, but not increase. */
  1864. BUG_ON(i >= group_size);
  1865. /*
  1866. * saying GFP_ATOMIC has no effect here because we did prealloc
  1867. * earlier, but it's good form to communicate our expectations.
  1868. */
  1869. ent.task = tsk;
  1870. ent.cgrp = task_cgroup_from_root(tsk, root);
  1871. /* nothing to do if this task is already in the cgroup */
  1872. if (ent.cgrp == cgrp)
  1873. continue;
  1874. retval = flex_array_put(group, i, &ent, GFP_ATOMIC);
  1875. BUG_ON(retval != 0);
  1876. i++;
  1877. } while_each_thread(leader, tsk);
  1878. /* remember the number of threads in the array for later. */
  1879. group_size = i;
  1880. tset.tc_array = group;
  1881. tset.tc_array_len = group_size;
  1882. read_unlock(&tasklist_lock);
  1883. /* methods shouldn't be called if no task is actually migrating */
  1884. retval = 0;
  1885. if (!group_size)
  1886. goto out_free_group_list;
  1887. /*
  1888. * step 1: check that we can legitimately attach to the cgroup.
  1889. */
  1890. for_each_subsys(root, ss) {
  1891. if (ss->can_attach) {
  1892. retval = ss->can_attach(ss, cgrp, &tset);
  1893. if (retval) {
  1894. failed_ss = ss;
  1895. goto out_cancel_attach;
  1896. }
  1897. }
  1898. }
  1899. /*
  1900. * step 2: make sure css_sets exist for all threads to be migrated.
  1901. * we use find_css_set, which allocates a new one if necessary.
  1902. */
  1903. INIT_LIST_HEAD(&newcg_list);
  1904. for (i = 0; i < group_size; i++) {
  1905. tc = flex_array_get(group, i);
  1906. oldcg = tc->task->cgroups;
  1907. /* if we don't already have it in the list get a new one */
  1908. if (!css_set_check_fetched(cgrp, tc->task, oldcg, &newcg_list))
  1909. if (retval = css_set_prefetch(cgrp, oldcg, &newcg_list))
  1910. goto out_list_teardown;
  1911. }
  1912. /*
  1913. * step 3: now that we're guaranteed success wrt the css_sets,
  1914. * proceed to move all tasks to the new cgroup. There are no
  1915. * failure cases after here, so this is the commit point.
  1916. */
  1917. for (i = 0; i < group_size; i++) {
  1918. tc = flex_array_get(group, i);
  1919. retval = cgroup_task_migrate(cgrp, tc->cgrp, tc->task, true);
  1920. BUG_ON(retval);
  1921. }
  1922. /* nothing is sensitive to fork() after this point. */
  1923. /*
  1924. * step 4: do subsystem attach callbacks.
  1925. */
  1926. for_each_subsys(root, ss) {
  1927. if (ss->attach)
  1928. ss->attach(ss, cgrp, &tset);
  1929. }
  1930. /*
  1931. * step 5: success! and cleanup
  1932. */
  1933. synchronize_rcu();
  1934. cgroup_wakeup_rmdir_waiter(cgrp);
  1935. retval = 0;
  1936. out_list_teardown:
  1937. /* clean up the list of prefetched css_sets. */
  1938. list_for_each_entry_safe(cg_entry, temp_nobe, &newcg_list, links) {
  1939. list_del(&cg_entry->links);
  1940. put_css_set(cg_entry->cg);
  1941. kfree(cg_entry);
  1942. }
  1943. out_cancel_attach:
  1944. /* same deal as in cgroup_attach_task */
  1945. if (retval) {
  1946. for_each_subsys(root, ss) {
  1947. if (ss == failed_ss)
  1948. break;
  1949. if (ss->cancel_attach)
  1950. ss->cancel_attach(ss, cgrp, &tset);
  1951. }
  1952. }
  1953. out_free_group_list:
  1954. flex_array_free(group);
  1955. return retval;
  1956. }
  1957. /*
  1958. * Find the task_struct of the task to attach by vpid and pass it along to the
  1959. * function to attach either it or all tasks in its threadgroup. Will lock
  1960. * cgroup_mutex and threadgroup; may take task_lock of task.
  1961. */
  1962. static int attach_task_by_pid(struct cgroup *cgrp, u64 pid, bool threadgroup)
  1963. {
  1964. struct task_struct *tsk;
  1965. const struct cred *cred = current_cred(), *tcred;
  1966. int ret;
  1967. if (!cgroup_lock_live_group(cgrp))
  1968. return -ENODEV;
  1969. if (pid) {
  1970. rcu_read_lock();
  1971. tsk = find_task_by_vpid(pid);
  1972. if (!tsk) {
  1973. rcu_read_unlock();
  1974. cgroup_unlock();
  1975. return -ESRCH;
  1976. }
  1977. if (threadgroup) {
  1978. /*
  1979. * RCU protects this access, since tsk was found in the
  1980. * tid map. a race with de_thread may cause group_leader
  1981. * to stop being the leader, but cgroup_attach_proc will
  1982. * detect it later.
  1983. */
  1984. tsk = tsk->group_leader;
  1985. }
  1986. /*
  1987. * even if we're attaching all tasks in the thread group, we
  1988. * only need to check permissions on one of them.
  1989. */
  1990. tcred = __task_cred(tsk);
  1991. if (cred->euid &&
  1992. cred->euid != tcred->uid &&
  1993. cred->euid != tcred->suid) {
  1994. rcu_read_unlock();
  1995. cgroup_unlock();
  1996. return -EACCES;
  1997. }
  1998. get_task_struct(tsk);
  1999. rcu_read_unlock();
  2000. } else {
  2001. if (threadgroup)
  2002. tsk = current->group_leader;
  2003. else
  2004. tsk = current;
  2005. get_task_struct(tsk);
  2006. }
  2007. threadgroup_lock(tsk);
  2008. if (threadgroup)
  2009. ret = cgroup_attach_proc(cgrp, tsk);
  2010. else
  2011. ret = cgroup_attach_task(cgrp, tsk);
  2012. threadgroup_unlock(tsk);
  2013. put_task_struct(tsk);
  2014. cgroup_unlock();
  2015. return ret;
  2016. }
  2017. static int cgroup_tasks_write(struct cgroup *cgrp, struct cftype *cft, u64 pid)
  2018. {
  2019. return attach_task_by_pid(cgrp, pid, false);
  2020. }
  2021. static int cgroup_procs_write(struct cgroup *cgrp, struct cftype *cft, u64 tgid)
  2022. {
  2023. int ret;
  2024. do {
  2025. /*
  2026. * attach_proc fails with -EAGAIN if threadgroup leadership
  2027. * changes in the middle of the operation, in which case we need
  2028. * to find the task_struct for the new leader and start over.
  2029. */
  2030. ret = attach_task_by_pid(cgrp, tgid, true);
  2031. } while (ret == -EAGAIN);
  2032. return ret;
  2033. }
  2034. /**
  2035. * cgroup_lock_live_group - take cgroup_mutex and check that cgrp is alive.
  2036. * @cgrp: the cgroup to be checked for liveness
  2037. *
  2038. * On success, returns true; the lock should be later released with
  2039. * cgroup_unlock(). On failure returns false with no lock held.
  2040. */
  2041. bool cgroup_lock_live_group(struct cgroup *cgrp)
  2042. {
  2043. mutex_lock(&cgroup_mutex);
  2044. if (cgroup_is_removed(cgrp)) {
  2045. mutex_unlock(&cgroup_mutex);
  2046. return false;
  2047. }
  2048. return true;
  2049. }
  2050. EXPORT_SYMBOL_GPL(cgroup_lock_live_group);
  2051. static int cgroup_release_agent_write(struct cgroup *cgrp, struct cftype *cft,
  2052. const char *buffer)
  2053. {
  2054. BUILD_BUG_ON(sizeof(cgrp->root->release_agent_path) < PATH_MAX);
  2055. if (strlen(buffer) >= PATH_MAX)
  2056. return -EINVAL;
  2057. if (!cgroup_lock_live_group(cgrp))
  2058. return -ENODEV;
  2059. mutex_lock(&cgroup_root_mutex);
  2060. strcpy(cgrp->root->release_agent_path, buffer);
  2061. mutex_unlock(&cgroup_root_mutex);
  2062. cgroup_unlock();
  2063. return 0;
  2064. }
  2065. static int cgroup_release_agent_show(struct cgroup *cgrp, struct cftype *cft,
  2066. struct seq_file *seq)
  2067. {
  2068. if (!cgroup_lock_live_group(cgrp))
  2069. return -ENODEV;
  2070. seq_puts(seq, cgrp->root->release_agent_path);
  2071. seq_putc(seq, '\n');
  2072. cgroup_unlock();
  2073. return 0;
  2074. }
  2075. /* A buffer size big enough for numbers or short strings */
  2076. #define CGROUP_LOCAL_BUFFER_SIZE 64
  2077. static ssize_t cgroup_write_X64(struct cgroup *cgrp, struct cftype *cft,
  2078. struct file *file,
  2079. const char __user *userbuf,
  2080. size_t nbytes, loff_t *unused_ppos)
  2081. {
  2082. char buffer[CGROUP_LOCAL_BUFFER_SIZE];
  2083. int retval = 0;
  2084. char *end;
  2085. if (!nbytes)
  2086. return -EINVAL;
  2087. if (nbytes >= sizeof(buffer))
  2088. return -E2BIG;
  2089. if (copy_from_user(buffer, userbuf, nbytes))
  2090. return -EFAULT;
  2091. buffer[nbytes] = 0; /* nul-terminate */
  2092. if (cft->write_u64) {
  2093. u64 val = simple_strtoull(strstrip(buffer), &end, 0);
  2094. if (*end)
  2095. return -EINVAL;
  2096. retval = cft->write_u64(cgrp, cft, val);
  2097. } else {
  2098. s64 val = simple_strtoll(strstrip(buffer), &end, 0);
  2099. if (*end)
  2100. return -EINVAL;
  2101. retval = cft->write_s64(cgrp, cft, val);
  2102. }
  2103. if (!retval)
  2104. retval = nbytes;
  2105. return retval;
  2106. }
  2107. static ssize_t cgroup_write_string(struct cgroup *cgrp, struct cftype *cft,
  2108. struct file *file,
  2109. const char __user *userbuf,
  2110. size_t nbytes, loff_t *unused_ppos)
  2111. {
  2112. char local_buffer[CGROUP_LOCAL_BUFFER_SIZE];
  2113. int retval = 0;
  2114. size_t max_bytes = cft->max_write_len;
  2115. char *buffer = local_buffer;
  2116. if (!max_bytes)
  2117. max_bytes = sizeof(local_buffer) - 1;
  2118. if (nbytes >= max_bytes)
  2119. return -E2BIG;
  2120. /* Allocate a dynamic buffer if we need one */
  2121. if (nbytes >= sizeof(local_buffer)) {
  2122. buffer = kmalloc(nbytes + 1, GFP_KERNEL);
  2123. if (buffer == NULL)
  2124. return -ENOMEM;
  2125. }
  2126. if (nbytes && copy_from_user(buffer, userbuf, nbytes)) {
  2127. retval = -EFAULT;
  2128. goto out;
  2129. }
  2130. buffer[nbytes] = 0; /* nul-terminate */
  2131. retval = cft->write_string(cgrp, cft, strstrip(buffer));
  2132. if (!retval)
  2133. retval = nbytes;
  2134. out:
  2135. if (buffer != local_buffer)
  2136. kfree(buffer);
  2137. return retval;
  2138. }
  2139. static ssize_t cgroup_file_write(struct file *file, const char __user *buf,
  2140. size_t nbytes, loff_t *ppos)
  2141. {
  2142. struct cftype *cft = __d_cft(file->f_dentry);
  2143. struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
  2144. if (cgroup_is_removed(cgrp))
  2145. return -ENODEV;
  2146. if (cft->write)
  2147. return cft->write(cgrp, cft, file, buf, nbytes, ppos);
  2148. if (cft->write_u64 || cft->write_s64)
  2149. return cgroup_write_X64(cgrp, cft, file, buf, nbytes, ppos);
  2150. if (cft->write_string)
  2151. return cgroup_write_string(cgrp, cft, file, buf, nbytes, ppos);
  2152. if (cft->trigger) {
  2153. int ret = cft->trigger(cgrp, (unsigned int)cft->private);
  2154. return ret ? ret : nbytes;
  2155. }
  2156. return -EINVAL;
  2157. }
  2158. static ssize_t cgroup_read_u64(struct cgroup *cgrp, struct cftype *cft,
  2159. struct file *file,
  2160. char __user *buf, size_t nbytes,
  2161. loff_t *ppos)
  2162. {
  2163. char tmp[CGROUP_LOCAL_BUFFER_SIZE];
  2164. u64 val = cft->read_u64(cgrp, cft);
  2165. int len = sprintf(tmp, "%llu\n", (unsigned long long) val);
  2166. return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
  2167. }
  2168. static ssize_t cgroup_read_s64(struct cgroup *cgrp, struct cftype *cft,
  2169. struct file *file,
  2170. char __user *buf, size_t nbytes,
  2171. loff_t *ppos)
  2172. {
  2173. char tmp[CGROUP_LOCAL_BUFFER_SIZE];
  2174. s64 val = cft->read_s64(cgrp, cft);
  2175. int len = sprintf(tmp, "%lld\n", (long long) val);
  2176. return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
  2177. }
  2178. static ssize_t cgroup_file_read(struct file *file, char __user *buf,
  2179. size_t nbytes, loff_t *ppos)
  2180. {
  2181. struct cftype *cft = __d_cft(file->f_dentry);
  2182. struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
  2183. if (cgroup_is_removed(cgrp))
  2184. return -ENODEV;
  2185. if (cft->read)
  2186. return cft->read(cgrp, cft, file, buf, nbytes, ppos);
  2187. if (cft->read_u64)
  2188. return cgroup_read_u64(cgrp, cft, file, buf, nbytes, ppos);
  2189. if (cft->read_s64)
  2190. return cgroup_read_s64(cgrp, cft, file, buf, nbytes, ppos);
  2191. return -EINVAL;
  2192. }
  2193. /*
  2194. * seqfile ops/methods for returning structured data. Currently just
  2195. * supports string->u64 maps, but can be extended in future.
  2196. */
  2197. struct cgroup_seqfile_state {
  2198. struct cftype *cft;
  2199. struct cgroup *cgroup;
  2200. };
  2201. static int cgroup_map_add(struct cgroup_map_cb *cb, const char *key, u64 value)
  2202. {
  2203. struct seq_file *sf = cb->state;
  2204. return seq_printf(sf, "%s %llu\n", key, (unsigned long long)value);
  2205. }
  2206. static int cgroup_seqfile_show(struct seq_file *m, void *arg)
  2207. {
  2208. struct cgroup_seqfile_state *state = m->private;
  2209. struct cftype *cft = state->cft;
  2210. if (cft->read_map) {
  2211. struct cgroup_map_cb cb = {
  2212. .fill = cgroup_map_add,
  2213. .state = m,
  2214. };
  2215. return cft->read_map(state->cgroup, cft, &cb);
  2216. }
  2217. return cft->read_seq_string(state->cgroup, cft, m);
  2218. }
  2219. static int cgroup_seqfile_release(struct inode *inode, struct file *file)
  2220. {
  2221. struct seq_file *seq = file->private_data;
  2222. kfree(seq->private);
  2223. return single_release(inode, file);
  2224. }
  2225. static const struct file_operations cgroup_seqfile_operations = {
  2226. .read = seq_read,
  2227. .write = cgroup_file_write,
  2228. .llseek = seq_lseek,
  2229. .release = cgroup_seqfile_release,
  2230. };
  2231. static int cgroup_file_open(struct inode *inode, struct file *file)
  2232. {
  2233. int err;
  2234. struct cftype *cft;
  2235. err = generic_file_open(inode, file);
  2236. if (err)
  2237. return err;
  2238. cft = __d_cft(file->f_dentry);
  2239. if (cft->read_map || cft->read_seq_string) {
  2240. struct cgroup_seqfile_state *state =
  2241. kzalloc(sizeof(*state), GFP_USER);
  2242. if (!state)
  2243. return -ENOMEM;
  2244. state->cft = cft;
  2245. state->cgroup = __d_cgrp(file->f_dentry->d_parent);
  2246. file->f_op = &cgroup_seqfile_operations;
  2247. err = single_open(file, cgroup_seqfile_show, state);
  2248. if (err < 0)
  2249. kfree(state);
  2250. } else if (cft->open)
  2251. err = cft->open(inode, file);
  2252. else
  2253. err = 0;
  2254. return err;
  2255. }
  2256. static int cgroup_file_release(struct inode *inode, struct file *file)
  2257. {
  2258. struct cftype *cft = __d_cft(file->f_dentry);
  2259. if (cft->release)
  2260. return cft->release(inode, file);
  2261. return 0;
  2262. }
  2263. /*
  2264. * cgroup_rename - Only allow simple rename of directories in place.
  2265. */
  2266. static int cgroup_rename(struct inode *old_dir, struct dentry *old_dentry,
  2267. struct inode *new_dir, struct dentry *new_dentry)
  2268. {
  2269. if (!S_ISDIR(old_dentry->d_inode->i_mode))
  2270. return -ENOTDIR;
  2271. if (new_dentry->d_inode)
  2272. return -EEXIST;
  2273. if (old_dir != new_dir)
  2274. return -EIO;
  2275. return simple_rename(old_dir, old_dentry, new_dir, new_dentry);
  2276. }
  2277. static const struct file_operations cgroup_file_operations = {
  2278. .read = cgroup_file_read,
  2279. .write = cgroup_file_write,
  2280. .llseek = generic_file_llseek,
  2281. .open = cgroup_file_open,
  2282. .release = cgroup_file_release,
  2283. };
  2284. static const struct inode_operations cgroup_dir_inode_operations = {
  2285. .lookup = cgroup_lookup,
  2286. .mkdir = cgroup_mkdir,
  2287. .rmdir = cgroup_rmdir,
  2288. .rename = cgroup_rename,
  2289. };
  2290. static struct dentry *cgroup_lookup(struct inode *dir, struct dentry *dentry, struct nameidata *nd)
  2291. {
  2292. if (dentry->d_name.len > NAME_MAX)
  2293. return ERR_PTR(-ENAMETOOLONG);
  2294. d_add(dentry, NULL);
  2295. return NULL;
  2296. }
  2297. /*
  2298. * Check if a file is a control file
  2299. */
  2300. static inline struct cftype *__file_cft(struct file *file)
  2301. {
  2302. if (file->f_dentry->d_inode->i_fop != &cgroup_file_operations)
  2303. return ERR_PTR(-EINVAL);
  2304. return __d_cft(file->f_dentry);
  2305. }
  2306. static int cgroup_create_file(struct dentry *dentry, mode_t mode,
  2307. struct super_block *sb)
  2308. {
  2309. struct inode *inode;
  2310. if (!dentry)
  2311. return -ENOENT;
  2312. if (dentry->d_inode)
  2313. return -EEXIST;
  2314. inode = cgroup_new_inode(mode, sb);
  2315. if (!inode)
  2316. return -ENOMEM;
  2317. if (S_ISDIR(mode)) {
  2318. inode->i_op = &cgroup_dir_inode_operations;
  2319. inode->i_fop = &simple_dir_operations;
  2320. /* start off with i_nlink == 2 (for "." entry) */
  2321. inc_nlink(inode);
  2322. /* start with the directory inode held, so that we can
  2323. * populate it without racing with another mkdir */
  2324. mutex_lock_nested(&inode->i_mutex, I_MUTEX_CHILD);
  2325. } else if (S_ISREG(mode)) {
  2326. inode->i_size = 0;
  2327. inode->i_fop = &cgroup_file_operations;
  2328. }
  2329. d_instantiate(dentry, inode);
  2330. dget(dentry); /* Extra count - pin the dentry in core */
  2331. return 0;
  2332. }
  2333. /*
  2334. * cgroup_create_dir - create a directory for an object.
  2335. * @cgrp: the cgroup we create the directory for. It must have a valid
  2336. * ->parent field. And we are going to fill its ->dentry field.
  2337. * @dentry: dentry of the new cgroup
  2338. * @mode: mode to set on new directory.
  2339. */
  2340. static int cgroup_create_dir(struct cgroup *cgrp, struct dentry *dentry,
  2341. mode_t mode)
  2342. {
  2343. struct dentry *parent;
  2344. int error = 0;
  2345. parent = cgrp->parent->dentry;
  2346. error = cgroup_create_file(dentry, S_IFDIR | mode, cgrp->root->sb);
  2347. if (!error) {
  2348. dentry->d_fsdata = cgrp;
  2349. inc_nlink(parent->d_inode);
  2350. rcu_assign_pointer(cgrp->dentry, dentry);
  2351. dget(dentry);
  2352. }
  2353. dput(dentry);
  2354. return error;
  2355. }
  2356. /**
  2357. * cgroup_file_mode - deduce file mode of a control file
  2358. * @cft: the control file in question
  2359. *
  2360. * returns cft->mode if ->mode is not 0
  2361. * returns S_IRUGO|S_IWUSR if it has both a read and a write handler
  2362. * returns S_IRUGO if it has only a read handler
  2363. * returns S_IWUSR if it has only a write hander
  2364. */
  2365. static mode_t cgroup_file_mode(const struct cftype *cft)
  2366. {
  2367. mode_t mode = 0;
  2368. if (cft->mode)
  2369. return cft->mode;
  2370. if (cft->read || cft->read_u64 || cft->read_s64 ||
  2371. cft->read_map || cft->read_seq_string)
  2372. mode |= S_IRUGO;
  2373. if (cft->write || cft->write_u64 || cft->write_s64 ||
  2374. cft->write_string || cft->trigger)
  2375. mode |= S_IWUSR;
  2376. return mode;
  2377. }
  2378. int cgroup_add_file(struct cgroup *cgrp,
  2379. struct cgroup_subsys *subsys,
  2380. const struct cftype *cft)
  2381. {
  2382. struct dentry *dir = cgrp->dentry;
  2383. struct dentry *dentry;
  2384. int error;
  2385. mode_t mode;
  2386. char name[MAX_CGROUP_TYPE_NAMELEN + MAX_CFTYPE_NAME + 2] = { 0 };
  2387. if (subsys && !test_bit(ROOT_NOPREFIX, &cgrp->root->flags)) {
  2388. strcpy(name, subsys->name);
  2389. strcat(name, ".");
  2390. }
  2391. strcat(name, cft->name);
  2392. BUG_ON(!mutex_is_locked(&dir->d_inode->i_mutex));
  2393. dentry = lookup_one_len(name, dir, strlen(name));
  2394. if (!IS_ERR(dentry)) {
  2395. mode = cgroup_file_mode(cft);
  2396. error = cgroup_create_file(dentry, mode | S_IFREG,
  2397. cgrp->root->sb);
  2398. if (!error)
  2399. dentry->d_fsdata = (void *)cft;
  2400. dput(dentry);
  2401. } else
  2402. error = PTR_ERR(dentry);
  2403. return error;
  2404. }
  2405. EXPORT_SYMBOL_GPL(cgroup_add_file);
  2406. int cgroup_add_files(struct cgroup *cgrp,
  2407. struct cgroup_subsys *subsys,
  2408. const struct cftype cft[],
  2409. int count)
  2410. {
  2411. int i, err;
  2412. for (i = 0; i < count; i++) {
  2413. err = cgroup_add_file(cgrp, subsys, &cft[i]);
  2414. if (err)
  2415. return err;
  2416. }
  2417. return 0;
  2418. }
  2419. EXPORT_SYMBOL_GPL(cgroup_add_files);
  2420. /**
  2421. * cgroup_task_count - count the number of tasks in a cgroup.
  2422. * @cgrp: the cgroup in question
  2423. *
  2424. * Return the number of tasks in the cgroup.
  2425. */
  2426. int cgroup_task_count(const struct cgroup *cgrp)
  2427. {
  2428. int count = 0;
  2429. struct cg_cgroup_link *link;
  2430. read_lock(&css_set_lock);
  2431. list_for_each_entry(link, &cgrp->css_sets, cgrp_link_list) {
  2432. count += atomic_read(&link->cg->refcount);
  2433. }
  2434. read_unlock(&css_set_lock);
  2435. return count;
  2436. }
  2437. /*
  2438. * Advance a list_head iterator. The iterator should be positioned at
  2439. * the start of a css_set
  2440. */
  2441. static void cgroup_advance_iter(struct cgroup *cgrp,
  2442. struct cgroup_iter *it)
  2443. {
  2444. struct list_head *l = it->cg_link;
  2445. struct cg_cgroup_link *link;
  2446. struct css_set *cg;
  2447. /* Advance to the next non-empty css_set */
  2448. do {
  2449. l = l->next;
  2450. if (l == &cgrp->css_sets) {
  2451. it->cg_link = NULL;
  2452. return;
  2453. }
  2454. link = list_entry(l, struct cg_cgroup_link, cgrp_link_list);
  2455. cg = link->cg;
  2456. } while (list_empty(&cg->tasks));
  2457. it->cg_link = l;
  2458. it->task = cg->tasks.next;
  2459. }
  2460. /*
  2461. * To reduce the fork() overhead for systems that are not actually
  2462. * using their cgroups capability, we don't maintain the lists running
  2463. * through each css_set to its tasks until we see the list actually
  2464. * used - in other words after the first call to cgroup_iter_start().
  2465. *
  2466. * The tasklist_lock is not held here, as do_each_thread() and
  2467. * while_each_thread() are protected by RCU.
  2468. */
  2469. static void cgroup_enable_task_cg_lists(void)
  2470. {
  2471. struct task_struct *p, *g;
  2472. write_lock(&css_set_lock);
  2473. use_task_css_set_links = 1;
  2474. do_each_thread(g, p) {
  2475. task_lock(p);
  2476. /*
  2477. * We should check if the process is exiting, otherwise
  2478. * it will race with cgroup_exit() in that the list
  2479. * entry won't be deleted though the process has exited.
  2480. */
  2481. if (!(p->flags & PF_EXITING) && list_empty(&p->cg_list))
  2482. list_add(&p->cg_list, &p->cgroups->tasks);
  2483. task_unlock(p);
  2484. } while_each_thread(g, p);
  2485. write_unlock(&css_set_lock);
  2486. }
  2487. void cgroup_iter_start(struct cgroup *cgrp, struct cgroup_iter *it)
  2488. {
  2489. /*
  2490. * The first time anyone tries to iterate across a cgroup,
  2491. * we need to enable the list linking each css_set to its
  2492. * tasks, and fix up all existing tasks.
  2493. */
  2494. if (!use_task_css_set_links)
  2495. cgroup_enable_task_cg_lists();
  2496. read_lock(&css_set_lock);
  2497. it->cg_link = &cgrp->css_sets;
  2498. cgroup_advance_iter(cgrp, it);
  2499. }
  2500. struct task_struct *cgroup_iter_next(struct cgroup *cgrp,
  2501. struct cgroup_iter *it)
  2502. {
  2503. struct task_struct *res;
  2504. struct list_head *l = it->task;
  2505. struct cg_cgroup_link *link;
  2506. /* If the iterator cg is NULL, we have no tasks */
  2507. if (!it->cg_link)
  2508. return NULL;
  2509. res = list_entry(l, struct task_struct, cg_list);
  2510. /* Advance iterator to find next entry */
  2511. l = l->next;
  2512. link = list_entry(it->cg_link, struct cg_cgroup_link, cgrp_link_list);
  2513. if (l == &link->cg->tasks) {
  2514. /* We reached the end of this task list - move on to
  2515. * the next cg_cgroup_link */
  2516. cgroup_advance_iter(cgrp, it);
  2517. } else {
  2518. it->task = l;
  2519. }
  2520. return res;
  2521. }
  2522. void cgroup_iter_end(struct cgroup *cgrp, struct cgroup_iter *it)
  2523. {
  2524. read_unlock(&css_set_lock);
  2525. }
  2526. static inline int started_after_time(struct task_struct *t1,
  2527. struct timespec *time,
  2528. struct task_struct *t2)
  2529. {
  2530. int start_diff = timespec_compare(&t1->start_time, time);
  2531. if (start_diff > 0) {
  2532. return 1;
  2533. } else if (start_diff < 0) {
  2534. return 0;
  2535. } else {
  2536. /*
  2537. * Arbitrarily, if two processes started at the same
  2538. * time, we'll say that the lower pointer value
  2539. * started first. Note that t2 may have exited by now
  2540. * so this may not be a valid pointer any longer, but
  2541. * that's fine - it still serves to distinguish
  2542. * between two tasks started (effectively) simultaneously.
  2543. */
  2544. return t1 > t2;
  2545. }
  2546. }
  2547. /*
  2548. * This function is a callback from heap_insert() and is used to order
  2549. * the heap.
  2550. * In this case we order the heap in descending task start time.
  2551. */
  2552. static inline int started_after(void *p1, void *p2)
  2553. {
  2554. struct task_struct *t1 = p1;
  2555. struct task_struct *t2 = p2;
  2556. return started_after_time(t1, &t2->start_time, t2);
  2557. }
  2558. /**
  2559. * cgroup_scan_tasks - iterate though all the tasks in a cgroup
  2560. * @scan: struct cgroup_scanner containing arguments for the scan
  2561. *
  2562. * Arguments include pointers to callback functions test_task() and
  2563. * process_task().
  2564. * Iterate through all the tasks in a cgroup, calling test_task() for each,
  2565. * and if it returns true, call process_task() for it also.
  2566. * The test_task pointer may be NULL, meaning always true (select all tasks).
  2567. * Effectively duplicates cgroup_iter_{start,next,end}()
  2568. * but does not lock css_set_lock for the call to process_task().
  2569. * The struct cgroup_scanner may be embedded in any structure of the caller's
  2570. * creation.
  2571. * It is guaranteed that process_task() will act on every task that
  2572. * is a member of the cgroup for the duration of this call. This
  2573. * function may or may not call process_task() for tasks that exit
  2574. * or move to a different cgroup during the call, or are forked or
  2575. * move into the cgroup during the call.
  2576. *
  2577. * Note that test_task() may be called with locks held, and may in some
  2578. * situations be called multiple times for the same task, so it should
  2579. * be cheap.
  2580. * If the heap pointer in the struct cgroup_scanner is non-NULL, a heap has been
  2581. * pre-allocated and will be used for heap operations (and its "gt" member will
  2582. * be overwritten), else a temporary heap will be used (allocation of which
  2583. * may cause this function to fail).
  2584. */
  2585. int cgroup_scan_tasks(struct cgroup_scanner *scan)
  2586. {
  2587. int retval, i;
  2588. struct cgroup_iter it;
  2589. struct task_struct *p, *dropped;
  2590. /* Never dereference latest_task, since it's not refcounted */
  2591. struct task_struct *latest_task = NULL;
  2592. struct ptr_heap tmp_heap;
  2593. struct ptr_heap *heap;
  2594. struct timespec latest_time = { 0, 0 };
  2595. if (scan->heap) {
  2596. /* The caller supplied our heap and pre-allocated its memory */
  2597. heap = scan->heap;
  2598. heap->gt = &started_after;
  2599. } else {
  2600. /* We need to allocate our own heap memory */
  2601. heap = &tmp_heap;
  2602. retval = heap_init(heap, PAGE_SIZE, GFP_KERNEL, &started_after);
  2603. if (retval)
  2604. /* cannot allocate the heap */
  2605. return retval;
  2606. }
  2607. again:
  2608. /*
  2609. * Scan tasks in the cgroup, using the scanner's "test_task" callback
  2610. * to determine which are of interest, and using the scanner's
  2611. * "process_task" callback to process any of them that need an update.
  2612. * Since we don't want to hold any locks during the task updates,
  2613. * gather tasks to be processed in a heap structure.
  2614. * The heap is sorted by descending task start time.
  2615. * If the statically-sized heap fills up, we overflow tasks that
  2616. * started later, and in future iterations only consider tasks that
  2617. * started after the latest task in the previous pass. This
  2618. * guarantees forward progress and that we don't miss any tasks.
  2619. */
  2620. heap->size = 0;
  2621. cgroup_iter_start(scan->cg, &it);
  2622. while ((p = cgroup_iter_next(scan->cg, &it))) {
  2623. /*
  2624. * Only affect tasks that qualify per the caller's callback,
  2625. * if he provided one
  2626. */
  2627. if (scan->test_task && !scan->test_task(p, scan))
  2628. continue;
  2629. /*
  2630. * Only process tasks that started after the last task
  2631. * we processed
  2632. */
  2633. if (!started_after_time(p, &latest_time, latest_task))
  2634. continue;
  2635. dropped = heap_insert(heap, p);
  2636. if (dropped == NULL) {
  2637. /*
  2638. * The new task was inserted; the heap wasn't
  2639. * previously full
  2640. */
  2641. get_task_struct(p);
  2642. } else if (dropped != p) {
  2643. /*
  2644. * The new task was inserted, and pushed out a
  2645. * different task
  2646. */
  2647. get_task_struct(p);
  2648. put_task_struct(dropped);
  2649. }
  2650. /*
  2651. * Else the new task was newer than anything already in
  2652. * the heap and wasn't inserted
  2653. */
  2654. }
  2655. cgroup_iter_end(scan->cg, &it);
  2656. if (heap->size) {
  2657. for (i = 0; i < heap->size; i++) {
  2658. struct task_struct *q = heap->ptrs[i];
  2659. if (i == 0) {
  2660. latest_time = q->start_time;
  2661. latest_task = q;
  2662. }
  2663. /* Process the task per the caller's callback */
  2664. scan->process_task(q, scan);
  2665. put_task_struct(q);
  2666. }
  2667. /*
  2668. * If we had to process any tasks at all, scan again
  2669. * in case some of them were in the middle of forking
  2670. * children that didn't get processed.
  2671. * Not the most efficient way to do it, but it avoids
  2672. * having to take callback_mutex in the fork path
  2673. */
  2674. goto again;
  2675. }
  2676. if (heap == &tmp_heap)
  2677. heap_free(&tmp_heap);
  2678. return 0;
  2679. }
  2680. /*
  2681. * Stuff for reading the 'tasks'/'procs' files.
  2682. *
  2683. * Reading this file can return large amounts of data if a cgroup has
  2684. * *lots* of attached tasks. So it may need several calls to read(),
  2685. * but we cannot guarantee that the information we produce is correct
  2686. * unless we produce it entirely atomically.
  2687. *
  2688. */
  2689. /*
  2690. * The following two functions "fix" the issue where there are more pids
  2691. * than kmalloc will give memory for; in such cases, we use vmalloc/vfree.
  2692. * TODO: replace with a kernel-wide solution to this problem
  2693. */
  2694. #define PIDLIST_TOO_LARGE(c) ((c) * sizeof(pid_t) > (PAGE_SIZE * 2))
  2695. static void *pidlist_allocate(int count)
  2696. {
  2697. if (PIDLIST_TOO_LARGE(count))
  2698. return vmalloc(count * sizeof(pid_t));
  2699. else
  2700. return kmalloc(count * sizeof(pid_t), GFP_KERNEL);
  2701. }
  2702. static void pidlist_free(void *p)
  2703. {
  2704. if (is_vmalloc_addr(p))
  2705. vfree(p);
  2706. else
  2707. kfree(p);
  2708. }
  2709. static void *pidlist_resize(void *p, int newcount)
  2710. {
  2711. void *newlist;
  2712. /* note: if new alloc fails, old p will still be valid either way */
  2713. if (is_vmalloc_addr(p)) {
  2714. newlist = vmalloc(newcount * sizeof(pid_t));
  2715. if (!newlist)
  2716. return NULL;
  2717. memcpy(newlist, p, newcount * sizeof(pid_t));
  2718. vfree(p);
  2719. } else {
  2720. newlist = krealloc(p, newcount * sizeof(pid_t), GFP_KERNEL);
  2721. }
  2722. return newlist;
  2723. }
  2724. /*
  2725. * pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries
  2726. * If the new stripped list is sufficiently smaller and there's enough memory
  2727. * to allocate a new buffer, will let go of the unneeded memory. Returns the
  2728. * number of unique elements.
  2729. */
  2730. /* is the size difference enough that we should re-allocate the array? */
  2731. #define PIDLIST_REALLOC_DIFFERENCE(old, new) ((old) - PAGE_SIZE >= (new))
  2732. static int pidlist_uniq(pid_t **p, int length)
  2733. {
  2734. int src, dest = 1;
  2735. pid_t *list = *p;
  2736. pid_t *newlist;
  2737. /*
  2738. * we presume the 0th element is unique, so i starts at 1. trivial
  2739. * edge cases first; no work needs to be done for either
  2740. */
  2741. if (length == 0 || length == 1)
  2742. return length;
  2743. /* src and dest walk down the list; dest counts unique elements */
  2744. for (src = 1; src < length; src++) {
  2745. /* find next unique element */
  2746. while (list[src] == list[src-1]) {
  2747. src++;
  2748. if (src == length)
  2749. goto after;
  2750. }
  2751. /* dest always points to where the next unique element goes */
  2752. list[dest] = list[src];
  2753. dest++;
  2754. }
  2755. after:
  2756. /*
  2757. * if the length difference is large enough, we want to allocate a
  2758. * smaller buffer to save memory. if this fails due to out of memory,
  2759. * we'll just stay with what we've got.
  2760. */
  2761. if (PIDLIST_REALLOC_DIFFERENCE(length, dest)) {
  2762. newlist = pidlist_resize(list, dest);
  2763. if (newlist)
  2764. *p = newlist;
  2765. }
  2766. return dest;
  2767. }
  2768. static int cmppid(const void *a, const void *b)
  2769. {
  2770. return *(pid_t *)a - *(pid_t *)b;
  2771. }
  2772. /*
  2773. * find the appropriate pidlist for our purpose (given procs vs tasks)
  2774. * returns with the lock on that pidlist already held, and takes care
  2775. * of the use count, or returns NULL with no locks held if we're out of
  2776. * memory.
  2777. */
  2778. static struct cgroup_pidlist *cgroup_pidlist_find(struct cgroup *cgrp,
  2779. enum cgroup_filetype type)
  2780. {
  2781. struct cgroup_pidlist *l;
  2782. /* don't need task_nsproxy() if we're looking at ourself */
  2783. struct pid_namespace *ns = current->nsproxy->pid_ns;
  2784. /*
  2785. * We can't drop the pidlist_mutex before taking the l->mutex in case
  2786. * the last ref-holder is trying to remove l from the list at the same
  2787. * time. Holding the pidlist_mutex precludes somebody taking whichever
  2788. * list we find out from under us - compare release_pid_array().
  2789. */
  2790. mutex_lock(&cgrp->pidlist_mutex);
  2791. list_for_each_entry(l, &cgrp->pidlists, links) {
  2792. if (l->key.type == type && l->key.ns == ns) {
  2793. /* make sure l doesn't vanish out from under us */
  2794. down_write(&l->mutex);
  2795. mutex_unlock(&cgrp->pidlist_mutex);
  2796. return l;
  2797. }
  2798. }
  2799. /* entry not found; create a new one */
  2800. l = kmalloc(sizeof(struct cgroup_pidlist), GFP_KERNEL);
  2801. if (!l) {
  2802. mutex_unlock(&cgrp->pidlist_mutex);
  2803. return l;
  2804. }
  2805. init_rwsem(&l->mutex);
  2806. down_write(&l->mutex);
  2807. l->key.type = type;
  2808. l->key.ns = get_pid_ns(ns);
  2809. l->use_count = 0; /* don't increment here */
  2810. l->list = NULL;
  2811. l->owner = cgrp;
  2812. list_add(&l->links, &cgrp->pidlists);
  2813. mutex_unlock(&cgrp->pidlist_mutex);
  2814. return l;
  2815. }
  2816. /*
  2817. * Load a cgroup's pidarray with either procs' tgids or tasks' pids
  2818. */
  2819. static int pidlist_array_load(struct cgroup *cgrp, enum cgroup_filetype type,
  2820. struct cgroup_pidlist **lp)
  2821. {
  2822. pid_t *array;
  2823. int length;
  2824. int pid, n = 0; /* used for populating the array */
  2825. struct cgroup_iter it;
  2826. struct task_struct *tsk;
  2827. struct cgroup_pidlist *l;
  2828. /*
  2829. * If cgroup gets more users after we read count, we won't have
  2830. * enough space - tough. This race is indistinguishable to the
  2831. * caller from the case that the additional cgroup users didn't
  2832. * show up until sometime later on.
  2833. */
  2834. length = cgroup_task_count(cgrp);
  2835. array = pidlist_allocate(length);
  2836. if (!array)
  2837. return -ENOMEM;
  2838. /* now, populate the array */
  2839. cgroup_iter_start(cgrp, &it);
  2840. while ((tsk = cgroup_iter_next(cgrp, &it))) {
  2841. if (unlikely(n == length))
  2842. break;
  2843. /* get tgid or pid for procs or tasks file respectively */
  2844. if (type == CGROUP_FILE_PROCS)
  2845. pid = task_tgid_vnr(tsk);
  2846. else
  2847. pid = task_pid_vnr(tsk);
  2848. if (pid > 0) /* make sure to only use valid results */
  2849. array[n++] = pid;
  2850. }
  2851. cgroup_iter_end(cgrp, &it);
  2852. length = n;
  2853. /* now sort & (if procs) strip out duplicates */
  2854. sort(array, length, sizeof(pid_t), cmppid, NULL);
  2855. if (type == CGROUP_FILE_PROCS)
  2856. length = pidlist_uniq(&array, length);
  2857. l = cgroup_pidlist_find(cgrp, type);
  2858. if (!l) {
  2859. pidlist_free(array);
  2860. return -ENOMEM;
  2861. }
  2862. /* store array, freeing old if necessary - lock already held */
  2863. pidlist_free(l->list);
  2864. l->list = array;
  2865. l->length = length;
  2866. l->use_count++;
  2867. up_write(&l->mutex);
  2868. *lp = l;
  2869. return 0;
  2870. }
  2871. /**
  2872. * cgroupstats_build - build and fill cgroupstats
  2873. * @stats: cgroupstats to fill information into
  2874. * @dentry: A dentry entry belonging to the cgroup for which stats have
  2875. * been requested.
  2876. *
  2877. * Build and fill cgroupstats so that taskstats can export it to user
  2878. * space.
  2879. */
  2880. int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry)
  2881. {
  2882. int ret = -EINVAL;
  2883. struct cgroup *cgrp;
  2884. struct cgroup_iter it;
  2885. struct task_struct *tsk;
  2886. /*
  2887. * Validate dentry by checking the superblock operations,
  2888. * and make sure it's a directory.
  2889. */
  2890. if (dentry->d_sb->s_op != &cgroup_ops ||
  2891. !S_ISDIR(dentry->d_inode->i_mode))
  2892. goto err;
  2893. ret = 0;
  2894. cgrp = dentry->d_fsdata;
  2895. cgroup_iter_start(cgrp, &it);
  2896. while ((tsk = cgroup_iter_next(cgrp, &it))) {
  2897. switch (tsk->state) {
  2898. case TASK_RUNNING:
  2899. stats->nr_running++;
  2900. break;
  2901. case TASK_INTERRUPTIBLE:
  2902. stats->nr_sleeping++;
  2903. break;
  2904. case TASK_UNINTERRUPTIBLE:
  2905. stats->nr_uninterruptible++;
  2906. break;
  2907. case TASK_STOPPED:
  2908. stats->nr_stopped++;
  2909. break;
  2910. default:
  2911. if (delayacct_is_task_waiting_on_io(tsk))
  2912. stats->nr_io_wait++;
  2913. break;
  2914. }
  2915. }
  2916. cgroup_iter_end(cgrp, &it);
  2917. err:
  2918. return ret;
  2919. }
  2920. /*
  2921. * seq_file methods for the tasks/procs files. The seq_file position is the
  2922. * next pid to display; the seq_file iterator is a pointer to the pid
  2923. * in the cgroup->l->list array.
  2924. */
  2925. static void *cgroup_pidlist_start(struct seq_file *s, loff_t *pos)
  2926. {
  2927. /*
  2928. * Initially we receive a position value that corresponds to
  2929. * one more than the last pid shown (or 0 on the first call or
  2930. * after a seek to the start). Use a binary-search to find the
  2931. * next pid to display, if any
  2932. */
  2933. struct cgroup_pidlist *l = s->private;
  2934. int index = 0, pid = *pos;
  2935. int *iter;
  2936. down_read(&l->mutex);
  2937. if (pid) {
  2938. int end = l->length;
  2939. while (index < end) {
  2940. int mid = (index + end) / 2;
  2941. if (l->list[mid] == pid) {
  2942. index = mid;
  2943. break;
  2944. } else if (l->list[mid] <= pid)
  2945. index = mid + 1;
  2946. else
  2947. end = mid;
  2948. }
  2949. }
  2950. /* If we're off the end of the array, we're done */
  2951. if (index >= l->length)
  2952. return NULL;
  2953. /* Update the abstract position to be the actual pid that we found */
  2954. iter = l->list + index;
  2955. *pos = *iter;
  2956. return iter;
  2957. }
  2958. static void cgroup_pidlist_stop(struct seq_file *s, void *v)
  2959. {
  2960. struct cgroup_pidlist *l = s->private;
  2961. up_read(&l->mutex);
  2962. }
  2963. static void *cgroup_pidlist_next(struct seq_file *s, void *v, loff_t *pos)
  2964. {
  2965. struct cgroup_pidlist *l = s->private;
  2966. pid_t *p = v;
  2967. pid_t *end = l->list + l->length;
  2968. /*
  2969. * Advance to the next pid in the array. If this goes off the
  2970. * end, we're done
  2971. */
  2972. p++;
  2973. if (p >= end) {
  2974. return NULL;
  2975. } else {
  2976. *pos = *p;
  2977. return p;
  2978. }
  2979. }
  2980. static int cgroup_pidlist_show(struct seq_file *s, void *v)
  2981. {
  2982. return seq_printf(s, "%d\n", *(int *)v);
  2983. }
  2984. /*
  2985. * seq_operations functions for iterating on pidlists through seq_file -
  2986. * independent of whether it's tasks or procs
  2987. */
  2988. static const struct seq_operations cgroup_pidlist_seq_operations = {
  2989. .start = cgroup_pidlist_start,
  2990. .stop = cgroup_pidlist_stop,
  2991. .next = cgroup_pidlist_next,
  2992. .show = cgroup_pidlist_show,
  2993. };
  2994. static void cgroup_release_pid_array(struct cgroup_pidlist *l)
  2995. {
  2996. /*
  2997. * the case where we're the last user of this particular pidlist will
  2998. * have us remove it from the cgroup's list, which entails taking the
  2999. * mutex. since in pidlist_find the pidlist->lock depends on cgroup->
  3000. * pidlist_mutex, we have to take pidlist_mutex first.
  3001. */
  3002. mutex_lock(&l->owner->pidlist_mutex);
  3003. down_write(&l->mutex);
  3004. BUG_ON(!l->use_count);
  3005. if (!--l->use_count) {
  3006. /* we're the last user if refcount is 0; remove and free */
  3007. list_del(&l->links);
  3008. mutex_unlock(&l->owner->pidlist_mutex);
  3009. pidlist_free(l->list);
  3010. put_pid_ns(l->key.ns);
  3011. up_write(&l->mutex);
  3012. kfree(l);
  3013. return;
  3014. }
  3015. mutex_unlock(&l->owner->pidlist_mutex);
  3016. up_write(&l->mutex);
  3017. }
  3018. static int cgroup_pidlist_release(struct inode *inode, struct file *file)
  3019. {
  3020. struct cgroup_pidlist *l;
  3021. if (!(file->f_mode & FMODE_READ))
  3022. return 0;
  3023. /*
  3024. * the seq_file will only be initialized if the file was opened for
  3025. * reading; hence we check if it's not null only in that case.
  3026. */
  3027. l = ((struct seq_file *)file->private_data)->private;
  3028. cgroup_release_pid_array(l);
  3029. return seq_release(inode, file);
  3030. }
  3031. static const struct file_operations cgroup_pidlist_operations = {
  3032. .read = seq_read,
  3033. .llseek = seq_lseek,
  3034. .write = cgroup_file_write,
  3035. .release = cgroup_pidlist_release,
  3036. };
  3037. /*
  3038. * The following functions handle opens on a file that displays a pidlist
  3039. * (tasks or procs). Prepare an array of the process/thread IDs of whoever's
  3040. * in the cgroup.
  3041. */
  3042. /* helper function for the two below it */
  3043. static int cgroup_pidlist_open(struct file *file, enum cgroup_filetype type)
  3044. {
  3045. struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
  3046. struct cgroup_pidlist *l;
  3047. int retval;
  3048. /* Nothing to do for write-only files */
  3049. if (!(file->f_mode & FMODE_READ))
  3050. return 0;
  3051. /* have the array populated */
  3052. retval = pidlist_array_load(cgrp, type, &l);
  3053. if (retval)
  3054. return retval;
  3055. /* configure file information */
  3056. file->f_op = &cgroup_pidlist_operations;
  3057. retval = seq_open(file, &cgroup_pidlist_seq_operations);
  3058. if (retval) {
  3059. cgroup_release_pid_array(l);
  3060. return retval;
  3061. }
  3062. ((struct seq_file *)file->private_data)->private = l;
  3063. return 0;
  3064. }
  3065. static int cgroup_tasks_open(struct inode *unused, struct file *file)
  3066. {
  3067. return cgroup_pidlist_open(file, CGROUP_FILE_TASKS);
  3068. }
  3069. static int cgroup_procs_open(struct inode *unused, struct file *file)
  3070. {
  3071. return cgroup_pidlist_open(file, CGROUP_FILE_PROCS);
  3072. }
  3073. static u64 cgroup_read_notify_on_release(struct cgroup *cgrp,
  3074. struct cftype *cft)
  3075. {
  3076. return notify_on_release(cgrp);
  3077. }
  3078. static int cgroup_write_notify_on_release(struct cgroup *cgrp,
  3079. struct cftype *cft,
  3080. u64 val)
  3081. {
  3082. clear_bit(CGRP_RELEASABLE, &cgrp->flags);
  3083. if (val)
  3084. set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
  3085. else
  3086. clear_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
  3087. return 0;
  3088. }
  3089. /*
  3090. * Unregister event and free resources.
  3091. *
  3092. * Gets called from workqueue.
  3093. */
  3094. static void cgroup_event_remove(struct work_struct *work)
  3095. {
  3096. struct cgroup_event *event = container_of(work, struct cgroup_event,
  3097. remove);
  3098. struct cgroup *cgrp = event->cgrp;
  3099. event->cft->unregister_event(cgrp, event->cft, event->eventfd);
  3100. eventfd_ctx_put(event->eventfd);
  3101. kfree(event);
  3102. dput(cgrp->dentry);
  3103. }
  3104. /*
  3105. * Gets called on POLLHUP on eventfd when user closes it.
  3106. *
  3107. * Called with wqh->lock held and interrupts disabled.
  3108. */
  3109. static int cgroup_event_wake(wait_queue_t *wait, unsigned mode,
  3110. int sync, void *key)
  3111. {
  3112. struct cgroup_event *event = container_of(wait,
  3113. struct cgroup_event, wait);
  3114. struct cgroup *cgrp = event->cgrp;
  3115. unsigned long flags = (unsigned long)key;
  3116. if (flags & POLLHUP) {
  3117. __remove_wait_queue(event->wqh, &event->wait);
  3118. spin_lock(&cgrp->event_list_lock);
  3119. list_del(&event->list);
  3120. spin_unlock(&cgrp->event_list_lock);
  3121. /*
  3122. * We are in atomic context, but cgroup_event_remove() may
  3123. * sleep, so we have to call it in workqueue.
  3124. */
  3125. schedule_work(&event->remove);
  3126. }
  3127. return 0;
  3128. }
  3129. static void cgroup_event_ptable_queue_proc(struct file *file,
  3130. wait_queue_head_t *wqh, poll_table *pt)
  3131. {
  3132. struct cgroup_event *event = container_of(pt,
  3133. struct cgroup_event, pt);
  3134. event->wqh = wqh;
  3135. add_wait_queue(wqh, &event->wait);
  3136. }
  3137. /*
  3138. * Parse input and register new cgroup event handler.
  3139. *
  3140. * Input must be in format '<event_fd> <control_fd> <args>'.
  3141. * Interpretation of args is defined by control file implementation.
  3142. */
  3143. static int cgroup_write_event_control(struct cgroup *cgrp, struct cftype *cft,
  3144. const char *buffer)
  3145. {
  3146. struct cgroup_event *event = NULL;
  3147. unsigned int efd, cfd;
  3148. struct file *efile = NULL;
  3149. struct file *cfile = NULL;
  3150. char *endp;
  3151. int ret;
  3152. efd = simple_strtoul(buffer, &endp, 10);
  3153. if (*endp != ' ')
  3154. return -EINVAL;
  3155. buffer = endp + 1;
  3156. cfd = simple_strtoul(buffer, &endp, 10);
  3157. if ((*endp != ' ') && (*endp != '\0'))
  3158. return -EINVAL;
  3159. buffer = endp + 1;
  3160. event = kzalloc(sizeof(*event), GFP_KERNEL);
  3161. if (!event)
  3162. return -ENOMEM;
  3163. event->cgrp = cgrp;
  3164. INIT_LIST_HEAD(&event->list);
  3165. init_poll_funcptr(&event->pt, cgroup_event_ptable_queue_proc);
  3166. init_waitqueue_func_entry(&event->wait, cgroup_event_wake);
  3167. INIT_WORK(&event->remove, cgroup_event_remove);
  3168. efile = eventfd_fget(efd);
  3169. if (IS_ERR(efile)) {
  3170. ret = PTR_ERR(efile);
  3171. goto fail;
  3172. }
  3173. event->eventfd = eventfd_ctx_fileget(efile);
  3174. if (IS_ERR(event->eventfd)) {
  3175. ret = PTR_ERR(event->eventfd);
  3176. goto fail;
  3177. }
  3178. cfile = fget(cfd);
  3179. if (!cfile) {
  3180. ret = -EBADF;
  3181. goto fail;
  3182. }
  3183. /* the process need read permission on control file */
  3184. /* AV: shouldn't we check that it's been opened for read instead? */
  3185. ret = inode_permission(cfile->f_path.dentry->d_inode, MAY_READ);
  3186. if (ret < 0)
  3187. goto fail;
  3188. event->cft = __file_cft(cfile);
  3189. if (IS_ERR(event->cft)) {
  3190. ret = PTR_ERR(event->cft);
  3191. goto fail;
  3192. }
  3193. if (!event->cft->register_event || !event->cft->unregister_event) {
  3194. ret = -EINVAL;
  3195. goto fail;
  3196. }
  3197. ret = event->cft->register_event(cgrp, event->cft,
  3198. event->eventfd, buffer);
  3199. if (ret)
  3200. goto fail;
  3201. if (efile->f_op->poll(efile, &event->pt) & POLLHUP) {
  3202. event->cft->unregister_event(cgrp, event->cft, event->eventfd);
  3203. ret = 0;
  3204. goto fail;
  3205. }
  3206. /*
  3207. * Events should be removed after rmdir of cgroup directory, but before
  3208. * destroying subsystem state objects. Let's take reference to cgroup
  3209. * directory dentry to do that.
  3210. */
  3211. dget(cgrp->dentry);
  3212. spin_lock(&cgrp->event_list_lock);
  3213. list_add(&event->list, &cgrp->event_list);
  3214. spin_unlock(&cgrp->event_list_lock);
  3215. fput(cfile);
  3216. fput(efile);
  3217. return 0;
  3218. fail:
  3219. if (cfile)
  3220. fput(cfile);
  3221. if (event && event->eventfd && !IS_ERR(event->eventfd))
  3222. eventfd_ctx_put(event->eventfd);
  3223. if (!IS_ERR_OR_NULL(efile))
  3224. fput(efile);
  3225. kfree(event);
  3226. return ret;
  3227. }
  3228. static u64 cgroup_clone_children_read(struct cgroup *cgrp,
  3229. struct cftype *cft)
  3230. {
  3231. return clone_children(cgrp);
  3232. }
  3233. static int cgroup_clone_children_write(struct cgroup *cgrp,
  3234. struct cftype *cft,
  3235. u64 val)
  3236. {
  3237. if (val)
  3238. set_bit(CGRP_CLONE_CHILDREN, &cgrp->flags);
  3239. else
  3240. clear_bit(CGRP_CLONE_CHILDREN, &cgrp->flags);
  3241. return 0;
  3242. }
  3243. /*
  3244. * for the common functions, 'private' gives the type of file
  3245. */
  3246. /* for hysterical raisins, we can't put this on the older files */
  3247. #define CGROUP_FILE_GENERIC_PREFIX "cgroup."
  3248. static struct cftype files[] = {
  3249. {
  3250. .name = "tasks",
  3251. .open = cgroup_tasks_open,
  3252. .write_u64 = cgroup_tasks_write,
  3253. .release = cgroup_pidlist_release,
  3254. .mode = S_IRUGO | S_IWUSR,
  3255. },
  3256. {
  3257. .name = CGROUP_FILE_GENERIC_PREFIX "procs",
  3258. .open = cgroup_procs_open,
  3259. .write_u64 = cgroup_procs_write,
  3260. .release = cgroup_pidlist_release,
  3261. .mode = S_IRUGO | S_IWUSR,
  3262. },
  3263. {
  3264. .name = "notify_on_release",
  3265. .read_u64 = cgroup_read_notify_on_release,
  3266. .write_u64 = cgroup_write_notify_on_release,
  3267. },
  3268. {
  3269. .name = CGROUP_FILE_GENERIC_PREFIX "event_control",
  3270. .write_string = cgroup_write_event_control,
  3271. .mode = S_IWUGO,
  3272. },
  3273. {
  3274. .name = "cgroup.clone_children",
  3275. .read_u64 = cgroup_clone_children_read,
  3276. .write_u64 = cgroup_clone_children_write,
  3277. },
  3278. };
  3279. static struct cftype cft_release_agent = {
  3280. .name = "release_agent",
  3281. .read_seq_string = cgroup_release_agent_show,
  3282. .write_string = cgroup_release_agent_write,
  3283. .max_write_len = PATH_MAX,
  3284. };
  3285. static int cgroup_populate_dir(struct cgroup *cgrp)
  3286. {
  3287. int err;
  3288. struct cgroup_subsys *ss;
  3289. /* First clear out any existing files */
  3290. cgroup_clear_directory(cgrp->dentry);
  3291. err = cgroup_add_files(cgrp, NULL, files, ARRAY_SIZE(files));
  3292. if (err < 0)
  3293. return err;
  3294. if (cgrp == cgrp->top_cgroup) {
  3295. if ((err = cgroup_add_file(cgrp, NULL, &cft_release_agent)) < 0)
  3296. return err;
  3297. }
  3298. for_each_subsys(cgrp->root, ss) {
  3299. if (ss->populate && (err = ss->populate(ss, cgrp)) < 0)
  3300. return err;
  3301. }
  3302. /* This cgroup is ready now */
  3303. for_each_subsys(cgrp->root, ss) {
  3304. struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
  3305. /*
  3306. * Update id->css pointer and make this css visible from
  3307. * CSS ID functions. This pointer will be dereferened
  3308. * from RCU-read-side without locks.
  3309. */
  3310. if (css->id)
  3311. rcu_assign_pointer(css->id->css, css);
  3312. }
  3313. return 0;
  3314. }
  3315. static void init_cgroup_css(struct cgroup_subsys_state *css,
  3316. struct cgroup_subsys *ss,
  3317. struct cgroup *cgrp)
  3318. {
  3319. css->cgroup = cgrp;
  3320. atomic_set(&css->refcnt, 1);
  3321. css->flags = 0;
  3322. css->id = NULL;
  3323. if (cgrp == dummytop)
  3324. set_bit(CSS_ROOT, &css->flags);
  3325. BUG_ON(cgrp->subsys[ss->subsys_id]);
  3326. cgrp->subsys[ss->subsys_id] = css;
  3327. }
  3328. static void cgroup_lock_hierarchy(struct cgroupfs_root *root)
  3329. {
  3330. /* We need to take each hierarchy_mutex in a consistent order */
  3331. int i;
  3332. /*
  3333. * No worry about a race with rebind_subsystems that might mess up the
  3334. * locking order, since both parties are under cgroup_mutex.
  3335. */
  3336. for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
  3337. struct cgroup_subsys *ss = subsys[i];
  3338. if (ss == NULL)
  3339. continue;
  3340. if (ss->root == root)
  3341. mutex_lock(&ss->hierarchy_mutex);
  3342. }
  3343. }
  3344. static void cgroup_unlock_hierarchy(struct cgroupfs_root *root)
  3345. {
  3346. int i;
  3347. for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
  3348. struct cgroup_subsys *ss = subsys[i];
  3349. if (ss == NULL)
  3350. continue;
  3351. if (ss->root == root)
  3352. mutex_unlock(&ss->hierarchy_mutex);
  3353. }
  3354. }
  3355. /*
  3356. * cgroup_create - create a cgroup
  3357. * @parent: cgroup that will be parent of the new cgroup
  3358. * @dentry: dentry of the new cgroup
  3359. * @mode: mode to set on new inode
  3360. *
  3361. * Must be called with the mutex on the parent inode held
  3362. */
  3363. static long cgroup_create(struct cgroup *parent, struct dentry *dentry,
  3364. mode_t mode)
  3365. {
  3366. struct cgroup *cgrp;
  3367. struct cgroupfs_root *root = parent->root;
  3368. int err = 0;
  3369. struct cgroup_subsys *ss;
  3370. struct super_block *sb = root->sb;
  3371. cgrp = kzalloc(sizeof(*cgrp), GFP_KERNEL);
  3372. if (!cgrp)
  3373. return -ENOMEM;
  3374. /* Grab a reference on the superblock so the hierarchy doesn't
  3375. * get deleted on unmount if there are child cgroups. This
  3376. * can be done outside cgroup_mutex, since the sb can't
  3377. * disappear while someone has an open control file on the
  3378. * fs */
  3379. atomic_inc(&sb->s_active);
  3380. mutex_lock(&cgroup_mutex);
  3381. init_cgroup_housekeeping(cgrp);
  3382. cgrp->parent = parent;
  3383. cgrp->root = parent->root;
  3384. cgrp->top_cgroup = parent->top_cgroup;
  3385. if (notify_on_release(parent))
  3386. set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
  3387. if (clone_children(parent))
  3388. set_bit(CGRP_CLONE_CHILDREN, &cgrp->flags);
  3389. for_each_subsys(root, ss) {
  3390. struct cgroup_subsys_state *css = ss->create(ss, cgrp);
  3391. if (IS_ERR(css)) {
  3392. err = PTR_ERR(css);
  3393. goto err_destroy;
  3394. }
  3395. init_cgroup_css(css, ss, cgrp);
  3396. if (ss->use_id) {
  3397. err = alloc_css_id(ss, parent, cgrp);
  3398. if (err)
  3399. goto err_destroy;
  3400. }
  3401. /* At error, ->destroy() callback has to free assigned ID. */
  3402. if (clone_children(parent) && ss->post_clone)
  3403. ss->post_clone(ss, cgrp);
  3404. }
  3405. cgroup_lock_hierarchy(root);
  3406. list_add(&cgrp->sibling, &cgrp->parent->children);
  3407. cgroup_unlock_hierarchy(root);
  3408. root->number_of_cgroups++;
  3409. err = cgroup_create_dir(cgrp, dentry, mode);
  3410. if (err < 0)
  3411. goto err_remove;
  3412. /* The cgroup directory was pre-locked for us */
  3413. BUG_ON(!mutex_is_locked(&cgrp->dentry->d_inode->i_mutex));
  3414. err = cgroup_populate_dir(cgrp);
  3415. /* If err < 0, we have a half-filled directory - oh well ;) */
  3416. mutex_unlock(&cgroup_mutex);
  3417. mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
  3418. return 0;
  3419. err_remove:
  3420. cgroup_lock_hierarchy(root);
  3421. list_del(&cgrp->sibling);
  3422. cgroup_unlock_hierarchy(root);
  3423. root->number_of_cgroups--;
  3424. err_destroy:
  3425. for_each_subsys(root, ss) {
  3426. if (cgrp->subsys[ss->subsys_id])
  3427. ss->destroy(ss, cgrp);
  3428. }
  3429. mutex_unlock(&cgroup_mutex);
  3430. /* Release the reference count that we took on the superblock */
  3431. deactivate_super(sb);
  3432. kfree(cgrp);
  3433. return err;
  3434. }
  3435. static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, int mode)
  3436. {
  3437. struct cgroup *c_parent = dentry->d_parent->d_fsdata;
  3438. /* the vfs holds inode->i_mutex already */
  3439. return cgroup_create(c_parent, dentry, mode | S_IFDIR);
  3440. }
  3441. static int cgroup_has_css_refs(struct cgroup *cgrp)
  3442. {
  3443. /* Check the reference count on each subsystem. Since we
  3444. * already established that there are no tasks in the
  3445. * cgroup, if the css refcount is also 1, then there should
  3446. * be no outstanding references, so the subsystem is safe to
  3447. * destroy. We scan across all subsystems rather than using
  3448. * the per-hierarchy linked list of mounted subsystems since
  3449. * we can be called via check_for_release() with no
  3450. * synchronization other than RCU, and the subsystem linked
  3451. * list isn't RCU-safe */
  3452. int i;
  3453. /*
  3454. * We won't need to lock the subsys array, because the subsystems
  3455. * we're concerned about aren't going anywhere since our cgroup root
  3456. * has a reference on them.
  3457. */
  3458. for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
  3459. struct cgroup_subsys *ss = subsys[i];
  3460. struct cgroup_subsys_state *css;
  3461. /* Skip subsystems not present or not in this hierarchy */
  3462. if (ss == NULL || ss->root != cgrp->root)
  3463. continue;
  3464. css = cgrp->subsys[ss->subsys_id];
  3465. /* When called from check_for_release() it's possible
  3466. * that by this point the cgroup has been removed
  3467. * and the css deleted. But a false-positive doesn't
  3468. * matter, since it can only happen if the cgroup
  3469. * has been deleted and hence no longer needs the
  3470. * release agent to be called anyway. */
  3471. if (css && (atomic_read(&css->refcnt) > 1))
  3472. return 1;
  3473. }
  3474. return 0;
  3475. }
  3476. /*
  3477. * Atomically mark all (or else none) of the cgroup's CSS objects as
  3478. * CSS_REMOVED. Return true on success, or false if the cgroup has
  3479. * busy subsystems. Call with cgroup_mutex held
  3480. */
  3481. static int cgroup_clear_css_refs(struct cgroup *cgrp)
  3482. {
  3483. struct cgroup_subsys *ss;
  3484. unsigned long flags;
  3485. bool failed = false;
  3486. local_irq_save(flags);
  3487. for_each_subsys(cgrp->root, ss) {
  3488. struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
  3489. int refcnt;
  3490. while (1) {
  3491. /* We can only remove a CSS with a refcnt==1 */
  3492. refcnt = atomic_read(&css->refcnt);
  3493. if (refcnt > 1) {
  3494. failed = true;
  3495. goto done;
  3496. }
  3497. BUG_ON(!refcnt);
  3498. /*
  3499. * Drop the refcnt to 0 while we check other
  3500. * subsystems. This will cause any racing
  3501. * css_tryget() to spin until we set the
  3502. * CSS_REMOVED bits or abort
  3503. */
  3504. if (atomic_cmpxchg(&css->refcnt, refcnt, 0) == refcnt)
  3505. break;
  3506. cpu_relax();
  3507. }
  3508. }
  3509. done:
  3510. for_each_subsys(cgrp->root, ss) {
  3511. struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
  3512. if (failed) {
  3513. /*
  3514. * Restore old refcnt if we previously managed
  3515. * to clear it from 1 to 0
  3516. */
  3517. if (!atomic_read(&css->refcnt))
  3518. atomic_set(&css->refcnt, 1);
  3519. } else {
  3520. /* Commit the fact that the CSS is removed */
  3521. set_bit(CSS_REMOVED, &css->flags);
  3522. }
  3523. }
  3524. local_irq_restore(flags);
  3525. return !failed;
  3526. }
  3527. static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry)
  3528. {
  3529. struct cgroup *cgrp = dentry->d_fsdata;
  3530. struct dentry *d;
  3531. struct cgroup *parent;
  3532. DEFINE_WAIT(wait);
  3533. struct cgroup_event *event, *tmp;
  3534. int ret;
  3535. /* the vfs holds both inode->i_mutex already */
  3536. again:
  3537. mutex_lock(&cgroup_mutex);
  3538. if (atomic_read(&cgrp->count) != 0) {
  3539. mutex_unlock(&cgroup_mutex);
  3540. return -EBUSY;
  3541. }
  3542. if (!list_empty(&cgrp->children)) {
  3543. mutex_unlock(&cgroup_mutex);
  3544. return -EBUSY;
  3545. }
  3546. mutex_unlock(&cgroup_mutex);
  3547. /*
  3548. * In general, subsystem has no css->refcnt after pre_destroy(). But
  3549. * in racy cases, subsystem may have to get css->refcnt after
  3550. * pre_destroy() and it makes rmdir return with -EBUSY. This sometimes
  3551. * make rmdir return -EBUSY too often. To avoid that, we use waitqueue
  3552. * for cgroup's rmdir. CGRP_WAIT_ON_RMDIR is for synchronizing rmdir
  3553. * and subsystem's reference count handling. Please see css_get/put
  3554. * and css_tryget() and cgroup_wakeup_rmdir_waiter() implementation.
  3555. */
  3556. set_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
  3557. /*
  3558. * Call pre_destroy handlers of subsys. Notify subsystems
  3559. * that rmdir() request comes.
  3560. */
  3561. ret = cgroup_call_pre_destroy(cgrp);
  3562. if (ret) {
  3563. clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
  3564. return ret;
  3565. }
  3566. mutex_lock(&cgroup_mutex);
  3567. parent = cgrp->parent;
  3568. if (atomic_read(&cgrp->count) || !list_empty(&cgrp->children)) {
  3569. clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
  3570. mutex_unlock(&cgroup_mutex);
  3571. return -EBUSY;
  3572. }
  3573. prepare_to_wait(&cgroup_rmdir_waitq, &wait, TASK_INTERRUPTIBLE);
  3574. if (!cgroup_clear_css_refs(cgrp)) {
  3575. mutex_unlock(&cgroup_mutex);
  3576. /*
  3577. * Because someone may call cgroup_wakeup_rmdir_waiter() before
  3578. * prepare_to_wait(), we need to check this flag.
  3579. */
  3580. if (test_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags))
  3581. schedule();
  3582. finish_wait(&cgroup_rmdir_waitq, &wait);
  3583. clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
  3584. if (signal_pending(current))
  3585. return -EINTR;
  3586. goto again;
  3587. }
  3588. /* NO css_tryget() can success after here. */
  3589. finish_wait(&cgroup_rmdir_waitq, &wait);
  3590. clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
  3591. raw_spin_lock(&release_list_lock);
  3592. set_bit(CGRP_REMOVED, &cgrp->flags);
  3593. if (!list_empty(&cgrp->release_list))
  3594. list_del_init(&cgrp->release_list);
  3595. raw_spin_unlock(&release_list_lock);
  3596. cgroup_lock_hierarchy(cgrp->root);
  3597. /* delete this cgroup from parent->children */
  3598. list_del_init(&cgrp->sibling);
  3599. cgroup_unlock_hierarchy(cgrp->root);
  3600. d = dget(cgrp->dentry);
  3601. cgroup_d_remove_dir(d);
  3602. dput(d);
  3603. set_bit(CGRP_RELEASABLE, &parent->flags);
  3604. check_for_release(parent);
  3605. /*
  3606. * Unregister events and notify userspace.
  3607. * Notify userspace about cgroup removing only after rmdir of cgroup
  3608. * directory to avoid race between userspace and kernelspace
  3609. */
  3610. spin_lock(&cgrp->event_list_lock);
  3611. list_for_each_entry_safe(event, tmp, &cgrp->event_list, list) {
  3612. list_del(&event->list);
  3613. remove_wait_queue(event->wqh, &event->wait);
  3614. eventfd_signal(event->eventfd, 1);
  3615. schedule_work(&event->remove);
  3616. }
  3617. spin_unlock(&cgrp->event_list_lock);
  3618. mutex_unlock(&cgroup_mutex);
  3619. return 0;
  3620. }
  3621. static void __init cgroup_init_subsys(struct cgroup_subsys *ss)
  3622. {
  3623. struct cgroup_subsys_state *css;
  3624. printk(KERN_INFO "Initializing cgroup subsys %s\n", ss->name);
  3625. /* Create the top cgroup state for this subsystem */
  3626. list_add(&ss->sibling, &rootnode.subsys_list);
  3627. ss->root = &rootnode;
  3628. css = ss->create(ss, dummytop);
  3629. /* We don't handle early failures gracefully */
  3630. BUG_ON(IS_ERR(css));
  3631. init_cgroup_css(css, ss, dummytop);
  3632. /* Update the init_css_set to contain a subsys
  3633. * pointer to this state - since the subsystem is
  3634. * newly registered, all tasks and hence the
  3635. * init_css_set is in the subsystem's top cgroup. */
  3636. init_css_set.subsys[ss->subsys_id] = dummytop->subsys[ss->subsys_id];
  3637. need_forkexit_callback |= ss->fork || ss->exit;
  3638. /* At system boot, before all subsystems have been
  3639. * registered, no tasks have been forked, so we don't
  3640. * need to invoke fork callbacks here. */
  3641. BUG_ON(!list_empty(&init_task.tasks));
  3642. mutex_init(&ss->hierarchy_mutex);
  3643. lockdep_set_class(&ss->hierarchy_mutex, &ss->subsys_key);
  3644. ss->active = 1;
  3645. /* this function shouldn't be used with modular subsystems, since they
  3646. * need to register a subsys_id, among other things */
  3647. BUG_ON(ss->module);
  3648. }
  3649. /**
  3650. * cgroup_load_subsys: load and register a modular subsystem at runtime
  3651. * @ss: the subsystem to load
  3652. *
  3653. * This function should be called in a modular subsystem's initcall. If the
  3654. * subsystem is built as a module, it will be assigned a new subsys_id and set
  3655. * up for use. If the subsystem is built-in anyway, work is delegated to the
  3656. * simpler cgroup_init_subsys.
  3657. */
  3658. int __init_or_module cgroup_load_subsys(struct cgroup_subsys *ss)
  3659. {
  3660. int i;
  3661. struct cgroup_subsys_state *css;
  3662. /* check name and function validity */
  3663. if (ss->name == NULL || strlen(ss->name) > MAX_CGROUP_TYPE_NAMELEN ||
  3664. ss->create == NULL || ss->destroy == NULL)
  3665. return -EINVAL;
  3666. /*
  3667. * we don't support callbacks in modular subsystems. this check is
  3668. * before the ss->module check for consistency; a subsystem that could
  3669. * be a module should still have no callbacks even if the user isn't
  3670. * compiling it as one.
  3671. */
  3672. if (ss->fork || ss->exit)
  3673. return -EINVAL;
  3674. /*
  3675. * an optionally modular subsystem is built-in: we want to do nothing,
  3676. * since cgroup_init_subsys will have already taken care of it.
  3677. */
  3678. if (ss->module == NULL) {
  3679. /* a few sanity checks */
  3680. BUG_ON(ss->subsys_id >= CGROUP_BUILTIN_SUBSYS_COUNT);
  3681. BUG_ON(subsys[ss->subsys_id] != ss);
  3682. return 0;
  3683. }
  3684. /*
  3685. * need to register a subsys id before anything else - for example,
  3686. * init_cgroup_css needs it.
  3687. */
  3688. mutex_lock(&cgroup_mutex);
  3689. /* find the first empty slot in the array */
  3690. for (i = CGROUP_BUILTIN_SUBSYS_COUNT; i < CGROUP_SUBSYS_COUNT; i++) {
  3691. if (subsys[i] == NULL)
  3692. break;
  3693. }
  3694. if (i == CGROUP_SUBSYS_COUNT) {
  3695. /* maximum number of subsystems already registered! */
  3696. mutex_unlock(&cgroup_mutex);
  3697. return -EBUSY;
  3698. }
  3699. /* assign ourselves the subsys_id */
  3700. ss->subsys_id = i;
  3701. subsys[i] = ss;
  3702. /*
  3703. * no ss->create seems to need anything important in the ss struct, so
  3704. * this can happen first (i.e. before the rootnode attachment).
  3705. */
  3706. css = ss->create(ss, dummytop);
  3707. if (IS_ERR(css)) {
  3708. /* failure case - need to deassign the subsys[] slot. */
  3709. subsys[i] = NULL;
  3710. mutex_unlock(&cgroup_mutex);
  3711. return PTR_ERR(css);
  3712. }
  3713. list_add(&ss->sibling, &rootnode.subsys_list);
  3714. ss->root = &rootnode;
  3715. /* our new subsystem will be attached to the dummy hierarchy. */
  3716. init_cgroup_css(css, ss, dummytop);
  3717. /* init_idr must be after init_cgroup_css because it sets css->id. */
  3718. if (ss->use_id) {
  3719. int ret = cgroup_init_idr(ss, css);
  3720. if (ret) {
  3721. dummytop->subsys[ss->subsys_id] = NULL;
  3722. ss->destroy(ss, dummytop);
  3723. subsys[i] = NULL;
  3724. mutex_unlock(&cgroup_mutex);
  3725. return ret;
  3726. }
  3727. }
  3728. /*
  3729. * Now we need to entangle the css into the existing css_sets. unlike
  3730. * in cgroup_init_subsys, there are now multiple css_sets, so each one
  3731. * will need a new pointer to it; done by iterating the css_set_table.
  3732. * furthermore, modifying the existing css_sets will corrupt the hash
  3733. * table state, so each changed css_set will need its hash recomputed.
  3734. * this is all done under the css_set_lock.
  3735. */
  3736. write_lock(&css_set_lock);
  3737. for (i = 0; i < CSS_SET_TABLE_SIZE; i++) {
  3738. struct css_set *cg;
  3739. struct hlist_node *node, *tmp;
  3740. struct hlist_head *bucket = &css_set_table[i], *new_bucket;
  3741. hlist_for_each_entry_safe(cg, node, tmp, bucket, hlist) {
  3742. /* skip entries that we already rehashed */
  3743. if (cg->subsys[ss->subsys_id])
  3744. continue;
  3745. /* remove existing entry */
  3746. hlist_del(&cg->hlist);
  3747. /* set new value */
  3748. cg->subsys[ss->subsys_id] = css;
  3749. /* recompute hash and restore entry */
  3750. new_bucket = css_set_hash(cg->subsys);
  3751. hlist_add_head(&cg->hlist, new_bucket);
  3752. }
  3753. }
  3754. write_unlock(&css_set_lock);
  3755. mutex_init(&ss->hierarchy_mutex);
  3756. lockdep_set_class(&ss->hierarchy_mutex, &ss->subsys_key);
  3757. ss->active = 1;
  3758. /* success! */
  3759. mutex_unlock(&cgroup_mutex);
  3760. return 0;
  3761. }
  3762. EXPORT_SYMBOL_GPL(cgroup_load_subsys);
  3763. /**
  3764. * cgroup_unload_subsys: unload a modular subsystem
  3765. * @ss: the subsystem to unload
  3766. *
  3767. * This function should be called in a modular subsystem's exitcall. When this
  3768. * function is invoked, the refcount on the subsystem's module will be 0, so
  3769. * the subsystem will not be attached to any hierarchy.
  3770. */
  3771. void cgroup_unload_subsys(struct cgroup_subsys *ss)
  3772. {
  3773. struct cg_cgroup_link *link;
  3774. struct hlist_head *hhead;
  3775. BUG_ON(ss->module == NULL);
  3776. /*
  3777. * we shouldn't be called if the subsystem is in use, and the use of
  3778. * try_module_get in parse_cgroupfs_options should ensure that it
  3779. * doesn't start being used while we're killing it off.
  3780. */
  3781. BUG_ON(ss->root != &rootnode);
  3782. mutex_lock(&cgroup_mutex);
  3783. /* deassign the subsys_id */
  3784. BUG_ON(ss->subsys_id < CGROUP_BUILTIN_SUBSYS_COUNT);
  3785. subsys[ss->subsys_id] = NULL;
  3786. /* remove subsystem from rootnode's list of subsystems */
  3787. list_del_init(&ss->sibling);
  3788. /*
  3789. * disentangle the css from all css_sets attached to the dummytop. as
  3790. * in loading, we need to pay our respects to the hashtable gods.
  3791. */
  3792. write_lock(&css_set_lock);
  3793. list_for_each_entry(link, &dummytop->css_sets, cgrp_link_list) {
  3794. struct css_set *cg = link->cg;
  3795. hlist_del(&cg->hlist);
  3796. BUG_ON(!cg->subsys[ss->subsys_id]);
  3797. cg->subsys[ss->subsys_id] = NULL;
  3798. hhead = css_set_hash(cg->subsys);
  3799. hlist_add_head(&cg->hlist, hhead);
  3800. }
  3801. write_unlock(&css_set_lock);
  3802. /*
  3803. * remove subsystem's css from the dummytop and free it - need to free
  3804. * before marking as null because ss->destroy needs the cgrp->subsys
  3805. * pointer to find their state. note that this also takes care of
  3806. * freeing the css_id.
  3807. */
  3808. ss->destroy(ss, dummytop);
  3809. dummytop->subsys[ss->subsys_id] = NULL;
  3810. mutex_unlock(&cgroup_mutex);
  3811. }
  3812. EXPORT_SYMBOL_GPL(cgroup_unload_subsys);
  3813. /**
  3814. * cgroup_init_early - cgroup initialization at system boot
  3815. *
  3816. * Initialize cgroups at system boot, and initialize any
  3817. * subsystems that request early init.
  3818. */
  3819. int __init cgroup_init_early(void)
  3820. {
  3821. int i;
  3822. atomic_set(&init_css_set.refcount, 1);
  3823. INIT_LIST_HEAD(&init_css_set.cg_links);
  3824. INIT_LIST_HEAD(&init_css_set.tasks);
  3825. INIT_HLIST_NODE(&init_css_set.hlist);
  3826. css_set_count = 1;
  3827. init_cgroup_root(&rootnode);
  3828. root_count = 1;
  3829. init_task.cgroups = &init_css_set;
  3830. init_css_set_link.cg = &init_css_set;
  3831. init_css_set_link.cgrp = dummytop;
  3832. list_add(&init_css_set_link.cgrp_link_list,
  3833. &rootnode.top_cgroup.css_sets);
  3834. list_add(&init_css_set_link.cg_link_list,
  3835. &init_css_set.cg_links);
  3836. for (i = 0; i < CSS_SET_TABLE_SIZE; i++)
  3837. INIT_HLIST_HEAD(&css_set_table[i]);
  3838. /* at bootup time, we don't worry about modular subsystems */
  3839. for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) {
  3840. struct cgroup_subsys *ss = subsys[i];
  3841. BUG_ON(!ss->name);
  3842. BUG_ON(strlen(ss->name) > MAX_CGROUP_TYPE_NAMELEN);
  3843. BUG_ON(!ss->create);
  3844. BUG_ON(!ss->destroy);
  3845. if (ss->subsys_id != i) {
  3846. printk(KERN_ERR "cgroup: Subsys %s id == %d\n",
  3847. ss->name, ss->subsys_id);
  3848. BUG();
  3849. }
  3850. if (ss->early_init)
  3851. cgroup_init_subsys(ss);
  3852. }
  3853. return 0;
  3854. }
  3855. /**
  3856. * cgroup_init - cgroup initialization
  3857. *
  3858. * Register cgroup filesystem and /proc file, and initialize
  3859. * any subsystems that didn't request early init.
  3860. */
  3861. int __init cgroup_init(void)
  3862. {
  3863. int err;
  3864. int i;
  3865. struct hlist_head *hhead;
  3866. err = bdi_init(&cgroup_backing_dev_info);
  3867. if (err)
  3868. return err;
  3869. /* at bootup time, we don't worry about modular subsystems */
  3870. for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) {
  3871. struct cgroup_subsys *ss = subsys[i];
  3872. if (!ss->early_init)
  3873. cgroup_init_subsys(ss);
  3874. if (ss->use_id)
  3875. cgroup_init_idr(ss, init_css_set.subsys[ss->subsys_id]);
  3876. }
  3877. /* Add init_css_set to the hash table */
  3878. hhead = css_set_hash(init_css_set.subsys);
  3879. hlist_add_head(&init_css_set.hlist, hhead);
  3880. BUG_ON(!init_root_id(&rootnode));
  3881. cgroup_kobj = kobject_create_and_add("cgroup", fs_kobj);
  3882. if (!cgroup_kobj) {
  3883. err = -ENOMEM;
  3884. goto out;
  3885. }
  3886. err = register_filesystem(&cgroup_fs_type);
  3887. if (err < 0) {
  3888. kobject_put(cgroup_kobj);
  3889. goto out;
  3890. }
  3891. proc_create("cgroups", 0, NULL, &proc_cgroupstats_operations);
  3892. out:
  3893. if (err)
  3894. bdi_destroy(&cgroup_backing_dev_info);
  3895. return err;
  3896. }
  3897. /*
  3898. * proc_cgroup_show()
  3899. * - Print task's cgroup paths into seq_file, one line for each hierarchy
  3900. * - Used for /proc/<pid>/cgroup.
  3901. * - No need to task_lock(tsk) on this tsk->cgroup reference, as it
  3902. * doesn't really matter if tsk->cgroup changes after we read it,
  3903. * and we take cgroup_mutex, keeping cgroup_attach_task() from changing it
  3904. * anyway. No need to check that tsk->cgroup != NULL, thanks to
  3905. * the_top_cgroup_hack in cgroup_exit(), which sets an exiting tasks
  3906. * cgroup to top_cgroup.
  3907. */
  3908. /* TODO: Use a proper seq_file iterator */
  3909. static int proc_cgroup_show(struct seq_file *m, void *v)
  3910. {
  3911. struct pid *pid;
  3912. struct task_struct *tsk;
  3913. char *buf;
  3914. int retval;
  3915. struct cgroupfs_root *root;
  3916. retval = -ENOMEM;
  3917. buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
  3918. if (!buf)
  3919. goto out;
  3920. retval = -ESRCH;
  3921. pid = m->private;
  3922. tsk = get_pid_task(pid, PIDTYPE_PID);
  3923. if (!tsk)
  3924. goto out_free;
  3925. retval = 0;
  3926. mutex_lock(&cgroup_mutex);
  3927. for_each_active_root(root) {
  3928. struct cgroup_subsys *ss;
  3929. struct cgroup *cgrp;
  3930. int count = 0;
  3931. seq_printf(m, "%d:", root->hierarchy_id);
  3932. for_each_subsys(root, ss)
  3933. seq_printf(m, "%s%s", count++ ? "," : "", ss->name);
  3934. if (strlen(root->name))
  3935. seq_printf(m, "%sname=%s", count ? "," : "",
  3936. root->name);
  3937. seq_putc(m, ':');
  3938. cgrp = task_cgroup_from_root(tsk, root);
  3939. retval = cgroup_path(cgrp, buf, PAGE_SIZE);
  3940. if (retval < 0)
  3941. goto out_unlock;
  3942. seq_puts(m, buf);
  3943. seq_putc(m, '\n');
  3944. }
  3945. out_unlock:
  3946. mutex_unlock(&cgroup_mutex);
  3947. put_task_struct(tsk);
  3948. out_free:
  3949. kfree(buf);
  3950. out:
  3951. return retval;
  3952. }
  3953. static int cgroup_open(struct inode *inode, struct file *file)
  3954. {
  3955. struct pid *pid = PROC_I(inode)->pid;
  3956. return single_open(file, proc_cgroup_show, pid);
  3957. }
  3958. const struct file_operations proc_cgroup_operations = {
  3959. .open = cgroup_open,
  3960. .read = seq_read,
  3961. .llseek = seq_lseek,
  3962. .release = single_release,
  3963. };
  3964. /* Display information about each subsystem and each hierarchy */
  3965. static int proc_cgroupstats_show(struct seq_file *m, void *v)
  3966. {
  3967. int i;
  3968. seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
  3969. /*
  3970. * ideally we don't want subsystems moving around while we do this.
  3971. * cgroup_mutex is also necessary to guarantee an atomic snapshot of
  3972. * subsys/hierarchy state.
  3973. */
  3974. mutex_lock(&cgroup_mutex);
  3975. for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
  3976. struct cgroup_subsys *ss = subsys[i];
  3977. if (ss == NULL)
  3978. continue;
  3979. seq_printf(m, "%s\t%d\t%d\t%d\n",
  3980. ss->name, ss->root->hierarchy_id,
  3981. ss->root->number_of_cgroups, !ss->disabled);
  3982. }
  3983. mutex_unlock(&cgroup_mutex);
  3984. return 0;
  3985. }
  3986. static int cgroupstats_open(struct inode *inode, struct file *file)
  3987. {
  3988. return single_open(file, proc_cgroupstats_show, NULL);
  3989. }
  3990. static const struct file_operations proc_cgroupstats_operations = {
  3991. .open = cgroupstats_open,
  3992. .read = seq_read,
  3993. .llseek = seq_lseek,
  3994. .release = single_release,
  3995. };
  3996. /**
  3997. * cgroup_fork - attach newly forked task to its parents cgroup.
  3998. * @child: pointer to task_struct of forking parent process.
  3999. *
  4000. * Description: A task inherits its parent's cgroup at fork().
  4001. *
  4002. * A pointer to the shared css_set was automatically copied in
  4003. * fork.c by dup_task_struct(). However, we ignore that copy, since
  4004. * it was not made under the protection of RCU, cgroup_mutex or
  4005. * threadgroup_change_begin(), so it might no longer be a valid
  4006. * cgroup pointer. cgroup_attach_task() might have already changed
  4007. * current->cgroups, allowing the previously referenced cgroup
  4008. * group to be removed and freed.
  4009. *
  4010. * Outside the pointer validity we also need to process the css_set
  4011. * inheritance between threadgoup_change_begin() and
  4012. * threadgoup_change_end(), this way there is no leak in any process
  4013. * wide migration performed by cgroup_attach_proc() that could otherwise
  4014. * miss a thread because it is too early or too late in the fork stage.
  4015. *
  4016. * At the point that cgroup_fork() is called, 'current' is the parent
  4017. * task, and the passed argument 'child' points to the child task.
  4018. */
  4019. void cgroup_fork(struct task_struct *child)
  4020. {
  4021. /*
  4022. * We don't need to task_lock() current because current->cgroups
  4023. * can't be changed concurrently here. The parent obviously hasn't
  4024. * exited and called cgroup_exit(), and we are synchronized against
  4025. * cgroup migration through threadgroup_change_begin().
  4026. */
  4027. child->cgroups = current->cgroups;
  4028. get_css_set(child->cgroups);
  4029. INIT_LIST_HEAD(&child->cg_list);
  4030. }
  4031. /**
  4032. * cgroup_fork_callbacks - run fork callbacks
  4033. * @child: the new task
  4034. *
  4035. * Called on a new task very soon before adding it to the
  4036. * tasklist. No need to take any locks since no-one can
  4037. * be operating on this task.
  4038. */
  4039. void cgroup_fork_callbacks(struct task_struct *child)
  4040. {
  4041. if (need_forkexit_callback) {
  4042. int i;
  4043. /*
  4044. * forkexit callbacks are only supported for builtin
  4045. * subsystems, and the builtin section of the subsys array is
  4046. * immutable, so we don't need to lock the subsys array here.
  4047. */
  4048. for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) {
  4049. struct cgroup_subsys *ss = subsys[i];
  4050. if (ss->fork)
  4051. ss->fork(ss, child);
  4052. }
  4053. }
  4054. }
  4055. /**
  4056. * cgroup_post_fork - called on a new task after adding it to the task list
  4057. * @child: the task in question
  4058. *
  4059. * Adds the task to the list running through its css_set if necessary.
  4060. * Has to be after the task is visible on the task list in case we race
  4061. * with the first call to cgroup_iter_start() - to guarantee that the
  4062. * new task ends up on its list.
  4063. */
  4064. void cgroup_post_fork(struct task_struct *child)
  4065. {
  4066. if (use_task_css_set_links) {
  4067. write_lock(&css_set_lock);
  4068. task_lock(child);
  4069. if (list_empty(&child->cg_list))
  4070. list_add(&child->cg_list, &child->cgroups->tasks);
  4071. task_unlock(child);
  4072. write_unlock(&css_set_lock);
  4073. }
  4074. }
  4075. /**
  4076. * cgroup_exit - detach cgroup from exiting task
  4077. * @tsk: pointer to task_struct of exiting process
  4078. * @run_callback: run exit callbacks?
  4079. *
  4080. * Description: Detach cgroup from @tsk and release it.
  4081. *
  4082. * Note that cgroups marked notify_on_release force every task in
  4083. * them to take the global cgroup_mutex mutex when exiting.
  4084. * This could impact scaling on very large systems. Be reluctant to
  4085. * use notify_on_release cgroups where very high task exit scaling
  4086. * is required on large systems.
  4087. *
  4088. * the_top_cgroup_hack:
  4089. *
  4090. * Set the exiting tasks cgroup to the root cgroup (top_cgroup).
  4091. *
  4092. * We call cgroup_exit() while the task is still competent to
  4093. * handle notify_on_release(), then leave the task attached to the
  4094. * root cgroup in each hierarchy for the remainder of its exit.
  4095. *
  4096. * To do this properly, we would increment the reference count on
  4097. * top_cgroup, and near the very end of the kernel/exit.c do_exit()
  4098. * code we would add a second cgroup function call, to drop that
  4099. * reference. This would just create an unnecessary hot spot on
  4100. * the top_cgroup reference count, to no avail.
  4101. *
  4102. * Normally, holding a reference to a cgroup without bumping its
  4103. * count is unsafe. The cgroup could go away, or someone could
  4104. * attach us to a different cgroup, decrementing the count on
  4105. * the first cgroup that we never incremented. But in this case,
  4106. * top_cgroup isn't going away, and either task has PF_EXITING set,
  4107. * which wards off any cgroup_attach_task() attempts, or task is a failed
  4108. * fork, never visible to cgroup_attach_task.
  4109. */
  4110. void cgroup_exit(struct task_struct *tsk, int run_callbacks)
  4111. {
  4112. struct css_set *cg;
  4113. int i;
  4114. /*
  4115. * Unlink from the css_set task list if necessary.
  4116. * Optimistically check cg_list before taking
  4117. * css_set_lock
  4118. */
  4119. if (!list_empty(&tsk->cg_list)) {
  4120. write_lock(&css_set_lock);
  4121. if (!list_empty(&tsk->cg_list))
  4122. list_del_init(&tsk->cg_list);
  4123. write_unlock(&css_set_lock);
  4124. }
  4125. /* Reassign the task to the init_css_set. */
  4126. task_lock(tsk);
  4127. cg = tsk->cgroups;
  4128. tsk->cgroups = &init_css_set;
  4129. if (run_callbacks && need_forkexit_callback) {
  4130. /*
  4131. * modular subsystems can't use callbacks, so no need to lock
  4132. * the subsys array
  4133. */
  4134. for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) {
  4135. struct cgroup_subsys *ss = subsys[i];
  4136. if (ss->exit) {
  4137. struct cgroup *old_cgrp =
  4138. rcu_dereference_raw(cg->subsys[i])->cgroup;
  4139. struct cgroup *cgrp = task_cgroup(tsk, i);
  4140. ss->exit(ss, cgrp, old_cgrp, tsk);
  4141. }
  4142. }
  4143. }
  4144. task_unlock(tsk);
  4145. if (cg)
  4146. put_css_set_taskexit(cg);
  4147. }
  4148. /**
  4149. * cgroup_is_descendant - see if @cgrp is a descendant of @task's cgrp
  4150. * @cgrp: the cgroup in question
  4151. * @task: the task in question
  4152. *
  4153. * See if @cgrp is a descendant of @task's cgroup in the appropriate
  4154. * hierarchy.
  4155. *
  4156. * If we are sending in dummytop, then presumably we are creating
  4157. * the top cgroup in the subsystem.
  4158. *
  4159. * Called only by the ns (nsproxy) cgroup.
  4160. */
  4161. int cgroup_is_descendant(const struct cgroup *cgrp, struct task_struct *task)
  4162. {
  4163. int ret;
  4164. struct cgroup *target;
  4165. if (cgrp == dummytop)
  4166. return 1;
  4167. target = task_cgroup_from_root(task, cgrp->root);
  4168. while (cgrp != target && cgrp!= cgrp->top_cgroup)
  4169. cgrp = cgrp->parent;
  4170. ret = (cgrp == target);
  4171. return ret;
  4172. }
  4173. static void check_for_release(struct cgroup *cgrp)
  4174. {
  4175. /* All of these checks rely on RCU to keep the cgroup
  4176. * structure alive */
  4177. if (cgroup_is_releasable(cgrp) && !atomic_read(&cgrp->count)
  4178. && list_empty(&cgrp->children) && !cgroup_has_css_refs(cgrp)) {
  4179. /* Control Group is currently removeable. If it's not
  4180. * already queued for a userspace notification, queue
  4181. * it now */
  4182. int need_schedule_work = 0;
  4183. raw_spin_lock(&release_list_lock);
  4184. if (!cgroup_is_removed(cgrp) &&
  4185. list_empty(&cgrp->release_list)) {
  4186. list_add(&cgrp->release_list, &release_list);
  4187. need_schedule_work = 1;
  4188. }
  4189. raw_spin_unlock(&release_list_lock);
  4190. if (need_schedule_work)
  4191. schedule_work(&release_agent_work);
  4192. }
  4193. }
  4194. /* Caller must verify that the css is not for root cgroup */
  4195. void __css_put(struct cgroup_subsys_state *css, int count)
  4196. {
  4197. struct cgroup *cgrp = css->cgroup;
  4198. int val;
  4199. rcu_read_lock();
  4200. val = atomic_sub_return(count, &css->refcnt);
  4201. if (val == 1) {
  4202. if (notify_on_release(cgrp)) {
  4203. set_bit(CGRP_RELEASABLE, &cgrp->flags);
  4204. check_for_release(cgrp);
  4205. }
  4206. cgroup_wakeup_rmdir_waiter(cgrp);
  4207. }
  4208. rcu_read_unlock();
  4209. WARN_ON_ONCE(val < 1);
  4210. }
  4211. EXPORT_SYMBOL_GPL(__css_put);
  4212. /*
  4213. * Notify userspace when a cgroup is released, by running the
  4214. * configured release agent with the name of the cgroup (path
  4215. * relative to the root of cgroup file system) as the argument.
  4216. *
  4217. * Most likely, this user command will try to rmdir this cgroup.
  4218. *
  4219. * This races with the possibility that some other task will be
  4220. * attached to this cgroup before it is removed, or that some other
  4221. * user task will 'mkdir' a child cgroup of this cgroup. That's ok.
  4222. * The presumed 'rmdir' will fail quietly if this cgroup is no longer
  4223. * unused, and this cgroup will be reprieved from its death sentence,
  4224. * to continue to serve a useful existence. Next time it's released,
  4225. * we will get notified again, if it still has 'notify_on_release' set.
  4226. *
  4227. * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
  4228. * means only wait until the task is successfully execve()'d. The
  4229. * separate release agent task is forked by call_usermodehelper(),
  4230. * then control in this thread returns here, without waiting for the
  4231. * release agent task. We don't bother to wait because the caller of
  4232. * this routine has no use for the exit status of the release agent
  4233. * task, so no sense holding our caller up for that.
  4234. */
  4235. static void cgroup_release_agent(struct work_struct *work)
  4236. {
  4237. BUG_ON(work != &release_agent_work);
  4238. mutex_lock(&cgroup_mutex);
  4239. raw_spin_lock(&release_list_lock);
  4240. while (!list_empty(&release_list)) {
  4241. char *argv[3], *envp[3];
  4242. int i;
  4243. char *pathbuf = NULL, *agentbuf = NULL;
  4244. struct cgroup *cgrp = list_entry(release_list.next,
  4245. struct cgroup,
  4246. release_list);
  4247. list_del_init(&cgrp->release_list);
  4248. raw_spin_unlock(&release_list_lock);
  4249. pathbuf = kmalloc(PAGE_SIZE, GFP_KERNEL);
  4250. if (!pathbuf)
  4251. goto continue_free;
  4252. if (cgroup_path(cgrp, pathbuf, PAGE_SIZE) < 0)
  4253. goto continue_free;
  4254. agentbuf = kstrdup(cgrp->root->release_agent_path, GFP_KERNEL);
  4255. if (!agentbuf)
  4256. goto continue_free;
  4257. i = 0;
  4258. argv[i++] = agentbuf;
  4259. argv[i++] = pathbuf;
  4260. argv[i] = NULL;
  4261. i = 0;
  4262. /* minimal command environment */
  4263. envp[i++] = "HOME=/";
  4264. envp[i++] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
  4265. envp[i] = NULL;
  4266. /* Drop the lock while we invoke the usermode helper,
  4267. * since the exec could involve hitting disk and hence
  4268. * be a slow process */
  4269. mutex_unlock(&cgroup_mutex);
  4270. call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
  4271. mutex_lock(&cgroup_mutex);
  4272. continue_free:
  4273. kfree(pathbuf);
  4274. kfree(agentbuf);
  4275. raw_spin_lock(&release_list_lock);
  4276. }
  4277. raw_spin_unlock(&release_list_lock);
  4278. mutex_unlock(&cgroup_mutex);
  4279. }
  4280. static int __init cgroup_disable(char *str)
  4281. {
  4282. int i;
  4283. char *token;
  4284. while ((token = strsep(&str, ",")) != NULL) {
  4285. if (!*token)
  4286. continue;
  4287. /*
  4288. * cgroup_disable, being at boot time, can't know about module
  4289. * subsystems, so we don't worry about them.
  4290. */
  4291. for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) {
  4292. struct cgroup_subsys *ss = subsys[i];
  4293. if (!strcmp(token, ss->name)) {
  4294. ss->disabled = 1;
  4295. printk(KERN_INFO "Disabling %s control group"
  4296. " subsystem\n", ss->name);
  4297. break;
  4298. }
  4299. }
  4300. }
  4301. return 1;
  4302. }
  4303. __setup("cgroup_disable=", cgroup_disable);
  4304. /*
  4305. * Functons for CSS ID.
  4306. */
  4307. /*
  4308. *To get ID other than 0, this should be called when !cgroup_is_removed().
  4309. */
  4310. unsigned short css_id(struct cgroup_subsys_state *css)
  4311. {
  4312. struct css_id *cssid;
  4313. /*
  4314. * This css_id() can return correct value when somone has refcnt
  4315. * on this or this is under rcu_read_lock(). Once css->id is allocated,
  4316. * it's unchanged until freed.
  4317. */
  4318. cssid = rcu_dereference_check(css->id, atomic_read(&css->refcnt));
  4319. if (cssid)
  4320. return cssid->id;
  4321. return 0;
  4322. }
  4323. EXPORT_SYMBOL_GPL(css_id);
  4324. unsigned short css_depth(struct cgroup_subsys_state *css)
  4325. {
  4326. struct css_id *cssid;
  4327. cssid = rcu_dereference_check(css->id, atomic_read(&css->refcnt));
  4328. if (cssid)
  4329. return cssid->depth;
  4330. return 0;
  4331. }
  4332. EXPORT_SYMBOL_GPL(css_depth);
  4333. /**
  4334. * css_is_ancestor - test "root" css is an ancestor of "child"
  4335. * @child: the css to be tested.
  4336. * @root: the css supporsed to be an ancestor of the child.
  4337. *
  4338. * Returns true if "root" is an ancestor of "child" in its hierarchy. Because
  4339. * this function reads css->id, this use rcu_dereference() and rcu_read_lock().
  4340. * But, considering usual usage, the csses should be valid objects after test.
  4341. * Assuming that the caller will do some action to the child if this returns
  4342. * returns true, the caller must take "child";s reference count.
  4343. * If "child" is valid object and this returns true, "root" is valid, too.
  4344. */
  4345. bool css_is_ancestor(struct cgroup_subsys_state *child,
  4346. const struct cgroup_subsys_state *root)
  4347. {
  4348. struct css_id *child_id;
  4349. struct css_id *root_id;
  4350. bool ret = true;
  4351. rcu_read_lock();
  4352. child_id = rcu_dereference(child->id);
  4353. root_id = rcu_dereference(root->id);
  4354. if (!child_id
  4355. || !root_id
  4356. || (child_id->depth < root_id->depth)
  4357. || (child_id->stack[root_id->depth] != root_id->id))
  4358. ret = false;
  4359. rcu_read_unlock();
  4360. return ret;
  4361. }
  4362. void free_css_id(struct cgroup_subsys *ss, struct cgroup_subsys_state *css)
  4363. {
  4364. struct css_id *id = css->id;
  4365. /* When this is called before css_id initialization, id can be NULL */
  4366. if (!id)
  4367. return;
  4368. BUG_ON(!ss->use_id);
  4369. rcu_assign_pointer(id->css, NULL);
  4370. rcu_assign_pointer(css->id, NULL);
  4371. write_lock(&ss->id_lock);
  4372. idr_remove(&ss->idr, id->id);
  4373. write_unlock(&ss->id_lock);
  4374. kfree_rcu(id, rcu_head);
  4375. }
  4376. EXPORT_SYMBOL_GPL(free_css_id);
  4377. /*
  4378. * This is called by init or create(). Then, calls to this function are
  4379. * always serialized (By cgroup_mutex() at create()).
  4380. */
  4381. static struct css_id *get_new_cssid(struct cgroup_subsys *ss, int depth)
  4382. {
  4383. struct css_id *newid;
  4384. int myid, error, size;
  4385. BUG_ON(!ss->use_id);
  4386. size = sizeof(*newid) + sizeof(unsigned short) * (depth + 1);
  4387. newid = kzalloc(size, GFP_KERNEL);
  4388. if (!newid)
  4389. return ERR_PTR(-ENOMEM);
  4390. /* get id */
  4391. if (unlikely(!idr_pre_get(&ss->idr, GFP_KERNEL))) {
  4392. error = -ENOMEM;
  4393. goto err_out;
  4394. }
  4395. write_lock(&ss->id_lock);
  4396. /* Don't use 0. allocates an ID of 1-65535 */
  4397. error = idr_get_new_above(&ss->idr, newid, 1, &myid);
  4398. write_unlock(&ss->id_lock);
  4399. /* Returns error when there are no free spaces for new ID.*/
  4400. if (error) {
  4401. error = -ENOSPC;
  4402. goto err_out;
  4403. }
  4404. if (myid > CSS_ID_MAX)
  4405. goto remove_idr;
  4406. newid->id = myid;
  4407. newid->depth = depth;
  4408. return newid;
  4409. remove_idr:
  4410. error = -ENOSPC;
  4411. write_lock(&ss->id_lock);
  4412. idr_remove(&ss->idr, myid);
  4413. write_unlock(&ss->id_lock);
  4414. err_out:
  4415. kfree(newid);
  4416. return ERR_PTR(error);
  4417. }
  4418. static int __init_or_module cgroup_init_idr(struct cgroup_subsys *ss,
  4419. struct cgroup_subsys_state *rootcss)
  4420. {
  4421. struct css_id *newid;
  4422. rwlock_init(&ss->id_lock);
  4423. idr_init(&ss->idr);
  4424. newid = get_new_cssid(ss, 0);
  4425. if (IS_ERR(newid))
  4426. return PTR_ERR(newid);
  4427. newid->stack[0] = newid->id;
  4428. newid->css = rootcss;
  4429. rootcss->id = newid;
  4430. return 0;
  4431. }
  4432. static int alloc_css_id(struct cgroup_subsys *ss, struct cgroup *parent,
  4433. struct cgroup *child)
  4434. {
  4435. int subsys_id, i, depth = 0;
  4436. struct cgroup_subsys_state *parent_css, *child_css;
  4437. struct css_id *child_id, *parent_id;
  4438. subsys_id = ss->subsys_id;
  4439. parent_css = parent->subsys[subsys_id];
  4440. child_css = child->subsys[subsys_id];
  4441. parent_id = parent_css->id;
  4442. depth = parent_id->depth + 1;
  4443. child_id = get_new_cssid(ss, depth);
  4444. if (IS_ERR(child_id))
  4445. return PTR_ERR(child_id);
  4446. for (i = 0; i < depth; i++)
  4447. child_id->stack[i] = parent_id->stack[i];
  4448. child_id->stack[depth] = child_id->id;
  4449. /*
  4450. * child_id->css pointer will be set after this cgroup is available
  4451. * see cgroup_populate_dir()
  4452. */
  4453. rcu_assign_pointer(child_css->id, child_id);
  4454. return 0;
  4455. }
  4456. /**
  4457. * css_lookup - lookup css by id
  4458. * @ss: cgroup subsys to be looked into.
  4459. * @id: the id
  4460. *
  4461. * Returns pointer to cgroup_subsys_state if there is valid one with id.
  4462. * NULL if not. Should be called under rcu_read_lock()
  4463. */
  4464. struct cgroup_subsys_state *css_lookup(struct cgroup_subsys *ss, int id)
  4465. {
  4466. struct css_id *cssid = NULL;
  4467. BUG_ON(!ss->use_id);
  4468. cssid = idr_find(&ss->idr, id);
  4469. if (unlikely(!cssid))
  4470. return NULL;
  4471. return rcu_dereference(cssid->css);
  4472. }
  4473. EXPORT_SYMBOL_GPL(css_lookup);
  4474. /**
  4475. * css_get_next - lookup next cgroup under specified hierarchy.
  4476. * @ss: pointer to subsystem
  4477. * @id: current position of iteration.
  4478. * @root: pointer to css. search tree under this.
  4479. * @foundid: position of found object.
  4480. *
  4481. * Search next css under the specified hierarchy of rootid. Calling under
  4482. * rcu_read_lock() is necessary. Returns NULL if it reaches the end.
  4483. */
  4484. struct cgroup_subsys_state *
  4485. css_get_next(struct cgroup_subsys *ss, int id,
  4486. struct cgroup_subsys_state *root, int *foundid)
  4487. {
  4488. struct cgroup_subsys_state *ret = NULL;
  4489. struct css_id *tmp;
  4490. int tmpid;
  4491. int rootid = css_id(root);
  4492. int depth = css_depth(root);
  4493. if (!rootid)
  4494. return NULL;
  4495. BUG_ON(!ss->use_id);
  4496. /* fill start point for scan */
  4497. tmpid = id;
  4498. while (1) {
  4499. /*
  4500. * scan next entry from bitmap(tree), tmpid is updated after
  4501. * idr_get_next().
  4502. */
  4503. read_lock(&ss->id_lock);
  4504. tmp = idr_get_next(&ss->idr, &tmpid);
  4505. read_unlock(&ss->id_lock);
  4506. if (!tmp)
  4507. break;
  4508. if (tmp->depth >= depth && tmp->stack[depth] == rootid) {
  4509. ret = rcu_dereference(tmp->css);
  4510. if (ret) {
  4511. *foundid = tmpid;
  4512. break;
  4513. }
  4514. }
  4515. /* continue to scan from next id */
  4516. tmpid = tmpid + 1;
  4517. }
  4518. return ret;
  4519. }
  4520. /*
  4521. * get corresponding css from file open on cgroupfs directory
  4522. */
  4523. struct cgroup_subsys_state *cgroup_css_from_dir(struct file *f, int id)
  4524. {
  4525. struct cgroup *cgrp;
  4526. struct inode *inode;
  4527. struct cgroup_subsys_state *css;
  4528. inode = f->f_dentry->d_inode;
  4529. /* check in cgroup filesystem dir */
  4530. if (inode->i_op != &cgroup_dir_inode_operations)
  4531. return ERR_PTR(-EBADF);
  4532. if (id < 0 || id >= CGROUP_SUBSYS_COUNT)
  4533. return ERR_PTR(-EINVAL);
  4534. /* get cgroup */
  4535. cgrp = __d_cgrp(f->f_dentry);
  4536. css = cgrp->subsys[id];
  4537. return css ? css : ERR_PTR(-ENOENT);
  4538. }
  4539. #ifdef CONFIG_CGROUP_DEBUG
  4540. static struct cgroup_subsys_state *debug_create(struct cgroup_subsys *ss,
  4541. struct cgroup *cont)
  4542. {
  4543. struct cgroup_subsys_state *css = kzalloc(sizeof(*css), GFP_KERNEL);
  4544. if (!css)
  4545. return ERR_PTR(-ENOMEM);
  4546. return css;
  4547. }
  4548. static void debug_destroy(struct cgroup_subsys *ss, struct cgroup *cont)
  4549. {
  4550. kfree(cont->subsys[debug_subsys_id]);
  4551. }
  4552. static u64 cgroup_refcount_read(struct cgroup *cont, struct cftype *cft)
  4553. {
  4554. return atomic_read(&cont->count);
  4555. }
  4556. static u64 debug_taskcount_read(struct cgroup *cont, struct cftype *cft)
  4557. {
  4558. return cgroup_task_count(cont);
  4559. }
  4560. static u64 current_css_set_read(struct cgroup *cont, struct cftype *cft)
  4561. {
  4562. return (u64)(unsigned long)current->cgroups;
  4563. }
  4564. static u64 current_css_set_refcount_read(struct cgroup *cont,
  4565. struct cftype *cft)
  4566. {
  4567. u64 count;
  4568. rcu_read_lock();
  4569. count = atomic_read(&current->cgroups->refcount);
  4570. rcu_read_unlock();
  4571. return count;
  4572. }
  4573. static int current_css_set_cg_links_read(struct cgroup *cont,
  4574. struct cftype *cft,
  4575. struct seq_file *seq)
  4576. {
  4577. struct cg_cgroup_link *link;
  4578. struct css_set *cg;
  4579. read_lock(&css_set_lock);
  4580. rcu_read_lock();
  4581. cg = rcu_dereference(current->cgroups);
  4582. list_for_each_entry(link, &cg->cg_links, cg_link_list) {
  4583. struct cgroup *c = link->cgrp;
  4584. const char *name;
  4585. if (c->dentry)
  4586. name = c->dentry->d_name.name;
  4587. else
  4588. name = "?";
  4589. seq_printf(seq, "Root %d group %s\n",
  4590. c->root->hierarchy_id, name);
  4591. }
  4592. rcu_read_unlock();
  4593. read_unlock(&css_set_lock);
  4594. return 0;
  4595. }
  4596. #define MAX_TASKS_SHOWN_PER_CSS 25
  4597. static int cgroup_css_links_read(struct cgroup *cont,
  4598. struct cftype *cft,
  4599. struct seq_file *seq)
  4600. {
  4601. struct cg_cgroup_link *link;
  4602. read_lock(&css_set_lock);
  4603. list_for_each_entry(link, &cont->css_sets, cgrp_link_list) {
  4604. struct css_set *cg = link->cg;
  4605. struct task_struct *task;
  4606. int count = 0;
  4607. seq_printf(seq, "css_set %p\n", cg);
  4608. list_for_each_entry(task, &cg->tasks, cg_list) {
  4609. if (count++ > MAX_TASKS_SHOWN_PER_CSS) {
  4610. seq_puts(seq, " ...\n");
  4611. break;
  4612. } else {
  4613. seq_printf(seq, " task %d\n",
  4614. task_pid_vnr(task));
  4615. }
  4616. }
  4617. }
  4618. read_unlock(&css_set_lock);
  4619. return 0;
  4620. }
  4621. static u64 releasable_read(struct cgroup *cgrp, struct cftype *cft)
  4622. {
  4623. return test_bit(CGRP_RELEASABLE, &cgrp->flags);
  4624. }
  4625. static struct cftype debug_files[] = {
  4626. {
  4627. .name = "cgroup_refcount",
  4628. .read_u64 = cgroup_refcount_read,
  4629. },
  4630. {
  4631. .name = "taskcount",
  4632. .read_u64 = debug_taskcount_read,
  4633. },
  4634. {
  4635. .name = "current_css_set",
  4636. .read_u64 = current_css_set_read,
  4637. },
  4638. {
  4639. .name = "current_css_set_refcount",
  4640. .read_u64 = current_css_set_refcount_read,
  4641. },
  4642. {
  4643. .name = "current_css_set_cg_links",
  4644. .read_seq_string = current_css_set_cg_links_read,
  4645. },
  4646. {
  4647. .name = "cgroup_css_links",
  4648. .read_seq_string = cgroup_css_links_read,
  4649. },
  4650. {
  4651. .name = "releasable",
  4652. .read_u64 = releasable_read,
  4653. },
  4654. };
  4655. static int debug_populate(struct cgroup_subsys *ss, struct cgroup *cont)
  4656. {
  4657. return cgroup_add_files(cont, ss, debug_files,
  4658. ARRAY_SIZE(debug_files));
  4659. }
  4660. struct cgroup_subsys debug_subsys = {
  4661. .name = "debug",
  4662. .create = debug_create,
  4663. .destroy = debug_destroy,
  4664. .populate = debug_populate,
  4665. .subsys_id = debug_subsys_id,
  4666. };
  4667. #endif /* CONFIG_CGROUP_DEBUG */