mmzone.h 35 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143
  1. #ifndef _LINUX_MMZONE_H
  2. #define _LINUX_MMZONE_H
  3. #ifndef __ASSEMBLY__
  4. #ifndef __GENERATING_BOUNDS_H
  5. #include <linux/spinlock.h>
  6. #include <linux/list.h>
  7. #include <linux/wait.h>
  8. #include <linux/bitops.h>
  9. #include <linux/cache.h>
  10. #include <linux/threads.h>
  11. #include <linux/numa.h>
  12. #include <linux/init.h>
  13. #include <linux/seqlock.h>
  14. #include <linux/nodemask.h>
  15. #include <linux/pageblock-flags.h>
  16. #include <generated/bounds.h>
  17. #include <asm/atomic.h>
  18. #include <asm/page.h>
  19. /* Free memory management - zoned buddy allocator. */
  20. #ifndef CONFIG_FORCE_MAX_ZONEORDER
  21. #define MAX_ORDER 11
  22. #else
  23. #define MAX_ORDER CONFIG_FORCE_MAX_ZONEORDER
  24. #endif
  25. #define MAX_ORDER_NR_PAGES (1 << (MAX_ORDER - 1))
  26. /*
  27. * PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed
  28. * costly to service. That is between allocation orders which should
  29. * coelesce naturally under reasonable reclaim pressure and those which
  30. * will not.
  31. */
  32. #define PAGE_ALLOC_COSTLY_ORDER 3
  33. #define MIGRATE_UNMOVABLE 0
  34. #define MIGRATE_RECLAIMABLE 1
  35. #define MIGRATE_MOVABLE 2
  36. #define MIGRATE_PCPTYPES 3 /* the number of types on the pcp lists */
  37. #define MIGRATE_RESERVE 3
  38. #define MIGRATE_ISOLATE 4 /* can't allocate from here */
  39. #define MIGRATE_TYPES 5
  40. #define for_each_migratetype_order(order, type) \
  41. for (order = 0; order < MAX_ORDER; order++) \
  42. for (type = 0; type < MIGRATE_TYPES; type++)
  43. extern int page_group_by_mobility_disabled;
  44. static inline int get_pageblock_migratetype(struct page *page)
  45. {
  46. return get_pageblock_flags_group(page, PB_migrate, PB_migrate_end);
  47. }
  48. struct free_area {
  49. struct list_head free_list[MIGRATE_TYPES];
  50. unsigned long nr_free;
  51. };
  52. struct pglist_data;
  53. /*
  54. * zone->lock and zone->lru_lock are two of the hottest locks in the kernel.
  55. * So add a wild amount of padding here to ensure that they fall into separate
  56. * cachelines. There are very few zone structures in the machine, so space
  57. * consumption is not a concern here.
  58. */
  59. #if defined(CONFIG_SMP)
  60. struct zone_padding {
  61. char x[0];
  62. } ____cacheline_internodealigned_in_smp;
  63. #define ZONE_PADDING(name) struct zone_padding name;
  64. #else
  65. #define ZONE_PADDING(name)
  66. #endif
  67. enum zone_stat_item {
  68. /* First 128 byte cacheline (assuming 64 bit words) */
  69. NR_FREE_PAGES,
  70. NR_LRU_BASE,
  71. NR_INACTIVE_ANON = NR_LRU_BASE, /* must match order of LRU_[IN]ACTIVE */
  72. NR_ACTIVE_ANON, /* " " " " " */
  73. NR_INACTIVE_FILE, /* " " " " " */
  74. NR_ACTIVE_FILE, /* " " " " " */
  75. NR_UNEVICTABLE, /* " " " " " */
  76. NR_MLOCK, /* mlock()ed pages found and moved off LRU */
  77. NR_ANON_PAGES, /* Mapped anonymous pages */
  78. NR_FILE_MAPPED, /* pagecache pages mapped into pagetables.
  79. only modified from process context */
  80. NR_FILE_PAGES,
  81. NR_FILE_DIRTY,
  82. NR_WRITEBACK,
  83. NR_SLAB_RECLAIMABLE,
  84. NR_SLAB_UNRECLAIMABLE,
  85. NR_PAGETABLE, /* used for pagetables */
  86. NR_KERNEL_STACK,
  87. /* Second 128 byte cacheline */
  88. NR_UNSTABLE_NFS, /* NFS unstable pages */
  89. NR_BOUNCE,
  90. NR_VMSCAN_WRITE,
  91. NR_WRITEBACK_TEMP, /* Writeback using temporary buffers */
  92. NR_ISOLATED_ANON, /* Temporary isolated pages from anon lru */
  93. NR_ISOLATED_FILE, /* Temporary isolated pages from file lru */
  94. NR_SHMEM, /* shmem pages (included tmpfs/GEM pages) */
  95. NR_DIRTIED, /* page dirtyings since bootup */
  96. NR_WRITTEN, /* page writings since bootup */
  97. #ifdef CONFIG_NUMA
  98. NUMA_HIT, /* allocated in intended node */
  99. NUMA_MISS, /* allocated in non intended node */
  100. NUMA_FOREIGN, /* was intended here, hit elsewhere */
  101. NUMA_INTERLEAVE_HIT, /* interleaver preferred this zone */
  102. NUMA_LOCAL, /* allocation from local node */
  103. NUMA_OTHER, /* allocation from other node */
  104. #endif
  105. NR_VM_ZONE_STAT_ITEMS };
  106. /*
  107. * We do arithmetic on the LRU lists in various places in the code,
  108. * so it is important to keep the active lists LRU_ACTIVE higher in
  109. * the array than the corresponding inactive lists, and to keep
  110. * the *_FILE lists LRU_FILE higher than the corresponding _ANON lists.
  111. *
  112. * This has to be kept in sync with the statistics in zone_stat_item
  113. * above and the descriptions in vmstat_text in mm/vmstat.c
  114. */
  115. #define LRU_BASE 0
  116. #define LRU_ACTIVE 1
  117. #define LRU_FILE 2
  118. enum lru_list {
  119. LRU_INACTIVE_ANON = LRU_BASE,
  120. LRU_ACTIVE_ANON = LRU_BASE + LRU_ACTIVE,
  121. LRU_INACTIVE_FILE = LRU_BASE + LRU_FILE,
  122. LRU_ACTIVE_FILE = LRU_BASE + LRU_FILE + LRU_ACTIVE,
  123. LRU_UNEVICTABLE,
  124. NR_LRU_LISTS
  125. };
  126. #define for_each_lru(l) for (l = 0; l < NR_LRU_LISTS; l++)
  127. #define for_each_evictable_lru(l) for (l = 0; l <= LRU_ACTIVE_FILE; l++)
  128. static inline int is_file_lru(enum lru_list l)
  129. {
  130. return (l == LRU_INACTIVE_FILE || l == LRU_ACTIVE_FILE);
  131. }
  132. static inline int is_active_lru(enum lru_list l)
  133. {
  134. return (l == LRU_ACTIVE_ANON || l == LRU_ACTIVE_FILE);
  135. }
  136. static inline int is_unevictable_lru(enum lru_list l)
  137. {
  138. return (l == LRU_UNEVICTABLE);
  139. }
  140. enum zone_watermarks {
  141. WMARK_MIN,
  142. WMARK_LOW,
  143. WMARK_HIGH,
  144. NR_WMARK
  145. };
  146. #define min_wmark_pages(z) (z->watermark[WMARK_MIN])
  147. #define low_wmark_pages(z) (z->watermark[WMARK_LOW])
  148. #define high_wmark_pages(z) (z->watermark[WMARK_HIGH])
  149. struct per_cpu_pages {
  150. int count; /* number of pages in the list */
  151. int high; /* high watermark, emptying needed */
  152. int batch; /* chunk size for buddy add/remove */
  153. /* Lists of pages, one per migrate type stored on the pcp-lists */
  154. struct list_head lists[MIGRATE_PCPTYPES];
  155. };
  156. struct per_cpu_pageset {
  157. struct per_cpu_pages pcp;
  158. #ifdef CONFIG_NUMA
  159. s8 expire;
  160. #endif
  161. #ifdef CONFIG_SMP
  162. s8 stat_threshold;
  163. s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS];
  164. #endif
  165. };
  166. #endif /* !__GENERATING_BOUNDS.H */
  167. enum zone_type {
  168. #ifdef CONFIG_ZONE_DMA
  169. /*
  170. * ZONE_DMA is used when there are devices that are not able
  171. * to do DMA to all of addressable memory (ZONE_NORMAL). Then we
  172. * carve out the portion of memory that is needed for these devices.
  173. * The range is arch specific.
  174. *
  175. * Some examples
  176. *
  177. * Architecture Limit
  178. * ---------------------------
  179. * parisc, ia64, sparc <4G
  180. * s390 <2G
  181. * arm Various
  182. * alpha Unlimited or 0-16MB.
  183. *
  184. * i386, x86_64 and multiple other arches
  185. * <16M.
  186. */
  187. ZONE_DMA,
  188. #endif
  189. #ifdef CONFIG_ZONE_DMA32
  190. /*
  191. * x86_64 needs two ZONE_DMAs because it supports devices that are
  192. * only able to do DMA to the lower 16M but also 32 bit devices that
  193. * can only do DMA areas below 4G.
  194. */
  195. ZONE_DMA32,
  196. #endif
  197. /*
  198. * Normal addressable memory is in ZONE_NORMAL. DMA operations can be
  199. * performed on pages in ZONE_NORMAL if the DMA devices support
  200. * transfers to all addressable memory.
  201. */
  202. ZONE_NORMAL,
  203. #ifdef CONFIG_HIGHMEM
  204. /*
  205. * A memory area that is only addressable by the kernel through
  206. * mapping portions into its own address space. This is for example
  207. * used by i386 to allow the kernel to address the memory beyond
  208. * 900MB. The kernel will set up special mappings (page
  209. * table entries on i386) for each page that the kernel needs to
  210. * access.
  211. */
  212. ZONE_HIGHMEM,
  213. #endif
  214. ZONE_MOVABLE,
  215. __MAX_NR_ZONES
  216. };
  217. #ifndef __GENERATING_BOUNDS_H
  218. /*
  219. * When a memory allocation must conform to specific limitations (such
  220. * as being suitable for DMA) the caller will pass in hints to the
  221. * allocator in the gfp_mask, in the zone modifier bits. These bits
  222. * are used to select a priority ordered list of memory zones which
  223. * match the requested limits. See gfp_zone() in include/linux/gfp.h
  224. */
  225. #if MAX_NR_ZONES < 2
  226. #define ZONES_SHIFT 0
  227. #elif MAX_NR_ZONES <= 2
  228. #define ZONES_SHIFT 1
  229. #elif MAX_NR_ZONES <= 4
  230. #define ZONES_SHIFT 2
  231. #else
  232. #error ZONES_SHIFT -- too many zones configured adjust calculation
  233. #endif
  234. struct zone_reclaim_stat {
  235. /*
  236. * The pageout code in vmscan.c keeps track of how many of the
  237. * mem/swap backed and file backed pages are refeferenced.
  238. * The higher the rotated/scanned ratio, the more valuable
  239. * that cache is.
  240. *
  241. * The anon LRU stats live in [0], file LRU stats in [1]
  242. */
  243. unsigned long recent_rotated[2];
  244. unsigned long recent_scanned[2];
  245. /*
  246. * accumulated for batching
  247. */
  248. unsigned long nr_saved_scan[NR_LRU_LISTS];
  249. };
  250. struct zone {
  251. /* Fields commonly accessed by the page allocator */
  252. /* zone watermarks, access with *_wmark_pages(zone) macros */
  253. unsigned long watermark[NR_WMARK];
  254. /*
  255. * When free pages are below this point, additional steps are taken
  256. * when reading the number of free pages to avoid per-cpu counter
  257. * drift allowing watermarks to be breached
  258. */
  259. unsigned long percpu_drift_mark;
  260. /*
  261. * We don't know if the memory that we're going to allocate will be freeable
  262. * or/and it will be released eventually, so to avoid totally wasting several
  263. * GB of ram we must reserve some of the lower zone memory (otherwise we risk
  264. * to run OOM on the lower zones despite there's tons of freeable ram
  265. * on the higher zones). This array is recalculated at runtime if the
  266. * sysctl_lowmem_reserve_ratio sysctl changes.
  267. */
  268. unsigned long lowmem_reserve[MAX_NR_ZONES];
  269. #ifdef CONFIG_NUMA
  270. int node;
  271. /*
  272. * zone reclaim becomes active if more unmapped pages exist.
  273. */
  274. unsigned long min_unmapped_pages;
  275. unsigned long min_slab_pages;
  276. #endif
  277. struct per_cpu_pageset __percpu *pageset;
  278. /*
  279. * free areas of different sizes
  280. */
  281. spinlock_t lock;
  282. int all_unreclaimable; /* All pages pinned */
  283. #ifdef CONFIG_MEMORY_HOTPLUG
  284. /* see spanned/present_pages for more description */
  285. seqlock_t span_seqlock;
  286. #endif
  287. struct free_area free_area[MAX_ORDER];
  288. #ifndef CONFIG_SPARSEMEM
  289. /*
  290. * Flags for a pageblock_nr_pages block. See pageblock-flags.h.
  291. * In SPARSEMEM, this map is stored in struct mem_section
  292. */
  293. unsigned long *pageblock_flags;
  294. #endif /* CONFIG_SPARSEMEM */
  295. #ifdef CONFIG_COMPACTION
  296. /*
  297. * On compaction failure, 1<<compact_defer_shift compactions
  298. * are skipped before trying again. The number attempted since
  299. * last failure is tracked with compact_considered.
  300. */
  301. unsigned int compact_considered;
  302. unsigned int compact_defer_shift;
  303. #endif
  304. ZONE_PADDING(_pad1_)
  305. /* Fields commonly accessed by the page reclaim scanner */
  306. spinlock_t lru_lock;
  307. struct zone_lru {
  308. struct list_head list;
  309. } lru[NR_LRU_LISTS];
  310. struct zone_reclaim_stat reclaim_stat;
  311. unsigned long pages_scanned; /* since last reclaim */
  312. unsigned long flags; /* zone flags, see below */
  313. /* Zone statistics */
  314. atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS];
  315. /*
  316. * The target ratio of ACTIVE_ANON to INACTIVE_ANON pages on
  317. * this zone's LRU. Maintained by the pageout code.
  318. */
  319. unsigned int inactive_ratio;
  320. ZONE_PADDING(_pad2_)
  321. /* Rarely used or read-mostly fields */
  322. /*
  323. * wait_table -- the array holding the hash table
  324. * wait_table_hash_nr_entries -- the size of the hash table array
  325. * wait_table_bits -- wait_table_size == (1 << wait_table_bits)
  326. *
  327. * The purpose of all these is to keep track of the people
  328. * waiting for a page to become available and make them
  329. * runnable again when possible. The trouble is that this
  330. * consumes a lot of space, especially when so few things
  331. * wait on pages at a given time. So instead of using
  332. * per-page waitqueues, we use a waitqueue hash table.
  333. *
  334. * The bucket discipline is to sleep on the same queue when
  335. * colliding and wake all in that wait queue when removing.
  336. * When something wakes, it must check to be sure its page is
  337. * truly available, a la thundering herd. The cost of a
  338. * collision is great, but given the expected load of the
  339. * table, they should be so rare as to be outweighed by the
  340. * benefits from the saved space.
  341. *
  342. * __wait_on_page_locked() and unlock_page() in mm/filemap.c, are the
  343. * primary users of these fields, and in mm/page_alloc.c
  344. * free_area_init_core() performs the initialization of them.
  345. */
  346. wait_queue_head_t * wait_table;
  347. unsigned long wait_table_hash_nr_entries;
  348. unsigned long wait_table_bits;
  349. /*
  350. * Discontig memory support fields.
  351. */
  352. struct pglist_data *zone_pgdat;
  353. /* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */
  354. unsigned long zone_start_pfn;
  355. /*
  356. * zone_start_pfn, spanned_pages and present_pages are all
  357. * protected by span_seqlock. It is a seqlock because it has
  358. * to be read outside of zone->lock, and it is done in the main
  359. * allocator path. But, it is written quite infrequently.
  360. *
  361. * The lock is declared along with zone->lock because it is
  362. * frequently read in proximity to zone->lock. It's good to
  363. * give them a chance of being in the same cacheline.
  364. */
  365. unsigned long spanned_pages; /* total size, including holes */
  366. unsigned long present_pages; /* amount of memory (excluding holes) */
  367. /*
  368. * rarely used fields:
  369. */
  370. const char *name;
  371. } ____cacheline_internodealigned_in_smp;
  372. typedef enum {
  373. ZONE_RECLAIM_LOCKED, /* prevents concurrent reclaim */
  374. ZONE_OOM_LOCKED, /* zone is in OOM killer zonelist */
  375. ZONE_CONGESTED, /* zone has many dirty pages backed by
  376. * a congested BDI
  377. */
  378. } zone_flags_t;
  379. static inline void zone_set_flag(struct zone *zone, zone_flags_t flag)
  380. {
  381. set_bit(flag, &zone->flags);
  382. }
  383. static inline int zone_test_and_set_flag(struct zone *zone, zone_flags_t flag)
  384. {
  385. return test_and_set_bit(flag, &zone->flags);
  386. }
  387. static inline void zone_clear_flag(struct zone *zone, zone_flags_t flag)
  388. {
  389. clear_bit(flag, &zone->flags);
  390. }
  391. static inline int zone_is_reclaim_congested(const struct zone *zone)
  392. {
  393. return test_bit(ZONE_CONGESTED, &zone->flags);
  394. }
  395. static inline int zone_is_reclaim_locked(const struct zone *zone)
  396. {
  397. return test_bit(ZONE_RECLAIM_LOCKED, &zone->flags);
  398. }
  399. static inline int zone_is_oom_locked(const struct zone *zone)
  400. {
  401. return test_bit(ZONE_OOM_LOCKED, &zone->flags);
  402. }
  403. /*
  404. * The "priority" of VM scanning is how much of the queues we will scan in one
  405. * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the
  406. * queues ("queue_length >> 12") during an aging round.
  407. */
  408. #define DEF_PRIORITY 12
  409. /* Maximum number of zones on a zonelist */
  410. #define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES)
  411. #ifdef CONFIG_NUMA
  412. /*
  413. * The NUMA zonelists are doubled becausse we need zonelists that restrict the
  414. * allocations to a single node for GFP_THISNODE.
  415. *
  416. * [0] : Zonelist with fallback
  417. * [1] : No fallback (GFP_THISNODE)
  418. */
  419. #define MAX_ZONELISTS 2
  420. /*
  421. * We cache key information from each zonelist for smaller cache
  422. * footprint when scanning for free pages in get_page_from_freelist().
  423. *
  424. * 1) The BITMAP fullzones tracks which zones in a zonelist have come
  425. * up short of free memory since the last time (last_fullzone_zap)
  426. * we zero'd fullzones.
  427. * 2) The array z_to_n[] maps each zone in the zonelist to its node
  428. * id, so that we can efficiently evaluate whether that node is
  429. * set in the current tasks mems_allowed.
  430. *
  431. * Both fullzones and z_to_n[] are one-to-one with the zonelist,
  432. * indexed by a zones offset in the zonelist zones[] array.
  433. *
  434. * The get_page_from_freelist() routine does two scans. During the
  435. * first scan, we skip zones whose corresponding bit in 'fullzones'
  436. * is set or whose corresponding node in current->mems_allowed (which
  437. * comes from cpusets) is not set. During the second scan, we bypass
  438. * this zonelist_cache, to ensure we look methodically at each zone.
  439. *
  440. * Once per second, we zero out (zap) fullzones, forcing us to
  441. * reconsider nodes that might have regained more free memory.
  442. * The field last_full_zap is the time we last zapped fullzones.
  443. *
  444. * This mechanism reduces the amount of time we waste repeatedly
  445. * reexaming zones for free memory when they just came up low on
  446. * memory momentarilly ago.
  447. *
  448. * The zonelist_cache struct members logically belong in struct
  449. * zonelist. However, the mempolicy zonelists constructed for
  450. * MPOL_BIND are intentionally variable length (and usually much
  451. * shorter). A general purpose mechanism for handling structs with
  452. * multiple variable length members is more mechanism than we want
  453. * here. We resort to some special case hackery instead.
  454. *
  455. * The MPOL_BIND zonelists don't need this zonelist_cache (in good
  456. * part because they are shorter), so we put the fixed length stuff
  457. * at the front of the zonelist struct, ending in a variable length
  458. * zones[], as is needed by MPOL_BIND.
  459. *
  460. * Then we put the optional zonelist cache on the end of the zonelist
  461. * struct. This optional stuff is found by a 'zlcache_ptr' pointer in
  462. * the fixed length portion at the front of the struct. This pointer
  463. * both enables us to find the zonelist cache, and in the case of
  464. * MPOL_BIND zonelists, (which will just set the zlcache_ptr to NULL)
  465. * to know that the zonelist cache is not there.
  466. *
  467. * The end result is that struct zonelists come in two flavors:
  468. * 1) The full, fixed length version, shown below, and
  469. * 2) The custom zonelists for MPOL_BIND.
  470. * The custom MPOL_BIND zonelists have a NULL zlcache_ptr and no zlcache.
  471. *
  472. * Even though there may be multiple CPU cores on a node modifying
  473. * fullzones or last_full_zap in the same zonelist_cache at the same
  474. * time, we don't lock it. This is just hint data - if it is wrong now
  475. * and then, the allocator will still function, perhaps a bit slower.
  476. */
  477. struct zonelist_cache {
  478. unsigned short z_to_n[MAX_ZONES_PER_ZONELIST]; /* zone->nid */
  479. DECLARE_BITMAP(fullzones, MAX_ZONES_PER_ZONELIST); /* zone full? */
  480. unsigned long last_full_zap; /* when last zap'd (jiffies) */
  481. };
  482. #else
  483. #define MAX_ZONELISTS 1
  484. struct zonelist_cache;
  485. #endif
  486. /*
  487. * This struct contains information about a zone in a zonelist. It is stored
  488. * here to avoid dereferences into large structures and lookups of tables
  489. */
  490. struct zoneref {
  491. struct zone *zone; /* Pointer to actual zone */
  492. int zone_idx; /* zone_idx(zoneref->zone) */
  493. };
  494. /*
  495. * One allocation request operates on a zonelist. A zonelist
  496. * is a list of zones, the first one is the 'goal' of the
  497. * allocation, the other zones are fallback zones, in decreasing
  498. * priority.
  499. *
  500. * If zlcache_ptr is not NULL, then it is just the address of zlcache,
  501. * as explained above. If zlcache_ptr is NULL, there is no zlcache.
  502. * *
  503. * To speed the reading of the zonelist, the zonerefs contain the zone index
  504. * of the entry being read. Helper functions to access information given
  505. * a struct zoneref are
  506. *
  507. * zonelist_zone() - Return the struct zone * for an entry in _zonerefs
  508. * zonelist_zone_idx() - Return the index of the zone for an entry
  509. * zonelist_node_idx() - Return the index of the node for an entry
  510. */
  511. struct zonelist {
  512. struct zonelist_cache *zlcache_ptr; // NULL or &zlcache
  513. struct zoneref _zonerefs[MAX_ZONES_PER_ZONELIST + 1];
  514. #ifdef CONFIG_NUMA
  515. struct zonelist_cache zlcache; // optional ...
  516. #endif
  517. };
  518. #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
  519. struct node_active_region {
  520. unsigned long start_pfn;
  521. unsigned long end_pfn;
  522. int nid;
  523. };
  524. #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
  525. #ifndef CONFIG_DISCONTIGMEM
  526. /* The array of struct pages - for discontigmem use pgdat->lmem_map */
  527. extern struct page *mem_map;
  528. #endif
  529. /*
  530. * The pg_data_t structure is used in machines with CONFIG_DISCONTIGMEM
  531. * (mostly NUMA machines?) to denote a higher-level memory zone than the
  532. * zone denotes.
  533. *
  534. * On NUMA machines, each NUMA node would have a pg_data_t to describe
  535. * it's memory layout.
  536. *
  537. * Memory statistics and page replacement data structures are maintained on a
  538. * per-zone basis.
  539. */
  540. struct bootmem_data;
  541. typedef struct pglist_data {
  542. struct zone node_zones[MAX_NR_ZONES];
  543. struct zonelist node_zonelists[MAX_ZONELISTS];
  544. int nr_zones;
  545. #ifdef CONFIG_FLAT_NODE_MEM_MAP /* means !SPARSEMEM */
  546. struct page *node_mem_map;
  547. #ifdef CONFIG_CGROUP_MEM_RES_CTLR
  548. struct page_cgroup *node_page_cgroup;
  549. #endif
  550. #endif
  551. #ifndef CONFIG_NO_BOOTMEM
  552. struct bootmem_data *bdata;
  553. #endif
  554. #ifdef CONFIG_MEMORY_HOTPLUG
  555. /*
  556. * Must be held any time you expect node_start_pfn, node_present_pages
  557. * or node_spanned_pages stay constant. Holding this will also
  558. * guarantee that any pfn_valid() stays that way.
  559. *
  560. * Nests above zone->lock and zone->size_seqlock.
  561. */
  562. spinlock_t node_size_lock;
  563. #endif
  564. unsigned long node_start_pfn;
  565. unsigned long node_present_pages; /* total number of physical pages */
  566. unsigned long node_spanned_pages; /* total size of physical page
  567. range, including holes */
  568. int node_id;
  569. wait_queue_head_t kswapd_wait;
  570. struct task_struct *kswapd;
  571. int kswapd_max_order;
  572. } pg_data_t;
  573. #define node_present_pages(nid) (NODE_DATA(nid)->node_present_pages)
  574. #define node_spanned_pages(nid) (NODE_DATA(nid)->node_spanned_pages)
  575. #ifdef CONFIG_FLAT_NODE_MEM_MAP
  576. #define pgdat_page_nr(pgdat, pagenr) ((pgdat)->node_mem_map + (pagenr))
  577. #else
  578. #define pgdat_page_nr(pgdat, pagenr) pfn_to_page((pgdat)->node_start_pfn + (pagenr))
  579. #endif
  580. #define nid_page_nr(nid, pagenr) pgdat_page_nr(NODE_DATA(nid),(pagenr))
  581. #include <linux/memory_hotplug.h>
  582. extern struct mutex zonelists_mutex;
  583. void build_all_zonelists(void *data);
  584. void wakeup_kswapd(struct zone *zone, int order);
  585. bool zone_watermark_ok(struct zone *z, int order, unsigned long mark,
  586. int classzone_idx, int alloc_flags);
  587. bool zone_watermark_ok_safe(struct zone *z, int order, unsigned long mark,
  588. int classzone_idx, int alloc_flags);
  589. enum memmap_context {
  590. MEMMAP_EARLY,
  591. MEMMAP_HOTPLUG,
  592. };
  593. extern int init_currently_empty_zone(struct zone *zone, unsigned long start_pfn,
  594. unsigned long size,
  595. enum memmap_context context);
  596. #ifdef CONFIG_HAVE_MEMORY_PRESENT
  597. void memory_present(int nid, unsigned long start, unsigned long end);
  598. #else
  599. static inline void memory_present(int nid, unsigned long start, unsigned long end) {}
  600. #endif
  601. #ifdef CONFIG_HAVE_MEMORYLESS_NODES
  602. int local_memory_node(int node_id);
  603. #else
  604. static inline int local_memory_node(int node_id) { return node_id; };
  605. #endif
  606. #ifdef CONFIG_NEED_NODE_MEMMAP_SIZE
  607. unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
  608. #endif
  609. /*
  610. * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc.
  611. */
  612. #define zone_idx(zone) ((zone) - (zone)->zone_pgdat->node_zones)
  613. static inline int populated_zone(struct zone *zone)
  614. {
  615. return (!!zone->present_pages);
  616. }
  617. extern int movable_zone;
  618. static inline int zone_movable_is_highmem(void)
  619. {
  620. #if defined(CONFIG_HIGHMEM) && defined(CONFIG_ARCH_POPULATES_NODE_MAP)
  621. return movable_zone == ZONE_HIGHMEM;
  622. #else
  623. return 0;
  624. #endif
  625. }
  626. static inline int is_highmem_idx(enum zone_type idx)
  627. {
  628. #ifdef CONFIG_HIGHMEM
  629. return (idx == ZONE_HIGHMEM ||
  630. (idx == ZONE_MOVABLE && zone_movable_is_highmem()));
  631. #else
  632. return 0;
  633. #endif
  634. }
  635. static inline int is_normal_idx(enum zone_type idx)
  636. {
  637. return (idx == ZONE_NORMAL);
  638. }
  639. /**
  640. * is_highmem - helper function to quickly check if a struct zone is a
  641. * highmem zone or not. This is an attempt to keep references
  642. * to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum.
  643. * @zone - pointer to struct zone variable
  644. */
  645. static inline int is_highmem(struct zone *zone)
  646. {
  647. #ifdef CONFIG_HIGHMEM
  648. int zone_off = (char *)zone - (char *)zone->zone_pgdat->node_zones;
  649. return zone_off == ZONE_HIGHMEM * sizeof(*zone) ||
  650. (zone_off == ZONE_MOVABLE * sizeof(*zone) &&
  651. zone_movable_is_highmem());
  652. #else
  653. return 0;
  654. #endif
  655. }
  656. static inline int is_normal(struct zone *zone)
  657. {
  658. return zone == zone->zone_pgdat->node_zones + ZONE_NORMAL;
  659. }
  660. static inline int is_dma32(struct zone *zone)
  661. {
  662. #ifdef CONFIG_ZONE_DMA32
  663. return zone == zone->zone_pgdat->node_zones + ZONE_DMA32;
  664. #else
  665. return 0;
  666. #endif
  667. }
  668. static inline int is_dma(struct zone *zone)
  669. {
  670. #ifdef CONFIG_ZONE_DMA
  671. return zone == zone->zone_pgdat->node_zones + ZONE_DMA;
  672. #else
  673. return 0;
  674. #endif
  675. }
  676. /* These two functions are used to setup the per zone pages min values */
  677. struct ctl_table;
  678. int min_free_kbytes_sysctl_handler(struct ctl_table *, int,
  679. void __user *, size_t *, loff_t *);
  680. extern int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1];
  681. int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *, int,
  682. void __user *, size_t *, loff_t *);
  683. int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *, int,
  684. void __user *, size_t *, loff_t *);
  685. int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *, int,
  686. void __user *, size_t *, loff_t *);
  687. int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *, int,
  688. void __user *, size_t *, loff_t *);
  689. extern int numa_zonelist_order_handler(struct ctl_table *, int,
  690. void __user *, size_t *, loff_t *);
  691. extern char numa_zonelist_order[];
  692. #define NUMA_ZONELIST_ORDER_LEN 16 /* string buffer size */
  693. #ifndef CONFIG_NEED_MULTIPLE_NODES
  694. extern struct pglist_data contig_page_data;
  695. #define NODE_DATA(nid) (&contig_page_data)
  696. #define NODE_MEM_MAP(nid) mem_map
  697. #else /* CONFIG_NEED_MULTIPLE_NODES */
  698. #include <asm/mmzone.h>
  699. #endif /* !CONFIG_NEED_MULTIPLE_NODES */
  700. extern struct pglist_data *first_online_pgdat(void);
  701. extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat);
  702. extern struct zone *next_zone(struct zone *zone);
  703. /**
  704. * for_each_online_pgdat - helper macro to iterate over all online nodes
  705. * @pgdat - pointer to a pg_data_t variable
  706. */
  707. #define for_each_online_pgdat(pgdat) \
  708. for (pgdat = first_online_pgdat(); \
  709. pgdat; \
  710. pgdat = next_online_pgdat(pgdat))
  711. /**
  712. * for_each_zone - helper macro to iterate over all memory zones
  713. * @zone - pointer to struct zone variable
  714. *
  715. * The user only needs to declare the zone variable, for_each_zone
  716. * fills it in.
  717. */
  718. #define for_each_zone(zone) \
  719. for (zone = (first_online_pgdat())->node_zones; \
  720. zone; \
  721. zone = next_zone(zone))
  722. #define for_each_populated_zone(zone) \
  723. for (zone = (first_online_pgdat())->node_zones; \
  724. zone; \
  725. zone = next_zone(zone)) \
  726. if (!populated_zone(zone)) \
  727. ; /* do nothing */ \
  728. else
  729. static inline struct zone *zonelist_zone(struct zoneref *zoneref)
  730. {
  731. return zoneref->zone;
  732. }
  733. static inline int zonelist_zone_idx(struct zoneref *zoneref)
  734. {
  735. return zoneref->zone_idx;
  736. }
  737. static inline int zonelist_node_idx(struct zoneref *zoneref)
  738. {
  739. #ifdef CONFIG_NUMA
  740. /* zone_to_nid not available in this context */
  741. return zoneref->zone->node;
  742. #else
  743. return 0;
  744. #endif /* CONFIG_NUMA */
  745. }
  746. /**
  747. * next_zones_zonelist - Returns the next zone at or below highest_zoneidx within the allowed nodemask using a cursor within a zonelist as a starting point
  748. * @z - The cursor used as a starting point for the search
  749. * @highest_zoneidx - The zone index of the highest zone to return
  750. * @nodes - An optional nodemask to filter the zonelist with
  751. * @zone - The first suitable zone found is returned via this parameter
  752. *
  753. * This function returns the next zone at or below a given zone index that is
  754. * within the allowed nodemask using a cursor as the starting point for the
  755. * search. The zoneref returned is a cursor that represents the current zone
  756. * being examined. It should be advanced by one before calling
  757. * next_zones_zonelist again.
  758. */
  759. struct zoneref *next_zones_zonelist(struct zoneref *z,
  760. enum zone_type highest_zoneidx,
  761. nodemask_t *nodes,
  762. struct zone **zone);
  763. /**
  764. * first_zones_zonelist - Returns the first zone at or below highest_zoneidx within the allowed nodemask in a zonelist
  765. * @zonelist - The zonelist to search for a suitable zone
  766. * @highest_zoneidx - The zone index of the highest zone to return
  767. * @nodes - An optional nodemask to filter the zonelist with
  768. * @zone - The first suitable zone found is returned via this parameter
  769. *
  770. * This function returns the first zone at or below a given zone index that is
  771. * within the allowed nodemask. The zoneref returned is a cursor that can be
  772. * used to iterate the zonelist with next_zones_zonelist by advancing it by
  773. * one before calling.
  774. */
  775. static inline struct zoneref *first_zones_zonelist(struct zonelist *zonelist,
  776. enum zone_type highest_zoneidx,
  777. nodemask_t *nodes,
  778. struct zone **zone)
  779. {
  780. return next_zones_zonelist(zonelist->_zonerefs, highest_zoneidx, nodes,
  781. zone);
  782. }
  783. /**
  784. * for_each_zone_zonelist_nodemask - helper macro to iterate over valid zones in a zonelist at or below a given zone index and within a nodemask
  785. * @zone - The current zone in the iterator
  786. * @z - The current pointer within zonelist->zones being iterated
  787. * @zlist - The zonelist being iterated
  788. * @highidx - The zone index of the highest zone to return
  789. * @nodemask - Nodemask allowed by the allocator
  790. *
  791. * This iterator iterates though all zones at or below a given zone index and
  792. * within a given nodemask
  793. */
  794. #define for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \
  795. for (z = first_zones_zonelist(zlist, highidx, nodemask, &zone); \
  796. zone; \
  797. z = next_zones_zonelist(++z, highidx, nodemask, &zone)) \
  798. /**
  799. * for_each_zone_zonelist - helper macro to iterate over valid zones in a zonelist at or below a given zone index
  800. * @zone - The current zone in the iterator
  801. * @z - The current pointer within zonelist->zones being iterated
  802. * @zlist - The zonelist being iterated
  803. * @highidx - The zone index of the highest zone to return
  804. *
  805. * This iterator iterates though all zones at or below a given zone index.
  806. */
  807. #define for_each_zone_zonelist(zone, z, zlist, highidx) \
  808. for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, NULL)
  809. #ifdef CONFIG_SPARSEMEM
  810. #include <asm/sparsemem.h>
  811. #endif
  812. #if !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) && \
  813. !defined(CONFIG_ARCH_POPULATES_NODE_MAP)
  814. static inline unsigned long early_pfn_to_nid(unsigned long pfn)
  815. {
  816. return 0;
  817. }
  818. #endif
  819. #ifdef CONFIG_FLATMEM
  820. #define pfn_to_nid(pfn) (0)
  821. #endif
  822. #define pfn_to_section_nr(pfn) ((pfn) >> PFN_SECTION_SHIFT)
  823. #define section_nr_to_pfn(sec) ((sec) << PFN_SECTION_SHIFT)
  824. #ifdef CONFIG_SPARSEMEM
  825. /*
  826. * SECTION_SHIFT #bits space required to store a section #
  827. *
  828. * PA_SECTION_SHIFT physical address to/from section number
  829. * PFN_SECTION_SHIFT pfn to/from section number
  830. */
  831. #define SECTIONS_SHIFT (MAX_PHYSMEM_BITS - SECTION_SIZE_BITS)
  832. #define PA_SECTION_SHIFT (SECTION_SIZE_BITS)
  833. #define PFN_SECTION_SHIFT (SECTION_SIZE_BITS - PAGE_SHIFT)
  834. #define NR_MEM_SECTIONS (1UL << SECTIONS_SHIFT)
  835. #define PAGES_PER_SECTION (1UL << PFN_SECTION_SHIFT)
  836. #define PAGE_SECTION_MASK (~(PAGES_PER_SECTION-1))
  837. #define SECTION_BLOCKFLAGS_BITS \
  838. ((1UL << (PFN_SECTION_SHIFT - pageblock_order)) * NR_PAGEBLOCK_BITS)
  839. #if (MAX_ORDER - 1 + PAGE_SHIFT) > SECTION_SIZE_BITS
  840. #error Allocator MAX_ORDER exceeds SECTION_SIZE
  841. #endif
  842. struct page;
  843. struct page_cgroup;
  844. struct mem_section {
  845. /*
  846. * This is, logically, a pointer to an array of struct
  847. * pages. However, it is stored with some other magic.
  848. * (see sparse.c::sparse_init_one_section())
  849. *
  850. * Additionally during early boot we encode node id of
  851. * the location of the section here to guide allocation.
  852. * (see sparse.c::memory_present())
  853. *
  854. * Making it a UL at least makes someone do a cast
  855. * before using it wrong.
  856. */
  857. unsigned long section_mem_map;
  858. /* See declaration of similar field in struct zone */
  859. unsigned long *pageblock_flags;
  860. #ifdef CONFIG_CGROUP_MEM_RES_CTLR
  861. /*
  862. * If !SPARSEMEM, pgdat doesn't have page_cgroup pointer. We use
  863. * section. (see memcontrol.h/page_cgroup.h about this.)
  864. */
  865. struct page_cgroup *page_cgroup;
  866. unsigned long pad;
  867. #endif
  868. };
  869. #ifdef CONFIG_SPARSEMEM_EXTREME
  870. #define SECTIONS_PER_ROOT (PAGE_SIZE / sizeof (struct mem_section))
  871. #else
  872. #define SECTIONS_PER_ROOT 1
  873. #endif
  874. #define SECTION_NR_TO_ROOT(sec) ((sec) / SECTIONS_PER_ROOT)
  875. #define NR_SECTION_ROOTS DIV_ROUND_UP(NR_MEM_SECTIONS, SECTIONS_PER_ROOT)
  876. #define SECTION_ROOT_MASK (SECTIONS_PER_ROOT - 1)
  877. #ifdef CONFIG_SPARSEMEM_EXTREME
  878. extern struct mem_section *mem_section[NR_SECTION_ROOTS];
  879. #else
  880. extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT];
  881. #endif
  882. static inline struct mem_section *__nr_to_section(unsigned long nr)
  883. {
  884. if (!mem_section[SECTION_NR_TO_ROOT(nr)])
  885. return NULL;
  886. return &mem_section[SECTION_NR_TO_ROOT(nr)][nr & SECTION_ROOT_MASK];
  887. }
  888. extern int __section_nr(struct mem_section* ms);
  889. extern unsigned long usemap_size(void);
  890. /*
  891. * We use the lower bits of the mem_map pointer to store
  892. * a little bit of information. There should be at least
  893. * 3 bits here due to 32-bit alignment.
  894. */
  895. #define SECTION_MARKED_PRESENT (1UL<<0)
  896. #define SECTION_HAS_MEM_MAP (1UL<<1)
  897. #define SECTION_MAP_LAST_BIT (1UL<<2)
  898. #define SECTION_MAP_MASK (~(SECTION_MAP_LAST_BIT-1))
  899. #define SECTION_NID_SHIFT 2
  900. static inline struct page *__section_mem_map_addr(struct mem_section *section)
  901. {
  902. unsigned long map = section->section_mem_map;
  903. map &= SECTION_MAP_MASK;
  904. return (struct page *)map;
  905. }
  906. static inline int present_section(struct mem_section *section)
  907. {
  908. return (section && (section->section_mem_map & SECTION_MARKED_PRESENT));
  909. }
  910. static inline int present_section_nr(unsigned long nr)
  911. {
  912. return present_section(__nr_to_section(nr));
  913. }
  914. static inline int valid_section(struct mem_section *section)
  915. {
  916. return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP));
  917. }
  918. static inline int valid_section_nr(unsigned long nr)
  919. {
  920. return valid_section(__nr_to_section(nr));
  921. }
  922. static inline struct mem_section *__pfn_to_section(unsigned long pfn)
  923. {
  924. return __nr_to_section(pfn_to_section_nr(pfn));
  925. }
  926. static inline int pfn_valid(unsigned long pfn)
  927. {
  928. if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
  929. return 0;
  930. return valid_section(__nr_to_section(pfn_to_section_nr(pfn)));
  931. }
  932. static inline int pfn_present(unsigned long pfn)
  933. {
  934. if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
  935. return 0;
  936. return present_section(__nr_to_section(pfn_to_section_nr(pfn)));
  937. }
  938. /*
  939. * These are _only_ used during initialisation, therefore they
  940. * can use __initdata ... They could have names to indicate
  941. * this restriction.
  942. */
  943. #ifdef CONFIG_NUMA
  944. #define pfn_to_nid(pfn) \
  945. ({ \
  946. unsigned long __pfn_to_nid_pfn = (pfn); \
  947. page_to_nid(pfn_to_page(__pfn_to_nid_pfn)); \
  948. })
  949. #else
  950. #define pfn_to_nid(pfn) (0)
  951. #endif
  952. #define early_pfn_valid(pfn) pfn_valid(pfn)
  953. void sparse_init(void);
  954. #else
  955. #define sparse_init() do {} while (0)
  956. #define sparse_index_init(_sec, _nid) do {} while (0)
  957. #endif /* CONFIG_SPARSEMEM */
  958. #ifdef CONFIG_NODES_SPAN_OTHER_NODES
  959. bool early_pfn_in_nid(unsigned long pfn, int nid);
  960. #else
  961. #define early_pfn_in_nid(pfn, nid) (1)
  962. #endif
  963. #ifndef early_pfn_valid
  964. #define early_pfn_valid(pfn) (1)
  965. #endif
  966. void memory_present(int nid, unsigned long start, unsigned long end);
  967. unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
  968. /*
  969. * If it is possible to have holes within a MAX_ORDER_NR_PAGES, then we
  970. * need to check pfn validility within that MAX_ORDER_NR_PAGES block.
  971. * pfn_valid_within() should be used in this case; we optimise this away
  972. * when we have no holes within a MAX_ORDER_NR_PAGES block.
  973. */
  974. #ifdef CONFIG_HOLES_IN_ZONE
  975. #define pfn_valid_within(pfn) pfn_valid(pfn)
  976. #else
  977. #define pfn_valid_within(pfn) (1)
  978. #endif
  979. #ifdef CONFIG_ARCH_HAS_HOLES_MEMORYMODEL
  980. /*
  981. * pfn_valid() is meant to be able to tell if a given PFN has valid memmap
  982. * associated with it or not. In FLATMEM, it is expected that holes always
  983. * have valid memmap as long as there is valid PFNs either side of the hole.
  984. * In SPARSEMEM, it is assumed that a valid section has a memmap for the
  985. * entire section.
  986. *
  987. * However, an ARM, and maybe other embedded architectures in the future
  988. * free memmap backing holes to save memory on the assumption the memmap is
  989. * never used. The page_zone linkages are then broken even though pfn_valid()
  990. * returns true. A walker of the full memmap must then do this additional
  991. * check to ensure the memmap they are looking at is sane by making sure
  992. * the zone and PFN linkages are still valid. This is expensive, but walkers
  993. * of the full memmap are extremely rare.
  994. */
  995. int memmap_valid_within(unsigned long pfn,
  996. struct page *page, struct zone *zone);
  997. #else
  998. static inline int memmap_valid_within(unsigned long pfn,
  999. struct page *page, struct zone *zone)
  1000. {
  1001. return 1;
  1002. }
  1003. #endif /* CONFIG_ARCH_HAS_HOLES_MEMORYMODEL */
  1004. #endif /* !__GENERATING_BOUNDS.H */
  1005. #endif /* !__ASSEMBLY__ */
  1006. #endif /* _LINUX_MMZONE_H */