tcp_input.c 156 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494
  1. /*
  2. * INET An implementation of the TCP/IP protocol suite for the LINUX
  3. * operating system. INET is implemented using the BSD Socket
  4. * interface as the means of communication with the user level.
  5. *
  6. * Implementation of the Transmission Control Protocol(TCP).
  7. *
  8. * Authors: Ross Biro
  9. * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
  10. * Mark Evans, <evansmp@uhura.aston.ac.uk>
  11. * Corey Minyard <wf-rch!minyard@relay.EU.net>
  12. * Florian La Roche, <flla@stud.uni-sb.de>
  13. * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
  14. * Linus Torvalds, <torvalds@cs.helsinki.fi>
  15. * Alan Cox, <gw4pts@gw4pts.ampr.org>
  16. * Matthew Dillon, <dillon@apollo.west.oic.com>
  17. * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
  18. * Jorge Cwik, <jorge@laser.satlink.net>
  19. */
  20. /*
  21. * Changes:
  22. * Pedro Roque : Fast Retransmit/Recovery.
  23. * Two receive queues.
  24. * Retransmit queue handled by TCP.
  25. * Better retransmit timer handling.
  26. * New congestion avoidance.
  27. * Header prediction.
  28. * Variable renaming.
  29. *
  30. * Eric : Fast Retransmit.
  31. * Randy Scott : MSS option defines.
  32. * Eric Schenk : Fixes to slow start algorithm.
  33. * Eric Schenk : Yet another double ACK bug.
  34. * Eric Schenk : Delayed ACK bug fixes.
  35. * Eric Schenk : Floyd style fast retrans war avoidance.
  36. * David S. Miller : Don't allow zero congestion window.
  37. * Eric Schenk : Fix retransmitter so that it sends
  38. * next packet on ack of previous packet.
  39. * Andi Kleen : Moved open_request checking here
  40. * and process RSTs for open_requests.
  41. * Andi Kleen : Better prune_queue, and other fixes.
  42. * Andrey Savochkin: Fix RTT measurements in the presence of
  43. * timestamps.
  44. * Andrey Savochkin: Check sequence numbers correctly when
  45. * removing SACKs due to in sequence incoming
  46. * data segments.
  47. * Andi Kleen: Make sure we never ack data there is not
  48. * enough room for. Also make this condition
  49. * a fatal error if it might still happen.
  50. * Andi Kleen: Add tcp_measure_rcv_mss to make
  51. * connections with MSS<min(MTU,ann. MSS)
  52. * work without delayed acks.
  53. * Andi Kleen: Process packets with PSH set in the
  54. * fast path.
  55. * J Hadi Salim: ECN support
  56. * Andrei Gurtov,
  57. * Pasi Sarolahti,
  58. * Panu Kuhlberg: Experimental audit of TCP (re)transmission
  59. * engine. Lots of bugs are found.
  60. * Pasi Sarolahti: F-RTO for dealing with spurious RTOs
  61. */
  62. #include <linux/mm.h>
  63. #include <linux/module.h>
  64. #include <linux/sysctl.h>
  65. #include <net/dst.h>
  66. #include <net/tcp.h>
  67. #include <net/inet_common.h>
  68. #include <linux/ipsec.h>
  69. #include <asm/unaligned.h>
  70. #include <net/netdma.h>
  71. int sysctl_tcp_timestamps __read_mostly = 1;
  72. int sysctl_tcp_window_scaling __read_mostly = 1;
  73. int sysctl_tcp_sack __read_mostly = 1;
  74. int sysctl_tcp_fack __read_mostly = 1;
  75. int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH;
  76. int sysctl_tcp_ecn __read_mostly;
  77. int sysctl_tcp_dsack __read_mostly = 1;
  78. int sysctl_tcp_app_win __read_mostly = 31;
  79. int sysctl_tcp_adv_win_scale __read_mostly = 2;
  80. int sysctl_tcp_stdurg __read_mostly;
  81. int sysctl_tcp_rfc1337 __read_mostly;
  82. int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
  83. int sysctl_tcp_frto __read_mostly = 2;
  84. int sysctl_tcp_frto_response __read_mostly;
  85. int sysctl_tcp_nometrics_save __read_mostly;
  86. int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
  87. int sysctl_tcp_abc __read_mostly;
  88. #define FLAG_DATA 0x01 /* Incoming frame contained data. */
  89. #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */
  90. #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */
  91. #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */
  92. #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */
  93. #define FLAG_DATA_SACKED 0x20 /* New SACK. */
  94. #define FLAG_ECE 0x40 /* ECE in this ACK */
  95. #define FLAG_DATA_LOST 0x80 /* SACK detected data lossage. */
  96. #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/
  97. #define FLAG_ONLY_ORIG_SACKED 0x200 /* SACKs only non-rexmit sent before RTO */
  98. #define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
  99. #define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */
  100. #define FLAG_NONHEAD_RETRANS_ACKED 0x1000 /* Non-head rexmitted data was ACKed */
  101. #define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */
  102. #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
  103. #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
  104. #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE)
  105. #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED)
  106. #define FLAG_ANY_PROGRESS (FLAG_FORWARD_PROGRESS|FLAG_SND_UNA_ADVANCED)
  107. #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
  108. #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
  109. /* Adapt the MSS value used to make delayed ack decision to the
  110. * real world.
  111. */
  112. static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
  113. {
  114. struct inet_connection_sock *icsk = inet_csk(sk);
  115. const unsigned int lss = icsk->icsk_ack.last_seg_size;
  116. unsigned int len;
  117. icsk->icsk_ack.last_seg_size = 0;
  118. /* skb->len may jitter because of SACKs, even if peer
  119. * sends good full-sized frames.
  120. */
  121. len = skb_shinfo(skb)->gso_size ? : skb->len;
  122. if (len >= icsk->icsk_ack.rcv_mss) {
  123. icsk->icsk_ack.rcv_mss = len;
  124. } else {
  125. /* Otherwise, we make more careful check taking into account,
  126. * that SACKs block is variable.
  127. *
  128. * "len" is invariant segment length, including TCP header.
  129. */
  130. len += skb->data - skb_transport_header(skb);
  131. if (len >= TCP_MIN_RCVMSS + sizeof(struct tcphdr) ||
  132. /* If PSH is not set, packet should be
  133. * full sized, provided peer TCP is not badly broken.
  134. * This observation (if it is correct 8)) allows
  135. * to handle super-low mtu links fairly.
  136. */
  137. (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
  138. !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
  139. /* Subtract also invariant (if peer is RFC compliant),
  140. * tcp header plus fixed timestamp option length.
  141. * Resulting "len" is MSS free of SACK jitter.
  142. */
  143. len -= tcp_sk(sk)->tcp_header_len;
  144. icsk->icsk_ack.last_seg_size = len;
  145. if (len == lss) {
  146. icsk->icsk_ack.rcv_mss = len;
  147. return;
  148. }
  149. }
  150. if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
  151. icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
  152. icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
  153. }
  154. }
  155. static void tcp_incr_quickack(struct sock *sk)
  156. {
  157. struct inet_connection_sock *icsk = inet_csk(sk);
  158. unsigned quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
  159. if (quickacks == 0)
  160. quickacks = 2;
  161. if (quickacks > icsk->icsk_ack.quick)
  162. icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
  163. }
  164. void tcp_enter_quickack_mode(struct sock *sk)
  165. {
  166. struct inet_connection_sock *icsk = inet_csk(sk);
  167. tcp_incr_quickack(sk);
  168. icsk->icsk_ack.pingpong = 0;
  169. icsk->icsk_ack.ato = TCP_ATO_MIN;
  170. }
  171. /* Send ACKs quickly, if "quick" count is not exhausted
  172. * and the session is not interactive.
  173. */
  174. static inline int tcp_in_quickack_mode(const struct sock *sk)
  175. {
  176. const struct inet_connection_sock *icsk = inet_csk(sk);
  177. return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong;
  178. }
  179. static inline void TCP_ECN_queue_cwr(struct tcp_sock *tp)
  180. {
  181. if (tp->ecn_flags & TCP_ECN_OK)
  182. tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
  183. }
  184. static inline void TCP_ECN_accept_cwr(struct tcp_sock *tp, struct sk_buff *skb)
  185. {
  186. if (tcp_hdr(skb)->cwr)
  187. tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
  188. }
  189. static inline void TCP_ECN_withdraw_cwr(struct tcp_sock *tp)
  190. {
  191. tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
  192. }
  193. static inline void TCP_ECN_check_ce(struct tcp_sock *tp, struct sk_buff *skb)
  194. {
  195. if (tp->ecn_flags & TCP_ECN_OK) {
  196. if (INET_ECN_is_ce(TCP_SKB_CB(skb)->flags))
  197. tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
  198. /* Funny extension: if ECT is not set on a segment,
  199. * it is surely retransmit. It is not in ECN RFC,
  200. * but Linux follows this rule. */
  201. else if (INET_ECN_is_not_ect((TCP_SKB_CB(skb)->flags)))
  202. tcp_enter_quickack_mode((struct sock *)tp);
  203. }
  204. }
  205. static inline void TCP_ECN_rcv_synack(struct tcp_sock *tp, struct tcphdr *th)
  206. {
  207. if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
  208. tp->ecn_flags &= ~TCP_ECN_OK;
  209. }
  210. static inline void TCP_ECN_rcv_syn(struct tcp_sock *tp, struct tcphdr *th)
  211. {
  212. if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
  213. tp->ecn_flags &= ~TCP_ECN_OK;
  214. }
  215. static inline int TCP_ECN_rcv_ecn_echo(struct tcp_sock *tp, struct tcphdr *th)
  216. {
  217. if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
  218. return 1;
  219. return 0;
  220. }
  221. /* Buffer size and advertised window tuning.
  222. *
  223. * 1. Tuning sk->sk_sndbuf, when connection enters established state.
  224. */
  225. static void tcp_fixup_sndbuf(struct sock *sk)
  226. {
  227. int sndmem = tcp_sk(sk)->rx_opt.mss_clamp + MAX_TCP_HEADER + 16 +
  228. sizeof(struct sk_buff);
  229. if (sk->sk_sndbuf < 3 * sndmem)
  230. sk->sk_sndbuf = min(3 * sndmem, sysctl_tcp_wmem[2]);
  231. }
  232. /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
  233. *
  234. * All tcp_full_space() is split to two parts: "network" buffer, allocated
  235. * forward and advertised in receiver window (tp->rcv_wnd) and
  236. * "application buffer", required to isolate scheduling/application
  237. * latencies from network.
  238. * window_clamp is maximal advertised window. It can be less than
  239. * tcp_full_space(), in this case tcp_full_space() - window_clamp
  240. * is reserved for "application" buffer. The less window_clamp is
  241. * the smoother our behaviour from viewpoint of network, but the lower
  242. * throughput and the higher sensitivity of the connection to losses. 8)
  243. *
  244. * rcv_ssthresh is more strict window_clamp used at "slow start"
  245. * phase to predict further behaviour of this connection.
  246. * It is used for two goals:
  247. * - to enforce header prediction at sender, even when application
  248. * requires some significant "application buffer". It is check #1.
  249. * - to prevent pruning of receive queue because of misprediction
  250. * of receiver window. Check #2.
  251. *
  252. * The scheme does not work when sender sends good segments opening
  253. * window and then starts to feed us spaghetti. But it should work
  254. * in common situations. Otherwise, we have to rely on queue collapsing.
  255. */
  256. /* Slow part of check#2. */
  257. static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
  258. {
  259. struct tcp_sock *tp = tcp_sk(sk);
  260. /* Optimize this! */
  261. int truesize = tcp_win_from_space(skb->truesize) >> 1;
  262. int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1;
  263. while (tp->rcv_ssthresh <= window) {
  264. if (truesize <= skb->len)
  265. return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
  266. truesize >>= 1;
  267. window >>= 1;
  268. }
  269. return 0;
  270. }
  271. static void tcp_grow_window(struct sock *sk, struct sk_buff *skb)
  272. {
  273. struct tcp_sock *tp = tcp_sk(sk);
  274. /* Check #1 */
  275. if (tp->rcv_ssthresh < tp->window_clamp &&
  276. (int)tp->rcv_ssthresh < tcp_space(sk) &&
  277. !tcp_memory_pressure) {
  278. int incr;
  279. /* Check #2. Increase window, if skb with such overhead
  280. * will fit to rcvbuf in future.
  281. */
  282. if (tcp_win_from_space(skb->truesize) <= skb->len)
  283. incr = 2 * tp->advmss;
  284. else
  285. incr = __tcp_grow_window(sk, skb);
  286. if (incr) {
  287. tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr,
  288. tp->window_clamp);
  289. inet_csk(sk)->icsk_ack.quick |= 1;
  290. }
  291. }
  292. }
  293. /* 3. Tuning rcvbuf, when connection enters established state. */
  294. static void tcp_fixup_rcvbuf(struct sock *sk)
  295. {
  296. struct tcp_sock *tp = tcp_sk(sk);
  297. int rcvmem = tp->advmss + MAX_TCP_HEADER + 16 + sizeof(struct sk_buff);
  298. /* Try to select rcvbuf so that 4 mss-sized segments
  299. * will fit to window and corresponding skbs will fit to our rcvbuf.
  300. * (was 3; 4 is minimum to allow fast retransmit to work.)
  301. */
  302. while (tcp_win_from_space(rcvmem) < tp->advmss)
  303. rcvmem += 128;
  304. if (sk->sk_rcvbuf < 4 * rcvmem)
  305. sk->sk_rcvbuf = min(4 * rcvmem, sysctl_tcp_rmem[2]);
  306. }
  307. /* 4. Try to fixup all. It is made immediately after connection enters
  308. * established state.
  309. */
  310. static void tcp_init_buffer_space(struct sock *sk)
  311. {
  312. struct tcp_sock *tp = tcp_sk(sk);
  313. int maxwin;
  314. if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
  315. tcp_fixup_rcvbuf(sk);
  316. if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
  317. tcp_fixup_sndbuf(sk);
  318. tp->rcvq_space.space = tp->rcv_wnd;
  319. maxwin = tcp_full_space(sk);
  320. if (tp->window_clamp >= maxwin) {
  321. tp->window_clamp = maxwin;
  322. if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
  323. tp->window_clamp = max(maxwin -
  324. (maxwin >> sysctl_tcp_app_win),
  325. 4 * tp->advmss);
  326. }
  327. /* Force reservation of one segment. */
  328. if (sysctl_tcp_app_win &&
  329. tp->window_clamp > 2 * tp->advmss &&
  330. tp->window_clamp + tp->advmss > maxwin)
  331. tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
  332. tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
  333. tp->snd_cwnd_stamp = tcp_time_stamp;
  334. }
  335. /* 5. Recalculate window clamp after socket hit its memory bounds. */
  336. static void tcp_clamp_window(struct sock *sk)
  337. {
  338. struct tcp_sock *tp = tcp_sk(sk);
  339. struct inet_connection_sock *icsk = inet_csk(sk);
  340. icsk->icsk_ack.quick = 0;
  341. if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
  342. !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
  343. !tcp_memory_pressure &&
  344. atomic_read(&tcp_memory_allocated) < sysctl_tcp_mem[0]) {
  345. sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
  346. sysctl_tcp_rmem[2]);
  347. }
  348. if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
  349. tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
  350. }
  351. /* Initialize RCV_MSS value.
  352. * RCV_MSS is an our guess about MSS used by the peer.
  353. * We haven't any direct information about the MSS.
  354. * It's better to underestimate the RCV_MSS rather than overestimate.
  355. * Overestimations make us ACKing less frequently than needed.
  356. * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
  357. */
  358. void tcp_initialize_rcv_mss(struct sock *sk)
  359. {
  360. struct tcp_sock *tp = tcp_sk(sk);
  361. unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
  362. hint = min(hint, tp->rcv_wnd / 2);
  363. hint = min(hint, TCP_MIN_RCVMSS);
  364. hint = max(hint, TCP_MIN_MSS);
  365. inet_csk(sk)->icsk_ack.rcv_mss = hint;
  366. }
  367. /* Receiver "autotuning" code.
  368. *
  369. * The algorithm for RTT estimation w/o timestamps is based on
  370. * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
  371. * <http://www.lanl.gov/radiant/website/pubs/drs/lacsi2001.ps>
  372. *
  373. * More detail on this code can be found at
  374. * <http://www.psc.edu/~jheffner/senior_thesis.ps>,
  375. * though this reference is out of date. A new paper
  376. * is pending.
  377. */
  378. static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
  379. {
  380. u32 new_sample = tp->rcv_rtt_est.rtt;
  381. long m = sample;
  382. if (m == 0)
  383. m = 1;
  384. if (new_sample != 0) {
  385. /* If we sample in larger samples in the non-timestamp
  386. * case, we could grossly overestimate the RTT especially
  387. * with chatty applications or bulk transfer apps which
  388. * are stalled on filesystem I/O.
  389. *
  390. * Also, since we are only going for a minimum in the
  391. * non-timestamp case, we do not smooth things out
  392. * else with timestamps disabled convergence takes too
  393. * long.
  394. */
  395. if (!win_dep) {
  396. m -= (new_sample >> 3);
  397. new_sample += m;
  398. } else if (m < new_sample)
  399. new_sample = m << 3;
  400. } else {
  401. /* No previous measure. */
  402. new_sample = m << 3;
  403. }
  404. if (tp->rcv_rtt_est.rtt != new_sample)
  405. tp->rcv_rtt_est.rtt = new_sample;
  406. }
  407. static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
  408. {
  409. if (tp->rcv_rtt_est.time == 0)
  410. goto new_measure;
  411. if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
  412. return;
  413. tcp_rcv_rtt_update(tp, jiffies - tp->rcv_rtt_est.time, 1);
  414. new_measure:
  415. tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
  416. tp->rcv_rtt_est.time = tcp_time_stamp;
  417. }
  418. static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
  419. const struct sk_buff *skb)
  420. {
  421. struct tcp_sock *tp = tcp_sk(sk);
  422. if (tp->rx_opt.rcv_tsecr &&
  423. (TCP_SKB_CB(skb)->end_seq -
  424. TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
  425. tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
  426. }
  427. /*
  428. * This function should be called every time data is copied to user space.
  429. * It calculates the appropriate TCP receive buffer space.
  430. */
  431. void tcp_rcv_space_adjust(struct sock *sk)
  432. {
  433. struct tcp_sock *tp = tcp_sk(sk);
  434. int time;
  435. int space;
  436. if (tp->rcvq_space.time == 0)
  437. goto new_measure;
  438. time = tcp_time_stamp - tp->rcvq_space.time;
  439. if (time < (tp->rcv_rtt_est.rtt >> 3) || tp->rcv_rtt_est.rtt == 0)
  440. return;
  441. space = 2 * (tp->copied_seq - tp->rcvq_space.seq);
  442. space = max(tp->rcvq_space.space, space);
  443. if (tp->rcvq_space.space != space) {
  444. int rcvmem;
  445. tp->rcvq_space.space = space;
  446. if (sysctl_tcp_moderate_rcvbuf &&
  447. !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
  448. int new_clamp = space;
  449. /* Receive space grows, normalize in order to
  450. * take into account packet headers and sk_buff
  451. * structure overhead.
  452. */
  453. space /= tp->advmss;
  454. if (!space)
  455. space = 1;
  456. rcvmem = (tp->advmss + MAX_TCP_HEADER +
  457. 16 + sizeof(struct sk_buff));
  458. while (tcp_win_from_space(rcvmem) < tp->advmss)
  459. rcvmem += 128;
  460. space *= rcvmem;
  461. space = min(space, sysctl_tcp_rmem[2]);
  462. if (space > sk->sk_rcvbuf) {
  463. sk->sk_rcvbuf = space;
  464. /* Make the window clamp follow along. */
  465. tp->window_clamp = new_clamp;
  466. }
  467. }
  468. }
  469. new_measure:
  470. tp->rcvq_space.seq = tp->copied_seq;
  471. tp->rcvq_space.time = tcp_time_stamp;
  472. }
  473. /* There is something which you must keep in mind when you analyze the
  474. * behavior of the tp->ato delayed ack timeout interval. When a
  475. * connection starts up, we want to ack as quickly as possible. The
  476. * problem is that "good" TCP's do slow start at the beginning of data
  477. * transmission. The means that until we send the first few ACK's the
  478. * sender will sit on his end and only queue most of his data, because
  479. * he can only send snd_cwnd unacked packets at any given time. For
  480. * each ACK we send, he increments snd_cwnd and transmits more of his
  481. * queue. -DaveM
  482. */
  483. static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
  484. {
  485. struct tcp_sock *tp = tcp_sk(sk);
  486. struct inet_connection_sock *icsk = inet_csk(sk);
  487. u32 now;
  488. inet_csk_schedule_ack(sk);
  489. tcp_measure_rcv_mss(sk, skb);
  490. tcp_rcv_rtt_measure(tp);
  491. now = tcp_time_stamp;
  492. if (!icsk->icsk_ack.ato) {
  493. /* The _first_ data packet received, initialize
  494. * delayed ACK engine.
  495. */
  496. tcp_incr_quickack(sk);
  497. icsk->icsk_ack.ato = TCP_ATO_MIN;
  498. } else {
  499. int m = now - icsk->icsk_ack.lrcvtime;
  500. if (m <= TCP_ATO_MIN / 2) {
  501. /* The fastest case is the first. */
  502. icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
  503. } else if (m < icsk->icsk_ack.ato) {
  504. icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
  505. if (icsk->icsk_ack.ato > icsk->icsk_rto)
  506. icsk->icsk_ack.ato = icsk->icsk_rto;
  507. } else if (m > icsk->icsk_rto) {
  508. /* Too long gap. Apparently sender failed to
  509. * restart window, so that we send ACKs quickly.
  510. */
  511. tcp_incr_quickack(sk);
  512. sk_mem_reclaim(sk);
  513. }
  514. }
  515. icsk->icsk_ack.lrcvtime = now;
  516. TCP_ECN_check_ce(tp, skb);
  517. if (skb->len >= 128)
  518. tcp_grow_window(sk, skb);
  519. }
  520. static u32 tcp_rto_min(struct sock *sk)
  521. {
  522. struct dst_entry *dst = __sk_dst_get(sk);
  523. u32 rto_min = TCP_RTO_MIN;
  524. if (dst && dst_metric_locked(dst, RTAX_RTO_MIN))
  525. rto_min = dst_metric_rtt(dst, RTAX_RTO_MIN);
  526. return rto_min;
  527. }
  528. /* Called to compute a smoothed rtt estimate. The data fed to this
  529. * routine either comes from timestamps, or from segments that were
  530. * known _not_ to have been retransmitted [see Karn/Partridge
  531. * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
  532. * piece by Van Jacobson.
  533. * NOTE: the next three routines used to be one big routine.
  534. * To save cycles in the RFC 1323 implementation it was better to break
  535. * it up into three procedures. -- erics
  536. */
  537. static void tcp_rtt_estimator(struct sock *sk, const __u32 mrtt)
  538. {
  539. struct tcp_sock *tp = tcp_sk(sk);
  540. long m = mrtt; /* RTT */
  541. /* The following amusing code comes from Jacobson's
  542. * article in SIGCOMM '88. Note that rtt and mdev
  543. * are scaled versions of rtt and mean deviation.
  544. * This is designed to be as fast as possible
  545. * m stands for "measurement".
  546. *
  547. * On a 1990 paper the rto value is changed to:
  548. * RTO = rtt + 4 * mdev
  549. *
  550. * Funny. This algorithm seems to be very broken.
  551. * These formulae increase RTO, when it should be decreased, increase
  552. * too slowly, when it should be increased quickly, decrease too quickly
  553. * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
  554. * does not matter how to _calculate_ it. Seems, it was trap
  555. * that VJ failed to avoid. 8)
  556. */
  557. if (m == 0)
  558. m = 1;
  559. if (tp->srtt != 0) {
  560. m -= (tp->srtt >> 3); /* m is now error in rtt est */
  561. tp->srtt += m; /* rtt = 7/8 rtt + 1/8 new */
  562. if (m < 0) {
  563. m = -m; /* m is now abs(error) */
  564. m -= (tp->mdev >> 2); /* similar update on mdev */
  565. /* This is similar to one of Eifel findings.
  566. * Eifel blocks mdev updates when rtt decreases.
  567. * This solution is a bit different: we use finer gain
  568. * for mdev in this case (alpha*beta).
  569. * Like Eifel it also prevents growth of rto,
  570. * but also it limits too fast rto decreases,
  571. * happening in pure Eifel.
  572. */
  573. if (m > 0)
  574. m >>= 3;
  575. } else {
  576. m -= (tp->mdev >> 2); /* similar update on mdev */
  577. }
  578. tp->mdev += m; /* mdev = 3/4 mdev + 1/4 new */
  579. if (tp->mdev > tp->mdev_max) {
  580. tp->mdev_max = tp->mdev;
  581. if (tp->mdev_max > tp->rttvar)
  582. tp->rttvar = tp->mdev_max;
  583. }
  584. if (after(tp->snd_una, tp->rtt_seq)) {
  585. if (tp->mdev_max < tp->rttvar)
  586. tp->rttvar -= (tp->rttvar - tp->mdev_max) >> 2;
  587. tp->rtt_seq = tp->snd_nxt;
  588. tp->mdev_max = tcp_rto_min(sk);
  589. }
  590. } else {
  591. /* no previous measure. */
  592. tp->srtt = m << 3; /* take the measured time to be rtt */
  593. tp->mdev = m << 1; /* make sure rto = 3*rtt */
  594. tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
  595. tp->rtt_seq = tp->snd_nxt;
  596. }
  597. }
  598. /* Calculate rto without backoff. This is the second half of Van Jacobson's
  599. * routine referred to above.
  600. */
  601. static inline void tcp_set_rto(struct sock *sk)
  602. {
  603. const struct tcp_sock *tp = tcp_sk(sk);
  604. /* Old crap is replaced with new one. 8)
  605. *
  606. * More seriously:
  607. * 1. If rtt variance happened to be less 50msec, it is hallucination.
  608. * It cannot be less due to utterly erratic ACK generation made
  609. * at least by solaris and freebsd. "Erratic ACKs" has _nothing_
  610. * to do with delayed acks, because at cwnd>2 true delack timeout
  611. * is invisible. Actually, Linux-2.4 also generates erratic
  612. * ACKs in some circumstances.
  613. */
  614. inet_csk(sk)->icsk_rto = (tp->srtt >> 3) + tp->rttvar;
  615. /* 2. Fixups made earlier cannot be right.
  616. * If we do not estimate RTO correctly without them,
  617. * all the algo is pure shit and should be replaced
  618. * with correct one. It is exactly, which we pretend to do.
  619. */
  620. }
  621. /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
  622. * guarantees that rto is higher.
  623. */
  624. static inline void tcp_bound_rto(struct sock *sk)
  625. {
  626. if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX)
  627. inet_csk(sk)->icsk_rto = TCP_RTO_MAX;
  628. }
  629. /* Save metrics learned by this TCP session.
  630. This function is called only, when TCP finishes successfully
  631. i.e. when it enters TIME-WAIT or goes from LAST-ACK to CLOSE.
  632. */
  633. void tcp_update_metrics(struct sock *sk)
  634. {
  635. struct tcp_sock *tp = tcp_sk(sk);
  636. struct dst_entry *dst = __sk_dst_get(sk);
  637. if (sysctl_tcp_nometrics_save)
  638. return;
  639. dst_confirm(dst);
  640. if (dst && (dst->flags & DST_HOST)) {
  641. const struct inet_connection_sock *icsk = inet_csk(sk);
  642. int m;
  643. unsigned long rtt;
  644. if (icsk->icsk_backoff || !tp->srtt) {
  645. /* This session failed to estimate rtt. Why?
  646. * Probably, no packets returned in time.
  647. * Reset our results.
  648. */
  649. if (!(dst_metric_locked(dst, RTAX_RTT)))
  650. dst->metrics[RTAX_RTT - 1] = 0;
  651. return;
  652. }
  653. rtt = dst_metric_rtt(dst, RTAX_RTT);
  654. m = rtt - tp->srtt;
  655. /* If newly calculated rtt larger than stored one,
  656. * store new one. Otherwise, use EWMA. Remember,
  657. * rtt overestimation is always better than underestimation.
  658. */
  659. if (!(dst_metric_locked(dst, RTAX_RTT))) {
  660. if (m <= 0)
  661. set_dst_metric_rtt(dst, RTAX_RTT, tp->srtt);
  662. else
  663. set_dst_metric_rtt(dst, RTAX_RTT, rtt - (m >> 3));
  664. }
  665. if (!(dst_metric_locked(dst, RTAX_RTTVAR))) {
  666. unsigned long var;
  667. if (m < 0)
  668. m = -m;
  669. /* Scale deviation to rttvar fixed point */
  670. m >>= 1;
  671. if (m < tp->mdev)
  672. m = tp->mdev;
  673. var = dst_metric_rtt(dst, RTAX_RTTVAR);
  674. if (m >= var)
  675. var = m;
  676. else
  677. var -= (var - m) >> 2;
  678. set_dst_metric_rtt(dst, RTAX_RTTVAR, var);
  679. }
  680. if (tp->snd_ssthresh >= 0xFFFF) {
  681. /* Slow start still did not finish. */
  682. if (dst_metric(dst, RTAX_SSTHRESH) &&
  683. !dst_metric_locked(dst, RTAX_SSTHRESH) &&
  684. (tp->snd_cwnd >> 1) > dst_metric(dst, RTAX_SSTHRESH))
  685. dst->metrics[RTAX_SSTHRESH-1] = tp->snd_cwnd >> 1;
  686. if (!dst_metric_locked(dst, RTAX_CWND) &&
  687. tp->snd_cwnd > dst_metric(dst, RTAX_CWND))
  688. dst->metrics[RTAX_CWND - 1] = tp->snd_cwnd;
  689. } else if (tp->snd_cwnd > tp->snd_ssthresh &&
  690. icsk->icsk_ca_state == TCP_CA_Open) {
  691. /* Cong. avoidance phase, cwnd is reliable. */
  692. if (!dst_metric_locked(dst, RTAX_SSTHRESH))
  693. dst->metrics[RTAX_SSTHRESH-1] =
  694. max(tp->snd_cwnd >> 1, tp->snd_ssthresh);
  695. if (!dst_metric_locked(dst, RTAX_CWND))
  696. dst->metrics[RTAX_CWND-1] = (dst_metric(dst, RTAX_CWND) + tp->snd_cwnd) >> 1;
  697. } else {
  698. /* Else slow start did not finish, cwnd is non-sense,
  699. ssthresh may be also invalid.
  700. */
  701. if (!dst_metric_locked(dst, RTAX_CWND))
  702. dst->metrics[RTAX_CWND-1] = (dst_metric(dst, RTAX_CWND) + tp->snd_ssthresh) >> 1;
  703. if (dst_metric(dst, RTAX_SSTHRESH) &&
  704. !dst_metric_locked(dst, RTAX_SSTHRESH) &&
  705. tp->snd_ssthresh > dst_metric(dst, RTAX_SSTHRESH))
  706. dst->metrics[RTAX_SSTHRESH-1] = tp->snd_ssthresh;
  707. }
  708. if (!dst_metric_locked(dst, RTAX_REORDERING)) {
  709. if (dst_metric(dst, RTAX_REORDERING) < tp->reordering &&
  710. tp->reordering != sysctl_tcp_reordering)
  711. dst->metrics[RTAX_REORDERING-1] = tp->reordering;
  712. }
  713. }
  714. }
  715. /* Numbers are taken from RFC3390.
  716. *
  717. * John Heffner states:
  718. *
  719. * The RFC specifies a window of no more than 4380 bytes
  720. * unless 2*MSS > 4380. Reading the pseudocode in the RFC
  721. * is a bit misleading because they use a clamp at 4380 bytes
  722. * rather than use a multiplier in the relevant range.
  723. */
  724. __u32 tcp_init_cwnd(struct tcp_sock *tp, struct dst_entry *dst)
  725. {
  726. __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
  727. if (!cwnd) {
  728. if (tp->mss_cache > 1460)
  729. cwnd = 2;
  730. else
  731. cwnd = (tp->mss_cache > 1095) ? 3 : 4;
  732. }
  733. return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
  734. }
  735. /* Set slow start threshold and cwnd not falling to slow start */
  736. void tcp_enter_cwr(struct sock *sk, const int set_ssthresh)
  737. {
  738. struct tcp_sock *tp = tcp_sk(sk);
  739. const struct inet_connection_sock *icsk = inet_csk(sk);
  740. tp->prior_ssthresh = 0;
  741. tp->bytes_acked = 0;
  742. if (icsk->icsk_ca_state < TCP_CA_CWR) {
  743. tp->undo_marker = 0;
  744. if (set_ssthresh)
  745. tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
  746. tp->snd_cwnd = min(tp->snd_cwnd,
  747. tcp_packets_in_flight(tp) + 1U);
  748. tp->snd_cwnd_cnt = 0;
  749. tp->high_seq = tp->snd_nxt;
  750. tp->snd_cwnd_stamp = tcp_time_stamp;
  751. TCP_ECN_queue_cwr(tp);
  752. tcp_set_ca_state(sk, TCP_CA_CWR);
  753. }
  754. }
  755. /*
  756. * Packet counting of FACK is based on in-order assumptions, therefore TCP
  757. * disables it when reordering is detected
  758. */
  759. static void tcp_disable_fack(struct tcp_sock *tp)
  760. {
  761. /* RFC3517 uses different metric in lost marker => reset on change */
  762. if (tcp_is_fack(tp))
  763. tp->lost_skb_hint = NULL;
  764. tp->rx_opt.sack_ok &= ~2;
  765. }
  766. /* Take a notice that peer is sending D-SACKs */
  767. static void tcp_dsack_seen(struct tcp_sock *tp)
  768. {
  769. tp->rx_opt.sack_ok |= 4;
  770. }
  771. /* Initialize metrics on socket. */
  772. static void tcp_init_metrics(struct sock *sk)
  773. {
  774. struct tcp_sock *tp = tcp_sk(sk);
  775. struct dst_entry *dst = __sk_dst_get(sk);
  776. if (dst == NULL)
  777. goto reset;
  778. dst_confirm(dst);
  779. if (dst_metric_locked(dst, RTAX_CWND))
  780. tp->snd_cwnd_clamp = dst_metric(dst, RTAX_CWND);
  781. if (dst_metric(dst, RTAX_SSTHRESH)) {
  782. tp->snd_ssthresh = dst_metric(dst, RTAX_SSTHRESH);
  783. if (tp->snd_ssthresh > tp->snd_cwnd_clamp)
  784. tp->snd_ssthresh = tp->snd_cwnd_clamp;
  785. }
  786. if (dst_metric(dst, RTAX_REORDERING) &&
  787. tp->reordering != dst_metric(dst, RTAX_REORDERING)) {
  788. tcp_disable_fack(tp);
  789. tp->reordering = dst_metric(dst, RTAX_REORDERING);
  790. }
  791. if (dst_metric(dst, RTAX_RTT) == 0)
  792. goto reset;
  793. if (!tp->srtt && dst_metric_rtt(dst, RTAX_RTT) < (TCP_TIMEOUT_INIT << 3))
  794. goto reset;
  795. /* Initial rtt is determined from SYN,SYN-ACK.
  796. * The segment is small and rtt may appear much
  797. * less than real one. Use per-dst memory
  798. * to make it more realistic.
  799. *
  800. * A bit of theory. RTT is time passed after "normal" sized packet
  801. * is sent until it is ACKed. In normal circumstances sending small
  802. * packets force peer to delay ACKs and calculation is correct too.
  803. * The algorithm is adaptive and, provided we follow specs, it
  804. * NEVER underestimate RTT. BUT! If peer tries to make some clever
  805. * tricks sort of "quick acks" for time long enough to decrease RTT
  806. * to low value, and then abruptly stops to do it and starts to delay
  807. * ACKs, wait for troubles.
  808. */
  809. if (dst_metric_rtt(dst, RTAX_RTT) > tp->srtt) {
  810. tp->srtt = dst_metric_rtt(dst, RTAX_RTT);
  811. tp->rtt_seq = tp->snd_nxt;
  812. }
  813. if (dst_metric_rtt(dst, RTAX_RTTVAR) > tp->mdev) {
  814. tp->mdev = dst_metric_rtt(dst, RTAX_RTTVAR);
  815. tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
  816. }
  817. tcp_set_rto(sk);
  818. tcp_bound_rto(sk);
  819. if (inet_csk(sk)->icsk_rto < TCP_TIMEOUT_INIT && !tp->rx_opt.saw_tstamp)
  820. goto reset;
  821. tp->snd_cwnd = tcp_init_cwnd(tp, dst);
  822. tp->snd_cwnd_stamp = tcp_time_stamp;
  823. return;
  824. reset:
  825. /* Play conservative. If timestamps are not
  826. * supported, TCP will fail to recalculate correct
  827. * rtt, if initial rto is too small. FORGET ALL AND RESET!
  828. */
  829. if (!tp->rx_opt.saw_tstamp && tp->srtt) {
  830. tp->srtt = 0;
  831. tp->mdev = tp->mdev_max = tp->rttvar = TCP_TIMEOUT_INIT;
  832. inet_csk(sk)->icsk_rto = TCP_TIMEOUT_INIT;
  833. }
  834. }
  835. static void tcp_update_reordering(struct sock *sk, const int metric,
  836. const int ts)
  837. {
  838. struct tcp_sock *tp = tcp_sk(sk);
  839. if (metric > tp->reordering) {
  840. int mib_idx;
  841. tp->reordering = min(TCP_MAX_REORDERING, metric);
  842. /* This exciting event is worth to be remembered. 8) */
  843. if (ts)
  844. mib_idx = LINUX_MIB_TCPTSREORDER;
  845. else if (tcp_is_reno(tp))
  846. mib_idx = LINUX_MIB_TCPRENOREORDER;
  847. else if (tcp_is_fack(tp))
  848. mib_idx = LINUX_MIB_TCPFACKREORDER;
  849. else
  850. mib_idx = LINUX_MIB_TCPSACKREORDER;
  851. NET_INC_STATS_BH(sock_net(sk), mib_idx);
  852. #if FASTRETRANS_DEBUG > 1
  853. printk(KERN_DEBUG "Disorder%d %d %u f%u s%u rr%d\n",
  854. tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
  855. tp->reordering,
  856. tp->fackets_out,
  857. tp->sacked_out,
  858. tp->undo_marker ? tp->undo_retrans : 0);
  859. #endif
  860. tcp_disable_fack(tp);
  861. }
  862. }
  863. /* This must be called before lost_out is incremented */
  864. static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
  865. {
  866. if ((tp->retransmit_skb_hint == NULL) ||
  867. before(TCP_SKB_CB(skb)->seq,
  868. TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
  869. tp->retransmit_skb_hint = skb;
  870. if (!tp->lost_out ||
  871. after(TCP_SKB_CB(skb)->end_seq, tp->retransmit_high))
  872. tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
  873. }
  874. static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
  875. {
  876. if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
  877. tcp_verify_retransmit_hint(tp, skb);
  878. tp->lost_out += tcp_skb_pcount(skb);
  879. TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
  880. }
  881. }
  882. void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp, struct sk_buff *skb)
  883. {
  884. tcp_verify_retransmit_hint(tp, skb);
  885. if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
  886. tp->lost_out += tcp_skb_pcount(skb);
  887. TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
  888. }
  889. }
  890. /* This procedure tags the retransmission queue when SACKs arrive.
  891. *
  892. * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
  893. * Packets in queue with these bits set are counted in variables
  894. * sacked_out, retrans_out and lost_out, correspondingly.
  895. *
  896. * Valid combinations are:
  897. * Tag InFlight Description
  898. * 0 1 - orig segment is in flight.
  899. * S 0 - nothing flies, orig reached receiver.
  900. * L 0 - nothing flies, orig lost by net.
  901. * R 2 - both orig and retransmit are in flight.
  902. * L|R 1 - orig is lost, retransmit is in flight.
  903. * S|R 1 - orig reached receiver, retrans is still in flight.
  904. * (L|S|R is logically valid, it could occur when L|R is sacked,
  905. * but it is equivalent to plain S and code short-curcuits it to S.
  906. * L|S is logically invalid, it would mean -1 packet in flight 8))
  907. *
  908. * These 6 states form finite state machine, controlled by the following events:
  909. * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
  910. * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
  911. * 3. Loss detection event of one of three flavors:
  912. * A. Scoreboard estimator decided the packet is lost.
  913. * A'. Reno "three dupacks" marks head of queue lost.
  914. * A''. Its FACK modfication, head until snd.fack is lost.
  915. * B. SACK arrives sacking data transmitted after never retransmitted
  916. * hole was sent out.
  917. * C. SACK arrives sacking SND.NXT at the moment, when the
  918. * segment was retransmitted.
  919. * 4. D-SACK added new rule: D-SACK changes any tag to S.
  920. *
  921. * It is pleasant to note, that state diagram turns out to be commutative,
  922. * so that we are allowed not to be bothered by order of our actions,
  923. * when multiple events arrive simultaneously. (see the function below).
  924. *
  925. * Reordering detection.
  926. * --------------------
  927. * Reordering metric is maximal distance, which a packet can be displaced
  928. * in packet stream. With SACKs we can estimate it:
  929. *
  930. * 1. SACK fills old hole and the corresponding segment was not
  931. * ever retransmitted -> reordering. Alas, we cannot use it
  932. * when segment was retransmitted.
  933. * 2. The last flaw is solved with D-SACK. D-SACK arrives
  934. * for retransmitted and already SACKed segment -> reordering..
  935. * Both of these heuristics are not used in Loss state, when we cannot
  936. * account for retransmits accurately.
  937. *
  938. * SACK block validation.
  939. * ----------------------
  940. *
  941. * SACK block range validation checks that the received SACK block fits to
  942. * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
  943. * Note that SND.UNA is not included to the range though being valid because
  944. * it means that the receiver is rather inconsistent with itself reporting
  945. * SACK reneging when it should advance SND.UNA. Such SACK block this is
  946. * perfectly valid, however, in light of RFC2018 which explicitly states
  947. * that "SACK block MUST reflect the newest segment. Even if the newest
  948. * segment is going to be discarded ...", not that it looks very clever
  949. * in case of head skb. Due to potentional receiver driven attacks, we
  950. * choose to avoid immediate execution of a walk in write queue due to
  951. * reneging and defer head skb's loss recovery to standard loss recovery
  952. * procedure that will eventually trigger (nothing forbids us doing this).
  953. *
  954. * Implements also blockage to start_seq wrap-around. Problem lies in the
  955. * fact that though start_seq (s) is before end_seq (i.e., not reversed),
  956. * there's no guarantee that it will be before snd_nxt (n). The problem
  957. * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
  958. * wrap (s_w):
  959. *
  960. * <- outs wnd -> <- wrapzone ->
  961. * u e n u_w e_w s n_w
  962. * | | | | | | |
  963. * |<------------+------+----- TCP seqno space --------------+---------->|
  964. * ...-- <2^31 ->| |<--------...
  965. * ...---- >2^31 ------>| |<--------...
  966. *
  967. * Current code wouldn't be vulnerable but it's better still to discard such
  968. * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
  969. * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
  970. * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
  971. * equal to the ideal case (infinite seqno space without wrap caused issues).
  972. *
  973. * With D-SACK the lower bound is extended to cover sequence space below
  974. * SND.UNA down to undo_marker, which is the last point of interest. Yet
  975. * again, D-SACK block must not to go across snd_una (for the same reason as
  976. * for the normal SACK blocks, explained above). But there all simplicity
  977. * ends, TCP might receive valid D-SACKs below that. As long as they reside
  978. * fully below undo_marker they do not affect behavior in anyway and can
  979. * therefore be safely ignored. In rare cases (which are more or less
  980. * theoretical ones), the D-SACK will nicely cross that boundary due to skb
  981. * fragmentation and packet reordering past skb's retransmission. To consider
  982. * them correctly, the acceptable range must be extended even more though
  983. * the exact amount is rather hard to quantify. However, tp->max_window can
  984. * be used as an exaggerated estimate.
  985. */
  986. static int tcp_is_sackblock_valid(struct tcp_sock *tp, int is_dsack,
  987. u32 start_seq, u32 end_seq)
  988. {
  989. /* Too far in future, or reversed (interpretation is ambiguous) */
  990. if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
  991. return 0;
  992. /* Nasty start_seq wrap-around check (see comments above) */
  993. if (!before(start_seq, tp->snd_nxt))
  994. return 0;
  995. /* In outstanding window? ...This is valid exit for D-SACKs too.
  996. * start_seq == snd_una is non-sensical (see comments above)
  997. */
  998. if (after(start_seq, tp->snd_una))
  999. return 1;
  1000. if (!is_dsack || !tp->undo_marker)
  1001. return 0;
  1002. /* ...Then it's D-SACK, and must reside below snd_una completely */
  1003. if (!after(end_seq, tp->snd_una))
  1004. return 0;
  1005. if (!before(start_seq, tp->undo_marker))
  1006. return 1;
  1007. /* Too old */
  1008. if (!after(end_seq, tp->undo_marker))
  1009. return 0;
  1010. /* Undo_marker boundary crossing (overestimates a lot). Known already:
  1011. * start_seq < undo_marker and end_seq >= undo_marker.
  1012. */
  1013. return !before(start_seq, end_seq - tp->max_window);
  1014. }
  1015. /* Check for lost retransmit. This superb idea is borrowed from "ratehalving".
  1016. * Event "C". Later note: FACK people cheated me again 8), we have to account
  1017. * for reordering! Ugly, but should help.
  1018. *
  1019. * Search retransmitted skbs from write_queue that were sent when snd_nxt was
  1020. * less than what is now known to be received by the other end (derived from
  1021. * highest SACK block). Also calculate the lowest snd_nxt among the remaining
  1022. * retransmitted skbs to avoid some costly processing per ACKs.
  1023. */
  1024. static void tcp_mark_lost_retrans(struct sock *sk)
  1025. {
  1026. const struct inet_connection_sock *icsk = inet_csk(sk);
  1027. struct tcp_sock *tp = tcp_sk(sk);
  1028. struct sk_buff *skb;
  1029. int cnt = 0;
  1030. u32 new_low_seq = tp->snd_nxt;
  1031. u32 received_upto = tcp_highest_sack_seq(tp);
  1032. if (!tcp_is_fack(tp) || !tp->retrans_out ||
  1033. !after(received_upto, tp->lost_retrans_low) ||
  1034. icsk->icsk_ca_state != TCP_CA_Recovery)
  1035. return;
  1036. tcp_for_write_queue(skb, sk) {
  1037. u32 ack_seq = TCP_SKB_CB(skb)->ack_seq;
  1038. if (skb == tcp_send_head(sk))
  1039. break;
  1040. if (cnt == tp->retrans_out)
  1041. break;
  1042. if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
  1043. continue;
  1044. if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS))
  1045. continue;
  1046. if (after(received_upto, ack_seq) &&
  1047. (tcp_is_fack(tp) ||
  1048. !before(received_upto,
  1049. ack_seq + tp->reordering * tp->mss_cache))) {
  1050. TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
  1051. tp->retrans_out -= tcp_skb_pcount(skb);
  1052. tcp_skb_mark_lost_uncond_verify(tp, skb);
  1053. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT);
  1054. } else {
  1055. if (before(ack_seq, new_low_seq))
  1056. new_low_seq = ack_seq;
  1057. cnt += tcp_skb_pcount(skb);
  1058. }
  1059. }
  1060. if (tp->retrans_out)
  1061. tp->lost_retrans_low = new_low_seq;
  1062. }
  1063. static int tcp_check_dsack(struct sock *sk, struct sk_buff *ack_skb,
  1064. struct tcp_sack_block_wire *sp, int num_sacks,
  1065. u32 prior_snd_una)
  1066. {
  1067. struct tcp_sock *tp = tcp_sk(sk);
  1068. u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
  1069. u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
  1070. int dup_sack = 0;
  1071. if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
  1072. dup_sack = 1;
  1073. tcp_dsack_seen(tp);
  1074. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
  1075. } else if (num_sacks > 1) {
  1076. u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
  1077. u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
  1078. if (!after(end_seq_0, end_seq_1) &&
  1079. !before(start_seq_0, start_seq_1)) {
  1080. dup_sack = 1;
  1081. tcp_dsack_seen(tp);
  1082. NET_INC_STATS_BH(sock_net(sk),
  1083. LINUX_MIB_TCPDSACKOFORECV);
  1084. }
  1085. }
  1086. /* D-SACK for already forgotten data... Do dumb counting. */
  1087. if (dup_sack &&
  1088. !after(end_seq_0, prior_snd_una) &&
  1089. after(end_seq_0, tp->undo_marker))
  1090. tp->undo_retrans--;
  1091. return dup_sack;
  1092. }
  1093. /* Check if skb is fully within the SACK block. In presence of GSO skbs,
  1094. * the incoming SACK may not exactly match but we can find smaller MSS
  1095. * aligned portion of it that matches. Therefore we might need to fragment
  1096. * which may fail and creates some hassle (caller must handle error case
  1097. * returns).
  1098. */
  1099. static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
  1100. u32 start_seq, u32 end_seq)
  1101. {
  1102. int in_sack, err;
  1103. unsigned int pkt_len;
  1104. in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
  1105. !before(end_seq, TCP_SKB_CB(skb)->end_seq);
  1106. if (tcp_skb_pcount(skb) > 1 && !in_sack &&
  1107. after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
  1108. in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
  1109. if (!in_sack)
  1110. pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
  1111. else
  1112. pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
  1113. err = tcp_fragment(sk, skb, pkt_len, skb_shinfo(skb)->gso_size);
  1114. if (err < 0)
  1115. return err;
  1116. }
  1117. return in_sack;
  1118. }
  1119. static int tcp_sacktag_one(struct sk_buff *skb, struct sock *sk,
  1120. int *reord, int dup_sack, int fack_count)
  1121. {
  1122. struct tcp_sock *tp = tcp_sk(sk);
  1123. u8 sacked = TCP_SKB_CB(skb)->sacked;
  1124. int flag = 0;
  1125. /* Account D-SACK for retransmitted packet. */
  1126. if (dup_sack && (sacked & TCPCB_RETRANS)) {
  1127. if (after(TCP_SKB_CB(skb)->end_seq, tp->undo_marker))
  1128. tp->undo_retrans--;
  1129. if (sacked & TCPCB_SACKED_ACKED)
  1130. *reord = min(fack_count, *reord);
  1131. }
  1132. /* Nothing to do; acked frame is about to be dropped (was ACKed). */
  1133. if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
  1134. return flag;
  1135. if (!(sacked & TCPCB_SACKED_ACKED)) {
  1136. if (sacked & TCPCB_SACKED_RETRANS) {
  1137. /* If the segment is not tagged as lost,
  1138. * we do not clear RETRANS, believing
  1139. * that retransmission is still in flight.
  1140. */
  1141. if (sacked & TCPCB_LOST) {
  1142. TCP_SKB_CB(skb)->sacked &=
  1143. ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
  1144. tp->lost_out -= tcp_skb_pcount(skb);
  1145. tp->retrans_out -= tcp_skb_pcount(skb);
  1146. }
  1147. } else {
  1148. if (!(sacked & TCPCB_RETRANS)) {
  1149. /* New sack for not retransmitted frame,
  1150. * which was in hole. It is reordering.
  1151. */
  1152. if (before(TCP_SKB_CB(skb)->seq,
  1153. tcp_highest_sack_seq(tp)))
  1154. *reord = min(fack_count, *reord);
  1155. /* SACK enhanced F-RTO (RFC4138; Appendix B) */
  1156. if (!after(TCP_SKB_CB(skb)->end_seq, tp->frto_highmark))
  1157. flag |= FLAG_ONLY_ORIG_SACKED;
  1158. }
  1159. if (sacked & TCPCB_LOST) {
  1160. TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
  1161. tp->lost_out -= tcp_skb_pcount(skb);
  1162. }
  1163. }
  1164. TCP_SKB_CB(skb)->sacked |= TCPCB_SACKED_ACKED;
  1165. flag |= FLAG_DATA_SACKED;
  1166. tp->sacked_out += tcp_skb_pcount(skb);
  1167. fack_count += tcp_skb_pcount(skb);
  1168. /* Lost marker hint past SACKed? Tweak RFC3517 cnt */
  1169. if (!tcp_is_fack(tp) && (tp->lost_skb_hint != NULL) &&
  1170. before(TCP_SKB_CB(skb)->seq,
  1171. TCP_SKB_CB(tp->lost_skb_hint)->seq))
  1172. tp->lost_cnt_hint += tcp_skb_pcount(skb);
  1173. if (fack_count > tp->fackets_out)
  1174. tp->fackets_out = fack_count;
  1175. if (!before(TCP_SKB_CB(skb)->seq, tcp_highest_sack_seq(tp)))
  1176. tcp_advance_highest_sack(sk, skb);
  1177. }
  1178. /* D-SACK. We can detect redundant retransmission in S|R and plain R
  1179. * frames and clear it. undo_retrans is decreased above, L|R frames
  1180. * are accounted above as well.
  1181. */
  1182. if (dup_sack && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)) {
  1183. TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
  1184. tp->retrans_out -= tcp_skb_pcount(skb);
  1185. }
  1186. return flag;
  1187. }
  1188. static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
  1189. struct tcp_sack_block *next_dup,
  1190. u32 start_seq, u32 end_seq,
  1191. int dup_sack_in, int *fack_count,
  1192. int *reord, int *flag)
  1193. {
  1194. tcp_for_write_queue_from(skb, sk) {
  1195. int in_sack = 0;
  1196. int dup_sack = dup_sack_in;
  1197. if (skb == tcp_send_head(sk))
  1198. break;
  1199. /* queue is in-order => we can short-circuit the walk early */
  1200. if (!before(TCP_SKB_CB(skb)->seq, end_seq))
  1201. break;
  1202. if ((next_dup != NULL) &&
  1203. before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
  1204. in_sack = tcp_match_skb_to_sack(sk, skb,
  1205. next_dup->start_seq,
  1206. next_dup->end_seq);
  1207. if (in_sack > 0)
  1208. dup_sack = 1;
  1209. }
  1210. if (in_sack <= 0)
  1211. in_sack = tcp_match_skb_to_sack(sk, skb, start_seq,
  1212. end_seq);
  1213. if (unlikely(in_sack < 0))
  1214. break;
  1215. if (in_sack)
  1216. *flag |= tcp_sacktag_one(skb, sk, reord, dup_sack,
  1217. *fack_count);
  1218. *fack_count += tcp_skb_pcount(skb);
  1219. }
  1220. return skb;
  1221. }
  1222. /* Avoid all extra work that is being done by sacktag while walking in
  1223. * a normal way
  1224. */
  1225. static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
  1226. u32 skip_to_seq, int *fack_count)
  1227. {
  1228. tcp_for_write_queue_from(skb, sk) {
  1229. if (skb == tcp_send_head(sk))
  1230. break;
  1231. if (!before(TCP_SKB_CB(skb)->end_seq, skip_to_seq))
  1232. break;
  1233. *fack_count += tcp_skb_pcount(skb);
  1234. }
  1235. return skb;
  1236. }
  1237. static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
  1238. struct sock *sk,
  1239. struct tcp_sack_block *next_dup,
  1240. u32 skip_to_seq,
  1241. int *fack_count, int *reord,
  1242. int *flag)
  1243. {
  1244. if (next_dup == NULL)
  1245. return skb;
  1246. if (before(next_dup->start_seq, skip_to_seq)) {
  1247. skb = tcp_sacktag_skip(skb, sk, next_dup->start_seq, fack_count);
  1248. skb = tcp_sacktag_walk(skb, sk, NULL,
  1249. next_dup->start_seq, next_dup->end_seq,
  1250. 1, fack_count, reord, flag);
  1251. }
  1252. return skb;
  1253. }
  1254. static int tcp_sack_cache_ok(struct tcp_sock *tp, struct tcp_sack_block *cache)
  1255. {
  1256. return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
  1257. }
  1258. static int
  1259. tcp_sacktag_write_queue(struct sock *sk, struct sk_buff *ack_skb,
  1260. u32 prior_snd_una)
  1261. {
  1262. const struct inet_connection_sock *icsk = inet_csk(sk);
  1263. struct tcp_sock *tp = tcp_sk(sk);
  1264. unsigned char *ptr = (skb_transport_header(ack_skb) +
  1265. TCP_SKB_CB(ack_skb)->sacked);
  1266. struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
  1267. struct tcp_sack_block sp[TCP_NUM_SACKS];
  1268. struct tcp_sack_block *cache;
  1269. struct sk_buff *skb;
  1270. int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
  1271. int used_sacks;
  1272. int reord = tp->packets_out;
  1273. int flag = 0;
  1274. int found_dup_sack = 0;
  1275. int fack_count;
  1276. int i, j;
  1277. int first_sack_index;
  1278. if (!tp->sacked_out) {
  1279. if (WARN_ON(tp->fackets_out))
  1280. tp->fackets_out = 0;
  1281. tcp_highest_sack_reset(sk);
  1282. }
  1283. found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
  1284. num_sacks, prior_snd_una);
  1285. if (found_dup_sack)
  1286. flag |= FLAG_DSACKING_ACK;
  1287. /* Eliminate too old ACKs, but take into
  1288. * account more or less fresh ones, they can
  1289. * contain valid SACK info.
  1290. */
  1291. if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
  1292. return 0;
  1293. if (!tp->packets_out)
  1294. goto out;
  1295. used_sacks = 0;
  1296. first_sack_index = 0;
  1297. for (i = 0; i < num_sacks; i++) {
  1298. int dup_sack = !i && found_dup_sack;
  1299. sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
  1300. sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
  1301. if (!tcp_is_sackblock_valid(tp, dup_sack,
  1302. sp[used_sacks].start_seq,
  1303. sp[used_sacks].end_seq)) {
  1304. int mib_idx;
  1305. if (dup_sack) {
  1306. if (!tp->undo_marker)
  1307. mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
  1308. else
  1309. mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
  1310. } else {
  1311. /* Don't count olds caused by ACK reordering */
  1312. if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
  1313. !after(sp[used_sacks].end_seq, tp->snd_una))
  1314. continue;
  1315. mib_idx = LINUX_MIB_TCPSACKDISCARD;
  1316. }
  1317. NET_INC_STATS_BH(sock_net(sk), mib_idx);
  1318. if (i == 0)
  1319. first_sack_index = -1;
  1320. continue;
  1321. }
  1322. /* Ignore very old stuff early */
  1323. if (!after(sp[used_sacks].end_seq, prior_snd_una))
  1324. continue;
  1325. used_sacks++;
  1326. }
  1327. /* order SACK blocks to allow in order walk of the retrans queue */
  1328. for (i = used_sacks - 1; i > 0; i--) {
  1329. for (j = 0; j < i; j++) {
  1330. if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
  1331. struct tcp_sack_block tmp;
  1332. tmp = sp[j];
  1333. sp[j] = sp[j + 1];
  1334. sp[j + 1] = tmp;
  1335. /* Track where the first SACK block goes to */
  1336. if (j == first_sack_index)
  1337. first_sack_index = j + 1;
  1338. }
  1339. }
  1340. }
  1341. skb = tcp_write_queue_head(sk);
  1342. fack_count = 0;
  1343. i = 0;
  1344. if (!tp->sacked_out) {
  1345. /* It's already past, so skip checking against it */
  1346. cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
  1347. } else {
  1348. cache = tp->recv_sack_cache;
  1349. /* Skip empty blocks in at head of the cache */
  1350. while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
  1351. !cache->end_seq)
  1352. cache++;
  1353. }
  1354. while (i < used_sacks) {
  1355. u32 start_seq = sp[i].start_seq;
  1356. u32 end_seq = sp[i].end_seq;
  1357. int dup_sack = (found_dup_sack && (i == first_sack_index));
  1358. struct tcp_sack_block *next_dup = NULL;
  1359. if (found_dup_sack && ((i + 1) == first_sack_index))
  1360. next_dup = &sp[i + 1];
  1361. /* Event "B" in the comment above. */
  1362. if (after(end_seq, tp->high_seq))
  1363. flag |= FLAG_DATA_LOST;
  1364. /* Skip too early cached blocks */
  1365. while (tcp_sack_cache_ok(tp, cache) &&
  1366. !before(start_seq, cache->end_seq))
  1367. cache++;
  1368. /* Can skip some work by looking recv_sack_cache? */
  1369. if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
  1370. after(end_seq, cache->start_seq)) {
  1371. /* Head todo? */
  1372. if (before(start_seq, cache->start_seq)) {
  1373. skb = tcp_sacktag_skip(skb, sk, start_seq,
  1374. &fack_count);
  1375. skb = tcp_sacktag_walk(skb, sk, next_dup,
  1376. start_seq,
  1377. cache->start_seq,
  1378. dup_sack, &fack_count,
  1379. &reord, &flag);
  1380. }
  1381. /* Rest of the block already fully processed? */
  1382. if (!after(end_seq, cache->end_seq))
  1383. goto advance_sp;
  1384. skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
  1385. cache->end_seq,
  1386. &fack_count, &reord,
  1387. &flag);
  1388. /* ...tail remains todo... */
  1389. if (tcp_highest_sack_seq(tp) == cache->end_seq) {
  1390. /* ...but better entrypoint exists! */
  1391. skb = tcp_highest_sack(sk);
  1392. if (skb == NULL)
  1393. break;
  1394. fack_count = tp->fackets_out;
  1395. cache++;
  1396. goto walk;
  1397. }
  1398. skb = tcp_sacktag_skip(skb, sk, cache->end_seq,
  1399. &fack_count);
  1400. /* Check overlap against next cached too (past this one already) */
  1401. cache++;
  1402. continue;
  1403. }
  1404. if (!before(start_seq, tcp_highest_sack_seq(tp))) {
  1405. skb = tcp_highest_sack(sk);
  1406. if (skb == NULL)
  1407. break;
  1408. fack_count = tp->fackets_out;
  1409. }
  1410. skb = tcp_sacktag_skip(skb, sk, start_seq, &fack_count);
  1411. walk:
  1412. skb = tcp_sacktag_walk(skb, sk, next_dup, start_seq, end_seq,
  1413. dup_sack, &fack_count, &reord, &flag);
  1414. advance_sp:
  1415. /* SACK enhanced FRTO (RFC4138, Appendix B): Clearing correct
  1416. * due to in-order walk
  1417. */
  1418. if (after(end_seq, tp->frto_highmark))
  1419. flag &= ~FLAG_ONLY_ORIG_SACKED;
  1420. i++;
  1421. }
  1422. /* Clear the head of the cache sack blocks so we can skip it next time */
  1423. for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
  1424. tp->recv_sack_cache[i].start_seq = 0;
  1425. tp->recv_sack_cache[i].end_seq = 0;
  1426. }
  1427. for (j = 0; j < used_sacks; j++)
  1428. tp->recv_sack_cache[i++] = sp[j];
  1429. tcp_mark_lost_retrans(sk);
  1430. tcp_verify_left_out(tp);
  1431. if ((reord < tp->fackets_out) &&
  1432. ((icsk->icsk_ca_state != TCP_CA_Loss) || tp->undo_marker) &&
  1433. (!tp->frto_highmark || after(tp->snd_una, tp->frto_highmark)))
  1434. tcp_update_reordering(sk, tp->fackets_out - reord, 0);
  1435. out:
  1436. #if FASTRETRANS_DEBUG > 0
  1437. WARN_ON((int)tp->sacked_out < 0);
  1438. WARN_ON((int)tp->lost_out < 0);
  1439. WARN_ON((int)tp->retrans_out < 0);
  1440. WARN_ON((int)tcp_packets_in_flight(tp) < 0);
  1441. #endif
  1442. return flag;
  1443. }
  1444. /* Limits sacked_out so that sum with lost_out isn't ever larger than
  1445. * packets_out. Returns zero if sacked_out adjustement wasn't necessary.
  1446. */
  1447. int tcp_limit_reno_sacked(struct tcp_sock *tp)
  1448. {
  1449. u32 holes;
  1450. holes = max(tp->lost_out, 1U);
  1451. holes = min(holes, tp->packets_out);
  1452. if ((tp->sacked_out + holes) > tp->packets_out) {
  1453. tp->sacked_out = tp->packets_out - holes;
  1454. return 1;
  1455. }
  1456. return 0;
  1457. }
  1458. /* If we receive more dupacks than we expected counting segments
  1459. * in assumption of absent reordering, interpret this as reordering.
  1460. * The only another reason could be bug in receiver TCP.
  1461. */
  1462. static void tcp_check_reno_reordering(struct sock *sk, const int addend)
  1463. {
  1464. struct tcp_sock *tp = tcp_sk(sk);
  1465. if (tcp_limit_reno_sacked(tp))
  1466. tcp_update_reordering(sk, tp->packets_out + addend, 0);
  1467. }
  1468. /* Emulate SACKs for SACKless connection: account for a new dupack. */
  1469. static void tcp_add_reno_sack(struct sock *sk)
  1470. {
  1471. struct tcp_sock *tp = tcp_sk(sk);
  1472. tp->sacked_out++;
  1473. tcp_check_reno_reordering(sk, 0);
  1474. tcp_verify_left_out(tp);
  1475. }
  1476. /* Account for ACK, ACKing some data in Reno Recovery phase. */
  1477. static void tcp_remove_reno_sacks(struct sock *sk, int acked)
  1478. {
  1479. struct tcp_sock *tp = tcp_sk(sk);
  1480. if (acked > 0) {
  1481. /* One ACK acked hole. The rest eat duplicate ACKs. */
  1482. if (acked - 1 >= tp->sacked_out)
  1483. tp->sacked_out = 0;
  1484. else
  1485. tp->sacked_out -= acked - 1;
  1486. }
  1487. tcp_check_reno_reordering(sk, acked);
  1488. tcp_verify_left_out(tp);
  1489. }
  1490. static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
  1491. {
  1492. tp->sacked_out = 0;
  1493. }
  1494. static int tcp_is_sackfrto(const struct tcp_sock *tp)
  1495. {
  1496. return (sysctl_tcp_frto == 0x2) && !tcp_is_reno(tp);
  1497. }
  1498. /* F-RTO can only be used if TCP has never retransmitted anything other than
  1499. * head (SACK enhanced variant from Appendix B of RFC4138 is more robust here)
  1500. */
  1501. int tcp_use_frto(struct sock *sk)
  1502. {
  1503. const struct tcp_sock *tp = tcp_sk(sk);
  1504. const struct inet_connection_sock *icsk = inet_csk(sk);
  1505. struct sk_buff *skb;
  1506. if (!sysctl_tcp_frto)
  1507. return 0;
  1508. /* MTU probe and F-RTO won't really play nicely along currently */
  1509. if (icsk->icsk_mtup.probe_size)
  1510. return 0;
  1511. if (tcp_is_sackfrto(tp))
  1512. return 1;
  1513. /* Avoid expensive walking of rexmit queue if possible */
  1514. if (tp->retrans_out > 1)
  1515. return 0;
  1516. skb = tcp_write_queue_head(sk);
  1517. if (tcp_skb_is_last(sk, skb))
  1518. return 1;
  1519. skb = tcp_write_queue_next(sk, skb); /* Skips head */
  1520. tcp_for_write_queue_from(skb, sk) {
  1521. if (skb == tcp_send_head(sk))
  1522. break;
  1523. if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
  1524. return 0;
  1525. /* Short-circuit when first non-SACKed skb has been checked */
  1526. if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
  1527. break;
  1528. }
  1529. return 1;
  1530. }
  1531. /* RTO occurred, but do not yet enter Loss state. Instead, defer RTO
  1532. * recovery a bit and use heuristics in tcp_process_frto() to detect if
  1533. * the RTO was spurious. Only clear SACKED_RETRANS of the head here to
  1534. * keep retrans_out counting accurate (with SACK F-RTO, other than head
  1535. * may still have that bit set); TCPCB_LOST and remaining SACKED_RETRANS
  1536. * bits are handled if the Loss state is really to be entered (in
  1537. * tcp_enter_frto_loss).
  1538. *
  1539. * Do like tcp_enter_loss() would; when RTO expires the second time it
  1540. * does:
  1541. * "Reduce ssthresh if it has not yet been made inside this window."
  1542. */
  1543. void tcp_enter_frto(struct sock *sk)
  1544. {
  1545. const struct inet_connection_sock *icsk = inet_csk(sk);
  1546. struct tcp_sock *tp = tcp_sk(sk);
  1547. struct sk_buff *skb;
  1548. if ((!tp->frto_counter && icsk->icsk_ca_state <= TCP_CA_Disorder) ||
  1549. tp->snd_una == tp->high_seq ||
  1550. ((icsk->icsk_ca_state == TCP_CA_Loss || tp->frto_counter) &&
  1551. !icsk->icsk_retransmits)) {
  1552. tp->prior_ssthresh = tcp_current_ssthresh(sk);
  1553. /* Our state is too optimistic in ssthresh() call because cwnd
  1554. * is not reduced until tcp_enter_frto_loss() when previous F-RTO
  1555. * recovery has not yet completed. Pattern would be this: RTO,
  1556. * Cumulative ACK, RTO (2xRTO for the same segment does not end
  1557. * up here twice).
  1558. * RFC4138 should be more specific on what to do, even though
  1559. * RTO is quite unlikely to occur after the first Cumulative ACK
  1560. * due to back-off and complexity of triggering events ...
  1561. */
  1562. if (tp->frto_counter) {
  1563. u32 stored_cwnd;
  1564. stored_cwnd = tp->snd_cwnd;
  1565. tp->snd_cwnd = 2;
  1566. tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
  1567. tp->snd_cwnd = stored_cwnd;
  1568. } else {
  1569. tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
  1570. }
  1571. /* ... in theory, cong.control module could do "any tricks" in
  1572. * ssthresh(), which means that ca_state, lost bits and lost_out
  1573. * counter would have to be faked before the call occurs. We
  1574. * consider that too expensive, unlikely and hacky, so modules
  1575. * using these in ssthresh() must deal these incompatibility
  1576. * issues if they receives CA_EVENT_FRTO and frto_counter != 0
  1577. */
  1578. tcp_ca_event(sk, CA_EVENT_FRTO);
  1579. }
  1580. tp->undo_marker = tp->snd_una;
  1581. tp->undo_retrans = 0;
  1582. skb = tcp_write_queue_head(sk);
  1583. if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
  1584. tp->undo_marker = 0;
  1585. if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
  1586. TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
  1587. tp->retrans_out -= tcp_skb_pcount(skb);
  1588. }
  1589. tcp_verify_left_out(tp);
  1590. /* Too bad if TCP was application limited */
  1591. tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1);
  1592. /* Earlier loss recovery underway (see RFC4138; Appendix B).
  1593. * The last condition is necessary at least in tp->frto_counter case.
  1594. */
  1595. if (tcp_is_sackfrto(tp) && (tp->frto_counter ||
  1596. ((1 << icsk->icsk_ca_state) & (TCPF_CA_Recovery|TCPF_CA_Loss))) &&
  1597. after(tp->high_seq, tp->snd_una)) {
  1598. tp->frto_highmark = tp->high_seq;
  1599. } else {
  1600. tp->frto_highmark = tp->snd_nxt;
  1601. }
  1602. tcp_set_ca_state(sk, TCP_CA_Disorder);
  1603. tp->high_seq = tp->snd_nxt;
  1604. tp->frto_counter = 1;
  1605. }
  1606. /* Enter Loss state after F-RTO was applied. Dupack arrived after RTO,
  1607. * which indicates that we should follow the traditional RTO recovery,
  1608. * i.e. mark everything lost and do go-back-N retransmission.
  1609. */
  1610. static void tcp_enter_frto_loss(struct sock *sk, int allowed_segments, int flag)
  1611. {
  1612. struct tcp_sock *tp = tcp_sk(sk);
  1613. struct sk_buff *skb;
  1614. tp->lost_out = 0;
  1615. tp->retrans_out = 0;
  1616. if (tcp_is_reno(tp))
  1617. tcp_reset_reno_sack(tp);
  1618. tcp_for_write_queue(skb, sk) {
  1619. if (skb == tcp_send_head(sk))
  1620. break;
  1621. TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
  1622. /*
  1623. * Count the retransmission made on RTO correctly (only when
  1624. * waiting for the first ACK and did not get it)...
  1625. */
  1626. if ((tp->frto_counter == 1) && !(flag & FLAG_DATA_ACKED)) {
  1627. /* For some reason this R-bit might get cleared? */
  1628. if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
  1629. tp->retrans_out += tcp_skb_pcount(skb);
  1630. /* ...enter this if branch just for the first segment */
  1631. flag |= FLAG_DATA_ACKED;
  1632. } else {
  1633. if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
  1634. tp->undo_marker = 0;
  1635. TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
  1636. }
  1637. /* Marking forward transmissions that were made after RTO lost
  1638. * can cause unnecessary retransmissions in some scenarios,
  1639. * SACK blocks will mitigate that in some but not in all cases.
  1640. * We used to not mark them but it was causing break-ups with
  1641. * receivers that do only in-order receival.
  1642. *
  1643. * TODO: we could detect presence of such receiver and select
  1644. * different behavior per flow.
  1645. */
  1646. if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
  1647. TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
  1648. tp->lost_out += tcp_skb_pcount(skb);
  1649. tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
  1650. }
  1651. }
  1652. tcp_verify_left_out(tp);
  1653. tp->snd_cwnd = tcp_packets_in_flight(tp) + allowed_segments;
  1654. tp->snd_cwnd_cnt = 0;
  1655. tp->snd_cwnd_stamp = tcp_time_stamp;
  1656. tp->frto_counter = 0;
  1657. tp->bytes_acked = 0;
  1658. tp->reordering = min_t(unsigned int, tp->reordering,
  1659. sysctl_tcp_reordering);
  1660. tcp_set_ca_state(sk, TCP_CA_Loss);
  1661. tp->high_seq = tp->snd_nxt;
  1662. TCP_ECN_queue_cwr(tp);
  1663. tcp_clear_all_retrans_hints(tp);
  1664. }
  1665. static void tcp_clear_retrans_partial(struct tcp_sock *tp)
  1666. {
  1667. tp->retrans_out = 0;
  1668. tp->lost_out = 0;
  1669. tp->undo_marker = 0;
  1670. tp->undo_retrans = 0;
  1671. }
  1672. void tcp_clear_retrans(struct tcp_sock *tp)
  1673. {
  1674. tcp_clear_retrans_partial(tp);
  1675. tp->fackets_out = 0;
  1676. tp->sacked_out = 0;
  1677. }
  1678. /* Enter Loss state. If "how" is not zero, forget all SACK information
  1679. * and reset tags completely, otherwise preserve SACKs. If receiver
  1680. * dropped its ofo queue, we will know this due to reneging detection.
  1681. */
  1682. void tcp_enter_loss(struct sock *sk, int how)
  1683. {
  1684. const struct inet_connection_sock *icsk = inet_csk(sk);
  1685. struct tcp_sock *tp = tcp_sk(sk);
  1686. struct sk_buff *skb;
  1687. /* Reduce ssthresh if it has not yet been made inside this window. */
  1688. if (icsk->icsk_ca_state <= TCP_CA_Disorder || tp->snd_una == tp->high_seq ||
  1689. (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
  1690. tp->prior_ssthresh = tcp_current_ssthresh(sk);
  1691. tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
  1692. tcp_ca_event(sk, CA_EVENT_LOSS);
  1693. }
  1694. tp->snd_cwnd = 1;
  1695. tp->snd_cwnd_cnt = 0;
  1696. tp->snd_cwnd_stamp = tcp_time_stamp;
  1697. tp->bytes_acked = 0;
  1698. tcp_clear_retrans_partial(tp);
  1699. if (tcp_is_reno(tp))
  1700. tcp_reset_reno_sack(tp);
  1701. if (!how) {
  1702. /* Push undo marker, if it was plain RTO and nothing
  1703. * was retransmitted. */
  1704. tp->undo_marker = tp->snd_una;
  1705. } else {
  1706. tp->sacked_out = 0;
  1707. tp->fackets_out = 0;
  1708. }
  1709. tcp_clear_all_retrans_hints(tp);
  1710. tcp_for_write_queue(skb, sk) {
  1711. if (skb == tcp_send_head(sk))
  1712. break;
  1713. if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
  1714. tp->undo_marker = 0;
  1715. TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
  1716. if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || how) {
  1717. TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
  1718. TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
  1719. tp->lost_out += tcp_skb_pcount(skb);
  1720. tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
  1721. }
  1722. }
  1723. tcp_verify_left_out(tp);
  1724. tp->reordering = min_t(unsigned int, tp->reordering,
  1725. sysctl_tcp_reordering);
  1726. tcp_set_ca_state(sk, TCP_CA_Loss);
  1727. tp->high_seq = tp->snd_nxt;
  1728. TCP_ECN_queue_cwr(tp);
  1729. /* Abort F-RTO algorithm if one is in progress */
  1730. tp->frto_counter = 0;
  1731. }
  1732. /* If ACK arrived pointing to a remembered SACK, it means that our
  1733. * remembered SACKs do not reflect real state of receiver i.e.
  1734. * receiver _host_ is heavily congested (or buggy).
  1735. *
  1736. * Do processing similar to RTO timeout.
  1737. */
  1738. static int tcp_check_sack_reneging(struct sock *sk, int flag)
  1739. {
  1740. if (flag & FLAG_SACK_RENEGING) {
  1741. struct inet_connection_sock *icsk = inet_csk(sk);
  1742. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
  1743. tcp_enter_loss(sk, 1);
  1744. icsk->icsk_retransmits++;
  1745. tcp_retransmit_skb(sk, tcp_write_queue_head(sk));
  1746. inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
  1747. icsk->icsk_rto, TCP_RTO_MAX);
  1748. return 1;
  1749. }
  1750. return 0;
  1751. }
  1752. static inline int tcp_fackets_out(struct tcp_sock *tp)
  1753. {
  1754. return tcp_is_reno(tp) ? tp->sacked_out + 1 : tp->fackets_out;
  1755. }
  1756. /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
  1757. * counter when SACK is enabled (without SACK, sacked_out is used for
  1758. * that purpose).
  1759. *
  1760. * Instead, with FACK TCP uses fackets_out that includes both SACKed
  1761. * segments up to the highest received SACK block so far and holes in
  1762. * between them.
  1763. *
  1764. * With reordering, holes may still be in flight, so RFC3517 recovery
  1765. * uses pure sacked_out (total number of SACKed segments) even though
  1766. * it violates the RFC that uses duplicate ACKs, often these are equal
  1767. * but when e.g. out-of-window ACKs or packet duplication occurs,
  1768. * they differ. Since neither occurs due to loss, TCP should really
  1769. * ignore them.
  1770. */
  1771. static inline int tcp_dupack_heurestics(struct tcp_sock *tp)
  1772. {
  1773. return tcp_is_fack(tp) ? tp->fackets_out : tp->sacked_out + 1;
  1774. }
  1775. static inline int tcp_skb_timedout(struct sock *sk, struct sk_buff *skb)
  1776. {
  1777. return (tcp_time_stamp - TCP_SKB_CB(skb)->when > inet_csk(sk)->icsk_rto);
  1778. }
  1779. static inline int tcp_head_timedout(struct sock *sk)
  1780. {
  1781. struct tcp_sock *tp = tcp_sk(sk);
  1782. return tp->packets_out &&
  1783. tcp_skb_timedout(sk, tcp_write_queue_head(sk));
  1784. }
  1785. /* Linux NewReno/SACK/FACK/ECN state machine.
  1786. * --------------------------------------
  1787. *
  1788. * "Open" Normal state, no dubious events, fast path.
  1789. * "Disorder" In all the respects it is "Open",
  1790. * but requires a bit more attention. It is entered when
  1791. * we see some SACKs or dupacks. It is split of "Open"
  1792. * mainly to move some processing from fast path to slow one.
  1793. * "CWR" CWND was reduced due to some Congestion Notification event.
  1794. * It can be ECN, ICMP source quench, local device congestion.
  1795. * "Recovery" CWND was reduced, we are fast-retransmitting.
  1796. * "Loss" CWND was reduced due to RTO timeout or SACK reneging.
  1797. *
  1798. * tcp_fastretrans_alert() is entered:
  1799. * - each incoming ACK, if state is not "Open"
  1800. * - when arrived ACK is unusual, namely:
  1801. * * SACK
  1802. * * Duplicate ACK.
  1803. * * ECN ECE.
  1804. *
  1805. * Counting packets in flight is pretty simple.
  1806. *
  1807. * in_flight = packets_out - left_out + retrans_out
  1808. *
  1809. * packets_out is SND.NXT-SND.UNA counted in packets.
  1810. *
  1811. * retrans_out is number of retransmitted segments.
  1812. *
  1813. * left_out is number of segments left network, but not ACKed yet.
  1814. *
  1815. * left_out = sacked_out + lost_out
  1816. *
  1817. * sacked_out: Packets, which arrived to receiver out of order
  1818. * and hence not ACKed. With SACKs this number is simply
  1819. * amount of SACKed data. Even without SACKs
  1820. * it is easy to give pretty reliable estimate of this number,
  1821. * counting duplicate ACKs.
  1822. *
  1823. * lost_out: Packets lost by network. TCP has no explicit
  1824. * "loss notification" feedback from network (for now).
  1825. * It means that this number can be only _guessed_.
  1826. * Actually, it is the heuristics to predict lossage that
  1827. * distinguishes different algorithms.
  1828. *
  1829. * F.e. after RTO, when all the queue is considered as lost,
  1830. * lost_out = packets_out and in_flight = retrans_out.
  1831. *
  1832. * Essentially, we have now two algorithms counting
  1833. * lost packets.
  1834. *
  1835. * FACK: It is the simplest heuristics. As soon as we decided
  1836. * that something is lost, we decide that _all_ not SACKed
  1837. * packets until the most forward SACK are lost. I.e.
  1838. * lost_out = fackets_out - sacked_out and left_out = fackets_out.
  1839. * It is absolutely correct estimate, if network does not reorder
  1840. * packets. And it loses any connection to reality when reordering
  1841. * takes place. We use FACK by default until reordering
  1842. * is suspected on the path to this destination.
  1843. *
  1844. * NewReno: when Recovery is entered, we assume that one segment
  1845. * is lost (classic Reno). While we are in Recovery and
  1846. * a partial ACK arrives, we assume that one more packet
  1847. * is lost (NewReno). This heuristics are the same in NewReno
  1848. * and SACK.
  1849. *
  1850. * Imagine, that's all! Forget about all this shamanism about CWND inflation
  1851. * deflation etc. CWND is real congestion window, never inflated, changes
  1852. * only according to classic VJ rules.
  1853. *
  1854. * Really tricky (and requiring careful tuning) part of algorithm
  1855. * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
  1856. * The first determines the moment _when_ we should reduce CWND and,
  1857. * hence, slow down forward transmission. In fact, it determines the moment
  1858. * when we decide that hole is caused by loss, rather than by a reorder.
  1859. *
  1860. * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
  1861. * holes, caused by lost packets.
  1862. *
  1863. * And the most logically complicated part of algorithm is undo
  1864. * heuristics. We detect false retransmits due to both too early
  1865. * fast retransmit (reordering) and underestimated RTO, analyzing
  1866. * timestamps and D-SACKs. When we detect that some segments were
  1867. * retransmitted by mistake and CWND reduction was wrong, we undo
  1868. * window reduction and abort recovery phase. This logic is hidden
  1869. * inside several functions named tcp_try_undo_<something>.
  1870. */
  1871. /* This function decides, when we should leave Disordered state
  1872. * and enter Recovery phase, reducing congestion window.
  1873. *
  1874. * Main question: may we further continue forward transmission
  1875. * with the same cwnd?
  1876. */
  1877. static int tcp_time_to_recover(struct sock *sk)
  1878. {
  1879. struct tcp_sock *tp = tcp_sk(sk);
  1880. __u32 packets_out;
  1881. /* Do not perform any recovery during F-RTO algorithm */
  1882. if (tp->frto_counter)
  1883. return 0;
  1884. /* Trick#1: The loss is proven. */
  1885. if (tp->lost_out)
  1886. return 1;
  1887. /* Not-A-Trick#2 : Classic rule... */
  1888. if (tcp_dupack_heurestics(tp) > tp->reordering)
  1889. return 1;
  1890. /* Trick#3 : when we use RFC2988 timer restart, fast
  1891. * retransmit can be triggered by timeout of queue head.
  1892. */
  1893. if (tcp_is_fack(tp) && tcp_head_timedout(sk))
  1894. return 1;
  1895. /* Trick#4: It is still not OK... But will it be useful to delay
  1896. * recovery more?
  1897. */
  1898. packets_out = tp->packets_out;
  1899. if (packets_out <= tp->reordering &&
  1900. tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) &&
  1901. !tcp_may_send_now(sk)) {
  1902. /* We have nothing to send. This connection is limited
  1903. * either by receiver window or by application.
  1904. */
  1905. return 1;
  1906. }
  1907. return 0;
  1908. }
  1909. /* Mark head of queue up as lost. With RFC3517 SACK, the packets is
  1910. * is against sacked "cnt", otherwise it's against facked "cnt"
  1911. */
  1912. static void tcp_mark_head_lost(struct sock *sk, int packets)
  1913. {
  1914. struct tcp_sock *tp = tcp_sk(sk);
  1915. struct sk_buff *skb;
  1916. int cnt, oldcnt;
  1917. int err;
  1918. unsigned int mss;
  1919. WARN_ON(packets > tp->packets_out);
  1920. if (tp->lost_skb_hint) {
  1921. skb = tp->lost_skb_hint;
  1922. cnt = tp->lost_cnt_hint;
  1923. } else {
  1924. skb = tcp_write_queue_head(sk);
  1925. cnt = 0;
  1926. }
  1927. tcp_for_write_queue_from(skb, sk) {
  1928. if (skb == tcp_send_head(sk))
  1929. break;
  1930. /* TODO: do this better */
  1931. /* this is not the most efficient way to do this... */
  1932. tp->lost_skb_hint = skb;
  1933. tp->lost_cnt_hint = cnt;
  1934. if (after(TCP_SKB_CB(skb)->end_seq, tp->high_seq))
  1935. break;
  1936. oldcnt = cnt;
  1937. if (tcp_is_fack(tp) || tcp_is_reno(tp) ||
  1938. (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
  1939. cnt += tcp_skb_pcount(skb);
  1940. if (cnt > packets) {
  1941. if (tcp_is_sack(tp) || (oldcnt >= packets))
  1942. break;
  1943. mss = skb_shinfo(skb)->gso_size;
  1944. err = tcp_fragment(sk, skb, (packets - oldcnt) * mss, mss);
  1945. if (err < 0)
  1946. break;
  1947. cnt = packets;
  1948. }
  1949. tcp_skb_mark_lost(tp, skb);
  1950. }
  1951. tcp_verify_left_out(tp);
  1952. }
  1953. /* Account newly detected lost packet(s) */
  1954. static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
  1955. {
  1956. struct tcp_sock *tp = tcp_sk(sk);
  1957. if (tcp_is_reno(tp)) {
  1958. tcp_mark_head_lost(sk, 1);
  1959. } else if (tcp_is_fack(tp)) {
  1960. int lost = tp->fackets_out - tp->reordering;
  1961. if (lost <= 0)
  1962. lost = 1;
  1963. tcp_mark_head_lost(sk, lost);
  1964. } else {
  1965. int sacked_upto = tp->sacked_out - tp->reordering;
  1966. if (sacked_upto < fast_rexmit)
  1967. sacked_upto = fast_rexmit;
  1968. tcp_mark_head_lost(sk, sacked_upto);
  1969. }
  1970. /* New heuristics: it is possible only after we switched
  1971. * to restart timer each time when something is ACKed.
  1972. * Hence, we can detect timed out packets during fast
  1973. * retransmit without falling to slow start.
  1974. */
  1975. if (tcp_is_fack(tp) && tcp_head_timedout(sk)) {
  1976. struct sk_buff *skb;
  1977. skb = tp->scoreboard_skb_hint ? tp->scoreboard_skb_hint
  1978. : tcp_write_queue_head(sk);
  1979. tcp_for_write_queue_from(skb, sk) {
  1980. if (skb == tcp_send_head(sk))
  1981. break;
  1982. if (!tcp_skb_timedout(sk, skb))
  1983. break;
  1984. tcp_skb_mark_lost(tp, skb);
  1985. }
  1986. tp->scoreboard_skb_hint = skb;
  1987. tcp_verify_left_out(tp);
  1988. }
  1989. }
  1990. /* CWND moderation, preventing bursts due to too big ACKs
  1991. * in dubious situations.
  1992. */
  1993. static inline void tcp_moderate_cwnd(struct tcp_sock *tp)
  1994. {
  1995. tp->snd_cwnd = min(tp->snd_cwnd,
  1996. tcp_packets_in_flight(tp) + tcp_max_burst(tp));
  1997. tp->snd_cwnd_stamp = tcp_time_stamp;
  1998. }
  1999. /* Lower bound on congestion window is slow start threshold
  2000. * unless congestion avoidance choice decides to overide it.
  2001. */
  2002. static inline u32 tcp_cwnd_min(const struct sock *sk)
  2003. {
  2004. const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
  2005. return ca_ops->min_cwnd ? ca_ops->min_cwnd(sk) : tcp_sk(sk)->snd_ssthresh;
  2006. }
  2007. /* Decrease cwnd each second ack. */
  2008. static void tcp_cwnd_down(struct sock *sk, int flag)
  2009. {
  2010. struct tcp_sock *tp = tcp_sk(sk);
  2011. int decr = tp->snd_cwnd_cnt + 1;
  2012. if ((flag & (FLAG_ANY_PROGRESS | FLAG_DSACKING_ACK)) ||
  2013. (tcp_is_reno(tp) && !(flag & FLAG_NOT_DUP))) {
  2014. tp->snd_cwnd_cnt = decr & 1;
  2015. decr >>= 1;
  2016. if (decr && tp->snd_cwnd > tcp_cwnd_min(sk))
  2017. tp->snd_cwnd -= decr;
  2018. tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1);
  2019. tp->snd_cwnd_stamp = tcp_time_stamp;
  2020. }
  2021. }
  2022. /* Nothing was retransmitted or returned timestamp is less
  2023. * than timestamp of the first retransmission.
  2024. */
  2025. static inline int tcp_packet_delayed(struct tcp_sock *tp)
  2026. {
  2027. return !tp->retrans_stamp ||
  2028. (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
  2029. before(tp->rx_opt.rcv_tsecr, tp->retrans_stamp));
  2030. }
  2031. /* Undo procedures. */
  2032. #if FASTRETRANS_DEBUG > 1
  2033. static void DBGUNDO(struct sock *sk, const char *msg)
  2034. {
  2035. struct tcp_sock *tp = tcp_sk(sk);
  2036. struct inet_sock *inet = inet_sk(sk);
  2037. if (sk->sk_family == AF_INET) {
  2038. printk(KERN_DEBUG "Undo %s " NIPQUAD_FMT "/%u c%u l%u ss%u/%u p%u\n",
  2039. msg,
  2040. NIPQUAD(inet->daddr), ntohs(inet->dport),
  2041. tp->snd_cwnd, tcp_left_out(tp),
  2042. tp->snd_ssthresh, tp->prior_ssthresh,
  2043. tp->packets_out);
  2044. }
  2045. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  2046. else if (sk->sk_family == AF_INET6) {
  2047. struct ipv6_pinfo *np = inet6_sk(sk);
  2048. printk(KERN_DEBUG "Undo %s " NIP6_FMT "/%u c%u l%u ss%u/%u p%u\n",
  2049. msg,
  2050. NIP6(np->daddr), ntohs(inet->dport),
  2051. tp->snd_cwnd, tcp_left_out(tp),
  2052. tp->snd_ssthresh, tp->prior_ssthresh,
  2053. tp->packets_out);
  2054. }
  2055. #endif
  2056. }
  2057. #else
  2058. #define DBGUNDO(x...) do { } while (0)
  2059. #endif
  2060. static void tcp_undo_cwr(struct sock *sk, const int undo)
  2061. {
  2062. struct tcp_sock *tp = tcp_sk(sk);
  2063. if (tp->prior_ssthresh) {
  2064. const struct inet_connection_sock *icsk = inet_csk(sk);
  2065. if (icsk->icsk_ca_ops->undo_cwnd)
  2066. tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
  2067. else
  2068. tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh << 1);
  2069. if (undo && tp->prior_ssthresh > tp->snd_ssthresh) {
  2070. tp->snd_ssthresh = tp->prior_ssthresh;
  2071. TCP_ECN_withdraw_cwr(tp);
  2072. }
  2073. } else {
  2074. tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh);
  2075. }
  2076. tcp_moderate_cwnd(tp);
  2077. tp->snd_cwnd_stamp = tcp_time_stamp;
  2078. }
  2079. static inline int tcp_may_undo(struct tcp_sock *tp)
  2080. {
  2081. return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
  2082. }
  2083. /* People celebrate: "We love our President!" */
  2084. static int tcp_try_undo_recovery(struct sock *sk)
  2085. {
  2086. struct tcp_sock *tp = tcp_sk(sk);
  2087. if (tcp_may_undo(tp)) {
  2088. int mib_idx;
  2089. /* Happy end! We did not retransmit anything
  2090. * or our original transmission succeeded.
  2091. */
  2092. DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
  2093. tcp_undo_cwr(sk, 1);
  2094. if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
  2095. mib_idx = LINUX_MIB_TCPLOSSUNDO;
  2096. else
  2097. mib_idx = LINUX_MIB_TCPFULLUNDO;
  2098. NET_INC_STATS_BH(sock_net(sk), mib_idx);
  2099. tp->undo_marker = 0;
  2100. }
  2101. if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
  2102. /* Hold old state until something *above* high_seq
  2103. * is ACKed. For Reno it is MUST to prevent false
  2104. * fast retransmits (RFC2582). SACK TCP is safe. */
  2105. tcp_moderate_cwnd(tp);
  2106. return 1;
  2107. }
  2108. tcp_set_ca_state(sk, TCP_CA_Open);
  2109. return 0;
  2110. }
  2111. /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
  2112. static void tcp_try_undo_dsack(struct sock *sk)
  2113. {
  2114. struct tcp_sock *tp = tcp_sk(sk);
  2115. if (tp->undo_marker && !tp->undo_retrans) {
  2116. DBGUNDO(sk, "D-SACK");
  2117. tcp_undo_cwr(sk, 1);
  2118. tp->undo_marker = 0;
  2119. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
  2120. }
  2121. }
  2122. /* Undo during fast recovery after partial ACK. */
  2123. static int tcp_try_undo_partial(struct sock *sk, int acked)
  2124. {
  2125. struct tcp_sock *tp = tcp_sk(sk);
  2126. /* Partial ACK arrived. Force Hoe's retransmit. */
  2127. int failed = tcp_is_reno(tp) || (tcp_fackets_out(tp) > tp->reordering);
  2128. if (tcp_may_undo(tp)) {
  2129. /* Plain luck! Hole if filled with delayed
  2130. * packet, rather than with a retransmit.
  2131. */
  2132. if (tp->retrans_out == 0)
  2133. tp->retrans_stamp = 0;
  2134. tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
  2135. DBGUNDO(sk, "Hoe");
  2136. tcp_undo_cwr(sk, 0);
  2137. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
  2138. /* So... Do not make Hoe's retransmit yet.
  2139. * If the first packet was delayed, the rest
  2140. * ones are most probably delayed as well.
  2141. */
  2142. failed = 0;
  2143. }
  2144. return failed;
  2145. }
  2146. /* Undo during loss recovery after partial ACK. */
  2147. static int tcp_try_undo_loss(struct sock *sk)
  2148. {
  2149. struct tcp_sock *tp = tcp_sk(sk);
  2150. if (tcp_may_undo(tp)) {
  2151. struct sk_buff *skb;
  2152. tcp_for_write_queue(skb, sk) {
  2153. if (skb == tcp_send_head(sk))
  2154. break;
  2155. TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
  2156. }
  2157. tcp_clear_all_retrans_hints(tp);
  2158. DBGUNDO(sk, "partial loss");
  2159. tp->lost_out = 0;
  2160. tcp_undo_cwr(sk, 1);
  2161. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
  2162. inet_csk(sk)->icsk_retransmits = 0;
  2163. tp->undo_marker = 0;
  2164. if (tcp_is_sack(tp))
  2165. tcp_set_ca_state(sk, TCP_CA_Open);
  2166. return 1;
  2167. }
  2168. return 0;
  2169. }
  2170. static inline void tcp_complete_cwr(struct sock *sk)
  2171. {
  2172. struct tcp_sock *tp = tcp_sk(sk);
  2173. tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
  2174. tp->snd_cwnd_stamp = tcp_time_stamp;
  2175. tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
  2176. }
  2177. static void tcp_try_keep_open(struct sock *sk)
  2178. {
  2179. struct tcp_sock *tp = tcp_sk(sk);
  2180. int state = TCP_CA_Open;
  2181. if (tcp_left_out(tp) || tp->retrans_out || tp->undo_marker)
  2182. state = TCP_CA_Disorder;
  2183. if (inet_csk(sk)->icsk_ca_state != state) {
  2184. tcp_set_ca_state(sk, state);
  2185. tp->high_seq = tp->snd_nxt;
  2186. }
  2187. }
  2188. static void tcp_try_to_open(struct sock *sk, int flag)
  2189. {
  2190. struct tcp_sock *tp = tcp_sk(sk);
  2191. tcp_verify_left_out(tp);
  2192. if (!tp->frto_counter && tp->retrans_out == 0)
  2193. tp->retrans_stamp = 0;
  2194. if (flag & FLAG_ECE)
  2195. tcp_enter_cwr(sk, 1);
  2196. if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
  2197. tcp_try_keep_open(sk);
  2198. tcp_moderate_cwnd(tp);
  2199. } else {
  2200. tcp_cwnd_down(sk, flag);
  2201. }
  2202. }
  2203. static void tcp_mtup_probe_failed(struct sock *sk)
  2204. {
  2205. struct inet_connection_sock *icsk = inet_csk(sk);
  2206. icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
  2207. icsk->icsk_mtup.probe_size = 0;
  2208. }
  2209. static void tcp_mtup_probe_success(struct sock *sk, struct sk_buff *skb)
  2210. {
  2211. struct tcp_sock *tp = tcp_sk(sk);
  2212. struct inet_connection_sock *icsk = inet_csk(sk);
  2213. /* FIXME: breaks with very large cwnd */
  2214. tp->prior_ssthresh = tcp_current_ssthresh(sk);
  2215. tp->snd_cwnd = tp->snd_cwnd *
  2216. tcp_mss_to_mtu(sk, tp->mss_cache) /
  2217. icsk->icsk_mtup.probe_size;
  2218. tp->snd_cwnd_cnt = 0;
  2219. tp->snd_cwnd_stamp = tcp_time_stamp;
  2220. tp->rcv_ssthresh = tcp_current_ssthresh(sk);
  2221. icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
  2222. icsk->icsk_mtup.probe_size = 0;
  2223. tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
  2224. }
  2225. /* Process an event, which can update packets-in-flight not trivially.
  2226. * Main goal of this function is to calculate new estimate for left_out,
  2227. * taking into account both packets sitting in receiver's buffer and
  2228. * packets lost by network.
  2229. *
  2230. * Besides that it does CWND reduction, when packet loss is detected
  2231. * and changes state of machine.
  2232. *
  2233. * It does _not_ decide what to send, it is made in function
  2234. * tcp_xmit_retransmit_queue().
  2235. */
  2236. static void tcp_fastretrans_alert(struct sock *sk, int pkts_acked, int flag)
  2237. {
  2238. struct inet_connection_sock *icsk = inet_csk(sk);
  2239. struct tcp_sock *tp = tcp_sk(sk);
  2240. int is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP));
  2241. int do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) &&
  2242. (tcp_fackets_out(tp) > tp->reordering));
  2243. int fast_rexmit = 0, mib_idx;
  2244. if (WARN_ON(!tp->packets_out && tp->sacked_out))
  2245. tp->sacked_out = 0;
  2246. if (WARN_ON(!tp->sacked_out && tp->fackets_out))
  2247. tp->fackets_out = 0;
  2248. /* Now state machine starts.
  2249. * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
  2250. if (flag & FLAG_ECE)
  2251. tp->prior_ssthresh = 0;
  2252. /* B. In all the states check for reneging SACKs. */
  2253. if (tcp_check_sack_reneging(sk, flag))
  2254. return;
  2255. /* C. Process data loss notification, provided it is valid. */
  2256. if (tcp_is_fack(tp) && (flag & FLAG_DATA_LOST) &&
  2257. before(tp->snd_una, tp->high_seq) &&
  2258. icsk->icsk_ca_state != TCP_CA_Open &&
  2259. tp->fackets_out > tp->reordering) {
  2260. tcp_mark_head_lost(sk, tp->fackets_out - tp->reordering);
  2261. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSS);
  2262. }
  2263. /* D. Check consistency of the current state. */
  2264. tcp_verify_left_out(tp);
  2265. /* E. Check state exit conditions. State can be terminated
  2266. * when high_seq is ACKed. */
  2267. if (icsk->icsk_ca_state == TCP_CA_Open) {
  2268. WARN_ON(tp->retrans_out != 0);
  2269. tp->retrans_stamp = 0;
  2270. } else if (!before(tp->snd_una, tp->high_seq)) {
  2271. switch (icsk->icsk_ca_state) {
  2272. case TCP_CA_Loss:
  2273. icsk->icsk_retransmits = 0;
  2274. if (tcp_try_undo_recovery(sk))
  2275. return;
  2276. break;
  2277. case TCP_CA_CWR:
  2278. /* CWR is to be held something *above* high_seq
  2279. * is ACKed for CWR bit to reach receiver. */
  2280. if (tp->snd_una != tp->high_seq) {
  2281. tcp_complete_cwr(sk);
  2282. tcp_set_ca_state(sk, TCP_CA_Open);
  2283. }
  2284. break;
  2285. case TCP_CA_Disorder:
  2286. tcp_try_undo_dsack(sk);
  2287. if (!tp->undo_marker ||
  2288. /* For SACK case do not Open to allow to undo
  2289. * catching for all duplicate ACKs. */
  2290. tcp_is_reno(tp) || tp->snd_una != tp->high_seq) {
  2291. tp->undo_marker = 0;
  2292. tcp_set_ca_state(sk, TCP_CA_Open);
  2293. }
  2294. break;
  2295. case TCP_CA_Recovery:
  2296. if (tcp_is_reno(tp))
  2297. tcp_reset_reno_sack(tp);
  2298. if (tcp_try_undo_recovery(sk))
  2299. return;
  2300. tcp_complete_cwr(sk);
  2301. break;
  2302. }
  2303. }
  2304. /* F. Process state. */
  2305. switch (icsk->icsk_ca_state) {
  2306. case TCP_CA_Recovery:
  2307. if (!(flag & FLAG_SND_UNA_ADVANCED)) {
  2308. if (tcp_is_reno(tp) && is_dupack)
  2309. tcp_add_reno_sack(sk);
  2310. } else
  2311. do_lost = tcp_try_undo_partial(sk, pkts_acked);
  2312. break;
  2313. case TCP_CA_Loss:
  2314. if (flag & FLAG_DATA_ACKED)
  2315. icsk->icsk_retransmits = 0;
  2316. if (tcp_is_reno(tp) && flag & FLAG_SND_UNA_ADVANCED)
  2317. tcp_reset_reno_sack(tp);
  2318. if (!tcp_try_undo_loss(sk)) {
  2319. tcp_moderate_cwnd(tp);
  2320. tcp_xmit_retransmit_queue(sk);
  2321. return;
  2322. }
  2323. if (icsk->icsk_ca_state != TCP_CA_Open)
  2324. return;
  2325. /* Loss is undone; fall through to processing in Open state. */
  2326. default:
  2327. if (tcp_is_reno(tp)) {
  2328. if (flag & FLAG_SND_UNA_ADVANCED)
  2329. tcp_reset_reno_sack(tp);
  2330. if (is_dupack)
  2331. tcp_add_reno_sack(sk);
  2332. }
  2333. if (icsk->icsk_ca_state == TCP_CA_Disorder)
  2334. tcp_try_undo_dsack(sk);
  2335. if (!tcp_time_to_recover(sk)) {
  2336. tcp_try_to_open(sk, flag);
  2337. return;
  2338. }
  2339. /* MTU probe failure: don't reduce cwnd */
  2340. if (icsk->icsk_ca_state < TCP_CA_CWR &&
  2341. icsk->icsk_mtup.probe_size &&
  2342. tp->snd_una == tp->mtu_probe.probe_seq_start) {
  2343. tcp_mtup_probe_failed(sk);
  2344. /* Restores the reduction we did in tcp_mtup_probe() */
  2345. tp->snd_cwnd++;
  2346. tcp_simple_retransmit(sk);
  2347. return;
  2348. }
  2349. /* Otherwise enter Recovery state */
  2350. if (tcp_is_reno(tp))
  2351. mib_idx = LINUX_MIB_TCPRENORECOVERY;
  2352. else
  2353. mib_idx = LINUX_MIB_TCPSACKRECOVERY;
  2354. NET_INC_STATS_BH(sock_net(sk), mib_idx);
  2355. tp->high_seq = tp->snd_nxt;
  2356. tp->prior_ssthresh = 0;
  2357. tp->undo_marker = tp->snd_una;
  2358. tp->undo_retrans = tp->retrans_out;
  2359. if (icsk->icsk_ca_state < TCP_CA_CWR) {
  2360. if (!(flag & FLAG_ECE))
  2361. tp->prior_ssthresh = tcp_current_ssthresh(sk);
  2362. tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
  2363. TCP_ECN_queue_cwr(tp);
  2364. }
  2365. tp->bytes_acked = 0;
  2366. tp->snd_cwnd_cnt = 0;
  2367. tcp_set_ca_state(sk, TCP_CA_Recovery);
  2368. fast_rexmit = 1;
  2369. }
  2370. if (do_lost || (tcp_is_fack(tp) && tcp_head_timedout(sk)))
  2371. tcp_update_scoreboard(sk, fast_rexmit);
  2372. tcp_cwnd_down(sk, flag);
  2373. tcp_xmit_retransmit_queue(sk);
  2374. }
  2375. /* Read draft-ietf-tcplw-high-performance before mucking
  2376. * with this code. (Supersedes RFC1323)
  2377. */
  2378. static void tcp_ack_saw_tstamp(struct sock *sk, int flag)
  2379. {
  2380. /* RTTM Rule: A TSecr value received in a segment is used to
  2381. * update the averaged RTT measurement only if the segment
  2382. * acknowledges some new data, i.e., only if it advances the
  2383. * left edge of the send window.
  2384. *
  2385. * See draft-ietf-tcplw-high-performance-00, section 3.3.
  2386. * 1998/04/10 Andrey V. Savochkin <saw@msu.ru>
  2387. *
  2388. * Changed: reset backoff as soon as we see the first valid sample.
  2389. * If we do not, we get strongly overestimated rto. With timestamps
  2390. * samples are accepted even from very old segments: f.e., when rtt=1
  2391. * increases to 8, we retransmit 5 times and after 8 seconds delayed
  2392. * answer arrives rto becomes 120 seconds! If at least one of segments
  2393. * in window is lost... Voila. --ANK (010210)
  2394. */
  2395. struct tcp_sock *tp = tcp_sk(sk);
  2396. const __u32 seq_rtt = tcp_time_stamp - tp->rx_opt.rcv_tsecr;
  2397. tcp_rtt_estimator(sk, seq_rtt);
  2398. tcp_set_rto(sk);
  2399. inet_csk(sk)->icsk_backoff = 0;
  2400. tcp_bound_rto(sk);
  2401. }
  2402. static void tcp_ack_no_tstamp(struct sock *sk, u32 seq_rtt, int flag)
  2403. {
  2404. /* We don't have a timestamp. Can only use
  2405. * packets that are not retransmitted to determine
  2406. * rtt estimates. Also, we must not reset the
  2407. * backoff for rto until we get a non-retransmitted
  2408. * packet. This allows us to deal with a situation
  2409. * where the network delay has increased suddenly.
  2410. * I.e. Karn's algorithm. (SIGCOMM '87, p5.)
  2411. */
  2412. if (flag & FLAG_RETRANS_DATA_ACKED)
  2413. return;
  2414. tcp_rtt_estimator(sk, seq_rtt);
  2415. tcp_set_rto(sk);
  2416. inet_csk(sk)->icsk_backoff = 0;
  2417. tcp_bound_rto(sk);
  2418. }
  2419. static inline void tcp_ack_update_rtt(struct sock *sk, const int flag,
  2420. const s32 seq_rtt)
  2421. {
  2422. const struct tcp_sock *tp = tcp_sk(sk);
  2423. /* Note that peer MAY send zero echo. In this case it is ignored. (rfc1323) */
  2424. if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
  2425. tcp_ack_saw_tstamp(sk, flag);
  2426. else if (seq_rtt >= 0)
  2427. tcp_ack_no_tstamp(sk, seq_rtt, flag);
  2428. }
  2429. static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 in_flight)
  2430. {
  2431. const struct inet_connection_sock *icsk = inet_csk(sk);
  2432. icsk->icsk_ca_ops->cong_avoid(sk, ack, in_flight);
  2433. tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp;
  2434. }
  2435. /* Restart timer after forward progress on connection.
  2436. * RFC2988 recommends to restart timer to now+rto.
  2437. */
  2438. static void tcp_rearm_rto(struct sock *sk)
  2439. {
  2440. struct tcp_sock *tp = tcp_sk(sk);
  2441. if (!tp->packets_out) {
  2442. inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
  2443. } else {
  2444. inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
  2445. inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
  2446. }
  2447. }
  2448. /* If we get here, the whole TSO packet has not been acked. */
  2449. static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
  2450. {
  2451. struct tcp_sock *tp = tcp_sk(sk);
  2452. u32 packets_acked;
  2453. BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
  2454. packets_acked = tcp_skb_pcount(skb);
  2455. if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
  2456. return 0;
  2457. packets_acked -= tcp_skb_pcount(skb);
  2458. if (packets_acked) {
  2459. BUG_ON(tcp_skb_pcount(skb) == 0);
  2460. BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
  2461. }
  2462. return packets_acked;
  2463. }
  2464. /* Remove acknowledged frames from the retransmission queue. If our packet
  2465. * is before the ack sequence we can discard it as it's confirmed to have
  2466. * arrived at the other end.
  2467. */
  2468. static int tcp_clean_rtx_queue(struct sock *sk, int prior_fackets)
  2469. {
  2470. struct tcp_sock *tp = tcp_sk(sk);
  2471. const struct inet_connection_sock *icsk = inet_csk(sk);
  2472. struct sk_buff *skb;
  2473. u32 now = tcp_time_stamp;
  2474. int fully_acked = 1;
  2475. int flag = 0;
  2476. u32 pkts_acked = 0;
  2477. u32 reord = tp->packets_out;
  2478. u32 prior_sacked = tp->sacked_out;
  2479. s32 seq_rtt = -1;
  2480. s32 ca_seq_rtt = -1;
  2481. ktime_t last_ackt = net_invalid_timestamp();
  2482. while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) {
  2483. struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
  2484. u32 end_seq;
  2485. u32 acked_pcount;
  2486. u8 sacked = scb->sacked;
  2487. /* Determine how many packets and what bytes were acked, tso and else */
  2488. if (after(scb->end_seq, tp->snd_una)) {
  2489. if (tcp_skb_pcount(skb) == 1 ||
  2490. !after(tp->snd_una, scb->seq))
  2491. break;
  2492. acked_pcount = tcp_tso_acked(sk, skb);
  2493. if (!acked_pcount)
  2494. break;
  2495. fully_acked = 0;
  2496. end_seq = tp->snd_una;
  2497. } else {
  2498. acked_pcount = tcp_skb_pcount(skb);
  2499. end_seq = scb->end_seq;
  2500. }
  2501. /* MTU probing checks */
  2502. if (fully_acked && icsk->icsk_mtup.probe_size &&
  2503. !after(tp->mtu_probe.probe_seq_end, scb->end_seq)) {
  2504. tcp_mtup_probe_success(sk, skb);
  2505. }
  2506. if (sacked & TCPCB_RETRANS) {
  2507. if (sacked & TCPCB_SACKED_RETRANS)
  2508. tp->retrans_out -= acked_pcount;
  2509. flag |= FLAG_RETRANS_DATA_ACKED;
  2510. ca_seq_rtt = -1;
  2511. seq_rtt = -1;
  2512. if ((flag & FLAG_DATA_ACKED) || (acked_pcount > 1))
  2513. flag |= FLAG_NONHEAD_RETRANS_ACKED;
  2514. } else {
  2515. ca_seq_rtt = now - scb->when;
  2516. last_ackt = skb->tstamp;
  2517. if (seq_rtt < 0) {
  2518. seq_rtt = ca_seq_rtt;
  2519. }
  2520. if (!(sacked & TCPCB_SACKED_ACKED))
  2521. reord = min(pkts_acked, reord);
  2522. }
  2523. if (sacked & TCPCB_SACKED_ACKED)
  2524. tp->sacked_out -= acked_pcount;
  2525. if (sacked & TCPCB_LOST)
  2526. tp->lost_out -= acked_pcount;
  2527. if (unlikely(tp->urg_mode && !before(end_seq, tp->snd_up)))
  2528. tp->urg_mode = 0;
  2529. tp->packets_out -= acked_pcount;
  2530. pkts_acked += acked_pcount;
  2531. /* Initial outgoing SYN's get put onto the write_queue
  2532. * just like anything else we transmit. It is not
  2533. * true data, and if we misinform our callers that
  2534. * this ACK acks real data, we will erroneously exit
  2535. * connection startup slow start one packet too
  2536. * quickly. This is severely frowned upon behavior.
  2537. */
  2538. if (!(scb->flags & TCPCB_FLAG_SYN)) {
  2539. flag |= FLAG_DATA_ACKED;
  2540. } else {
  2541. flag |= FLAG_SYN_ACKED;
  2542. tp->retrans_stamp = 0;
  2543. }
  2544. if (!fully_acked)
  2545. break;
  2546. tcp_unlink_write_queue(skb, sk);
  2547. sk_wmem_free_skb(sk, skb);
  2548. tp->scoreboard_skb_hint = NULL;
  2549. if (skb == tp->retransmit_skb_hint)
  2550. tp->retransmit_skb_hint = NULL;
  2551. if (skb == tp->lost_skb_hint)
  2552. tp->lost_skb_hint = NULL;
  2553. }
  2554. if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
  2555. flag |= FLAG_SACK_RENEGING;
  2556. if (flag & FLAG_ACKED) {
  2557. const struct tcp_congestion_ops *ca_ops
  2558. = inet_csk(sk)->icsk_ca_ops;
  2559. tcp_ack_update_rtt(sk, flag, seq_rtt);
  2560. tcp_rearm_rto(sk);
  2561. if (tcp_is_reno(tp)) {
  2562. tcp_remove_reno_sacks(sk, pkts_acked);
  2563. } else {
  2564. /* Non-retransmitted hole got filled? That's reordering */
  2565. if (reord < prior_fackets)
  2566. tcp_update_reordering(sk, tp->fackets_out - reord, 0);
  2567. /* No need to care for underflows here because
  2568. * the lost_skb_hint gets NULLed if we're past it
  2569. * (or something non-trivial happened)
  2570. */
  2571. if (tcp_is_fack(tp))
  2572. tp->lost_cnt_hint -= pkts_acked;
  2573. else
  2574. tp->lost_cnt_hint -= prior_sacked - tp->sacked_out;
  2575. }
  2576. tp->fackets_out -= min(pkts_acked, tp->fackets_out);
  2577. if (ca_ops->pkts_acked) {
  2578. s32 rtt_us = -1;
  2579. /* Is the ACK triggering packet unambiguous? */
  2580. if (!(flag & FLAG_RETRANS_DATA_ACKED)) {
  2581. /* High resolution needed and available? */
  2582. if (ca_ops->flags & TCP_CONG_RTT_STAMP &&
  2583. !ktime_equal(last_ackt,
  2584. net_invalid_timestamp()))
  2585. rtt_us = ktime_us_delta(ktime_get_real(),
  2586. last_ackt);
  2587. else if (ca_seq_rtt > 0)
  2588. rtt_us = jiffies_to_usecs(ca_seq_rtt);
  2589. }
  2590. ca_ops->pkts_acked(sk, pkts_acked, rtt_us);
  2591. }
  2592. }
  2593. #if FASTRETRANS_DEBUG > 0
  2594. WARN_ON((int)tp->sacked_out < 0);
  2595. WARN_ON((int)tp->lost_out < 0);
  2596. WARN_ON((int)tp->retrans_out < 0);
  2597. if (!tp->packets_out && tcp_is_sack(tp)) {
  2598. icsk = inet_csk(sk);
  2599. if (tp->lost_out) {
  2600. printk(KERN_DEBUG "Leak l=%u %d\n",
  2601. tp->lost_out, icsk->icsk_ca_state);
  2602. tp->lost_out = 0;
  2603. }
  2604. if (tp->sacked_out) {
  2605. printk(KERN_DEBUG "Leak s=%u %d\n",
  2606. tp->sacked_out, icsk->icsk_ca_state);
  2607. tp->sacked_out = 0;
  2608. }
  2609. if (tp->retrans_out) {
  2610. printk(KERN_DEBUG "Leak r=%u %d\n",
  2611. tp->retrans_out, icsk->icsk_ca_state);
  2612. tp->retrans_out = 0;
  2613. }
  2614. }
  2615. #endif
  2616. return flag;
  2617. }
  2618. static void tcp_ack_probe(struct sock *sk)
  2619. {
  2620. const struct tcp_sock *tp = tcp_sk(sk);
  2621. struct inet_connection_sock *icsk = inet_csk(sk);
  2622. /* Was it a usable window open? */
  2623. if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq, tcp_wnd_end(tp))) {
  2624. icsk->icsk_backoff = 0;
  2625. inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
  2626. /* Socket must be waked up by subsequent tcp_data_snd_check().
  2627. * This function is not for random using!
  2628. */
  2629. } else {
  2630. inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
  2631. min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX),
  2632. TCP_RTO_MAX);
  2633. }
  2634. }
  2635. static inline int tcp_ack_is_dubious(const struct sock *sk, const int flag)
  2636. {
  2637. return (!(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
  2638. inet_csk(sk)->icsk_ca_state != TCP_CA_Open);
  2639. }
  2640. static inline int tcp_may_raise_cwnd(const struct sock *sk, const int flag)
  2641. {
  2642. const struct tcp_sock *tp = tcp_sk(sk);
  2643. return (!(flag & FLAG_ECE) || tp->snd_cwnd < tp->snd_ssthresh) &&
  2644. !((1 << inet_csk(sk)->icsk_ca_state) & (TCPF_CA_Recovery | TCPF_CA_CWR));
  2645. }
  2646. /* Check that window update is acceptable.
  2647. * The function assumes that snd_una<=ack<=snd_next.
  2648. */
  2649. static inline int tcp_may_update_window(const struct tcp_sock *tp,
  2650. const u32 ack, const u32 ack_seq,
  2651. const u32 nwin)
  2652. {
  2653. return (after(ack, tp->snd_una) ||
  2654. after(ack_seq, tp->snd_wl1) ||
  2655. (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd));
  2656. }
  2657. /* Update our send window.
  2658. *
  2659. * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
  2660. * and in FreeBSD. NetBSD's one is even worse.) is wrong.
  2661. */
  2662. static int tcp_ack_update_window(struct sock *sk, struct sk_buff *skb, u32 ack,
  2663. u32 ack_seq)
  2664. {
  2665. struct tcp_sock *tp = tcp_sk(sk);
  2666. int flag = 0;
  2667. u32 nwin = ntohs(tcp_hdr(skb)->window);
  2668. if (likely(!tcp_hdr(skb)->syn))
  2669. nwin <<= tp->rx_opt.snd_wscale;
  2670. if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
  2671. flag |= FLAG_WIN_UPDATE;
  2672. tcp_update_wl(tp, ack, ack_seq);
  2673. if (tp->snd_wnd != nwin) {
  2674. tp->snd_wnd = nwin;
  2675. /* Note, it is the only place, where
  2676. * fast path is recovered for sending TCP.
  2677. */
  2678. tp->pred_flags = 0;
  2679. tcp_fast_path_check(sk);
  2680. if (nwin > tp->max_window) {
  2681. tp->max_window = nwin;
  2682. tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
  2683. }
  2684. }
  2685. }
  2686. tp->snd_una = ack;
  2687. return flag;
  2688. }
  2689. /* A very conservative spurious RTO response algorithm: reduce cwnd and
  2690. * continue in congestion avoidance.
  2691. */
  2692. static void tcp_conservative_spur_to_response(struct tcp_sock *tp)
  2693. {
  2694. tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
  2695. tp->snd_cwnd_cnt = 0;
  2696. tp->bytes_acked = 0;
  2697. TCP_ECN_queue_cwr(tp);
  2698. tcp_moderate_cwnd(tp);
  2699. }
  2700. /* A conservative spurious RTO response algorithm: reduce cwnd using
  2701. * rate halving and continue in congestion avoidance.
  2702. */
  2703. static void tcp_ratehalving_spur_to_response(struct sock *sk)
  2704. {
  2705. tcp_enter_cwr(sk, 0);
  2706. }
  2707. static void tcp_undo_spur_to_response(struct sock *sk, int flag)
  2708. {
  2709. if (flag & FLAG_ECE)
  2710. tcp_ratehalving_spur_to_response(sk);
  2711. else
  2712. tcp_undo_cwr(sk, 1);
  2713. }
  2714. /* F-RTO spurious RTO detection algorithm (RFC4138)
  2715. *
  2716. * F-RTO affects during two new ACKs following RTO (well, almost, see inline
  2717. * comments). State (ACK number) is kept in frto_counter. When ACK advances
  2718. * window (but not to or beyond highest sequence sent before RTO):
  2719. * On First ACK, send two new segments out.
  2720. * On Second ACK, RTO was likely spurious. Do spurious response (response
  2721. * algorithm is not part of the F-RTO detection algorithm
  2722. * given in RFC4138 but can be selected separately).
  2723. * Otherwise (basically on duplicate ACK), RTO was (likely) caused by a loss
  2724. * and TCP falls back to conventional RTO recovery. F-RTO allows overriding
  2725. * of Nagle, this is done using frto_counter states 2 and 3, when a new data
  2726. * segment of any size sent during F-RTO, state 2 is upgraded to 3.
  2727. *
  2728. * Rationale: if the RTO was spurious, new ACKs should arrive from the
  2729. * original window even after we transmit two new data segments.
  2730. *
  2731. * SACK version:
  2732. * on first step, wait until first cumulative ACK arrives, then move to
  2733. * the second step. In second step, the next ACK decides.
  2734. *
  2735. * F-RTO is implemented (mainly) in four functions:
  2736. * - tcp_use_frto() is used to determine if TCP is can use F-RTO
  2737. * - tcp_enter_frto() prepares TCP state on RTO if F-RTO is used, it is
  2738. * called when tcp_use_frto() showed green light
  2739. * - tcp_process_frto() handles incoming ACKs during F-RTO algorithm
  2740. * - tcp_enter_frto_loss() is called if there is not enough evidence
  2741. * to prove that the RTO is indeed spurious. It transfers the control
  2742. * from F-RTO to the conventional RTO recovery
  2743. */
  2744. static int tcp_process_frto(struct sock *sk, int flag)
  2745. {
  2746. struct tcp_sock *tp = tcp_sk(sk);
  2747. tcp_verify_left_out(tp);
  2748. /* Duplicate the behavior from Loss state (fastretrans_alert) */
  2749. if (flag & FLAG_DATA_ACKED)
  2750. inet_csk(sk)->icsk_retransmits = 0;
  2751. if ((flag & FLAG_NONHEAD_RETRANS_ACKED) ||
  2752. ((tp->frto_counter >= 2) && (flag & FLAG_RETRANS_DATA_ACKED)))
  2753. tp->undo_marker = 0;
  2754. if (!before(tp->snd_una, tp->frto_highmark)) {
  2755. tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 2 : 3), flag);
  2756. return 1;
  2757. }
  2758. if (!tcp_is_sackfrto(tp)) {
  2759. /* RFC4138 shortcoming in step 2; should also have case c):
  2760. * ACK isn't duplicate nor advances window, e.g., opposite dir
  2761. * data, winupdate
  2762. */
  2763. if (!(flag & FLAG_ANY_PROGRESS) && (flag & FLAG_NOT_DUP))
  2764. return 1;
  2765. if (!(flag & FLAG_DATA_ACKED)) {
  2766. tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 0 : 3),
  2767. flag);
  2768. return 1;
  2769. }
  2770. } else {
  2771. if (!(flag & FLAG_DATA_ACKED) && (tp->frto_counter == 1)) {
  2772. /* Prevent sending of new data. */
  2773. tp->snd_cwnd = min(tp->snd_cwnd,
  2774. tcp_packets_in_flight(tp));
  2775. return 1;
  2776. }
  2777. if ((tp->frto_counter >= 2) &&
  2778. (!(flag & FLAG_FORWARD_PROGRESS) ||
  2779. ((flag & FLAG_DATA_SACKED) &&
  2780. !(flag & FLAG_ONLY_ORIG_SACKED)))) {
  2781. /* RFC4138 shortcoming (see comment above) */
  2782. if (!(flag & FLAG_FORWARD_PROGRESS) &&
  2783. (flag & FLAG_NOT_DUP))
  2784. return 1;
  2785. tcp_enter_frto_loss(sk, 3, flag);
  2786. return 1;
  2787. }
  2788. }
  2789. if (tp->frto_counter == 1) {
  2790. /* tcp_may_send_now needs to see updated state */
  2791. tp->snd_cwnd = tcp_packets_in_flight(tp) + 2;
  2792. tp->frto_counter = 2;
  2793. if (!tcp_may_send_now(sk))
  2794. tcp_enter_frto_loss(sk, 2, flag);
  2795. return 1;
  2796. } else {
  2797. switch (sysctl_tcp_frto_response) {
  2798. case 2:
  2799. tcp_undo_spur_to_response(sk, flag);
  2800. break;
  2801. case 1:
  2802. tcp_conservative_spur_to_response(tp);
  2803. break;
  2804. default:
  2805. tcp_ratehalving_spur_to_response(sk);
  2806. break;
  2807. }
  2808. tp->frto_counter = 0;
  2809. tp->undo_marker = 0;
  2810. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSPURIOUSRTOS);
  2811. }
  2812. return 0;
  2813. }
  2814. /* This routine deals with incoming acks, but not outgoing ones. */
  2815. static int tcp_ack(struct sock *sk, struct sk_buff *skb, int flag)
  2816. {
  2817. struct inet_connection_sock *icsk = inet_csk(sk);
  2818. struct tcp_sock *tp = tcp_sk(sk);
  2819. u32 prior_snd_una = tp->snd_una;
  2820. u32 ack_seq = TCP_SKB_CB(skb)->seq;
  2821. u32 ack = TCP_SKB_CB(skb)->ack_seq;
  2822. u32 prior_in_flight;
  2823. u32 prior_fackets;
  2824. int prior_packets;
  2825. int frto_cwnd = 0;
  2826. /* If the ack is newer than sent or older than previous acks
  2827. * then we can probably ignore it.
  2828. */
  2829. if (after(ack, tp->snd_nxt))
  2830. goto uninteresting_ack;
  2831. if (before(ack, prior_snd_una))
  2832. goto old_ack;
  2833. if (after(ack, prior_snd_una))
  2834. flag |= FLAG_SND_UNA_ADVANCED;
  2835. if (sysctl_tcp_abc) {
  2836. if (icsk->icsk_ca_state < TCP_CA_CWR)
  2837. tp->bytes_acked += ack - prior_snd_una;
  2838. else if (icsk->icsk_ca_state == TCP_CA_Loss)
  2839. /* we assume just one segment left network */
  2840. tp->bytes_acked += min(ack - prior_snd_una,
  2841. tp->mss_cache);
  2842. }
  2843. prior_fackets = tp->fackets_out;
  2844. prior_in_flight = tcp_packets_in_flight(tp);
  2845. if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
  2846. /* Window is constant, pure forward advance.
  2847. * No more checks are required.
  2848. * Note, we use the fact that SND.UNA>=SND.WL2.
  2849. */
  2850. tcp_update_wl(tp, ack, ack_seq);
  2851. tp->snd_una = ack;
  2852. flag |= FLAG_WIN_UPDATE;
  2853. tcp_ca_event(sk, CA_EVENT_FAST_ACK);
  2854. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPACKS);
  2855. } else {
  2856. if (ack_seq != TCP_SKB_CB(skb)->end_seq)
  2857. flag |= FLAG_DATA;
  2858. else
  2859. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPUREACKS);
  2860. flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
  2861. if (TCP_SKB_CB(skb)->sacked)
  2862. flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una);
  2863. if (TCP_ECN_rcv_ecn_echo(tp, tcp_hdr(skb)))
  2864. flag |= FLAG_ECE;
  2865. tcp_ca_event(sk, CA_EVENT_SLOW_ACK);
  2866. }
  2867. /* We passed data and got it acked, remove any soft error
  2868. * log. Something worked...
  2869. */
  2870. sk->sk_err_soft = 0;
  2871. icsk->icsk_probes_out = 0;
  2872. tp->rcv_tstamp = tcp_time_stamp;
  2873. prior_packets = tp->packets_out;
  2874. if (!prior_packets)
  2875. goto no_queue;
  2876. /* See if we can take anything off of the retransmit queue. */
  2877. flag |= tcp_clean_rtx_queue(sk, prior_fackets);
  2878. if (tp->frto_counter)
  2879. frto_cwnd = tcp_process_frto(sk, flag);
  2880. /* Guarantee sacktag reordering detection against wrap-arounds */
  2881. if (before(tp->frto_highmark, tp->snd_una))
  2882. tp->frto_highmark = 0;
  2883. if (tcp_ack_is_dubious(sk, flag)) {
  2884. /* Advance CWND, if state allows this. */
  2885. if ((flag & FLAG_DATA_ACKED) && !frto_cwnd &&
  2886. tcp_may_raise_cwnd(sk, flag))
  2887. tcp_cong_avoid(sk, ack, prior_in_flight);
  2888. tcp_fastretrans_alert(sk, prior_packets - tp->packets_out,
  2889. flag);
  2890. } else {
  2891. if ((flag & FLAG_DATA_ACKED) && !frto_cwnd)
  2892. tcp_cong_avoid(sk, ack, prior_in_flight);
  2893. }
  2894. if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP))
  2895. dst_confirm(sk->sk_dst_cache);
  2896. return 1;
  2897. no_queue:
  2898. /* If this ack opens up a zero window, clear backoff. It was
  2899. * being used to time the probes, and is probably far higher than
  2900. * it needs to be for normal retransmission.
  2901. */
  2902. if (tcp_send_head(sk))
  2903. tcp_ack_probe(sk);
  2904. return 1;
  2905. old_ack:
  2906. if (TCP_SKB_CB(skb)->sacked) {
  2907. tcp_sacktag_write_queue(sk, skb, prior_snd_una);
  2908. if (icsk->icsk_ca_state == TCP_CA_Open)
  2909. tcp_try_keep_open(sk);
  2910. }
  2911. uninteresting_ack:
  2912. SOCK_DEBUG(sk, "Ack %u out of %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
  2913. return 0;
  2914. }
  2915. /* Look for tcp options. Normally only called on SYN and SYNACK packets.
  2916. * But, this can also be called on packets in the established flow when
  2917. * the fast version below fails.
  2918. */
  2919. void tcp_parse_options(struct sk_buff *skb, struct tcp_options_received *opt_rx,
  2920. int estab)
  2921. {
  2922. unsigned char *ptr;
  2923. struct tcphdr *th = tcp_hdr(skb);
  2924. int length = (th->doff * 4) - sizeof(struct tcphdr);
  2925. ptr = (unsigned char *)(th + 1);
  2926. opt_rx->saw_tstamp = 0;
  2927. while (length > 0) {
  2928. int opcode = *ptr++;
  2929. int opsize;
  2930. switch (opcode) {
  2931. case TCPOPT_EOL:
  2932. return;
  2933. case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */
  2934. length--;
  2935. continue;
  2936. default:
  2937. opsize = *ptr++;
  2938. if (opsize < 2) /* "silly options" */
  2939. return;
  2940. if (opsize > length)
  2941. return; /* don't parse partial options */
  2942. switch (opcode) {
  2943. case TCPOPT_MSS:
  2944. if (opsize == TCPOLEN_MSS && th->syn && !estab) {
  2945. u16 in_mss = get_unaligned_be16(ptr);
  2946. if (in_mss) {
  2947. if (opt_rx->user_mss &&
  2948. opt_rx->user_mss < in_mss)
  2949. in_mss = opt_rx->user_mss;
  2950. opt_rx->mss_clamp = in_mss;
  2951. }
  2952. }
  2953. break;
  2954. case TCPOPT_WINDOW:
  2955. if (opsize == TCPOLEN_WINDOW && th->syn &&
  2956. !estab && sysctl_tcp_window_scaling) {
  2957. __u8 snd_wscale = *(__u8 *)ptr;
  2958. opt_rx->wscale_ok = 1;
  2959. if (snd_wscale > 14) {
  2960. if (net_ratelimit())
  2961. printk(KERN_INFO "tcp_parse_options: Illegal window "
  2962. "scaling value %d >14 received.\n",
  2963. snd_wscale);
  2964. snd_wscale = 14;
  2965. }
  2966. opt_rx->snd_wscale = snd_wscale;
  2967. }
  2968. break;
  2969. case TCPOPT_TIMESTAMP:
  2970. if ((opsize == TCPOLEN_TIMESTAMP) &&
  2971. ((estab && opt_rx->tstamp_ok) ||
  2972. (!estab && sysctl_tcp_timestamps))) {
  2973. opt_rx->saw_tstamp = 1;
  2974. opt_rx->rcv_tsval = get_unaligned_be32(ptr);
  2975. opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
  2976. }
  2977. break;
  2978. case TCPOPT_SACK_PERM:
  2979. if (opsize == TCPOLEN_SACK_PERM && th->syn &&
  2980. !estab && sysctl_tcp_sack) {
  2981. opt_rx->sack_ok = 1;
  2982. tcp_sack_reset(opt_rx);
  2983. }
  2984. break;
  2985. case TCPOPT_SACK:
  2986. if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
  2987. !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
  2988. opt_rx->sack_ok) {
  2989. TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
  2990. }
  2991. break;
  2992. #ifdef CONFIG_TCP_MD5SIG
  2993. case TCPOPT_MD5SIG:
  2994. /*
  2995. * The MD5 Hash has already been
  2996. * checked (see tcp_v{4,6}_do_rcv()).
  2997. */
  2998. break;
  2999. #endif
  3000. }
  3001. ptr += opsize-2;
  3002. length -= opsize;
  3003. }
  3004. }
  3005. }
  3006. static int tcp_parse_aligned_timestamp(struct tcp_sock *tp, struct tcphdr *th)
  3007. {
  3008. __be32 *ptr = (__be32 *)(th + 1);
  3009. if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
  3010. | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
  3011. tp->rx_opt.saw_tstamp = 1;
  3012. ++ptr;
  3013. tp->rx_opt.rcv_tsval = ntohl(*ptr);
  3014. ++ptr;
  3015. tp->rx_opt.rcv_tsecr = ntohl(*ptr);
  3016. return 1;
  3017. }
  3018. return 0;
  3019. }
  3020. /* Fast parse options. This hopes to only see timestamps.
  3021. * If it is wrong it falls back on tcp_parse_options().
  3022. */
  3023. static int tcp_fast_parse_options(struct sk_buff *skb, struct tcphdr *th,
  3024. struct tcp_sock *tp)
  3025. {
  3026. if (th->doff == sizeof(struct tcphdr) >> 2) {
  3027. tp->rx_opt.saw_tstamp = 0;
  3028. return 0;
  3029. } else if (tp->rx_opt.tstamp_ok &&
  3030. th->doff == (sizeof(struct tcphdr)>>2)+(TCPOLEN_TSTAMP_ALIGNED>>2)) {
  3031. if (tcp_parse_aligned_timestamp(tp, th))
  3032. return 1;
  3033. }
  3034. tcp_parse_options(skb, &tp->rx_opt, 1);
  3035. return 1;
  3036. }
  3037. #ifdef CONFIG_TCP_MD5SIG
  3038. /*
  3039. * Parse MD5 Signature option
  3040. */
  3041. u8 *tcp_parse_md5sig_option(struct tcphdr *th)
  3042. {
  3043. int length = (th->doff << 2) - sizeof (*th);
  3044. u8 *ptr = (u8*)(th + 1);
  3045. /* If the TCP option is too short, we can short cut */
  3046. if (length < TCPOLEN_MD5SIG)
  3047. return NULL;
  3048. while (length > 0) {
  3049. int opcode = *ptr++;
  3050. int opsize;
  3051. switch(opcode) {
  3052. case TCPOPT_EOL:
  3053. return NULL;
  3054. case TCPOPT_NOP:
  3055. length--;
  3056. continue;
  3057. default:
  3058. opsize = *ptr++;
  3059. if (opsize < 2 || opsize > length)
  3060. return NULL;
  3061. if (opcode == TCPOPT_MD5SIG)
  3062. return ptr;
  3063. }
  3064. ptr += opsize - 2;
  3065. length -= opsize;
  3066. }
  3067. return NULL;
  3068. }
  3069. #endif
  3070. static inline void tcp_store_ts_recent(struct tcp_sock *tp)
  3071. {
  3072. tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
  3073. tp->rx_opt.ts_recent_stamp = get_seconds();
  3074. }
  3075. static inline void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
  3076. {
  3077. if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
  3078. /* PAWS bug workaround wrt. ACK frames, the PAWS discard
  3079. * extra check below makes sure this can only happen
  3080. * for pure ACK frames. -DaveM
  3081. *
  3082. * Not only, also it occurs for expired timestamps.
  3083. */
  3084. if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) >= 0 ||
  3085. get_seconds() >= tp->rx_opt.ts_recent_stamp + TCP_PAWS_24DAYS)
  3086. tcp_store_ts_recent(tp);
  3087. }
  3088. }
  3089. /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
  3090. *
  3091. * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
  3092. * it can pass through stack. So, the following predicate verifies that
  3093. * this segment is not used for anything but congestion avoidance or
  3094. * fast retransmit. Moreover, we even are able to eliminate most of such
  3095. * second order effects, if we apply some small "replay" window (~RTO)
  3096. * to timestamp space.
  3097. *
  3098. * All these measures still do not guarantee that we reject wrapped ACKs
  3099. * on networks with high bandwidth, when sequence space is recycled fastly,
  3100. * but it guarantees that such events will be very rare and do not affect
  3101. * connection seriously. This doesn't look nice, but alas, PAWS is really
  3102. * buggy extension.
  3103. *
  3104. * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
  3105. * states that events when retransmit arrives after original data are rare.
  3106. * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
  3107. * the biggest problem on large power networks even with minor reordering.
  3108. * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
  3109. * up to bandwidth of 18Gigabit/sec. 8) ]
  3110. */
  3111. static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
  3112. {
  3113. struct tcp_sock *tp = tcp_sk(sk);
  3114. struct tcphdr *th = tcp_hdr(skb);
  3115. u32 seq = TCP_SKB_CB(skb)->seq;
  3116. u32 ack = TCP_SKB_CB(skb)->ack_seq;
  3117. return (/* 1. Pure ACK with correct sequence number. */
  3118. (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
  3119. /* 2. ... and duplicate ACK. */
  3120. ack == tp->snd_una &&
  3121. /* 3. ... and does not update window. */
  3122. !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
  3123. /* 4. ... and sits in replay window. */
  3124. (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
  3125. }
  3126. static inline int tcp_paws_discard(const struct sock *sk,
  3127. const struct sk_buff *skb)
  3128. {
  3129. const struct tcp_sock *tp = tcp_sk(sk);
  3130. return ((s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) > TCP_PAWS_WINDOW &&
  3131. get_seconds() < tp->rx_opt.ts_recent_stamp + TCP_PAWS_24DAYS &&
  3132. !tcp_disordered_ack(sk, skb));
  3133. }
  3134. /* Check segment sequence number for validity.
  3135. *
  3136. * Segment controls are considered valid, if the segment
  3137. * fits to the window after truncation to the window. Acceptability
  3138. * of data (and SYN, FIN, of course) is checked separately.
  3139. * See tcp_data_queue(), for example.
  3140. *
  3141. * Also, controls (RST is main one) are accepted using RCV.WUP instead
  3142. * of RCV.NXT. Peer still did not advance his SND.UNA when we
  3143. * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
  3144. * (borrowed from freebsd)
  3145. */
  3146. static inline int tcp_sequence(struct tcp_sock *tp, u32 seq, u32 end_seq)
  3147. {
  3148. return !before(end_seq, tp->rcv_wup) &&
  3149. !after(seq, tp->rcv_nxt + tcp_receive_window(tp));
  3150. }
  3151. /* When we get a reset we do this. */
  3152. static void tcp_reset(struct sock *sk)
  3153. {
  3154. /* We want the right error as BSD sees it (and indeed as we do). */
  3155. switch (sk->sk_state) {
  3156. case TCP_SYN_SENT:
  3157. sk->sk_err = ECONNREFUSED;
  3158. break;
  3159. case TCP_CLOSE_WAIT:
  3160. sk->sk_err = EPIPE;
  3161. break;
  3162. case TCP_CLOSE:
  3163. return;
  3164. default:
  3165. sk->sk_err = ECONNRESET;
  3166. }
  3167. if (!sock_flag(sk, SOCK_DEAD))
  3168. sk->sk_error_report(sk);
  3169. tcp_done(sk);
  3170. }
  3171. /*
  3172. * Process the FIN bit. This now behaves as it is supposed to work
  3173. * and the FIN takes effect when it is validly part of sequence
  3174. * space. Not before when we get holes.
  3175. *
  3176. * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
  3177. * (and thence onto LAST-ACK and finally, CLOSE, we never enter
  3178. * TIME-WAIT)
  3179. *
  3180. * If we are in FINWAIT-1, a received FIN indicates simultaneous
  3181. * close and we go into CLOSING (and later onto TIME-WAIT)
  3182. *
  3183. * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
  3184. */
  3185. static void tcp_fin(struct sk_buff *skb, struct sock *sk, struct tcphdr *th)
  3186. {
  3187. struct tcp_sock *tp = tcp_sk(sk);
  3188. inet_csk_schedule_ack(sk);
  3189. sk->sk_shutdown |= RCV_SHUTDOWN;
  3190. sock_set_flag(sk, SOCK_DONE);
  3191. switch (sk->sk_state) {
  3192. case TCP_SYN_RECV:
  3193. case TCP_ESTABLISHED:
  3194. /* Move to CLOSE_WAIT */
  3195. tcp_set_state(sk, TCP_CLOSE_WAIT);
  3196. inet_csk(sk)->icsk_ack.pingpong = 1;
  3197. break;
  3198. case TCP_CLOSE_WAIT:
  3199. case TCP_CLOSING:
  3200. /* Received a retransmission of the FIN, do
  3201. * nothing.
  3202. */
  3203. break;
  3204. case TCP_LAST_ACK:
  3205. /* RFC793: Remain in the LAST-ACK state. */
  3206. break;
  3207. case TCP_FIN_WAIT1:
  3208. /* This case occurs when a simultaneous close
  3209. * happens, we must ack the received FIN and
  3210. * enter the CLOSING state.
  3211. */
  3212. tcp_send_ack(sk);
  3213. tcp_set_state(sk, TCP_CLOSING);
  3214. break;
  3215. case TCP_FIN_WAIT2:
  3216. /* Received a FIN -- send ACK and enter TIME_WAIT. */
  3217. tcp_send_ack(sk);
  3218. tcp_time_wait(sk, TCP_TIME_WAIT, 0);
  3219. break;
  3220. default:
  3221. /* Only TCP_LISTEN and TCP_CLOSE are left, in these
  3222. * cases we should never reach this piece of code.
  3223. */
  3224. printk(KERN_ERR "%s: Impossible, sk->sk_state=%d\n",
  3225. __func__, sk->sk_state);
  3226. break;
  3227. }
  3228. /* It _is_ possible, that we have something out-of-order _after_ FIN.
  3229. * Probably, we should reset in this case. For now drop them.
  3230. */
  3231. __skb_queue_purge(&tp->out_of_order_queue);
  3232. if (tcp_is_sack(tp))
  3233. tcp_sack_reset(&tp->rx_opt);
  3234. sk_mem_reclaim(sk);
  3235. if (!sock_flag(sk, SOCK_DEAD)) {
  3236. sk->sk_state_change(sk);
  3237. /* Do not send POLL_HUP for half duplex close. */
  3238. if (sk->sk_shutdown == SHUTDOWN_MASK ||
  3239. sk->sk_state == TCP_CLOSE)
  3240. sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
  3241. else
  3242. sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
  3243. }
  3244. }
  3245. static inline int tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
  3246. u32 end_seq)
  3247. {
  3248. if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
  3249. if (before(seq, sp->start_seq))
  3250. sp->start_seq = seq;
  3251. if (after(end_seq, sp->end_seq))
  3252. sp->end_seq = end_seq;
  3253. return 1;
  3254. }
  3255. return 0;
  3256. }
  3257. static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
  3258. {
  3259. struct tcp_sock *tp = tcp_sk(sk);
  3260. if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
  3261. int mib_idx;
  3262. if (before(seq, tp->rcv_nxt))
  3263. mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
  3264. else
  3265. mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
  3266. NET_INC_STATS_BH(sock_net(sk), mib_idx);
  3267. tp->rx_opt.dsack = 1;
  3268. tp->duplicate_sack[0].start_seq = seq;
  3269. tp->duplicate_sack[0].end_seq = end_seq;
  3270. tp->rx_opt.eff_sacks = tp->rx_opt.num_sacks + 1;
  3271. }
  3272. }
  3273. static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
  3274. {
  3275. struct tcp_sock *tp = tcp_sk(sk);
  3276. if (!tp->rx_opt.dsack)
  3277. tcp_dsack_set(sk, seq, end_seq);
  3278. else
  3279. tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
  3280. }
  3281. static void tcp_send_dupack(struct sock *sk, struct sk_buff *skb)
  3282. {
  3283. struct tcp_sock *tp = tcp_sk(sk);
  3284. if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
  3285. before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
  3286. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
  3287. tcp_enter_quickack_mode(sk);
  3288. if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
  3289. u32 end_seq = TCP_SKB_CB(skb)->end_seq;
  3290. if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
  3291. end_seq = tp->rcv_nxt;
  3292. tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
  3293. }
  3294. }
  3295. tcp_send_ack(sk);
  3296. }
  3297. /* These routines update the SACK block as out-of-order packets arrive or
  3298. * in-order packets close up the sequence space.
  3299. */
  3300. static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
  3301. {
  3302. int this_sack;
  3303. struct tcp_sack_block *sp = &tp->selective_acks[0];
  3304. struct tcp_sack_block *swalk = sp + 1;
  3305. /* See if the recent change to the first SACK eats into
  3306. * or hits the sequence space of other SACK blocks, if so coalesce.
  3307. */
  3308. for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
  3309. if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
  3310. int i;
  3311. /* Zap SWALK, by moving every further SACK up by one slot.
  3312. * Decrease num_sacks.
  3313. */
  3314. tp->rx_opt.num_sacks--;
  3315. tp->rx_opt.eff_sacks = tp->rx_opt.num_sacks +
  3316. tp->rx_opt.dsack;
  3317. for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
  3318. sp[i] = sp[i + 1];
  3319. continue;
  3320. }
  3321. this_sack++, swalk++;
  3322. }
  3323. }
  3324. static inline void tcp_sack_swap(struct tcp_sack_block *sack1,
  3325. struct tcp_sack_block *sack2)
  3326. {
  3327. __u32 tmp;
  3328. tmp = sack1->start_seq;
  3329. sack1->start_seq = sack2->start_seq;
  3330. sack2->start_seq = tmp;
  3331. tmp = sack1->end_seq;
  3332. sack1->end_seq = sack2->end_seq;
  3333. sack2->end_seq = tmp;
  3334. }
  3335. static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
  3336. {
  3337. struct tcp_sock *tp = tcp_sk(sk);
  3338. struct tcp_sack_block *sp = &tp->selective_acks[0];
  3339. int cur_sacks = tp->rx_opt.num_sacks;
  3340. int this_sack;
  3341. if (!cur_sacks)
  3342. goto new_sack;
  3343. for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
  3344. if (tcp_sack_extend(sp, seq, end_seq)) {
  3345. /* Rotate this_sack to the first one. */
  3346. for (; this_sack > 0; this_sack--, sp--)
  3347. tcp_sack_swap(sp, sp - 1);
  3348. if (cur_sacks > 1)
  3349. tcp_sack_maybe_coalesce(tp);
  3350. return;
  3351. }
  3352. }
  3353. /* Could not find an adjacent existing SACK, build a new one,
  3354. * put it at the front, and shift everyone else down. We
  3355. * always know there is at least one SACK present already here.
  3356. *
  3357. * If the sack array is full, forget about the last one.
  3358. */
  3359. if (this_sack >= TCP_NUM_SACKS) {
  3360. this_sack--;
  3361. tp->rx_opt.num_sacks--;
  3362. sp--;
  3363. }
  3364. for (; this_sack > 0; this_sack--, sp--)
  3365. *sp = *(sp - 1);
  3366. new_sack:
  3367. /* Build the new head SACK, and we're done. */
  3368. sp->start_seq = seq;
  3369. sp->end_seq = end_seq;
  3370. tp->rx_opt.num_sacks++;
  3371. tp->rx_opt.eff_sacks = tp->rx_opt.num_sacks + tp->rx_opt.dsack;
  3372. }
  3373. /* RCV.NXT advances, some SACKs should be eaten. */
  3374. static void tcp_sack_remove(struct tcp_sock *tp)
  3375. {
  3376. struct tcp_sack_block *sp = &tp->selective_acks[0];
  3377. int num_sacks = tp->rx_opt.num_sacks;
  3378. int this_sack;
  3379. /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
  3380. if (skb_queue_empty(&tp->out_of_order_queue)) {
  3381. tp->rx_opt.num_sacks = 0;
  3382. tp->rx_opt.eff_sacks = tp->rx_opt.dsack;
  3383. return;
  3384. }
  3385. for (this_sack = 0; this_sack < num_sacks;) {
  3386. /* Check if the start of the sack is covered by RCV.NXT. */
  3387. if (!before(tp->rcv_nxt, sp->start_seq)) {
  3388. int i;
  3389. /* RCV.NXT must cover all the block! */
  3390. WARN_ON(before(tp->rcv_nxt, sp->end_seq));
  3391. /* Zap this SACK, by moving forward any other SACKS. */
  3392. for (i=this_sack+1; i < num_sacks; i++)
  3393. tp->selective_acks[i-1] = tp->selective_acks[i];
  3394. num_sacks--;
  3395. continue;
  3396. }
  3397. this_sack++;
  3398. sp++;
  3399. }
  3400. if (num_sacks != tp->rx_opt.num_sacks) {
  3401. tp->rx_opt.num_sacks = num_sacks;
  3402. tp->rx_opt.eff_sacks = tp->rx_opt.num_sacks +
  3403. tp->rx_opt.dsack;
  3404. }
  3405. }
  3406. /* This one checks to see if we can put data from the
  3407. * out_of_order queue into the receive_queue.
  3408. */
  3409. static void tcp_ofo_queue(struct sock *sk)
  3410. {
  3411. struct tcp_sock *tp = tcp_sk(sk);
  3412. __u32 dsack_high = tp->rcv_nxt;
  3413. struct sk_buff *skb;
  3414. while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) {
  3415. if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
  3416. break;
  3417. if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
  3418. __u32 dsack = dsack_high;
  3419. if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
  3420. dsack_high = TCP_SKB_CB(skb)->end_seq;
  3421. tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
  3422. }
  3423. if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
  3424. SOCK_DEBUG(sk, "ofo packet was already received \n");
  3425. __skb_unlink(skb, &tp->out_of_order_queue);
  3426. __kfree_skb(skb);
  3427. continue;
  3428. }
  3429. SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
  3430. tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
  3431. TCP_SKB_CB(skb)->end_seq);
  3432. __skb_unlink(skb, &tp->out_of_order_queue);
  3433. __skb_queue_tail(&sk->sk_receive_queue, skb);
  3434. tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
  3435. if (tcp_hdr(skb)->fin)
  3436. tcp_fin(skb, sk, tcp_hdr(skb));
  3437. }
  3438. }
  3439. static int tcp_prune_ofo_queue(struct sock *sk);
  3440. static int tcp_prune_queue(struct sock *sk);
  3441. static inline int tcp_try_rmem_schedule(struct sock *sk, unsigned int size)
  3442. {
  3443. if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
  3444. !sk_rmem_schedule(sk, size)) {
  3445. if (tcp_prune_queue(sk) < 0)
  3446. return -1;
  3447. if (!sk_rmem_schedule(sk, size)) {
  3448. if (!tcp_prune_ofo_queue(sk))
  3449. return -1;
  3450. if (!sk_rmem_schedule(sk, size))
  3451. return -1;
  3452. }
  3453. }
  3454. return 0;
  3455. }
  3456. static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
  3457. {
  3458. struct tcphdr *th = tcp_hdr(skb);
  3459. struct tcp_sock *tp = tcp_sk(sk);
  3460. int eaten = -1;
  3461. if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq)
  3462. goto drop;
  3463. __skb_pull(skb, th->doff * 4);
  3464. TCP_ECN_accept_cwr(tp, skb);
  3465. if (tp->rx_opt.dsack) {
  3466. tp->rx_opt.dsack = 0;
  3467. tp->rx_opt.eff_sacks = tp->rx_opt.num_sacks;
  3468. }
  3469. /* Queue data for delivery to the user.
  3470. * Packets in sequence go to the receive queue.
  3471. * Out of sequence packets to the out_of_order_queue.
  3472. */
  3473. if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
  3474. if (tcp_receive_window(tp) == 0)
  3475. goto out_of_window;
  3476. /* Ok. In sequence. In window. */
  3477. if (tp->ucopy.task == current &&
  3478. tp->copied_seq == tp->rcv_nxt && tp->ucopy.len &&
  3479. sock_owned_by_user(sk) && !tp->urg_data) {
  3480. int chunk = min_t(unsigned int, skb->len,
  3481. tp->ucopy.len);
  3482. __set_current_state(TASK_RUNNING);
  3483. local_bh_enable();
  3484. if (!skb_copy_datagram_iovec(skb, 0, tp->ucopy.iov, chunk)) {
  3485. tp->ucopy.len -= chunk;
  3486. tp->copied_seq += chunk;
  3487. eaten = (chunk == skb->len && !th->fin);
  3488. tcp_rcv_space_adjust(sk);
  3489. }
  3490. local_bh_disable();
  3491. }
  3492. if (eaten <= 0) {
  3493. queue_and_out:
  3494. if (eaten < 0 &&
  3495. tcp_try_rmem_schedule(sk, skb->truesize))
  3496. goto drop;
  3497. skb_set_owner_r(skb, sk);
  3498. __skb_queue_tail(&sk->sk_receive_queue, skb);
  3499. }
  3500. tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
  3501. if (skb->len)
  3502. tcp_event_data_recv(sk, skb);
  3503. if (th->fin)
  3504. tcp_fin(skb, sk, th);
  3505. if (!skb_queue_empty(&tp->out_of_order_queue)) {
  3506. tcp_ofo_queue(sk);
  3507. /* RFC2581. 4.2. SHOULD send immediate ACK, when
  3508. * gap in queue is filled.
  3509. */
  3510. if (skb_queue_empty(&tp->out_of_order_queue))
  3511. inet_csk(sk)->icsk_ack.pingpong = 0;
  3512. }
  3513. if (tp->rx_opt.num_sacks)
  3514. tcp_sack_remove(tp);
  3515. tcp_fast_path_check(sk);
  3516. if (eaten > 0)
  3517. __kfree_skb(skb);
  3518. else if (!sock_flag(sk, SOCK_DEAD))
  3519. sk->sk_data_ready(sk, 0);
  3520. return;
  3521. }
  3522. if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
  3523. /* A retransmit, 2nd most common case. Force an immediate ack. */
  3524. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
  3525. tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
  3526. out_of_window:
  3527. tcp_enter_quickack_mode(sk);
  3528. inet_csk_schedule_ack(sk);
  3529. drop:
  3530. __kfree_skb(skb);
  3531. return;
  3532. }
  3533. /* Out of window. F.e. zero window probe. */
  3534. if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
  3535. goto out_of_window;
  3536. tcp_enter_quickack_mode(sk);
  3537. if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
  3538. /* Partial packet, seq < rcv_next < end_seq */
  3539. SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
  3540. tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
  3541. TCP_SKB_CB(skb)->end_seq);
  3542. tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
  3543. /* If window is closed, drop tail of packet. But after
  3544. * remembering D-SACK for its head made in previous line.
  3545. */
  3546. if (!tcp_receive_window(tp))
  3547. goto out_of_window;
  3548. goto queue_and_out;
  3549. }
  3550. TCP_ECN_check_ce(tp, skb);
  3551. if (tcp_try_rmem_schedule(sk, skb->truesize))
  3552. goto drop;
  3553. /* Disable header prediction. */
  3554. tp->pred_flags = 0;
  3555. inet_csk_schedule_ack(sk);
  3556. SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
  3557. tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
  3558. skb_set_owner_r(skb, sk);
  3559. if (!skb_peek(&tp->out_of_order_queue)) {
  3560. /* Initial out of order segment, build 1 SACK. */
  3561. if (tcp_is_sack(tp)) {
  3562. tp->rx_opt.num_sacks = 1;
  3563. tp->rx_opt.dsack = 0;
  3564. tp->rx_opt.eff_sacks = 1;
  3565. tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq;
  3566. tp->selective_acks[0].end_seq =
  3567. TCP_SKB_CB(skb)->end_seq;
  3568. }
  3569. __skb_queue_head(&tp->out_of_order_queue, skb);
  3570. } else {
  3571. struct sk_buff *skb1 = tp->out_of_order_queue.prev;
  3572. u32 seq = TCP_SKB_CB(skb)->seq;
  3573. u32 end_seq = TCP_SKB_CB(skb)->end_seq;
  3574. if (seq == TCP_SKB_CB(skb1)->end_seq) {
  3575. __skb_queue_after(&tp->out_of_order_queue, skb1, skb);
  3576. if (!tp->rx_opt.num_sacks ||
  3577. tp->selective_acks[0].end_seq != seq)
  3578. goto add_sack;
  3579. /* Common case: data arrive in order after hole. */
  3580. tp->selective_acks[0].end_seq = end_seq;
  3581. return;
  3582. }
  3583. /* Find place to insert this segment. */
  3584. do {
  3585. if (!after(TCP_SKB_CB(skb1)->seq, seq))
  3586. break;
  3587. } while ((skb1 = skb1->prev) !=
  3588. (struct sk_buff *)&tp->out_of_order_queue);
  3589. /* Do skb overlap to previous one? */
  3590. if (skb1 != (struct sk_buff *)&tp->out_of_order_queue &&
  3591. before(seq, TCP_SKB_CB(skb1)->end_seq)) {
  3592. if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
  3593. /* All the bits are present. Drop. */
  3594. __kfree_skb(skb);
  3595. tcp_dsack_set(sk, seq, end_seq);
  3596. goto add_sack;
  3597. }
  3598. if (after(seq, TCP_SKB_CB(skb1)->seq)) {
  3599. /* Partial overlap. */
  3600. tcp_dsack_set(sk, seq,
  3601. TCP_SKB_CB(skb1)->end_seq);
  3602. } else {
  3603. skb1 = skb1->prev;
  3604. }
  3605. }
  3606. __skb_queue_after(&tp->out_of_order_queue, skb1, skb);
  3607. /* And clean segments covered by new one as whole. */
  3608. while ((skb1 = skb->next) !=
  3609. (struct sk_buff *)&tp->out_of_order_queue &&
  3610. after(end_seq, TCP_SKB_CB(skb1)->seq)) {
  3611. if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
  3612. tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
  3613. end_seq);
  3614. break;
  3615. }
  3616. __skb_unlink(skb1, &tp->out_of_order_queue);
  3617. tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
  3618. TCP_SKB_CB(skb1)->end_seq);
  3619. __kfree_skb(skb1);
  3620. }
  3621. add_sack:
  3622. if (tcp_is_sack(tp))
  3623. tcp_sack_new_ofo_skb(sk, seq, end_seq);
  3624. }
  3625. }
  3626. static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
  3627. struct sk_buff_head *list)
  3628. {
  3629. struct sk_buff *next = skb->next;
  3630. __skb_unlink(skb, list);
  3631. __kfree_skb(skb);
  3632. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
  3633. return next;
  3634. }
  3635. /* Collapse contiguous sequence of skbs head..tail with
  3636. * sequence numbers start..end.
  3637. * Segments with FIN/SYN are not collapsed (only because this
  3638. * simplifies code)
  3639. */
  3640. static void
  3641. tcp_collapse(struct sock *sk, struct sk_buff_head *list,
  3642. struct sk_buff *head, struct sk_buff *tail,
  3643. u32 start, u32 end)
  3644. {
  3645. struct sk_buff *skb;
  3646. /* First, check that queue is collapsible and find
  3647. * the point where collapsing can be useful. */
  3648. for (skb = head; skb != tail;) {
  3649. /* No new bits? It is possible on ofo queue. */
  3650. if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
  3651. skb = tcp_collapse_one(sk, skb, list);
  3652. continue;
  3653. }
  3654. /* The first skb to collapse is:
  3655. * - not SYN/FIN and
  3656. * - bloated or contains data before "start" or
  3657. * overlaps to the next one.
  3658. */
  3659. if (!tcp_hdr(skb)->syn && !tcp_hdr(skb)->fin &&
  3660. (tcp_win_from_space(skb->truesize) > skb->len ||
  3661. before(TCP_SKB_CB(skb)->seq, start) ||
  3662. (skb->next != tail &&
  3663. TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb->next)->seq)))
  3664. break;
  3665. /* Decided to skip this, advance start seq. */
  3666. start = TCP_SKB_CB(skb)->end_seq;
  3667. skb = skb->next;
  3668. }
  3669. if (skb == tail || tcp_hdr(skb)->syn || tcp_hdr(skb)->fin)
  3670. return;
  3671. while (before(start, end)) {
  3672. struct sk_buff *nskb;
  3673. unsigned int header = skb_headroom(skb);
  3674. int copy = SKB_MAX_ORDER(header, 0);
  3675. /* Too big header? This can happen with IPv6. */
  3676. if (copy < 0)
  3677. return;
  3678. if (end - start < copy)
  3679. copy = end - start;
  3680. nskb = alloc_skb(copy + header, GFP_ATOMIC);
  3681. if (!nskb)
  3682. return;
  3683. skb_set_mac_header(nskb, skb_mac_header(skb) - skb->head);
  3684. skb_set_network_header(nskb, (skb_network_header(skb) -
  3685. skb->head));
  3686. skb_set_transport_header(nskb, (skb_transport_header(skb) -
  3687. skb->head));
  3688. skb_reserve(nskb, header);
  3689. memcpy(nskb->head, skb->head, header);
  3690. memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
  3691. TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
  3692. __skb_queue_before(list, skb, nskb);
  3693. skb_set_owner_r(nskb, sk);
  3694. /* Copy data, releasing collapsed skbs. */
  3695. while (copy > 0) {
  3696. int offset = start - TCP_SKB_CB(skb)->seq;
  3697. int size = TCP_SKB_CB(skb)->end_seq - start;
  3698. BUG_ON(offset < 0);
  3699. if (size > 0) {
  3700. size = min(copy, size);
  3701. if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
  3702. BUG();
  3703. TCP_SKB_CB(nskb)->end_seq += size;
  3704. copy -= size;
  3705. start += size;
  3706. }
  3707. if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
  3708. skb = tcp_collapse_one(sk, skb, list);
  3709. if (skb == tail ||
  3710. tcp_hdr(skb)->syn ||
  3711. tcp_hdr(skb)->fin)
  3712. return;
  3713. }
  3714. }
  3715. }
  3716. }
  3717. /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
  3718. * and tcp_collapse() them until all the queue is collapsed.
  3719. */
  3720. static void tcp_collapse_ofo_queue(struct sock *sk)
  3721. {
  3722. struct tcp_sock *tp = tcp_sk(sk);
  3723. struct sk_buff *skb = skb_peek(&tp->out_of_order_queue);
  3724. struct sk_buff *head;
  3725. u32 start, end;
  3726. if (skb == NULL)
  3727. return;
  3728. start = TCP_SKB_CB(skb)->seq;
  3729. end = TCP_SKB_CB(skb)->end_seq;
  3730. head = skb;
  3731. for (;;) {
  3732. skb = skb->next;
  3733. /* Segment is terminated when we see gap or when
  3734. * we are at the end of all the queue. */
  3735. if (skb == (struct sk_buff *)&tp->out_of_order_queue ||
  3736. after(TCP_SKB_CB(skb)->seq, end) ||
  3737. before(TCP_SKB_CB(skb)->end_seq, start)) {
  3738. tcp_collapse(sk, &tp->out_of_order_queue,
  3739. head, skb, start, end);
  3740. head = skb;
  3741. if (skb == (struct sk_buff *)&tp->out_of_order_queue)
  3742. break;
  3743. /* Start new segment */
  3744. start = TCP_SKB_CB(skb)->seq;
  3745. end = TCP_SKB_CB(skb)->end_seq;
  3746. } else {
  3747. if (before(TCP_SKB_CB(skb)->seq, start))
  3748. start = TCP_SKB_CB(skb)->seq;
  3749. if (after(TCP_SKB_CB(skb)->end_seq, end))
  3750. end = TCP_SKB_CB(skb)->end_seq;
  3751. }
  3752. }
  3753. }
  3754. /*
  3755. * Purge the out-of-order queue.
  3756. * Return true if queue was pruned.
  3757. */
  3758. static int tcp_prune_ofo_queue(struct sock *sk)
  3759. {
  3760. struct tcp_sock *tp = tcp_sk(sk);
  3761. int res = 0;
  3762. if (!skb_queue_empty(&tp->out_of_order_queue)) {
  3763. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_OFOPRUNED);
  3764. __skb_queue_purge(&tp->out_of_order_queue);
  3765. /* Reset SACK state. A conforming SACK implementation will
  3766. * do the same at a timeout based retransmit. When a connection
  3767. * is in a sad state like this, we care only about integrity
  3768. * of the connection not performance.
  3769. */
  3770. if (tp->rx_opt.sack_ok)
  3771. tcp_sack_reset(&tp->rx_opt);
  3772. sk_mem_reclaim(sk);
  3773. res = 1;
  3774. }
  3775. return res;
  3776. }
  3777. /* Reduce allocated memory if we can, trying to get
  3778. * the socket within its memory limits again.
  3779. *
  3780. * Return less than zero if we should start dropping frames
  3781. * until the socket owning process reads some of the data
  3782. * to stabilize the situation.
  3783. */
  3784. static int tcp_prune_queue(struct sock *sk)
  3785. {
  3786. struct tcp_sock *tp = tcp_sk(sk);
  3787. SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
  3788. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PRUNECALLED);
  3789. if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
  3790. tcp_clamp_window(sk);
  3791. else if (tcp_memory_pressure)
  3792. tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
  3793. tcp_collapse_ofo_queue(sk);
  3794. tcp_collapse(sk, &sk->sk_receive_queue,
  3795. sk->sk_receive_queue.next,
  3796. (struct sk_buff *)&sk->sk_receive_queue,
  3797. tp->copied_seq, tp->rcv_nxt);
  3798. sk_mem_reclaim(sk);
  3799. if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
  3800. return 0;
  3801. /* Collapsing did not help, destructive actions follow.
  3802. * This must not ever occur. */
  3803. tcp_prune_ofo_queue(sk);
  3804. if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
  3805. return 0;
  3806. /* If we are really being abused, tell the caller to silently
  3807. * drop receive data on the floor. It will get retransmitted
  3808. * and hopefully then we'll have sufficient space.
  3809. */
  3810. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_RCVPRUNED);
  3811. /* Massive buffer overcommit. */
  3812. tp->pred_flags = 0;
  3813. return -1;
  3814. }
  3815. /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
  3816. * As additional protections, we do not touch cwnd in retransmission phases,
  3817. * and if application hit its sndbuf limit recently.
  3818. */
  3819. void tcp_cwnd_application_limited(struct sock *sk)
  3820. {
  3821. struct tcp_sock *tp = tcp_sk(sk);
  3822. if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
  3823. sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
  3824. /* Limited by application or receiver window. */
  3825. u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
  3826. u32 win_used = max(tp->snd_cwnd_used, init_win);
  3827. if (win_used < tp->snd_cwnd) {
  3828. tp->snd_ssthresh = tcp_current_ssthresh(sk);
  3829. tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
  3830. }
  3831. tp->snd_cwnd_used = 0;
  3832. }
  3833. tp->snd_cwnd_stamp = tcp_time_stamp;
  3834. }
  3835. static int tcp_should_expand_sndbuf(struct sock *sk)
  3836. {
  3837. struct tcp_sock *tp = tcp_sk(sk);
  3838. /* If the user specified a specific send buffer setting, do
  3839. * not modify it.
  3840. */
  3841. if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
  3842. return 0;
  3843. /* If we are under global TCP memory pressure, do not expand. */
  3844. if (tcp_memory_pressure)
  3845. return 0;
  3846. /* If we are under soft global TCP memory pressure, do not expand. */
  3847. if (atomic_read(&tcp_memory_allocated) >= sysctl_tcp_mem[0])
  3848. return 0;
  3849. /* If we filled the congestion window, do not expand. */
  3850. if (tp->packets_out >= tp->snd_cwnd)
  3851. return 0;
  3852. return 1;
  3853. }
  3854. /* When incoming ACK allowed to free some skb from write_queue,
  3855. * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
  3856. * on the exit from tcp input handler.
  3857. *
  3858. * PROBLEM: sndbuf expansion does not work well with largesend.
  3859. */
  3860. static void tcp_new_space(struct sock *sk)
  3861. {
  3862. struct tcp_sock *tp = tcp_sk(sk);
  3863. if (tcp_should_expand_sndbuf(sk)) {
  3864. int sndmem = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
  3865. MAX_TCP_HEADER + 16 + sizeof(struct sk_buff),
  3866. demanded = max_t(unsigned int, tp->snd_cwnd,
  3867. tp->reordering + 1);
  3868. sndmem *= 2 * demanded;
  3869. if (sndmem > sk->sk_sndbuf)
  3870. sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
  3871. tp->snd_cwnd_stamp = tcp_time_stamp;
  3872. }
  3873. sk->sk_write_space(sk);
  3874. }
  3875. static void tcp_check_space(struct sock *sk)
  3876. {
  3877. if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
  3878. sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
  3879. if (sk->sk_socket &&
  3880. test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
  3881. tcp_new_space(sk);
  3882. }
  3883. }
  3884. static inline void tcp_data_snd_check(struct sock *sk)
  3885. {
  3886. tcp_push_pending_frames(sk);
  3887. tcp_check_space(sk);
  3888. }
  3889. /*
  3890. * Check if sending an ack is needed.
  3891. */
  3892. static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
  3893. {
  3894. struct tcp_sock *tp = tcp_sk(sk);
  3895. /* More than one full frame received... */
  3896. if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss
  3897. /* ... and right edge of window advances far enough.
  3898. * (tcp_recvmsg() will send ACK otherwise). Or...
  3899. */
  3900. && __tcp_select_window(sk) >= tp->rcv_wnd) ||
  3901. /* We ACK each frame or... */
  3902. tcp_in_quickack_mode(sk) ||
  3903. /* We have out of order data. */
  3904. (ofo_possible && skb_peek(&tp->out_of_order_queue))) {
  3905. /* Then ack it now */
  3906. tcp_send_ack(sk);
  3907. } else {
  3908. /* Else, send delayed ack. */
  3909. tcp_send_delayed_ack(sk);
  3910. }
  3911. }
  3912. static inline void tcp_ack_snd_check(struct sock *sk)
  3913. {
  3914. if (!inet_csk_ack_scheduled(sk)) {
  3915. /* We sent a data segment already. */
  3916. return;
  3917. }
  3918. __tcp_ack_snd_check(sk, 1);
  3919. }
  3920. /*
  3921. * This routine is only called when we have urgent data
  3922. * signaled. Its the 'slow' part of tcp_urg. It could be
  3923. * moved inline now as tcp_urg is only called from one
  3924. * place. We handle URGent data wrong. We have to - as
  3925. * BSD still doesn't use the correction from RFC961.
  3926. * For 1003.1g we should support a new option TCP_STDURG to permit
  3927. * either form (or just set the sysctl tcp_stdurg).
  3928. */
  3929. static void tcp_check_urg(struct sock *sk, struct tcphdr *th)
  3930. {
  3931. struct tcp_sock *tp = tcp_sk(sk);
  3932. u32 ptr = ntohs(th->urg_ptr);
  3933. if (ptr && !sysctl_tcp_stdurg)
  3934. ptr--;
  3935. ptr += ntohl(th->seq);
  3936. /* Ignore urgent data that we've already seen and read. */
  3937. if (after(tp->copied_seq, ptr))
  3938. return;
  3939. /* Do not replay urg ptr.
  3940. *
  3941. * NOTE: interesting situation not covered by specs.
  3942. * Misbehaving sender may send urg ptr, pointing to segment,
  3943. * which we already have in ofo queue. We are not able to fetch
  3944. * such data and will stay in TCP_URG_NOTYET until will be eaten
  3945. * by recvmsg(). Seems, we are not obliged to handle such wicked
  3946. * situations. But it is worth to think about possibility of some
  3947. * DoSes using some hypothetical application level deadlock.
  3948. */
  3949. if (before(ptr, tp->rcv_nxt))
  3950. return;
  3951. /* Do we already have a newer (or duplicate) urgent pointer? */
  3952. if (tp->urg_data && !after(ptr, tp->urg_seq))
  3953. return;
  3954. /* Tell the world about our new urgent pointer. */
  3955. sk_send_sigurg(sk);
  3956. /* We may be adding urgent data when the last byte read was
  3957. * urgent. To do this requires some care. We cannot just ignore
  3958. * tp->copied_seq since we would read the last urgent byte again
  3959. * as data, nor can we alter copied_seq until this data arrives
  3960. * or we break the semantics of SIOCATMARK (and thus sockatmark())
  3961. *
  3962. * NOTE. Double Dutch. Rendering to plain English: author of comment
  3963. * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB);
  3964. * and expect that both A and B disappear from stream. This is _wrong_.
  3965. * Though this happens in BSD with high probability, this is occasional.
  3966. * Any application relying on this is buggy. Note also, that fix "works"
  3967. * only in this artificial test. Insert some normal data between A and B and we will
  3968. * decline of BSD again. Verdict: it is better to remove to trap
  3969. * buggy users.
  3970. */
  3971. if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
  3972. !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
  3973. struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
  3974. tp->copied_seq++;
  3975. if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
  3976. __skb_unlink(skb, &sk->sk_receive_queue);
  3977. __kfree_skb(skb);
  3978. }
  3979. }
  3980. tp->urg_data = TCP_URG_NOTYET;
  3981. tp->urg_seq = ptr;
  3982. /* Disable header prediction. */
  3983. tp->pred_flags = 0;
  3984. }
  3985. /* This is the 'fast' part of urgent handling. */
  3986. static void tcp_urg(struct sock *sk, struct sk_buff *skb, struct tcphdr *th)
  3987. {
  3988. struct tcp_sock *tp = tcp_sk(sk);
  3989. /* Check if we get a new urgent pointer - normally not. */
  3990. if (th->urg)
  3991. tcp_check_urg(sk, th);
  3992. /* Do we wait for any urgent data? - normally not... */
  3993. if (tp->urg_data == TCP_URG_NOTYET) {
  3994. u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
  3995. th->syn;
  3996. /* Is the urgent pointer pointing into this packet? */
  3997. if (ptr < skb->len) {
  3998. u8 tmp;
  3999. if (skb_copy_bits(skb, ptr, &tmp, 1))
  4000. BUG();
  4001. tp->urg_data = TCP_URG_VALID | tmp;
  4002. if (!sock_flag(sk, SOCK_DEAD))
  4003. sk->sk_data_ready(sk, 0);
  4004. }
  4005. }
  4006. }
  4007. static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
  4008. {
  4009. struct tcp_sock *tp = tcp_sk(sk);
  4010. int chunk = skb->len - hlen;
  4011. int err;
  4012. local_bh_enable();
  4013. if (skb_csum_unnecessary(skb))
  4014. err = skb_copy_datagram_iovec(skb, hlen, tp->ucopy.iov, chunk);
  4015. else
  4016. err = skb_copy_and_csum_datagram_iovec(skb, hlen,
  4017. tp->ucopy.iov);
  4018. if (!err) {
  4019. tp->ucopy.len -= chunk;
  4020. tp->copied_seq += chunk;
  4021. tcp_rcv_space_adjust(sk);
  4022. }
  4023. local_bh_disable();
  4024. return err;
  4025. }
  4026. static __sum16 __tcp_checksum_complete_user(struct sock *sk,
  4027. struct sk_buff *skb)
  4028. {
  4029. __sum16 result;
  4030. if (sock_owned_by_user(sk)) {
  4031. local_bh_enable();
  4032. result = __tcp_checksum_complete(skb);
  4033. local_bh_disable();
  4034. } else {
  4035. result = __tcp_checksum_complete(skb);
  4036. }
  4037. return result;
  4038. }
  4039. static inline int tcp_checksum_complete_user(struct sock *sk,
  4040. struct sk_buff *skb)
  4041. {
  4042. return !skb_csum_unnecessary(skb) &&
  4043. __tcp_checksum_complete_user(sk, skb);
  4044. }
  4045. #ifdef CONFIG_NET_DMA
  4046. static int tcp_dma_try_early_copy(struct sock *sk, struct sk_buff *skb,
  4047. int hlen)
  4048. {
  4049. struct tcp_sock *tp = tcp_sk(sk);
  4050. int chunk = skb->len - hlen;
  4051. int dma_cookie;
  4052. int copied_early = 0;
  4053. if (tp->ucopy.wakeup)
  4054. return 0;
  4055. if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
  4056. tp->ucopy.dma_chan = get_softnet_dma();
  4057. if (tp->ucopy.dma_chan && skb_csum_unnecessary(skb)) {
  4058. dma_cookie = dma_skb_copy_datagram_iovec(tp->ucopy.dma_chan,
  4059. skb, hlen,
  4060. tp->ucopy.iov, chunk,
  4061. tp->ucopy.pinned_list);
  4062. if (dma_cookie < 0)
  4063. goto out;
  4064. tp->ucopy.dma_cookie = dma_cookie;
  4065. copied_early = 1;
  4066. tp->ucopy.len -= chunk;
  4067. tp->copied_seq += chunk;
  4068. tcp_rcv_space_adjust(sk);
  4069. if ((tp->ucopy.len == 0) ||
  4070. (tcp_flag_word(tcp_hdr(skb)) & TCP_FLAG_PSH) ||
  4071. (atomic_read(&sk->sk_rmem_alloc) > (sk->sk_rcvbuf >> 1))) {
  4072. tp->ucopy.wakeup = 1;
  4073. sk->sk_data_ready(sk, 0);
  4074. }
  4075. } else if (chunk > 0) {
  4076. tp->ucopy.wakeup = 1;
  4077. sk->sk_data_ready(sk, 0);
  4078. }
  4079. out:
  4080. return copied_early;
  4081. }
  4082. #endif /* CONFIG_NET_DMA */
  4083. /* Does PAWS and seqno based validation of an incoming segment, flags will
  4084. * play significant role here.
  4085. */
  4086. static int tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
  4087. struct tcphdr *th, int syn_inerr)
  4088. {
  4089. struct tcp_sock *tp = tcp_sk(sk);
  4090. /* RFC1323: H1. Apply PAWS check first. */
  4091. if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
  4092. tcp_paws_discard(sk, skb)) {
  4093. if (!th->rst) {
  4094. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
  4095. tcp_send_dupack(sk, skb);
  4096. goto discard;
  4097. }
  4098. /* Reset is accepted even if it did not pass PAWS. */
  4099. }
  4100. /* Step 1: check sequence number */
  4101. if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
  4102. /* RFC793, page 37: "In all states except SYN-SENT, all reset
  4103. * (RST) segments are validated by checking their SEQ-fields."
  4104. * And page 69: "If an incoming segment is not acceptable,
  4105. * an acknowledgment should be sent in reply (unless the RST
  4106. * bit is set, if so drop the segment and return)".
  4107. */
  4108. if (!th->rst)
  4109. tcp_send_dupack(sk, skb);
  4110. goto discard;
  4111. }
  4112. /* Step 2: check RST bit */
  4113. if (th->rst) {
  4114. tcp_reset(sk);
  4115. goto discard;
  4116. }
  4117. /* ts_recent update must be made after we are sure that the packet
  4118. * is in window.
  4119. */
  4120. tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
  4121. /* step 3: check security and precedence [ignored] */
  4122. /* step 4: Check for a SYN in window. */
  4123. if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
  4124. if (syn_inerr)
  4125. TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
  4126. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONSYN);
  4127. tcp_reset(sk);
  4128. return -1;
  4129. }
  4130. return 1;
  4131. discard:
  4132. __kfree_skb(skb);
  4133. return 0;
  4134. }
  4135. /*
  4136. * TCP receive function for the ESTABLISHED state.
  4137. *
  4138. * It is split into a fast path and a slow path. The fast path is
  4139. * disabled when:
  4140. * - A zero window was announced from us - zero window probing
  4141. * is only handled properly in the slow path.
  4142. * - Out of order segments arrived.
  4143. * - Urgent data is expected.
  4144. * - There is no buffer space left
  4145. * - Unexpected TCP flags/window values/header lengths are received
  4146. * (detected by checking the TCP header against pred_flags)
  4147. * - Data is sent in both directions. Fast path only supports pure senders
  4148. * or pure receivers (this means either the sequence number or the ack
  4149. * value must stay constant)
  4150. * - Unexpected TCP option.
  4151. *
  4152. * When these conditions are not satisfied it drops into a standard
  4153. * receive procedure patterned after RFC793 to handle all cases.
  4154. * The first three cases are guaranteed by proper pred_flags setting,
  4155. * the rest is checked inline. Fast processing is turned on in
  4156. * tcp_data_queue when everything is OK.
  4157. */
  4158. int tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
  4159. struct tcphdr *th, unsigned len)
  4160. {
  4161. struct tcp_sock *tp = tcp_sk(sk);
  4162. int res;
  4163. /*
  4164. * Header prediction.
  4165. * The code loosely follows the one in the famous
  4166. * "30 instruction TCP receive" Van Jacobson mail.
  4167. *
  4168. * Van's trick is to deposit buffers into socket queue
  4169. * on a device interrupt, to call tcp_recv function
  4170. * on the receive process context and checksum and copy
  4171. * the buffer to user space. smart...
  4172. *
  4173. * Our current scheme is not silly either but we take the
  4174. * extra cost of the net_bh soft interrupt processing...
  4175. * We do checksum and copy also but from device to kernel.
  4176. */
  4177. tp->rx_opt.saw_tstamp = 0;
  4178. /* pred_flags is 0xS?10 << 16 + snd_wnd
  4179. * if header_prediction is to be made
  4180. * 'S' will always be tp->tcp_header_len >> 2
  4181. * '?' will be 0 for the fast path, otherwise pred_flags is 0 to
  4182. * turn it off (when there are holes in the receive
  4183. * space for instance)
  4184. * PSH flag is ignored.
  4185. */
  4186. if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
  4187. TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
  4188. int tcp_header_len = tp->tcp_header_len;
  4189. /* Timestamp header prediction: tcp_header_len
  4190. * is automatically equal to th->doff*4 due to pred_flags
  4191. * match.
  4192. */
  4193. /* Check timestamp */
  4194. if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
  4195. /* No? Slow path! */
  4196. if (!tcp_parse_aligned_timestamp(tp, th))
  4197. goto slow_path;
  4198. /* If PAWS failed, check it more carefully in slow path */
  4199. if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
  4200. goto slow_path;
  4201. /* DO NOT update ts_recent here, if checksum fails
  4202. * and timestamp was corrupted part, it will result
  4203. * in a hung connection since we will drop all
  4204. * future packets due to the PAWS test.
  4205. */
  4206. }
  4207. if (len <= tcp_header_len) {
  4208. /* Bulk data transfer: sender */
  4209. if (len == tcp_header_len) {
  4210. /* Predicted packet is in window by definition.
  4211. * seq == rcv_nxt and rcv_wup <= rcv_nxt.
  4212. * Hence, check seq<=rcv_wup reduces to:
  4213. */
  4214. if (tcp_header_len ==
  4215. (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
  4216. tp->rcv_nxt == tp->rcv_wup)
  4217. tcp_store_ts_recent(tp);
  4218. /* We know that such packets are checksummed
  4219. * on entry.
  4220. */
  4221. tcp_ack(sk, skb, 0);
  4222. __kfree_skb(skb);
  4223. tcp_data_snd_check(sk);
  4224. return 0;
  4225. } else { /* Header too small */
  4226. TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
  4227. goto discard;
  4228. }
  4229. } else {
  4230. int eaten = 0;
  4231. int copied_early = 0;
  4232. if (tp->copied_seq == tp->rcv_nxt &&
  4233. len - tcp_header_len <= tp->ucopy.len) {
  4234. #ifdef CONFIG_NET_DMA
  4235. if (tcp_dma_try_early_copy(sk, skb, tcp_header_len)) {
  4236. copied_early = 1;
  4237. eaten = 1;
  4238. }
  4239. #endif
  4240. if (tp->ucopy.task == current &&
  4241. sock_owned_by_user(sk) && !copied_early) {
  4242. __set_current_state(TASK_RUNNING);
  4243. if (!tcp_copy_to_iovec(sk, skb, tcp_header_len))
  4244. eaten = 1;
  4245. }
  4246. if (eaten) {
  4247. /* Predicted packet is in window by definition.
  4248. * seq == rcv_nxt and rcv_wup <= rcv_nxt.
  4249. * Hence, check seq<=rcv_wup reduces to:
  4250. */
  4251. if (tcp_header_len ==
  4252. (sizeof(struct tcphdr) +
  4253. TCPOLEN_TSTAMP_ALIGNED) &&
  4254. tp->rcv_nxt == tp->rcv_wup)
  4255. tcp_store_ts_recent(tp);
  4256. tcp_rcv_rtt_measure_ts(sk, skb);
  4257. __skb_pull(skb, tcp_header_len);
  4258. tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
  4259. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITSTOUSER);
  4260. }
  4261. if (copied_early)
  4262. tcp_cleanup_rbuf(sk, skb->len);
  4263. }
  4264. if (!eaten) {
  4265. if (tcp_checksum_complete_user(sk, skb))
  4266. goto csum_error;
  4267. /* Predicted packet is in window by definition.
  4268. * seq == rcv_nxt and rcv_wup <= rcv_nxt.
  4269. * Hence, check seq<=rcv_wup reduces to:
  4270. */
  4271. if (tcp_header_len ==
  4272. (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
  4273. tp->rcv_nxt == tp->rcv_wup)
  4274. tcp_store_ts_recent(tp);
  4275. tcp_rcv_rtt_measure_ts(sk, skb);
  4276. if ((int)skb->truesize > sk->sk_forward_alloc)
  4277. goto step5;
  4278. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITS);
  4279. /* Bulk data transfer: receiver */
  4280. __skb_pull(skb, tcp_header_len);
  4281. __skb_queue_tail(&sk->sk_receive_queue, skb);
  4282. skb_set_owner_r(skb, sk);
  4283. tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
  4284. }
  4285. tcp_event_data_recv(sk, skb);
  4286. if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
  4287. /* Well, only one small jumplet in fast path... */
  4288. tcp_ack(sk, skb, FLAG_DATA);
  4289. tcp_data_snd_check(sk);
  4290. if (!inet_csk_ack_scheduled(sk))
  4291. goto no_ack;
  4292. }
  4293. __tcp_ack_snd_check(sk, 0);
  4294. no_ack:
  4295. #ifdef CONFIG_NET_DMA
  4296. if (copied_early)
  4297. __skb_queue_tail(&sk->sk_async_wait_queue, skb);
  4298. else
  4299. #endif
  4300. if (eaten)
  4301. __kfree_skb(skb);
  4302. else
  4303. sk->sk_data_ready(sk, 0);
  4304. return 0;
  4305. }
  4306. }
  4307. slow_path:
  4308. if (len < (th->doff << 2) || tcp_checksum_complete_user(sk, skb))
  4309. goto csum_error;
  4310. /*
  4311. * Standard slow path.
  4312. */
  4313. res = tcp_validate_incoming(sk, skb, th, 1);
  4314. if (res <= 0)
  4315. return -res;
  4316. step5:
  4317. if (th->ack)
  4318. tcp_ack(sk, skb, FLAG_SLOWPATH);
  4319. tcp_rcv_rtt_measure_ts(sk, skb);
  4320. /* Process urgent data. */
  4321. tcp_urg(sk, skb, th);
  4322. /* step 7: process the segment text */
  4323. tcp_data_queue(sk, skb);
  4324. tcp_data_snd_check(sk);
  4325. tcp_ack_snd_check(sk);
  4326. return 0;
  4327. csum_error:
  4328. TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
  4329. discard:
  4330. __kfree_skb(skb);
  4331. return 0;
  4332. }
  4333. static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
  4334. struct tcphdr *th, unsigned len)
  4335. {
  4336. struct tcp_sock *tp = tcp_sk(sk);
  4337. struct inet_connection_sock *icsk = inet_csk(sk);
  4338. int saved_clamp = tp->rx_opt.mss_clamp;
  4339. tcp_parse_options(skb, &tp->rx_opt, 0);
  4340. if (th->ack) {
  4341. /* rfc793:
  4342. * "If the state is SYN-SENT then
  4343. * first check the ACK bit
  4344. * If the ACK bit is set
  4345. * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
  4346. * a reset (unless the RST bit is set, if so drop
  4347. * the segment and return)"
  4348. *
  4349. * We do not send data with SYN, so that RFC-correct
  4350. * test reduces to:
  4351. */
  4352. if (TCP_SKB_CB(skb)->ack_seq != tp->snd_nxt)
  4353. goto reset_and_undo;
  4354. if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
  4355. !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
  4356. tcp_time_stamp)) {
  4357. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSACTIVEREJECTED);
  4358. goto reset_and_undo;
  4359. }
  4360. /* Now ACK is acceptable.
  4361. *
  4362. * "If the RST bit is set
  4363. * If the ACK was acceptable then signal the user "error:
  4364. * connection reset", drop the segment, enter CLOSED state,
  4365. * delete TCB, and return."
  4366. */
  4367. if (th->rst) {
  4368. tcp_reset(sk);
  4369. goto discard;
  4370. }
  4371. /* rfc793:
  4372. * "fifth, if neither of the SYN or RST bits is set then
  4373. * drop the segment and return."
  4374. *
  4375. * See note below!
  4376. * --ANK(990513)
  4377. */
  4378. if (!th->syn)
  4379. goto discard_and_undo;
  4380. /* rfc793:
  4381. * "If the SYN bit is on ...
  4382. * are acceptable then ...
  4383. * (our SYN has been ACKed), change the connection
  4384. * state to ESTABLISHED..."
  4385. */
  4386. TCP_ECN_rcv_synack(tp, th);
  4387. tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
  4388. tcp_ack(sk, skb, FLAG_SLOWPATH);
  4389. /* Ok.. it's good. Set up sequence numbers and
  4390. * move to established.
  4391. */
  4392. tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
  4393. tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
  4394. /* RFC1323: The window in SYN & SYN/ACK segments is
  4395. * never scaled.
  4396. */
  4397. tp->snd_wnd = ntohs(th->window);
  4398. tcp_init_wl(tp, TCP_SKB_CB(skb)->ack_seq, TCP_SKB_CB(skb)->seq);
  4399. if (!tp->rx_opt.wscale_ok) {
  4400. tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
  4401. tp->window_clamp = min(tp->window_clamp, 65535U);
  4402. }
  4403. if (tp->rx_opt.saw_tstamp) {
  4404. tp->rx_opt.tstamp_ok = 1;
  4405. tp->tcp_header_len =
  4406. sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
  4407. tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
  4408. tcp_store_ts_recent(tp);
  4409. } else {
  4410. tp->tcp_header_len = sizeof(struct tcphdr);
  4411. }
  4412. if (tcp_is_sack(tp) && sysctl_tcp_fack)
  4413. tcp_enable_fack(tp);
  4414. tcp_mtup_init(sk);
  4415. tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
  4416. tcp_initialize_rcv_mss(sk);
  4417. /* Remember, tcp_poll() does not lock socket!
  4418. * Change state from SYN-SENT only after copied_seq
  4419. * is initialized. */
  4420. tp->copied_seq = tp->rcv_nxt;
  4421. smp_mb();
  4422. tcp_set_state(sk, TCP_ESTABLISHED);
  4423. security_inet_conn_established(sk, skb);
  4424. /* Make sure socket is routed, for correct metrics. */
  4425. icsk->icsk_af_ops->rebuild_header(sk);
  4426. tcp_init_metrics(sk);
  4427. tcp_init_congestion_control(sk);
  4428. /* Prevent spurious tcp_cwnd_restart() on first data
  4429. * packet.
  4430. */
  4431. tp->lsndtime = tcp_time_stamp;
  4432. tcp_init_buffer_space(sk);
  4433. if (sock_flag(sk, SOCK_KEEPOPEN))
  4434. inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
  4435. if (!tp->rx_opt.snd_wscale)
  4436. __tcp_fast_path_on(tp, tp->snd_wnd);
  4437. else
  4438. tp->pred_flags = 0;
  4439. if (!sock_flag(sk, SOCK_DEAD)) {
  4440. sk->sk_state_change(sk);
  4441. sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
  4442. }
  4443. if (sk->sk_write_pending ||
  4444. icsk->icsk_accept_queue.rskq_defer_accept ||
  4445. icsk->icsk_ack.pingpong) {
  4446. /* Save one ACK. Data will be ready after
  4447. * several ticks, if write_pending is set.
  4448. *
  4449. * It may be deleted, but with this feature tcpdumps
  4450. * look so _wonderfully_ clever, that I was not able
  4451. * to stand against the temptation 8) --ANK
  4452. */
  4453. inet_csk_schedule_ack(sk);
  4454. icsk->icsk_ack.lrcvtime = tcp_time_stamp;
  4455. icsk->icsk_ack.ato = TCP_ATO_MIN;
  4456. tcp_incr_quickack(sk);
  4457. tcp_enter_quickack_mode(sk);
  4458. inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
  4459. TCP_DELACK_MAX, TCP_RTO_MAX);
  4460. discard:
  4461. __kfree_skb(skb);
  4462. return 0;
  4463. } else {
  4464. tcp_send_ack(sk);
  4465. }
  4466. return -1;
  4467. }
  4468. /* No ACK in the segment */
  4469. if (th->rst) {
  4470. /* rfc793:
  4471. * "If the RST bit is set
  4472. *
  4473. * Otherwise (no ACK) drop the segment and return."
  4474. */
  4475. goto discard_and_undo;
  4476. }
  4477. /* PAWS check. */
  4478. if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
  4479. tcp_paws_check(&tp->rx_opt, 0))
  4480. goto discard_and_undo;
  4481. if (th->syn) {
  4482. /* We see SYN without ACK. It is attempt of
  4483. * simultaneous connect with crossed SYNs.
  4484. * Particularly, it can be connect to self.
  4485. */
  4486. tcp_set_state(sk, TCP_SYN_RECV);
  4487. if (tp->rx_opt.saw_tstamp) {
  4488. tp->rx_opt.tstamp_ok = 1;
  4489. tcp_store_ts_recent(tp);
  4490. tp->tcp_header_len =
  4491. sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
  4492. } else {
  4493. tp->tcp_header_len = sizeof(struct tcphdr);
  4494. }
  4495. tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
  4496. tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
  4497. /* RFC1323: The window in SYN & SYN/ACK segments is
  4498. * never scaled.
  4499. */
  4500. tp->snd_wnd = ntohs(th->window);
  4501. tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
  4502. tp->max_window = tp->snd_wnd;
  4503. TCP_ECN_rcv_syn(tp, th);
  4504. tcp_mtup_init(sk);
  4505. tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
  4506. tcp_initialize_rcv_mss(sk);
  4507. tcp_send_synack(sk);
  4508. #if 0
  4509. /* Note, we could accept data and URG from this segment.
  4510. * There are no obstacles to make this.
  4511. *
  4512. * However, if we ignore data in ACKless segments sometimes,
  4513. * we have no reasons to accept it sometimes.
  4514. * Also, seems the code doing it in step6 of tcp_rcv_state_process
  4515. * is not flawless. So, discard packet for sanity.
  4516. * Uncomment this return to process the data.
  4517. */
  4518. return -1;
  4519. #else
  4520. goto discard;
  4521. #endif
  4522. }
  4523. /* "fifth, if neither of the SYN or RST bits is set then
  4524. * drop the segment and return."
  4525. */
  4526. discard_and_undo:
  4527. tcp_clear_options(&tp->rx_opt);
  4528. tp->rx_opt.mss_clamp = saved_clamp;
  4529. goto discard;
  4530. reset_and_undo:
  4531. tcp_clear_options(&tp->rx_opt);
  4532. tp->rx_opt.mss_clamp = saved_clamp;
  4533. return 1;
  4534. }
  4535. /*
  4536. * This function implements the receiving procedure of RFC 793 for
  4537. * all states except ESTABLISHED and TIME_WAIT.
  4538. * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
  4539. * address independent.
  4540. */
  4541. int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb,
  4542. struct tcphdr *th, unsigned len)
  4543. {
  4544. struct tcp_sock *tp = tcp_sk(sk);
  4545. struct inet_connection_sock *icsk = inet_csk(sk);
  4546. int queued = 0;
  4547. int res;
  4548. tp->rx_opt.saw_tstamp = 0;
  4549. switch (sk->sk_state) {
  4550. case TCP_CLOSE:
  4551. goto discard;
  4552. case TCP_LISTEN:
  4553. if (th->ack)
  4554. return 1;
  4555. if (th->rst)
  4556. goto discard;
  4557. if (th->syn) {
  4558. if (icsk->icsk_af_ops->conn_request(sk, skb) < 0)
  4559. return 1;
  4560. /* Now we have several options: In theory there is
  4561. * nothing else in the frame. KA9Q has an option to
  4562. * send data with the syn, BSD accepts data with the
  4563. * syn up to the [to be] advertised window and
  4564. * Solaris 2.1 gives you a protocol error. For now
  4565. * we just ignore it, that fits the spec precisely
  4566. * and avoids incompatibilities. It would be nice in
  4567. * future to drop through and process the data.
  4568. *
  4569. * Now that TTCP is starting to be used we ought to
  4570. * queue this data.
  4571. * But, this leaves one open to an easy denial of
  4572. * service attack, and SYN cookies can't defend
  4573. * against this problem. So, we drop the data
  4574. * in the interest of security over speed unless
  4575. * it's still in use.
  4576. */
  4577. kfree_skb(skb);
  4578. return 0;
  4579. }
  4580. goto discard;
  4581. case TCP_SYN_SENT:
  4582. queued = tcp_rcv_synsent_state_process(sk, skb, th, len);
  4583. if (queued >= 0)
  4584. return queued;
  4585. /* Do step6 onward by hand. */
  4586. tcp_urg(sk, skb, th);
  4587. __kfree_skb(skb);
  4588. tcp_data_snd_check(sk);
  4589. return 0;
  4590. }
  4591. res = tcp_validate_incoming(sk, skb, th, 0);
  4592. if (res <= 0)
  4593. return -res;
  4594. /* step 5: check the ACK field */
  4595. if (th->ack) {
  4596. int acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH);
  4597. switch (sk->sk_state) {
  4598. case TCP_SYN_RECV:
  4599. if (acceptable) {
  4600. tp->copied_seq = tp->rcv_nxt;
  4601. smp_mb();
  4602. tcp_set_state(sk, TCP_ESTABLISHED);
  4603. sk->sk_state_change(sk);
  4604. /* Note, that this wakeup is only for marginal
  4605. * crossed SYN case. Passively open sockets
  4606. * are not waked up, because sk->sk_sleep ==
  4607. * NULL and sk->sk_socket == NULL.
  4608. */
  4609. if (sk->sk_socket)
  4610. sk_wake_async(sk,
  4611. SOCK_WAKE_IO, POLL_OUT);
  4612. tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
  4613. tp->snd_wnd = ntohs(th->window) <<
  4614. tp->rx_opt.snd_wscale;
  4615. tcp_init_wl(tp, TCP_SKB_CB(skb)->ack_seq,
  4616. TCP_SKB_CB(skb)->seq);
  4617. /* tcp_ack considers this ACK as duplicate
  4618. * and does not calculate rtt.
  4619. * Fix it at least with timestamps.
  4620. */
  4621. if (tp->rx_opt.saw_tstamp &&
  4622. tp->rx_opt.rcv_tsecr && !tp->srtt)
  4623. tcp_ack_saw_tstamp(sk, 0);
  4624. if (tp->rx_opt.tstamp_ok)
  4625. tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
  4626. /* Make sure socket is routed, for
  4627. * correct metrics.
  4628. */
  4629. icsk->icsk_af_ops->rebuild_header(sk);
  4630. tcp_init_metrics(sk);
  4631. tcp_init_congestion_control(sk);
  4632. /* Prevent spurious tcp_cwnd_restart() on
  4633. * first data packet.
  4634. */
  4635. tp->lsndtime = tcp_time_stamp;
  4636. tcp_mtup_init(sk);
  4637. tcp_initialize_rcv_mss(sk);
  4638. tcp_init_buffer_space(sk);
  4639. tcp_fast_path_on(tp);
  4640. } else {
  4641. return 1;
  4642. }
  4643. break;
  4644. case TCP_FIN_WAIT1:
  4645. if (tp->snd_una == tp->write_seq) {
  4646. tcp_set_state(sk, TCP_FIN_WAIT2);
  4647. sk->sk_shutdown |= SEND_SHUTDOWN;
  4648. dst_confirm(sk->sk_dst_cache);
  4649. if (!sock_flag(sk, SOCK_DEAD))
  4650. /* Wake up lingering close() */
  4651. sk->sk_state_change(sk);
  4652. else {
  4653. int tmo;
  4654. if (tp->linger2 < 0 ||
  4655. (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
  4656. after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) {
  4657. tcp_done(sk);
  4658. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
  4659. return 1;
  4660. }
  4661. tmo = tcp_fin_time(sk);
  4662. if (tmo > TCP_TIMEWAIT_LEN) {
  4663. inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
  4664. } else if (th->fin || sock_owned_by_user(sk)) {
  4665. /* Bad case. We could lose such FIN otherwise.
  4666. * It is not a big problem, but it looks confusing
  4667. * and not so rare event. We still can lose it now,
  4668. * if it spins in bh_lock_sock(), but it is really
  4669. * marginal case.
  4670. */
  4671. inet_csk_reset_keepalive_timer(sk, tmo);
  4672. } else {
  4673. tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
  4674. goto discard;
  4675. }
  4676. }
  4677. }
  4678. break;
  4679. case TCP_CLOSING:
  4680. if (tp->snd_una == tp->write_seq) {
  4681. tcp_time_wait(sk, TCP_TIME_WAIT, 0);
  4682. goto discard;
  4683. }
  4684. break;
  4685. case TCP_LAST_ACK:
  4686. if (tp->snd_una == tp->write_seq) {
  4687. tcp_update_metrics(sk);
  4688. tcp_done(sk);
  4689. goto discard;
  4690. }
  4691. break;
  4692. }
  4693. } else
  4694. goto discard;
  4695. /* step 6: check the URG bit */
  4696. tcp_urg(sk, skb, th);
  4697. /* step 7: process the segment text */
  4698. switch (sk->sk_state) {
  4699. case TCP_CLOSE_WAIT:
  4700. case TCP_CLOSING:
  4701. case TCP_LAST_ACK:
  4702. if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
  4703. break;
  4704. case TCP_FIN_WAIT1:
  4705. case TCP_FIN_WAIT2:
  4706. /* RFC 793 says to queue data in these states,
  4707. * RFC 1122 says we MUST send a reset.
  4708. * BSD 4.4 also does reset.
  4709. */
  4710. if (sk->sk_shutdown & RCV_SHUTDOWN) {
  4711. if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
  4712. after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
  4713. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
  4714. tcp_reset(sk);
  4715. return 1;
  4716. }
  4717. }
  4718. /* Fall through */
  4719. case TCP_ESTABLISHED:
  4720. tcp_data_queue(sk, skb);
  4721. queued = 1;
  4722. break;
  4723. }
  4724. /* tcp_data could move socket to TIME-WAIT */
  4725. if (sk->sk_state != TCP_CLOSE) {
  4726. tcp_data_snd_check(sk);
  4727. tcp_ack_snd_check(sk);
  4728. }
  4729. if (!queued) {
  4730. discard:
  4731. __kfree_skb(skb);
  4732. }
  4733. return 0;
  4734. }
  4735. EXPORT_SYMBOL(sysctl_tcp_ecn);
  4736. EXPORT_SYMBOL(sysctl_tcp_reordering);
  4737. EXPORT_SYMBOL(sysctl_tcp_adv_win_scale);
  4738. EXPORT_SYMBOL(tcp_parse_options);
  4739. #ifdef CONFIG_TCP_MD5SIG
  4740. EXPORT_SYMBOL(tcp_parse_md5sig_option);
  4741. #endif
  4742. EXPORT_SYMBOL(tcp_rcv_established);
  4743. EXPORT_SYMBOL(tcp_rcv_state_process);
  4744. EXPORT_SYMBOL(tcp_initialize_rcv_mss);