skge.c 101 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912
  1. /*
  2. * New driver for Marvell Yukon chipset and SysKonnect Gigabit
  3. * Ethernet adapters. Based on earlier sk98lin, e100 and
  4. * FreeBSD if_sk drivers.
  5. *
  6. * This driver intentionally does not support all the features
  7. * of the original driver such as link fail-over and link management because
  8. * those should be done at higher levels.
  9. *
  10. * Copyright (C) 2004, 2005 Stephen Hemminger <shemminger@osdl.org>
  11. *
  12. * This program is free software; you can redistribute it and/or modify
  13. * it under the terms of the GNU General Public License as published by
  14. * the Free Software Foundation; either version 2 of the License.
  15. *
  16. * This program is distributed in the hope that it will be useful,
  17. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  18. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  19. * GNU General Public License for more details.
  20. *
  21. * You should have received a copy of the GNU General Public License
  22. * along with this program; if not, write to the Free Software
  23. * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  24. */
  25. #include <linux/in.h>
  26. #include <linux/kernel.h>
  27. #include <linux/module.h>
  28. #include <linux/moduleparam.h>
  29. #include <linux/netdevice.h>
  30. #include <linux/etherdevice.h>
  31. #include <linux/ethtool.h>
  32. #include <linux/pci.h>
  33. #include <linux/if_vlan.h>
  34. #include <linux/ip.h>
  35. #include <linux/delay.h>
  36. #include <linux/crc32.h>
  37. #include <linux/dma-mapping.h>
  38. #include <linux/mii.h>
  39. #include <asm/irq.h>
  40. #include "skge.h"
  41. #define DRV_NAME "skge"
  42. #define DRV_VERSION "1.11"
  43. #define PFX DRV_NAME " "
  44. #define DEFAULT_TX_RING_SIZE 128
  45. #define DEFAULT_RX_RING_SIZE 512
  46. #define MAX_TX_RING_SIZE 1024
  47. #define TX_LOW_WATER (MAX_SKB_FRAGS + 1)
  48. #define MAX_RX_RING_SIZE 4096
  49. #define RX_COPY_THRESHOLD 128
  50. #define RX_BUF_SIZE 1536
  51. #define PHY_RETRIES 1000
  52. #define ETH_JUMBO_MTU 9000
  53. #define TX_WATCHDOG (5 * HZ)
  54. #define NAPI_WEIGHT 64
  55. #define BLINK_MS 250
  56. #define LINK_HZ (HZ/2)
  57. MODULE_DESCRIPTION("SysKonnect Gigabit Ethernet driver");
  58. MODULE_AUTHOR("Stephen Hemminger <shemminger@linux-foundation.org>");
  59. MODULE_LICENSE("GPL");
  60. MODULE_VERSION(DRV_VERSION);
  61. static const u32 default_msg
  62. = NETIF_MSG_DRV| NETIF_MSG_PROBE| NETIF_MSG_LINK
  63. | NETIF_MSG_IFUP| NETIF_MSG_IFDOWN;
  64. static int debug = -1; /* defaults above */
  65. module_param(debug, int, 0);
  66. MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
  67. static const struct pci_device_id skge_id_table[] = {
  68. { PCI_DEVICE(PCI_VENDOR_ID_3COM, PCI_DEVICE_ID_3COM_3C940) },
  69. { PCI_DEVICE(PCI_VENDOR_ID_3COM, PCI_DEVICE_ID_3COM_3C940B) },
  70. { PCI_DEVICE(PCI_VENDOR_ID_SYSKONNECT, PCI_DEVICE_ID_SYSKONNECT_GE) },
  71. { PCI_DEVICE(PCI_VENDOR_ID_SYSKONNECT, PCI_DEVICE_ID_SYSKONNECT_YU) },
  72. { PCI_DEVICE(PCI_VENDOR_ID_DLINK, PCI_DEVICE_ID_DLINK_DGE510T) },
  73. { PCI_DEVICE(PCI_VENDOR_ID_DLINK, 0x4b01) }, /* DGE-530T */
  74. { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4320) },
  75. { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x5005) }, /* Belkin */
  76. { PCI_DEVICE(PCI_VENDOR_ID_CNET, PCI_DEVICE_ID_CNET_GIGACARD) },
  77. { PCI_DEVICE(PCI_VENDOR_ID_LINKSYS, PCI_DEVICE_ID_LINKSYS_EG1064) },
  78. { PCI_VENDOR_ID_LINKSYS, 0x1032, PCI_ANY_ID, 0x0015 },
  79. { 0 }
  80. };
  81. MODULE_DEVICE_TABLE(pci, skge_id_table);
  82. static int skge_up(struct net_device *dev);
  83. static int skge_down(struct net_device *dev);
  84. static void skge_phy_reset(struct skge_port *skge);
  85. static void skge_tx_clean(struct net_device *dev);
  86. static int xm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val);
  87. static int gm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val);
  88. static void genesis_get_stats(struct skge_port *skge, u64 *data);
  89. static void yukon_get_stats(struct skge_port *skge, u64 *data);
  90. static void yukon_init(struct skge_hw *hw, int port);
  91. static void genesis_mac_init(struct skge_hw *hw, int port);
  92. static void genesis_link_up(struct skge_port *skge);
  93. /* Avoid conditionals by using array */
  94. static const int txqaddr[] = { Q_XA1, Q_XA2 };
  95. static const int rxqaddr[] = { Q_R1, Q_R2 };
  96. static const u32 rxirqmask[] = { IS_R1_F, IS_R2_F };
  97. static const u32 txirqmask[] = { IS_XA1_F, IS_XA2_F };
  98. static const u32 napimask[] = { IS_R1_F|IS_XA1_F, IS_R2_F|IS_XA2_F };
  99. static const u32 portmask[] = { IS_PORT_1, IS_PORT_2 };
  100. static int skge_get_regs_len(struct net_device *dev)
  101. {
  102. return 0x4000;
  103. }
  104. /*
  105. * Returns copy of whole control register region
  106. * Note: skip RAM address register because accessing it will
  107. * cause bus hangs!
  108. */
  109. static void skge_get_regs(struct net_device *dev, struct ethtool_regs *regs,
  110. void *p)
  111. {
  112. const struct skge_port *skge = netdev_priv(dev);
  113. const void __iomem *io = skge->hw->regs;
  114. regs->version = 1;
  115. memset(p, 0, regs->len);
  116. memcpy_fromio(p, io, B3_RAM_ADDR);
  117. memcpy_fromio(p + B3_RI_WTO_R1, io + B3_RI_WTO_R1,
  118. regs->len - B3_RI_WTO_R1);
  119. }
  120. /* Wake on Lan only supported on Yukon chips with rev 1 or above */
  121. static u32 wol_supported(const struct skge_hw *hw)
  122. {
  123. if (hw->chip_id == CHIP_ID_GENESIS)
  124. return 0;
  125. if (hw->chip_id == CHIP_ID_YUKON && hw->chip_rev == 0)
  126. return 0;
  127. return WAKE_MAGIC | WAKE_PHY;
  128. }
  129. static u32 pci_wake_enabled(struct pci_dev *dev)
  130. {
  131. int pm = pci_find_capability(dev, PCI_CAP_ID_PM);
  132. u16 value;
  133. /* If device doesn't support PM Capabilities, but request is to disable
  134. * wake events, it's a nop; otherwise fail */
  135. if (!pm)
  136. return 0;
  137. pci_read_config_word(dev, pm + PCI_PM_PMC, &value);
  138. value &= PCI_PM_CAP_PME_MASK;
  139. value >>= ffs(PCI_PM_CAP_PME_MASK) - 1; /* First bit of mask */
  140. return value != 0;
  141. }
  142. static void skge_wol_init(struct skge_port *skge)
  143. {
  144. struct skge_hw *hw = skge->hw;
  145. int port = skge->port;
  146. u16 ctrl;
  147. skge_write16(hw, B0_CTST, CS_RST_CLR);
  148. skge_write16(hw, SK_REG(port, GMAC_LINK_CTRL), GMLC_RST_CLR);
  149. /* Turn on Vaux */
  150. skge_write8(hw, B0_POWER_CTRL,
  151. PC_VAUX_ENA | PC_VCC_ENA | PC_VAUX_ON | PC_VCC_OFF);
  152. /* WA code for COMA mode -- clear PHY reset */
  153. if (hw->chip_id == CHIP_ID_YUKON_LITE &&
  154. hw->chip_rev >= CHIP_REV_YU_LITE_A3) {
  155. u32 reg = skge_read32(hw, B2_GP_IO);
  156. reg |= GP_DIR_9;
  157. reg &= ~GP_IO_9;
  158. skge_write32(hw, B2_GP_IO, reg);
  159. }
  160. skge_write32(hw, SK_REG(port, GPHY_CTRL),
  161. GPC_DIS_SLEEP |
  162. GPC_HWCFG_M_3 | GPC_HWCFG_M_2 | GPC_HWCFG_M_1 | GPC_HWCFG_M_0 |
  163. GPC_ANEG_1 | GPC_RST_SET);
  164. skge_write32(hw, SK_REG(port, GPHY_CTRL),
  165. GPC_DIS_SLEEP |
  166. GPC_HWCFG_M_3 | GPC_HWCFG_M_2 | GPC_HWCFG_M_1 | GPC_HWCFG_M_0 |
  167. GPC_ANEG_1 | GPC_RST_CLR);
  168. skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_RST_CLR);
  169. /* Force to 10/100 skge_reset will re-enable on resume */
  170. gm_phy_write(hw, port, PHY_MARV_AUNE_ADV,
  171. PHY_AN_100FULL | PHY_AN_100HALF |
  172. PHY_AN_10FULL | PHY_AN_10HALF| PHY_AN_CSMA);
  173. /* no 1000 HD/FD */
  174. gm_phy_write(hw, port, PHY_MARV_1000T_CTRL, 0);
  175. gm_phy_write(hw, port, PHY_MARV_CTRL,
  176. PHY_CT_RESET | PHY_CT_SPS_LSB | PHY_CT_ANE |
  177. PHY_CT_RE_CFG | PHY_CT_DUP_MD);
  178. /* Set GMAC to no flow control and auto update for speed/duplex */
  179. gma_write16(hw, port, GM_GP_CTRL,
  180. GM_GPCR_FC_TX_DIS|GM_GPCR_TX_ENA|GM_GPCR_RX_ENA|
  181. GM_GPCR_DUP_FULL|GM_GPCR_FC_RX_DIS|GM_GPCR_AU_FCT_DIS);
  182. /* Set WOL address */
  183. memcpy_toio(hw->regs + WOL_REGS(port, WOL_MAC_ADDR),
  184. skge->netdev->dev_addr, ETH_ALEN);
  185. /* Turn on appropriate WOL control bits */
  186. skge_write16(hw, WOL_REGS(port, WOL_CTRL_STAT), WOL_CTL_CLEAR_RESULT);
  187. ctrl = 0;
  188. if (skge->wol & WAKE_PHY)
  189. ctrl |= WOL_CTL_ENA_PME_ON_LINK_CHG|WOL_CTL_ENA_LINK_CHG_UNIT;
  190. else
  191. ctrl |= WOL_CTL_DIS_PME_ON_LINK_CHG|WOL_CTL_DIS_LINK_CHG_UNIT;
  192. if (skge->wol & WAKE_MAGIC)
  193. ctrl |= WOL_CTL_ENA_PME_ON_MAGIC_PKT|WOL_CTL_ENA_MAGIC_PKT_UNIT;
  194. else
  195. ctrl |= WOL_CTL_DIS_PME_ON_MAGIC_PKT|WOL_CTL_DIS_MAGIC_PKT_UNIT;;
  196. ctrl |= WOL_CTL_DIS_PME_ON_PATTERN|WOL_CTL_DIS_PATTERN_UNIT;
  197. skge_write16(hw, WOL_REGS(port, WOL_CTRL_STAT), ctrl);
  198. /* block receiver */
  199. skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_RST_SET);
  200. }
  201. static void skge_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
  202. {
  203. struct skge_port *skge = netdev_priv(dev);
  204. wol->supported = wol_supported(skge->hw);
  205. wol->wolopts = skge->wol;
  206. }
  207. static int skge_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
  208. {
  209. struct skge_port *skge = netdev_priv(dev);
  210. struct skge_hw *hw = skge->hw;
  211. if (wol->wolopts & ~wol_supported(hw))
  212. return -EOPNOTSUPP;
  213. skge->wol = wol->wolopts;
  214. return 0;
  215. }
  216. /* Determine supported/advertised modes based on hardware.
  217. * Note: ethtool ADVERTISED_xxx == SUPPORTED_xxx
  218. */
  219. static u32 skge_supported_modes(const struct skge_hw *hw)
  220. {
  221. u32 supported;
  222. if (hw->copper) {
  223. supported = SUPPORTED_10baseT_Half
  224. | SUPPORTED_10baseT_Full
  225. | SUPPORTED_100baseT_Half
  226. | SUPPORTED_100baseT_Full
  227. | SUPPORTED_1000baseT_Half
  228. | SUPPORTED_1000baseT_Full
  229. | SUPPORTED_Autoneg| SUPPORTED_TP;
  230. if (hw->chip_id == CHIP_ID_GENESIS)
  231. supported &= ~(SUPPORTED_10baseT_Half
  232. | SUPPORTED_10baseT_Full
  233. | SUPPORTED_100baseT_Half
  234. | SUPPORTED_100baseT_Full);
  235. else if (hw->chip_id == CHIP_ID_YUKON)
  236. supported &= ~SUPPORTED_1000baseT_Half;
  237. } else
  238. supported = SUPPORTED_1000baseT_Full | SUPPORTED_1000baseT_Half
  239. | SUPPORTED_FIBRE | SUPPORTED_Autoneg;
  240. return supported;
  241. }
  242. static int skge_get_settings(struct net_device *dev,
  243. struct ethtool_cmd *ecmd)
  244. {
  245. struct skge_port *skge = netdev_priv(dev);
  246. struct skge_hw *hw = skge->hw;
  247. ecmd->transceiver = XCVR_INTERNAL;
  248. ecmd->supported = skge_supported_modes(hw);
  249. if (hw->copper) {
  250. ecmd->port = PORT_TP;
  251. ecmd->phy_address = hw->phy_addr;
  252. } else
  253. ecmd->port = PORT_FIBRE;
  254. ecmd->advertising = skge->advertising;
  255. ecmd->autoneg = skge->autoneg;
  256. ecmd->speed = skge->speed;
  257. ecmd->duplex = skge->duplex;
  258. return 0;
  259. }
  260. static int skge_set_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
  261. {
  262. struct skge_port *skge = netdev_priv(dev);
  263. const struct skge_hw *hw = skge->hw;
  264. u32 supported = skge_supported_modes(hw);
  265. if (ecmd->autoneg == AUTONEG_ENABLE) {
  266. ecmd->advertising = supported;
  267. skge->duplex = -1;
  268. skge->speed = -1;
  269. } else {
  270. u32 setting;
  271. switch (ecmd->speed) {
  272. case SPEED_1000:
  273. if (ecmd->duplex == DUPLEX_FULL)
  274. setting = SUPPORTED_1000baseT_Full;
  275. else if (ecmd->duplex == DUPLEX_HALF)
  276. setting = SUPPORTED_1000baseT_Half;
  277. else
  278. return -EINVAL;
  279. break;
  280. case SPEED_100:
  281. if (ecmd->duplex == DUPLEX_FULL)
  282. setting = SUPPORTED_100baseT_Full;
  283. else if (ecmd->duplex == DUPLEX_HALF)
  284. setting = SUPPORTED_100baseT_Half;
  285. else
  286. return -EINVAL;
  287. break;
  288. case SPEED_10:
  289. if (ecmd->duplex == DUPLEX_FULL)
  290. setting = SUPPORTED_10baseT_Full;
  291. else if (ecmd->duplex == DUPLEX_HALF)
  292. setting = SUPPORTED_10baseT_Half;
  293. else
  294. return -EINVAL;
  295. break;
  296. default:
  297. return -EINVAL;
  298. }
  299. if ((setting & supported) == 0)
  300. return -EINVAL;
  301. skge->speed = ecmd->speed;
  302. skge->duplex = ecmd->duplex;
  303. }
  304. skge->autoneg = ecmd->autoneg;
  305. skge->advertising = ecmd->advertising;
  306. if (netif_running(dev))
  307. skge_phy_reset(skge);
  308. return (0);
  309. }
  310. static void skge_get_drvinfo(struct net_device *dev,
  311. struct ethtool_drvinfo *info)
  312. {
  313. struct skge_port *skge = netdev_priv(dev);
  314. strcpy(info->driver, DRV_NAME);
  315. strcpy(info->version, DRV_VERSION);
  316. strcpy(info->fw_version, "N/A");
  317. strcpy(info->bus_info, pci_name(skge->hw->pdev));
  318. }
  319. static const struct skge_stat {
  320. char name[ETH_GSTRING_LEN];
  321. u16 xmac_offset;
  322. u16 gma_offset;
  323. } skge_stats[] = {
  324. { "tx_bytes", XM_TXO_OK_HI, GM_TXO_OK_HI },
  325. { "rx_bytes", XM_RXO_OK_HI, GM_RXO_OK_HI },
  326. { "tx_broadcast", XM_TXF_BC_OK, GM_TXF_BC_OK },
  327. { "rx_broadcast", XM_RXF_BC_OK, GM_RXF_BC_OK },
  328. { "tx_multicast", XM_TXF_MC_OK, GM_TXF_MC_OK },
  329. { "rx_multicast", XM_RXF_MC_OK, GM_RXF_MC_OK },
  330. { "tx_unicast", XM_TXF_UC_OK, GM_TXF_UC_OK },
  331. { "rx_unicast", XM_RXF_UC_OK, GM_RXF_UC_OK },
  332. { "tx_mac_pause", XM_TXF_MPAUSE, GM_TXF_MPAUSE },
  333. { "rx_mac_pause", XM_RXF_MPAUSE, GM_RXF_MPAUSE },
  334. { "collisions", XM_TXF_SNG_COL, GM_TXF_SNG_COL },
  335. { "multi_collisions", XM_TXF_MUL_COL, GM_TXF_MUL_COL },
  336. { "aborted", XM_TXF_ABO_COL, GM_TXF_ABO_COL },
  337. { "late_collision", XM_TXF_LAT_COL, GM_TXF_LAT_COL },
  338. { "fifo_underrun", XM_TXE_FIFO_UR, GM_TXE_FIFO_UR },
  339. { "fifo_overflow", XM_RXE_FIFO_OV, GM_RXE_FIFO_OV },
  340. { "rx_toolong", XM_RXF_LNG_ERR, GM_RXF_LNG_ERR },
  341. { "rx_jabber", XM_RXF_JAB_PKT, GM_RXF_JAB_PKT },
  342. { "rx_runt", XM_RXE_RUNT, GM_RXE_FRAG },
  343. { "rx_too_long", XM_RXF_LNG_ERR, GM_RXF_LNG_ERR },
  344. { "rx_fcs_error", XM_RXF_FCS_ERR, GM_RXF_FCS_ERR },
  345. };
  346. static int skge_get_stats_count(struct net_device *dev)
  347. {
  348. return ARRAY_SIZE(skge_stats);
  349. }
  350. static void skge_get_ethtool_stats(struct net_device *dev,
  351. struct ethtool_stats *stats, u64 *data)
  352. {
  353. struct skge_port *skge = netdev_priv(dev);
  354. if (skge->hw->chip_id == CHIP_ID_GENESIS)
  355. genesis_get_stats(skge, data);
  356. else
  357. yukon_get_stats(skge, data);
  358. }
  359. /* Use hardware MIB variables for critical path statistics and
  360. * transmit feedback not reported at interrupt.
  361. * Other errors are accounted for in interrupt handler.
  362. */
  363. static struct net_device_stats *skge_get_stats(struct net_device *dev)
  364. {
  365. struct skge_port *skge = netdev_priv(dev);
  366. u64 data[ARRAY_SIZE(skge_stats)];
  367. if (skge->hw->chip_id == CHIP_ID_GENESIS)
  368. genesis_get_stats(skge, data);
  369. else
  370. yukon_get_stats(skge, data);
  371. skge->net_stats.tx_bytes = data[0];
  372. skge->net_stats.rx_bytes = data[1];
  373. skge->net_stats.tx_packets = data[2] + data[4] + data[6];
  374. skge->net_stats.rx_packets = data[3] + data[5] + data[7];
  375. skge->net_stats.multicast = data[3] + data[5];
  376. skge->net_stats.collisions = data[10];
  377. skge->net_stats.tx_aborted_errors = data[12];
  378. return &skge->net_stats;
  379. }
  380. static void skge_get_strings(struct net_device *dev, u32 stringset, u8 *data)
  381. {
  382. int i;
  383. switch (stringset) {
  384. case ETH_SS_STATS:
  385. for (i = 0; i < ARRAY_SIZE(skge_stats); i++)
  386. memcpy(data + i * ETH_GSTRING_LEN,
  387. skge_stats[i].name, ETH_GSTRING_LEN);
  388. break;
  389. }
  390. }
  391. static void skge_get_ring_param(struct net_device *dev,
  392. struct ethtool_ringparam *p)
  393. {
  394. struct skge_port *skge = netdev_priv(dev);
  395. p->rx_max_pending = MAX_RX_RING_SIZE;
  396. p->tx_max_pending = MAX_TX_RING_SIZE;
  397. p->rx_mini_max_pending = 0;
  398. p->rx_jumbo_max_pending = 0;
  399. p->rx_pending = skge->rx_ring.count;
  400. p->tx_pending = skge->tx_ring.count;
  401. p->rx_mini_pending = 0;
  402. p->rx_jumbo_pending = 0;
  403. }
  404. static int skge_set_ring_param(struct net_device *dev,
  405. struct ethtool_ringparam *p)
  406. {
  407. struct skge_port *skge = netdev_priv(dev);
  408. int err;
  409. if (p->rx_pending == 0 || p->rx_pending > MAX_RX_RING_SIZE ||
  410. p->tx_pending < TX_LOW_WATER || p->tx_pending > MAX_TX_RING_SIZE)
  411. return -EINVAL;
  412. skge->rx_ring.count = p->rx_pending;
  413. skge->tx_ring.count = p->tx_pending;
  414. if (netif_running(dev)) {
  415. skge_down(dev);
  416. err = skge_up(dev);
  417. if (err)
  418. dev_close(dev);
  419. }
  420. return 0;
  421. }
  422. static u32 skge_get_msglevel(struct net_device *netdev)
  423. {
  424. struct skge_port *skge = netdev_priv(netdev);
  425. return skge->msg_enable;
  426. }
  427. static void skge_set_msglevel(struct net_device *netdev, u32 value)
  428. {
  429. struct skge_port *skge = netdev_priv(netdev);
  430. skge->msg_enable = value;
  431. }
  432. static int skge_nway_reset(struct net_device *dev)
  433. {
  434. struct skge_port *skge = netdev_priv(dev);
  435. if (skge->autoneg != AUTONEG_ENABLE || !netif_running(dev))
  436. return -EINVAL;
  437. skge_phy_reset(skge);
  438. return 0;
  439. }
  440. static int skge_set_sg(struct net_device *dev, u32 data)
  441. {
  442. struct skge_port *skge = netdev_priv(dev);
  443. struct skge_hw *hw = skge->hw;
  444. if (hw->chip_id == CHIP_ID_GENESIS && data)
  445. return -EOPNOTSUPP;
  446. return ethtool_op_set_sg(dev, data);
  447. }
  448. static int skge_set_tx_csum(struct net_device *dev, u32 data)
  449. {
  450. struct skge_port *skge = netdev_priv(dev);
  451. struct skge_hw *hw = skge->hw;
  452. if (hw->chip_id == CHIP_ID_GENESIS && data)
  453. return -EOPNOTSUPP;
  454. return ethtool_op_set_tx_csum(dev, data);
  455. }
  456. static u32 skge_get_rx_csum(struct net_device *dev)
  457. {
  458. struct skge_port *skge = netdev_priv(dev);
  459. return skge->rx_csum;
  460. }
  461. /* Only Yukon supports checksum offload. */
  462. static int skge_set_rx_csum(struct net_device *dev, u32 data)
  463. {
  464. struct skge_port *skge = netdev_priv(dev);
  465. if (skge->hw->chip_id == CHIP_ID_GENESIS && data)
  466. return -EOPNOTSUPP;
  467. skge->rx_csum = data;
  468. return 0;
  469. }
  470. static void skge_get_pauseparam(struct net_device *dev,
  471. struct ethtool_pauseparam *ecmd)
  472. {
  473. struct skge_port *skge = netdev_priv(dev);
  474. ecmd->rx_pause = (skge->flow_control == FLOW_MODE_SYMMETRIC)
  475. || (skge->flow_control == FLOW_MODE_SYM_OR_REM);
  476. ecmd->tx_pause = ecmd->rx_pause || (skge->flow_control == FLOW_MODE_LOC_SEND);
  477. ecmd->autoneg = ecmd->rx_pause || ecmd->tx_pause;
  478. }
  479. static int skge_set_pauseparam(struct net_device *dev,
  480. struct ethtool_pauseparam *ecmd)
  481. {
  482. struct skge_port *skge = netdev_priv(dev);
  483. struct ethtool_pauseparam old;
  484. skge_get_pauseparam(dev, &old);
  485. if (ecmd->autoneg != old.autoneg)
  486. skge->flow_control = ecmd->autoneg ? FLOW_MODE_NONE : FLOW_MODE_SYMMETRIC;
  487. else {
  488. if (ecmd->rx_pause && ecmd->tx_pause)
  489. skge->flow_control = FLOW_MODE_SYMMETRIC;
  490. else if (ecmd->rx_pause && !ecmd->tx_pause)
  491. skge->flow_control = FLOW_MODE_SYM_OR_REM;
  492. else if (!ecmd->rx_pause && ecmd->tx_pause)
  493. skge->flow_control = FLOW_MODE_LOC_SEND;
  494. else
  495. skge->flow_control = FLOW_MODE_NONE;
  496. }
  497. if (netif_running(dev))
  498. skge_phy_reset(skge);
  499. return 0;
  500. }
  501. /* Chip internal frequency for clock calculations */
  502. static inline u32 hwkhz(const struct skge_hw *hw)
  503. {
  504. return (hw->chip_id == CHIP_ID_GENESIS) ? 53125 : 78125;
  505. }
  506. /* Chip HZ to microseconds */
  507. static inline u32 skge_clk2usec(const struct skge_hw *hw, u32 ticks)
  508. {
  509. return (ticks * 1000) / hwkhz(hw);
  510. }
  511. /* Microseconds to chip HZ */
  512. static inline u32 skge_usecs2clk(const struct skge_hw *hw, u32 usec)
  513. {
  514. return hwkhz(hw) * usec / 1000;
  515. }
  516. static int skge_get_coalesce(struct net_device *dev,
  517. struct ethtool_coalesce *ecmd)
  518. {
  519. struct skge_port *skge = netdev_priv(dev);
  520. struct skge_hw *hw = skge->hw;
  521. int port = skge->port;
  522. ecmd->rx_coalesce_usecs = 0;
  523. ecmd->tx_coalesce_usecs = 0;
  524. if (skge_read32(hw, B2_IRQM_CTRL) & TIM_START) {
  525. u32 delay = skge_clk2usec(hw, skge_read32(hw, B2_IRQM_INI));
  526. u32 msk = skge_read32(hw, B2_IRQM_MSK);
  527. if (msk & rxirqmask[port])
  528. ecmd->rx_coalesce_usecs = delay;
  529. if (msk & txirqmask[port])
  530. ecmd->tx_coalesce_usecs = delay;
  531. }
  532. return 0;
  533. }
  534. /* Note: interrupt timer is per board, but can turn on/off per port */
  535. static int skge_set_coalesce(struct net_device *dev,
  536. struct ethtool_coalesce *ecmd)
  537. {
  538. struct skge_port *skge = netdev_priv(dev);
  539. struct skge_hw *hw = skge->hw;
  540. int port = skge->port;
  541. u32 msk = skge_read32(hw, B2_IRQM_MSK);
  542. u32 delay = 25;
  543. if (ecmd->rx_coalesce_usecs == 0)
  544. msk &= ~rxirqmask[port];
  545. else if (ecmd->rx_coalesce_usecs < 25 ||
  546. ecmd->rx_coalesce_usecs > 33333)
  547. return -EINVAL;
  548. else {
  549. msk |= rxirqmask[port];
  550. delay = ecmd->rx_coalesce_usecs;
  551. }
  552. if (ecmd->tx_coalesce_usecs == 0)
  553. msk &= ~txirqmask[port];
  554. else if (ecmd->tx_coalesce_usecs < 25 ||
  555. ecmd->tx_coalesce_usecs > 33333)
  556. return -EINVAL;
  557. else {
  558. msk |= txirqmask[port];
  559. delay = min(delay, ecmd->rx_coalesce_usecs);
  560. }
  561. skge_write32(hw, B2_IRQM_MSK, msk);
  562. if (msk == 0)
  563. skge_write32(hw, B2_IRQM_CTRL, TIM_STOP);
  564. else {
  565. skge_write32(hw, B2_IRQM_INI, skge_usecs2clk(hw, delay));
  566. skge_write32(hw, B2_IRQM_CTRL, TIM_START);
  567. }
  568. return 0;
  569. }
  570. enum led_mode { LED_MODE_OFF, LED_MODE_ON, LED_MODE_TST };
  571. static void skge_led(struct skge_port *skge, enum led_mode mode)
  572. {
  573. struct skge_hw *hw = skge->hw;
  574. int port = skge->port;
  575. spin_lock_bh(&hw->phy_lock);
  576. if (hw->chip_id == CHIP_ID_GENESIS) {
  577. switch (mode) {
  578. case LED_MODE_OFF:
  579. if (hw->phy_type == SK_PHY_BCOM)
  580. xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL, PHY_B_PEC_LED_OFF);
  581. else {
  582. skge_write32(hw, SK_REG(port, TX_LED_VAL), 0);
  583. skge_write8(hw, SK_REG(port, TX_LED_CTRL), LED_T_OFF);
  584. }
  585. skge_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_OFF);
  586. skge_write32(hw, SK_REG(port, RX_LED_VAL), 0);
  587. skge_write8(hw, SK_REG(port, RX_LED_CTRL), LED_T_OFF);
  588. break;
  589. case LED_MODE_ON:
  590. skge_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_ON);
  591. skge_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_LINKSYNC_ON);
  592. skge_write8(hw, SK_REG(port, RX_LED_CTRL), LED_START);
  593. skge_write8(hw, SK_REG(port, TX_LED_CTRL), LED_START);
  594. break;
  595. case LED_MODE_TST:
  596. skge_write8(hw, SK_REG(port, RX_LED_TST), LED_T_ON);
  597. skge_write32(hw, SK_REG(port, RX_LED_VAL), 100);
  598. skge_write8(hw, SK_REG(port, RX_LED_CTRL), LED_START);
  599. if (hw->phy_type == SK_PHY_BCOM)
  600. xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL, PHY_B_PEC_LED_ON);
  601. else {
  602. skge_write8(hw, SK_REG(port, TX_LED_TST), LED_T_ON);
  603. skge_write32(hw, SK_REG(port, TX_LED_VAL), 100);
  604. skge_write8(hw, SK_REG(port, TX_LED_CTRL), LED_START);
  605. }
  606. }
  607. } else {
  608. switch (mode) {
  609. case LED_MODE_OFF:
  610. gm_phy_write(hw, port, PHY_MARV_LED_CTRL, 0);
  611. gm_phy_write(hw, port, PHY_MARV_LED_OVER,
  612. PHY_M_LED_MO_DUP(MO_LED_OFF) |
  613. PHY_M_LED_MO_10(MO_LED_OFF) |
  614. PHY_M_LED_MO_100(MO_LED_OFF) |
  615. PHY_M_LED_MO_1000(MO_LED_OFF) |
  616. PHY_M_LED_MO_RX(MO_LED_OFF));
  617. break;
  618. case LED_MODE_ON:
  619. gm_phy_write(hw, port, PHY_MARV_LED_CTRL,
  620. PHY_M_LED_PULS_DUR(PULS_170MS) |
  621. PHY_M_LED_BLINK_RT(BLINK_84MS) |
  622. PHY_M_LEDC_TX_CTRL |
  623. PHY_M_LEDC_DP_CTRL);
  624. gm_phy_write(hw, port, PHY_MARV_LED_OVER,
  625. PHY_M_LED_MO_RX(MO_LED_OFF) |
  626. (skge->speed == SPEED_100 ?
  627. PHY_M_LED_MO_100(MO_LED_ON) : 0));
  628. break;
  629. case LED_MODE_TST:
  630. gm_phy_write(hw, port, PHY_MARV_LED_CTRL, 0);
  631. gm_phy_write(hw, port, PHY_MARV_LED_OVER,
  632. PHY_M_LED_MO_DUP(MO_LED_ON) |
  633. PHY_M_LED_MO_10(MO_LED_ON) |
  634. PHY_M_LED_MO_100(MO_LED_ON) |
  635. PHY_M_LED_MO_1000(MO_LED_ON) |
  636. PHY_M_LED_MO_RX(MO_LED_ON));
  637. }
  638. }
  639. spin_unlock_bh(&hw->phy_lock);
  640. }
  641. /* blink LED's for finding board */
  642. static int skge_phys_id(struct net_device *dev, u32 data)
  643. {
  644. struct skge_port *skge = netdev_priv(dev);
  645. unsigned long ms;
  646. enum led_mode mode = LED_MODE_TST;
  647. if (!data || data > (u32)(MAX_SCHEDULE_TIMEOUT / HZ))
  648. ms = jiffies_to_msecs(MAX_SCHEDULE_TIMEOUT / HZ) * 1000;
  649. else
  650. ms = data * 1000;
  651. while (ms > 0) {
  652. skge_led(skge, mode);
  653. mode ^= LED_MODE_TST;
  654. if (msleep_interruptible(BLINK_MS))
  655. break;
  656. ms -= BLINK_MS;
  657. }
  658. /* back to regular LED state */
  659. skge_led(skge, netif_running(dev) ? LED_MODE_ON : LED_MODE_OFF);
  660. return 0;
  661. }
  662. static const struct ethtool_ops skge_ethtool_ops = {
  663. .get_settings = skge_get_settings,
  664. .set_settings = skge_set_settings,
  665. .get_drvinfo = skge_get_drvinfo,
  666. .get_regs_len = skge_get_regs_len,
  667. .get_regs = skge_get_regs,
  668. .get_wol = skge_get_wol,
  669. .set_wol = skge_set_wol,
  670. .get_msglevel = skge_get_msglevel,
  671. .set_msglevel = skge_set_msglevel,
  672. .nway_reset = skge_nway_reset,
  673. .get_link = ethtool_op_get_link,
  674. .get_ringparam = skge_get_ring_param,
  675. .set_ringparam = skge_set_ring_param,
  676. .get_pauseparam = skge_get_pauseparam,
  677. .set_pauseparam = skge_set_pauseparam,
  678. .get_coalesce = skge_get_coalesce,
  679. .set_coalesce = skge_set_coalesce,
  680. .set_sg = skge_set_sg,
  681. .set_tx_csum = skge_set_tx_csum,
  682. .get_rx_csum = skge_get_rx_csum,
  683. .set_rx_csum = skge_set_rx_csum,
  684. .get_strings = skge_get_strings,
  685. .phys_id = skge_phys_id,
  686. .get_stats_count = skge_get_stats_count,
  687. .get_ethtool_stats = skge_get_ethtool_stats,
  688. };
  689. /*
  690. * Allocate ring elements and chain them together
  691. * One-to-one association of board descriptors with ring elements
  692. */
  693. static int skge_ring_alloc(struct skge_ring *ring, void *vaddr, u32 base)
  694. {
  695. struct skge_tx_desc *d;
  696. struct skge_element *e;
  697. int i;
  698. ring->start = kcalloc(ring->count, sizeof(*e), GFP_KERNEL);
  699. if (!ring->start)
  700. return -ENOMEM;
  701. for (i = 0, e = ring->start, d = vaddr; i < ring->count; i++, e++, d++) {
  702. e->desc = d;
  703. if (i == ring->count - 1) {
  704. e->next = ring->start;
  705. d->next_offset = base;
  706. } else {
  707. e->next = e + 1;
  708. d->next_offset = base + (i+1) * sizeof(*d);
  709. }
  710. }
  711. ring->to_use = ring->to_clean = ring->start;
  712. return 0;
  713. }
  714. /* Allocate and setup a new buffer for receiving */
  715. static void skge_rx_setup(struct skge_port *skge, struct skge_element *e,
  716. struct sk_buff *skb, unsigned int bufsize)
  717. {
  718. struct skge_rx_desc *rd = e->desc;
  719. u64 map;
  720. map = pci_map_single(skge->hw->pdev, skb->data, bufsize,
  721. PCI_DMA_FROMDEVICE);
  722. rd->dma_lo = map;
  723. rd->dma_hi = map >> 32;
  724. e->skb = skb;
  725. rd->csum1_start = ETH_HLEN;
  726. rd->csum2_start = ETH_HLEN;
  727. rd->csum1 = 0;
  728. rd->csum2 = 0;
  729. wmb();
  730. rd->control = BMU_OWN | BMU_STF | BMU_IRQ_EOF | BMU_TCP_CHECK | bufsize;
  731. pci_unmap_addr_set(e, mapaddr, map);
  732. pci_unmap_len_set(e, maplen, bufsize);
  733. }
  734. /* Resume receiving using existing skb,
  735. * Note: DMA address is not changed by chip.
  736. * MTU not changed while receiver active.
  737. */
  738. static inline void skge_rx_reuse(struct skge_element *e, unsigned int size)
  739. {
  740. struct skge_rx_desc *rd = e->desc;
  741. rd->csum2 = 0;
  742. rd->csum2_start = ETH_HLEN;
  743. wmb();
  744. rd->control = BMU_OWN | BMU_STF | BMU_IRQ_EOF | BMU_TCP_CHECK | size;
  745. }
  746. /* Free all buffers in receive ring, assumes receiver stopped */
  747. static void skge_rx_clean(struct skge_port *skge)
  748. {
  749. struct skge_hw *hw = skge->hw;
  750. struct skge_ring *ring = &skge->rx_ring;
  751. struct skge_element *e;
  752. e = ring->start;
  753. do {
  754. struct skge_rx_desc *rd = e->desc;
  755. rd->control = 0;
  756. if (e->skb) {
  757. pci_unmap_single(hw->pdev,
  758. pci_unmap_addr(e, mapaddr),
  759. pci_unmap_len(e, maplen),
  760. PCI_DMA_FROMDEVICE);
  761. dev_kfree_skb(e->skb);
  762. e->skb = NULL;
  763. }
  764. } while ((e = e->next) != ring->start);
  765. }
  766. /* Allocate buffers for receive ring
  767. * For receive: to_clean is next received frame.
  768. */
  769. static int skge_rx_fill(struct net_device *dev)
  770. {
  771. struct skge_port *skge = netdev_priv(dev);
  772. struct skge_ring *ring = &skge->rx_ring;
  773. struct skge_element *e;
  774. e = ring->start;
  775. do {
  776. struct sk_buff *skb;
  777. skb = __netdev_alloc_skb(dev, skge->rx_buf_size + NET_IP_ALIGN,
  778. GFP_KERNEL);
  779. if (!skb)
  780. return -ENOMEM;
  781. skb_reserve(skb, NET_IP_ALIGN);
  782. skge_rx_setup(skge, e, skb, skge->rx_buf_size);
  783. } while ( (e = e->next) != ring->start);
  784. ring->to_clean = ring->start;
  785. return 0;
  786. }
  787. static const char *skge_pause(enum pause_status status)
  788. {
  789. switch(status) {
  790. case FLOW_STAT_NONE:
  791. return "none";
  792. case FLOW_STAT_REM_SEND:
  793. return "rx only";
  794. case FLOW_STAT_LOC_SEND:
  795. return "tx_only";
  796. case FLOW_STAT_SYMMETRIC: /* Both station may send PAUSE */
  797. return "both";
  798. default:
  799. return "indeterminated";
  800. }
  801. }
  802. static void skge_link_up(struct skge_port *skge)
  803. {
  804. skge_write8(skge->hw, SK_REG(skge->port, LNK_LED_REG),
  805. LED_BLK_OFF|LED_SYNC_OFF|LED_ON);
  806. netif_carrier_on(skge->netdev);
  807. netif_wake_queue(skge->netdev);
  808. if (netif_msg_link(skge)) {
  809. printk(KERN_INFO PFX
  810. "%s: Link is up at %d Mbps, %s duplex, flow control %s\n",
  811. skge->netdev->name, skge->speed,
  812. skge->duplex == DUPLEX_FULL ? "full" : "half",
  813. skge_pause(skge->flow_status));
  814. }
  815. }
  816. static void skge_link_down(struct skge_port *skge)
  817. {
  818. skge_write8(skge->hw, SK_REG(skge->port, LNK_LED_REG), LED_OFF);
  819. netif_carrier_off(skge->netdev);
  820. netif_stop_queue(skge->netdev);
  821. if (netif_msg_link(skge))
  822. printk(KERN_INFO PFX "%s: Link is down.\n", skge->netdev->name);
  823. }
  824. static void xm_link_down(struct skge_hw *hw, int port)
  825. {
  826. struct net_device *dev = hw->dev[port];
  827. struct skge_port *skge = netdev_priv(dev);
  828. u16 cmd, msk;
  829. if (hw->phy_type == SK_PHY_XMAC) {
  830. msk = xm_read16(hw, port, XM_IMSK);
  831. msk |= XM_IS_INP_ASS | XM_IS_LIPA_RC | XM_IS_RX_PAGE | XM_IS_AND;
  832. xm_write16(hw, port, XM_IMSK, msk);
  833. }
  834. cmd = xm_read16(hw, port, XM_MMU_CMD);
  835. cmd &= ~(XM_MMU_ENA_RX | XM_MMU_ENA_TX);
  836. xm_write16(hw, port, XM_MMU_CMD, cmd);
  837. /* dummy read to ensure writing */
  838. (void) xm_read16(hw, port, XM_MMU_CMD);
  839. if (netif_carrier_ok(dev))
  840. skge_link_down(skge);
  841. }
  842. static int __xm_phy_read(struct skge_hw *hw, int port, u16 reg, u16 *val)
  843. {
  844. int i;
  845. xm_write16(hw, port, XM_PHY_ADDR, reg | hw->phy_addr);
  846. *val = xm_read16(hw, port, XM_PHY_DATA);
  847. if (hw->phy_type == SK_PHY_XMAC)
  848. goto ready;
  849. for (i = 0; i < PHY_RETRIES; i++) {
  850. if (xm_read16(hw, port, XM_MMU_CMD) & XM_MMU_PHY_RDY)
  851. goto ready;
  852. udelay(1);
  853. }
  854. return -ETIMEDOUT;
  855. ready:
  856. *val = xm_read16(hw, port, XM_PHY_DATA);
  857. return 0;
  858. }
  859. static u16 xm_phy_read(struct skge_hw *hw, int port, u16 reg)
  860. {
  861. u16 v = 0;
  862. if (__xm_phy_read(hw, port, reg, &v))
  863. printk(KERN_WARNING PFX "%s: phy read timed out\n",
  864. hw->dev[port]->name);
  865. return v;
  866. }
  867. static int xm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val)
  868. {
  869. int i;
  870. xm_write16(hw, port, XM_PHY_ADDR, reg | hw->phy_addr);
  871. for (i = 0; i < PHY_RETRIES; i++) {
  872. if (!(xm_read16(hw, port, XM_MMU_CMD) & XM_MMU_PHY_BUSY))
  873. goto ready;
  874. udelay(1);
  875. }
  876. return -EIO;
  877. ready:
  878. xm_write16(hw, port, XM_PHY_DATA, val);
  879. for (i = 0; i < PHY_RETRIES; i++) {
  880. if (!(xm_read16(hw, port, XM_MMU_CMD) & XM_MMU_PHY_BUSY))
  881. return 0;
  882. udelay(1);
  883. }
  884. return -ETIMEDOUT;
  885. }
  886. static void genesis_init(struct skge_hw *hw)
  887. {
  888. /* set blink source counter */
  889. skge_write32(hw, B2_BSC_INI, (SK_BLK_DUR * SK_FACT_53) / 100);
  890. skge_write8(hw, B2_BSC_CTRL, BSC_START);
  891. /* configure mac arbiter */
  892. skge_write16(hw, B3_MA_TO_CTRL, MA_RST_CLR);
  893. /* configure mac arbiter timeout values */
  894. skge_write8(hw, B3_MA_TOINI_RX1, SK_MAC_TO_53);
  895. skge_write8(hw, B3_MA_TOINI_RX2, SK_MAC_TO_53);
  896. skge_write8(hw, B3_MA_TOINI_TX1, SK_MAC_TO_53);
  897. skge_write8(hw, B3_MA_TOINI_TX2, SK_MAC_TO_53);
  898. skge_write8(hw, B3_MA_RCINI_RX1, 0);
  899. skge_write8(hw, B3_MA_RCINI_RX2, 0);
  900. skge_write8(hw, B3_MA_RCINI_TX1, 0);
  901. skge_write8(hw, B3_MA_RCINI_TX2, 0);
  902. /* configure packet arbiter timeout */
  903. skge_write16(hw, B3_PA_CTRL, PA_RST_CLR);
  904. skge_write16(hw, B3_PA_TOINI_RX1, SK_PKT_TO_MAX);
  905. skge_write16(hw, B3_PA_TOINI_TX1, SK_PKT_TO_MAX);
  906. skge_write16(hw, B3_PA_TOINI_RX2, SK_PKT_TO_MAX);
  907. skge_write16(hw, B3_PA_TOINI_TX2, SK_PKT_TO_MAX);
  908. }
  909. static void genesis_reset(struct skge_hw *hw, int port)
  910. {
  911. const u8 zero[8] = { 0 };
  912. skge_write8(hw, SK_REG(port, GMAC_IRQ_MSK), 0);
  913. /* reset the statistics module */
  914. xm_write32(hw, port, XM_GP_PORT, XM_GP_RES_STAT);
  915. xm_write16(hw, port, XM_IMSK, 0xffff); /* disable XMAC IRQs */
  916. xm_write32(hw, port, XM_MODE, 0); /* clear Mode Reg */
  917. xm_write16(hw, port, XM_TX_CMD, 0); /* reset TX CMD Reg */
  918. xm_write16(hw, port, XM_RX_CMD, 0); /* reset RX CMD Reg */
  919. /* disable Broadcom PHY IRQ */
  920. if (hw->phy_type == SK_PHY_BCOM)
  921. xm_write16(hw, port, PHY_BCOM_INT_MASK, 0xffff);
  922. xm_outhash(hw, port, XM_HSM, zero);
  923. }
  924. /* Convert mode to MII values */
  925. static const u16 phy_pause_map[] = {
  926. [FLOW_MODE_NONE] = 0,
  927. [FLOW_MODE_LOC_SEND] = PHY_AN_PAUSE_ASYM,
  928. [FLOW_MODE_SYMMETRIC] = PHY_AN_PAUSE_CAP,
  929. [FLOW_MODE_SYM_OR_REM] = PHY_AN_PAUSE_CAP | PHY_AN_PAUSE_ASYM,
  930. };
  931. /* special defines for FIBER (88E1011S only) */
  932. static const u16 fiber_pause_map[] = {
  933. [FLOW_MODE_NONE] = PHY_X_P_NO_PAUSE,
  934. [FLOW_MODE_LOC_SEND] = PHY_X_P_ASYM_MD,
  935. [FLOW_MODE_SYMMETRIC] = PHY_X_P_SYM_MD,
  936. [FLOW_MODE_SYM_OR_REM] = PHY_X_P_BOTH_MD,
  937. };
  938. /* Check status of Broadcom phy link */
  939. static void bcom_check_link(struct skge_hw *hw, int port)
  940. {
  941. struct net_device *dev = hw->dev[port];
  942. struct skge_port *skge = netdev_priv(dev);
  943. u16 status;
  944. /* read twice because of latch */
  945. (void) xm_phy_read(hw, port, PHY_BCOM_STAT);
  946. status = xm_phy_read(hw, port, PHY_BCOM_STAT);
  947. if ((status & PHY_ST_LSYNC) == 0) {
  948. xm_link_down(hw, port);
  949. return;
  950. }
  951. if (skge->autoneg == AUTONEG_ENABLE) {
  952. u16 lpa, aux;
  953. if (!(status & PHY_ST_AN_OVER))
  954. return;
  955. lpa = xm_phy_read(hw, port, PHY_XMAC_AUNE_LP);
  956. if (lpa & PHY_B_AN_RF) {
  957. printk(KERN_NOTICE PFX "%s: remote fault\n",
  958. dev->name);
  959. return;
  960. }
  961. aux = xm_phy_read(hw, port, PHY_BCOM_AUX_STAT);
  962. /* Check Duplex mismatch */
  963. switch (aux & PHY_B_AS_AN_RES_MSK) {
  964. case PHY_B_RES_1000FD:
  965. skge->duplex = DUPLEX_FULL;
  966. break;
  967. case PHY_B_RES_1000HD:
  968. skge->duplex = DUPLEX_HALF;
  969. break;
  970. default:
  971. printk(KERN_NOTICE PFX "%s: duplex mismatch\n",
  972. dev->name);
  973. return;
  974. }
  975. /* We are using IEEE 802.3z/D5.0 Table 37-4 */
  976. switch (aux & PHY_B_AS_PAUSE_MSK) {
  977. case PHY_B_AS_PAUSE_MSK:
  978. skge->flow_status = FLOW_STAT_SYMMETRIC;
  979. break;
  980. case PHY_B_AS_PRR:
  981. skge->flow_status = FLOW_STAT_REM_SEND;
  982. break;
  983. case PHY_B_AS_PRT:
  984. skge->flow_status = FLOW_STAT_LOC_SEND;
  985. break;
  986. default:
  987. skge->flow_status = FLOW_STAT_NONE;
  988. }
  989. skge->speed = SPEED_1000;
  990. }
  991. if (!netif_carrier_ok(dev))
  992. genesis_link_up(skge);
  993. }
  994. /* Broadcom 5400 only supports giagabit! SysKonnect did not put an additional
  995. * Phy on for 100 or 10Mbit operation
  996. */
  997. static void bcom_phy_init(struct skge_port *skge)
  998. {
  999. struct skge_hw *hw = skge->hw;
  1000. int port = skge->port;
  1001. int i;
  1002. u16 id1, r, ext, ctl;
  1003. /* magic workaround patterns for Broadcom */
  1004. static const struct {
  1005. u16 reg;
  1006. u16 val;
  1007. } A1hack[] = {
  1008. { 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1104 },
  1009. { 0x17, 0x0013 }, { 0x15, 0x0404 }, { 0x17, 0x8006 },
  1010. { 0x15, 0x0132 }, { 0x17, 0x8006 }, { 0x15, 0x0232 },
  1011. { 0x17, 0x800D }, { 0x15, 0x000F }, { 0x18, 0x0420 },
  1012. }, C0hack[] = {
  1013. { 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1204 },
  1014. { 0x17, 0x0013 }, { 0x15, 0x0A04 }, { 0x18, 0x0420 },
  1015. };
  1016. /* read Id from external PHY (all have the same address) */
  1017. id1 = xm_phy_read(hw, port, PHY_XMAC_ID1);
  1018. /* Optimize MDIO transfer by suppressing preamble. */
  1019. r = xm_read16(hw, port, XM_MMU_CMD);
  1020. r |= XM_MMU_NO_PRE;
  1021. xm_write16(hw, port, XM_MMU_CMD,r);
  1022. switch (id1) {
  1023. case PHY_BCOM_ID1_C0:
  1024. /*
  1025. * Workaround BCOM Errata for the C0 type.
  1026. * Write magic patterns to reserved registers.
  1027. */
  1028. for (i = 0; i < ARRAY_SIZE(C0hack); i++)
  1029. xm_phy_write(hw, port,
  1030. C0hack[i].reg, C0hack[i].val);
  1031. break;
  1032. case PHY_BCOM_ID1_A1:
  1033. /*
  1034. * Workaround BCOM Errata for the A1 type.
  1035. * Write magic patterns to reserved registers.
  1036. */
  1037. for (i = 0; i < ARRAY_SIZE(A1hack); i++)
  1038. xm_phy_write(hw, port,
  1039. A1hack[i].reg, A1hack[i].val);
  1040. break;
  1041. }
  1042. /*
  1043. * Workaround BCOM Errata (#10523) for all BCom PHYs.
  1044. * Disable Power Management after reset.
  1045. */
  1046. r = xm_phy_read(hw, port, PHY_BCOM_AUX_CTRL);
  1047. r |= PHY_B_AC_DIS_PM;
  1048. xm_phy_write(hw, port, PHY_BCOM_AUX_CTRL, r);
  1049. /* Dummy read */
  1050. xm_read16(hw, port, XM_ISRC);
  1051. ext = PHY_B_PEC_EN_LTR; /* enable tx led */
  1052. ctl = PHY_CT_SP1000; /* always 1000mbit */
  1053. if (skge->autoneg == AUTONEG_ENABLE) {
  1054. /*
  1055. * Workaround BCOM Errata #1 for the C5 type.
  1056. * 1000Base-T Link Acquisition Failure in Slave Mode
  1057. * Set Repeater/DTE bit 10 of the 1000Base-T Control Register
  1058. */
  1059. u16 adv = PHY_B_1000C_RD;
  1060. if (skge->advertising & ADVERTISED_1000baseT_Half)
  1061. adv |= PHY_B_1000C_AHD;
  1062. if (skge->advertising & ADVERTISED_1000baseT_Full)
  1063. adv |= PHY_B_1000C_AFD;
  1064. xm_phy_write(hw, port, PHY_BCOM_1000T_CTRL, adv);
  1065. ctl |= PHY_CT_ANE | PHY_CT_RE_CFG;
  1066. } else {
  1067. if (skge->duplex == DUPLEX_FULL)
  1068. ctl |= PHY_CT_DUP_MD;
  1069. /* Force to slave */
  1070. xm_phy_write(hw, port, PHY_BCOM_1000T_CTRL, PHY_B_1000C_MSE);
  1071. }
  1072. /* Set autonegotiation pause parameters */
  1073. xm_phy_write(hw, port, PHY_BCOM_AUNE_ADV,
  1074. phy_pause_map[skge->flow_control] | PHY_AN_CSMA);
  1075. /* Handle Jumbo frames */
  1076. if (hw->dev[port]->mtu > ETH_DATA_LEN) {
  1077. xm_phy_write(hw, port, PHY_BCOM_AUX_CTRL,
  1078. PHY_B_AC_TX_TST | PHY_B_AC_LONG_PACK);
  1079. ext |= PHY_B_PEC_HIGH_LA;
  1080. }
  1081. xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL, ext);
  1082. xm_phy_write(hw, port, PHY_BCOM_CTRL, ctl);
  1083. /* Use link status change interrupt */
  1084. xm_phy_write(hw, port, PHY_BCOM_INT_MASK, PHY_B_DEF_MSK);
  1085. }
  1086. static void xm_phy_init(struct skge_port *skge)
  1087. {
  1088. struct skge_hw *hw = skge->hw;
  1089. int port = skge->port;
  1090. u16 ctrl = 0;
  1091. if (skge->autoneg == AUTONEG_ENABLE) {
  1092. if (skge->advertising & ADVERTISED_1000baseT_Half)
  1093. ctrl |= PHY_X_AN_HD;
  1094. if (skge->advertising & ADVERTISED_1000baseT_Full)
  1095. ctrl |= PHY_X_AN_FD;
  1096. ctrl |= fiber_pause_map[skge->flow_control];
  1097. xm_phy_write(hw, port, PHY_XMAC_AUNE_ADV, ctrl);
  1098. /* Restart Auto-negotiation */
  1099. ctrl = PHY_CT_ANE | PHY_CT_RE_CFG;
  1100. } else {
  1101. /* Set DuplexMode in Config register */
  1102. if (skge->duplex == DUPLEX_FULL)
  1103. ctrl |= PHY_CT_DUP_MD;
  1104. /*
  1105. * Do NOT enable Auto-negotiation here. This would hold
  1106. * the link down because no IDLEs are transmitted
  1107. */
  1108. }
  1109. xm_phy_write(hw, port, PHY_XMAC_CTRL, ctrl);
  1110. /* Poll PHY for status changes */
  1111. mod_timer(&skge->link_timer, jiffies + LINK_HZ);
  1112. }
  1113. static void xm_check_link(struct net_device *dev)
  1114. {
  1115. struct skge_port *skge = netdev_priv(dev);
  1116. struct skge_hw *hw = skge->hw;
  1117. int port = skge->port;
  1118. u16 status;
  1119. /* read twice because of latch */
  1120. (void) xm_phy_read(hw, port, PHY_XMAC_STAT);
  1121. status = xm_phy_read(hw, port, PHY_XMAC_STAT);
  1122. if ((status & PHY_ST_LSYNC) == 0) {
  1123. xm_link_down(hw, port);
  1124. return;
  1125. }
  1126. if (skge->autoneg == AUTONEG_ENABLE) {
  1127. u16 lpa, res;
  1128. if (!(status & PHY_ST_AN_OVER))
  1129. return;
  1130. lpa = xm_phy_read(hw, port, PHY_XMAC_AUNE_LP);
  1131. if (lpa & PHY_B_AN_RF) {
  1132. printk(KERN_NOTICE PFX "%s: remote fault\n",
  1133. dev->name);
  1134. return;
  1135. }
  1136. res = xm_phy_read(hw, port, PHY_XMAC_RES_ABI);
  1137. /* Check Duplex mismatch */
  1138. switch (res & (PHY_X_RS_HD | PHY_X_RS_FD)) {
  1139. case PHY_X_RS_FD:
  1140. skge->duplex = DUPLEX_FULL;
  1141. break;
  1142. case PHY_X_RS_HD:
  1143. skge->duplex = DUPLEX_HALF;
  1144. break;
  1145. default:
  1146. printk(KERN_NOTICE PFX "%s: duplex mismatch\n",
  1147. dev->name);
  1148. return;
  1149. }
  1150. /* We are using IEEE 802.3z/D5.0 Table 37-4 */
  1151. if ((skge->flow_control == FLOW_MODE_SYMMETRIC ||
  1152. skge->flow_control == FLOW_MODE_SYM_OR_REM) &&
  1153. (lpa & PHY_X_P_SYM_MD))
  1154. skge->flow_status = FLOW_STAT_SYMMETRIC;
  1155. else if (skge->flow_control == FLOW_MODE_SYM_OR_REM &&
  1156. (lpa & PHY_X_RS_PAUSE) == PHY_X_P_ASYM_MD)
  1157. /* Enable PAUSE receive, disable PAUSE transmit */
  1158. skge->flow_status = FLOW_STAT_REM_SEND;
  1159. else if (skge->flow_control == FLOW_MODE_LOC_SEND &&
  1160. (lpa & PHY_X_RS_PAUSE) == PHY_X_P_BOTH_MD)
  1161. /* Disable PAUSE receive, enable PAUSE transmit */
  1162. skge->flow_status = FLOW_STAT_LOC_SEND;
  1163. else
  1164. skge->flow_status = FLOW_STAT_NONE;
  1165. skge->speed = SPEED_1000;
  1166. }
  1167. if (!netif_carrier_ok(dev))
  1168. genesis_link_up(skge);
  1169. }
  1170. /* Poll to check for link coming up.
  1171. * Since internal PHY is wired to a level triggered pin, can't
  1172. * get an interrupt when carrier is detected.
  1173. */
  1174. static void xm_link_timer(unsigned long arg)
  1175. {
  1176. struct skge_port *skge = (struct skge_port *) arg;
  1177. struct net_device *dev = skge->netdev;
  1178. struct skge_hw *hw = skge->hw;
  1179. int port = skge->port;
  1180. if (!netif_running(dev))
  1181. return;
  1182. if (netif_carrier_ok(dev)) {
  1183. xm_read16(hw, port, XM_ISRC);
  1184. if (!(xm_read16(hw, port, XM_ISRC) & XM_IS_INP_ASS))
  1185. goto nochange;
  1186. } else {
  1187. if (xm_read32(hw, port, XM_GP_PORT) & XM_GP_INP_ASS)
  1188. goto nochange;
  1189. xm_read16(hw, port, XM_ISRC);
  1190. if (xm_read16(hw, port, XM_ISRC) & XM_IS_INP_ASS)
  1191. goto nochange;
  1192. }
  1193. spin_lock(&hw->phy_lock);
  1194. xm_check_link(dev);
  1195. spin_unlock(&hw->phy_lock);
  1196. nochange:
  1197. if (netif_running(dev))
  1198. mod_timer(&skge->link_timer, jiffies + LINK_HZ);
  1199. }
  1200. static void genesis_mac_init(struct skge_hw *hw, int port)
  1201. {
  1202. struct net_device *dev = hw->dev[port];
  1203. struct skge_port *skge = netdev_priv(dev);
  1204. int jumbo = hw->dev[port]->mtu > ETH_DATA_LEN;
  1205. int i;
  1206. u32 r;
  1207. const u8 zero[6] = { 0 };
  1208. for (i = 0; i < 10; i++) {
  1209. skge_write16(hw, SK_REG(port, TX_MFF_CTRL1),
  1210. MFF_SET_MAC_RST);
  1211. if (skge_read16(hw, SK_REG(port, TX_MFF_CTRL1)) & MFF_SET_MAC_RST)
  1212. goto reset_ok;
  1213. udelay(1);
  1214. }
  1215. printk(KERN_WARNING PFX "%s: genesis reset failed\n", dev->name);
  1216. reset_ok:
  1217. /* Unreset the XMAC. */
  1218. skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_CLR_MAC_RST);
  1219. /*
  1220. * Perform additional initialization for external PHYs,
  1221. * namely for the 1000baseTX cards that use the XMAC's
  1222. * GMII mode.
  1223. */
  1224. if (hw->phy_type != SK_PHY_XMAC) {
  1225. /* Take external Phy out of reset */
  1226. r = skge_read32(hw, B2_GP_IO);
  1227. if (port == 0)
  1228. r |= GP_DIR_0|GP_IO_0;
  1229. else
  1230. r |= GP_DIR_2|GP_IO_2;
  1231. skge_write32(hw, B2_GP_IO, r);
  1232. /* Enable GMII interface */
  1233. xm_write16(hw, port, XM_HW_CFG, XM_HW_GMII_MD);
  1234. }
  1235. switch(hw->phy_type) {
  1236. case SK_PHY_XMAC:
  1237. xm_phy_init(skge);
  1238. break;
  1239. case SK_PHY_BCOM:
  1240. bcom_phy_init(skge);
  1241. bcom_check_link(hw, port);
  1242. }
  1243. /* Set Station Address */
  1244. xm_outaddr(hw, port, XM_SA, dev->dev_addr);
  1245. /* We don't use match addresses so clear */
  1246. for (i = 1; i < 16; i++)
  1247. xm_outaddr(hw, port, XM_EXM(i), zero);
  1248. /* Clear MIB counters */
  1249. xm_write16(hw, port, XM_STAT_CMD,
  1250. XM_SC_CLR_RXC | XM_SC_CLR_TXC);
  1251. /* Clear two times according to Errata #3 */
  1252. xm_write16(hw, port, XM_STAT_CMD,
  1253. XM_SC_CLR_RXC | XM_SC_CLR_TXC);
  1254. /* configure Rx High Water Mark (XM_RX_HI_WM) */
  1255. xm_write16(hw, port, XM_RX_HI_WM, 1450);
  1256. /* We don't need the FCS appended to the packet. */
  1257. r = XM_RX_LENERR_OK | XM_RX_STRIP_FCS;
  1258. if (jumbo)
  1259. r |= XM_RX_BIG_PK_OK;
  1260. if (skge->duplex == DUPLEX_HALF) {
  1261. /*
  1262. * If in manual half duplex mode the other side might be in
  1263. * full duplex mode, so ignore if a carrier extension is not seen
  1264. * on frames received
  1265. */
  1266. r |= XM_RX_DIS_CEXT;
  1267. }
  1268. xm_write16(hw, port, XM_RX_CMD, r);
  1269. /* We want short frames padded to 60 bytes. */
  1270. xm_write16(hw, port, XM_TX_CMD, XM_TX_AUTO_PAD);
  1271. /*
  1272. * Bump up the transmit threshold. This helps hold off transmit
  1273. * underruns when we're blasting traffic from both ports at once.
  1274. */
  1275. xm_write16(hw, port, XM_TX_THR, 512);
  1276. /*
  1277. * Enable the reception of all error frames. This is is
  1278. * a necessary evil due to the design of the XMAC. The
  1279. * XMAC's receive FIFO is only 8K in size, however jumbo
  1280. * frames can be up to 9000 bytes in length. When bad
  1281. * frame filtering is enabled, the XMAC's RX FIFO operates
  1282. * in 'store and forward' mode. For this to work, the
  1283. * entire frame has to fit into the FIFO, but that means
  1284. * that jumbo frames larger than 8192 bytes will be
  1285. * truncated. Disabling all bad frame filtering causes
  1286. * the RX FIFO to operate in streaming mode, in which
  1287. * case the XMAC will start transferring frames out of the
  1288. * RX FIFO as soon as the FIFO threshold is reached.
  1289. */
  1290. xm_write32(hw, port, XM_MODE, XM_DEF_MODE);
  1291. /*
  1292. * Initialize the Receive Counter Event Mask (XM_RX_EV_MSK)
  1293. * - Enable all bits excepting 'Octets Rx OK Low CntOv'
  1294. * and 'Octets Rx OK Hi Cnt Ov'.
  1295. */
  1296. xm_write32(hw, port, XM_RX_EV_MSK, XMR_DEF_MSK);
  1297. /*
  1298. * Initialize the Transmit Counter Event Mask (XM_TX_EV_MSK)
  1299. * - Enable all bits excepting 'Octets Tx OK Low CntOv'
  1300. * and 'Octets Tx OK Hi Cnt Ov'.
  1301. */
  1302. xm_write32(hw, port, XM_TX_EV_MSK, XMT_DEF_MSK);
  1303. /* Configure MAC arbiter */
  1304. skge_write16(hw, B3_MA_TO_CTRL, MA_RST_CLR);
  1305. /* configure timeout values */
  1306. skge_write8(hw, B3_MA_TOINI_RX1, 72);
  1307. skge_write8(hw, B3_MA_TOINI_RX2, 72);
  1308. skge_write8(hw, B3_MA_TOINI_TX1, 72);
  1309. skge_write8(hw, B3_MA_TOINI_TX2, 72);
  1310. skge_write8(hw, B3_MA_RCINI_RX1, 0);
  1311. skge_write8(hw, B3_MA_RCINI_RX2, 0);
  1312. skge_write8(hw, B3_MA_RCINI_TX1, 0);
  1313. skge_write8(hw, B3_MA_RCINI_TX2, 0);
  1314. /* Configure Rx MAC FIFO */
  1315. skge_write8(hw, SK_REG(port, RX_MFF_CTRL2), MFF_RST_CLR);
  1316. skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_ENA_TIM_PAT);
  1317. skge_write8(hw, SK_REG(port, RX_MFF_CTRL2), MFF_ENA_OP_MD);
  1318. /* Configure Tx MAC FIFO */
  1319. skge_write8(hw, SK_REG(port, TX_MFF_CTRL2), MFF_RST_CLR);
  1320. skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_TX_CTRL_DEF);
  1321. skge_write8(hw, SK_REG(port, TX_MFF_CTRL2), MFF_ENA_OP_MD);
  1322. if (jumbo) {
  1323. /* Enable frame flushing if jumbo frames used */
  1324. skge_write16(hw, SK_REG(port,RX_MFF_CTRL1), MFF_ENA_FLUSH);
  1325. } else {
  1326. /* enable timeout timers if normal frames */
  1327. skge_write16(hw, B3_PA_CTRL,
  1328. (port == 0) ? PA_ENA_TO_TX1 : PA_ENA_TO_TX2);
  1329. }
  1330. }
  1331. static void genesis_stop(struct skge_port *skge)
  1332. {
  1333. struct skge_hw *hw = skge->hw;
  1334. int port = skge->port;
  1335. u32 reg;
  1336. genesis_reset(hw, port);
  1337. /* Clear Tx packet arbiter timeout IRQ */
  1338. skge_write16(hw, B3_PA_CTRL,
  1339. port == 0 ? PA_CLR_TO_TX1 : PA_CLR_TO_TX2);
  1340. /*
  1341. * If the transfer sticks at the MAC the STOP command will not
  1342. * terminate if we don't flush the XMAC's transmit FIFO !
  1343. */
  1344. xm_write32(hw, port, XM_MODE,
  1345. xm_read32(hw, port, XM_MODE)|XM_MD_FTF);
  1346. /* Reset the MAC */
  1347. skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_SET_MAC_RST);
  1348. /* For external PHYs there must be special handling */
  1349. if (hw->phy_type != SK_PHY_XMAC) {
  1350. reg = skge_read32(hw, B2_GP_IO);
  1351. if (port == 0) {
  1352. reg |= GP_DIR_0;
  1353. reg &= ~GP_IO_0;
  1354. } else {
  1355. reg |= GP_DIR_2;
  1356. reg &= ~GP_IO_2;
  1357. }
  1358. skge_write32(hw, B2_GP_IO, reg);
  1359. skge_read32(hw, B2_GP_IO);
  1360. }
  1361. xm_write16(hw, port, XM_MMU_CMD,
  1362. xm_read16(hw, port, XM_MMU_CMD)
  1363. & ~(XM_MMU_ENA_RX | XM_MMU_ENA_TX));
  1364. xm_read16(hw, port, XM_MMU_CMD);
  1365. }
  1366. static void genesis_get_stats(struct skge_port *skge, u64 *data)
  1367. {
  1368. struct skge_hw *hw = skge->hw;
  1369. int port = skge->port;
  1370. int i;
  1371. unsigned long timeout = jiffies + HZ;
  1372. xm_write16(hw, port,
  1373. XM_STAT_CMD, XM_SC_SNP_TXC | XM_SC_SNP_RXC);
  1374. /* wait for update to complete */
  1375. while (xm_read16(hw, port, XM_STAT_CMD)
  1376. & (XM_SC_SNP_TXC | XM_SC_SNP_RXC)) {
  1377. if (time_after(jiffies, timeout))
  1378. break;
  1379. udelay(10);
  1380. }
  1381. /* special case for 64 bit octet counter */
  1382. data[0] = (u64) xm_read32(hw, port, XM_TXO_OK_HI) << 32
  1383. | xm_read32(hw, port, XM_TXO_OK_LO);
  1384. data[1] = (u64) xm_read32(hw, port, XM_RXO_OK_HI) << 32
  1385. | xm_read32(hw, port, XM_RXO_OK_LO);
  1386. for (i = 2; i < ARRAY_SIZE(skge_stats); i++)
  1387. data[i] = xm_read32(hw, port, skge_stats[i].xmac_offset);
  1388. }
  1389. static void genesis_mac_intr(struct skge_hw *hw, int port)
  1390. {
  1391. struct skge_port *skge = netdev_priv(hw->dev[port]);
  1392. u16 status = xm_read16(hw, port, XM_ISRC);
  1393. if (netif_msg_intr(skge))
  1394. printk(KERN_DEBUG PFX "%s: mac interrupt status 0x%x\n",
  1395. skge->netdev->name, status);
  1396. if (hw->phy_type == SK_PHY_XMAC &&
  1397. (status & (XM_IS_INP_ASS | XM_IS_LIPA_RC)))
  1398. xm_link_down(hw, port);
  1399. if (status & XM_IS_TXF_UR) {
  1400. xm_write32(hw, port, XM_MODE, XM_MD_FTF);
  1401. ++skge->net_stats.tx_fifo_errors;
  1402. }
  1403. if (status & XM_IS_RXF_OV) {
  1404. xm_write32(hw, port, XM_MODE, XM_MD_FRF);
  1405. ++skge->net_stats.rx_fifo_errors;
  1406. }
  1407. }
  1408. static void genesis_link_up(struct skge_port *skge)
  1409. {
  1410. struct skge_hw *hw = skge->hw;
  1411. int port = skge->port;
  1412. u16 cmd, msk;
  1413. u32 mode;
  1414. cmd = xm_read16(hw, port, XM_MMU_CMD);
  1415. /*
  1416. * enabling pause frame reception is required for 1000BT
  1417. * because the XMAC is not reset if the link is going down
  1418. */
  1419. if (skge->flow_status == FLOW_STAT_NONE ||
  1420. skge->flow_status == FLOW_STAT_LOC_SEND)
  1421. /* Disable Pause Frame Reception */
  1422. cmd |= XM_MMU_IGN_PF;
  1423. else
  1424. /* Enable Pause Frame Reception */
  1425. cmd &= ~XM_MMU_IGN_PF;
  1426. xm_write16(hw, port, XM_MMU_CMD, cmd);
  1427. mode = xm_read32(hw, port, XM_MODE);
  1428. if (skge->flow_status== FLOW_STAT_SYMMETRIC ||
  1429. skge->flow_status == FLOW_STAT_LOC_SEND) {
  1430. /*
  1431. * Configure Pause Frame Generation
  1432. * Use internal and external Pause Frame Generation.
  1433. * Sending pause frames is edge triggered.
  1434. * Send a Pause frame with the maximum pause time if
  1435. * internal oder external FIFO full condition occurs.
  1436. * Send a zero pause time frame to re-start transmission.
  1437. */
  1438. /* XM_PAUSE_DA = '010000C28001' (default) */
  1439. /* XM_MAC_PTIME = 0xffff (maximum) */
  1440. /* remember this value is defined in big endian (!) */
  1441. xm_write16(hw, port, XM_MAC_PTIME, 0xffff);
  1442. mode |= XM_PAUSE_MODE;
  1443. skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_ENA_PAUSE);
  1444. } else {
  1445. /*
  1446. * disable pause frame generation is required for 1000BT
  1447. * because the XMAC is not reset if the link is going down
  1448. */
  1449. /* Disable Pause Mode in Mode Register */
  1450. mode &= ~XM_PAUSE_MODE;
  1451. skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_DIS_PAUSE);
  1452. }
  1453. xm_write32(hw, port, XM_MODE, mode);
  1454. msk = XM_DEF_MSK;
  1455. if (hw->phy_type != SK_PHY_XMAC)
  1456. msk |= XM_IS_INP_ASS; /* disable GP0 interrupt bit */
  1457. xm_write16(hw, port, XM_IMSK, msk);
  1458. xm_read16(hw, port, XM_ISRC);
  1459. /* get MMU Command Reg. */
  1460. cmd = xm_read16(hw, port, XM_MMU_CMD);
  1461. if (hw->phy_type != SK_PHY_XMAC && skge->duplex == DUPLEX_FULL)
  1462. cmd |= XM_MMU_GMII_FD;
  1463. /*
  1464. * Workaround BCOM Errata (#10523) for all BCom Phys
  1465. * Enable Power Management after link up
  1466. */
  1467. if (hw->phy_type == SK_PHY_BCOM) {
  1468. xm_phy_write(hw, port, PHY_BCOM_AUX_CTRL,
  1469. xm_phy_read(hw, port, PHY_BCOM_AUX_CTRL)
  1470. & ~PHY_B_AC_DIS_PM);
  1471. xm_phy_write(hw, port, PHY_BCOM_INT_MASK, PHY_B_DEF_MSK);
  1472. }
  1473. /* enable Rx/Tx */
  1474. xm_write16(hw, port, XM_MMU_CMD,
  1475. cmd | XM_MMU_ENA_RX | XM_MMU_ENA_TX);
  1476. skge_link_up(skge);
  1477. }
  1478. static inline void bcom_phy_intr(struct skge_port *skge)
  1479. {
  1480. struct skge_hw *hw = skge->hw;
  1481. int port = skge->port;
  1482. u16 isrc;
  1483. isrc = xm_phy_read(hw, port, PHY_BCOM_INT_STAT);
  1484. if (netif_msg_intr(skge))
  1485. printk(KERN_DEBUG PFX "%s: phy interrupt status 0x%x\n",
  1486. skge->netdev->name, isrc);
  1487. if (isrc & PHY_B_IS_PSE)
  1488. printk(KERN_ERR PFX "%s: uncorrectable pair swap error\n",
  1489. hw->dev[port]->name);
  1490. /* Workaround BCom Errata:
  1491. * enable and disable loopback mode if "NO HCD" occurs.
  1492. */
  1493. if (isrc & PHY_B_IS_NO_HDCL) {
  1494. u16 ctrl = xm_phy_read(hw, port, PHY_BCOM_CTRL);
  1495. xm_phy_write(hw, port, PHY_BCOM_CTRL,
  1496. ctrl | PHY_CT_LOOP);
  1497. xm_phy_write(hw, port, PHY_BCOM_CTRL,
  1498. ctrl & ~PHY_CT_LOOP);
  1499. }
  1500. if (isrc & (PHY_B_IS_AN_PR | PHY_B_IS_LST_CHANGE))
  1501. bcom_check_link(hw, port);
  1502. }
  1503. static int gm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val)
  1504. {
  1505. int i;
  1506. gma_write16(hw, port, GM_SMI_DATA, val);
  1507. gma_write16(hw, port, GM_SMI_CTRL,
  1508. GM_SMI_CT_PHY_AD(hw->phy_addr) | GM_SMI_CT_REG_AD(reg));
  1509. for (i = 0; i < PHY_RETRIES; i++) {
  1510. udelay(1);
  1511. if (!(gma_read16(hw, port, GM_SMI_CTRL) & GM_SMI_CT_BUSY))
  1512. return 0;
  1513. }
  1514. printk(KERN_WARNING PFX "%s: phy write timeout\n",
  1515. hw->dev[port]->name);
  1516. return -EIO;
  1517. }
  1518. static int __gm_phy_read(struct skge_hw *hw, int port, u16 reg, u16 *val)
  1519. {
  1520. int i;
  1521. gma_write16(hw, port, GM_SMI_CTRL,
  1522. GM_SMI_CT_PHY_AD(hw->phy_addr)
  1523. | GM_SMI_CT_REG_AD(reg) | GM_SMI_CT_OP_RD);
  1524. for (i = 0; i < PHY_RETRIES; i++) {
  1525. udelay(1);
  1526. if (gma_read16(hw, port, GM_SMI_CTRL) & GM_SMI_CT_RD_VAL)
  1527. goto ready;
  1528. }
  1529. return -ETIMEDOUT;
  1530. ready:
  1531. *val = gma_read16(hw, port, GM_SMI_DATA);
  1532. return 0;
  1533. }
  1534. static u16 gm_phy_read(struct skge_hw *hw, int port, u16 reg)
  1535. {
  1536. u16 v = 0;
  1537. if (__gm_phy_read(hw, port, reg, &v))
  1538. printk(KERN_WARNING PFX "%s: phy read timeout\n",
  1539. hw->dev[port]->name);
  1540. return v;
  1541. }
  1542. /* Marvell Phy Initialization */
  1543. static void yukon_init(struct skge_hw *hw, int port)
  1544. {
  1545. struct skge_port *skge = netdev_priv(hw->dev[port]);
  1546. u16 ctrl, ct1000, adv;
  1547. if (skge->autoneg == AUTONEG_ENABLE) {
  1548. u16 ectrl = gm_phy_read(hw, port, PHY_MARV_EXT_CTRL);
  1549. ectrl &= ~(PHY_M_EC_M_DSC_MSK | PHY_M_EC_S_DSC_MSK |
  1550. PHY_M_EC_MAC_S_MSK);
  1551. ectrl |= PHY_M_EC_MAC_S(MAC_TX_CLK_25_MHZ);
  1552. ectrl |= PHY_M_EC_M_DSC(0) | PHY_M_EC_S_DSC(1);
  1553. gm_phy_write(hw, port, PHY_MARV_EXT_CTRL, ectrl);
  1554. }
  1555. ctrl = gm_phy_read(hw, port, PHY_MARV_CTRL);
  1556. if (skge->autoneg == AUTONEG_DISABLE)
  1557. ctrl &= ~PHY_CT_ANE;
  1558. ctrl |= PHY_CT_RESET;
  1559. gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
  1560. ctrl = 0;
  1561. ct1000 = 0;
  1562. adv = PHY_AN_CSMA;
  1563. if (skge->autoneg == AUTONEG_ENABLE) {
  1564. if (hw->copper) {
  1565. if (skge->advertising & ADVERTISED_1000baseT_Full)
  1566. ct1000 |= PHY_M_1000C_AFD;
  1567. if (skge->advertising & ADVERTISED_1000baseT_Half)
  1568. ct1000 |= PHY_M_1000C_AHD;
  1569. if (skge->advertising & ADVERTISED_100baseT_Full)
  1570. adv |= PHY_M_AN_100_FD;
  1571. if (skge->advertising & ADVERTISED_100baseT_Half)
  1572. adv |= PHY_M_AN_100_HD;
  1573. if (skge->advertising & ADVERTISED_10baseT_Full)
  1574. adv |= PHY_M_AN_10_FD;
  1575. if (skge->advertising & ADVERTISED_10baseT_Half)
  1576. adv |= PHY_M_AN_10_HD;
  1577. /* Set Flow-control capabilities */
  1578. adv |= phy_pause_map[skge->flow_control];
  1579. } else {
  1580. if (skge->advertising & ADVERTISED_1000baseT_Full)
  1581. adv |= PHY_M_AN_1000X_AFD;
  1582. if (skge->advertising & ADVERTISED_1000baseT_Half)
  1583. adv |= PHY_M_AN_1000X_AHD;
  1584. adv |= fiber_pause_map[skge->flow_control];
  1585. }
  1586. /* Restart Auto-negotiation */
  1587. ctrl |= PHY_CT_ANE | PHY_CT_RE_CFG;
  1588. } else {
  1589. /* forced speed/duplex settings */
  1590. ct1000 = PHY_M_1000C_MSE;
  1591. if (skge->duplex == DUPLEX_FULL)
  1592. ctrl |= PHY_CT_DUP_MD;
  1593. switch (skge->speed) {
  1594. case SPEED_1000:
  1595. ctrl |= PHY_CT_SP1000;
  1596. break;
  1597. case SPEED_100:
  1598. ctrl |= PHY_CT_SP100;
  1599. break;
  1600. }
  1601. ctrl |= PHY_CT_RESET;
  1602. }
  1603. gm_phy_write(hw, port, PHY_MARV_1000T_CTRL, ct1000);
  1604. gm_phy_write(hw, port, PHY_MARV_AUNE_ADV, adv);
  1605. gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
  1606. /* Enable phy interrupt on autonegotiation complete (or link up) */
  1607. if (skge->autoneg == AUTONEG_ENABLE)
  1608. gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_IS_AN_MSK);
  1609. else
  1610. gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_IS_DEF_MSK);
  1611. }
  1612. static void yukon_reset(struct skge_hw *hw, int port)
  1613. {
  1614. gm_phy_write(hw, port, PHY_MARV_INT_MASK, 0);/* disable PHY IRQs */
  1615. gma_write16(hw, port, GM_MC_ADDR_H1, 0); /* clear MC hash */
  1616. gma_write16(hw, port, GM_MC_ADDR_H2, 0);
  1617. gma_write16(hw, port, GM_MC_ADDR_H3, 0);
  1618. gma_write16(hw, port, GM_MC_ADDR_H4, 0);
  1619. gma_write16(hw, port, GM_RX_CTRL,
  1620. gma_read16(hw, port, GM_RX_CTRL)
  1621. | GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA);
  1622. }
  1623. /* Apparently, early versions of Yukon-Lite had wrong chip_id? */
  1624. static int is_yukon_lite_a0(struct skge_hw *hw)
  1625. {
  1626. u32 reg;
  1627. int ret;
  1628. if (hw->chip_id != CHIP_ID_YUKON)
  1629. return 0;
  1630. reg = skge_read32(hw, B2_FAR);
  1631. skge_write8(hw, B2_FAR + 3, 0xff);
  1632. ret = (skge_read8(hw, B2_FAR + 3) != 0);
  1633. skge_write32(hw, B2_FAR, reg);
  1634. return ret;
  1635. }
  1636. static void yukon_mac_init(struct skge_hw *hw, int port)
  1637. {
  1638. struct skge_port *skge = netdev_priv(hw->dev[port]);
  1639. int i;
  1640. u32 reg;
  1641. const u8 *addr = hw->dev[port]->dev_addr;
  1642. /* WA code for COMA mode -- set PHY reset */
  1643. if (hw->chip_id == CHIP_ID_YUKON_LITE &&
  1644. hw->chip_rev >= CHIP_REV_YU_LITE_A3) {
  1645. reg = skge_read32(hw, B2_GP_IO);
  1646. reg |= GP_DIR_9 | GP_IO_9;
  1647. skge_write32(hw, B2_GP_IO, reg);
  1648. }
  1649. /* hard reset */
  1650. skge_write32(hw, SK_REG(port, GPHY_CTRL), GPC_RST_SET);
  1651. skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_RST_SET);
  1652. /* WA code for COMA mode -- clear PHY reset */
  1653. if (hw->chip_id == CHIP_ID_YUKON_LITE &&
  1654. hw->chip_rev >= CHIP_REV_YU_LITE_A3) {
  1655. reg = skge_read32(hw, B2_GP_IO);
  1656. reg |= GP_DIR_9;
  1657. reg &= ~GP_IO_9;
  1658. skge_write32(hw, B2_GP_IO, reg);
  1659. }
  1660. /* Set hardware config mode */
  1661. reg = GPC_INT_POL_HI | GPC_DIS_FC | GPC_DIS_SLEEP |
  1662. GPC_ENA_XC | GPC_ANEG_ADV_ALL_M | GPC_ENA_PAUSE;
  1663. reg |= hw->copper ? GPC_HWCFG_GMII_COP : GPC_HWCFG_GMII_FIB;
  1664. /* Clear GMC reset */
  1665. skge_write32(hw, SK_REG(port, GPHY_CTRL), reg | GPC_RST_SET);
  1666. skge_write32(hw, SK_REG(port, GPHY_CTRL), reg | GPC_RST_CLR);
  1667. skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_ON | GMC_RST_CLR);
  1668. if (skge->autoneg == AUTONEG_DISABLE) {
  1669. reg = GM_GPCR_AU_ALL_DIS;
  1670. gma_write16(hw, port, GM_GP_CTRL,
  1671. gma_read16(hw, port, GM_GP_CTRL) | reg);
  1672. switch (skge->speed) {
  1673. case SPEED_1000:
  1674. reg &= ~GM_GPCR_SPEED_100;
  1675. reg |= GM_GPCR_SPEED_1000;
  1676. break;
  1677. case SPEED_100:
  1678. reg &= ~GM_GPCR_SPEED_1000;
  1679. reg |= GM_GPCR_SPEED_100;
  1680. break;
  1681. case SPEED_10:
  1682. reg &= ~(GM_GPCR_SPEED_1000 | GM_GPCR_SPEED_100);
  1683. break;
  1684. }
  1685. if (skge->duplex == DUPLEX_FULL)
  1686. reg |= GM_GPCR_DUP_FULL;
  1687. } else
  1688. reg = GM_GPCR_SPEED_1000 | GM_GPCR_SPEED_100 | GM_GPCR_DUP_FULL;
  1689. switch (skge->flow_control) {
  1690. case FLOW_MODE_NONE:
  1691. skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_OFF);
  1692. reg |= GM_GPCR_FC_TX_DIS | GM_GPCR_FC_RX_DIS | GM_GPCR_AU_FCT_DIS;
  1693. break;
  1694. case FLOW_MODE_LOC_SEND:
  1695. /* disable Rx flow-control */
  1696. reg |= GM_GPCR_FC_RX_DIS | GM_GPCR_AU_FCT_DIS;
  1697. break;
  1698. case FLOW_MODE_SYMMETRIC:
  1699. case FLOW_MODE_SYM_OR_REM:
  1700. /* enable Tx & Rx flow-control */
  1701. break;
  1702. }
  1703. gma_write16(hw, port, GM_GP_CTRL, reg);
  1704. skge_read16(hw, SK_REG(port, GMAC_IRQ_SRC));
  1705. yukon_init(hw, port);
  1706. /* MIB clear */
  1707. reg = gma_read16(hw, port, GM_PHY_ADDR);
  1708. gma_write16(hw, port, GM_PHY_ADDR, reg | GM_PAR_MIB_CLR);
  1709. for (i = 0; i < GM_MIB_CNT_SIZE; i++)
  1710. gma_read16(hw, port, GM_MIB_CNT_BASE + 8*i);
  1711. gma_write16(hw, port, GM_PHY_ADDR, reg);
  1712. /* transmit control */
  1713. gma_write16(hw, port, GM_TX_CTRL, TX_COL_THR(TX_COL_DEF));
  1714. /* receive control reg: unicast + multicast + no FCS */
  1715. gma_write16(hw, port, GM_RX_CTRL,
  1716. GM_RXCR_UCF_ENA | GM_RXCR_CRC_DIS | GM_RXCR_MCF_ENA);
  1717. /* transmit flow control */
  1718. gma_write16(hw, port, GM_TX_FLOW_CTRL, 0xffff);
  1719. /* transmit parameter */
  1720. gma_write16(hw, port, GM_TX_PARAM,
  1721. TX_JAM_LEN_VAL(TX_JAM_LEN_DEF) |
  1722. TX_JAM_IPG_VAL(TX_JAM_IPG_DEF) |
  1723. TX_IPG_JAM_DATA(TX_IPG_JAM_DEF));
  1724. /* serial mode register */
  1725. reg = GM_SMOD_VLAN_ENA | IPG_DATA_VAL(IPG_DATA_DEF);
  1726. if (hw->dev[port]->mtu > 1500)
  1727. reg |= GM_SMOD_JUMBO_ENA;
  1728. gma_write16(hw, port, GM_SERIAL_MODE, reg);
  1729. /* physical address: used for pause frames */
  1730. gma_set_addr(hw, port, GM_SRC_ADDR_1L, addr);
  1731. /* virtual address for data */
  1732. gma_set_addr(hw, port, GM_SRC_ADDR_2L, addr);
  1733. /* enable interrupt mask for counter overflows */
  1734. gma_write16(hw, port, GM_TX_IRQ_MSK, 0);
  1735. gma_write16(hw, port, GM_RX_IRQ_MSK, 0);
  1736. gma_write16(hw, port, GM_TR_IRQ_MSK, 0);
  1737. /* Initialize Mac Fifo */
  1738. /* Configure Rx MAC FIFO */
  1739. skge_write16(hw, SK_REG(port, RX_GMF_FL_MSK), RX_FF_FL_DEF_MSK);
  1740. reg = GMF_OPER_ON | GMF_RX_F_FL_ON;
  1741. /* disable Rx GMAC FIFO Flush for YUKON-Lite Rev. A0 only */
  1742. if (is_yukon_lite_a0(hw))
  1743. reg &= ~GMF_RX_F_FL_ON;
  1744. skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_RST_CLR);
  1745. skge_write16(hw, SK_REG(port, RX_GMF_CTRL_T), reg);
  1746. /*
  1747. * because Pause Packet Truncation in GMAC is not working
  1748. * we have to increase the Flush Threshold to 64 bytes
  1749. * in order to flush pause packets in Rx FIFO on Yukon-1
  1750. */
  1751. skge_write16(hw, SK_REG(port, RX_GMF_FL_THR), RX_GMF_FL_THR_DEF+1);
  1752. /* Configure Tx MAC FIFO */
  1753. skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_RST_CLR);
  1754. skge_write16(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_OPER_ON);
  1755. }
  1756. /* Go into power down mode */
  1757. static void yukon_suspend(struct skge_hw *hw, int port)
  1758. {
  1759. u16 ctrl;
  1760. ctrl = gm_phy_read(hw, port, PHY_MARV_PHY_CTRL);
  1761. ctrl |= PHY_M_PC_POL_R_DIS;
  1762. gm_phy_write(hw, port, PHY_MARV_PHY_CTRL, ctrl);
  1763. ctrl = gm_phy_read(hw, port, PHY_MARV_CTRL);
  1764. ctrl |= PHY_CT_RESET;
  1765. gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
  1766. /* switch IEEE compatible power down mode on */
  1767. ctrl = gm_phy_read(hw, port, PHY_MARV_CTRL);
  1768. ctrl |= PHY_CT_PDOWN;
  1769. gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
  1770. }
  1771. static void yukon_stop(struct skge_port *skge)
  1772. {
  1773. struct skge_hw *hw = skge->hw;
  1774. int port = skge->port;
  1775. skge_write8(hw, SK_REG(port, GMAC_IRQ_MSK), 0);
  1776. yukon_reset(hw, port);
  1777. gma_write16(hw, port, GM_GP_CTRL,
  1778. gma_read16(hw, port, GM_GP_CTRL)
  1779. & ~(GM_GPCR_TX_ENA|GM_GPCR_RX_ENA));
  1780. gma_read16(hw, port, GM_GP_CTRL);
  1781. yukon_suspend(hw, port);
  1782. /* set GPHY Control reset */
  1783. skge_write8(hw, SK_REG(port, GPHY_CTRL), GPC_RST_SET);
  1784. skge_write8(hw, SK_REG(port, GMAC_CTRL), GMC_RST_SET);
  1785. }
  1786. static void yukon_get_stats(struct skge_port *skge, u64 *data)
  1787. {
  1788. struct skge_hw *hw = skge->hw;
  1789. int port = skge->port;
  1790. int i;
  1791. data[0] = (u64) gma_read32(hw, port, GM_TXO_OK_HI) << 32
  1792. | gma_read32(hw, port, GM_TXO_OK_LO);
  1793. data[1] = (u64) gma_read32(hw, port, GM_RXO_OK_HI) << 32
  1794. | gma_read32(hw, port, GM_RXO_OK_LO);
  1795. for (i = 2; i < ARRAY_SIZE(skge_stats); i++)
  1796. data[i] = gma_read32(hw, port,
  1797. skge_stats[i].gma_offset);
  1798. }
  1799. static void yukon_mac_intr(struct skge_hw *hw, int port)
  1800. {
  1801. struct net_device *dev = hw->dev[port];
  1802. struct skge_port *skge = netdev_priv(dev);
  1803. u8 status = skge_read8(hw, SK_REG(port, GMAC_IRQ_SRC));
  1804. if (netif_msg_intr(skge))
  1805. printk(KERN_DEBUG PFX "%s: mac interrupt status 0x%x\n",
  1806. dev->name, status);
  1807. if (status & GM_IS_RX_FF_OR) {
  1808. ++skge->net_stats.rx_fifo_errors;
  1809. skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_CLI_RX_FO);
  1810. }
  1811. if (status & GM_IS_TX_FF_UR) {
  1812. ++skge->net_stats.tx_fifo_errors;
  1813. skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_CLI_TX_FU);
  1814. }
  1815. }
  1816. static u16 yukon_speed(const struct skge_hw *hw, u16 aux)
  1817. {
  1818. switch (aux & PHY_M_PS_SPEED_MSK) {
  1819. case PHY_M_PS_SPEED_1000:
  1820. return SPEED_1000;
  1821. case PHY_M_PS_SPEED_100:
  1822. return SPEED_100;
  1823. default:
  1824. return SPEED_10;
  1825. }
  1826. }
  1827. static void yukon_link_up(struct skge_port *skge)
  1828. {
  1829. struct skge_hw *hw = skge->hw;
  1830. int port = skge->port;
  1831. u16 reg;
  1832. /* Enable Transmit FIFO Underrun */
  1833. skge_write8(hw, SK_REG(port, GMAC_IRQ_MSK), GMAC_DEF_MSK);
  1834. reg = gma_read16(hw, port, GM_GP_CTRL);
  1835. if (skge->duplex == DUPLEX_FULL || skge->autoneg == AUTONEG_ENABLE)
  1836. reg |= GM_GPCR_DUP_FULL;
  1837. /* enable Rx/Tx */
  1838. reg |= GM_GPCR_RX_ENA | GM_GPCR_TX_ENA;
  1839. gma_write16(hw, port, GM_GP_CTRL, reg);
  1840. gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_IS_DEF_MSK);
  1841. skge_link_up(skge);
  1842. }
  1843. static void yukon_link_down(struct skge_port *skge)
  1844. {
  1845. struct skge_hw *hw = skge->hw;
  1846. int port = skge->port;
  1847. u16 ctrl;
  1848. ctrl = gma_read16(hw, port, GM_GP_CTRL);
  1849. ctrl &= ~(GM_GPCR_RX_ENA | GM_GPCR_TX_ENA);
  1850. gma_write16(hw, port, GM_GP_CTRL, ctrl);
  1851. if (skge->flow_status == FLOW_STAT_REM_SEND) {
  1852. ctrl = gm_phy_read(hw, port, PHY_MARV_AUNE_ADV);
  1853. ctrl |= PHY_M_AN_ASP;
  1854. /* restore Asymmetric Pause bit */
  1855. gm_phy_write(hw, port, PHY_MARV_AUNE_ADV, ctrl);
  1856. }
  1857. skge_link_down(skge);
  1858. yukon_init(hw, port);
  1859. }
  1860. static void yukon_phy_intr(struct skge_port *skge)
  1861. {
  1862. struct skge_hw *hw = skge->hw;
  1863. int port = skge->port;
  1864. const char *reason = NULL;
  1865. u16 istatus, phystat;
  1866. istatus = gm_phy_read(hw, port, PHY_MARV_INT_STAT);
  1867. phystat = gm_phy_read(hw, port, PHY_MARV_PHY_STAT);
  1868. if (netif_msg_intr(skge))
  1869. printk(KERN_DEBUG PFX "%s: phy interrupt status 0x%x 0x%x\n",
  1870. skge->netdev->name, istatus, phystat);
  1871. if (istatus & PHY_M_IS_AN_COMPL) {
  1872. if (gm_phy_read(hw, port, PHY_MARV_AUNE_LP)
  1873. & PHY_M_AN_RF) {
  1874. reason = "remote fault";
  1875. goto failed;
  1876. }
  1877. if (gm_phy_read(hw, port, PHY_MARV_1000T_STAT) & PHY_B_1000S_MSF) {
  1878. reason = "master/slave fault";
  1879. goto failed;
  1880. }
  1881. if (!(phystat & PHY_M_PS_SPDUP_RES)) {
  1882. reason = "speed/duplex";
  1883. goto failed;
  1884. }
  1885. skge->duplex = (phystat & PHY_M_PS_FULL_DUP)
  1886. ? DUPLEX_FULL : DUPLEX_HALF;
  1887. skge->speed = yukon_speed(hw, phystat);
  1888. /* We are using IEEE 802.3z/D5.0 Table 37-4 */
  1889. switch (phystat & PHY_M_PS_PAUSE_MSK) {
  1890. case PHY_M_PS_PAUSE_MSK:
  1891. skge->flow_status = FLOW_STAT_SYMMETRIC;
  1892. break;
  1893. case PHY_M_PS_RX_P_EN:
  1894. skge->flow_status = FLOW_STAT_REM_SEND;
  1895. break;
  1896. case PHY_M_PS_TX_P_EN:
  1897. skge->flow_status = FLOW_STAT_LOC_SEND;
  1898. break;
  1899. default:
  1900. skge->flow_status = FLOW_STAT_NONE;
  1901. }
  1902. if (skge->flow_status == FLOW_STAT_NONE ||
  1903. (skge->speed < SPEED_1000 && skge->duplex == DUPLEX_HALF))
  1904. skge_write8(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_OFF);
  1905. else
  1906. skge_write8(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_ON);
  1907. yukon_link_up(skge);
  1908. return;
  1909. }
  1910. if (istatus & PHY_M_IS_LSP_CHANGE)
  1911. skge->speed = yukon_speed(hw, phystat);
  1912. if (istatus & PHY_M_IS_DUP_CHANGE)
  1913. skge->duplex = (phystat & PHY_M_PS_FULL_DUP) ? DUPLEX_FULL : DUPLEX_HALF;
  1914. if (istatus & PHY_M_IS_LST_CHANGE) {
  1915. if (phystat & PHY_M_PS_LINK_UP)
  1916. yukon_link_up(skge);
  1917. else
  1918. yukon_link_down(skge);
  1919. }
  1920. return;
  1921. failed:
  1922. printk(KERN_ERR PFX "%s: autonegotiation failed (%s)\n",
  1923. skge->netdev->name, reason);
  1924. /* XXX restart autonegotiation? */
  1925. }
  1926. static void skge_phy_reset(struct skge_port *skge)
  1927. {
  1928. struct skge_hw *hw = skge->hw;
  1929. int port = skge->port;
  1930. struct net_device *dev = hw->dev[port];
  1931. netif_stop_queue(skge->netdev);
  1932. netif_carrier_off(skge->netdev);
  1933. spin_lock_bh(&hw->phy_lock);
  1934. if (hw->chip_id == CHIP_ID_GENESIS) {
  1935. genesis_reset(hw, port);
  1936. genesis_mac_init(hw, port);
  1937. } else {
  1938. yukon_reset(hw, port);
  1939. yukon_init(hw, port);
  1940. }
  1941. spin_unlock_bh(&hw->phy_lock);
  1942. dev->set_multicast_list(dev);
  1943. }
  1944. /* Basic MII support */
  1945. static int skge_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
  1946. {
  1947. struct mii_ioctl_data *data = if_mii(ifr);
  1948. struct skge_port *skge = netdev_priv(dev);
  1949. struct skge_hw *hw = skge->hw;
  1950. int err = -EOPNOTSUPP;
  1951. if (!netif_running(dev))
  1952. return -ENODEV; /* Phy still in reset */
  1953. switch(cmd) {
  1954. case SIOCGMIIPHY:
  1955. data->phy_id = hw->phy_addr;
  1956. /* fallthru */
  1957. case SIOCGMIIREG: {
  1958. u16 val = 0;
  1959. spin_lock_bh(&hw->phy_lock);
  1960. if (hw->chip_id == CHIP_ID_GENESIS)
  1961. err = __xm_phy_read(hw, skge->port, data->reg_num & 0x1f, &val);
  1962. else
  1963. err = __gm_phy_read(hw, skge->port, data->reg_num & 0x1f, &val);
  1964. spin_unlock_bh(&hw->phy_lock);
  1965. data->val_out = val;
  1966. break;
  1967. }
  1968. case SIOCSMIIREG:
  1969. if (!capable(CAP_NET_ADMIN))
  1970. return -EPERM;
  1971. spin_lock_bh(&hw->phy_lock);
  1972. if (hw->chip_id == CHIP_ID_GENESIS)
  1973. err = xm_phy_write(hw, skge->port, data->reg_num & 0x1f,
  1974. data->val_in);
  1975. else
  1976. err = gm_phy_write(hw, skge->port, data->reg_num & 0x1f,
  1977. data->val_in);
  1978. spin_unlock_bh(&hw->phy_lock);
  1979. break;
  1980. }
  1981. return err;
  1982. }
  1983. static void skge_ramset(struct skge_hw *hw, u16 q, u32 start, size_t len)
  1984. {
  1985. u32 end;
  1986. start /= 8;
  1987. len /= 8;
  1988. end = start + len - 1;
  1989. skge_write8(hw, RB_ADDR(q, RB_CTRL), RB_RST_CLR);
  1990. skge_write32(hw, RB_ADDR(q, RB_START), start);
  1991. skge_write32(hw, RB_ADDR(q, RB_WP), start);
  1992. skge_write32(hw, RB_ADDR(q, RB_RP), start);
  1993. skge_write32(hw, RB_ADDR(q, RB_END), end);
  1994. if (q == Q_R1 || q == Q_R2) {
  1995. /* Set thresholds on receive queue's */
  1996. skge_write32(hw, RB_ADDR(q, RB_RX_UTPP),
  1997. start + (2*len)/3);
  1998. skge_write32(hw, RB_ADDR(q, RB_RX_LTPP),
  1999. start + (len/3));
  2000. } else {
  2001. /* Enable store & forward on Tx queue's because
  2002. * Tx FIFO is only 4K on Genesis and 1K on Yukon
  2003. */
  2004. skge_write8(hw, RB_ADDR(q, RB_CTRL), RB_ENA_STFWD);
  2005. }
  2006. skge_write8(hw, RB_ADDR(q, RB_CTRL), RB_ENA_OP_MD);
  2007. }
  2008. /* Setup Bus Memory Interface */
  2009. static void skge_qset(struct skge_port *skge, u16 q,
  2010. const struct skge_element *e)
  2011. {
  2012. struct skge_hw *hw = skge->hw;
  2013. u32 watermark = 0x600;
  2014. u64 base = skge->dma + (e->desc - skge->mem);
  2015. /* optimization to reduce window on 32bit/33mhz */
  2016. if ((skge_read16(hw, B0_CTST) & (CS_BUS_CLOCK | CS_BUS_SLOT_SZ)) == 0)
  2017. watermark /= 2;
  2018. skge_write32(hw, Q_ADDR(q, Q_CSR), CSR_CLR_RESET);
  2019. skge_write32(hw, Q_ADDR(q, Q_F), watermark);
  2020. skge_write32(hw, Q_ADDR(q, Q_DA_H), (u32)(base >> 32));
  2021. skge_write32(hw, Q_ADDR(q, Q_DA_L), (u32)base);
  2022. }
  2023. static int skge_up(struct net_device *dev)
  2024. {
  2025. struct skge_port *skge = netdev_priv(dev);
  2026. struct skge_hw *hw = skge->hw;
  2027. int port = skge->port;
  2028. u32 chunk, ram_addr;
  2029. size_t rx_size, tx_size;
  2030. int err;
  2031. if (!is_valid_ether_addr(dev->dev_addr))
  2032. return -EINVAL;
  2033. if (netif_msg_ifup(skge))
  2034. printk(KERN_INFO PFX "%s: enabling interface\n", dev->name);
  2035. if (dev->mtu > RX_BUF_SIZE)
  2036. skge->rx_buf_size = dev->mtu + ETH_HLEN;
  2037. else
  2038. skge->rx_buf_size = RX_BUF_SIZE;
  2039. rx_size = skge->rx_ring.count * sizeof(struct skge_rx_desc);
  2040. tx_size = skge->tx_ring.count * sizeof(struct skge_tx_desc);
  2041. skge->mem_size = tx_size + rx_size;
  2042. skge->mem = pci_alloc_consistent(hw->pdev, skge->mem_size, &skge->dma);
  2043. if (!skge->mem)
  2044. return -ENOMEM;
  2045. BUG_ON(skge->dma & 7);
  2046. if ((u64)skge->dma >> 32 != ((u64) skge->dma + skge->mem_size) >> 32) {
  2047. dev_err(&hw->pdev->dev, "pci_alloc_consistent region crosses 4G boundary\n");
  2048. err = -EINVAL;
  2049. goto free_pci_mem;
  2050. }
  2051. memset(skge->mem, 0, skge->mem_size);
  2052. err = skge_ring_alloc(&skge->rx_ring, skge->mem, skge->dma);
  2053. if (err)
  2054. goto free_pci_mem;
  2055. err = skge_rx_fill(dev);
  2056. if (err)
  2057. goto free_rx_ring;
  2058. err = skge_ring_alloc(&skge->tx_ring, skge->mem + rx_size,
  2059. skge->dma + rx_size);
  2060. if (err)
  2061. goto free_rx_ring;
  2062. /* Initialize MAC */
  2063. spin_lock_bh(&hw->phy_lock);
  2064. if (hw->chip_id == CHIP_ID_GENESIS)
  2065. genesis_mac_init(hw, port);
  2066. else
  2067. yukon_mac_init(hw, port);
  2068. spin_unlock_bh(&hw->phy_lock);
  2069. /* Configure RAMbuffers */
  2070. chunk = hw->ram_size / ((hw->ports + 1)*2);
  2071. ram_addr = hw->ram_offset + 2 * chunk * port;
  2072. skge_ramset(hw, rxqaddr[port], ram_addr, chunk);
  2073. skge_qset(skge, rxqaddr[port], skge->rx_ring.to_clean);
  2074. BUG_ON(skge->tx_ring.to_use != skge->tx_ring.to_clean);
  2075. skge_ramset(hw, txqaddr[port], ram_addr+chunk, chunk);
  2076. skge_qset(skge, txqaddr[port], skge->tx_ring.to_use);
  2077. /* Start receiver BMU */
  2078. wmb();
  2079. skge_write8(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_START | CSR_IRQ_CL_F);
  2080. skge_led(skge, LED_MODE_ON);
  2081. spin_lock_irq(&hw->hw_lock);
  2082. hw->intr_mask |= portmask[port];
  2083. skge_write32(hw, B0_IMSK, hw->intr_mask);
  2084. spin_unlock_irq(&hw->hw_lock);
  2085. napi_enable(&skge->napi);
  2086. return 0;
  2087. free_rx_ring:
  2088. skge_rx_clean(skge);
  2089. kfree(skge->rx_ring.start);
  2090. free_pci_mem:
  2091. pci_free_consistent(hw->pdev, skge->mem_size, skge->mem, skge->dma);
  2092. skge->mem = NULL;
  2093. return err;
  2094. }
  2095. static int skge_down(struct net_device *dev)
  2096. {
  2097. struct skge_port *skge = netdev_priv(dev);
  2098. struct skge_hw *hw = skge->hw;
  2099. int port = skge->port;
  2100. if (skge->mem == NULL)
  2101. return 0;
  2102. if (netif_msg_ifdown(skge))
  2103. printk(KERN_INFO PFX "%s: disabling interface\n", dev->name);
  2104. netif_stop_queue(dev);
  2105. if (hw->chip_id == CHIP_ID_GENESIS && hw->phy_type == SK_PHY_XMAC)
  2106. del_timer_sync(&skge->link_timer);
  2107. napi_disable(&skge->napi);
  2108. netif_carrier_off(dev);
  2109. spin_lock_irq(&hw->hw_lock);
  2110. hw->intr_mask &= ~portmask[port];
  2111. skge_write32(hw, B0_IMSK, hw->intr_mask);
  2112. spin_unlock_irq(&hw->hw_lock);
  2113. skge_write8(skge->hw, SK_REG(skge->port, LNK_LED_REG), LED_OFF);
  2114. if (hw->chip_id == CHIP_ID_GENESIS)
  2115. genesis_stop(skge);
  2116. else
  2117. yukon_stop(skge);
  2118. /* Stop transmitter */
  2119. skge_write8(hw, Q_ADDR(txqaddr[port], Q_CSR), CSR_STOP);
  2120. skge_write32(hw, RB_ADDR(txqaddr[port], RB_CTRL),
  2121. RB_RST_SET|RB_DIS_OP_MD);
  2122. /* Disable Force Sync bit and Enable Alloc bit */
  2123. skge_write8(hw, SK_REG(port, TXA_CTRL),
  2124. TXA_DIS_FSYNC | TXA_DIS_ALLOC | TXA_STOP_RC);
  2125. /* Stop Interval Timer and Limit Counter of Tx Arbiter */
  2126. skge_write32(hw, SK_REG(port, TXA_ITI_INI), 0L);
  2127. skge_write32(hw, SK_REG(port, TXA_LIM_INI), 0L);
  2128. /* Reset PCI FIFO */
  2129. skge_write32(hw, Q_ADDR(txqaddr[port], Q_CSR), CSR_SET_RESET);
  2130. skge_write32(hw, RB_ADDR(txqaddr[port], RB_CTRL), RB_RST_SET);
  2131. /* Reset the RAM Buffer async Tx queue */
  2132. skge_write8(hw, RB_ADDR(port == 0 ? Q_XA1 : Q_XA2, RB_CTRL), RB_RST_SET);
  2133. /* stop receiver */
  2134. skge_write8(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_STOP);
  2135. skge_write32(hw, RB_ADDR(port ? Q_R2 : Q_R1, RB_CTRL),
  2136. RB_RST_SET|RB_DIS_OP_MD);
  2137. skge_write32(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_SET_RESET);
  2138. if (hw->chip_id == CHIP_ID_GENESIS) {
  2139. skge_write8(hw, SK_REG(port, TX_MFF_CTRL2), MFF_RST_SET);
  2140. skge_write8(hw, SK_REG(port, RX_MFF_CTRL2), MFF_RST_SET);
  2141. } else {
  2142. skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_RST_SET);
  2143. skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_RST_SET);
  2144. }
  2145. skge_led(skge, LED_MODE_OFF);
  2146. netif_tx_lock_bh(dev);
  2147. skge_tx_clean(dev);
  2148. netif_tx_unlock_bh(dev);
  2149. skge_rx_clean(skge);
  2150. kfree(skge->rx_ring.start);
  2151. kfree(skge->tx_ring.start);
  2152. pci_free_consistent(hw->pdev, skge->mem_size, skge->mem, skge->dma);
  2153. skge->mem = NULL;
  2154. return 0;
  2155. }
  2156. static inline int skge_avail(const struct skge_ring *ring)
  2157. {
  2158. smp_mb();
  2159. return ((ring->to_clean > ring->to_use) ? 0 : ring->count)
  2160. + (ring->to_clean - ring->to_use) - 1;
  2161. }
  2162. static int skge_xmit_frame(struct sk_buff *skb, struct net_device *dev)
  2163. {
  2164. struct skge_port *skge = netdev_priv(dev);
  2165. struct skge_hw *hw = skge->hw;
  2166. struct skge_element *e;
  2167. struct skge_tx_desc *td;
  2168. int i;
  2169. u32 control, len;
  2170. u64 map;
  2171. if (skb_padto(skb, ETH_ZLEN))
  2172. return NETDEV_TX_OK;
  2173. if (unlikely(skge_avail(&skge->tx_ring) < skb_shinfo(skb)->nr_frags + 1))
  2174. return NETDEV_TX_BUSY;
  2175. e = skge->tx_ring.to_use;
  2176. td = e->desc;
  2177. BUG_ON(td->control & BMU_OWN);
  2178. e->skb = skb;
  2179. len = skb_headlen(skb);
  2180. map = pci_map_single(hw->pdev, skb->data, len, PCI_DMA_TODEVICE);
  2181. pci_unmap_addr_set(e, mapaddr, map);
  2182. pci_unmap_len_set(e, maplen, len);
  2183. td->dma_lo = map;
  2184. td->dma_hi = map >> 32;
  2185. if (skb->ip_summed == CHECKSUM_PARTIAL) {
  2186. const int offset = skb_transport_offset(skb);
  2187. /* This seems backwards, but it is what the sk98lin
  2188. * does. Looks like hardware is wrong?
  2189. */
  2190. if (ipip_hdr(skb)->protocol == IPPROTO_UDP
  2191. && hw->chip_rev == 0 && hw->chip_id == CHIP_ID_YUKON)
  2192. control = BMU_TCP_CHECK;
  2193. else
  2194. control = BMU_UDP_CHECK;
  2195. td->csum_offs = 0;
  2196. td->csum_start = offset;
  2197. td->csum_write = offset + skb->csum_offset;
  2198. } else
  2199. control = BMU_CHECK;
  2200. if (!skb_shinfo(skb)->nr_frags) /* single buffer i.e. no fragments */
  2201. control |= BMU_EOF| BMU_IRQ_EOF;
  2202. else {
  2203. struct skge_tx_desc *tf = td;
  2204. control |= BMU_STFWD;
  2205. for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
  2206. skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
  2207. map = pci_map_page(hw->pdev, frag->page, frag->page_offset,
  2208. frag->size, PCI_DMA_TODEVICE);
  2209. e = e->next;
  2210. e->skb = skb;
  2211. tf = e->desc;
  2212. BUG_ON(tf->control & BMU_OWN);
  2213. tf->dma_lo = map;
  2214. tf->dma_hi = (u64) map >> 32;
  2215. pci_unmap_addr_set(e, mapaddr, map);
  2216. pci_unmap_len_set(e, maplen, frag->size);
  2217. tf->control = BMU_OWN | BMU_SW | control | frag->size;
  2218. }
  2219. tf->control |= BMU_EOF | BMU_IRQ_EOF;
  2220. }
  2221. /* Make sure all the descriptors written */
  2222. wmb();
  2223. td->control = BMU_OWN | BMU_SW | BMU_STF | control | len;
  2224. wmb();
  2225. skge_write8(hw, Q_ADDR(txqaddr[skge->port], Q_CSR), CSR_START);
  2226. if (unlikely(netif_msg_tx_queued(skge)))
  2227. printk(KERN_DEBUG "%s: tx queued, slot %td, len %d\n",
  2228. dev->name, e - skge->tx_ring.start, skb->len);
  2229. skge->tx_ring.to_use = e->next;
  2230. smp_wmb();
  2231. if (skge_avail(&skge->tx_ring) <= TX_LOW_WATER) {
  2232. pr_debug("%s: transmit queue full\n", dev->name);
  2233. netif_stop_queue(dev);
  2234. }
  2235. dev->trans_start = jiffies;
  2236. return NETDEV_TX_OK;
  2237. }
  2238. /* Free resources associated with this reing element */
  2239. static void skge_tx_free(struct skge_port *skge, struct skge_element *e,
  2240. u32 control)
  2241. {
  2242. struct pci_dev *pdev = skge->hw->pdev;
  2243. /* skb header vs. fragment */
  2244. if (control & BMU_STF)
  2245. pci_unmap_single(pdev, pci_unmap_addr(e, mapaddr),
  2246. pci_unmap_len(e, maplen),
  2247. PCI_DMA_TODEVICE);
  2248. else
  2249. pci_unmap_page(pdev, pci_unmap_addr(e, mapaddr),
  2250. pci_unmap_len(e, maplen),
  2251. PCI_DMA_TODEVICE);
  2252. if (control & BMU_EOF) {
  2253. if (unlikely(netif_msg_tx_done(skge)))
  2254. printk(KERN_DEBUG PFX "%s: tx done slot %td\n",
  2255. skge->netdev->name, e - skge->tx_ring.start);
  2256. dev_kfree_skb(e->skb);
  2257. }
  2258. }
  2259. /* Free all buffers in transmit ring */
  2260. static void skge_tx_clean(struct net_device *dev)
  2261. {
  2262. struct skge_port *skge = netdev_priv(dev);
  2263. struct skge_element *e;
  2264. for (e = skge->tx_ring.to_clean; e != skge->tx_ring.to_use; e = e->next) {
  2265. struct skge_tx_desc *td = e->desc;
  2266. skge_tx_free(skge, e, td->control);
  2267. td->control = 0;
  2268. }
  2269. skge->tx_ring.to_clean = e;
  2270. netif_wake_queue(dev);
  2271. }
  2272. static void skge_tx_timeout(struct net_device *dev)
  2273. {
  2274. struct skge_port *skge = netdev_priv(dev);
  2275. if (netif_msg_timer(skge))
  2276. printk(KERN_DEBUG PFX "%s: tx timeout\n", dev->name);
  2277. skge_write8(skge->hw, Q_ADDR(txqaddr[skge->port], Q_CSR), CSR_STOP);
  2278. skge_tx_clean(dev);
  2279. }
  2280. static int skge_change_mtu(struct net_device *dev, int new_mtu)
  2281. {
  2282. int err;
  2283. if (new_mtu < ETH_ZLEN || new_mtu > ETH_JUMBO_MTU)
  2284. return -EINVAL;
  2285. if (!netif_running(dev)) {
  2286. dev->mtu = new_mtu;
  2287. return 0;
  2288. }
  2289. skge_down(dev);
  2290. dev->mtu = new_mtu;
  2291. err = skge_up(dev);
  2292. if (err)
  2293. dev_close(dev);
  2294. return err;
  2295. }
  2296. static const u8 pause_mc_addr[ETH_ALEN] = { 0x1, 0x80, 0xc2, 0x0, 0x0, 0x1 };
  2297. static void genesis_add_filter(u8 filter[8], const u8 *addr)
  2298. {
  2299. u32 crc, bit;
  2300. crc = ether_crc_le(ETH_ALEN, addr);
  2301. bit = ~crc & 0x3f;
  2302. filter[bit/8] |= 1 << (bit%8);
  2303. }
  2304. static void genesis_set_multicast(struct net_device *dev)
  2305. {
  2306. struct skge_port *skge = netdev_priv(dev);
  2307. struct skge_hw *hw = skge->hw;
  2308. int port = skge->port;
  2309. int i, count = dev->mc_count;
  2310. struct dev_mc_list *list = dev->mc_list;
  2311. u32 mode;
  2312. u8 filter[8];
  2313. mode = xm_read32(hw, port, XM_MODE);
  2314. mode |= XM_MD_ENA_HASH;
  2315. if (dev->flags & IFF_PROMISC)
  2316. mode |= XM_MD_ENA_PROM;
  2317. else
  2318. mode &= ~XM_MD_ENA_PROM;
  2319. if (dev->flags & IFF_ALLMULTI)
  2320. memset(filter, 0xff, sizeof(filter));
  2321. else {
  2322. memset(filter, 0, sizeof(filter));
  2323. if (skge->flow_status == FLOW_STAT_REM_SEND
  2324. || skge->flow_status == FLOW_STAT_SYMMETRIC)
  2325. genesis_add_filter(filter, pause_mc_addr);
  2326. for (i = 0; list && i < count; i++, list = list->next)
  2327. genesis_add_filter(filter, list->dmi_addr);
  2328. }
  2329. xm_write32(hw, port, XM_MODE, mode);
  2330. xm_outhash(hw, port, XM_HSM, filter);
  2331. }
  2332. static void yukon_add_filter(u8 filter[8], const u8 *addr)
  2333. {
  2334. u32 bit = ether_crc(ETH_ALEN, addr) & 0x3f;
  2335. filter[bit/8] |= 1 << (bit%8);
  2336. }
  2337. static void yukon_set_multicast(struct net_device *dev)
  2338. {
  2339. struct skge_port *skge = netdev_priv(dev);
  2340. struct skge_hw *hw = skge->hw;
  2341. int port = skge->port;
  2342. struct dev_mc_list *list = dev->mc_list;
  2343. int rx_pause = (skge->flow_status == FLOW_STAT_REM_SEND
  2344. || skge->flow_status == FLOW_STAT_SYMMETRIC);
  2345. u16 reg;
  2346. u8 filter[8];
  2347. memset(filter, 0, sizeof(filter));
  2348. reg = gma_read16(hw, port, GM_RX_CTRL);
  2349. reg |= GM_RXCR_UCF_ENA;
  2350. if (dev->flags & IFF_PROMISC) /* promiscuous */
  2351. reg &= ~(GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA);
  2352. else if (dev->flags & IFF_ALLMULTI) /* all multicast */
  2353. memset(filter, 0xff, sizeof(filter));
  2354. else if (dev->mc_count == 0 && !rx_pause)/* no multicast */
  2355. reg &= ~GM_RXCR_MCF_ENA;
  2356. else {
  2357. int i;
  2358. reg |= GM_RXCR_MCF_ENA;
  2359. if (rx_pause)
  2360. yukon_add_filter(filter, pause_mc_addr);
  2361. for (i = 0; list && i < dev->mc_count; i++, list = list->next)
  2362. yukon_add_filter(filter, list->dmi_addr);
  2363. }
  2364. gma_write16(hw, port, GM_MC_ADDR_H1,
  2365. (u16)filter[0] | ((u16)filter[1] << 8));
  2366. gma_write16(hw, port, GM_MC_ADDR_H2,
  2367. (u16)filter[2] | ((u16)filter[3] << 8));
  2368. gma_write16(hw, port, GM_MC_ADDR_H3,
  2369. (u16)filter[4] | ((u16)filter[5] << 8));
  2370. gma_write16(hw, port, GM_MC_ADDR_H4,
  2371. (u16)filter[6] | ((u16)filter[7] << 8));
  2372. gma_write16(hw, port, GM_RX_CTRL, reg);
  2373. }
  2374. static inline u16 phy_length(const struct skge_hw *hw, u32 status)
  2375. {
  2376. if (hw->chip_id == CHIP_ID_GENESIS)
  2377. return status >> XMR_FS_LEN_SHIFT;
  2378. else
  2379. return status >> GMR_FS_LEN_SHIFT;
  2380. }
  2381. static inline int bad_phy_status(const struct skge_hw *hw, u32 status)
  2382. {
  2383. if (hw->chip_id == CHIP_ID_GENESIS)
  2384. return (status & (XMR_FS_ERR | XMR_FS_2L_VLAN)) != 0;
  2385. else
  2386. return (status & GMR_FS_ANY_ERR) ||
  2387. (status & GMR_FS_RX_OK) == 0;
  2388. }
  2389. /* Get receive buffer from descriptor.
  2390. * Handles copy of small buffers and reallocation failures
  2391. */
  2392. static struct sk_buff *skge_rx_get(struct net_device *dev,
  2393. struct skge_element *e,
  2394. u32 control, u32 status, u16 csum)
  2395. {
  2396. struct skge_port *skge = netdev_priv(dev);
  2397. struct sk_buff *skb;
  2398. u16 len = control & BMU_BBC;
  2399. if (unlikely(netif_msg_rx_status(skge)))
  2400. printk(KERN_DEBUG PFX "%s: rx slot %td status 0x%x len %d\n",
  2401. dev->name, e - skge->rx_ring.start,
  2402. status, len);
  2403. if (len > skge->rx_buf_size)
  2404. goto error;
  2405. if ((control & (BMU_EOF|BMU_STF)) != (BMU_STF|BMU_EOF))
  2406. goto error;
  2407. if (bad_phy_status(skge->hw, status))
  2408. goto error;
  2409. if (phy_length(skge->hw, status) != len)
  2410. goto error;
  2411. if (len < RX_COPY_THRESHOLD) {
  2412. skb = netdev_alloc_skb(dev, len + 2);
  2413. if (!skb)
  2414. goto resubmit;
  2415. skb_reserve(skb, 2);
  2416. pci_dma_sync_single_for_cpu(skge->hw->pdev,
  2417. pci_unmap_addr(e, mapaddr),
  2418. len, PCI_DMA_FROMDEVICE);
  2419. skb_copy_from_linear_data(e->skb, skb->data, len);
  2420. pci_dma_sync_single_for_device(skge->hw->pdev,
  2421. pci_unmap_addr(e, mapaddr),
  2422. len, PCI_DMA_FROMDEVICE);
  2423. skge_rx_reuse(e, skge->rx_buf_size);
  2424. } else {
  2425. struct sk_buff *nskb;
  2426. nskb = netdev_alloc_skb(dev, skge->rx_buf_size + NET_IP_ALIGN);
  2427. if (!nskb)
  2428. goto resubmit;
  2429. skb_reserve(nskb, NET_IP_ALIGN);
  2430. pci_unmap_single(skge->hw->pdev,
  2431. pci_unmap_addr(e, mapaddr),
  2432. pci_unmap_len(e, maplen),
  2433. PCI_DMA_FROMDEVICE);
  2434. skb = e->skb;
  2435. prefetch(skb->data);
  2436. skge_rx_setup(skge, e, nskb, skge->rx_buf_size);
  2437. }
  2438. skb_put(skb, len);
  2439. if (skge->rx_csum) {
  2440. skb->csum = csum;
  2441. skb->ip_summed = CHECKSUM_COMPLETE;
  2442. }
  2443. skb->protocol = eth_type_trans(skb, dev);
  2444. return skb;
  2445. error:
  2446. if (netif_msg_rx_err(skge))
  2447. printk(KERN_DEBUG PFX "%s: rx err, slot %td control 0x%x status 0x%x\n",
  2448. dev->name, e - skge->rx_ring.start,
  2449. control, status);
  2450. if (skge->hw->chip_id == CHIP_ID_GENESIS) {
  2451. if (status & (XMR_FS_RUNT|XMR_FS_LNG_ERR))
  2452. skge->net_stats.rx_length_errors++;
  2453. if (status & XMR_FS_FRA_ERR)
  2454. skge->net_stats.rx_frame_errors++;
  2455. if (status & XMR_FS_FCS_ERR)
  2456. skge->net_stats.rx_crc_errors++;
  2457. } else {
  2458. if (status & (GMR_FS_LONG_ERR|GMR_FS_UN_SIZE))
  2459. skge->net_stats.rx_length_errors++;
  2460. if (status & GMR_FS_FRAGMENT)
  2461. skge->net_stats.rx_frame_errors++;
  2462. if (status & GMR_FS_CRC_ERR)
  2463. skge->net_stats.rx_crc_errors++;
  2464. }
  2465. resubmit:
  2466. skge_rx_reuse(e, skge->rx_buf_size);
  2467. return NULL;
  2468. }
  2469. /* Free all buffers in Tx ring which are no longer owned by device */
  2470. static void skge_tx_done(struct net_device *dev)
  2471. {
  2472. struct skge_port *skge = netdev_priv(dev);
  2473. struct skge_ring *ring = &skge->tx_ring;
  2474. struct skge_element *e;
  2475. skge_write8(skge->hw, Q_ADDR(txqaddr[skge->port], Q_CSR), CSR_IRQ_CL_F);
  2476. for (e = ring->to_clean; e != ring->to_use; e = e->next) {
  2477. u32 control = ((const struct skge_tx_desc *) e->desc)->control;
  2478. if (control & BMU_OWN)
  2479. break;
  2480. skge_tx_free(skge, e, control);
  2481. }
  2482. skge->tx_ring.to_clean = e;
  2483. /* Can run lockless until we need to synchronize to restart queue. */
  2484. smp_mb();
  2485. if (unlikely(netif_queue_stopped(dev) &&
  2486. skge_avail(&skge->tx_ring) > TX_LOW_WATER)) {
  2487. netif_tx_lock(dev);
  2488. if (unlikely(netif_queue_stopped(dev) &&
  2489. skge_avail(&skge->tx_ring) > TX_LOW_WATER)) {
  2490. netif_wake_queue(dev);
  2491. }
  2492. netif_tx_unlock(dev);
  2493. }
  2494. }
  2495. static int skge_poll(struct napi_struct *napi, int to_do)
  2496. {
  2497. struct skge_port *skge = container_of(napi, struct skge_port, napi);
  2498. struct net_device *dev = skge->netdev;
  2499. struct skge_hw *hw = skge->hw;
  2500. struct skge_ring *ring = &skge->rx_ring;
  2501. struct skge_element *e;
  2502. int work_done = 0;
  2503. skge_tx_done(dev);
  2504. skge_write8(hw, Q_ADDR(rxqaddr[skge->port], Q_CSR), CSR_IRQ_CL_F);
  2505. for (e = ring->to_clean; prefetch(e->next), work_done < to_do; e = e->next) {
  2506. struct skge_rx_desc *rd = e->desc;
  2507. struct sk_buff *skb;
  2508. u32 control;
  2509. rmb();
  2510. control = rd->control;
  2511. if (control & BMU_OWN)
  2512. break;
  2513. skb = skge_rx_get(dev, e, control, rd->status, rd->csum2);
  2514. if (likely(skb)) {
  2515. dev->last_rx = jiffies;
  2516. netif_receive_skb(skb);
  2517. ++work_done;
  2518. }
  2519. }
  2520. ring->to_clean = e;
  2521. /* restart receiver */
  2522. wmb();
  2523. skge_write8(hw, Q_ADDR(rxqaddr[skge->port], Q_CSR), CSR_START);
  2524. if (work_done < to_do) {
  2525. spin_lock_irq(&hw->hw_lock);
  2526. __netif_rx_complete(dev, napi);
  2527. hw->intr_mask |= napimask[skge->port];
  2528. skge_write32(hw, B0_IMSK, hw->intr_mask);
  2529. skge_read32(hw, B0_IMSK);
  2530. spin_unlock_irq(&hw->hw_lock);
  2531. }
  2532. return work_done;
  2533. }
  2534. /* Parity errors seem to happen when Genesis is connected to a switch
  2535. * with no other ports present. Heartbeat error??
  2536. */
  2537. static void skge_mac_parity(struct skge_hw *hw, int port)
  2538. {
  2539. struct net_device *dev = hw->dev[port];
  2540. if (dev) {
  2541. struct skge_port *skge = netdev_priv(dev);
  2542. ++skge->net_stats.tx_heartbeat_errors;
  2543. }
  2544. if (hw->chip_id == CHIP_ID_GENESIS)
  2545. skge_write16(hw, SK_REG(port, TX_MFF_CTRL1),
  2546. MFF_CLR_PERR);
  2547. else
  2548. /* HW-Bug #8: cleared by GMF_CLI_TX_FC instead of GMF_CLI_TX_PE */
  2549. skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T),
  2550. (hw->chip_id == CHIP_ID_YUKON && hw->chip_rev == 0)
  2551. ? GMF_CLI_TX_FC : GMF_CLI_TX_PE);
  2552. }
  2553. static void skge_mac_intr(struct skge_hw *hw, int port)
  2554. {
  2555. if (hw->chip_id == CHIP_ID_GENESIS)
  2556. genesis_mac_intr(hw, port);
  2557. else
  2558. yukon_mac_intr(hw, port);
  2559. }
  2560. /* Handle device specific framing and timeout interrupts */
  2561. static void skge_error_irq(struct skge_hw *hw)
  2562. {
  2563. struct pci_dev *pdev = hw->pdev;
  2564. u32 hwstatus = skge_read32(hw, B0_HWE_ISRC);
  2565. if (hw->chip_id == CHIP_ID_GENESIS) {
  2566. /* clear xmac errors */
  2567. if (hwstatus & (IS_NO_STAT_M1|IS_NO_TIST_M1))
  2568. skge_write16(hw, RX_MFF_CTRL1, MFF_CLR_INSTAT);
  2569. if (hwstatus & (IS_NO_STAT_M2|IS_NO_TIST_M2))
  2570. skge_write16(hw, RX_MFF_CTRL2, MFF_CLR_INSTAT);
  2571. } else {
  2572. /* Timestamp (unused) overflow */
  2573. if (hwstatus & IS_IRQ_TIST_OV)
  2574. skge_write8(hw, GMAC_TI_ST_CTRL, GMT_ST_CLR_IRQ);
  2575. }
  2576. if (hwstatus & IS_RAM_RD_PAR) {
  2577. dev_err(&pdev->dev, "Ram read data parity error\n");
  2578. skge_write16(hw, B3_RI_CTRL, RI_CLR_RD_PERR);
  2579. }
  2580. if (hwstatus & IS_RAM_WR_PAR) {
  2581. dev_err(&pdev->dev, "Ram write data parity error\n");
  2582. skge_write16(hw, B3_RI_CTRL, RI_CLR_WR_PERR);
  2583. }
  2584. if (hwstatus & IS_M1_PAR_ERR)
  2585. skge_mac_parity(hw, 0);
  2586. if (hwstatus & IS_M2_PAR_ERR)
  2587. skge_mac_parity(hw, 1);
  2588. if (hwstatus & IS_R1_PAR_ERR) {
  2589. dev_err(&pdev->dev, "%s: receive queue parity error\n",
  2590. hw->dev[0]->name);
  2591. skge_write32(hw, B0_R1_CSR, CSR_IRQ_CL_P);
  2592. }
  2593. if (hwstatus & IS_R2_PAR_ERR) {
  2594. dev_err(&pdev->dev, "%s: receive queue parity error\n",
  2595. hw->dev[1]->name);
  2596. skge_write32(hw, B0_R2_CSR, CSR_IRQ_CL_P);
  2597. }
  2598. if (hwstatus & (IS_IRQ_MST_ERR|IS_IRQ_STAT)) {
  2599. u16 pci_status, pci_cmd;
  2600. pci_read_config_word(pdev, PCI_COMMAND, &pci_cmd);
  2601. pci_read_config_word(pdev, PCI_STATUS, &pci_status);
  2602. dev_err(&pdev->dev, "PCI error cmd=%#x status=%#x\n",
  2603. pci_cmd, pci_status);
  2604. /* Write the error bits back to clear them. */
  2605. pci_status &= PCI_STATUS_ERROR_BITS;
  2606. skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON);
  2607. pci_write_config_word(pdev, PCI_COMMAND,
  2608. pci_cmd | PCI_COMMAND_SERR | PCI_COMMAND_PARITY);
  2609. pci_write_config_word(pdev, PCI_STATUS, pci_status);
  2610. skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
  2611. /* if error still set then just ignore it */
  2612. hwstatus = skge_read32(hw, B0_HWE_ISRC);
  2613. if (hwstatus & IS_IRQ_STAT) {
  2614. dev_warn(&hw->pdev->dev, "unable to clear error (so ignoring them)\n");
  2615. hw->intr_mask &= ~IS_HW_ERR;
  2616. }
  2617. }
  2618. }
  2619. /*
  2620. * Interrupt from PHY are handled in tasklet (softirq)
  2621. * because accessing phy registers requires spin wait which might
  2622. * cause excess interrupt latency.
  2623. */
  2624. static void skge_extirq(unsigned long arg)
  2625. {
  2626. struct skge_hw *hw = (struct skge_hw *) arg;
  2627. int port;
  2628. for (port = 0; port < hw->ports; port++) {
  2629. struct net_device *dev = hw->dev[port];
  2630. if (netif_running(dev)) {
  2631. struct skge_port *skge = netdev_priv(dev);
  2632. spin_lock(&hw->phy_lock);
  2633. if (hw->chip_id != CHIP_ID_GENESIS)
  2634. yukon_phy_intr(skge);
  2635. else if (hw->phy_type == SK_PHY_BCOM)
  2636. bcom_phy_intr(skge);
  2637. spin_unlock(&hw->phy_lock);
  2638. }
  2639. }
  2640. spin_lock_irq(&hw->hw_lock);
  2641. hw->intr_mask |= IS_EXT_REG;
  2642. skge_write32(hw, B0_IMSK, hw->intr_mask);
  2643. skge_read32(hw, B0_IMSK);
  2644. spin_unlock_irq(&hw->hw_lock);
  2645. }
  2646. static irqreturn_t skge_intr(int irq, void *dev_id)
  2647. {
  2648. struct skge_hw *hw = dev_id;
  2649. u32 status;
  2650. int handled = 0;
  2651. spin_lock(&hw->hw_lock);
  2652. /* Reading this register masks IRQ */
  2653. status = skge_read32(hw, B0_SP_ISRC);
  2654. if (status == 0 || status == ~0)
  2655. goto out;
  2656. handled = 1;
  2657. status &= hw->intr_mask;
  2658. if (status & IS_EXT_REG) {
  2659. hw->intr_mask &= ~IS_EXT_REG;
  2660. tasklet_schedule(&hw->phy_task);
  2661. }
  2662. if (status & (IS_XA1_F|IS_R1_F)) {
  2663. struct skge_port *skge = netdev_priv(hw->dev[0]);
  2664. hw->intr_mask &= ~(IS_XA1_F|IS_R1_F);
  2665. netif_rx_schedule(hw->dev[0], &skge->napi);
  2666. }
  2667. if (status & IS_PA_TO_TX1)
  2668. skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_TX1);
  2669. if (status & IS_PA_TO_RX1) {
  2670. struct skge_port *skge = netdev_priv(hw->dev[0]);
  2671. ++skge->net_stats.rx_over_errors;
  2672. skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_RX1);
  2673. }
  2674. if (status & IS_MAC1)
  2675. skge_mac_intr(hw, 0);
  2676. if (hw->dev[1]) {
  2677. struct skge_port *skge = netdev_priv(hw->dev[1]);
  2678. if (status & (IS_XA2_F|IS_R2_F)) {
  2679. hw->intr_mask &= ~(IS_XA2_F|IS_R2_F);
  2680. netif_rx_schedule(hw->dev[1], &skge->napi);
  2681. }
  2682. if (status & IS_PA_TO_RX2) {
  2683. ++skge->net_stats.rx_over_errors;
  2684. skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_RX2);
  2685. }
  2686. if (status & IS_PA_TO_TX2)
  2687. skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_TX2);
  2688. if (status & IS_MAC2)
  2689. skge_mac_intr(hw, 1);
  2690. }
  2691. if (status & IS_HW_ERR)
  2692. skge_error_irq(hw);
  2693. skge_write32(hw, B0_IMSK, hw->intr_mask);
  2694. skge_read32(hw, B0_IMSK);
  2695. out:
  2696. spin_unlock(&hw->hw_lock);
  2697. return IRQ_RETVAL(handled);
  2698. }
  2699. #ifdef CONFIG_NET_POLL_CONTROLLER
  2700. static void skge_netpoll(struct net_device *dev)
  2701. {
  2702. struct skge_port *skge = netdev_priv(dev);
  2703. disable_irq(dev->irq);
  2704. skge_intr(dev->irq, skge->hw);
  2705. enable_irq(dev->irq);
  2706. }
  2707. #endif
  2708. static int skge_set_mac_address(struct net_device *dev, void *p)
  2709. {
  2710. struct skge_port *skge = netdev_priv(dev);
  2711. struct skge_hw *hw = skge->hw;
  2712. unsigned port = skge->port;
  2713. const struct sockaddr *addr = p;
  2714. u16 ctrl;
  2715. if (!is_valid_ether_addr(addr->sa_data))
  2716. return -EADDRNOTAVAIL;
  2717. memcpy(dev->dev_addr, addr->sa_data, ETH_ALEN);
  2718. if (!netif_running(dev)) {
  2719. memcpy_toio(hw->regs + B2_MAC_1 + port*8, dev->dev_addr, ETH_ALEN);
  2720. memcpy_toio(hw->regs + B2_MAC_2 + port*8, dev->dev_addr, ETH_ALEN);
  2721. } else {
  2722. /* disable Rx */
  2723. spin_lock_bh(&hw->phy_lock);
  2724. ctrl = gma_read16(hw, port, GM_GP_CTRL);
  2725. gma_write16(hw, port, GM_GP_CTRL, ctrl & ~GM_GPCR_RX_ENA);
  2726. memcpy_toio(hw->regs + B2_MAC_1 + port*8, dev->dev_addr, ETH_ALEN);
  2727. memcpy_toio(hw->regs + B2_MAC_2 + port*8, dev->dev_addr, ETH_ALEN);
  2728. if (hw->chip_id == CHIP_ID_GENESIS)
  2729. xm_outaddr(hw, port, XM_SA, dev->dev_addr);
  2730. else {
  2731. gma_set_addr(hw, port, GM_SRC_ADDR_1L, dev->dev_addr);
  2732. gma_set_addr(hw, port, GM_SRC_ADDR_2L, dev->dev_addr);
  2733. }
  2734. gma_write16(hw, port, GM_GP_CTRL, ctrl);
  2735. spin_unlock_bh(&hw->phy_lock);
  2736. }
  2737. return 0;
  2738. }
  2739. static const struct {
  2740. u8 id;
  2741. const char *name;
  2742. } skge_chips[] = {
  2743. { CHIP_ID_GENESIS, "Genesis" },
  2744. { CHIP_ID_YUKON, "Yukon" },
  2745. { CHIP_ID_YUKON_LITE, "Yukon-Lite"},
  2746. { CHIP_ID_YUKON_LP, "Yukon-LP"},
  2747. };
  2748. static const char *skge_board_name(const struct skge_hw *hw)
  2749. {
  2750. int i;
  2751. static char buf[16];
  2752. for (i = 0; i < ARRAY_SIZE(skge_chips); i++)
  2753. if (skge_chips[i].id == hw->chip_id)
  2754. return skge_chips[i].name;
  2755. snprintf(buf, sizeof buf, "chipid 0x%x", hw->chip_id);
  2756. return buf;
  2757. }
  2758. /*
  2759. * Setup the board data structure, but don't bring up
  2760. * the port(s)
  2761. */
  2762. static int skge_reset(struct skge_hw *hw)
  2763. {
  2764. u32 reg;
  2765. u16 ctst, pci_status;
  2766. u8 t8, mac_cfg, pmd_type;
  2767. int i;
  2768. ctst = skge_read16(hw, B0_CTST);
  2769. /* do a SW reset */
  2770. skge_write8(hw, B0_CTST, CS_RST_SET);
  2771. skge_write8(hw, B0_CTST, CS_RST_CLR);
  2772. /* clear PCI errors, if any */
  2773. skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON);
  2774. skge_write8(hw, B2_TST_CTRL2, 0);
  2775. pci_read_config_word(hw->pdev, PCI_STATUS, &pci_status);
  2776. pci_write_config_word(hw->pdev, PCI_STATUS,
  2777. pci_status | PCI_STATUS_ERROR_BITS);
  2778. skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
  2779. skge_write8(hw, B0_CTST, CS_MRST_CLR);
  2780. /* restore CLK_RUN bits (for Yukon-Lite) */
  2781. skge_write16(hw, B0_CTST,
  2782. ctst & (CS_CLK_RUN_HOT|CS_CLK_RUN_RST|CS_CLK_RUN_ENA));
  2783. hw->chip_id = skge_read8(hw, B2_CHIP_ID);
  2784. hw->phy_type = skge_read8(hw, B2_E_1) & 0xf;
  2785. pmd_type = skge_read8(hw, B2_PMD_TYP);
  2786. hw->copper = (pmd_type == 'T' || pmd_type == '1');
  2787. switch (hw->chip_id) {
  2788. case CHIP_ID_GENESIS:
  2789. switch (hw->phy_type) {
  2790. case SK_PHY_XMAC:
  2791. hw->phy_addr = PHY_ADDR_XMAC;
  2792. break;
  2793. case SK_PHY_BCOM:
  2794. hw->phy_addr = PHY_ADDR_BCOM;
  2795. break;
  2796. default:
  2797. dev_err(&hw->pdev->dev, "unsupported phy type 0x%x\n",
  2798. hw->phy_type);
  2799. return -EOPNOTSUPP;
  2800. }
  2801. break;
  2802. case CHIP_ID_YUKON:
  2803. case CHIP_ID_YUKON_LITE:
  2804. case CHIP_ID_YUKON_LP:
  2805. if (hw->phy_type < SK_PHY_MARV_COPPER && pmd_type != 'S')
  2806. hw->copper = 1;
  2807. hw->phy_addr = PHY_ADDR_MARV;
  2808. break;
  2809. default:
  2810. dev_err(&hw->pdev->dev, "unsupported chip type 0x%x\n",
  2811. hw->chip_id);
  2812. return -EOPNOTSUPP;
  2813. }
  2814. mac_cfg = skge_read8(hw, B2_MAC_CFG);
  2815. hw->ports = (mac_cfg & CFG_SNG_MAC) ? 1 : 2;
  2816. hw->chip_rev = (mac_cfg & CFG_CHIP_R_MSK) >> 4;
  2817. /* read the adapters RAM size */
  2818. t8 = skge_read8(hw, B2_E_0);
  2819. if (hw->chip_id == CHIP_ID_GENESIS) {
  2820. if (t8 == 3) {
  2821. /* special case: 4 x 64k x 36, offset = 0x80000 */
  2822. hw->ram_size = 0x100000;
  2823. hw->ram_offset = 0x80000;
  2824. } else
  2825. hw->ram_size = t8 * 512;
  2826. }
  2827. else if (t8 == 0)
  2828. hw->ram_size = 0x20000;
  2829. else
  2830. hw->ram_size = t8 * 4096;
  2831. hw->intr_mask = IS_HW_ERR;
  2832. /* Use PHY IRQ for all but fiber based Genesis board */
  2833. if (!(hw->chip_id == CHIP_ID_GENESIS && hw->phy_type == SK_PHY_XMAC))
  2834. hw->intr_mask |= IS_EXT_REG;
  2835. if (hw->chip_id == CHIP_ID_GENESIS)
  2836. genesis_init(hw);
  2837. else {
  2838. /* switch power to VCC (WA for VAUX problem) */
  2839. skge_write8(hw, B0_POWER_CTRL,
  2840. PC_VAUX_ENA | PC_VCC_ENA | PC_VAUX_OFF | PC_VCC_ON);
  2841. /* avoid boards with stuck Hardware error bits */
  2842. if ((skge_read32(hw, B0_ISRC) & IS_HW_ERR) &&
  2843. (skge_read32(hw, B0_HWE_ISRC) & IS_IRQ_SENSOR)) {
  2844. dev_warn(&hw->pdev->dev, "stuck hardware sensor bit\n");
  2845. hw->intr_mask &= ~IS_HW_ERR;
  2846. }
  2847. /* Clear PHY COMA */
  2848. skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON);
  2849. pci_read_config_dword(hw->pdev, PCI_DEV_REG1, &reg);
  2850. reg &= ~PCI_PHY_COMA;
  2851. pci_write_config_dword(hw->pdev, PCI_DEV_REG1, reg);
  2852. skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
  2853. for (i = 0; i < hw->ports; i++) {
  2854. skge_write16(hw, SK_REG(i, GMAC_LINK_CTRL), GMLC_RST_SET);
  2855. skge_write16(hw, SK_REG(i, GMAC_LINK_CTRL), GMLC_RST_CLR);
  2856. }
  2857. }
  2858. /* turn off hardware timer (unused) */
  2859. skge_write8(hw, B2_TI_CTRL, TIM_STOP);
  2860. skge_write8(hw, B2_TI_CTRL, TIM_CLR_IRQ);
  2861. skge_write8(hw, B0_LED, LED_STAT_ON);
  2862. /* enable the Tx Arbiters */
  2863. for (i = 0; i < hw->ports; i++)
  2864. skge_write8(hw, SK_REG(i, TXA_CTRL), TXA_ENA_ARB);
  2865. /* Initialize ram interface */
  2866. skge_write16(hw, B3_RI_CTRL, RI_RST_CLR);
  2867. skge_write8(hw, B3_RI_WTO_R1, SK_RI_TO_53);
  2868. skge_write8(hw, B3_RI_WTO_XA1, SK_RI_TO_53);
  2869. skge_write8(hw, B3_RI_WTO_XS1, SK_RI_TO_53);
  2870. skge_write8(hw, B3_RI_RTO_R1, SK_RI_TO_53);
  2871. skge_write8(hw, B3_RI_RTO_XA1, SK_RI_TO_53);
  2872. skge_write8(hw, B3_RI_RTO_XS1, SK_RI_TO_53);
  2873. skge_write8(hw, B3_RI_WTO_R2, SK_RI_TO_53);
  2874. skge_write8(hw, B3_RI_WTO_XA2, SK_RI_TO_53);
  2875. skge_write8(hw, B3_RI_WTO_XS2, SK_RI_TO_53);
  2876. skge_write8(hw, B3_RI_RTO_R2, SK_RI_TO_53);
  2877. skge_write8(hw, B3_RI_RTO_XA2, SK_RI_TO_53);
  2878. skge_write8(hw, B3_RI_RTO_XS2, SK_RI_TO_53);
  2879. skge_write32(hw, B0_HWE_IMSK, IS_ERR_MSK);
  2880. /* Set interrupt moderation for Transmit only
  2881. * Receive interrupts avoided by NAPI
  2882. */
  2883. skge_write32(hw, B2_IRQM_MSK, IS_XA1_F|IS_XA2_F);
  2884. skge_write32(hw, B2_IRQM_INI, skge_usecs2clk(hw, 100));
  2885. skge_write32(hw, B2_IRQM_CTRL, TIM_START);
  2886. skge_write32(hw, B0_IMSK, hw->intr_mask);
  2887. for (i = 0; i < hw->ports; i++) {
  2888. if (hw->chip_id == CHIP_ID_GENESIS)
  2889. genesis_reset(hw, i);
  2890. else
  2891. yukon_reset(hw, i);
  2892. }
  2893. return 0;
  2894. }
  2895. /* Initialize network device */
  2896. static struct net_device *skge_devinit(struct skge_hw *hw, int port,
  2897. int highmem)
  2898. {
  2899. struct skge_port *skge;
  2900. struct net_device *dev = alloc_etherdev(sizeof(*skge));
  2901. if (!dev) {
  2902. dev_err(&hw->pdev->dev, "etherdev alloc failed\n");
  2903. return NULL;
  2904. }
  2905. SET_NETDEV_DEV(dev, &hw->pdev->dev);
  2906. dev->open = skge_up;
  2907. dev->stop = skge_down;
  2908. dev->do_ioctl = skge_ioctl;
  2909. dev->hard_start_xmit = skge_xmit_frame;
  2910. dev->get_stats = skge_get_stats;
  2911. if (hw->chip_id == CHIP_ID_GENESIS)
  2912. dev->set_multicast_list = genesis_set_multicast;
  2913. else
  2914. dev->set_multicast_list = yukon_set_multicast;
  2915. dev->set_mac_address = skge_set_mac_address;
  2916. dev->change_mtu = skge_change_mtu;
  2917. SET_ETHTOOL_OPS(dev, &skge_ethtool_ops);
  2918. dev->tx_timeout = skge_tx_timeout;
  2919. dev->watchdog_timeo = TX_WATCHDOG;
  2920. #ifdef CONFIG_NET_POLL_CONTROLLER
  2921. dev->poll_controller = skge_netpoll;
  2922. #endif
  2923. dev->irq = hw->pdev->irq;
  2924. if (highmem)
  2925. dev->features |= NETIF_F_HIGHDMA;
  2926. skge = netdev_priv(dev);
  2927. netif_napi_add(dev, &skge->napi, skge_poll, NAPI_WEIGHT);
  2928. skge->netdev = dev;
  2929. skge->hw = hw;
  2930. skge->msg_enable = netif_msg_init(debug, default_msg);
  2931. skge->tx_ring.count = DEFAULT_TX_RING_SIZE;
  2932. skge->rx_ring.count = DEFAULT_RX_RING_SIZE;
  2933. /* Auto speed and flow control */
  2934. skge->autoneg = AUTONEG_ENABLE;
  2935. skge->flow_control = FLOW_MODE_SYM_OR_REM;
  2936. skge->duplex = -1;
  2937. skge->speed = -1;
  2938. skge->advertising = skge_supported_modes(hw);
  2939. if (pci_wake_enabled(hw->pdev))
  2940. skge->wol = wol_supported(hw) & WAKE_MAGIC;
  2941. hw->dev[port] = dev;
  2942. skge->port = port;
  2943. /* Only used for Genesis XMAC */
  2944. setup_timer(&skge->link_timer, xm_link_timer, (unsigned long) skge);
  2945. if (hw->chip_id != CHIP_ID_GENESIS) {
  2946. dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG;
  2947. skge->rx_csum = 1;
  2948. }
  2949. /* read the mac address */
  2950. memcpy_fromio(dev->dev_addr, hw->regs + B2_MAC_1 + port*8, ETH_ALEN);
  2951. memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
  2952. /* device is off until link detection */
  2953. netif_carrier_off(dev);
  2954. netif_stop_queue(dev);
  2955. return dev;
  2956. }
  2957. static void __devinit skge_show_addr(struct net_device *dev)
  2958. {
  2959. const struct skge_port *skge = netdev_priv(dev);
  2960. if (netif_msg_probe(skge))
  2961. printk(KERN_INFO PFX "%s: addr %02x:%02x:%02x:%02x:%02x:%02x\n",
  2962. dev->name,
  2963. dev->dev_addr[0], dev->dev_addr[1], dev->dev_addr[2],
  2964. dev->dev_addr[3], dev->dev_addr[4], dev->dev_addr[5]);
  2965. }
  2966. static int __devinit skge_probe(struct pci_dev *pdev,
  2967. const struct pci_device_id *ent)
  2968. {
  2969. struct net_device *dev, *dev1;
  2970. struct skge_hw *hw;
  2971. int err, using_dac = 0;
  2972. err = pci_enable_device(pdev);
  2973. if (err) {
  2974. dev_err(&pdev->dev, "cannot enable PCI device\n");
  2975. goto err_out;
  2976. }
  2977. err = pci_request_regions(pdev, DRV_NAME);
  2978. if (err) {
  2979. dev_err(&pdev->dev, "cannot obtain PCI resources\n");
  2980. goto err_out_disable_pdev;
  2981. }
  2982. pci_set_master(pdev);
  2983. if (!pci_set_dma_mask(pdev, DMA_64BIT_MASK)) {
  2984. using_dac = 1;
  2985. err = pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK);
  2986. } else if (!(err = pci_set_dma_mask(pdev, DMA_32BIT_MASK))) {
  2987. using_dac = 0;
  2988. err = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK);
  2989. }
  2990. if (err) {
  2991. dev_err(&pdev->dev, "no usable DMA configuration\n");
  2992. goto err_out_free_regions;
  2993. }
  2994. #ifdef __BIG_ENDIAN
  2995. /* byte swap descriptors in hardware */
  2996. {
  2997. u32 reg;
  2998. pci_read_config_dword(pdev, PCI_DEV_REG2, &reg);
  2999. reg |= PCI_REV_DESC;
  3000. pci_write_config_dword(pdev, PCI_DEV_REG2, reg);
  3001. }
  3002. #endif
  3003. err = -ENOMEM;
  3004. hw = kzalloc(sizeof(*hw), GFP_KERNEL);
  3005. if (!hw) {
  3006. dev_err(&pdev->dev, "cannot allocate hardware struct\n");
  3007. goto err_out_free_regions;
  3008. }
  3009. hw->pdev = pdev;
  3010. spin_lock_init(&hw->hw_lock);
  3011. spin_lock_init(&hw->phy_lock);
  3012. tasklet_init(&hw->phy_task, &skge_extirq, (unsigned long) hw);
  3013. hw->regs = ioremap_nocache(pci_resource_start(pdev, 0), 0x4000);
  3014. if (!hw->regs) {
  3015. dev_err(&pdev->dev, "cannot map device registers\n");
  3016. goto err_out_free_hw;
  3017. }
  3018. err = skge_reset(hw);
  3019. if (err)
  3020. goto err_out_iounmap;
  3021. printk(KERN_INFO PFX DRV_VERSION " addr 0x%llx irq %d chip %s rev %d\n",
  3022. (unsigned long long)pci_resource_start(pdev, 0), pdev->irq,
  3023. skge_board_name(hw), hw->chip_rev);
  3024. dev = skge_devinit(hw, 0, using_dac);
  3025. if (!dev)
  3026. goto err_out_led_off;
  3027. /* Some motherboards are broken and has zero in ROM. */
  3028. if (!is_valid_ether_addr(dev->dev_addr))
  3029. dev_warn(&pdev->dev, "bad (zero?) ethernet address in rom\n");
  3030. err = register_netdev(dev);
  3031. if (err) {
  3032. dev_err(&pdev->dev, "cannot register net device\n");
  3033. goto err_out_free_netdev;
  3034. }
  3035. err = request_irq(pdev->irq, skge_intr, IRQF_SHARED, dev->name, hw);
  3036. if (err) {
  3037. dev_err(&pdev->dev, "%s: cannot assign irq %d\n",
  3038. dev->name, pdev->irq);
  3039. goto err_out_unregister;
  3040. }
  3041. skge_show_addr(dev);
  3042. if (hw->ports > 1 && (dev1 = skge_devinit(hw, 1, using_dac))) {
  3043. if (register_netdev(dev1) == 0)
  3044. skge_show_addr(dev1);
  3045. else {
  3046. /* Failure to register second port need not be fatal */
  3047. dev_warn(&pdev->dev, "register of second port failed\n");
  3048. hw->dev[1] = NULL;
  3049. free_netdev(dev1);
  3050. }
  3051. }
  3052. pci_set_drvdata(pdev, hw);
  3053. return 0;
  3054. err_out_unregister:
  3055. unregister_netdev(dev);
  3056. err_out_free_netdev:
  3057. free_netdev(dev);
  3058. err_out_led_off:
  3059. skge_write16(hw, B0_LED, LED_STAT_OFF);
  3060. err_out_iounmap:
  3061. iounmap(hw->regs);
  3062. err_out_free_hw:
  3063. kfree(hw);
  3064. err_out_free_regions:
  3065. pci_release_regions(pdev);
  3066. err_out_disable_pdev:
  3067. pci_disable_device(pdev);
  3068. pci_set_drvdata(pdev, NULL);
  3069. err_out:
  3070. return err;
  3071. }
  3072. static void __devexit skge_remove(struct pci_dev *pdev)
  3073. {
  3074. struct skge_hw *hw = pci_get_drvdata(pdev);
  3075. struct net_device *dev0, *dev1;
  3076. if (!hw)
  3077. return;
  3078. flush_scheduled_work();
  3079. if ((dev1 = hw->dev[1]))
  3080. unregister_netdev(dev1);
  3081. dev0 = hw->dev[0];
  3082. unregister_netdev(dev0);
  3083. tasklet_disable(&hw->phy_task);
  3084. spin_lock_irq(&hw->hw_lock);
  3085. hw->intr_mask = 0;
  3086. skge_write32(hw, B0_IMSK, 0);
  3087. skge_read32(hw, B0_IMSK);
  3088. spin_unlock_irq(&hw->hw_lock);
  3089. skge_write16(hw, B0_LED, LED_STAT_OFF);
  3090. skge_write8(hw, B0_CTST, CS_RST_SET);
  3091. free_irq(pdev->irq, hw);
  3092. pci_release_regions(pdev);
  3093. pci_disable_device(pdev);
  3094. if (dev1)
  3095. free_netdev(dev1);
  3096. free_netdev(dev0);
  3097. iounmap(hw->regs);
  3098. kfree(hw);
  3099. pci_set_drvdata(pdev, NULL);
  3100. }
  3101. #ifdef CONFIG_PM
  3102. static int skge_suspend(struct pci_dev *pdev, pm_message_t state)
  3103. {
  3104. struct skge_hw *hw = pci_get_drvdata(pdev);
  3105. int i, err, wol = 0;
  3106. if (!hw)
  3107. return 0;
  3108. err = pci_save_state(pdev);
  3109. if (err)
  3110. return err;
  3111. for (i = 0; i < hw->ports; i++) {
  3112. struct net_device *dev = hw->dev[i];
  3113. struct skge_port *skge = netdev_priv(dev);
  3114. if (netif_running(dev))
  3115. skge_down(dev);
  3116. if (skge->wol)
  3117. skge_wol_init(skge);
  3118. wol |= skge->wol;
  3119. }
  3120. skge_write32(hw, B0_IMSK, 0);
  3121. pci_enable_wake(pdev, pci_choose_state(pdev, state), wol);
  3122. pci_set_power_state(pdev, pci_choose_state(pdev, state));
  3123. return 0;
  3124. }
  3125. static int skge_resume(struct pci_dev *pdev)
  3126. {
  3127. struct skge_hw *hw = pci_get_drvdata(pdev);
  3128. int i, err;
  3129. if (!hw)
  3130. return 0;
  3131. err = pci_set_power_state(pdev, PCI_D0);
  3132. if (err)
  3133. goto out;
  3134. err = pci_restore_state(pdev);
  3135. if (err)
  3136. goto out;
  3137. pci_enable_wake(pdev, PCI_D0, 0);
  3138. err = skge_reset(hw);
  3139. if (err)
  3140. goto out;
  3141. for (i = 0; i < hw->ports; i++) {
  3142. struct net_device *dev = hw->dev[i];
  3143. if (netif_running(dev)) {
  3144. err = skge_up(dev);
  3145. if (err) {
  3146. printk(KERN_ERR PFX "%s: could not up: %d\n",
  3147. dev->name, err);
  3148. dev_close(dev);
  3149. goto out;
  3150. }
  3151. }
  3152. }
  3153. out:
  3154. return err;
  3155. }
  3156. #endif
  3157. static void skge_shutdown(struct pci_dev *pdev)
  3158. {
  3159. struct skge_hw *hw = pci_get_drvdata(pdev);
  3160. int i, wol = 0;
  3161. if (!hw)
  3162. return;
  3163. for (i = 0; i < hw->ports; i++) {
  3164. struct net_device *dev = hw->dev[i];
  3165. struct skge_port *skge = netdev_priv(dev);
  3166. if (skge->wol)
  3167. skge_wol_init(skge);
  3168. wol |= skge->wol;
  3169. }
  3170. pci_enable_wake(pdev, PCI_D3hot, wol);
  3171. pci_enable_wake(pdev, PCI_D3cold, wol);
  3172. pci_disable_device(pdev);
  3173. pci_set_power_state(pdev, PCI_D3hot);
  3174. }
  3175. static struct pci_driver skge_driver = {
  3176. .name = DRV_NAME,
  3177. .id_table = skge_id_table,
  3178. .probe = skge_probe,
  3179. .remove = __devexit_p(skge_remove),
  3180. #ifdef CONFIG_PM
  3181. .suspend = skge_suspend,
  3182. .resume = skge_resume,
  3183. #endif
  3184. .shutdown = skge_shutdown,
  3185. };
  3186. static int __init skge_init_module(void)
  3187. {
  3188. return pci_register_driver(&skge_driver);
  3189. }
  3190. static void __exit skge_cleanup_module(void)
  3191. {
  3192. pci_unregister_driver(&skge_driver);
  3193. }
  3194. module_init(skge_init_module);
  3195. module_exit(skge_cleanup_module);