page_alloc.c 83 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138
  1. /*
  2. * linux/mm/page_alloc.c
  3. *
  4. * Manages the free list, the system allocates free pages here.
  5. * Note that kmalloc() lives in slab.c
  6. *
  7. * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
  8. * Swap reorganised 29.12.95, Stephen Tweedie
  9. * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
  10. * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
  11. * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
  12. * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
  13. * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
  14. * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
  15. */
  16. #include <linux/stddef.h>
  17. #include <linux/mm.h>
  18. #include <linux/swap.h>
  19. #include <linux/interrupt.h>
  20. #include <linux/pagemap.h>
  21. #include <linux/bootmem.h>
  22. #include <linux/compiler.h>
  23. #include <linux/kernel.h>
  24. #include <linux/module.h>
  25. #include <linux/suspend.h>
  26. #include <linux/pagevec.h>
  27. #include <linux/blkdev.h>
  28. #include <linux/slab.h>
  29. #include <linux/notifier.h>
  30. #include <linux/topology.h>
  31. #include <linux/sysctl.h>
  32. #include <linux/cpu.h>
  33. #include <linux/cpuset.h>
  34. #include <linux/memory_hotplug.h>
  35. #include <linux/nodemask.h>
  36. #include <linux/vmalloc.h>
  37. #include <linux/mempolicy.h>
  38. #include <linux/stop_machine.h>
  39. #include <linux/sort.h>
  40. #include <linux/pfn.h>
  41. #include <asm/tlbflush.h>
  42. #include <asm/div64.h>
  43. #include "internal.h"
  44. /*
  45. * MCD - HACK: Find somewhere to initialize this EARLY, or make this
  46. * initializer cleaner
  47. */
  48. nodemask_t node_online_map __read_mostly = { { [0] = 1UL } };
  49. EXPORT_SYMBOL(node_online_map);
  50. nodemask_t node_possible_map __read_mostly = NODE_MASK_ALL;
  51. EXPORT_SYMBOL(node_possible_map);
  52. unsigned long totalram_pages __read_mostly;
  53. unsigned long totalreserve_pages __read_mostly;
  54. long nr_swap_pages;
  55. int percpu_pagelist_fraction;
  56. static void __free_pages_ok(struct page *page, unsigned int order);
  57. /*
  58. * results with 256, 32 in the lowmem_reserve sysctl:
  59. * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
  60. * 1G machine -> (16M dma, 784M normal, 224M high)
  61. * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
  62. * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
  63. * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
  64. *
  65. * TBD: should special case ZONE_DMA32 machines here - in those we normally
  66. * don't need any ZONE_NORMAL reservation
  67. */
  68. int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
  69. 256,
  70. #ifdef CONFIG_ZONE_DMA32
  71. 256,
  72. #endif
  73. #ifdef CONFIG_HIGHMEM
  74. 32
  75. #endif
  76. };
  77. EXPORT_SYMBOL(totalram_pages);
  78. /*
  79. * Used by page_zone() to look up the address of the struct zone whose
  80. * id is encoded in the upper bits of page->flags
  81. */
  82. struct zone *zone_table[1 << ZONETABLE_SHIFT] __read_mostly;
  83. EXPORT_SYMBOL(zone_table);
  84. static char *zone_names[MAX_NR_ZONES] = {
  85. "DMA",
  86. #ifdef CONFIG_ZONE_DMA32
  87. "DMA32",
  88. #endif
  89. "Normal",
  90. #ifdef CONFIG_HIGHMEM
  91. "HighMem"
  92. #endif
  93. };
  94. int min_free_kbytes = 1024;
  95. unsigned long __meminitdata nr_kernel_pages;
  96. unsigned long __meminitdata nr_all_pages;
  97. static unsigned long __initdata dma_reserve;
  98. #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
  99. /*
  100. * MAX_ACTIVE_REGIONS determines the maxmimum number of distinct
  101. * ranges of memory (RAM) that may be registered with add_active_range().
  102. * Ranges passed to add_active_range() will be merged if possible
  103. * so the number of times add_active_range() can be called is
  104. * related to the number of nodes and the number of holes
  105. */
  106. #ifdef CONFIG_MAX_ACTIVE_REGIONS
  107. /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */
  108. #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS
  109. #else
  110. #if MAX_NUMNODES >= 32
  111. /* If there can be many nodes, allow up to 50 holes per node */
  112. #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50)
  113. #else
  114. /* By default, allow up to 256 distinct regions */
  115. #define MAX_ACTIVE_REGIONS 256
  116. #endif
  117. #endif
  118. struct node_active_region __initdata early_node_map[MAX_ACTIVE_REGIONS];
  119. int __initdata nr_nodemap_entries;
  120. unsigned long __initdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
  121. unsigned long __initdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
  122. #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
  123. unsigned long __initdata node_boundary_start_pfn[MAX_NUMNODES];
  124. unsigned long __initdata node_boundary_end_pfn[MAX_NUMNODES];
  125. #endif /* CONFIG_MEMORY_HOTPLUG_RESERVE */
  126. #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
  127. #ifdef CONFIG_DEBUG_VM
  128. static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
  129. {
  130. int ret = 0;
  131. unsigned seq;
  132. unsigned long pfn = page_to_pfn(page);
  133. do {
  134. seq = zone_span_seqbegin(zone);
  135. if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
  136. ret = 1;
  137. else if (pfn < zone->zone_start_pfn)
  138. ret = 1;
  139. } while (zone_span_seqretry(zone, seq));
  140. return ret;
  141. }
  142. static int page_is_consistent(struct zone *zone, struct page *page)
  143. {
  144. #ifdef CONFIG_HOLES_IN_ZONE
  145. if (!pfn_valid(page_to_pfn(page)))
  146. return 0;
  147. #endif
  148. if (zone != page_zone(page))
  149. return 0;
  150. return 1;
  151. }
  152. /*
  153. * Temporary debugging check for pages not lying within a given zone.
  154. */
  155. static int bad_range(struct zone *zone, struct page *page)
  156. {
  157. if (page_outside_zone_boundaries(zone, page))
  158. return 1;
  159. if (!page_is_consistent(zone, page))
  160. return 1;
  161. return 0;
  162. }
  163. #else
  164. static inline int bad_range(struct zone *zone, struct page *page)
  165. {
  166. return 0;
  167. }
  168. #endif
  169. static void bad_page(struct page *page)
  170. {
  171. printk(KERN_EMERG "Bad page state in process '%s'\n"
  172. KERN_EMERG "page:%p flags:0x%0*lx mapping:%p mapcount:%d count:%d\n"
  173. KERN_EMERG "Trying to fix it up, but a reboot is needed\n"
  174. KERN_EMERG "Backtrace:\n",
  175. current->comm, page, (int)(2*sizeof(unsigned long)),
  176. (unsigned long)page->flags, page->mapping,
  177. page_mapcount(page), page_count(page));
  178. dump_stack();
  179. page->flags &= ~(1 << PG_lru |
  180. 1 << PG_private |
  181. 1 << PG_locked |
  182. 1 << PG_active |
  183. 1 << PG_dirty |
  184. 1 << PG_reclaim |
  185. 1 << PG_slab |
  186. 1 << PG_swapcache |
  187. 1 << PG_writeback |
  188. 1 << PG_buddy );
  189. set_page_count(page, 0);
  190. reset_page_mapcount(page);
  191. page->mapping = NULL;
  192. add_taint(TAINT_BAD_PAGE);
  193. }
  194. /*
  195. * Higher-order pages are called "compound pages". They are structured thusly:
  196. *
  197. * The first PAGE_SIZE page is called the "head page".
  198. *
  199. * The remaining PAGE_SIZE pages are called "tail pages".
  200. *
  201. * All pages have PG_compound set. All pages have their ->private pointing at
  202. * the head page (even the head page has this).
  203. *
  204. * The first tail page's ->lru.next holds the address of the compound page's
  205. * put_page() function. Its ->lru.prev holds the order of allocation.
  206. * This usage means that zero-order pages may not be compound.
  207. */
  208. static void free_compound_page(struct page *page)
  209. {
  210. __free_pages_ok(page, (unsigned long)page[1].lru.prev);
  211. }
  212. static void prep_compound_page(struct page *page, unsigned long order)
  213. {
  214. int i;
  215. int nr_pages = 1 << order;
  216. page[1].lru.next = (void *)free_compound_page; /* set dtor */
  217. page[1].lru.prev = (void *)order;
  218. for (i = 0; i < nr_pages; i++) {
  219. struct page *p = page + i;
  220. __SetPageCompound(p);
  221. set_page_private(p, (unsigned long)page);
  222. }
  223. }
  224. static void destroy_compound_page(struct page *page, unsigned long order)
  225. {
  226. int i;
  227. int nr_pages = 1 << order;
  228. if (unlikely((unsigned long)page[1].lru.prev != order))
  229. bad_page(page);
  230. for (i = 0; i < nr_pages; i++) {
  231. struct page *p = page + i;
  232. if (unlikely(!PageCompound(p) |
  233. (page_private(p) != (unsigned long)page)))
  234. bad_page(page);
  235. __ClearPageCompound(p);
  236. }
  237. }
  238. static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
  239. {
  240. int i;
  241. VM_BUG_ON((gfp_flags & (__GFP_WAIT | __GFP_HIGHMEM)) == __GFP_HIGHMEM);
  242. /*
  243. * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
  244. * and __GFP_HIGHMEM from hard or soft interrupt context.
  245. */
  246. VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
  247. for (i = 0; i < (1 << order); i++)
  248. clear_highpage(page + i);
  249. }
  250. /*
  251. * function for dealing with page's order in buddy system.
  252. * zone->lock is already acquired when we use these.
  253. * So, we don't need atomic page->flags operations here.
  254. */
  255. static inline unsigned long page_order(struct page *page)
  256. {
  257. return page_private(page);
  258. }
  259. static inline void set_page_order(struct page *page, int order)
  260. {
  261. set_page_private(page, order);
  262. __SetPageBuddy(page);
  263. }
  264. static inline void rmv_page_order(struct page *page)
  265. {
  266. __ClearPageBuddy(page);
  267. set_page_private(page, 0);
  268. }
  269. /*
  270. * Locate the struct page for both the matching buddy in our
  271. * pair (buddy1) and the combined O(n+1) page they form (page).
  272. *
  273. * 1) Any buddy B1 will have an order O twin B2 which satisfies
  274. * the following equation:
  275. * B2 = B1 ^ (1 << O)
  276. * For example, if the starting buddy (buddy2) is #8 its order
  277. * 1 buddy is #10:
  278. * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
  279. *
  280. * 2) Any buddy B will have an order O+1 parent P which
  281. * satisfies the following equation:
  282. * P = B & ~(1 << O)
  283. *
  284. * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
  285. */
  286. static inline struct page *
  287. __page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order)
  288. {
  289. unsigned long buddy_idx = page_idx ^ (1 << order);
  290. return page + (buddy_idx - page_idx);
  291. }
  292. static inline unsigned long
  293. __find_combined_index(unsigned long page_idx, unsigned int order)
  294. {
  295. return (page_idx & ~(1 << order));
  296. }
  297. /*
  298. * This function checks whether a page is free && is the buddy
  299. * we can do coalesce a page and its buddy if
  300. * (a) the buddy is not in a hole &&
  301. * (b) the buddy is in the buddy system &&
  302. * (c) a page and its buddy have the same order &&
  303. * (d) a page and its buddy are in the same zone.
  304. *
  305. * For recording whether a page is in the buddy system, we use PG_buddy.
  306. * Setting, clearing, and testing PG_buddy is serialized by zone->lock.
  307. *
  308. * For recording page's order, we use page_private(page).
  309. */
  310. static inline int page_is_buddy(struct page *page, struct page *buddy,
  311. int order)
  312. {
  313. #ifdef CONFIG_HOLES_IN_ZONE
  314. if (!pfn_valid(page_to_pfn(buddy)))
  315. return 0;
  316. #endif
  317. if (page_zone_id(page) != page_zone_id(buddy))
  318. return 0;
  319. if (PageBuddy(buddy) && page_order(buddy) == order) {
  320. BUG_ON(page_count(buddy) != 0);
  321. return 1;
  322. }
  323. return 0;
  324. }
  325. /*
  326. * Freeing function for a buddy system allocator.
  327. *
  328. * The concept of a buddy system is to maintain direct-mapped table
  329. * (containing bit values) for memory blocks of various "orders".
  330. * The bottom level table contains the map for the smallest allocatable
  331. * units of memory (here, pages), and each level above it describes
  332. * pairs of units from the levels below, hence, "buddies".
  333. * At a high level, all that happens here is marking the table entry
  334. * at the bottom level available, and propagating the changes upward
  335. * as necessary, plus some accounting needed to play nicely with other
  336. * parts of the VM system.
  337. * At each level, we keep a list of pages, which are heads of continuous
  338. * free pages of length of (1 << order) and marked with PG_buddy. Page's
  339. * order is recorded in page_private(page) field.
  340. * So when we are allocating or freeing one, we can derive the state of the
  341. * other. That is, if we allocate a small block, and both were
  342. * free, the remainder of the region must be split into blocks.
  343. * If a block is freed, and its buddy is also free, then this
  344. * triggers coalescing into a block of larger size.
  345. *
  346. * -- wli
  347. */
  348. static inline void __free_one_page(struct page *page,
  349. struct zone *zone, unsigned int order)
  350. {
  351. unsigned long page_idx;
  352. int order_size = 1 << order;
  353. if (unlikely(PageCompound(page)))
  354. destroy_compound_page(page, order);
  355. page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
  356. VM_BUG_ON(page_idx & (order_size - 1));
  357. VM_BUG_ON(bad_range(zone, page));
  358. zone->free_pages += order_size;
  359. while (order < MAX_ORDER-1) {
  360. unsigned long combined_idx;
  361. struct free_area *area;
  362. struct page *buddy;
  363. buddy = __page_find_buddy(page, page_idx, order);
  364. if (!page_is_buddy(page, buddy, order))
  365. break; /* Move the buddy up one level. */
  366. list_del(&buddy->lru);
  367. area = zone->free_area + order;
  368. area->nr_free--;
  369. rmv_page_order(buddy);
  370. combined_idx = __find_combined_index(page_idx, order);
  371. page = page + (combined_idx - page_idx);
  372. page_idx = combined_idx;
  373. order++;
  374. }
  375. set_page_order(page, order);
  376. list_add(&page->lru, &zone->free_area[order].free_list);
  377. zone->free_area[order].nr_free++;
  378. }
  379. static inline int free_pages_check(struct page *page)
  380. {
  381. if (unlikely(page_mapcount(page) |
  382. (page->mapping != NULL) |
  383. (page_count(page) != 0) |
  384. (page->flags & (
  385. 1 << PG_lru |
  386. 1 << PG_private |
  387. 1 << PG_locked |
  388. 1 << PG_active |
  389. 1 << PG_reclaim |
  390. 1 << PG_slab |
  391. 1 << PG_swapcache |
  392. 1 << PG_writeback |
  393. 1 << PG_reserved |
  394. 1 << PG_buddy ))))
  395. bad_page(page);
  396. if (PageDirty(page))
  397. __ClearPageDirty(page);
  398. /*
  399. * For now, we report if PG_reserved was found set, but do not
  400. * clear it, and do not free the page. But we shall soon need
  401. * to do more, for when the ZERO_PAGE count wraps negative.
  402. */
  403. return PageReserved(page);
  404. }
  405. /*
  406. * Frees a list of pages.
  407. * Assumes all pages on list are in same zone, and of same order.
  408. * count is the number of pages to free.
  409. *
  410. * If the zone was previously in an "all pages pinned" state then look to
  411. * see if this freeing clears that state.
  412. *
  413. * And clear the zone's pages_scanned counter, to hold off the "all pages are
  414. * pinned" detection logic.
  415. */
  416. static void free_pages_bulk(struct zone *zone, int count,
  417. struct list_head *list, int order)
  418. {
  419. spin_lock(&zone->lock);
  420. zone->all_unreclaimable = 0;
  421. zone->pages_scanned = 0;
  422. while (count--) {
  423. struct page *page;
  424. VM_BUG_ON(list_empty(list));
  425. page = list_entry(list->prev, struct page, lru);
  426. /* have to delete it as __free_one_page list manipulates */
  427. list_del(&page->lru);
  428. __free_one_page(page, zone, order);
  429. }
  430. spin_unlock(&zone->lock);
  431. }
  432. static void free_one_page(struct zone *zone, struct page *page, int order)
  433. {
  434. spin_lock(&zone->lock);
  435. zone->all_unreclaimable = 0;
  436. zone->pages_scanned = 0;
  437. __free_one_page(page, zone ,order);
  438. spin_unlock(&zone->lock);
  439. }
  440. static void __free_pages_ok(struct page *page, unsigned int order)
  441. {
  442. unsigned long flags;
  443. int i;
  444. int reserved = 0;
  445. arch_free_page(page, order);
  446. if (!PageHighMem(page))
  447. debug_check_no_locks_freed(page_address(page),
  448. PAGE_SIZE<<order);
  449. for (i = 0 ; i < (1 << order) ; ++i)
  450. reserved += free_pages_check(page + i);
  451. if (reserved)
  452. return;
  453. kernel_map_pages(page, 1 << order, 0);
  454. local_irq_save(flags);
  455. __count_vm_events(PGFREE, 1 << order);
  456. free_one_page(page_zone(page), page, order);
  457. local_irq_restore(flags);
  458. }
  459. /*
  460. * permit the bootmem allocator to evade page validation on high-order frees
  461. */
  462. void fastcall __init __free_pages_bootmem(struct page *page, unsigned int order)
  463. {
  464. if (order == 0) {
  465. __ClearPageReserved(page);
  466. set_page_count(page, 0);
  467. set_page_refcounted(page);
  468. __free_page(page);
  469. } else {
  470. int loop;
  471. prefetchw(page);
  472. for (loop = 0; loop < BITS_PER_LONG; loop++) {
  473. struct page *p = &page[loop];
  474. if (loop + 1 < BITS_PER_LONG)
  475. prefetchw(p + 1);
  476. __ClearPageReserved(p);
  477. set_page_count(p, 0);
  478. }
  479. set_page_refcounted(page);
  480. __free_pages(page, order);
  481. }
  482. }
  483. /*
  484. * The order of subdivision here is critical for the IO subsystem.
  485. * Please do not alter this order without good reasons and regression
  486. * testing. Specifically, as large blocks of memory are subdivided,
  487. * the order in which smaller blocks are delivered depends on the order
  488. * they're subdivided in this function. This is the primary factor
  489. * influencing the order in which pages are delivered to the IO
  490. * subsystem according to empirical testing, and this is also justified
  491. * by considering the behavior of a buddy system containing a single
  492. * large block of memory acted on by a series of small allocations.
  493. * This behavior is a critical factor in sglist merging's success.
  494. *
  495. * -- wli
  496. */
  497. static inline void expand(struct zone *zone, struct page *page,
  498. int low, int high, struct free_area *area)
  499. {
  500. unsigned long size = 1 << high;
  501. while (high > low) {
  502. area--;
  503. high--;
  504. size >>= 1;
  505. VM_BUG_ON(bad_range(zone, &page[size]));
  506. list_add(&page[size].lru, &area->free_list);
  507. area->nr_free++;
  508. set_page_order(&page[size], high);
  509. }
  510. }
  511. /*
  512. * This page is about to be returned from the page allocator
  513. */
  514. static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
  515. {
  516. if (unlikely(page_mapcount(page) |
  517. (page->mapping != NULL) |
  518. (page_count(page) != 0) |
  519. (page->flags & (
  520. 1 << PG_lru |
  521. 1 << PG_private |
  522. 1 << PG_locked |
  523. 1 << PG_active |
  524. 1 << PG_dirty |
  525. 1 << PG_reclaim |
  526. 1 << PG_slab |
  527. 1 << PG_swapcache |
  528. 1 << PG_writeback |
  529. 1 << PG_reserved |
  530. 1 << PG_buddy ))))
  531. bad_page(page);
  532. /*
  533. * For now, we report if PG_reserved was found set, but do not
  534. * clear it, and do not allocate the page: as a safety net.
  535. */
  536. if (PageReserved(page))
  537. return 1;
  538. page->flags &= ~(1 << PG_uptodate | 1 << PG_error |
  539. 1 << PG_referenced | 1 << PG_arch_1 |
  540. 1 << PG_checked | 1 << PG_mappedtodisk);
  541. set_page_private(page, 0);
  542. set_page_refcounted(page);
  543. kernel_map_pages(page, 1 << order, 1);
  544. if (gfp_flags & __GFP_ZERO)
  545. prep_zero_page(page, order, gfp_flags);
  546. if (order && (gfp_flags & __GFP_COMP))
  547. prep_compound_page(page, order);
  548. return 0;
  549. }
  550. /*
  551. * Do the hard work of removing an element from the buddy allocator.
  552. * Call me with the zone->lock already held.
  553. */
  554. static struct page *__rmqueue(struct zone *zone, unsigned int order)
  555. {
  556. struct free_area * area;
  557. unsigned int current_order;
  558. struct page *page;
  559. for (current_order = order; current_order < MAX_ORDER; ++current_order) {
  560. area = zone->free_area + current_order;
  561. if (list_empty(&area->free_list))
  562. continue;
  563. page = list_entry(area->free_list.next, struct page, lru);
  564. list_del(&page->lru);
  565. rmv_page_order(page);
  566. area->nr_free--;
  567. zone->free_pages -= 1UL << order;
  568. expand(zone, page, order, current_order, area);
  569. return page;
  570. }
  571. return NULL;
  572. }
  573. /*
  574. * Obtain a specified number of elements from the buddy allocator, all under
  575. * a single hold of the lock, for efficiency. Add them to the supplied list.
  576. * Returns the number of new pages which were placed at *list.
  577. */
  578. static int rmqueue_bulk(struct zone *zone, unsigned int order,
  579. unsigned long count, struct list_head *list)
  580. {
  581. int i;
  582. spin_lock(&zone->lock);
  583. for (i = 0; i < count; ++i) {
  584. struct page *page = __rmqueue(zone, order);
  585. if (unlikely(page == NULL))
  586. break;
  587. list_add_tail(&page->lru, list);
  588. }
  589. spin_unlock(&zone->lock);
  590. return i;
  591. }
  592. #ifdef CONFIG_NUMA
  593. /*
  594. * Called from the slab reaper to drain pagesets on a particular node that
  595. * belongs to the currently executing processor.
  596. * Note that this function must be called with the thread pinned to
  597. * a single processor.
  598. */
  599. void drain_node_pages(int nodeid)
  600. {
  601. int i;
  602. enum zone_type z;
  603. unsigned long flags;
  604. for (z = 0; z < MAX_NR_ZONES; z++) {
  605. struct zone *zone = NODE_DATA(nodeid)->node_zones + z;
  606. struct per_cpu_pageset *pset;
  607. if (!populated_zone(zone))
  608. continue;
  609. pset = zone_pcp(zone, smp_processor_id());
  610. for (i = 0; i < ARRAY_SIZE(pset->pcp); i++) {
  611. struct per_cpu_pages *pcp;
  612. pcp = &pset->pcp[i];
  613. if (pcp->count) {
  614. local_irq_save(flags);
  615. free_pages_bulk(zone, pcp->count, &pcp->list, 0);
  616. pcp->count = 0;
  617. local_irq_restore(flags);
  618. }
  619. }
  620. }
  621. }
  622. #endif
  623. #if defined(CONFIG_PM) || defined(CONFIG_HOTPLUG_CPU)
  624. static void __drain_pages(unsigned int cpu)
  625. {
  626. unsigned long flags;
  627. struct zone *zone;
  628. int i;
  629. for_each_zone(zone) {
  630. struct per_cpu_pageset *pset;
  631. pset = zone_pcp(zone, cpu);
  632. for (i = 0; i < ARRAY_SIZE(pset->pcp); i++) {
  633. struct per_cpu_pages *pcp;
  634. pcp = &pset->pcp[i];
  635. local_irq_save(flags);
  636. free_pages_bulk(zone, pcp->count, &pcp->list, 0);
  637. pcp->count = 0;
  638. local_irq_restore(flags);
  639. }
  640. }
  641. }
  642. #endif /* CONFIG_PM || CONFIG_HOTPLUG_CPU */
  643. #ifdef CONFIG_PM
  644. void mark_free_pages(struct zone *zone)
  645. {
  646. unsigned long pfn, max_zone_pfn;
  647. unsigned long flags;
  648. int order;
  649. struct list_head *curr;
  650. if (!zone->spanned_pages)
  651. return;
  652. spin_lock_irqsave(&zone->lock, flags);
  653. max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
  654. for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
  655. if (pfn_valid(pfn)) {
  656. struct page *page = pfn_to_page(pfn);
  657. if (!PageNosave(page))
  658. ClearPageNosaveFree(page);
  659. }
  660. for (order = MAX_ORDER - 1; order >= 0; --order)
  661. list_for_each(curr, &zone->free_area[order].free_list) {
  662. unsigned long i;
  663. pfn = page_to_pfn(list_entry(curr, struct page, lru));
  664. for (i = 0; i < (1UL << order); i++)
  665. SetPageNosaveFree(pfn_to_page(pfn + i));
  666. }
  667. spin_unlock_irqrestore(&zone->lock, flags);
  668. }
  669. /*
  670. * Spill all of this CPU's per-cpu pages back into the buddy allocator.
  671. */
  672. void drain_local_pages(void)
  673. {
  674. unsigned long flags;
  675. local_irq_save(flags);
  676. __drain_pages(smp_processor_id());
  677. local_irq_restore(flags);
  678. }
  679. #endif /* CONFIG_PM */
  680. /*
  681. * Free a 0-order page
  682. */
  683. static void fastcall free_hot_cold_page(struct page *page, int cold)
  684. {
  685. struct zone *zone = page_zone(page);
  686. struct per_cpu_pages *pcp;
  687. unsigned long flags;
  688. arch_free_page(page, 0);
  689. if (PageAnon(page))
  690. page->mapping = NULL;
  691. if (free_pages_check(page))
  692. return;
  693. kernel_map_pages(page, 1, 0);
  694. pcp = &zone_pcp(zone, get_cpu())->pcp[cold];
  695. local_irq_save(flags);
  696. __count_vm_event(PGFREE);
  697. list_add(&page->lru, &pcp->list);
  698. pcp->count++;
  699. if (pcp->count >= pcp->high) {
  700. free_pages_bulk(zone, pcp->batch, &pcp->list, 0);
  701. pcp->count -= pcp->batch;
  702. }
  703. local_irq_restore(flags);
  704. put_cpu();
  705. }
  706. void fastcall free_hot_page(struct page *page)
  707. {
  708. free_hot_cold_page(page, 0);
  709. }
  710. void fastcall free_cold_page(struct page *page)
  711. {
  712. free_hot_cold_page(page, 1);
  713. }
  714. /*
  715. * split_page takes a non-compound higher-order page, and splits it into
  716. * n (1<<order) sub-pages: page[0..n]
  717. * Each sub-page must be freed individually.
  718. *
  719. * Note: this is probably too low level an operation for use in drivers.
  720. * Please consult with lkml before using this in your driver.
  721. */
  722. void split_page(struct page *page, unsigned int order)
  723. {
  724. int i;
  725. VM_BUG_ON(PageCompound(page));
  726. VM_BUG_ON(!page_count(page));
  727. for (i = 1; i < (1 << order); i++)
  728. set_page_refcounted(page + i);
  729. }
  730. /*
  731. * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
  732. * we cheat by calling it from here, in the order > 0 path. Saves a branch
  733. * or two.
  734. */
  735. static struct page *buffered_rmqueue(struct zonelist *zonelist,
  736. struct zone *zone, int order, gfp_t gfp_flags)
  737. {
  738. unsigned long flags;
  739. struct page *page;
  740. int cold = !!(gfp_flags & __GFP_COLD);
  741. int cpu;
  742. again:
  743. cpu = get_cpu();
  744. if (likely(order == 0)) {
  745. struct per_cpu_pages *pcp;
  746. pcp = &zone_pcp(zone, cpu)->pcp[cold];
  747. local_irq_save(flags);
  748. if (!pcp->count) {
  749. pcp->count += rmqueue_bulk(zone, 0,
  750. pcp->batch, &pcp->list);
  751. if (unlikely(!pcp->count))
  752. goto failed;
  753. }
  754. page = list_entry(pcp->list.next, struct page, lru);
  755. list_del(&page->lru);
  756. pcp->count--;
  757. } else {
  758. spin_lock_irqsave(&zone->lock, flags);
  759. page = __rmqueue(zone, order);
  760. spin_unlock(&zone->lock);
  761. if (!page)
  762. goto failed;
  763. }
  764. __count_zone_vm_events(PGALLOC, zone, 1 << order);
  765. zone_statistics(zonelist, zone);
  766. local_irq_restore(flags);
  767. put_cpu();
  768. VM_BUG_ON(bad_range(zone, page));
  769. if (prep_new_page(page, order, gfp_flags))
  770. goto again;
  771. return page;
  772. failed:
  773. local_irq_restore(flags);
  774. put_cpu();
  775. return NULL;
  776. }
  777. #define ALLOC_NO_WATERMARKS 0x01 /* don't check watermarks at all */
  778. #define ALLOC_WMARK_MIN 0x02 /* use pages_min watermark */
  779. #define ALLOC_WMARK_LOW 0x04 /* use pages_low watermark */
  780. #define ALLOC_WMARK_HIGH 0x08 /* use pages_high watermark */
  781. #define ALLOC_HARDER 0x10 /* try to alloc harder */
  782. #define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
  783. #define ALLOC_CPUSET 0x40 /* check for correct cpuset */
  784. /*
  785. * Return 1 if free pages are above 'mark'. This takes into account the order
  786. * of the allocation.
  787. */
  788. int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
  789. int classzone_idx, int alloc_flags)
  790. {
  791. /* free_pages my go negative - that's OK */
  792. unsigned long min = mark;
  793. long free_pages = z->free_pages - (1 << order) + 1;
  794. int o;
  795. if (alloc_flags & ALLOC_HIGH)
  796. min -= min / 2;
  797. if (alloc_flags & ALLOC_HARDER)
  798. min -= min / 4;
  799. if (free_pages <= min + z->lowmem_reserve[classzone_idx])
  800. return 0;
  801. for (o = 0; o < order; o++) {
  802. /* At the next order, this order's pages become unavailable */
  803. free_pages -= z->free_area[o].nr_free << o;
  804. /* Require fewer higher order pages to be free */
  805. min >>= 1;
  806. if (free_pages <= min)
  807. return 0;
  808. }
  809. return 1;
  810. }
  811. /*
  812. * get_page_from_freeliest goes through the zonelist trying to allocate
  813. * a page.
  814. */
  815. static struct page *
  816. get_page_from_freelist(gfp_t gfp_mask, unsigned int order,
  817. struct zonelist *zonelist, int alloc_flags)
  818. {
  819. struct zone **z = zonelist->zones;
  820. struct page *page = NULL;
  821. int classzone_idx = zone_idx(*z);
  822. struct zone *zone;
  823. /*
  824. * Go through the zonelist once, looking for a zone with enough free.
  825. * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
  826. */
  827. do {
  828. zone = *z;
  829. if (unlikely(NUMA_BUILD && (gfp_mask & __GFP_THISNODE) &&
  830. zone->zone_pgdat != zonelist->zones[0]->zone_pgdat))
  831. break;
  832. if ((alloc_flags & ALLOC_CPUSET) &&
  833. !cpuset_zone_allowed(zone, gfp_mask))
  834. continue;
  835. if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
  836. unsigned long mark;
  837. if (alloc_flags & ALLOC_WMARK_MIN)
  838. mark = zone->pages_min;
  839. else if (alloc_flags & ALLOC_WMARK_LOW)
  840. mark = zone->pages_low;
  841. else
  842. mark = zone->pages_high;
  843. if (!zone_watermark_ok(zone , order, mark,
  844. classzone_idx, alloc_flags))
  845. if (!zone_reclaim_mode ||
  846. !zone_reclaim(zone, gfp_mask, order))
  847. continue;
  848. }
  849. page = buffered_rmqueue(zonelist, zone, order, gfp_mask);
  850. if (page) {
  851. break;
  852. }
  853. } while (*(++z) != NULL);
  854. return page;
  855. }
  856. /*
  857. * This is the 'heart' of the zoned buddy allocator.
  858. */
  859. struct page * fastcall
  860. __alloc_pages(gfp_t gfp_mask, unsigned int order,
  861. struct zonelist *zonelist)
  862. {
  863. const gfp_t wait = gfp_mask & __GFP_WAIT;
  864. struct zone **z;
  865. struct page *page;
  866. struct reclaim_state reclaim_state;
  867. struct task_struct *p = current;
  868. int do_retry;
  869. int alloc_flags;
  870. int did_some_progress;
  871. might_sleep_if(wait);
  872. restart:
  873. z = zonelist->zones; /* the list of zones suitable for gfp_mask */
  874. if (unlikely(*z == NULL)) {
  875. /* Should this ever happen?? */
  876. return NULL;
  877. }
  878. page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order,
  879. zonelist, ALLOC_WMARK_LOW|ALLOC_CPUSET);
  880. if (page)
  881. goto got_pg;
  882. do {
  883. wakeup_kswapd(*z, order);
  884. } while (*(++z));
  885. /*
  886. * OK, we're below the kswapd watermark and have kicked background
  887. * reclaim. Now things get more complex, so set up alloc_flags according
  888. * to how we want to proceed.
  889. *
  890. * The caller may dip into page reserves a bit more if the caller
  891. * cannot run direct reclaim, or if the caller has realtime scheduling
  892. * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
  893. * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
  894. */
  895. alloc_flags = ALLOC_WMARK_MIN;
  896. if ((unlikely(rt_task(p)) && !in_interrupt()) || !wait)
  897. alloc_flags |= ALLOC_HARDER;
  898. if (gfp_mask & __GFP_HIGH)
  899. alloc_flags |= ALLOC_HIGH;
  900. if (wait)
  901. alloc_flags |= ALLOC_CPUSET;
  902. /*
  903. * Go through the zonelist again. Let __GFP_HIGH and allocations
  904. * coming from realtime tasks go deeper into reserves.
  905. *
  906. * This is the last chance, in general, before the goto nopage.
  907. * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
  908. * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
  909. */
  910. page = get_page_from_freelist(gfp_mask, order, zonelist, alloc_flags);
  911. if (page)
  912. goto got_pg;
  913. /* This allocation should allow future memory freeing. */
  914. if (((p->flags & PF_MEMALLOC) || unlikely(test_thread_flag(TIF_MEMDIE)))
  915. && !in_interrupt()) {
  916. if (!(gfp_mask & __GFP_NOMEMALLOC)) {
  917. nofail_alloc:
  918. /* go through the zonelist yet again, ignoring mins */
  919. page = get_page_from_freelist(gfp_mask, order,
  920. zonelist, ALLOC_NO_WATERMARKS);
  921. if (page)
  922. goto got_pg;
  923. if (gfp_mask & __GFP_NOFAIL) {
  924. blk_congestion_wait(WRITE, HZ/50);
  925. goto nofail_alloc;
  926. }
  927. }
  928. goto nopage;
  929. }
  930. /* Atomic allocations - we can't balance anything */
  931. if (!wait)
  932. goto nopage;
  933. rebalance:
  934. cond_resched();
  935. /* We now go into synchronous reclaim */
  936. cpuset_memory_pressure_bump();
  937. p->flags |= PF_MEMALLOC;
  938. reclaim_state.reclaimed_slab = 0;
  939. p->reclaim_state = &reclaim_state;
  940. did_some_progress = try_to_free_pages(zonelist->zones, gfp_mask);
  941. p->reclaim_state = NULL;
  942. p->flags &= ~PF_MEMALLOC;
  943. cond_resched();
  944. if (likely(did_some_progress)) {
  945. page = get_page_from_freelist(gfp_mask, order,
  946. zonelist, alloc_flags);
  947. if (page)
  948. goto got_pg;
  949. } else if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
  950. /*
  951. * Go through the zonelist yet one more time, keep
  952. * very high watermark here, this is only to catch
  953. * a parallel oom killing, we must fail if we're still
  954. * under heavy pressure.
  955. */
  956. page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order,
  957. zonelist, ALLOC_WMARK_HIGH|ALLOC_CPUSET);
  958. if (page)
  959. goto got_pg;
  960. out_of_memory(zonelist, gfp_mask, order);
  961. goto restart;
  962. }
  963. /*
  964. * Don't let big-order allocations loop unless the caller explicitly
  965. * requests that. Wait for some write requests to complete then retry.
  966. *
  967. * In this implementation, __GFP_REPEAT means __GFP_NOFAIL for order
  968. * <= 3, but that may not be true in other implementations.
  969. */
  970. do_retry = 0;
  971. if (!(gfp_mask & __GFP_NORETRY)) {
  972. if ((order <= 3) || (gfp_mask & __GFP_REPEAT))
  973. do_retry = 1;
  974. if (gfp_mask & __GFP_NOFAIL)
  975. do_retry = 1;
  976. }
  977. if (do_retry) {
  978. blk_congestion_wait(WRITE, HZ/50);
  979. goto rebalance;
  980. }
  981. nopage:
  982. if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
  983. printk(KERN_WARNING "%s: page allocation failure."
  984. " order:%d, mode:0x%x\n",
  985. p->comm, order, gfp_mask);
  986. dump_stack();
  987. show_mem();
  988. }
  989. got_pg:
  990. return page;
  991. }
  992. EXPORT_SYMBOL(__alloc_pages);
  993. /*
  994. * Common helper functions.
  995. */
  996. fastcall unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
  997. {
  998. struct page * page;
  999. page = alloc_pages(gfp_mask, order);
  1000. if (!page)
  1001. return 0;
  1002. return (unsigned long) page_address(page);
  1003. }
  1004. EXPORT_SYMBOL(__get_free_pages);
  1005. fastcall unsigned long get_zeroed_page(gfp_t gfp_mask)
  1006. {
  1007. struct page * page;
  1008. /*
  1009. * get_zeroed_page() returns a 32-bit address, which cannot represent
  1010. * a highmem page
  1011. */
  1012. VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
  1013. page = alloc_pages(gfp_mask | __GFP_ZERO, 0);
  1014. if (page)
  1015. return (unsigned long) page_address(page);
  1016. return 0;
  1017. }
  1018. EXPORT_SYMBOL(get_zeroed_page);
  1019. void __pagevec_free(struct pagevec *pvec)
  1020. {
  1021. int i = pagevec_count(pvec);
  1022. while (--i >= 0)
  1023. free_hot_cold_page(pvec->pages[i], pvec->cold);
  1024. }
  1025. fastcall void __free_pages(struct page *page, unsigned int order)
  1026. {
  1027. if (put_page_testzero(page)) {
  1028. if (order == 0)
  1029. free_hot_page(page);
  1030. else
  1031. __free_pages_ok(page, order);
  1032. }
  1033. }
  1034. EXPORT_SYMBOL(__free_pages);
  1035. fastcall void free_pages(unsigned long addr, unsigned int order)
  1036. {
  1037. if (addr != 0) {
  1038. VM_BUG_ON(!virt_addr_valid((void *)addr));
  1039. __free_pages(virt_to_page((void *)addr), order);
  1040. }
  1041. }
  1042. EXPORT_SYMBOL(free_pages);
  1043. /*
  1044. * Total amount of free (allocatable) RAM:
  1045. */
  1046. unsigned int nr_free_pages(void)
  1047. {
  1048. unsigned int sum = 0;
  1049. struct zone *zone;
  1050. for_each_zone(zone)
  1051. sum += zone->free_pages;
  1052. return sum;
  1053. }
  1054. EXPORT_SYMBOL(nr_free_pages);
  1055. #ifdef CONFIG_NUMA
  1056. unsigned int nr_free_pages_pgdat(pg_data_t *pgdat)
  1057. {
  1058. unsigned int sum = 0;
  1059. enum zone_type i;
  1060. for (i = 0; i < MAX_NR_ZONES; i++)
  1061. sum += pgdat->node_zones[i].free_pages;
  1062. return sum;
  1063. }
  1064. #endif
  1065. static unsigned int nr_free_zone_pages(int offset)
  1066. {
  1067. /* Just pick one node, since fallback list is circular */
  1068. pg_data_t *pgdat = NODE_DATA(numa_node_id());
  1069. unsigned int sum = 0;
  1070. struct zonelist *zonelist = pgdat->node_zonelists + offset;
  1071. struct zone **zonep = zonelist->zones;
  1072. struct zone *zone;
  1073. for (zone = *zonep++; zone; zone = *zonep++) {
  1074. unsigned long size = zone->present_pages;
  1075. unsigned long high = zone->pages_high;
  1076. if (size > high)
  1077. sum += size - high;
  1078. }
  1079. return sum;
  1080. }
  1081. /*
  1082. * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
  1083. */
  1084. unsigned int nr_free_buffer_pages(void)
  1085. {
  1086. return nr_free_zone_pages(gfp_zone(GFP_USER));
  1087. }
  1088. /*
  1089. * Amount of free RAM allocatable within all zones
  1090. */
  1091. unsigned int nr_free_pagecache_pages(void)
  1092. {
  1093. return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER));
  1094. }
  1095. static inline void show_node(struct zone *zone)
  1096. {
  1097. if (NUMA_BUILD)
  1098. printk("Node %ld ", zone_to_nid(zone));
  1099. }
  1100. void si_meminfo(struct sysinfo *val)
  1101. {
  1102. val->totalram = totalram_pages;
  1103. val->sharedram = 0;
  1104. val->freeram = nr_free_pages();
  1105. val->bufferram = nr_blockdev_pages();
  1106. val->totalhigh = totalhigh_pages;
  1107. val->freehigh = nr_free_highpages();
  1108. val->mem_unit = PAGE_SIZE;
  1109. }
  1110. EXPORT_SYMBOL(si_meminfo);
  1111. #ifdef CONFIG_NUMA
  1112. void si_meminfo_node(struct sysinfo *val, int nid)
  1113. {
  1114. pg_data_t *pgdat = NODE_DATA(nid);
  1115. val->totalram = pgdat->node_present_pages;
  1116. val->freeram = nr_free_pages_pgdat(pgdat);
  1117. #ifdef CONFIG_HIGHMEM
  1118. val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
  1119. val->freehigh = pgdat->node_zones[ZONE_HIGHMEM].free_pages;
  1120. #else
  1121. val->totalhigh = 0;
  1122. val->freehigh = 0;
  1123. #endif
  1124. val->mem_unit = PAGE_SIZE;
  1125. }
  1126. #endif
  1127. #define K(x) ((x) << (PAGE_SHIFT-10))
  1128. /*
  1129. * Show free area list (used inside shift_scroll-lock stuff)
  1130. * We also calculate the percentage fragmentation. We do this by counting the
  1131. * memory on each free list with the exception of the first item on the list.
  1132. */
  1133. void show_free_areas(void)
  1134. {
  1135. int cpu;
  1136. unsigned long active;
  1137. unsigned long inactive;
  1138. unsigned long free;
  1139. struct zone *zone;
  1140. for_each_zone(zone) {
  1141. if (!populated_zone(zone))
  1142. continue;
  1143. show_node(zone);
  1144. printk("%s per-cpu:\n", zone->name);
  1145. for_each_online_cpu(cpu) {
  1146. struct per_cpu_pageset *pageset;
  1147. pageset = zone_pcp(zone, cpu);
  1148. printk("CPU %4d: Hot: hi:%5d, btch:%4d usd:%4d "
  1149. "Cold: hi:%5d, btch:%4d usd:%4d\n",
  1150. cpu, pageset->pcp[0].high,
  1151. pageset->pcp[0].batch, pageset->pcp[0].count,
  1152. pageset->pcp[1].high, pageset->pcp[1].batch,
  1153. pageset->pcp[1].count);
  1154. }
  1155. }
  1156. get_zone_counts(&active, &inactive, &free);
  1157. printk("Active:%lu inactive:%lu dirty:%lu writeback:%lu "
  1158. "unstable:%lu free:%u slab:%lu mapped:%lu pagetables:%lu\n",
  1159. active,
  1160. inactive,
  1161. global_page_state(NR_FILE_DIRTY),
  1162. global_page_state(NR_WRITEBACK),
  1163. global_page_state(NR_UNSTABLE_NFS),
  1164. nr_free_pages(),
  1165. global_page_state(NR_SLAB_RECLAIMABLE) +
  1166. global_page_state(NR_SLAB_UNRECLAIMABLE),
  1167. global_page_state(NR_FILE_MAPPED),
  1168. global_page_state(NR_PAGETABLE));
  1169. for_each_zone(zone) {
  1170. int i;
  1171. if (!populated_zone(zone))
  1172. continue;
  1173. show_node(zone);
  1174. printk("%s"
  1175. " free:%lukB"
  1176. " min:%lukB"
  1177. " low:%lukB"
  1178. " high:%lukB"
  1179. " active:%lukB"
  1180. " inactive:%lukB"
  1181. " present:%lukB"
  1182. " pages_scanned:%lu"
  1183. " all_unreclaimable? %s"
  1184. "\n",
  1185. zone->name,
  1186. K(zone->free_pages),
  1187. K(zone->pages_min),
  1188. K(zone->pages_low),
  1189. K(zone->pages_high),
  1190. K(zone->nr_active),
  1191. K(zone->nr_inactive),
  1192. K(zone->present_pages),
  1193. zone->pages_scanned,
  1194. (zone->all_unreclaimable ? "yes" : "no")
  1195. );
  1196. printk("lowmem_reserve[]:");
  1197. for (i = 0; i < MAX_NR_ZONES; i++)
  1198. printk(" %lu", zone->lowmem_reserve[i]);
  1199. printk("\n");
  1200. }
  1201. for_each_zone(zone) {
  1202. unsigned long nr[MAX_ORDER], flags, order, total = 0;
  1203. if (!populated_zone(zone))
  1204. continue;
  1205. show_node(zone);
  1206. printk("%s: ", zone->name);
  1207. spin_lock_irqsave(&zone->lock, flags);
  1208. for (order = 0; order < MAX_ORDER; order++) {
  1209. nr[order] = zone->free_area[order].nr_free;
  1210. total += nr[order] << order;
  1211. }
  1212. spin_unlock_irqrestore(&zone->lock, flags);
  1213. for (order = 0; order < MAX_ORDER; order++)
  1214. printk("%lu*%lukB ", nr[order], K(1UL) << order);
  1215. printk("= %lukB\n", K(total));
  1216. }
  1217. show_swap_cache_info();
  1218. }
  1219. /*
  1220. * Builds allocation fallback zone lists.
  1221. *
  1222. * Add all populated zones of a node to the zonelist.
  1223. */
  1224. static int __meminit build_zonelists_node(pg_data_t *pgdat,
  1225. struct zonelist *zonelist, int nr_zones, enum zone_type zone_type)
  1226. {
  1227. struct zone *zone;
  1228. BUG_ON(zone_type >= MAX_NR_ZONES);
  1229. zone_type++;
  1230. do {
  1231. zone_type--;
  1232. zone = pgdat->node_zones + zone_type;
  1233. if (populated_zone(zone)) {
  1234. zonelist->zones[nr_zones++] = zone;
  1235. check_highest_zone(zone_type);
  1236. }
  1237. } while (zone_type);
  1238. return nr_zones;
  1239. }
  1240. #ifdef CONFIG_NUMA
  1241. #define MAX_NODE_LOAD (num_online_nodes())
  1242. static int __meminitdata node_load[MAX_NUMNODES];
  1243. /**
  1244. * find_next_best_node - find the next node that should appear in a given node's fallback list
  1245. * @node: node whose fallback list we're appending
  1246. * @used_node_mask: nodemask_t of already used nodes
  1247. *
  1248. * We use a number of factors to determine which is the next node that should
  1249. * appear on a given node's fallback list. The node should not have appeared
  1250. * already in @node's fallback list, and it should be the next closest node
  1251. * according to the distance array (which contains arbitrary distance values
  1252. * from each node to each node in the system), and should also prefer nodes
  1253. * with no CPUs, since presumably they'll have very little allocation pressure
  1254. * on them otherwise.
  1255. * It returns -1 if no node is found.
  1256. */
  1257. static int __meminit find_next_best_node(int node, nodemask_t *used_node_mask)
  1258. {
  1259. int n, val;
  1260. int min_val = INT_MAX;
  1261. int best_node = -1;
  1262. /* Use the local node if we haven't already */
  1263. if (!node_isset(node, *used_node_mask)) {
  1264. node_set(node, *used_node_mask);
  1265. return node;
  1266. }
  1267. for_each_online_node(n) {
  1268. cpumask_t tmp;
  1269. /* Don't want a node to appear more than once */
  1270. if (node_isset(n, *used_node_mask))
  1271. continue;
  1272. /* Use the distance array to find the distance */
  1273. val = node_distance(node, n);
  1274. /* Penalize nodes under us ("prefer the next node") */
  1275. val += (n < node);
  1276. /* Give preference to headless and unused nodes */
  1277. tmp = node_to_cpumask(n);
  1278. if (!cpus_empty(tmp))
  1279. val += PENALTY_FOR_NODE_WITH_CPUS;
  1280. /* Slight preference for less loaded node */
  1281. val *= (MAX_NODE_LOAD*MAX_NUMNODES);
  1282. val += node_load[n];
  1283. if (val < min_val) {
  1284. min_val = val;
  1285. best_node = n;
  1286. }
  1287. }
  1288. if (best_node >= 0)
  1289. node_set(best_node, *used_node_mask);
  1290. return best_node;
  1291. }
  1292. static void __meminit build_zonelists(pg_data_t *pgdat)
  1293. {
  1294. int j, node, local_node;
  1295. enum zone_type i;
  1296. int prev_node, load;
  1297. struct zonelist *zonelist;
  1298. nodemask_t used_mask;
  1299. /* initialize zonelists */
  1300. for (i = 0; i < MAX_NR_ZONES; i++) {
  1301. zonelist = pgdat->node_zonelists + i;
  1302. zonelist->zones[0] = NULL;
  1303. }
  1304. /* NUMA-aware ordering of nodes */
  1305. local_node = pgdat->node_id;
  1306. load = num_online_nodes();
  1307. prev_node = local_node;
  1308. nodes_clear(used_mask);
  1309. while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
  1310. int distance = node_distance(local_node, node);
  1311. /*
  1312. * If another node is sufficiently far away then it is better
  1313. * to reclaim pages in a zone before going off node.
  1314. */
  1315. if (distance > RECLAIM_DISTANCE)
  1316. zone_reclaim_mode = 1;
  1317. /*
  1318. * We don't want to pressure a particular node.
  1319. * So adding penalty to the first node in same
  1320. * distance group to make it round-robin.
  1321. */
  1322. if (distance != node_distance(local_node, prev_node))
  1323. node_load[node] += load;
  1324. prev_node = node;
  1325. load--;
  1326. for (i = 0; i < MAX_NR_ZONES; i++) {
  1327. zonelist = pgdat->node_zonelists + i;
  1328. for (j = 0; zonelist->zones[j] != NULL; j++);
  1329. j = build_zonelists_node(NODE_DATA(node), zonelist, j, i);
  1330. zonelist->zones[j] = NULL;
  1331. }
  1332. }
  1333. }
  1334. #else /* CONFIG_NUMA */
  1335. static void __meminit build_zonelists(pg_data_t *pgdat)
  1336. {
  1337. int node, local_node;
  1338. enum zone_type i,j;
  1339. local_node = pgdat->node_id;
  1340. for (i = 0; i < MAX_NR_ZONES; i++) {
  1341. struct zonelist *zonelist;
  1342. zonelist = pgdat->node_zonelists + i;
  1343. j = build_zonelists_node(pgdat, zonelist, 0, i);
  1344. /*
  1345. * Now we build the zonelist so that it contains the zones
  1346. * of all the other nodes.
  1347. * We don't want to pressure a particular node, so when
  1348. * building the zones for node N, we make sure that the
  1349. * zones coming right after the local ones are those from
  1350. * node N+1 (modulo N)
  1351. */
  1352. for (node = local_node + 1; node < MAX_NUMNODES; node++) {
  1353. if (!node_online(node))
  1354. continue;
  1355. j = build_zonelists_node(NODE_DATA(node), zonelist, j, i);
  1356. }
  1357. for (node = 0; node < local_node; node++) {
  1358. if (!node_online(node))
  1359. continue;
  1360. j = build_zonelists_node(NODE_DATA(node), zonelist, j, i);
  1361. }
  1362. zonelist->zones[j] = NULL;
  1363. }
  1364. }
  1365. #endif /* CONFIG_NUMA */
  1366. /* return values int ....just for stop_machine_run() */
  1367. static int __meminit __build_all_zonelists(void *dummy)
  1368. {
  1369. int nid;
  1370. for_each_online_node(nid)
  1371. build_zonelists(NODE_DATA(nid));
  1372. return 0;
  1373. }
  1374. void __meminit build_all_zonelists(void)
  1375. {
  1376. if (system_state == SYSTEM_BOOTING) {
  1377. __build_all_zonelists(NULL);
  1378. cpuset_init_current_mems_allowed();
  1379. } else {
  1380. /* we have to stop all cpus to guaranntee there is no user
  1381. of zonelist */
  1382. stop_machine_run(__build_all_zonelists, NULL, NR_CPUS);
  1383. /* cpuset refresh routine should be here */
  1384. }
  1385. vm_total_pages = nr_free_pagecache_pages();
  1386. printk("Built %i zonelists. Total pages: %ld\n",
  1387. num_online_nodes(), vm_total_pages);
  1388. }
  1389. /*
  1390. * Helper functions to size the waitqueue hash table.
  1391. * Essentially these want to choose hash table sizes sufficiently
  1392. * large so that collisions trying to wait on pages are rare.
  1393. * But in fact, the number of active page waitqueues on typical
  1394. * systems is ridiculously low, less than 200. So this is even
  1395. * conservative, even though it seems large.
  1396. *
  1397. * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
  1398. * waitqueues, i.e. the size of the waitq table given the number of pages.
  1399. */
  1400. #define PAGES_PER_WAITQUEUE 256
  1401. #ifndef CONFIG_MEMORY_HOTPLUG
  1402. static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
  1403. {
  1404. unsigned long size = 1;
  1405. pages /= PAGES_PER_WAITQUEUE;
  1406. while (size < pages)
  1407. size <<= 1;
  1408. /*
  1409. * Once we have dozens or even hundreds of threads sleeping
  1410. * on IO we've got bigger problems than wait queue collision.
  1411. * Limit the size of the wait table to a reasonable size.
  1412. */
  1413. size = min(size, 4096UL);
  1414. return max(size, 4UL);
  1415. }
  1416. #else
  1417. /*
  1418. * A zone's size might be changed by hot-add, so it is not possible to determine
  1419. * a suitable size for its wait_table. So we use the maximum size now.
  1420. *
  1421. * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
  1422. *
  1423. * i386 (preemption config) : 4096 x 16 = 64Kbyte.
  1424. * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
  1425. * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
  1426. *
  1427. * The maximum entries are prepared when a zone's memory is (512K + 256) pages
  1428. * or more by the traditional way. (See above). It equals:
  1429. *
  1430. * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
  1431. * ia64(16K page size) : = ( 8G + 4M)byte.
  1432. * powerpc (64K page size) : = (32G +16M)byte.
  1433. */
  1434. static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
  1435. {
  1436. return 4096UL;
  1437. }
  1438. #endif
  1439. /*
  1440. * This is an integer logarithm so that shifts can be used later
  1441. * to extract the more random high bits from the multiplicative
  1442. * hash function before the remainder is taken.
  1443. */
  1444. static inline unsigned long wait_table_bits(unsigned long size)
  1445. {
  1446. return ffz(~size);
  1447. }
  1448. #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
  1449. /*
  1450. * Initially all pages are reserved - free ones are freed
  1451. * up by free_all_bootmem() once the early boot process is
  1452. * done. Non-atomic initialization, single-pass.
  1453. */
  1454. void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
  1455. unsigned long start_pfn)
  1456. {
  1457. struct page *page;
  1458. unsigned long end_pfn = start_pfn + size;
  1459. unsigned long pfn;
  1460. for (pfn = start_pfn; pfn < end_pfn; pfn++) {
  1461. if (!early_pfn_valid(pfn))
  1462. continue;
  1463. page = pfn_to_page(pfn);
  1464. set_page_links(page, zone, nid, pfn);
  1465. init_page_count(page);
  1466. reset_page_mapcount(page);
  1467. SetPageReserved(page);
  1468. INIT_LIST_HEAD(&page->lru);
  1469. #ifdef WANT_PAGE_VIRTUAL
  1470. /* The shift won't overflow because ZONE_NORMAL is below 4G. */
  1471. if (!is_highmem_idx(zone))
  1472. set_page_address(page, __va(pfn << PAGE_SHIFT));
  1473. #endif
  1474. }
  1475. }
  1476. void zone_init_free_lists(struct pglist_data *pgdat, struct zone *zone,
  1477. unsigned long size)
  1478. {
  1479. int order;
  1480. for (order = 0; order < MAX_ORDER ; order++) {
  1481. INIT_LIST_HEAD(&zone->free_area[order].free_list);
  1482. zone->free_area[order].nr_free = 0;
  1483. }
  1484. }
  1485. #define ZONETABLE_INDEX(x, zone_nr) ((x << ZONES_SHIFT) | zone_nr)
  1486. void zonetable_add(struct zone *zone, int nid, enum zone_type zid,
  1487. unsigned long pfn, unsigned long size)
  1488. {
  1489. unsigned long snum = pfn_to_section_nr(pfn);
  1490. unsigned long end = pfn_to_section_nr(pfn + size);
  1491. if (FLAGS_HAS_NODE)
  1492. zone_table[ZONETABLE_INDEX(nid, zid)] = zone;
  1493. else
  1494. for (; snum <= end; snum++)
  1495. zone_table[ZONETABLE_INDEX(snum, zid)] = zone;
  1496. }
  1497. #ifndef __HAVE_ARCH_MEMMAP_INIT
  1498. #define memmap_init(size, nid, zone, start_pfn) \
  1499. memmap_init_zone((size), (nid), (zone), (start_pfn))
  1500. #endif
  1501. static int __cpuinit zone_batchsize(struct zone *zone)
  1502. {
  1503. int batch;
  1504. /*
  1505. * The per-cpu-pages pools are set to around 1000th of the
  1506. * size of the zone. But no more than 1/2 of a meg.
  1507. *
  1508. * OK, so we don't know how big the cache is. So guess.
  1509. */
  1510. batch = zone->present_pages / 1024;
  1511. if (batch * PAGE_SIZE > 512 * 1024)
  1512. batch = (512 * 1024) / PAGE_SIZE;
  1513. batch /= 4; /* We effectively *= 4 below */
  1514. if (batch < 1)
  1515. batch = 1;
  1516. /*
  1517. * Clamp the batch to a 2^n - 1 value. Having a power
  1518. * of 2 value was found to be more likely to have
  1519. * suboptimal cache aliasing properties in some cases.
  1520. *
  1521. * For example if 2 tasks are alternately allocating
  1522. * batches of pages, one task can end up with a lot
  1523. * of pages of one half of the possible page colors
  1524. * and the other with pages of the other colors.
  1525. */
  1526. batch = (1 << (fls(batch + batch/2)-1)) - 1;
  1527. return batch;
  1528. }
  1529. inline void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
  1530. {
  1531. struct per_cpu_pages *pcp;
  1532. memset(p, 0, sizeof(*p));
  1533. pcp = &p->pcp[0]; /* hot */
  1534. pcp->count = 0;
  1535. pcp->high = 6 * batch;
  1536. pcp->batch = max(1UL, 1 * batch);
  1537. INIT_LIST_HEAD(&pcp->list);
  1538. pcp = &p->pcp[1]; /* cold*/
  1539. pcp->count = 0;
  1540. pcp->high = 2 * batch;
  1541. pcp->batch = max(1UL, batch/2);
  1542. INIT_LIST_HEAD(&pcp->list);
  1543. }
  1544. /*
  1545. * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
  1546. * to the value high for the pageset p.
  1547. */
  1548. static void setup_pagelist_highmark(struct per_cpu_pageset *p,
  1549. unsigned long high)
  1550. {
  1551. struct per_cpu_pages *pcp;
  1552. pcp = &p->pcp[0]; /* hot list */
  1553. pcp->high = high;
  1554. pcp->batch = max(1UL, high/4);
  1555. if ((high/4) > (PAGE_SHIFT * 8))
  1556. pcp->batch = PAGE_SHIFT * 8;
  1557. }
  1558. #ifdef CONFIG_NUMA
  1559. /*
  1560. * Boot pageset table. One per cpu which is going to be used for all
  1561. * zones and all nodes. The parameters will be set in such a way
  1562. * that an item put on a list will immediately be handed over to
  1563. * the buddy list. This is safe since pageset manipulation is done
  1564. * with interrupts disabled.
  1565. *
  1566. * Some NUMA counter updates may also be caught by the boot pagesets.
  1567. *
  1568. * The boot_pagesets must be kept even after bootup is complete for
  1569. * unused processors and/or zones. They do play a role for bootstrapping
  1570. * hotplugged processors.
  1571. *
  1572. * zoneinfo_show() and maybe other functions do
  1573. * not check if the processor is online before following the pageset pointer.
  1574. * Other parts of the kernel may not check if the zone is available.
  1575. */
  1576. static struct per_cpu_pageset boot_pageset[NR_CPUS];
  1577. /*
  1578. * Dynamically allocate memory for the
  1579. * per cpu pageset array in struct zone.
  1580. */
  1581. static int __cpuinit process_zones(int cpu)
  1582. {
  1583. struct zone *zone, *dzone;
  1584. for_each_zone(zone) {
  1585. if (!populated_zone(zone))
  1586. continue;
  1587. zone_pcp(zone, cpu) = kmalloc_node(sizeof(struct per_cpu_pageset),
  1588. GFP_KERNEL, cpu_to_node(cpu));
  1589. if (!zone_pcp(zone, cpu))
  1590. goto bad;
  1591. setup_pageset(zone_pcp(zone, cpu), zone_batchsize(zone));
  1592. if (percpu_pagelist_fraction)
  1593. setup_pagelist_highmark(zone_pcp(zone, cpu),
  1594. (zone->present_pages / percpu_pagelist_fraction));
  1595. }
  1596. return 0;
  1597. bad:
  1598. for_each_zone(dzone) {
  1599. if (dzone == zone)
  1600. break;
  1601. kfree(zone_pcp(dzone, cpu));
  1602. zone_pcp(dzone, cpu) = NULL;
  1603. }
  1604. return -ENOMEM;
  1605. }
  1606. static inline void free_zone_pagesets(int cpu)
  1607. {
  1608. struct zone *zone;
  1609. for_each_zone(zone) {
  1610. struct per_cpu_pageset *pset = zone_pcp(zone, cpu);
  1611. /* Free per_cpu_pageset if it is slab allocated */
  1612. if (pset != &boot_pageset[cpu])
  1613. kfree(pset);
  1614. zone_pcp(zone, cpu) = NULL;
  1615. }
  1616. }
  1617. static int __cpuinit pageset_cpuup_callback(struct notifier_block *nfb,
  1618. unsigned long action,
  1619. void *hcpu)
  1620. {
  1621. int cpu = (long)hcpu;
  1622. int ret = NOTIFY_OK;
  1623. switch (action) {
  1624. case CPU_UP_PREPARE:
  1625. if (process_zones(cpu))
  1626. ret = NOTIFY_BAD;
  1627. break;
  1628. case CPU_UP_CANCELED:
  1629. case CPU_DEAD:
  1630. free_zone_pagesets(cpu);
  1631. break;
  1632. default:
  1633. break;
  1634. }
  1635. return ret;
  1636. }
  1637. static struct notifier_block __cpuinitdata pageset_notifier =
  1638. { &pageset_cpuup_callback, NULL, 0 };
  1639. void __init setup_per_cpu_pageset(void)
  1640. {
  1641. int err;
  1642. /* Initialize per_cpu_pageset for cpu 0.
  1643. * A cpuup callback will do this for every cpu
  1644. * as it comes online
  1645. */
  1646. err = process_zones(smp_processor_id());
  1647. BUG_ON(err);
  1648. register_cpu_notifier(&pageset_notifier);
  1649. }
  1650. #endif
  1651. static __meminit
  1652. int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
  1653. {
  1654. int i;
  1655. struct pglist_data *pgdat = zone->zone_pgdat;
  1656. size_t alloc_size;
  1657. /*
  1658. * The per-page waitqueue mechanism uses hashed waitqueues
  1659. * per zone.
  1660. */
  1661. zone->wait_table_hash_nr_entries =
  1662. wait_table_hash_nr_entries(zone_size_pages);
  1663. zone->wait_table_bits =
  1664. wait_table_bits(zone->wait_table_hash_nr_entries);
  1665. alloc_size = zone->wait_table_hash_nr_entries
  1666. * sizeof(wait_queue_head_t);
  1667. if (system_state == SYSTEM_BOOTING) {
  1668. zone->wait_table = (wait_queue_head_t *)
  1669. alloc_bootmem_node(pgdat, alloc_size);
  1670. } else {
  1671. /*
  1672. * This case means that a zone whose size was 0 gets new memory
  1673. * via memory hot-add.
  1674. * But it may be the case that a new node was hot-added. In
  1675. * this case vmalloc() will not be able to use this new node's
  1676. * memory - this wait_table must be initialized to use this new
  1677. * node itself as well.
  1678. * To use this new node's memory, further consideration will be
  1679. * necessary.
  1680. */
  1681. zone->wait_table = (wait_queue_head_t *)vmalloc(alloc_size);
  1682. }
  1683. if (!zone->wait_table)
  1684. return -ENOMEM;
  1685. for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
  1686. init_waitqueue_head(zone->wait_table + i);
  1687. return 0;
  1688. }
  1689. static __meminit void zone_pcp_init(struct zone *zone)
  1690. {
  1691. int cpu;
  1692. unsigned long batch = zone_batchsize(zone);
  1693. for (cpu = 0; cpu < NR_CPUS; cpu++) {
  1694. #ifdef CONFIG_NUMA
  1695. /* Early boot. Slab allocator not functional yet */
  1696. zone_pcp(zone, cpu) = &boot_pageset[cpu];
  1697. setup_pageset(&boot_pageset[cpu],0);
  1698. #else
  1699. setup_pageset(zone_pcp(zone,cpu), batch);
  1700. #endif
  1701. }
  1702. if (zone->present_pages)
  1703. printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%lu\n",
  1704. zone->name, zone->present_pages, batch);
  1705. }
  1706. __meminit int init_currently_empty_zone(struct zone *zone,
  1707. unsigned long zone_start_pfn,
  1708. unsigned long size)
  1709. {
  1710. struct pglist_data *pgdat = zone->zone_pgdat;
  1711. int ret;
  1712. ret = zone_wait_table_init(zone, size);
  1713. if (ret)
  1714. return ret;
  1715. pgdat->nr_zones = zone_idx(zone) + 1;
  1716. zone->zone_start_pfn = zone_start_pfn;
  1717. memmap_init(size, pgdat->node_id, zone_idx(zone), zone_start_pfn);
  1718. zone_init_free_lists(pgdat, zone, zone->spanned_pages);
  1719. return 0;
  1720. }
  1721. #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
  1722. /*
  1723. * Basic iterator support. Return the first range of PFNs for a node
  1724. * Note: nid == MAX_NUMNODES returns first region regardless of node
  1725. */
  1726. static int __init first_active_region_index_in_nid(int nid)
  1727. {
  1728. int i;
  1729. for (i = 0; i < nr_nodemap_entries; i++)
  1730. if (nid == MAX_NUMNODES || early_node_map[i].nid == nid)
  1731. return i;
  1732. return -1;
  1733. }
  1734. /*
  1735. * Basic iterator support. Return the next active range of PFNs for a node
  1736. * Note: nid == MAX_NUMNODES returns next region regardles of node
  1737. */
  1738. static int __init next_active_region_index_in_nid(int index, int nid)
  1739. {
  1740. for (index = index + 1; index < nr_nodemap_entries; index++)
  1741. if (nid == MAX_NUMNODES || early_node_map[index].nid == nid)
  1742. return index;
  1743. return -1;
  1744. }
  1745. #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
  1746. /*
  1747. * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
  1748. * Architectures may implement their own version but if add_active_range()
  1749. * was used and there are no special requirements, this is a convenient
  1750. * alternative
  1751. */
  1752. int __init early_pfn_to_nid(unsigned long pfn)
  1753. {
  1754. int i;
  1755. for (i = 0; i < nr_nodemap_entries; i++) {
  1756. unsigned long start_pfn = early_node_map[i].start_pfn;
  1757. unsigned long end_pfn = early_node_map[i].end_pfn;
  1758. if (start_pfn <= pfn && pfn < end_pfn)
  1759. return early_node_map[i].nid;
  1760. }
  1761. return 0;
  1762. }
  1763. #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
  1764. /* Basic iterator support to walk early_node_map[] */
  1765. #define for_each_active_range_index_in_nid(i, nid) \
  1766. for (i = first_active_region_index_in_nid(nid); i != -1; \
  1767. i = next_active_region_index_in_nid(i, nid))
  1768. /**
  1769. * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
  1770. * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
  1771. * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
  1772. *
  1773. * If an architecture guarantees that all ranges registered with
  1774. * add_active_ranges() contain no holes and may be freed, this
  1775. * this function may be used instead of calling free_bootmem() manually.
  1776. */
  1777. void __init free_bootmem_with_active_regions(int nid,
  1778. unsigned long max_low_pfn)
  1779. {
  1780. int i;
  1781. for_each_active_range_index_in_nid(i, nid) {
  1782. unsigned long size_pages = 0;
  1783. unsigned long end_pfn = early_node_map[i].end_pfn;
  1784. if (early_node_map[i].start_pfn >= max_low_pfn)
  1785. continue;
  1786. if (end_pfn > max_low_pfn)
  1787. end_pfn = max_low_pfn;
  1788. size_pages = end_pfn - early_node_map[i].start_pfn;
  1789. free_bootmem_node(NODE_DATA(early_node_map[i].nid),
  1790. PFN_PHYS(early_node_map[i].start_pfn),
  1791. size_pages << PAGE_SHIFT);
  1792. }
  1793. }
  1794. /**
  1795. * sparse_memory_present_with_active_regions - Call memory_present for each active range
  1796. * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
  1797. *
  1798. * If an architecture guarantees that all ranges registered with
  1799. * add_active_ranges() contain no holes and may be freed, this
  1800. * function may be used instead of calling memory_present() manually.
  1801. */
  1802. void __init sparse_memory_present_with_active_regions(int nid)
  1803. {
  1804. int i;
  1805. for_each_active_range_index_in_nid(i, nid)
  1806. memory_present(early_node_map[i].nid,
  1807. early_node_map[i].start_pfn,
  1808. early_node_map[i].end_pfn);
  1809. }
  1810. /**
  1811. * push_node_boundaries - Push node boundaries to at least the requested boundary
  1812. * @nid: The nid of the node to push the boundary for
  1813. * @start_pfn: The start pfn of the node
  1814. * @end_pfn: The end pfn of the node
  1815. *
  1816. * In reserve-based hot-add, mem_map is allocated that is unused until hotadd
  1817. * time. Specifically, on x86_64, SRAT will report ranges that can potentially
  1818. * be hotplugged even though no physical memory exists. This function allows
  1819. * an arch to push out the node boundaries so mem_map is allocated that can
  1820. * be used later.
  1821. */
  1822. #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
  1823. void __init push_node_boundaries(unsigned int nid,
  1824. unsigned long start_pfn, unsigned long end_pfn)
  1825. {
  1826. printk(KERN_DEBUG "Entering push_node_boundaries(%u, %lu, %lu)\n",
  1827. nid, start_pfn, end_pfn);
  1828. /* Initialise the boundary for this node if necessary */
  1829. if (node_boundary_end_pfn[nid] == 0)
  1830. node_boundary_start_pfn[nid] = -1UL;
  1831. /* Update the boundaries */
  1832. if (node_boundary_start_pfn[nid] > start_pfn)
  1833. node_boundary_start_pfn[nid] = start_pfn;
  1834. if (node_boundary_end_pfn[nid] < end_pfn)
  1835. node_boundary_end_pfn[nid] = end_pfn;
  1836. }
  1837. /* If necessary, push the node boundary out for reserve hotadd */
  1838. static void __init account_node_boundary(unsigned int nid,
  1839. unsigned long *start_pfn, unsigned long *end_pfn)
  1840. {
  1841. printk(KERN_DEBUG "Entering account_node_boundary(%u, %lu, %lu)\n",
  1842. nid, *start_pfn, *end_pfn);
  1843. /* Return if boundary information has not been provided */
  1844. if (node_boundary_end_pfn[nid] == 0)
  1845. return;
  1846. /* Check the boundaries and update if necessary */
  1847. if (node_boundary_start_pfn[nid] < *start_pfn)
  1848. *start_pfn = node_boundary_start_pfn[nid];
  1849. if (node_boundary_end_pfn[nid] > *end_pfn)
  1850. *end_pfn = node_boundary_end_pfn[nid];
  1851. }
  1852. #else
  1853. void __init push_node_boundaries(unsigned int nid,
  1854. unsigned long start_pfn, unsigned long end_pfn) {}
  1855. static void __init account_node_boundary(unsigned int nid,
  1856. unsigned long *start_pfn, unsigned long *end_pfn) {}
  1857. #endif
  1858. /**
  1859. * get_pfn_range_for_nid - Return the start and end page frames for a node
  1860. * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
  1861. * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
  1862. * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
  1863. *
  1864. * It returns the start and end page frame of a node based on information
  1865. * provided by an arch calling add_active_range(). If called for a node
  1866. * with no available memory, a warning is printed and the start and end
  1867. * PFNs will be 0.
  1868. */
  1869. void __init get_pfn_range_for_nid(unsigned int nid,
  1870. unsigned long *start_pfn, unsigned long *end_pfn)
  1871. {
  1872. int i;
  1873. *start_pfn = -1UL;
  1874. *end_pfn = 0;
  1875. for_each_active_range_index_in_nid(i, nid) {
  1876. *start_pfn = min(*start_pfn, early_node_map[i].start_pfn);
  1877. *end_pfn = max(*end_pfn, early_node_map[i].end_pfn);
  1878. }
  1879. if (*start_pfn == -1UL) {
  1880. printk(KERN_WARNING "Node %u active with no memory\n", nid);
  1881. *start_pfn = 0;
  1882. }
  1883. /* Push the node boundaries out if requested */
  1884. account_node_boundary(nid, start_pfn, end_pfn);
  1885. }
  1886. /*
  1887. * Return the number of pages a zone spans in a node, including holes
  1888. * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
  1889. */
  1890. unsigned long __init zone_spanned_pages_in_node(int nid,
  1891. unsigned long zone_type,
  1892. unsigned long *ignored)
  1893. {
  1894. unsigned long node_start_pfn, node_end_pfn;
  1895. unsigned long zone_start_pfn, zone_end_pfn;
  1896. /* Get the start and end of the node and zone */
  1897. get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
  1898. zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
  1899. zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
  1900. /* Check that this node has pages within the zone's required range */
  1901. if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
  1902. return 0;
  1903. /* Move the zone boundaries inside the node if necessary */
  1904. zone_end_pfn = min(zone_end_pfn, node_end_pfn);
  1905. zone_start_pfn = max(zone_start_pfn, node_start_pfn);
  1906. /* Return the spanned pages */
  1907. return zone_end_pfn - zone_start_pfn;
  1908. }
  1909. /*
  1910. * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
  1911. * then all holes in the requested range will be accounted for.
  1912. */
  1913. unsigned long __init __absent_pages_in_range(int nid,
  1914. unsigned long range_start_pfn,
  1915. unsigned long range_end_pfn)
  1916. {
  1917. int i = 0;
  1918. unsigned long prev_end_pfn = 0, hole_pages = 0;
  1919. unsigned long start_pfn;
  1920. /* Find the end_pfn of the first active range of pfns in the node */
  1921. i = first_active_region_index_in_nid(nid);
  1922. if (i == -1)
  1923. return 0;
  1924. /* Account for ranges before physical memory on this node */
  1925. if (early_node_map[i].start_pfn > range_start_pfn)
  1926. hole_pages = early_node_map[i].start_pfn - range_start_pfn;
  1927. prev_end_pfn = early_node_map[i].start_pfn;
  1928. /* Find all holes for the zone within the node */
  1929. for (; i != -1; i = next_active_region_index_in_nid(i, nid)) {
  1930. /* No need to continue if prev_end_pfn is outside the zone */
  1931. if (prev_end_pfn >= range_end_pfn)
  1932. break;
  1933. /* Make sure the end of the zone is not within the hole */
  1934. start_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
  1935. prev_end_pfn = max(prev_end_pfn, range_start_pfn);
  1936. /* Update the hole size cound and move on */
  1937. if (start_pfn > range_start_pfn) {
  1938. BUG_ON(prev_end_pfn > start_pfn);
  1939. hole_pages += start_pfn - prev_end_pfn;
  1940. }
  1941. prev_end_pfn = early_node_map[i].end_pfn;
  1942. }
  1943. /* Account for ranges past physical memory on this node */
  1944. if (range_end_pfn > prev_end_pfn)
  1945. hole_pages = range_end_pfn -
  1946. max(range_start_pfn, prev_end_pfn);
  1947. return hole_pages;
  1948. }
  1949. /**
  1950. * absent_pages_in_range - Return number of page frames in holes within a range
  1951. * @start_pfn: The start PFN to start searching for holes
  1952. * @end_pfn: The end PFN to stop searching for holes
  1953. *
  1954. * It returns the number of pages frames in memory holes within a range.
  1955. */
  1956. unsigned long __init absent_pages_in_range(unsigned long start_pfn,
  1957. unsigned long end_pfn)
  1958. {
  1959. return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
  1960. }
  1961. /* Return the number of page frames in holes in a zone on a node */
  1962. unsigned long __init zone_absent_pages_in_node(int nid,
  1963. unsigned long zone_type,
  1964. unsigned long *ignored)
  1965. {
  1966. unsigned long node_start_pfn, node_end_pfn;
  1967. unsigned long zone_start_pfn, zone_end_pfn;
  1968. get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
  1969. zone_start_pfn = max(arch_zone_lowest_possible_pfn[zone_type],
  1970. node_start_pfn);
  1971. zone_end_pfn = min(arch_zone_highest_possible_pfn[zone_type],
  1972. node_end_pfn);
  1973. return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
  1974. }
  1975. /* Return the zone index a PFN is in */
  1976. int memmap_zone_idx(struct page *lmem_map)
  1977. {
  1978. int i;
  1979. unsigned long phys_addr = virt_to_phys(lmem_map);
  1980. unsigned long pfn = phys_addr >> PAGE_SHIFT;
  1981. for (i = 0; i < MAX_NR_ZONES; i++)
  1982. if (pfn < arch_zone_highest_possible_pfn[i])
  1983. break;
  1984. return i;
  1985. }
  1986. #else
  1987. static inline unsigned long zone_spanned_pages_in_node(int nid,
  1988. unsigned long zone_type,
  1989. unsigned long *zones_size)
  1990. {
  1991. return zones_size[zone_type];
  1992. }
  1993. static inline unsigned long zone_absent_pages_in_node(int nid,
  1994. unsigned long zone_type,
  1995. unsigned long *zholes_size)
  1996. {
  1997. if (!zholes_size)
  1998. return 0;
  1999. return zholes_size[zone_type];
  2000. }
  2001. static inline int memmap_zone_idx(struct page *lmem_map)
  2002. {
  2003. return MAX_NR_ZONES;
  2004. }
  2005. #endif
  2006. static void __init calculate_node_totalpages(struct pglist_data *pgdat,
  2007. unsigned long *zones_size, unsigned long *zholes_size)
  2008. {
  2009. unsigned long realtotalpages, totalpages = 0;
  2010. enum zone_type i;
  2011. for (i = 0; i < MAX_NR_ZONES; i++)
  2012. totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
  2013. zones_size);
  2014. pgdat->node_spanned_pages = totalpages;
  2015. realtotalpages = totalpages;
  2016. for (i = 0; i < MAX_NR_ZONES; i++)
  2017. realtotalpages -=
  2018. zone_absent_pages_in_node(pgdat->node_id, i,
  2019. zholes_size);
  2020. pgdat->node_present_pages = realtotalpages;
  2021. printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
  2022. realtotalpages);
  2023. }
  2024. /*
  2025. * Set up the zone data structures:
  2026. * - mark all pages reserved
  2027. * - mark all memory queues empty
  2028. * - clear the memory bitmaps
  2029. */
  2030. static void __meminit free_area_init_core(struct pglist_data *pgdat,
  2031. unsigned long *zones_size, unsigned long *zholes_size)
  2032. {
  2033. enum zone_type j;
  2034. int nid = pgdat->node_id;
  2035. unsigned long zone_start_pfn = pgdat->node_start_pfn;
  2036. int ret;
  2037. pgdat_resize_init(pgdat);
  2038. pgdat->nr_zones = 0;
  2039. init_waitqueue_head(&pgdat->kswapd_wait);
  2040. pgdat->kswapd_max_order = 0;
  2041. for (j = 0; j < MAX_NR_ZONES; j++) {
  2042. struct zone *zone = pgdat->node_zones + j;
  2043. unsigned long size, realsize, memmap_pages;
  2044. size = zone_spanned_pages_in_node(nid, j, zones_size);
  2045. realsize = size - zone_absent_pages_in_node(nid, j,
  2046. zholes_size);
  2047. /*
  2048. * Adjust realsize so that it accounts for how much memory
  2049. * is used by this zone for memmap. This affects the watermark
  2050. * and per-cpu initialisations
  2051. */
  2052. memmap_pages = (size * sizeof(struct page)) >> PAGE_SHIFT;
  2053. if (realsize >= memmap_pages) {
  2054. realsize -= memmap_pages;
  2055. printk(KERN_DEBUG
  2056. " %s zone: %lu pages used for memmap\n",
  2057. zone_names[j], memmap_pages);
  2058. } else
  2059. printk(KERN_WARNING
  2060. " %s zone: %lu pages exceeds realsize %lu\n",
  2061. zone_names[j], memmap_pages, realsize);
  2062. /* Account for reserved DMA pages */
  2063. if (j == ZONE_DMA && realsize > dma_reserve) {
  2064. realsize -= dma_reserve;
  2065. printk(KERN_DEBUG " DMA zone: %lu pages reserved\n",
  2066. dma_reserve);
  2067. }
  2068. if (!is_highmem_idx(j))
  2069. nr_kernel_pages += realsize;
  2070. nr_all_pages += realsize;
  2071. zone->spanned_pages = size;
  2072. zone->present_pages = realsize;
  2073. #ifdef CONFIG_NUMA
  2074. zone->node = nid;
  2075. zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio)
  2076. / 100;
  2077. zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100;
  2078. #endif
  2079. zone->name = zone_names[j];
  2080. spin_lock_init(&zone->lock);
  2081. spin_lock_init(&zone->lru_lock);
  2082. zone_seqlock_init(zone);
  2083. zone->zone_pgdat = pgdat;
  2084. zone->free_pages = 0;
  2085. zone->temp_priority = zone->prev_priority = DEF_PRIORITY;
  2086. zone_pcp_init(zone);
  2087. INIT_LIST_HEAD(&zone->active_list);
  2088. INIT_LIST_HEAD(&zone->inactive_list);
  2089. zone->nr_scan_active = 0;
  2090. zone->nr_scan_inactive = 0;
  2091. zone->nr_active = 0;
  2092. zone->nr_inactive = 0;
  2093. zap_zone_vm_stats(zone);
  2094. atomic_set(&zone->reclaim_in_progress, 0);
  2095. if (!size)
  2096. continue;
  2097. zonetable_add(zone, nid, j, zone_start_pfn, size);
  2098. ret = init_currently_empty_zone(zone, zone_start_pfn, size);
  2099. BUG_ON(ret);
  2100. zone_start_pfn += size;
  2101. }
  2102. }
  2103. static void __init alloc_node_mem_map(struct pglist_data *pgdat)
  2104. {
  2105. /* Skip empty nodes */
  2106. if (!pgdat->node_spanned_pages)
  2107. return;
  2108. #ifdef CONFIG_FLAT_NODE_MEM_MAP
  2109. /* ia64 gets its own node_mem_map, before this, without bootmem */
  2110. if (!pgdat->node_mem_map) {
  2111. unsigned long size, start, end;
  2112. struct page *map;
  2113. /*
  2114. * The zone's endpoints aren't required to be MAX_ORDER
  2115. * aligned but the node_mem_map endpoints must be in order
  2116. * for the buddy allocator to function correctly.
  2117. */
  2118. start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
  2119. end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
  2120. end = ALIGN(end, MAX_ORDER_NR_PAGES);
  2121. size = (end - start) * sizeof(struct page);
  2122. map = alloc_remap(pgdat->node_id, size);
  2123. if (!map)
  2124. map = alloc_bootmem_node(pgdat, size);
  2125. pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
  2126. }
  2127. #ifdef CONFIG_FLATMEM
  2128. /*
  2129. * With no DISCONTIG, the global mem_map is just set as node 0's
  2130. */
  2131. if (pgdat == NODE_DATA(0)) {
  2132. mem_map = NODE_DATA(0)->node_mem_map;
  2133. #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
  2134. if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
  2135. mem_map -= pgdat->node_start_pfn;
  2136. #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
  2137. }
  2138. #endif
  2139. #endif /* CONFIG_FLAT_NODE_MEM_MAP */
  2140. }
  2141. void __meminit free_area_init_node(int nid, struct pglist_data *pgdat,
  2142. unsigned long *zones_size, unsigned long node_start_pfn,
  2143. unsigned long *zholes_size)
  2144. {
  2145. pgdat->node_id = nid;
  2146. pgdat->node_start_pfn = node_start_pfn;
  2147. calculate_node_totalpages(pgdat, zones_size, zholes_size);
  2148. alloc_node_mem_map(pgdat);
  2149. free_area_init_core(pgdat, zones_size, zholes_size);
  2150. }
  2151. #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
  2152. /**
  2153. * add_active_range - Register a range of PFNs backed by physical memory
  2154. * @nid: The node ID the range resides on
  2155. * @start_pfn: The start PFN of the available physical memory
  2156. * @end_pfn: The end PFN of the available physical memory
  2157. *
  2158. * These ranges are stored in an early_node_map[] and later used by
  2159. * free_area_init_nodes() to calculate zone sizes and holes. If the
  2160. * range spans a memory hole, it is up to the architecture to ensure
  2161. * the memory is not freed by the bootmem allocator. If possible
  2162. * the range being registered will be merged with existing ranges.
  2163. */
  2164. void __init add_active_range(unsigned int nid, unsigned long start_pfn,
  2165. unsigned long end_pfn)
  2166. {
  2167. int i;
  2168. printk(KERN_DEBUG "Entering add_active_range(%d, %lu, %lu) "
  2169. "%d entries of %d used\n",
  2170. nid, start_pfn, end_pfn,
  2171. nr_nodemap_entries, MAX_ACTIVE_REGIONS);
  2172. /* Merge with existing active regions if possible */
  2173. for (i = 0; i < nr_nodemap_entries; i++) {
  2174. if (early_node_map[i].nid != nid)
  2175. continue;
  2176. /* Skip if an existing region covers this new one */
  2177. if (start_pfn >= early_node_map[i].start_pfn &&
  2178. end_pfn <= early_node_map[i].end_pfn)
  2179. return;
  2180. /* Merge forward if suitable */
  2181. if (start_pfn <= early_node_map[i].end_pfn &&
  2182. end_pfn > early_node_map[i].end_pfn) {
  2183. early_node_map[i].end_pfn = end_pfn;
  2184. return;
  2185. }
  2186. /* Merge backward if suitable */
  2187. if (start_pfn < early_node_map[i].end_pfn &&
  2188. end_pfn >= early_node_map[i].start_pfn) {
  2189. early_node_map[i].start_pfn = start_pfn;
  2190. return;
  2191. }
  2192. }
  2193. /* Check that early_node_map is large enough */
  2194. if (i >= MAX_ACTIVE_REGIONS) {
  2195. printk(KERN_CRIT "More than %d memory regions, truncating\n",
  2196. MAX_ACTIVE_REGIONS);
  2197. return;
  2198. }
  2199. early_node_map[i].nid = nid;
  2200. early_node_map[i].start_pfn = start_pfn;
  2201. early_node_map[i].end_pfn = end_pfn;
  2202. nr_nodemap_entries = i + 1;
  2203. }
  2204. /**
  2205. * shrink_active_range - Shrink an existing registered range of PFNs
  2206. * @nid: The node id the range is on that should be shrunk
  2207. * @old_end_pfn: The old end PFN of the range
  2208. * @new_end_pfn: The new PFN of the range
  2209. *
  2210. * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node.
  2211. * The map is kept at the end physical page range that has already been
  2212. * registered with add_active_range(). This function allows an arch to shrink
  2213. * an existing registered range.
  2214. */
  2215. void __init shrink_active_range(unsigned int nid, unsigned long old_end_pfn,
  2216. unsigned long new_end_pfn)
  2217. {
  2218. int i;
  2219. /* Find the old active region end and shrink */
  2220. for_each_active_range_index_in_nid(i, nid)
  2221. if (early_node_map[i].end_pfn == old_end_pfn) {
  2222. early_node_map[i].end_pfn = new_end_pfn;
  2223. break;
  2224. }
  2225. }
  2226. /**
  2227. * remove_all_active_ranges - Remove all currently registered regions
  2228. *
  2229. * During discovery, it may be found that a table like SRAT is invalid
  2230. * and an alternative discovery method must be used. This function removes
  2231. * all currently registered regions.
  2232. */
  2233. void __init remove_all_active_ranges(void)
  2234. {
  2235. memset(early_node_map, 0, sizeof(early_node_map));
  2236. nr_nodemap_entries = 0;
  2237. #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
  2238. memset(node_boundary_start_pfn, 0, sizeof(node_boundary_start_pfn));
  2239. memset(node_boundary_end_pfn, 0, sizeof(node_boundary_end_pfn));
  2240. #endif /* CONFIG_MEMORY_HOTPLUG_RESERVE */
  2241. }
  2242. /* Compare two active node_active_regions */
  2243. static int __init cmp_node_active_region(const void *a, const void *b)
  2244. {
  2245. struct node_active_region *arange = (struct node_active_region *)a;
  2246. struct node_active_region *brange = (struct node_active_region *)b;
  2247. /* Done this way to avoid overflows */
  2248. if (arange->start_pfn > brange->start_pfn)
  2249. return 1;
  2250. if (arange->start_pfn < brange->start_pfn)
  2251. return -1;
  2252. return 0;
  2253. }
  2254. /* sort the node_map by start_pfn */
  2255. static void __init sort_node_map(void)
  2256. {
  2257. sort(early_node_map, (size_t)nr_nodemap_entries,
  2258. sizeof(struct node_active_region),
  2259. cmp_node_active_region, NULL);
  2260. }
  2261. /* Find the lowest pfn for a node. This depends on a sorted early_node_map */
  2262. unsigned long __init find_min_pfn_for_node(unsigned long nid)
  2263. {
  2264. int i;
  2265. /* Assuming a sorted map, the first range found has the starting pfn */
  2266. for_each_active_range_index_in_nid(i, nid)
  2267. return early_node_map[i].start_pfn;
  2268. printk(KERN_WARNING "Could not find start_pfn for node %lu\n", nid);
  2269. return 0;
  2270. }
  2271. /**
  2272. * find_min_pfn_with_active_regions - Find the minimum PFN registered
  2273. *
  2274. * It returns the minimum PFN based on information provided via
  2275. * add_active_range().
  2276. */
  2277. unsigned long __init find_min_pfn_with_active_regions(void)
  2278. {
  2279. return find_min_pfn_for_node(MAX_NUMNODES);
  2280. }
  2281. /**
  2282. * find_max_pfn_with_active_regions - Find the maximum PFN registered
  2283. *
  2284. * It returns the maximum PFN based on information provided via
  2285. * add_active_range().
  2286. */
  2287. unsigned long __init find_max_pfn_with_active_regions(void)
  2288. {
  2289. int i;
  2290. unsigned long max_pfn = 0;
  2291. for (i = 0; i < nr_nodemap_entries; i++)
  2292. max_pfn = max(max_pfn, early_node_map[i].end_pfn);
  2293. return max_pfn;
  2294. }
  2295. /**
  2296. * free_area_init_nodes - Initialise all pg_data_t and zone data
  2297. * @max_zone_pfn: an array of max PFNs for each zone
  2298. *
  2299. * This will call free_area_init_node() for each active node in the system.
  2300. * Using the page ranges provided by add_active_range(), the size of each
  2301. * zone in each node and their holes is calculated. If the maximum PFN
  2302. * between two adjacent zones match, it is assumed that the zone is empty.
  2303. * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
  2304. * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
  2305. * starts where the previous one ended. For example, ZONE_DMA32 starts
  2306. * at arch_max_dma_pfn.
  2307. */
  2308. void __init free_area_init_nodes(unsigned long *max_zone_pfn)
  2309. {
  2310. unsigned long nid;
  2311. enum zone_type i;
  2312. /* Record where the zone boundaries are */
  2313. memset(arch_zone_lowest_possible_pfn, 0,
  2314. sizeof(arch_zone_lowest_possible_pfn));
  2315. memset(arch_zone_highest_possible_pfn, 0,
  2316. sizeof(arch_zone_highest_possible_pfn));
  2317. arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
  2318. arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
  2319. for (i = 1; i < MAX_NR_ZONES; i++) {
  2320. arch_zone_lowest_possible_pfn[i] =
  2321. arch_zone_highest_possible_pfn[i-1];
  2322. arch_zone_highest_possible_pfn[i] =
  2323. max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
  2324. }
  2325. /* Regions in the early_node_map can be in any order */
  2326. sort_node_map();
  2327. /* Print out the zone ranges */
  2328. printk("Zone PFN ranges:\n");
  2329. for (i = 0; i < MAX_NR_ZONES; i++)
  2330. printk(" %-8s %8lu -> %8lu\n",
  2331. zone_names[i],
  2332. arch_zone_lowest_possible_pfn[i],
  2333. arch_zone_highest_possible_pfn[i]);
  2334. /* Print out the early_node_map[] */
  2335. printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries);
  2336. for (i = 0; i < nr_nodemap_entries; i++)
  2337. printk(" %3d: %8lu -> %8lu\n", early_node_map[i].nid,
  2338. early_node_map[i].start_pfn,
  2339. early_node_map[i].end_pfn);
  2340. /* Initialise every node */
  2341. for_each_online_node(nid) {
  2342. pg_data_t *pgdat = NODE_DATA(nid);
  2343. free_area_init_node(nid, pgdat, NULL,
  2344. find_min_pfn_for_node(nid), NULL);
  2345. }
  2346. }
  2347. #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
  2348. /**
  2349. * set_dma_reserve - set the specified number of pages reserved in the first zone
  2350. * @new_dma_reserve: The number of pages to mark reserved
  2351. *
  2352. * The per-cpu batchsize and zone watermarks are determined by present_pages.
  2353. * In the DMA zone, a significant percentage may be consumed by kernel image
  2354. * and other unfreeable allocations which can skew the watermarks badly. This
  2355. * function may optionally be used to account for unfreeable pages in the
  2356. * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
  2357. * smaller per-cpu batchsize.
  2358. */
  2359. void __init set_dma_reserve(unsigned long new_dma_reserve)
  2360. {
  2361. dma_reserve = new_dma_reserve;
  2362. }
  2363. #ifndef CONFIG_NEED_MULTIPLE_NODES
  2364. static bootmem_data_t contig_bootmem_data;
  2365. struct pglist_data contig_page_data = { .bdata = &contig_bootmem_data };
  2366. EXPORT_SYMBOL(contig_page_data);
  2367. #endif
  2368. void __init free_area_init(unsigned long *zones_size)
  2369. {
  2370. free_area_init_node(0, NODE_DATA(0), zones_size,
  2371. __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
  2372. }
  2373. #ifdef CONFIG_HOTPLUG_CPU
  2374. static int page_alloc_cpu_notify(struct notifier_block *self,
  2375. unsigned long action, void *hcpu)
  2376. {
  2377. int cpu = (unsigned long)hcpu;
  2378. if (action == CPU_DEAD) {
  2379. local_irq_disable();
  2380. __drain_pages(cpu);
  2381. vm_events_fold_cpu(cpu);
  2382. local_irq_enable();
  2383. refresh_cpu_vm_stats(cpu);
  2384. }
  2385. return NOTIFY_OK;
  2386. }
  2387. #endif /* CONFIG_HOTPLUG_CPU */
  2388. void __init page_alloc_init(void)
  2389. {
  2390. hotcpu_notifier(page_alloc_cpu_notify, 0);
  2391. }
  2392. /*
  2393. * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
  2394. * or min_free_kbytes changes.
  2395. */
  2396. static void calculate_totalreserve_pages(void)
  2397. {
  2398. struct pglist_data *pgdat;
  2399. unsigned long reserve_pages = 0;
  2400. enum zone_type i, j;
  2401. for_each_online_pgdat(pgdat) {
  2402. for (i = 0; i < MAX_NR_ZONES; i++) {
  2403. struct zone *zone = pgdat->node_zones + i;
  2404. unsigned long max = 0;
  2405. /* Find valid and maximum lowmem_reserve in the zone */
  2406. for (j = i; j < MAX_NR_ZONES; j++) {
  2407. if (zone->lowmem_reserve[j] > max)
  2408. max = zone->lowmem_reserve[j];
  2409. }
  2410. /* we treat pages_high as reserved pages. */
  2411. max += zone->pages_high;
  2412. if (max > zone->present_pages)
  2413. max = zone->present_pages;
  2414. reserve_pages += max;
  2415. }
  2416. }
  2417. totalreserve_pages = reserve_pages;
  2418. }
  2419. /*
  2420. * setup_per_zone_lowmem_reserve - called whenever
  2421. * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
  2422. * has a correct pages reserved value, so an adequate number of
  2423. * pages are left in the zone after a successful __alloc_pages().
  2424. */
  2425. static void setup_per_zone_lowmem_reserve(void)
  2426. {
  2427. struct pglist_data *pgdat;
  2428. enum zone_type j, idx;
  2429. for_each_online_pgdat(pgdat) {
  2430. for (j = 0; j < MAX_NR_ZONES; j++) {
  2431. struct zone *zone = pgdat->node_zones + j;
  2432. unsigned long present_pages = zone->present_pages;
  2433. zone->lowmem_reserve[j] = 0;
  2434. idx = j;
  2435. while (idx) {
  2436. struct zone *lower_zone;
  2437. idx--;
  2438. if (sysctl_lowmem_reserve_ratio[idx] < 1)
  2439. sysctl_lowmem_reserve_ratio[idx] = 1;
  2440. lower_zone = pgdat->node_zones + idx;
  2441. lower_zone->lowmem_reserve[j] = present_pages /
  2442. sysctl_lowmem_reserve_ratio[idx];
  2443. present_pages += lower_zone->present_pages;
  2444. }
  2445. }
  2446. }
  2447. /* update totalreserve_pages */
  2448. calculate_totalreserve_pages();
  2449. }
  2450. /**
  2451. * setup_per_zone_pages_min - called when min_free_kbytes changes.
  2452. *
  2453. * Ensures that the pages_{min,low,high} values for each zone are set correctly
  2454. * with respect to min_free_kbytes.
  2455. */
  2456. void setup_per_zone_pages_min(void)
  2457. {
  2458. unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
  2459. unsigned long lowmem_pages = 0;
  2460. struct zone *zone;
  2461. unsigned long flags;
  2462. /* Calculate total number of !ZONE_HIGHMEM pages */
  2463. for_each_zone(zone) {
  2464. if (!is_highmem(zone))
  2465. lowmem_pages += zone->present_pages;
  2466. }
  2467. for_each_zone(zone) {
  2468. u64 tmp;
  2469. spin_lock_irqsave(&zone->lru_lock, flags);
  2470. tmp = (u64)pages_min * zone->present_pages;
  2471. do_div(tmp, lowmem_pages);
  2472. if (is_highmem(zone)) {
  2473. /*
  2474. * __GFP_HIGH and PF_MEMALLOC allocations usually don't
  2475. * need highmem pages, so cap pages_min to a small
  2476. * value here.
  2477. *
  2478. * The (pages_high-pages_low) and (pages_low-pages_min)
  2479. * deltas controls asynch page reclaim, and so should
  2480. * not be capped for highmem.
  2481. */
  2482. int min_pages;
  2483. min_pages = zone->present_pages / 1024;
  2484. if (min_pages < SWAP_CLUSTER_MAX)
  2485. min_pages = SWAP_CLUSTER_MAX;
  2486. if (min_pages > 128)
  2487. min_pages = 128;
  2488. zone->pages_min = min_pages;
  2489. } else {
  2490. /*
  2491. * If it's a lowmem zone, reserve a number of pages
  2492. * proportionate to the zone's size.
  2493. */
  2494. zone->pages_min = tmp;
  2495. }
  2496. zone->pages_low = zone->pages_min + (tmp >> 2);
  2497. zone->pages_high = zone->pages_min + (tmp >> 1);
  2498. spin_unlock_irqrestore(&zone->lru_lock, flags);
  2499. }
  2500. /* update totalreserve_pages */
  2501. calculate_totalreserve_pages();
  2502. }
  2503. /*
  2504. * Initialise min_free_kbytes.
  2505. *
  2506. * For small machines we want it small (128k min). For large machines
  2507. * we want it large (64MB max). But it is not linear, because network
  2508. * bandwidth does not increase linearly with machine size. We use
  2509. *
  2510. * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
  2511. * min_free_kbytes = sqrt(lowmem_kbytes * 16)
  2512. *
  2513. * which yields
  2514. *
  2515. * 16MB: 512k
  2516. * 32MB: 724k
  2517. * 64MB: 1024k
  2518. * 128MB: 1448k
  2519. * 256MB: 2048k
  2520. * 512MB: 2896k
  2521. * 1024MB: 4096k
  2522. * 2048MB: 5792k
  2523. * 4096MB: 8192k
  2524. * 8192MB: 11584k
  2525. * 16384MB: 16384k
  2526. */
  2527. static int __init init_per_zone_pages_min(void)
  2528. {
  2529. unsigned long lowmem_kbytes;
  2530. lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
  2531. min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
  2532. if (min_free_kbytes < 128)
  2533. min_free_kbytes = 128;
  2534. if (min_free_kbytes > 65536)
  2535. min_free_kbytes = 65536;
  2536. setup_per_zone_pages_min();
  2537. setup_per_zone_lowmem_reserve();
  2538. return 0;
  2539. }
  2540. module_init(init_per_zone_pages_min)
  2541. /*
  2542. * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
  2543. * that we can call two helper functions whenever min_free_kbytes
  2544. * changes.
  2545. */
  2546. int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
  2547. struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
  2548. {
  2549. proc_dointvec(table, write, file, buffer, length, ppos);
  2550. setup_per_zone_pages_min();
  2551. return 0;
  2552. }
  2553. #ifdef CONFIG_NUMA
  2554. int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
  2555. struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
  2556. {
  2557. struct zone *zone;
  2558. int rc;
  2559. rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
  2560. if (rc)
  2561. return rc;
  2562. for_each_zone(zone)
  2563. zone->min_unmapped_pages = (zone->present_pages *
  2564. sysctl_min_unmapped_ratio) / 100;
  2565. return 0;
  2566. }
  2567. int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
  2568. struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
  2569. {
  2570. struct zone *zone;
  2571. int rc;
  2572. rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
  2573. if (rc)
  2574. return rc;
  2575. for_each_zone(zone)
  2576. zone->min_slab_pages = (zone->present_pages *
  2577. sysctl_min_slab_ratio) / 100;
  2578. return 0;
  2579. }
  2580. #endif
  2581. /*
  2582. * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
  2583. * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
  2584. * whenever sysctl_lowmem_reserve_ratio changes.
  2585. *
  2586. * The reserve ratio obviously has absolutely no relation with the
  2587. * pages_min watermarks. The lowmem reserve ratio can only make sense
  2588. * if in function of the boot time zone sizes.
  2589. */
  2590. int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
  2591. struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
  2592. {
  2593. proc_dointvec_minmax(table, write, file, buffer, length, ppos);
  2594. setup_per_zone_lowmem_reserve();
  2595. return 0;
  2596. }
  2597. /*
  2598. * percpu_pagelist_fraction - changes the pcp->high for each zone on each
  2599. * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
  2600. * can have before it gets flushed back to buddy allocator.
  2601. */
  2602. int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
  2603. struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
  2604. {
  2605. struct zone *zone;
  2606. unsigned int cpu;
  2607. int ret;
  2608. ret = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
  2609. if (!write || (ret == -EINVAL))
  2610. return ret;
  2611. for_each_zone(zone) {
  2612. for_each_online_cpu(cpu) {
  2613. unsigned long high;
  2614. high = zone->present_pages / percpu_pagelist_fraction;
  2615. setup_pagelist_highmark(zone_pcp(zone, cpu), high);
  2616. }
  2617. }
  2618. return 0;
  2619. }
  2620. int hashdist = HASHDIST_DEFAULT;
  2621. #ifdef CONFIG_NUMA
  2622. static int __init set_hashdist(char *str)
  2623. {
  2624. if (!str)
  2625. return 0;
  2626. hashdist = simple_strtoul(str, &str, 0);
  2627. return 1;
  2628. }
  2629. __setup("hashdist=", set_hashdist);
  2630. #endif
  2631. /*
  2632. * allocate a large system hash table from bootmem
  2633. * - it is assumed that the hash table must contain an exact power-of-2
  2634. * quantity of entries
  2635. * - limit is the number of hash buckets, not the total allocation size
  2636. */
  2637. void *__init alloc_large_system_hash(const char *tablename,
  2638. unsigned long bucketsize,
  2639. unsigned long numentries,
  2640. int scale,
  2641. int flags,
  2642. unsigned int *_hash_shift,
  2643. unsigned int *_hash_mask,
  2644. unsigned long limit)
  2645. {
  2646. unsigned long long max = limit;
  2647. unsigned long log2qty, size;
  2648. void *table = NULL;
  2649. /* allow the kernel cmdline to have a say */
  2650. if (!numentries) {
  2651. /* round applicable memory size up to nearest megabyte */
  2652. numentries = (flags & HASH_HIGHMEM) ? nr_all_pages : nr_kernel_pages;
  2653. numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
  2654. numentries >>= 20 - PAGE_SHIFT;
  2655. numentries <<= 20 - PAGE_SHIFT;
  2656. /* limit to 1 bucket per 2^scale bytes of low memory */
  2657. if (scale > PAGE_SHIFT)
  2658. numentries >>= (scale - PAGE_SHIFT);
  2659. else
  2660. numentries <<= (PAGE_SHIFT - scale);
  2661. }
  2662. numentries = roundup_pow_of_two(numentries);
  2663. /* limit allocation size to 1/16 total memory by default */
  2664. if (max == 0) {
  2665. max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
  2666. do_div(max, bucketsize);
  2667. }
  2668. if (numentries > max)
  2669. numentries = max;
  2670. log2qty = long_log2(numentries);
  2671. do {
  2672. size = bucketsize << log2qty;
  2673. if (flags & HASH_EARLY)
  2674. table = alloc_bootmem(size);
  2675. else if (hashdist)
  2676. table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
  2677. else {
  2678. unsigned long order;
  2679. for (order = 0; ((1UL << order) << PAGE_SHIFT) < size; order++)
  2680. ;
  2681. table = (void*) __get_free_pages(GFP_ATOMIC, order);
  2682. }
  2683. } while (!table && size > PAGE_SIZE && --log2qty);
  2684. if (!table)
  2685. panic("Failed to allocate %s hash table\n", tablename);
  2686. printk("%s hash table entries: %d (order: %d, %lu bytes)\n",
  2687. tablename,
  2688. (1U << log2qty),
  2689. long_log2(size) - PAGE_SHIFT,
  2690. size);
  2691. if (_hash_shift)
  2692. *_hash_shift = log2qty;
  2693. if (_hash_mask)
  2694. *_hash_mask = (1 << log2qty) - 1;
  2695. return table;
  2696. }
  2697. #ifdef CONFIG_OUT_OF_LINE_PFN_TO_PAGE
  2698. struct page *pfn_to_page(unsigned long pfn)
  2699. {
  2700. return __pfn_to_page(pfn);
  2701. }
  2702. unsigned long page_to_pfn(struct page *page)
  2703. {
  2704. return __page_to_pfn(page);
  2705. }
  2706. EXPORT_SYMBOL(pfn_to_page);
  2707. EXPORT_SYMBOL(page_to_pfn);
  2708. #endif /* CONFIG_OUT_OF_LINE_PFN_TO_PAGE */