rmap.c 49 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725
  1. /*
  2. * mm/rmap.c - physical to virtual reverse mappings
  3. *
  4. * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
  5. * Released under the General Public License (GPL).
  6. *
  7. * Simple, low overhead reverse mapping scheme.
  8. * Please try to keep this thing as modular as possible.
  9. *
  10. * Provides methods for unmapping each kind of mapped page:
  11. * the anon methods track anonymous pages, and
  12. * the file methods track pages belonging to an inode.
  13. *
  14. * Original design by Rik van Riel <riel@conectiva.com.br> 2001
  15. * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
  16. * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
  17. * Contributions by Hugh Dickins 2003, 2004
  18. */
  19. /*
  20. * Lock ordering in mm:
  21. *
  22. * inode->i_mutex (while writing or truncating, not reading or faulting)
  23. * inode->i_alloc_sem (vmtruncate_range)
  24. * mm->mmap_sem
  25. * page->flags PG_locked (lock_page)
  26. * mapping->i_mmap_mutex
  27. * anon_vma->mutex
  28. * mm->page_table_lock or pte_lock
  29. * zone->lru_lock (in mark_page_accessed, isolate_lru_page)
  30. * swap_lock (in swap_duplicate, swap_info_get)
  31. * mmlist_lock (in mmput, drain_mmlist and others)
  32. * mapping->private_lock (in __set_page_dirty_buffers)
  33. * inode->i_lock (in set_page_dirty's __mark_inode_dirty)
  34. * inode_wb_list_lock (in set_page_dirty's __mark_inode_dirty)
  35. * sb_lock (within inode_lock in fs/fs-writeback.c)
  36. * mapping->tree_lock (widely used, in set_page_dirty,
  37. * in arch-dependent flush_dcache_mmap_lock,
  38. * within inode_wb_list_lock in __sync_single_inode)
  39. *
  40. * (code doesn't rely on that order so it could be switched around)
  41. * ->tasklist_lock
  42. * anon_vma->mutex (memory_failure, collect_procs_anon)
  43. * pte map lock
  44. */
  45. #include <linux/mm.h>
  46. #include <linux/pagemap.h>
  47. #include <linux/swap.h>
  48. #include <linux/swapops.h>
  49. #include <linux/slab.h>
  50. #include <linux/init.h>
  51. #include <linux/ksm.h>
  52. #include <linux/rmap.h>
  53. #include <linux/rcupdate.h>
  54. #include <linux/module.h>
  55. #include <linux/memcontrol.h>
  56. #include <linux/mmu_notifier.h>
  57. #include <linux/migrate.h>
  58. #include <linux/hugetlb.h>
  59. #include <asm/tlbflush.h>
  60. #include "internal.h"
  61. static struct kmem_cache *anon_vma_cachep;
  62. static struct kmem_cache *anon_vma_chain_cachep;
  63. static inline struct anon_vma *anon_vma_alloc(void)
  64. {
  65. struct anon_vma *anon_vma;
  66. anon_vma = kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL);
  67. if (anon_vma) {
  68. atomic_set(&anon_vma->refcount, 1);
  69. /*
  70. * Initialise the anon_vma root to point to itself. If called
  71. * from fork, the root will be reset to the parents anon_vma.
  72. */
  73. anon_vma->root = anon_vma;
  74. }
  75. return anon_vma;
  76. }
  77. static inline void anon_vma_free(struct anon_vma *anon_vma)
  78. {
  79. VM_BUG_ON(atomic_read(&anon_vma->refcount));
  80. /*
  81. * Synchronize against page_lock_anon_vma() such that
  82. * we can safely hold the lock without the anon_vma getting
  83. * freed.
  84. *
  85. * Relies on the full mb implied by the atomic_dec_and_test() from
  86. * put_anon_vma() against the acquire barrier implied by
  87. * mutex_trylock() from page_lock_anon_vma(). This orders:
  88. *
  89. * page_lock_anon_vma() VS put_anon_vma()
  90. * mutex_trylock() atomic_dec_and_test()
  91. * LOCK MB
  92. * atomic_read() mutex_is_locked()
  93. *
  94. * LOCK should suffice since the actual taking of the lock must
  95. * happen _before_ what follows.
  96. */
  97. if (mutex_is_locked(&anon_vma->root->mutex)) {
  98. anon_vma_lock(anon_vma);
  99. anon_vma_unlock(anon_vma);
  100. }
  101. kmem_cache_free(anon_vma_cachep, anon_vma);
  102. }
  103. static inline struct anon_vma_chain *anon_vma_chain_alloc(void)
  104. {
  105. return kmem_cache_alloc(anon_vma_chain_cachep, GFP_KERNEL);
  106. }
  107. static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain)
  108. {
  109. kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain);
  110. }
  111. /**
  112. * anon_vma_prepare - attach an anon_vma to a memory region
  113. * @vma: the memory region in question
  114. *
  115. * This makes sure the memory mapping described by 'vma' has
  116. * an 'anon_vma' attached to it, so that we can associate the
  117. * anonymous pages mapped into it with that anon_vma.
  118. *
  119. * The common case will be that we already have one, but if
  120. * not we either need to find an adjacent mapping that we
  121. * can re-use the anon_vma from (very common when the only
  122. * reason for splitting a vma has been mprotect()), or we
  123. * allocate a new one.
  124. *
  125. * Anon-vma allocations are very subtle, because we may have
  126. * optimistically looked up an anon_vma in page_lock_anon_vma()
  127. * and that may actually touch the spinlock even in the newly
  128. * allocated vma (it depends on RCU to make sure that the
  129. * anon_vma isn't actually destroyed).
  130. *
  131. * As a result, we need to do proper anon_vma locking even
  132. * for the new allocation. At the same time, we do not want
  133. * to do any locking for the common case of already having
  134. * an anon_vma.
  135. *
  136. * This must be called with the mmap_sem held for reading.
  137. */
  138. int anon_vma_prepare(struct vm_area_struct *vma)
  139. {
  140. struct anon_vma *anon_vma = vma->anon_vma;
  141. struct anon_vma_chain *avc;
  142. might_sleep();
  143. if (unlikely(!anon_vma)) {
  144. struct mm_struct *mm = vma->vm_mm;
  145. struct anon_vma *allocated;
  146. avc = anon_vma_chain_alloc();
  147. if (!avc)
  148. goto out_enomem;
  149. anon_vma = find_mergeable_anon_vma(vma);
  150. allocated = NULL;
  151. if (!anon_vma) {
  152. anon_vma = anon_vma_alloc();
  153. if (unlikely(!anon_vma))
  154. goto out_enomem_free_avc;
  155. allocated = anon_vma;
  156. }
  157. anon_vma_lock(anon_vma);
  158. /* page_table_lock to protect against threads */
  159. spin_lock(&mm->page_table_lock);
  160. if (likely(!vma->anon_vma)) {
  161. vma->anon_vma = anon_vma;
  162. avc->anon_vma = anon_vma;
  163. avc->vma = vma;
  164. list_add(&avc->same_vma, &vma->anon_vma_chain);
  165. list_add_tail(&avc->same_anon_vma, &anon_vma->head);
  166. allocated = NULL;
  167. avc = NULL;
  168. }
  169. spin_unlock(&mm->page_table_lock);
  170. anon_vma_unlock(anon_vma);
  171. if (unlikely(allocated))
  172. put_anon_vma(allocated);
  173. if (unlikely(avc))
  174. anon_vma_chain_free(avc);
  175. }
  176. return 0;
  177. out_enomem_free_avc:
  178. anon_vma_chain_free(avc);
  179. out_enomem:
  180. return -ENOMEM;
  181. }
  182. static void anon_vma_chain_link(struct vm_area_struct *vma,
  183. struct anon_vma_chain *avc,
  184. struct anon_vma *anon_vma)
  185. {
  186. avc->vma = vma;
  187. avc->anon_vma = anon_vma;
  188. list_add(&avc->same_vma, &vma->anon_vma_chain);
  189. anon_vma_lock(anon_vma);
  190. /*
  191. * It's critical to add new vmas to the tail of the anon_vma,
  192. * see comment in huge_memory.c:__split_huge_page().
  193. */
  194. list_add_tail(&avc->same_anon_vma, &anon_vma->head);
  195. anon_vma_unlock(anon_vma);
  196. }
  197. /*
  198. * Attach the anon_vmas from src to dst.
  199. * Returns 0 on success, -ENOMEM on failure.
  200. */
  201. int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src)
  202. {
  203. struct anon_vma_chain *avc, *pavc;
  204. list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) {
  205. avc = anon_vma_chain_alloc();
  206. if (!avc)
  207. goto enomem_failure;
  208. anon_vma_chain_link(dst, avc, pavc->anon_vma);
  209. }
  210. return 0;
  211. enomem_failure:
  212. unlink_anon_vmas(dst);
  213. return -ENOMEM;
  214. }
  215. /*
  216. * Attach vma to its own anon_vma, as well as to the anon_vmas that
  217. * the corresponding VMA in the parent process is attached to.
  218. * Returns 0 on success, non-zero on failure.
  219. */
  220. int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma)
  221. {
  222. struct anon_vma_chain *avc;
  223. struct anon_vma *anon_vma;
  224. /* Don't bother if the parent process has no anon_vma here. */
  225. if (!pvma->anon_vma)
  226. return 0;
  227. /*
  228. * First, attach the new VMA to the parent VMA's anon_vmas,
  229. * so rmap can find non-COWed pages in child processes.
  230. */
  231. if (anon_vma_clone(vma, pvma))
  232. return -ENOMEM;
  233. /* Then add our own anon_vma. */
  234. anon_vma = anon_vma_alloc();
  235. if (!anon_vma)
  236. goto out_error;
  237. avc = anon_vma_chain_alloc();
  238. if (!avc)
  239. goto out_error_free_anon_vma;
  240. /*
  241. * The root anon_vma's spinlock is the lock actually used when we
  242. * lock any of the anon_vmas in this anon_vma tree.
  243. */
  244. anon_vma->root = pvma->anon_vma->root;
  245. /*
  246. * With refcounts, an anon_vma can stay around longer than the
  247. * process it belongs to. The root anon_vma needs to be pinned until
  248. * this anon_vma is freed, because the lock lives in the root.
  249. */
  250. get_anon_vma(anon_vma->root);
  251. /* Mark this anon_vma as the one where our new (COWed) pages go. */
  252. vma->anon_vma = anon_vma;
  253. anon_vma_chain_link(vma, avc, anon_vma);
  254. return 0;
  255. out_error_free_anon_vma:
  256. put_anon_vma(anon_vma);
  257. out_error:
  258. unlink_anon_vmas(vma);
  259. return -ENOMEM;
  260. }
  261. static void anon_vma_unlink(struct anon_vma_chain *anon_vma_chain)
  262. {
  263. struct anon_vma *anon_vma = anon_vma_chain->anon_vma;
  264. int empty;
  265. /* If anon_vma_fork fails, we can get an empty anon_vma_chain. */
  266. if (!anon_vma)
  267. return;
  268. anon_vma_lock(anon_vma);
  269. list_del(&anon_vma_chain->same_anon_vma);
  270. /* We must garbage collect the anon_vma if it's empty */
  271. empty = list_empty(&anon_vma->head);
  272. anon_vma_unlock(anon_vma);
  273. if (empty)
  274. put_anon_vma(anon_vma);
  275. }
  276. void unlink_anon_vmas(struct vm_area_struct *vma)
  277. {
  278. struct anon_vma_chain *avc, *next;
  279. /*
  280. * Unlink each anon_vma chained to the VMA. This list is ordered
  281. * from newest to oldest, ensuring the root anon_vma gets freed last.
  282. */
  283. list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
  284. anon_vma_unlink(avc);
  285. list_del(&avc->same_vma);
  286. anon_vma_chain_free(avc);
  287. }
  288. }
  289. static void anon_vma_ctor(void *data)
  290. {
  291. struct anon_vma *anon_vma = data;
  292. mutex_init(&anon_vma->mutex);
  293. atomic_set(&anon_vma->refcount, 0);
  294. INIT_LIST_HEAD(&anon_vma->head);
  295. }
  296. void __init anon_vma_init(void)
  297. {
  298. anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
  299. 0, SLAB_DESTROY_BY_RCU|SLAB_PANIC, anon_vma_ctor);
  300. anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain, SLAB_PANIC);
  301. }
  302. /*
  303. * Getting a lock on a stable anon_vma from a page off the LRU is tricky!
  304. *
  305. * Since there is no serialization what so ever against page_remove_rmap()
  306. * the best this function can do is return a locked anon_vma that might
  307. * have been relevant to this page.
  308. *
  309. * The page might have been remapped to a different anon_vma or the anon_vma
  310. * returned may already be freed (and even reused).
  311. *
  312. * All users of this function must be very careful when walking the anon_vma
  313. * chain and verify that the page in question is indeed mapped in it
  314. * [ something equivalent to page_mapped_in_vma() ].
  315. *
  316. * Since anon_vma's slab is DESTROY_BY_RCU and we know from page_remove_rmap()
  317. * that the anon_vma pointer from page->mapping is valid if there is a
  318. * mapcount, we can dereference the anon_vma after observing those.
  319. */
  320. struct anon_vma *page_get_anon_vma(struct page *page)
  321. {
  322. struct anon_vma *anon_vma = NULL;
  323. unsigned long anon_mapping;
  324. rcu_read_lock();
  325. anon_mapping = (unsigned long) ACCESS_ONCE(page->mapping);
  326. if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
  327. goto out;
  328. if (!page_mapped(page))
  329. goto out;
  330. anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
  331. if (!atomic_inc_not_zero(&anon_vma->refcount)) {
  332. anon_vma = NULL;
  333. goto out;
  334. }
  335. /*
  336. * If this page is still mapped, then its anon_vma cannot have been
  337. * freed. But if it has been unmapped, we have no security against the
  338. * anon_vma structure being freed and reused (for another anon_vma:
  339. * SLAB_DESTROY_BY_RCU guarantees that - so the atomic_inc_not_zero()
  340. * above cannot corrupt).
  341. */
  342. if (!page_mapped(page)) {
  343. put_anon_vma(anon_vma);
  344. anon_vma = NULL;
  345. }
  346. out:
  347. rcu_read_unlock();
  348. return anon_vma;
  349. }
  350. /*
  351. * Similar to page_get_anon_vma() except it locks the anon_vma.
  352. *
  353. * Its a little more complex as it tries to keep the fast path to a single
  354. * atomic op -- the trylock. If we fail the trylock, we fall back to getting a
  355. * reference like with page_get_anon_vma() and then block on the mutex.
  356. */
  357. struct anon_vma *page_lock_anon_vma(struct page *page)
  358. {
  359. struct anon_vma *anon_vma = NULL;
  360. unsigned long anon_mapping;
  361. rcu_read_lock();
  362. anon_mapping = (unsigned long) ACCESS_ONCE(page->mapping);
  363. if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
  364. goto out;
  365. if (!page_mapped(page))
  366. goto out;
  367. anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
  368. if (mutex_trylock(&anon_vma->root->mutex)) {
  369. /*
  370. * If we observe a !0 refcount, then holding the lock ensures
  371. * the anon_vma will not go away, see __put_anon_vma().
  372. */
  373. if (!atomic_read(&anon_vma->refcount)) {
  374. anon_vma_unlock(anon_vma);
  375. anon_vma = NULL;
  376. }
  377. goto out;
  378. }
  379. /* trylock failed, we got to sleep */
  380. if (!atomic_inc_not_zero(&anon_vma->refcount)) {
  381. anon_vma = NULL;
  382. goto out;
  383. }
  384. if (!page_mapped(page)) {
  385. put_anon_vma(anon_vma);
  386. anon_vma = NULL;
  387. goto out;
  388. }
  389. /* we pinned the anon_vma, its safe to sleep */
  390. rcu_read_unlock();
  391. anon_vma_lock(anon_vma);
  392. if (atomic_dec_and_test(&anon_vma->refcount)) {
  393. /*
  394. * Oops, we held the last refcount, release the lock
  395. * and bail -- can't simply use put_anon_vma() because
  396. * we'll deadlock on the anon_vma_lock() recursion.
  397. */
  398. anon_vma_unlock(anon_vma);
  399. __put_anon_vma(anon_vma);
  400. anon_vma = NULL;
  401. }
  402. return anon_vma;
  403. out:
  404. rcu_read_unlock();
  405. return anon_vma;
  406. }
  407. void page_unlock_anon_vma(struct anon_vma *anon_vma)
  408. {
  409. anon_vma_unlock(anon_vma);
  410. }
  411. /*
  412. * At what user virtual address is page expected in @vma?
  413. * Returns virtual address or -EFAULT if page's index/offset is not
  414. * within the range mapped the @vma.
  415. */
  416. inline unsigned long
  417. vma_address(struct page *page, struct vm_area_struct *vma)
  418. {
  419. pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
  420. unsigned long address;
  421. if (unlikely(is_vm_hugetlb_page(vma)))
  422. pgoff = page->index << huge_page_order(page_hstate(page));
  423. address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
  424. if (unlikely(address < vma->vm_start || address >= vma->vm_end)) {
  425. /* page should be within @vma mapping range */
  426. return -EFAULT;
  427. }
  428. return address;
  429. }
  430. /*
  431. * At what user virtual address is page expected in vma?
  432. * Caller should check the page is actually part of the vma.
  433. */
  434. unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
  435. {
  436. if (PageAnon(page)) {
  437. struct anon_vma *page__anon_vma = page_anon_vma(page);
  438. /*
  439. * Note: swapoff's unuse_vma() is more efficient with this
  440. * check, and needs it to match anon_vma when KSM is active.
  441. */
  442. if (!vma->anon_vma || !page__anon_vma ||
  443. vma->anon_vma->root != page__anon_vma->root)
  444. return -EFAULT;
  445. } else if (page->mapping && !(vma->vm_flags & VM_NONLINEAR)) {
  446. if (!vma->vm_file ||
  447. vma->vm_file->f_mapping != page->mapping)
  448. return -EFAULT;
  449. } else
  450. return -EFAULT;
  451. return vma_address(page, vma);
  452. }
  453. /*
  454. * Check that @page is mapped at @address into @mm.
  455. *
  456. * If @sync is false, page_check_address may perform a racy check to avoid
  457. * the page table lock when the pte is not present (helpful when reclaiming
  458. * highly shared pages).
  459. *
  460. * On success returns with pte mapped and locked.
  461. */
  462. pte_t *__page_check_address(struct page *page, struct mm_struct *mm,
  463. unsigned long address, spinlock_t **ptlp, int sync)
  464. {
  465. pgd_t *pgd;
  466. pud_t *pud;
  467. pmd_t *pmd;
  468. pte_t *pte;
  469. spinlock_t *ptl;
  470. if (unlikely(PageHuge(page))) {
  471. pte = huge_pte_offset(mm, address);
  472. ptl = &mm->page_table_lock;
  473. goto check;
  474. }
  475. pgd = pgd_offset(mm, address);
  476. if (!pgd_present(*pgd))
  477. return NULL;
  478. pud = pud_offset(pgd, address);
  479. if (!pud_present(*pud))
  480. return NULL;
  481. pmd = pmd_offset(pud, address);
  482. if (!pmd_present(*pmd))
  483. return NULL;
  484. if (pmd_trans_huge(*pmd))
  485. return NULL;
  486. pte = pte_offset_map(pmd, address);
  487. /* Make a quick check before getting the lock */
  488. if (!sync && !pte_present(*pte)) {
  489. pte_unmap(pte);
  490. return NULL;
  491. }
  492. ptl = pte_lockptr(mm, pmd);
  493. check:
  494. spin_lock(ptl);
  495. if (pte_present(*pte) && page_to_pfn(page) == pte_pfn(*pte)) {
  496. *ptlp = ptl;
  497. return pte;
  498. }
  499. pte_unmap_unlock(pte, ptl);
  500. return NULL;
  501. }
  502. /**
  503. * page_mapped_in_vma - check whether a page is really mapped in a VMA
  504. * @page: the page to test
  505. * @vma: the VMA to test
  506. *
  507. * Returns 1 if the page is mapped into the page tables of the VMA, 0
  508. * if the page is not mapped into the page tables of this VMA. Only
  509. * valid for normal file or anonymous VMAs.
  510. */
  511. int page_mapped_in_vma(struct page *page, struct vm_area_struct *vma)
  512. {
  513. unsigned long address;
  514. pte_t *pte;
  515. spinlock_t *ptl;
  516. address = vma_address(page, vma);
  517. if (address == -EFAULT) /* out of vma range */
  518. return 0;
  519. pte = page_check_address(page, vma->vm_mm, address, &ptl, 1);
  520. if (!pte) /* the page is not in this mm */
  521. return 0;
  522. pte_unmap_unlock(pte, ptl);
  523. return 1;
  524. }
  525. /*
  526. * Subfunctions of page_referenced: page_referenced_one called
  527. * repeatedly from either page_referenced_anon or page_referenced_file.
  528. */
  529. int page_referenced_one(struct page *page, struct vm_area_struct *vma,
  530. unsigned long address, unsigned int *mapcount,
  531. unsigned long *vm_flags)
  532. {
  533. struct mm_struct *mm = vma->vm_mm;
  534. int referenced = 0;
  535. if (unlikely(PageTransHuge(page))) {
  536. pmd_t *pmd;
  537. spin_lock(&mm->page_table_lock);
  538. /*
  539. * rmap might return false positives; we must filter
  540. * these out using page_check_address_pmd().
  541. */
  542. pmd = page_check_address_pmd(page, mm, address,
  543. PAGE_CHECK_ADDRESS_PMD_FLAG);
  544. if (!pmd) {
  545. spin_unlock(&mm->page_table_lock);
  546. goto out;
  547. }
  548. if (vma->vm_flags & VM_LOCKED) {
  549. spin_unlock(&mm->page_table_lock);
  550. *mapcount = 0; /* break early from loop */
  551. *vm_flags |= VM_LOCKED;
  552. goto out;
  553. }
  554. /* go ahead even if the pmd is pmd_trans_splitting() */
  555. if (pmdp_clear_flush_young_notify(vma, address, pmd))
  556. referenced++;
  557. spin_unlock(&mm->page_table_lock);
  558. } else {
  559. pte_t *pte;
  560. spinlock_t *ptl;
  561. /*
  562. * rmap might return false positives; we must filter
  563. * these out using page_check_address().
  564. */
  565. pte = page_check_address(page, mm, address, &ptl, 0);
  566. if (!pte)
  567. goto out;
  568. if (vma->vm_flags & VM_LOCKED) {
  569. pte_unmap_unlock(pte, ptl);
  570. *mapcount = 0; /* break early from loop */
  571. *vm_flags |= VM_LOCKED;
  572. goto out;
  573. }
  574. if (ptep_clear_flush_young_notify(vma, address, pte)) {
  575. /*
  576. * Don't treat a reference through a sequentially read
  577. * mapping as such. If the page has been used in
  578. * another mapping, we will catch it; if this other
  579. * mapping is already gone, the unmap path will have
  580. * set PG_referenced or activated the page.
  581. */
  582. if (likely(!VM_SequentialReadHint(vma)))
  583. referenced++;
  584. }
  585. pte_unmap_unlock(pte, ptl);
  586. }
  587. /* Pretend the page is referenced if the task has the
  588. swap token and is in the middle of a page fault. */
  589. if (mm != current->mm && has_swap_token(mm) &&
  590. rwsem_is_locked(&mm->mmap_sem))
  591. referenced++;
  592. (*mapcount)--;
  593. if (referenced)
  594. *vm_flags |= vma->vm_flags;
  595. out:
  596. return referenced;
  597. }
  598. static int page_referenced_anon(struct page *page,
  599. struct mem_cgroup *mem_cont,
  600. unsigned long *vm_flags)
  601. {
  602. unsigned int mapcount;
  603. struct anon_vma *anon_vma;
  604. struct anon_vma_chain *avc;
  605. int referenced = 0;
  606. anon_vma = page_lock_anon_vma(page);
  607. if (!anon_vma)
  608. return referenced;
  609. mapcount = page_mapcount(page);
  610. list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
  611. struct vm_area_struct *vma = avc->vma;
  612. unsigned long address = vma_address(page, vma);
  613. if (address == -EFAULT)
  614. continue;
  615. /*
  616. * If we are reclaiming on behalf of a cgroup, skip
  617. * counting on behalf of references from different
  618. * cgroups
  619. */
  620. if (mem_cont && !mm_match_cgroup(vma->vm_mm, mem_cont))
  621. continue;
  622. referenced += page_referenced_one(page, vma, address,
  623. &mapcount, vm_flags);
  624. if (!mapcount)
  625. break;
  626. }
  627. page_unlock_anon_vma(anon_vma);
  628. return referenced;
  629. }
  630. /**
  631. * page_referenced_file - referenced check for object-based rmap
  632. * @page: the page we're checking references on.
  633. * @mem_cont: target memory controller
  634. * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
  635. *
  636. * For an object-based mapped page, find all the places it is mapped and
  637. * check/clear the referenced flag. This is done by following the page->mapping
  638. * pointer, then walking the chain of vmas it holds. It returns the number
  639. * of references it found.
  640. *
  641. * This function is only called from page_referenced for object-based pages.
  642. */
  643. static int page_referenced_file(struct page *page,
  644. struct mem_cgroup *mem_cont,
  645. unsigned long *vm_flags)
  646. {
  647. unsigned int mapcount;
  648. struct address_space *mapping = page->mapping;
  649. pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
  650. struct vm_area_struct *vma;
  651. struct prio_tree_iter iter;
  652. int referenced = 0;
  653. /*
  654. * The caller's checks on page->mapping and !PageAnon have made
  655. * sure that this is a file page: the check for page->mapping
  656. * excludes the case just before it gets set on an anon page.
  657. */
  658. BUG_ON(PageAnon(page));
  659. /*
  660. * The page lock not only makes sure that page->mapping cannot
  661. * suddenly be NULLified by truncation, it makes sure that the
  662. * structure at mapping cannot be freed and reused yet,
  663. * so we can safely take mapping->i_mmap_mutex.
  664. */
  665. BUG_ON(!PageLocked(page));
  666. mutex_lock(&mapping->i_mmap_mutex);
  667. /*
  668. * i_mmap_mutex does not stabilize mapcount at all, but mapcount
  669. * is more likely to be accurate if we note it after spinning.
  670. */
  671. mapcount = page_mapcount(page);
  672. vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
  673. unsigned long address = vma_address(page, vma);
  674. if (address == -EFAULT)
  675. continue;
  676. /*
  677. * If we are reclaiming on behalf of a cgroup, skip
  678. * counting on behalf of references from different
  679. * cgroups
  680. */
  681. if (mem_cont && !mm_match_cgroup(vma->vm_mm, mem_cont))
  682. continue;
  683. referenced += page_referenced_one(page, vma, address,
  684. &mapcount, vm_flags);
  685. if (!mapcount)
  686. break;
  687. }
  688. mutex_unlock(&mapping->i_mmap_mutex);
  689. return referenced;
  690. }
  691. /**
  692. * page_referenced - test if the page was referenced
  693. * @page: the page to test
  694. * @is_locked: caller holds lock on the page
  695. * @mem_cont: target memory controller
  696. * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
  697. *
  698. * Quick test_and_clear_referenced for all mappings to a page,
  699. * returns the number of ptes which referenced the page.
  700. */
  701. int page_referenced(struct page *page,
  702. int is_locked,
  703. struct mem_cgroup *mem_cont,
  704. unsigned long *vm_flags)
  705. {
  706. int referenced = 0;
  707. int we_locked = 0;
  708. *vm_flags = 0;
  709. if (page_mapped(page) && page_rmapping(page)) {
  710. if (!is_locked && (!PageAnon(page) || PageKsm(page))) {
  711. we_locked = trylock_page(page);
  712. if (!we_locked) {
  713. referenced++;
  714. goto out;
  715. }
  716. }
  717. if (unlikely(PageKsm(page)))
  718. referenced += page_referenced_ksm(page, mem_cont,
  719. vm_flags);
  720. else if (PageAnon(page))
  721. referenced += page_referenced_anon(page, mem_cont,
  722. vm_flags);
  723. else if (page->mapping)
  724. referenced += page_referenced_file(page, mem_cont,
  725. vm_flags);
  726. if (we_locked)
  727. unlock_page(page);
  728. }
  729. out:
  730. if (page_test_and_clear_young(page_to_pfn(page)))
  731. referenced++;
  732. return referenced;
  733. }
  734. static int page_mkclean_one(struct page *page, struct vm_area_struct *vma,
  735. unsigned long address)
  736. {
  737. struct mm_struct *mm = vma->vm_mm;
  738. pte_t *pte;
  739. spinlock_t *ptl;
  740. int ret = 0;
  741. pte = page_check_address(page, mm, address, &ptl, 1);
  742. if (!pte)
  743. goto out;
  744. if (pte_dirty(*pte) || pte_write(*pte)) {
  745. pte_t entry;
  746. flush_cache_page(vma, address, pte_pfn(*pte));
  747. entry = ptep_clear_flush_notify(vma, address, pte);
  748. entry = pte_wrprotect(entry);
  749. entry = pte_mkclean(entry);
  750. set_pte_at(mm, address, pte, entry);
  751. ret = 1;
  752. }
  753. pte_unmap_unlock(pte, ptl);
  754. out:
  755. return ret;
  756. }
  757. static int page_mkclean_file(struct address_space *mapping, struct page *page)
  758. {
  759. pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
  760. struct vm_area_struct *vma;
  761. struct prio_tree_iter iter;
  762. int ret = 0;
  763. BUG_ON(PageAnon(page));
  764. mutex_lock(&mapping->i_mmap_mutex);
  765. vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
  766. if (vma->vm_flags & VM_SHARED) {
  767. unsigned long address = vma_address(page, vma);
  768. if (address == -EFAULT)
  769. continue;
  770. ret += page_mkclean_one(page, vma, address);
  771. }
  772. }
  773. mutex_unlock(&mapping->i_mmap_mutex);
  774. return ret;
  775. }
  776. int page_mkclean(struct page *page)
  777. {
  778. int ret = 0;
  779. BUG_ON(!PageLocked(page));
  780. if (page_mapped(page)) {
  781. struct address_space *mapping = page_mapping(page);
  782. if (mapping) {
  783. ret = page_mkclean_file(mapping, page);
  784. if (page_test_and_clear_dirty(page_to_pfn(page), 1))
  785. ret = 1;
  786. }
  787. }
  788. return ret;
  789. }
  790. EXPORT_SYMBOL_GPL(page_mkclean);
  791. /**
  792. * page_move_anon_rmap - move a page to our anon_vma
  793. * @page: the page to move to our anon_vma
  794. * @vma: the vma the page belongs to
  795. * @address: the user virtual address mapped
  796. *
  797. * When a page belongs exclusively to one process after a COW event,
  798. * that page can be moved into the anon_vma that belongs to just that
  799. * process, so the rmap code will not search the parent or sibling
  800. * processes.
  801. */
  802. void page_move_anon_rmap(struct page *page,
  803. struct vm_area_struct *vma, unsigned long address)
  804. {
  805. struct anon_vma *anon_vma = vma->anon_vma;
  806. VM_BUG_ON(!PageLocked(page));
  807. VM_BUG_ON(!anon_vma);
  808. VM_BUG_ON(page->index != linear_page_index(vma, address));
  809. anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
  810. page->mapping = (struct address_space *) anon_vma;
  811. }
  812. /**
  813. * __page_set_anon_rmap - set up new anonymous rmap
  814. * @page: Page to add to rmap
  815. * @vma: VM area to add page to.
  816. * @address: User virtual address of the mapping
  817. * @exclusive: the page is exclusively owned by the current process
  818. */
  819. static void __page_set_anon_rmap(struct page *page,
  820. struct vm_area_struct *vma, unsigned long address, int exclusive)
  821. {
  822. struct anon_vma *anon_vma = vma->anon_vma;
  823. BUG_ON(!anon_vma);
  824. if (PageAnon(page))
  825. return;
  826. /*
  827. * If the page isn't exclusively mapped into this vma,
  828. * we must use the _oldest_ possible anon_vma for the
  829. * page mapping!
  830. */
  831. if (!exclusive)
  832. anon_vma = anon_vma->root;
  833. anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
  834. page->mapping = (struct address_space *) anon_vma;
  835. page->index = linear_page_index(vma, address);
  836. }
  837. /**
  838. * __page_check_anon_rmap - sanity check anonymous rmap addition
  839. * @page: the page to add the mapping to
  840. * @vma: the vm area in which the mapping is added
  841. * @address: the user virtual address mapped
  842. */
  843. static void __page_check_anon_rmap(struct page *page,
  844. struct vm_area_struct *vma, unsigned long address)
  845. {
  846. #ifdef CONFIG_DEBUG_VM
  847. /*
  848. * The page's anon-rmap details (mapping and index) are guaranteed to
  849. * be set up correctly at this point.
  850. *
  851. * We have exclusion against page_add_anon_rmap because the caller
  852. * always holds the page locked, except if called from page_dup_rmap,
  853. * in which case the page is already known to be setup.
  854. *
  855. * We have exclusion against page_add_new_anon_rmap because those pages
  856. * are initially only visible via the pagetables, and the pte is locked
  857. * over the call to page_add_new_anon_rmap.
  858. */
  859. BUG_ON(page_anon_vma(page)->root != vma->anon_vma->root);
  860. BUG_ON(page->index != linear_page_index(vma, address));
  861. #endif
  862. }
  863. /**
  864. * page_add_anon_rmap - add pte mapping to an anonymous page
  865. * @page: the page to add the mapping to
  866. * @vma: the vm area in which the mapping is added
  867. * @address: the user virtual address mapped
  868. *
  869. * The caller needs to hold the pte lock, and the page must be locked in
  870. * the anon_vma case: to serialize mapping,index checking after setting,
  871. * and to ensure that PageAnon is not being upgraded racily to PageKsm
  872. * (but PageKsm is never downgraded to PageAnon).
  873. */
  874. void page_add_anon_rmap(struct page *page,
  875. struct vm_area_struct *vma, unsigned long address)
  876. {
  877. do_page_add_anon_rmap(page, vma, address, 0);
  878. }
  879. /*
  880. * Special version of the above for do_swap_page, which often runs
  881. * into pages that are exclusively owned by the current process.
  882. * Everybody else should continue to use page_add_anon_rmap above.
  883. */
  884. void do_page_add_anon_rmap(struct page *page,
  885. struct vm_area_struct *vma, unsigned long address, int exclusive)
  886. {
  887. int first = atomic_inc_and_test(&page->_mapcount);
  888. if (first) {
  889. if (!PageTransHuge(page))
  890. __inc_zone_page_state(page, NR_ANON_PAGES);
  891. else
  892. __inc_zone_page_state(page,
  893. NR_ANON_TRANSPARENT_HUGEPAGES);
  894. }
  895. if (unlikely(PageKsm(page)))
  896. return;
  897. VM_BUG_ON(!PageLocked(page));
  898. VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end);
  899. if (first)
  900. __page_set_anon_rmap(page, vma, address, exclusive);
  901. else
  902. __page_check_anon_rmap(page, vma, address);
  903. }
  904. /**
  905. * page_add_new_anon_rmap - add pte mapping to a new anonymous page
  906. * @page: the page to add the mapping to
  907. * @vma: the vm area in which the mapping is added
  908. * @address: the user virtual address mapped
  909. *
  910. * Same as page_add_anon_rmap but must only be called on *new* pages.
  911. * This means the inc-and-test can be bypassed.
  912. * Page does not have to be locked.
  913. */
  914. void page_add_new_anon_rmap(struct page *page,
  915. struct vm_area_struct *vma, unsigned long address)
  916. {
  917. VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end);
  918. SetPageSwapBacked(page);
  919. atomic_set(&page->_mapcount, 0); /* increment count (starts at -1) */
  920. if (!PageTransHuge(page))
  921. __inc_zone_page_state(page, NR_ANON_PAGES);
  922. else
  923. __inc_zone_page_state(page, NR_ANON_TRANSPARENT_HUGEPAGES);
  924. __page_set_anon_rmap(page, vma, address, 1);
  925. if (page_evictable(page, vma))
  926. lru_cache_add_lru(page, LRU_ACTIVE_ANON);
  927. else
  928. add_page_to_unevictable_list(page);
  929. }
  930. /**
  931. * page_add_file_rmap - add pte mapping to a file page
  932. * @page: the page to add the mapping to
  933. *
  934. * The caller needs to hold the pte lock.
  935. */
  936. void page_add_file_rmap(struct page *page)
  937. {
  938. if (atomic_inc_and_test(&page->_mapcount)) {
  939. __inc_zone_page_state(page, NR_FILE_MAPPED);
  940. mem_cgroup_inc_page_stat(page, MEMCG_NR_FILE_MAPPED);
  941. }
  942. }
  943. /**
  944. * page_remove_rmap - take down pte mapping from a page
  945. * @page: page to remove mapping from
  946. *
  947. * The caller needs to hold the pte lock.
  948. */
  949. void page_remove_rmap(struct page *page)
  950. {
  951. /* page still mapped by someone else? */
  952. if (!atomic_add_negative(-1, &page->_mapcount))
  953. return;
  954. /*
  955. * Now that the last pte has gone, s390 must transfer dirty
  956. * flag from storage key to struct page. We can usually skip
  957. * this if the page is anon, so about to be freed; but perhaps
  958. * not if it's in swapcache - there might be another pte slot
  959. * containing the swap entry, but page not yet written to swap.
  960. */
  961. if ((!PageAnon(page) || PageSwapCache(page)) &&
  962. page_test_and_clear_dirty(page_to_pfn(page), 1))
  963. set_page_dirty(page);
  964. /*
  965. * Hugepages are not counted in NR_ANON_PAGES nor NR_FILE_MAPPED
  966. * and not charged by memcg for now.
  967. */
  968. if (unlikely(PageHuge(page)))
  969. return;
  970. if (PageAnon(page)) {
  971. mem_cgroup_uncharge_page(page);
  972. if (!PageTransHuge(page))
  973. __dec_zone_page_state(page, NR_ANON_PAGES);
  974. else
  975. __dec_zone_page_state(page,
  976. NR_ANON_TRANSPARENT_HUGEPAGES);
  977. } else {
  978. __dec_zone_page_state(page, NR_FILE_MAPPED);
  979. mem_cgroup_dec_page_stat(page, MEMCG_NR_FILE_MAPPED);
  980. }
  981. /*
  982. * It would be tidy to reset the PageAnon mapping here,
  983. * but that might overwrite a racing page_add_anon_rmap
  984. * which increments mapcount after us but sets mapping
  985. * before us: so leave the reset to free_hot_cold_page,
  986. * and remember that it's only reliable while mapped.
  987. * Leaving it set also helps swapoff to reinstate ptes
  988. * faster for those pages still in swapcache.
  989. */
  990. }
  991. /*
  992. * Subfunctions of try_to_unmap: try_to_unmap_one called
  993. * repeatedly from either try_to_unmap_anon or try_to_unmap_file.
  994. */
  995. int try_to_unmap_one(struct page *page, struct vm_area_struct *vma,
  996. unsigned long address, enum ttu_flags flags)
  997. {
  998. struct mm_struct *mm = vma->vm_mm;
  999. pte_t *pte;
  1000. pte_t pteval;
  1001. spinlock_t *ptl;
  1002. int ret = SWAP_AGAIN;
  1003. pte = page_check_address(page, mm, address, &ptl, 0);
  1004. if (!pte)
  1005. goto out;
  1006. /*
  1007. * If the page is mlock()d, we cannot swap it out.
  1008. * If it's recently referenced (perhaps page_referenced
  1009. * skipped over this mm) then we should reactivate it.
  1010. */
  1011. if (!(flags & TTU_IGNORE_MLOCK)) {
  1012. if (vma->vm_flags & VM_LOCKED)
  1013. goto out_mlock;
  1014. if (TTU_ACTION(flags) == TTU_MUNLOCK)
  1015. goto out_unmap;
  1016. }
  1017. if (!(flags & TTU_IGNORE_ACCESS)) {
  1018. if (ptep_clear_flush_young_notify(vma, address, pte)) {
  1019. ret = SWAP_FAIL;
  1020. goto out_unmap;
  1021. }
  1022. }
  1023. /* Nuke the page table entry. */
  1024. flush_cache_page(vma, address, page_to_pfn(page));
  1025. pteval = ptep_clear_flush_notify(vma, address, pte);
  1026. /* Move the dirty bit to the physical page now the pte is gone. */
  1027. if (pte_dirty(pteval))
  1028. set_page_dirty(page);
  1029. /* Update high watermark before we lower rss */
  1030. update_hiwater_rss(mm);
  1031. if (PageHWPoison(page) && !(flags & TTU_IGNORE_HWPOISON)) {
  1032. if (PageAnon(page))
  1033. dec_mm_counter(mm, MM_ANONPAGES);
  1034. else
  1035. dec_mm_counter(mm, MM_FILEPAGES);
  1036. set_pte_at(mm, address, pte,
  1037. swp_entry_to_pte(make_hwpoison_entry(page)));
  1038. } else if (PageAnon(page)) {
  1039. swp_entry_t entry = { .val = page_private(page) };
  1040. if (PageSwapCache(page)) {
  1041. /*
  1042. * Store the swap location in the pte.
  1043. * See handle_pte_fault() ...
  1044. */
  1045. if (swap_duplicate(entry) < 0) {
  1046. set_pte_at(mm, address, pte, pteval);
  1047. ret = SWAP_FAIL;
  1048. goto out_unmap;
  1049. }
  1050. if (list_empty(&mm->mmlist)) {
  1051. spin_lock(&mmlist_lock);
  1052. if (list_empty(&mm->mmlist))
  1053. list_add(&mm->mmlist, &init_mm.mmlist);
  1054. spin_unlock(&mmlist_lock);
  1055. }
  1056. dec_mm_counter(mm, MM_ANONPAGES);
  1057. inc_mm_counter(mm, MM_SWAPENTS);
  1058. } else if (PAGE_MIGRATION) {
  1059. /*
  1060. * Store the pfn of the page in a special migration
  1061. * pte. do_swap_page() will wait until the migration
  1062. * pte is removed and then restart fault handling.
  1063. */
  1064. BUG_ON(TTU_ACTION(flags) != TTU_MIGRATION);
  1065. entry = make_migration_entry(page, pte_write(pteval));
  1066. }
  1067. set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
  1068. BUG_ON(pte_file(*pte));
  1069. } else if (PAGE_MIGRATION && (TTU_ACTION(flags) == TTU_MIGRATION)) {
  1070. /* Establish migration entry for a file page */
  1071. swp_entry_t entry;
  1072. entry = make_migration_entry(page, pte_write(pteval));
  1073. set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
  1074. } else
  1075. dec_mm_counter(mm, MM_FILEPAGES);
  1076. page_remove_rmap(page);
  1077. page_cache_release(page);
  1078. out_unmap:
  1079. pte_unmap_unlock(pte, ptl);
  1080. out:
  1081. return ret;
  1082. out_mlock:
  1083. pte_unmap_unlock(pte, ptl);
  1084. /*
  1085. * We need mmap_sem locking, Otherwise VM_LOCKED check makes
  1086. * unstable result and race. Plus, We can't wait here because
  1087. * we now hold anon_vma->mutex or mapping->i_mmap_mutex.
  1088. * if trylock failed, the page remain in evictable lru and later
  1089. * vmscan could retry to move the page to unevictable lru if the
  1090. * page is actually mlocked.
  1091. */
  1092. if (down_read_trylock(&vma->vm_mm->mmap_sem)) {
  1093. if (vma->vm_flags & VM_LOCKED) {
  1094. mlock_vma_page(page);
  1095. ret = SWAP_MLOCK;
  1096. }
  1097. up_read(&vma->vm_mm->mmap_sem);
  1098. }
  1099. return ret;
  1100. }
  1101. /*
  1102. * objrmap doesn't work for nonlinear VMAs because the assumption that
  1103. * offset-into-file correlates with offset-into-virtual-addresses does not hold.
  1104. * Consequently, given a particular page and its ->index, we cannot locate the
  1105. * ptes which are mapping that page without an exhaustive linear search.
  1106. *
  1107. * So what this code does is a mini "virtual scan" of each nonlinear VMA which
  1108. * maps the file to which the target page belongs. The ->vm_private_data field
  1109. * holds the current cursor into that scan. Successive searches will circulate
  1110. * around the vma's virtual address space.
  1111. *
  1112. * So as more replacement pressure is applied to the pages in a nonlinear VMA,
  1113. * more scanning pressure is placed against them as well. Eventually pages
  1114. * will become fully unmapped and are eligible for eviction.
  1115. *
  1116. * For very sparsely populated VMAs this is a little inefficient - chances are
  1117. * there there won't be many ptes located within the scan cluster. In this case
  1118. * maybe we could scan further - to the end of the pte page, perhaps.
  1119. *
  1120. * Mlocked pages: check VM_LOCKED under mmap_sem held for read, if we can
  1121. * acquire it without blocking. If vma locked, mlock the pages in the cluster,
  1122. * rather than unmapping them. If we encounter the "check_page" that vmscan is
  1123. * trying to unmap, return SWAP_MLOCK, else default SWAP_AGAIN.
  1124. */
  1125. #define CLUSTER_SIZE min(32*PAGE_SIZE, PMD_SIZE)
  1126. #define CLUSTER_MASK (~(CLUSTER_SIZE - 1))
  1127. static int try_to_unmap_cluster(unsigned long cursor, unsigned int *mapcount,
  1128. struct vm_area_struct *vma, struct page *check_page)
  1129. {
  1130. struct mm_struct *mm = vma->vm_mm;
  1131. pgd_t *pgd;
  1132. pud_t *pud;
  1133. pmd_t *pmd;
  1134. pte_t *pte;
  1135. pte_t pteval;
  1136. spinlock_t *ptl;
  1137. struct page *page;
  1138. unsigned long address;
  1139. unsigned long end;
  1140. int ret = SWAP_AGAIN;
  1141. int locked_vma = 0;
  1142. address = (vma->vm_start + cursor) & CLUSTER_MASK;
  1143. end = address + CLUSTER_SIZE;
  1144. if (address < vma->vm_start)
  1145. address = vma->vm_start;
  1146. if (end > vma->vm_end)
  1147. end = vma->vm_end;
  1148. pgd = pgd_offset(mm, address);
  1149. if (!pgd_present(*pgd))
  1150. return ret;
  1151. pud = pud_offset(pgd, address);
  1152. if (!pud_present(*pud))
  1153. return ret;
  1154. pmd = pmd_offset(pud, address);
  1155. if (!pmd_present(*pmd))
  1156. return ret;
  1157. /*
  1158. * If we can acquire the mmap_sem for read, and vma is VM_LOCKED,
  1159. * keep the sem while scanning the cluster for mlocking pages.
  1160. */
  1161. if (down_read_trylock(&vma->vm_mm->mmap_sem)) {
  1162. locked_vma = (vma->vm_flags & VM_LOCKED);
  1163. if (!locked_vma)
  1164. up_read(&vma->vm_mm->mmap_sem); /* don't need it */
  1165. }
  1166. pte = pte_offset_map_lock(mm, pmd, address, &ptl);
  1167. /* Update high watermark before we lower rss */
  1168. update_hiwater_rss(mm);
  1169. for (; address < end; pte++, address += PAGE_SIZE) {
  1170. if (!pte_present(*pte))
  1171. continue;
  1172. page = vm_normal_page(vma, address, *pte);
  1173. BUG_ON(!page || PageAnon(page));
  1174. if (locked_vma) {
  1175. mlock_vma_page(page); /* no-op if already mlocked */
  1176. if (page == check_page)
  1177. ret = SWAP_MLOCK;
  1178. continue; /* don't unmap */
  1179. }
  1180. if (ptep_clear_flush_young_notify(vma, address, pte))
  1181. continue;
  1182. /* Nuke the page table entry. */
  1183. flush_cache_page(vma, address, pte_pfn(*pte));
  1184. pteval = ptep_clear_flush_notify(vma, address, pte);
  1185. /* If nonlinear, store the file page offset in the pte. */
  1186. if (page->index != linear_page_index(vma, address))
  1187. set_pte_at(mm, address, pte, pgoff_to_pte(page->index));
  1188. /* Move the dirty bit to the physical page now the pte is gone. */
  1189. if (pte_dirty(pteval))
  1190. set_page_dirty(page);
  1191. page_remove_rmap(page);
  1192. page_cache_release(page);
  1193. dec_mm_counter(mm, MM_FILEPAGES);
  1194. (*mapcount)--;
  1195. }
  1196. pte_unmap_unlock(pte - 1, ptl);
  1197. if (locked_vma)
  1198. up_read(&vma->vm_mm->mmap_sem);
  1199. return ret;
  1200. }
  1201. bool is_vma_temporary_stack(struct vm_area_struct *vma)
  1202. {
  1203. int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
  1204. if (!maybe_stack)
  1205. return false;
  1206. if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
  1207. VM_STACK_INCOMPLETE_SETUP)
  1208. return true;
  1209. return false;
  1210. }
  1211. /**
  1212. * try_to_unmap_anon - unmap or unlock anonymous page using the object-based
  1213. * rmap method
  1214. * @page: the page to unmap/unlock
  1215. * @flags: action and flags
  1216. *
  1217. * Find all the mappings of a page using the mapping pointer and the vma chains
  1218. * contained in the anon_vma struct it points to.
  1219. *
  1220. * This function is only called from try_to_unmap/try_to_munlock for
  1221. * anonymous pages.
  1222. * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
  1223. * where the page was found will be held for write. So, we won't recheck
  1224. * vm_flags for that VMA. That should be OK, because that vma shouldn't be
  1225. * 'LOCKED.
  1226. */
  1227. static int try_to_unmap_anon(struct page *page, enum ttu_flags flags)
  1228. {
  1229. struct anon_vma *anon_vma;
  1230. struct anon_vma_chain *avc;
  1231. int ret = SWAP_AGAIN;
  1232. anon_vma = page_lock_anon_vma(page);
  1233. if (!anon_vma)
  1234. return ret;
  1235. list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
  1236. struct vm_area_struct *vma = avc->vma;
  1237. unsigned long address;
  1238. /*
  1239. * During exec, a temporary VMA is setup and later moved.
  1240. * The VMA is moved under the anon_vma lock but not the
  1241. * page tables leading to a race where migration cannot
  1242. * find the migration ptes. Rather than increasing the
  1243. * locking requirements of exec(), migration skips
  1244. * temporary VMAs until after exec() completes.
  1245. */
  1246. if (PAGE_MIGRATION && (flags & TTU_MIGRATION) &&
  1247. is_vma_temporary_stack(vma))
  1248. continue;
  1249. address = vma_address(page, vma);
  1250. if (address == -EFAULT)
  1251. continue;
  1252. ret = try_to_unmap_one(page, vma, address, flags);
  1253. if (ret != SWAP_AGAIN || !page_mapped(page))
  1254. break;
  1255. }
  1256. page_unlock_anon_vma(anon_vma);
  1257. return ret;
  1258. }
  1259. /**
  1260. * try_to_unmap_file - unmap/unlock file page using the object-based rmap method
  1261. * @page: the page to unmap/unlock
  1262. * @flags: action and flags
  1263. *
  1264. * Find all the mappings of a page using the mapping pointer and the vma chains
  1265. * contained in the address_space struct it points to.
  1266. *
  1267. * This function is only called from try_to_unmap/try_to_munlock for
  1268. * object-based pages.
  1269. * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
  1270. * where the page was found will be held for write. So, we won't recheck
  1271. * vm_flags for that VMA. That should be OK, because that vma shouldn't be
  1272. * 'LOCKED.
  1273. */
  1274. static int try_to_unmap_file(struct page *page, enum ttu_flags flags)
  1275. {
  1276. struct address_space *mapping = page->mapping;
  1277. pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
  1278. struct vm_area_struct *vma;
  1279. struct prio_tree_iter iter;
  1280. int ret = SWAP_AGAIN;
  1281. unsigned long cursor;
  1282. unsigned long max_nl_cursor = 0;
  1283. unsigned long max_nl_size = 0;
  1284. unsigned int mapcount;
  1285. mutex_lock(&mapping->i_mmap_mutex);
  1286. vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
  1287. unsigned long address = vma_address(page, vma);
  1288. if (address == -EFAULT)
  1289. continue;
  1290. ret = try_to_unmap_one(page, vma, address, flags);
  1291. if (ret != SWAP_AGAIN || !page_mapped(page))
  1292. goto out;
  1293. }
  1294. if (list_empty(&mapping->i_mmap_nonlinear))
  1295. goto out;
  1296. /*
  1297. * We don't bother to try to find the munlocked page in nonlinears.
  1298. * It's costly. Instead, later, page reclaim logic may call
  1299. * try_to_unmap(TTU_MUNLOCK) and recover PG_mlocked lazily.
  1300. */
  1301. if (TTU_ACTION(flags) == TTU_MUNLOCK)
  1302. goto out;
  1303. list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
  1304. shared.vm_set.list) {
  1305. cursor = (unsigned long) vma->vm_private_data;
  1306. if (cursor > max_nl_cursor)
  1307. max_nl_cursor = cursor;
  1308. cursor = vma->vm_end - vma->vm_start;
  1309. if (cursor > max_nl_size)
  1310. max_nl_size = cursor;
  1311. }
  1312. if (max_nl_size == 0) { /* all nonlinears locked or reserved ? */
  1313. ret = SWAP_FAIL;
  1314. goto out;
  1315. }
  1316. /*
  1317. * We don't try to search for this page in the nonlinear vmas,
  1318. * and page_referenced wouldn't have found it anyway. Instead
  1319. * just walk the nonlinear vmas trying to age and unmap some.
  1320. * The mapcount of the page we came in with is irrelevant,
  1321. * but even so use it as a guide to how hard we should try?
  1322. */
  1323. mapcount = page_mapcount(page);
  1324. if (!mapcount)
  1325. goto out;
  1326. cond_resched();
  1327. max_nl_size = (max_nl_size + CLUSTER_SIZE - 1) & CLUSTER_MASK;
  1328. if (max_nl_cursor == 0)
  1329. max_nl_cursor = CLUSTER_SIZE;
  1330. do {
  1331. list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
  1332. shared.vm_set.list) {
  1333. cursor = (unsigned long) vma->vm_private_data;
  1334. while ( cursor < max_nl_cursor &&
  1335. cursor < vma->vm_end - vma->vm_start) {
  1336. if (try_to_unmap_cluster(cursor, &mapcount,
  1337. vma, page) == SWAP_MLOCK)
  1338. ret = SWAP_MLOCK;
  1339. cursor += CLUSTER_SIZE;
  1340. vma->vm_private_data = (void *) cursor;
  1341. if ((int)mapcount <= 0)
  1342. goto out;
  1343. }
  1344. vma->vm_private_data = (void *) max_nl_cursor;
  1345. }
  1346. cond_resched();
  1347. max_nl_cursor += CLUSTER_SIZE;
  1348. } while (max_nl_cursor <= max_nl_size);
  1349. /*
  1350. * Don't loop forever (perhaps all the remaining pages are
  1351. * in locked vmas). Reset cursor on all unreserved nonlinear
  1352. * vmas, now forgetting on which ones it had fallen behind.
  1353. */
  1354. list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
  1355. vma->vm_private_data = NULL;
  1356. out:
  1357. mutex_unlock(&mapping->i_mmap_mutex);
  1358. return ret;
  1359. }
  1360. /**
  1361. * try_to_unmap - try to remove all page table mappings to a page
  1362. * @page: the page to get unmapped
  1363. * @flags: action and flags
  1364. *
  1365. * Tries to remove all the page table entries which are mapping this
  1366. * page, used in the pageout path. Caller must hold the page lock.
  1367. * Return values are:
  1368. *
  1369. * SWAP_SUCCESS - we succeeded in removing all mappings
  1370. * SWAP_AGAIN - we missed a mapping, try again later
  1371. * SWAP_FAIL - the page is unswappable
  1372. * SWAP_MLOCK - page is mlocked.
  1373. */
  1374. int try_to_unmap(struct page *page, enum ttu_flags flags)
  1375. {
  1376. int ret;
  1377. BUG_ON(!PageLocked(page));
  1378. VM_BUG_ON(!PageHuge(page) && PageTransHuge(page));
  1379. if (unlikely(PageKsm(page)))
  1380. ret = try_to_unmap_ksm(page, flags);
  1381. else if (PageAnon(page))
  1382. ret = try_to_unmap_anon(page, flags);
  1383. else
  1384. ret = try_to_unmap_file(page, flags);
  1385. if (ret != SWAP_MLOCK && !page_mapped(page))
  1386. ret = SWAP_SUCCESS;
  1387. return ret;
  1388. }
  1389. /**
  1390. * try_to_munlock - try to munlock a page
  1391. * @page: the page to be munlocked
  1392. *
  1393. * Called from munlock code. Checks all of the VMAs mapping the page
  1394. * to make sure nobody else has this page mlocked. The page will be
  1395. * returned with PG_mlocked cleared if no other vmas have it mlocked.
  1396. *
  1397. * Return values are:
  1398. *
  1399. * SWAP_AGAIN - no vma is holding page mlocked, or,
  1400. * SWAP_AGAIN - page mapped in mlocked vma -- couldn't acquire mmap sem
  1401. * SWAP_FAIL - page cannot be located at present
  1402. * SWAP_MLOCK - page is now mlocked.
  1403. */
  1404. int try_to_munlock(struct page *page)
  1405. {
  1406. VM_BUG_ON(!PageLocked(page) || PageLRU(page));
  1407. if (unlikely(PageKsm(page)))
  1408. return try_to_unmap_ksm(page, TTU_MUNLOCK);
  1409. else if (PageAnon(page))
  1410. return try_to_unmap_anon(page, TTU_MUNLOCK);
  1411. else
  1412. return try_to_unmap_file(page, TTU_MUNLOCK);
  1413. }
  1414. void __put_anon_vma(struct anon_vma *anon_vma)
  1415. {
  1416. struct anon_vma *root = anon_vma->root;
  1417. if (root != anon_vma && atomic_dec_and_test(&root->refcount))
  1418. anon_vma_free(root);
  1419. anon_vma_free(anon_vma);
  1420. }
  1421. #ifdef CONFIG_MIGRATION
  1422. /*
  1423. * rmap_walk() and its helpers rmap_walk_anon() and rmap_walk_file():
  1424. * Called by migrate.c to remove migration ptes, but might be used more later.
  1425. */
  1426. static int rmap_walk_anon(struct page *page, int (*rmap_one)(struct page *,
  1427. struct vm_area_struct *, unsigned long, void *), void *arg)
  1428. {
  1429. struct anon_vma *anon_vma;
  1430. struct anon_vma_chain *avc;
  1431. int ret = SWAP_AGAIN;
  1432. /*
  1433. * Note: remove_migration_ptes() cannot use page_lock_anon_vma()
  1434. * because that depends on page_mapped(); but not all its usages
  1435. * are holding mmap_sem. Users without mmap_sem are required to
  1436. * take a reference count to prevent the anon_vma disappearing
  1437. */
  1438. anon_vma = page_anon_vma(page);
  1439. if (!anon_vma)
  1440. return ret;
  1441. anon_vma_lock(anon_vma);
  1442. list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
  1443. struct vm_area_struct *vma = avc->vma;
  1444. unsigned long address = vma_address(page, vma);
  1445. if (address == -EFAULT)
  1446. continue;
  1447. ret = rmap_one(page, vma, address, arg);
  1448. if (ret != SWAP_AGAIN)
  1449. break;
  1450. }
  1451. anon_vma_unlock(anon_vma);
  1452. return ret;
  1453. }
  1454. static int rmap_walk_file(struct page *page, int (*rmap_one)(struct page *,
  1455. struct vm_area_struct *, unsigned long, void *), void *arg)
  1456. {
  1457. struct address_space *mapping = page->mapping;
  1458. pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
  1459. struct vm_area_struct *vma;
  1460. struct prio_tree_iter iter;
  1461. int ret = SWAP_AGAIN;
  1462. if (!mapping)
  1463. return ret;
  1464. mutex_lock(&mapping->i_mmap_mutex);
  1465. vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
  1466. unsigned long address = vma_address(page, vma);
  1467. if (address == -EFAULT)
  1468. continue;
  1469. ret = rmap_one(page, vma, address, arg);
  1470. if (ret != SWAP_AGAIN)
  1471. break;
  1472. }
  1473. /*
  1474. * No nonlinear handling: being always shared, nonlinear vmas
  1475. * never contain migration ptes. Decide what to do about this
  1476. * limitation to linear when we need rmap_walk() on nonlinear.
  1477. */
  1478. mutex_unlock(&mapping->i_mmap_mutex);
  1479. return ret;
  1480. }
  1481. int rmap_walk(struct page *page, int (*rmap_one)(struct page *,
  1482. struct vm_area_struct *, unsigned long, void *), void *arg)
  1483. {
  1484. VM_BUG_ON(!PageLocked(page));
  1485. if (unlikely(PageKsm(page)))
  1486. return rmap_walk_ksm(page, rmap_one, arg);
  1487. else if (PageAnon(page))
  1488. return rmap_walk_anon(page, rmap_one, arg);
  1489. else
  1490. return rmap_walk_file(page, rmap_one, arg);
  1491. }
  1492. #endif /* CONFIG_MIGRATION */
  1493. #ifdef CONFIG_HUGETLB_PAGE
  1494. /*
  1495. * The following three functions are for anonymous (private mapped) hugepages.
  1496. * Unlike common anonymous pages, anonymous hugepages have no accounting code
  1497. * and no lru code, because we handle hugepages differently from common pages.
  1498. */
  1499. static void __hugepage_set_anon_rmap(struct page *page,
  1500. struct vm_area_struct *vma, unsigned long address, int exclusive)
  1501. {
  1502. struct anon_vma *anon_vma = vma->anon_vma;
  1503. BUG_ON(!anon_vma);
  1504. if (PageAnon(page))
  1505. return;
  1506. if (!exclusive)
  1507. anon_vma = anon_vma->root;
  1508. anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
  1509. page->mapping = (struct address_space *) anon_vma;
  1510. page->index = linear_page_index(vma, address);
  1511. }
  1512. void hugepage_add_anon_rmap(struct page *page,
  1513. struct vm_area_struct *vma, unsigned long address)
  1514. {
  1515. struct anon_vma *anon_vma = vma->anon_vma;
  1516. int first;
  1517. BUG_ON(!PageLocked(page));
  1518. BUG_ON(!anon_vma);
  1519. BUG_ON(address < vma->vm_start || address >= vma->vm_end);
  1520. first = atomic_inc_and_test(&page->_mapcount);
  1521. if (first)
  1522. __hugepage_set_anon_rmap(page, vma, address, 0);
  1523. }
  1524. void hugepage_add_new_anon_rmap(struct page *page,
  1525. struct vm_area_struct *vma, unsigned long address)
  1526. {
  1527. BUG_ON(address < vma->vm_start || address >= vma->vm_end);
  1528. atomic_set(&page->_mapcount, 0);
  1529. __hugepage_set_anon_rmap(page, vma, address, 1);
  1530. }
  1531. #endif /* CONFIG_HUGETLB_PAGE */