spi_bfin5xx.c 32 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321
  1. /*
  2. * File: drivers/spi/bfin5xx_spi.c
  3. * Based on: N/A
  4. * Author: Luke Yang (Analog Devices Inc.)
  5. *
  6. * Created: March. 10th 2006
  7. * Description: SPI controller driver for Blackfin 5xx
  8. * Bugs: Enter bugs at http://blackfin.uclinux.org/
  9. *
  10. * Modified:
  11. * March 10, 2006 bfin5xx_spi.c Created. (Luke Yang)
  12. * August 7, 2006 added full duplex mode (Axel Weiss & Luke Yang)
  13. *
  14. * Copyright 2004-2006 Analog Devices Inc.
  15. *
  16. * This program is free software ; you can redistribute it and/or modify
  17. * it under the terms of the GNU General Public License as published by
  18. * the Free Software Foundation ; either version 2, or (at your option)
  19. * any later version.
  20. *
  21. * This program is distributed in the hope that it will be useful,
  22. * but WITHOUT ANY WARRANTY ; without even the implied warranty of
  23. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  24. * GNU General Public License for more details.
  25. *
  26. * You should have received a copy of the GNU General Public License
  27. * along with this program ; see the file COPYING.
  28. * If not, write to the Free Software Foundation,
  29. * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
  30. */
  31. #include <linux/init.h>
  32. #include <linux/module.h>
  33. #include <linux/device.h>
  34. #include <linux/ioport.h>
  35. #include <linux/errno.h>
  36. #include <linux/interrupt.h>
  37. #include <linux/platform_device.h>
  38. #include <linux/dma-mapping.h>
  39. #include <linux/spi/spi.h>
  40. #include <linux/workqueue.h>
  41. #include <linux/errno.h>
  42. #include <linux/delay.h>
  43. #include <asm/io.h>
  44. #include <asm/irq.h>
  45. #include <asm/delay.h>
  46. #include <asm/dma.h>
  47. #include <asm/bfin5xx_spi.h>
  48. MODULE_AUTHOR("Luke Yang");
  49. MODULE_DESCRIPTION("Blackfin 5xx SPI Contoller");
  50. MODULE_LICENSE("GPL");
  51. #define IS_DMA_ALIGNED(x) (((u32)(x)&0x07)==0)
  52. #define DEFINE_SPI_REG(reg, off) \
  53. static inline u16 read_##reg(void) \
  54. { return *(volatile unsigned short*)(SPI0_REGBASE + off); } \
  55. static inline void write_##reg(u16 v) \
  56. {*(volatile unsigned short*)(SPI0_REGBASE + off) = v;\
  57. SSYNC();}
  58. DEFINE_SPI_REG(CTRL, 0x00)
  59. DEFINE_SPI_REG(FLAG, 0x04)
  60. DEFINE_SPI_REG(STAT, 0x08)
  61. DEFINE_SPI_REG(TDBR, 0x0C)
  62. DEFINE_SPI_REG(RDBR, 0x10)
  63. DEFINE_SPI_REG(BAUD, 0x14)
  64. DEFINE_SPI_REG(SHAW, 0x18)
  65. #define START_STATE ((void*)0)
  66. #define RUNNING_STATE ((void*)1)
  67. #define DONE_STATE ((void*)2)
  68. #define ERROR_STATE ((void*)-1)
  69. #define QUEUE_RUNNING 0
  70. #define QUEUE_STOPPED 1
  71. int dma_requested;
  72. struct driver_data {
  73. /* Driver model hookup */
  74. struct platform_device *pdev;
  75. /* SPI framework hookup */
  76. struct spi_master *master;
  77. /* BFIN hookup */
  78. struct bfin5xx_spi_master *master_info;
  79. /* Driver message queue */
  80. struct workqueue_struct *workqueue;
  81. struct work_struct pump_messages;
  82. spinlock_t lock;
  83. struct list_head queue;
  84. int busy;
  85. int run;
  86. /* Message Transfer pump */
  87. struct tasklet_struct pump_transfers;
  88. /* Current message transfer state info */
  89. struct spi_message *cur_msg;
  90. struct spi_transfer *cur_transfer;
  91. struct chip_data *cur_chip;
  92. size_t len_in_bytes;
  93. size_t len;
  94. void *tx;
  95. void *tx_end;
  96. void *rx;
  97. void *rx_end;
  98. int dma_mapped;
  99. dma_addr_t rx_dma;
  100. dma_addr_t tx_dma;
  101. size_t rx_map_len;
  102. size_t tx_map_len;
  103. u8 n_bytes;
  104. void (*write) (struct driver_data *);
  105. void (*read) (struct driver_data *);
  106. void (*duplex) (struct driver_data *);
  107. };
  108. struct chip_data {
  109. u16 ctl_reg;
  110. u16 baud;
  111. u16 flag;
  112. u8 chip_select_num;
  113. u8 n_bytes;
  114. u8 width; /* 0 or 1 */
  115. u8 enable_dma;
  116. u8 bits_per_word; /* 8 or 16 */
  117. u8 cs_change_per_word;
  118. u8 cs_chg_udelay;
  119. void (*write) (struct driver_data *);
  120. void (*read) (struct driver_data *);
  121. void (*duplex) (struct driver_data *);
  122. };
  123. static void bfin_spi_enable(struct driver_data *drv_data)
  124. {
  125. u16 cr;
  126. cr = read_CTRL();
  127. write_CTRL(cr | BIT_CTL_ENABLE);
  128. SSYNC();
  129. }
  130. static void bfin_spi_disable(struct driver_data *drv_data)
  131. {
  132. u16 cr;
  133. cr = read_CTRL();
  134. write_CTRL(cr & (~BIT_CTL_ENABLE));
  135. SSYNC();
  136. }
  137. /* Caculate the SPI_BAUD register value based on input HZ */
  138. static u16 hz_to_spi_baud(u32 speed_hz)
  139. {
  140. u_long sclk = get_sclk();
  141. u16 spi_baud = (sclk / (2 * speed_hz));
  142. if ((sclk % (2 * speed_hz)) > 0)
  143. spi_baud++;
  144. return spi_baud;
  145. }
  146. static int flush(struct driver_data *drv_data)
  147. {
  148. unsigned long limit = loops_per_jiffy << 1;
  149. /* wait for stop and clear stat */
  150. while (!(read_STAT() & BIT_STAT_SPIF) && limit--)
  151. continue;
  152. write_STAT(BIT_STAT_CLR);
  153. return limit;
  154. }
  155. /* stop controller and re-config current chip*/
  156. static void restore_state(struct driver_data *drv_data)
  157. {
  158. struct chip_data *chip = drv_data->cur_chip;
  159. /* Clear status and disable clock */
  160. write_STAT(BIT_STAT_CLR);
  161. bfin_spi_disable(drv_data);
  162. dev_dbg(&drv_data->pdev->dev, "restoring spi ctl state\n");
  163. #if defined(CONFIG_BF534) || defined(CONFIG_BF536) || defined(CONFIG_BF537)
  164. dev_dbg(&drv_data->pdev->dev,
  165. "chip select number is %d\n", chip->chip_select_num);
  166. switch (chip->chip_select_num) {
  167. case 1:
  168. bfin_write_PORTF_FER(bfin_read_PORTF_FER() | 0x3c00);
  169. SSYNC();
  170. break;
  171. case 2:
  172. case 3:
  173. bfin_write_PORT_MUX(bfin_read_PORT_MUX() | PJSE_SPI);
  174. SSYNC();
  175. bfin_write_PORTF_FER(bfin_read_PORTF_FER() | 0x3800);
  176. SSYNC();
  177. break;
  178. case 4:
  179. bfin_write_PORT_MUX(bfin_read_PORT_MUX() | PFS4E_SPI);
  180. SSYNC();
  181. bfin_write_PORTF_FER(bfin_read_PORTF_FER() | 0x3840);
  182. SSYNC();
  183. break;
  184. case 5:
  185. bfin_write_PORT_MUX(bfin_read_PORT_MUX() | PFS5E_SPI);
  186. SSYNC();
  187. bfin_write_PORTF_FER(bfin_read_PORTF_FER() | 0x3820);
  188. SSYNC();
  189. break;
  190. case 6:
  191. bfin_write_PORT_MUX(bfin_read_PORT_MUX() | PFS6E_SPI);
  192. SSYNC();
  193. bfin_write_PORTF_FER(bfin_read_PORTF_FER() | 0x3810);
  194. SSYNC();
  195. break;
  196. case 7:
  197. bfin_write_PORT_MUX(bfin_read_PORT_MUX() | PJCE_SPI);
  198. SSYNC();
  199. bfin_write_PORTF_FER(bfin_read_PORTF_FER() | 0x3800);
  200. SSYNC();
  201. break;
  202. }
  203. #endif
  204. /* Load the registers */
  205. write_CTRL(chip->ctl_reg);
  206. write_BAUD(chip->baud);
  207. write_FLAG(chip->flag);
  208. }
  209. /* used to kick off transfer in rx mode */
  210. static unsigned short dummy_read(void)
  211. {
  212. unsigned short tmp;
  213. tmp = read_RDBR();
  214. return tmp;
  215. }
  216. static void null_writer(struct driver_data *drv_data)
  217. {
  218. u8 n_bytes = drv_data->n_bytes;
  219. while (drv_data->tx < drv_data->tx_end) {
  220. write_TDBR(0);
  221. while ((read_STAT() & BIT_STAT_TXS))
  222. continue;
  223. drv_data->tx += n_bytes;
  224. }
  225. }
  226. static void null_reader(struct driver_data *drv_data)
  227. {
  228. u8 n_bytes = drv_data->n_bytes;
  229. dummy_read();
  230. while (drv_data->rx < drv_data->rx_end) {
  231. while (!(read_STAT() & BIT_STAT_RXS))
  232. continue;
  233. dummy_read();
  234. drv_data->rx += n_bytes;
  235. }
  236. }
  237. static void u8_writer(struct driver_data *drv_data)
  238. {
  239. dev_dbg(&drv_data->pdev->dev,
  240. "cr8-s is 0x%x\n", read_STAT());
  241. while (drv_data->tx < drv_data->tx_end) {
  242. write_TDBR(*(u8 *) (drv_data->tx));
  243. while (read_STAT() & BIT_STAT_TXS)
  244. continue;
  245. ++drv_data->tx;
  246. }
  247. /* poll for SPI completion before returning */
  248. while (!(read_STAT() & BIT_STAT_SPIF))
  249. continue;
  250. }
  251. static void u8_cs_chg_writer(struct driver_data *drv_data)
  252. {
  253. struct chip_data *chip = drv_data->cur_chip;
  254. while (drv_data->tx < drv_data->tx_end) {
  255. write_FLAG(chip->flag);
  256. SSYNC();
  257. write_TDBR(*(u8 *) (drv_data->tx));
  258. while (read_STAT() & BIT_STAT_TXS)
  259. continue;
  260. while (!(read_STAT() & BIT_STAT_SPIF))
  261. continue;
  262. write_FLAG(0xFF00 | chip->flag);
  263. SSYNC();
  264. if (chip->cs_chg_udelay)
  265. udelay(chip->cs_chg_udelay);
  266. ++drv_data->tx;
  267. }
  268. write_FLAG(0xFF00);
  269. SSYNC();
  270. }
  271. static void u8_reader(struct driver_data *drv_data)
  272. {
  273. dev_dbg(&drv_data->pdev->dev,
  274. "cr-8 is 0x%x\n", read_STAT());
  275. /* clear TDBR buffer before read(else it will be shifted out) */
  276. write_TDBR(0xFFFF);
  277. dummy_read();
  278. while (drv_data->rx < drv_data->rx_end - 1) {
  279. while (!(read_STAT() & BIT_STAT_RXS))
  280. continue;
  281. *(u8 *) (drv_data->rx) = read_RDBR();
  282. ++drv_data->rx;
  283. }
  284. while (!(read_STAT() & BIT_STAT_RXS))
  285. continue;
  286. *(u8 *) (drv_data->rx) = read_SHAW();
  287. ++drv_data->rx;
  288. }
  289. static void u8_cs_chg_reader(struct driver_data *drv_data)
  290. {
  291. struct chip_data *chip = drv_data->cur_chip;
  292. while (drv_data->rx < drv_data->rx_end) {
  293. write_FLAG(chip->flag);
  294. SSYNC();
  295. read_RDBR(); /* kick off */
  296. while (!(read_STAT() & BIT_STAT_RXS))
  297. continue;
  298. while (!(read_STAT() & BIT_STAT_SPIF))
  299. continue;
  300. *(u8 *) (drv_data->rx) = read_SHAW();
  301. write_FLAG(0xFF00 | chip->flag);
  302. SSYNC();
  303. if (chip->cs_chg_udelay)
  304. udelay(chip->cs_chg_udelay);
  305. ++drv_data->rx;
  306. }
  307. write_FLAG(0xFF00);
  308. SSYNC();
  309. }
  310. static void u8_duplex(struct driver_data *drv_data)
  311. {
  312. /* in duplex mode, clk is triggered by writing of TDBR */
  313. while (drv_data->rx < drv_data->rx_end) {
  314. write_TDBR(*(u8 *) (drv_data->tx));
  315. while (!(read_STAT() & BIT_STAT_SPIF))
  316. continue;
  317. while (!(read_STAT() & BIT_STAT_RXS))
  318. continue;
  319. *(u8 *) (drv_data->rx) = read_RDBR();
  320. ++drv_data->rx;
  321. ++drv_data->tx;
  322. }
  323. }
  324. static void u8_cs_chg_duplex(struct driver_data *drv_data)
  325. {
  326. struct chip_data *chip = drv_data->cur_chip;
  327. while (drv_data->rx < drv_data->rx_end) {
  328. write_FLAG(chip->flag);
  329. SSYNC();
  330. write_TDBR(*(u8 *) (drv_data->tx));
  331. while (!(read_STAT() & BIT_STAT_SPIF))
  332. continue;
  333. while (!(read_STAT() & BIT_STAT_RXS))
  334. continue;
  335. *(u8 *) (drv_data->rx) = read_RDBR();
  336. write_FLAG(0xFF00 | chip->flag);
  337. SSYNC();
  338. if (chip->cs_chg_udelay)
  339. udelay(chip->cs_chg_udelay);
  340. ++drv_data->rx;
  341. ++drv_data->tx;
  342. }
  343. write_FLAG(0xFF00);
  344. SSYNC();
  345. }
  346. static void u16_writer(struct driver_data *drv_data)
  347. {
  348. dev_dbg(&drv_data->pdev->dev,
  349. "cr16 is 0x%x\n", read_STAT());
  350. while (drv_data->tx < drv_data->tx_end) {
  351. write_TDBR(*(u16 *) (drv_data->tx));
  352. while ((read_STAT() & BIT_STAT_TXS))
  353. continue;
  354. drv_data->tx += 2;
  355. }
  356. /* poll for SPI completion before returning */
  357. while (!(read_STAT() & BIT_STAT_SPIF))
  358. continue;
  359. }
  360. static void u16_cs_chg_writer(struct driver_data *drv_data)
  361. {
  362. struct chip_data *chip = drv_data->cur_chip;
  363. while (drv_data->tx < drv_data->tx_end) {
  364. write_FLAG(chip->flag);
  365. SSYNC();
  366. write_TDBR(*(u16 *) (drv_data->tx));
  367. while ((read_STAT() & BIT_STAT_TXS))
  368. continue;
  369. while (!(read_STAT() & BIT_STAT_SPIF))
  370. continue;
  371. write_FLAG(0xFF00 | chip->flag);
  372. SSYNC();
  373. if (chip->cs_chg_udelay)
  374. udelay(chip->cs_chg_udelay);
  375. drv_data->tx += 2;
  376. }
  377. write_FLAG(0xFF00);
  378. SSYNC();
  379. }
  380. static void u16_reader(struct driver_data *drv_data)
  381. {
  382. dev_dbg(&drv_data->pdev->dev,
  383. "cr-16 is 0x%x\n", read_STAT());
  384. dummy_read();
  385. while (drv_data->rx < (drv_data->rx_end - 2)) {
  386. while (!(read_STAT() & BIT_STAT_RXS))
  387. continue;
  388. *(u16 *) (drv_data->rx) = read_RDBR();
  389. drv_data->rx += 2;
  390. }
  391. while (!(read_STAT() & BIT_STAT_RXS))
  392. continue;
  393. *(u16 *) (drv_data->rx) = read_SHAW();
  394. drv_data->rx += 2;
  395. }
  396. static void u16_cs_chg_reader(struct driver_data *drv_data)
  397. {
  398. struct chip_data *chip = drv_data->cur_chip;
  399. while (drv_data->rx < drv_data->rx_end) {
  400. write_FLAG(chip->flag);
  401. SSYNC();
  402. read_RDBR(); /* kick off */
  403. while (!(read_STAT() & BIT_STAT_RXS))
  404. continue;
  405. while (!(read_STAT() & BIT_STAT_SPIF))
  406. continue;
  407. *(u16 *) (drv_data->rx) = read_SHAW();
  408. write_FLAG(0xFF00 | chip->flag);
  409. SSYNC();
  410. if (chip->cs_chg_udelay)
  411. udelay(chip->cs_chg_udelay);
  412. drv_data->rx += 2;
  413. }
  414. write_FLAG(0xFF00);
  415. SSYNC();
  416. }
  417. static void u16_duplex(struct driver_data *drv_data)
  418. {
  419. /* in duplex mode, clk is triggered by writing of TDBR */
  420. while (drv_data->tx < drv_data->tx_end) {
  421. write_TDBR(*(u16 *) (drv_data->tx));
  422. while (!(read_STAT() & BIT_STAT_SPIF))
  423. continue;
  424. while (!(read_STAT() & BIT_STAT_RXS))
  425. continue;
  426. *(u16 *) (drv_data->rx) = read_RDBR();
  427. drv_data->rx += 2;
  428. drv_data->tx += 2;
  429. }
  430. }
  431. static void u16_cs_chg_duplex(struct driver_data *drv_data)
  432. {
  433. struct chip_data *chip = drv_data->cur_chip;
  434. while (drv_data->tx < drv_data->tx_end) {
  435. write_FLAG(chip->flag);
  436. SSYNC();
  437. write_TDBR(*(u16 *) (drv_data->tx));
  438. while (!(read_STAT() & BIT_STAT_SPIF))
  439. continue;
  440. while (!(read_STAT() & BIT_STAT_RXS))
  441. continue;
  442. *(u16 *) (drv_data->rx) = read_RDBR();
  443. write_FLAG(0xFF00 | chip->flag);
  444. SSYNC();
  445. if (chip->cs_chg_udelay)
  446. udelay(chip->cs_chg_udelay);
  447. drv_data->rx += 2;
  448. drv_data->tx += 2;
  449. }
  450. write_FLAG(0xFF00);
  451. SSYNC();
  452. }
  453. /* test if ther is more transfer to be done */
  454. static void *next_transfer(struct driver_data *drv_data)
  455. {
  456. struct spi_message *msg = drv_data->cur_msg;
  457. struct spi_transfer *trans = drv_data->cur_transfer;
  458. /* Move to next transfer */
  459. if (trans->transfer_list.next != &msg->transfers) {
  460. drv_data->cur_transfer =
  461. list_entry(trans->transfer_list.next,
  462. struct spi_transfer, transfer_list);
  463. return RUNNING_STATE;
  464. } else
  465. return DONE_STATE;
  466. }
  467. /*
  468. * caller already set message->status;
  469. * dma and pio irqs are blocked give finished message back
  470. */
  471. static void giveback(struct driver_data *drv_data)
  472. {
  473. struct spi_transfer *last_transfer;
  474. unsigned long flags;
  475. struct spi_message *msg;
  476. spin_lock_irqsave(&drv_data->lock, flags);
  477. msg = drv_data->cur_msg;
  478. drv_data->cur_msg = NULL;
  479. drv_data->cur_transfer = NULL;
  480. drv_data->cur_chip = NULL;
  481. queue_work(drv_data->workqueue, &drv_data->pump_messages);
  482. spin_unlock_irqrestore(&drv_data->lock, flags);
  483. last_transfer = list_entry(msg->transfers.prev,
  484. struct spi_transfer, transfer_list);
  485. msg->state = NULL;
  486. /* disable chip select signal. And not stop spi in autobuffer mode */
  487. if (drv_data->tx_dma != 0xFFFF) {
  488. write_FLAG(0xFF00);
  489. bfin_spi_disable(drv_data);
  490. }
  491. if (msg->complete)
  492. msg->complete(msg->context);
  493. }
  494. static irqreturn_t dma_irq_handler(int irq, void *dev_id)
  495. {
  496. struct driver_data *drv_data = (struct driver_data *)dev_id;
  497. struct spi_message *msg = drv_data->cur_msg;
  498. dev_dbg(&drv_data->pdev->dev, "in dma_irq_handler\n");
  499. clear_dma_irqstat(CH_SPI);
  500. /*
  501. * wait for the last transaction shifted out. yes, these two
  502. * while loops are supposed to be the same (see the HRM).
  503. */
  504. if (drv_data->tx != NULL) {
  505. while (bfin_read_SPI_STAT() & TXS)
  506. continue;
  507. while (bfin_read_SPI_STAT() & TXS)
  508. continue;
  509. }
  510. while (!(bfin_read_SPI_STAT() & SPIF))
  511. continue;
  512. bfin_spi_disable(drv_data);
  513. msg->actual_length += drv_data->len_in_bytes;
  514. /* Move to next transfer */
  515. msg->state = next_transfer(drv_data);
  516. /* Schedule transfer tasklet */
  517. tasklet_schedule(&drv_data->pump_transfers);
  518. /* free the irq handler before next transfer */
  519. dev_dbg(&drv_data->pdev->dev,
  520. "disable dma channel irq%d\n",
  521. CH_SPI);
  522. dma_disable_irq(CH_SPI);
  523. return IRQ_HANDLED;
  524. }
  525. static void pump_transfers(unsigned long data)
  526. {
  527. struct driver_data *drv_data = (struct driver_data *)data;
  528. struct spi_message *message = NULL;
  529. struct spi_transfer *transfer = NULL;
  530. struct spi_transfer *previous = NULL;
  531. struct chip_data *chip = NULL;
  532. u8 width;
  533. u16 cr, dma_width, dma_config;
  534. u32 tranf_success = 1;
  535. /* Get current state information */
  536. message = drv_data->cur_msg;
  537. transfer = drv_data->cur_transfer;
  538. chip = drv_data->cur_chip;
  539. /*
  540. * if msg is error or done, report it back using complete() callback
  541. */
  542. /* Handle for abort */
  543. if (message->state == ERROR_STATE) {
  544. message->status = -EIO;
  545. giveback(drv_data);
  546. return;
  547. }
  548. /* Handle end of message */
  549. if (message->state == DONE_STATE) {
  550. message->status = 0;
  551. giveback(drv_data);
  552. return;
  553. }
  554. /* Delay if requested at end of transfer */
  555. if (message->state == RUNNING_STATE) {
  556. previous = list_entry(transfer->transfer_list.prev,
  557. struct spi_transfer, transfer_list);
  558. if (previous->delay_usecs)
  559. udelay(previous->delay_usecs);
  560. }
  561. /* Setup the transfer state based on the type of transfer */
  562. if (flush(drv_data) == 0) {
  563. dev_err(&drv_data->pdev->dev, "pump_transfers: flush failed\n");
  564. message->status = -EIO;
  565. giveback(drv_data);
  566. return;
  567. }
  568. if (transfer->tx_buf != NULL) {
  569. drv_data->tx = (void *)transfer->tx_buf;
  570. drv_data->tx_end = drv_data->tx + transfer->len;
  571. dev_dbg(&drv_data->pdev->dev, "tx_buf is %p, tx_end is %p\n",
  572. transfer->tx_buf, drv_data->tx_end);
  573. } else {
  574. drv_data->tx = NULL;
  575. }
  576. if (transfer->rx_buf != NULL) {
  577. drv_data->rx = transfer->rx_buf;
  578. drv_data->rx_end = drv_data->rx + transfer->len;
  579. dev_dbg(&drv_data->pdev->dev, "rx_buf is %p, rx_end is %p\n",
  580. transfer->rx_buf, drv_data->rx_end);
  581. } else {
  582. drv_data->rx = NULL;
  583. }
  584. drv_data->rx_dma = transfer->rx_dma;
  585. drv_data->tx_dma = transfer->tx_dma;
  586. drv_data->len_in_bytes = transfer->len;
  587. width = chip->width;
  588. if (width == CFG_SPI_WORDSIZE16) {
  589. drv_data->len = (transfer->len) >> 1;
  590. } else {
  591. drv_data->len = transfer->len;
  592. }
  593. drv_data->write = drv_data->tx ? chip->write : null_writer;
  594. drv_data->read = drv_data->rx ? chip->read : null_reader;
  595. drv_data->duplex = chip->duplex ? chip->duplex : null_writer;
  596. dev_dbg(&drv_data->pdev->dev,
  597. "transfer: drv_data->write is %p, chip->write is %p, null_wr is %p\n",
  598. drv_data->write, chip->write, null_writer);
  599. /* speed and width has been set on per message */
  600. message->state = RUNNING_STATE;
  601. dma_config = 0;
  602. /* restore spi status for each spi transfer */
  603. if (transfer->speed_hz) {
  604. write_BAUD(hz_to_spi_baud(transfer->speed_hz));
  605. } else {
  606. write_BAUD(chip->baud);
  607. }
  608. write_FLAG(chip->flag);
  609. dev_dbg(&drv_data->pdev->dev,
  610. "now pumping a transfer: width is %d, len is %d\n",
  611. width, transfer->len);
  612. /*
  613. * Try to map dma buffer and do a dma transfer if
  614. * successful use different way to r/w according to
  615. * drv_data->cur_chip->enable_dma
  616. */
  617. if (drv_data->cur_chip->enable_dma && drv_data->len > 6) {
  618. write_STAT(BIT_STAT_CLR);
  619. disable_dma(CH_SPI);
  620. clear_dma_irqstat(CH_SPI);
  621. bfin_spi_disable(drv_data);
  622. /* config dma channel */
  623. dev_dbg(&drv_data->pdev->dev, "doing dma transfer\n");
  624. if (width == CFG_SPI_WORDSIZE16) {
  625. set_dma_x_count(CH_SPI, drv_data->len);
  626. set_dma_x_modify(CH_SPI, 2);
  627. dma_width = WDSIZE_16;
  628. } else {
  629. set_dma_x_count(CH_SPI, drv_data->len);
  630. set_dma_x_modify(CH_SPI, 1);
  631. dma_width = WDSIZE_8;
  632. }
  633. /* set transfer width,direction. And enable spi */
  634. cr = (read_CTRL() & (~BIT_CTL_TIMOD));
  635. /* dirty hack for autobuffer DMA mode */
  636. if (drv_data->tx_dma == 0xFFFF) {
  637. dev_dbg(&drv_data->pdev->dev,
  638. "doing autobuffer DMA out.\n");
  639. /* no irq in autobuffer mode */
  640. dma_config =
  641. (DMAFLOW_AUTO | RESTART | dma_width | DI_EN);
  642. set_dma_config(CH_SPI, dma_config);
  643. set_dma_start_addr(CH_SPI, (unsigned long)drv_data->tx);
  644. enable_dma(CH_SPI);
  645. write_CTRL(cr | CFG_SPI_DMAWRITE | (width << 8) |
  646. (CFG_SPI_ENABLE << 14));
  647. /* just return here, there can only be one transfer in this mode */
  648. message->status = 0;
  649. giveback(drv_data);
  650. return;
  651. }
  652. /* In dma mode, rx or tx must be NULL in one transfer */
  653. if (drv_data->rx != NULL) {
  654. /* set transfer mode, and enable SPI */
  655. dev_dbg(&drv_data->pdev->dev, "doing DMA in.\n");
  656. /* disable SPI before write to TDBR */
  657. write_CTRL(cr & ~BIT_CTL_ENABLE);
  658. /* clear tx reg soformer data is not shifted out */
  659. write_TDBR(0xFF);
  660. set_dma_x_count(CH_SPI, drv_data->len);
  661. /* start dma */
  662. dma_enable_irq(CH_SPI);
  663. dma_config = (WNR | RESTART | dma_width | DI_EN);
  664. set_dma_config(CH_SPI, dma_config);
  665. set_dma_start_addr(CH_SPI, (unsigned long)drv_data->rx);
  666. enable_dma(CH_SPI);
  667. cr |=
  668. CFG_SPI_DMAREAD | (width << 8) | (CFG_SPI_ENABLE <<
  669. 14);
  670. /* set transfer mode, and enable SPI */
  671. write_CTRL(cr);
  672. } else if (drv_data->tx != NULL) {
  673. dev_dbg(&drv_data->pdev->dev, "doing DMA out.\n");
  674. /* start dma */
  675. dma_enable_irq(CH_SPI);
  676. dma_config = (RESTART | dma_width | DI_EN);
  677. set_dma_config(CH_SPI, dma_config);
  678. set_dma_start_addr(CH_SPI, (unsigned long)drv_data->tx);
  679. enable_dma(CH_SPI);
  680. write_CTRL(cr | CFG_SPI_DMAWRITE | (width << 8) |
  681. (CFG_SPI_ENABLE << 14));
  682. }
  683. } else {
  684. /* IO mode write then read */
  685. dev_dbg(&drv_data->pdev->dev, "doing IO transfer\n");
  686. write_STAT(BIT_STAT_CLR);
  687. if (drv_data->tx != NULL && drv_data->rx != NULL) {
  688. /* full duplex mode */
  689. BUG_ON((drv_data->tx_end - drv_data->tx) !=
  690. (drv_data->rx_end - drv_data->rx));
  691. cr = (read_CTRL() & (~BIT_CTL_TIMOD));
  692. cr |= CFG_SPI_WRITE | (width << 8) |
  693. (CFG_SPI_ENABLE << 14);
  694. dev_dbg(&drv_data->pdev->dev,
  695. "IO duplex: cr is 0x%x\n", cr);
  696. write_CTRL(cr);
  697. SSYNC();
  698. drv_data->duplex(drv_data);
  699. if (drv_data->tx != drv_data->tx_end)
  700. tranf_success = 0;
  701. } else if (drv_data->tx != NULL) {
  702. /* write only half duplex */
  703. cr = (read_CTRL() & (~BIT_CTL_TIMOD));
  704. cr |= CFG_SPI_WRITE | (width << 8) |
  705. (CFG_SPI_ENABLE << 14);
  706. dev_dbg(&drv_data->pdev->dev,
  707. "IO write: cr is 0x%x\n", cr);
  708. write_CTRL(cr);
  709. SSYNC();
  710. drv_data->write(drv_data);
  711. if (drv_data->tx != drv_data->tx_end)
  712. tranf_success = 0;
  713. } else if (drv_data->rx != NULL) {
  714. /* read only half duplex */
  715. cr = (read_CTRL() & (~BIT_CTL_TIMOD));
  716. cr |= CFG_SPI_READ | (width << 8) |
  717. (CFG_SPI_ENABLE << 14);
  718. dev_dbg(&drv_data->pdev->dev,
  719. "IO read: cr is 0x%x\n", cr);
  720. write_CTRL(cr);
  721. SSYNC();
  722. drv_data->read(drv_data);
  723. if (drv_data->rx != drv_data->rx_end)
  724. tranf_success = 0;
  725. }
  726. if (!tranf_success) {
  727. dev_dbg(&drv_data->pdev->dev,
  728. "IO write error!\n");
  729. message->state = ERROR_STATE;
  730. } else {
  731. /* Update total byte transfered */
  732. message->actual_length += drv_data->len;
  733. /* Move to next transfer of this msg */
  734. message->state = next_transfer(drv_data);
  735. }
  736. /* Schedule next transfer tasklet */
  737. tasklet_schedule(&drv_data->pump_transfers);
  738. }
  739. }
  740. /* pop a msg from queue and kick off real transfer */
  741. static void pump_messages(struct work_struct *work)
  742. {
  743. struct driver_data *drv_data = container_of(work, struct driver_data, pump_messages);
  744. unsigned long flags;
  745. /* Lock queue and check for queue work */
  746. spin_lock_irqsave(&drv_data->lock, flags);
  747. if (list_empty(&drv_data->queue) || drv_data->run == QUEUE_STOPPED) {
  748. /* pumper kicked off but no work to do */
  749. drv_data->busy = 0;
  750. spin_unlock_irqrestore(&drv_data->lock, flags);
  751. return;
  752. }
  753. /* Make sure we are not already running a message */
  754. if (drv_data->cur_msg) {
  755. spin_unlock_irqrestore(&drv_data->lock, flags);
  756. return;
  757. }
  758. /* Extract head of queue */
  759. drv_data->cur_msg = list_entry(drv_data->queue.next,
  760. struct spi_message, queue);
  761. list_del_init(&drv_data->cur_msg->queue);
  762. /* Initial message state */
  763. drv_data->cur_msg->state = START_STATE;
  764. drv_data->cur_transfer = list_entry(drv_data->cur_msg->transfers.next,
  765. struct spi_transfer, transfer_list);
  766. /* Setup the SSP using the per chip configuration */
  767. drv_data->cur_chip = spi_get_ctldata(drv_data->cur_msg->spi);
  768. restore_state(drv_data);
  769. dev_dbg(&drv_data->pdev->dev,
  770. "got a message to pump, state is set to: baud %d, flag 0x%x, ctl 0x%x\n",
  771. drv_data->cur_chip->baud, drv_data->cur_chip->flag,
  772. drv_data->cur_chip->ctl_reg);
  773. dev_dbg(&drv_data->pdev->dev,
  774. "the first transfer len is %d\n",
  775. drv_data->cur_transfer->len);
  776. /* Mark as busy and launch transfers */
  777. tasklet_schedule(&drv_data->pump_transfers);
  778. drv_data->busy = 1;
  779. spin_unlock_irqrestore(&drv_data->lock, flags);
  780. }
  781. /*
  782. * got a msg to transfer, queue it in drv_data->queue.
  783. * And kick off message pumper
  784. */
  785. static int transfer(struct spi_device *spi, struct spi_message *msg)
  786. {
  787. struct driver_data *drv_data = spi_master_get_devdata(spi->master);
  788. unsigned long flags;
  789. spin_lock_irqsave(&drv_data->lock, flags);
  790. if (drv_data->run == QUEUE_STOPPED) {
  791. spin_unlock_irqrestore(&drv_data->lock, flags);
  792. return -ESHUTDOWN;
  793. }
  794. msg->actual_length = 0;
  795. msg->status = -EINPROGRESS;
  796. msg->state = START_STATE;
  797. dev_dbg(&spi->dev, "adding an msg in transfer() \n");
  798. list_add_tail(&msg->queue, &drv_data->queue);
  799. if (drv_data->run == QUEUE_RUNNING && !drv_data->busy)
  800. queue_work(drv_data->workqueue, &drv_data->pump_messages);
  801. spin_unlock_irqrestore(&drv_data->lock, flags);
  802. return 0;
  803. }
  804. /* first setup for new devices */
  805. static int setup(struct spi_device *spi)
  806. {
  807. struct bfin5xx_spi_chip *chip_info = NULL;
  808. struct chip_data *chip;
  809. struct driver_data *drv_data = spi_master_get_devdata(spi->master);
  810. u8 spi_flg;
  811. /* Abort device setup if requested features are not supported */
  812. if (spi->mode & ~(SPI_CPOL | SPI_CPHA | SPI_LSB_FIRST)) {
  813. dev_err(&spi->dev, "requested mode not fully supported\n");
  814. return -EINVAL;
  815. }
  816. /* Zero (the default) here means 8 bits */
  817. if (!spi->bits_per_word)
  818. spi->bits_per_word = 8;
  819. if (spi->bits_per_word != 8 && spi->bits_per_word != 16)
  820. return -EINVAL;
  821. /* Only alloc (or use chip_info) on first setup */
  822. chip = spi_get_ctldata(spi);
  823. if (chip == NULL) {
  824. chip = kzalloc(sizeof(struct chip_data), GFP_KERNEL);
  825. if (!chip)
  826. return -ENOMEM;
  827. chip->enable_dma = 0;
  828. chip_info = spi->controller_data;
  829. }
  830. /* chip_info isn't always needed */
  831. if (chip_info) {
  832. chip->enable_dma = chip_info->enable_dma != 0
  833. && drv_data->master_info->enable_dma;
  834. chip->ctl_reg = chip_info->ctl_reg;
  835. chip->bits_per_word = chip_info->bits_per_word;
  836. chip->cs_change_per_word = chip_info->cs_change_per_word;
  837. chip->cs_chg_udelay = chip_info->cs_chg_udelay;
  838. }
  839. /* translate common spi framework into our register */
  840. if (spi->mode & SPI_CPOL)
  841. chip->ctl_reg |= CPOL;
  842. if (spi->mode & SPI_CPHA)
  843. chip->ctl_reg |= CPHA;
  844. if (spi->mode & SPI_LSB_FIRST)
  845. chip->ctl_reg |= LSBF;
  846. /* we dont support running in slave mode (yet?) */
  847. chip->ctl_reg |= MSTR;
  848. /*
  849. * if any one SPI chip is registered and wants DMA, request the
  850. * DMA channel for it
  851. */
  852. if (chip->enable_dma && !dma_requested) {
  853. /* register dma irq handler */
  854. if (request_dma(CH_SPI, "BF53x_SPI_DMA") < 0) {
  855. dev_dbg(&spi->dev,
  856. "Unable to request BlackFin SPI DMA channel\n");
  857. return -ENODEV;
  858. }
  859. if (set_dma_callback(CH_SPI, (void *)dma_irq_handler, drv_data)
  860. < 0) {
  861. dev_dbg(&spi->dev, "Unable to set dma callback\n");
  862. return -EPERM;
  863. }
  864. dma_disable_irq(CH_SPI);
  865. dma_requested = 1;
  866. }
  867. /*
  868. * Notice: for blackfin, the speed_hz is the value of register
  869. * SPI_BAUD, not the real baudrate
  870. */
  871. chip->baud = hz_to_spi_baud(spi->max_speed_hz);
  872. spi_flg = ~(1 << (spi->chip_select));
  873. chip->flag = ((u16) spi_flg << 8) | (1 << (spi->chip_select));
  874. chip->chip_select_num = spi->chip_select;
  875. switch (chip->bits_per_word) {
  876. case 8:
  877. chip->n_bytes = 1;
  878. chip->width = CFG_SPI_WORDSIZE8;
  879. chip->read = chip->cs_change_per_word ?
  880. u8_cs_chg_reader : u8_reader;
  881. chip->write = chip->cs_change_per_word ?
  882. u8_cs_chg_writer : u8_writer;
  883. chip->duplex = chip->cs_change_per_word ?
  884. u8_cs_chg_duplex : u8_duplex;
  885. break;
  886. case 16:
  887. chip->n_bytes = 2;
  888. chip->width = CFG_SPI_WORDSIZE16;
  889. chip->read = chip->cs_change_per_word ?
  890. u16_cs_chg_reader : u16_reader;
  891. chip->write = chip->cs_change_per_word ?
  892. u16_cs_chg_writer : u16_writer;
  893. chip->duplex = chip->cs_change_per_word ?
  894. u16_cs_chg_duplex : u16_duplex;
  895. break;
  896. default:
  897. dev_err(&spi->dev, "%d bits_per_word is not supported\n",
  898. chip->bits_per_word);
  899. kfree(chip);
  900. return -ENODEV;
  901. }
  902. dev_dbg(&spi->dev, "setup spi chip %s, width is %d, dma is %d,",
  903. spi->modalias, chip->width, chip->enable_dma);
  904. dev_dbg(&spi->dev, "ctl_reg is 0x%x, flag_reg is 0x%x\n",
  905. chip->ctl_reg, chip->flag);
  906. spi_set_ctldata(spi, chip);
  907. return 0;
  908. }
  909. /*
  910. * callback for spi framework.
  911. * clean driver specific data
  912. */
  913. static void cleanup(struct spi_device *spi)
  914. {
  915. struct chip_data *chip = spi_get_ctldata((struct spi_device *)spi);
  916. kfree(chip);
  917. }
  918. static inline int init_queue(struct driver_data *drv_data)
  919. {
  920. INIT_LIST_HEAD(&drv_data->queue);
  921. spin_lock_init(&drv_data->lock);
  922. drv_data->run = QUEUE_STOPPED;
  923. drv_data->busy = 0;
  924. /* init transfer tasklet */
  925. tasklet_init(&drv_data->pump_transfers,
  926. pump_transfers, (unsigned long)drv_data);
  927. /* init messages workqueue */
  928. INIT_WORK(&drv_data->pump_messages, pump_messages);
  929. drv_data->workqueue =
  930. create_singlethread_workqueue(drv_data->master->cdev.dev->bus_id);
  931. if (drv_data->workqueue == NULL)
  932. return -EBUSY;
  933. return 0;
  934. }
  935. static inline int start_queue(struct driver_data *drv_data)
  936. {
  937. unsigned long flags;
  938. spin_lock_irqsave(&drv_data->lock, flags);
  939. if (drv_data->run == QUEUE_RUNNING || drv_data->busy) {
  940. spin_unlock_irqrestore(&drv_data->lock, flags);
  941. return -EBUSY;
  942. }
  943. drv_data->run = QUEUE_RUNNING;
  944. drv_data->cur_msg = NULL;
  945. drv_data->cur_transfer = NULL;
  946. drv_data->cur_chip = NULL;
  947. spin_unlock_irqrestore(&drv_data->lock, flags);
  948. queue_work(drv_data->workqueue, &drv_data->pump_messages);
  949. return 0;
  950. }
  951. static inline int stop_queue(struct driver_data *drv_data)
  952. {
  953. unsigned long flags;
  954. unsigned limit = 500;
  955. int status = 0;
  956. spin_lock_irqsave(&drv_data->lock, flags);
  957. /*
  958. * This is a bit lame, but is optimized for the common execution path.
  959. * A wait_queue on the drv_data->busy could be used, but then the common
  960. * execution path (pump_messages) would be required to call wake_up or
  961. * friends on every SPI message. Do this instead
  962. */
  963. drv_data->run = QUEUE_STOPPED;
  964. while (!list_empty(&drv_data->queue) && drv_data->busy && limit--) {
  965. spin_unlock_irqrestore(&drv_data->lock, flags);
  966. msleep(10);
  967. spin_lock_irqsave(&drv_data->lock, flags);
  968. }
  969. if (!list_empty(&drv_data->queue) || drv_data->busy)
  970. status = -EBUSY;
  971. spin_unlock_irqrestore(&drv_data->lock, flags);
  972. return status;
  973. }
  974. static inline int destroy_queue(struct driver_data *drv_data)
  975. {
  976. int status;
  977. status = stop_queue(drv_data);
  978. if (status != 0)
  979. return status;
  980. destroy_workqueue(drv_data->workqueue);
  981. return 0;
  982. }
  983. static int __init bfin5xx_spi_probe(struct platform_device *pdev)
  984. {
  985. struct device *dev = &pdev->dev;
  986. struct bfin5xx_spi_master *platform_info;
  987. struct spi_master *master;
  988. struct driver_data *drv_data = 0;
  989. int status = 0;
  990. platform_info = dev->platform_data;
  991. /* Allocate master with space for drv_data */
  992. master = spi_alloc_master(dev, sizeof(struct driver_data) + 16);
  993. if (!master) {
  994. dev_err(&pdev->dev, "can not alloc spi_master\n");
  995. return -ENOMEM;
  996. }
  997. drv_data = spi_master_get_devdata(master);
  998. drv_data->master = master;
  999. drv_data->master_info = platform_info;
  1000. drv_data->pdev = pdev;
  1001. master->bus_num = pdev->id;
  1002. master->num_chipselect = platform_info->num_chipselect;
  1003. master->cleanup = cleanup;
  1004. master->setup = setup;
  1005. master->transfer = transfer;
  1006. /* Initial and start queue */
  1007. status = init_queue(drv_data);
  1008. if (status != 0) {
  1009. dev_err(&pdev->dev, "problem initializing queue\n");
  1010. goto out_error_queue_alloc;
  1011. }
  1012. status = start_queue(drv_data);
  1013. if (status != 0) {
  1014. dev_err(&pdev->dev, "problem starting queue\n");
  1015. goto out_error_queue_alloc;
  1016. }
  1017. /* Register with the SPI framework */
  1018. platform_set_drvdata(pdev, drv_data);
  1019. status = spi_register_master(master);
  1020. if (status != 0) {
  1021. dev_err(&pdev->dev, "problem registering spi master\n");
  1022. goto out_error_queue_alloc;
  1023. }
  1024. dev_dbg(&pdev->dev, "controller probe successfully\n");
  1025. return status;
  1026. out_error_queue_alloc:
  1027. destroy_queue(drv_data);
  1028. spi_master_put(master);
  1029. return status;
  1030. }
  1031. /* stop hardware and remove the driver */
  1032. static int __devexit bfin5xx_spi_remove(struct platform_device *pdev)
  1033. {
  1034. struct driver_data *drv_data = platform_get_drvdata(pdev);
  1035. int status = 0;
  1036. if (!drv_data)
  1037. return 0;
  1038. /* Remove the queue */
  1039. status = destroy_queue(drv_data);
  1040. if (status != 0)
  1041. return status;
  1042. /* Disable the SSP at the peripheral and SOC level */
  1043. bfin_spi_disable(drv_data);
  1044. /* Release DMA */
  1045. if (drv_data->master_info->enable_dma) {
  1046. if (dma_channel_active(CH_SPI))
  1047. free_dma(CH_SPI);
  1048. }
  1049. /* Disconnect from the SPI framework */
  1050. spi_unregister_master(drv_data->master);
  1051. /* Prevent double remove */
  1052. platform_set_drvdata(pdev, NULL);
  1053. return 0;
  1054. }
  1055. #ifdef CONFIG_PM
  1056. static int bfin5xx_spi_suspend(struct platform_device *pdev, pm_message_t state)
  1057. {
  1058. struct driver_data *drv_data = platform_get_drvdata(pdev);
  1059. int status = 0;
  1060. status = stop_queue(drv_data);
  1061. if (status != 0)
  1062. return status;
  1063. /* stop hardware */
  1064. bfin_spi_disable(drv_data);
  1065. return 0;
  1066. }
  1067. static int bfin5xx_spi_resume(struct platform_device *pdev)
  1068. {
  1069. struct driver_data *drv_data = platform_get_drvdata(pdev);
  1070. int status = 0;
  1071. /* Enable the SPI interface */
  1072. bfin_spi_enable(drv_data);
  1073. /* Start the queue running */
  1074. status = start_queue(drv_data);
  1075. if (status != 0) {
  1076. dev_err(&pdev->dev, "problem starting queue (%d)\n", status);
  1077. return status;
  1078. }
  1079. return 0;
  1080. }
  1081. #else
  1082. #define bfin5xx_spi_suspend NULL
  1083. #define bfin5xx_spi_resume NULL
  1084. #endif /* CONFIG_PM */
  1085. static struct platform_driver bfin5xx_spi_driver = {
  1086. .driver = {
  1087. .name = "bfin-spi-master",
  1088. .owner = THIS_MODULE,
  1089. },
  1090. .suspend = bfin5xx_spi_suspend,
  1091. .resume = bfin5xx_spi_resume,
  1092. .remove = __devexit_p(bfin5xx_spi_remove),
  1093. };
  1094. static int __init bfin5xx_spi_init(void)
  1095. {
  1096. return platform_driver_probe(&bfin5xx_spi_driver, bfin5xx_spi_probe);
  1097. }
  1098. module_init(bfin5xx_spi_init);
  1099. static void __exit bfin5xx_spi_exit(void)
  1100. {
  1101. platform_driver_unregister(&bfin5xx_spi_driver);
  1102. }
  1103. module_exit(bfin5xx_spi_exit);