callchain.c 5.6 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237
  1. /*
  2. * Copyright (C) 2009, Frederic Weisbecker <fweisbec@gmail.com>
  3. *
  4. * Handle the callchains from the stream in an ad-hoc radix tree and then
  5. * sort them in an rbtree.
  6. *
  7. * Using a radix for code path provides a fast retrieval and factorizes
  8. * memory use. Also that lets us use the paths in a hierarchical graph view.
  9. *
  10. */
  11. #include <stdlib.h>
  12. #include <stdio.h>
  13. #include <stdbool.h>
  14. #include <errno.h>
  15. #include "callchain.h"
  16. static void
  17. rb_insert_callchain(struct rb_root *root, struct callchain_node *chain)
  18. {
  19. struct rb_node **p = &root->rb_node;
  20. struct rb_node *parent = NULL;
  21. struct callchain_node *rnode;
  22. while (*p) {
  23. parent = *p;
  24. rnode = rb_entry(parent, struct callchain_node, rb_node);
  25. if (rnode->hit < chain->hit)
  26. p = &(*p)->rb_left;
  27. else
  28. p = &(*p)->rb_right;
  29. }
  30. rb_link_node(&chain->rb_node, parent, p);
  31. rb_insert_color(&chain->rb_node, root);
  32. }
  33. /*
  34. * Once we get every callchains from the stream, we can now
  35. * sort them by hit
  36. */
  37. void sort_chain_to_rbtree(struct rb_root *rb_root, struct callchain_node *node)
  38. {
  39. struct callchain_node *child;
  40. list_for_each_entry(child, &node->children, brothers)
  41. sort_chain_to_rbtree(rb_root, child);
  42. if (node->hit)
  43. rb_insert_callchain(rb_root, node);
  44. }
  45. /*
  46. * Create a child for a parent. If inherit_children, then the new child
  47. * will become the new parent of it's parent children
  48. */
  49. static struct callchain_node *
  50. create_child(struct callchain_node *parent, bool inherit_children)
  51. {
  52. struct callchain_node *new;
  53. new = malloc(sizeof(*new));
  54. if (!new) {
  55. perror("not enough memory to create child for code path tree");
  56. return NULL;
  57. }
  58. new->parent = parent;
  59. INIT_LIST_HEAD(&new->children);
  60. INIT_LIST_HEAD(&new->val);
  61. if (inherit_children) {
  62. struct callchain_node *next;
  63. list_splice(&parent->children, &new->children);
  64. INIT_LIST_HEAD(&parent->children);
  65. list_for_each_entry(next, &new->children, brothers)
  66. next->parent = new;
  67. }
  68. list_add_tail(&new->brothers, &parent->children);
  69. return new;
  70. }
  71. /*
  72. * Fill the node with callchain values
  73. */
  74. static void
  75. fill_node(struct callchain_node *node, struct ip_callchain *chain,
  76. int start, struct symbol **syms)
  77. {
  78. int i;
  79. for (i = start; i < chain->nr; i++) {
  80. struct callchain_list *call;
  81. call = malloc(sizeof(*call));
  82. if (!call) {
  83. perror("not enough memory for the code path tree");
  84. return;
  85. }
  86. call->ip = chain->ips[i];
  87. call->sym = syms[i];
  88. list_add_tail(&call->list, &node->val);
  89. }
  90. node->val_nr = chain->nr - start;
  91. if (!node->val_nr)
  92. printf("Warning: empty node in callchain tree\n");
  93. }
  94. static void
  95. add_child(struct callchain_node *parent, struct ip_callchain *chain,
  96. int start, struct symbol **syms)
  97. {
  98. struct callchain_node *new;
  99. new = create_child(parent, false);
  100. fill_node(new, chain, start, syms);
  101. new->hit = 1;
  102. }
  103. /*
  104. * Split the parent in two parts (a new child is created) and
  105. * give a part of its callchain to the created child.
  106. * Then create another child to host the given callchain of new branch
  107. */
  108. static void
  109. split_add_child(struct callchain_node *parent, struct ip_callchain *chain,
  110. struct callchain_list *to_split, int idx_parents, int idx_local,
  111. struct symbol **syms)
  112. {
  113. struct callchain_node *new;
  114. struct list_head *old_tail;
  115. int idx_total = idx_parents + idx_local;
  116. /* split */
  117. new = create_child(parent, true);
  118. /* split the callchain and move a part to the new child */
  119. old_tail = parent->val.prev;
  120. list_del_range(&to_split->list, old_tail);
  121. new->val.next = &to_split->list;
  122. new->val.prev = old_tail;
  123. to_split->list.prev = &new->val;
  124. old_tail->next = &new->val;
  125. /* split the hits */
  126. new->hit = parent->hit;
  127. new->val_nr = parent->val_nr - idx_local;
  128. parent->val_nr = idx_local;
  129. /* create a new child for the new branch if any */
  130. if (idx_total < chain->nr) {
  131. parent->hit = 0;
  132. add_child(parent, chain, idx_total, syms);
  133. } else {
  134. parent->hit = 1;
  135. }
  136. }
  137. static int
  138. __append_chain(struct callchain_node *root, struct ip_callchain *chain,
  139. int start, struct symbol **syms);
  140. static void
  141. __append_chain_children(struct callchain_node *root, struct ip_callchain *chain,
  142. struct symbol **syms, int start)
  143. {
  144. struct callchain_node *rnode;
  145. /* lookup in childrens */
  146. list_for_each_entry(rnode, &root->children, brothers) {
  147. int ret = __append_chain(rnode, chain, start, syms);
  148. if (!ret)
  149. return;
  150. }
  151. /* nothing in children, add to the current node */
  152. add_child(root, chain, start, syms);
  153. }
  154. static int
  155. __append_chain(struct callchain_node *root, struct ip_callchain *chain,
  156. int start, struct symbol **syms)
  157. {
  158. struct callchain_list *cnode;
  159. int i = start;
  160. bool found = false;
  161. /*
  162. * Lookup in the current node
  163. * If we have a symbol, then compare the start to match
  164. * anywhere inside a function.
  165. */
  166. list_for_each_entry(cnode, &root->val, list) {
  167. if (i == chain->nr)
  168. break;
  169. if (cnode->sym && syms[i]) {
  170. if (cnode->sym->start != syms[i]->start)
  171. break;
  172. } else if (cnode->ip != chain->ips[i])
  173. break;
  174. if (!found)
  175. found = true;
  176. i++;
  177. }
  178. /* matches not, relay on the parent */
  179. if (!found)
  180. return -1;
  181. /* we match only a part of the node. Split it and add the new chain */
  182. if (i - start < root->val_nr) {
  183. split_add_child(root, chain, cnode, start, i - start, syms);
  184. return 0;
  185. }
  186. /* we match 100% of the path, increment the hit */
  187. if (i - start == root->val_nr && i == chain->nr) {
  188. root->hit++;
  189. return 0;
  190. }
  191. /* We match the node and still have a part remaining */
  192. __append_chain_children(root, chain, syms, i);
  193. return 0;
  194. }
  195. void append_chain(struct callchain_node *root, struct ip_callchain *chain,
  196. struct symbol **syms)
  197. {
  198. __append_chain_children(root, chain, syms, 0);
  199. }