mv_init.c 21 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836
  1. /*
  2. * Marvell 88SE64xx/88SE94xx pci init
  3. *
  4. * Copyright 2007 Red Hat, Inc.
  5. * Copyright 2008 Marvell. <kewei@marvell.com>
  6. * Copyright 2009-2011 Marvell. <yuxiangl@marvell.com>
  7. *
  8. * This file is licensed under GPLv2.
  9. *
  10. * This program is free software; you can redistribute it and/or
  11. * modify it under the terms of the GNU General Public License as
  12. * published by the Free Software Foundation; version 2 of the
  13. * License.
  14. *
  15. * This program is distributed in the hope that it will be useful,
  16. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  17. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  18. * General Public License for more details.
  19. *
  20. * You should have received a copy of the GNU General Public License
  21. * along with this program; if not, write to the Free Software
  22. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307
  23. * USA
  24. */
  25. #include "mv_sas.h"
  26. static int lldd_max_execute_num = 1;
  27. module_param_named(collector, lldd_max_execute_num, int, S_IRUGO);
  28. MODULE_PARM_DESC(collector, "\n"
  29. "\tIf greater than one, tells the SAS Layer to run in Task Collector\n"
  30. "\tMode. If 1 or 0, tells the SAS Layer to run in Direct Mode.\n"
  31. "\tThe mvsas SAS LLDD supports both modes.\n"
  32. "\tDefault: 1 (Direct Mode).\n");
  33. int interrupt_coalescing = 0x80;
  34. static struct scsi_transport_template *mvs_stt;
  35. struct kmem_cache *mvs_task_list_cache;
  36. static const struct mvs_chip_info mvs_chips[] = {
  37. [chip_6320] = { 1, 2, 0x400, 17, 16, 9, &mvs_64xx_dispatch, },
  38. [chip_6440] = { 1, 4, 0x400, 17, 16, 9, &mvs_64xx_dispatch, },
  39. [chip_6485] = { 1, 8, 0x800, 33, 32, 10, &mvs_64xx_dispatch, },
  40. [chip_9180] = { 2, 4, 0x800, 17, 64, 9, &mvs_94xx_dispatch, },
  41. [chip_9480] = { 2, 4, 0x800, 17, 64, 9, &mvs_94xx_dispatch, },
  42. [chip_9445] = { 1, 4, 0x800, 17, 64, 11, &mvs_94xx_dispatch, },
  43. [chip_9485] = { 2, 4, 0x800, 17, 64, 11, &mvs_94xx_dispatch, },
  44. [chip_1300] = { 1, 4, 0x400, 17, 16, 9, &mvs_64xx_dispatch, },
  45. [chip_1320] = { 2, 4, 0x800, 17, 64, 9, &mvs_94xx_dispatch, },
  46. };
  47. struct device_attribute *mvst_host_attrs[];
  48. #define SOC_SAS_NUM 2
  49. #define SG_MX 64
  50. static struct scsi_host_template mvs_sht = {
  51. .module = THIS_MODULE,
  52. .name = DRV_NAME,
  53. .queuecommand = sas_queuecommand,
  54. .target_alloc = sas_target_alloc,
  55. .slave_configure = mvs_slave_configure,
  56. .slave_destroy = sas_slave_destroy,
  57. .scan_finished = mvs_scan_finished,
  58. .scan_start = mvs_scan_start,
  59. .change_queue_depth = sas_change_queue_depth,
  60. .change_queue_type = sas_change_queue_type,
  61. .bios_param = sas_bios_param,
  62. .can_queue = 1,
  63. .cmd_per_lun = 1,
  64. .this_id = -1,
  65. .sg_tablesize = SG_MX,
  66. .max_sectors = SCSI_DEFAULT_MAX_SECTORS,
  67. .use_clustering = ENABLE_CLUSTERING,
  68. .eh_device_reset_handler = sas_eh_device_reset_handler,
  69. .eh_bus_reset_handler = sas_eh_bus_reset_handler,
  70. .slave_alloc = mvs_slave_alloc,
  71. .target_destroy = sas_target_destroy,
  72. .ioctl = sas_ioctl,
  73. .shost_attrs = mvst_host_attrs,
  74. };
  75. static struct sas_domain_function_template mvs_transport_ops = {
  76. .lldd_dev_found = mvs_dev_found,
  77. .lldd_dev_gone = mvs_dev_gone,
  78. .lldd_execute_task = mvs_queue_command,
  79. .lldd_control_phy = mvs_phy_control,
  80. .lldd_abort_task = mvs_abort_task,
  81. .lldd_abort_task_set = mvs_abort_task_set,
  82. .lldd_clear_aca = mvs_clear_aca,
  83. .lldd_clear_task_set = mvs_clear_task_set,
  84. .lldd_I_T_nexus_reset = mvs_I_T_nexus_reset,
  85. .lldd_lu_reset = mvs_lu_reset,
  86. .lldd_query_task = mvs_query_task,
  87. .lldd_port_formed = mvs_port_formed,
  88. .lldd_port_deformed = mvs_port_deformed,
  89. };
  90. static void __devinit mvs_phy_init(struct mvs_info *mvi, int phy_id)
  91. {
  92. struct mvs_phy *phy = &mvi->phy[phy_id];
  93. struct asd_sas_phy *sas_phy = &phy->sas_phy;
  94. phy->mvi = mvi;
  95. init_timer(&phy->timer);
  96. sas_phy->enabled = (phy_id < mvi->chip->n_phy) ? 1 : 0;
  97. sas_phy->class = SAS;
  98. sas_phy->iproto = SAS_PROTOCOL_ALL;
  99. sas_phy->tproto = 0;
  100. sas_phy->type = PHY_TYPE_PHYSICAL;
  101. sas_phy->role = PHY_ROLE_INITIATOR;
  102. sas_phy->oob_mode = OOB_NOT_CONNECTED;
  103. sas_phy->linkrate = SAS_LINK_RATE_UNKNOWN;
  104. sas_phy->id = phy_id;
  105. sas_phy->sas_addr = &mvi->sas_addr[0];
  106. sas_phy->frame_rcvd = &phy->frame_rcvd[0];
  107. sas_phy->ha = (struct sas_ha_struct *)mvi->shost->hostdata;
  108. sas_phy->lldd_phy = phy;
  109. }
  110. static void mvs_free(struct mvs_info *mvi)
  111. {
  112. struct mvs_wq *mwq;
  113. int slot_nr;
  114. if (!mvi)
  115. return;
  116. if (mvi->flags & MVF_FLAG_SOC)
  117. slot_nr = MVS_SOC_SLOTS;
  118. else
  119. slot_nr = MVS_SLOTS;
  120. if (mvi->dma_pool)
  121. pci_pool_destroy(mvi->dma_pool);
  122. if (mvi->tx)
  123. dma_free_coherent(mvi->dev,
  124. sizeof(*mvi->tx) * MVS_CHIP_SLOT_SZ,
  125. mvi->tx, mvi->tx_dma);
  126. if (mvi->rx_fis)
  127. dma_free_coherent(mvi->dev, MVS_RX_FISL_SZ,
  128. mvi->rx_fis, mvi->rx_fis_dma);
  129. if (mvi->rx)
  130. dma_free_coherent(mvi->dev,
  131. sizeof(*mvi->rx) * (MVS_RX_RING_SZ + 1),
  132. mvi->rx, mvi->rx_dma);
  133. if (mvi->slot)
  134. dma_free_coherent(mvi->dev,
  135. sizeof(*mvi->slot) * slot_nr,
  136. mvi->slot, mvi->slot_dma);
  137. if (mvi->bulk_buffer)
  138. dma_free_coherent(mvi->dev, TRASH_BUCKET_SIZE,
  139. mvi->bulk_buffer, mvi->bulk_buffer_dma);
  140. if (mvi->bulk_buffer1)
  141. dma_free_coherent(mvi->dev, TRASH_BUCKET_SIZE,
  142. mvi->bulk_buffer1, mvi->bulk_buffer_dma1);
  143. MVS_CHIP_DISP->chip_iounmap(mvi);
  144. if (mvi->shost)
  145. scsi_host_put(mvi->shost);
  146. list_for_each_entry(mwq, &mvi->wq_list, entry)
  147. cancel_delayed_work(&mwq->work_q);
  148. kfree(mvi);
  149. }
  150. #ifdef MVS_USE_TASKLET
  151. struct tasklet_struct mv_tasklet;
  152. static void mvs_tasklet(unsigned long opaque)
  153. {
  154. unsigned long flags;
  155. u32 stat;
  156. u16 core_nr, i = 0;
  157. struct mvs_info *mvi;
  158. struct sas_ha_struct *sha = (struct sas_ha_struct *)opaque;
  159. core_nr = ((struct mvs_prv_info *)sha->lldd_ha)->n_host;
  160. mvi = ((struct mvs_prv_info *)sha->lldd_ha)->mvi[0];
  161. if (unlikely(!mvi))
  162. BUG_ON(1);
  163. for (i = 0; i < core_nr; i++) {
  164. mvi = ((struct mvs_prv_info *)sha->lldd_ha)->mvi[i];
  165. stat = MVS_CHIP_DISP->isr_status(mvi, mvi->irq);
  166. if (stat)
  167. MVS_CHIP_DISP->isr(mvi, mvi->irq, stat);
  168. }
  169. }
  170. #endif
  171. static irqreturn_t mvs_interrupt(int irq, void *opaque)
  172. {
  173. u32 core_nr, i = 0;
  174. u32 stat;
  175. struct mvs_info *mvi;
  176. struct sas_ha_struct *sha = opaque;
  177. core_nr = ((struct mvs_prv_info *)sha->lldd_ha)->n_host;
  178. mvi = ((struct mvs_prv_info *)sha->lldd_ha)->mvi[0];
  179. if (unlikely(!mvi))
  180. return IRQ_NONE;
  181. stat = MVS_CHIP_DISP->isr_status(mvi, irq);
  182. if (!stat)
  183. return IRQ_NONE;
  184. #ifdef MVS_USE_TASKLET
  185. tasklet_schedule(&mv_tasklet);
  186. #else
  187. for (i = 0; i < core_nr; i++) {
  188. mvi = ((struct mvs_prv_info *)sha->lldd_ha)->mvi[i];
  189. MVS_CHIP_DISP->isr(mvi, irq, stat);
  190. }
  191. #endif
  192. return IRQ_HANDLED;
  193. }
  194. static int __devinit mvs_alloc(struct mvs_info *mvi, struct Scsi_Host *shost)
  195. {
  196. int i = 0, slot_nr;
  197. char pool_name[32];
  198. if (mvi->flags & MVF_FLAG_SOC)
  199. slot_nr = MVS_SOC_SLOTS;
  200. else
  201. slot_nr = MVS_SLOTS;
  202. spin_lock_init(&mvi->lock);
  203. for (i = 0; i < mvi->chip->n_phy; i++) {
  204. mvs_phy_init(mvi, i);
  205. mvi->port[i].wide_port_phymap = 0;
  206. mvi->port[i].port_attached = 0;
  207. INIT_LIST_HEAD(&mvi->port[i].list);
  208. }
  209. for (i = 0; i < MVS_MAX_DEVICES; i++) {
  210. mvi->devices[i].taskfileset = MVS_ID_NOT_MAPPED;
  211. mvi->devices[i].dev_type = NO_DEVICE;
  212. mvi->devices[i].device_id = i;
  213. mvi->devices[i].dev_status = MVS_DEV_NORMAL;
  214. init_timer(&mvi->devices[i].timer);
  215. }
  216. /*
  217. * alloc and init our DMA areas
  218. */
  219. mvi->tx = dma_alloc_coherent(mvi->dev,
  220. sizeof(*mvi->tx) * MVS_CHIP_SLOT_SZ,
  221. &mvi->tx_dma, GFP_KERNEL);
  222. if (!mvi->tx)
  223. goto err_out;
  224. memset(mvi->tx, 0, sizeof(*mvi->tx) * MVS_CHIP_SLOT_SZ);
  225. mvi->rx_fis = dma_alloc_coherent(mvi->dev, MVS_RX_FISL_SZ,
  226. &mvi->rx_fis_dma, GFP_KERNEL);
  227. if (!mvi->rx_fis)
  228. goto err_out;
  229. memset(mvi->rx_fis, 0, MVS_RX_FISL_SZ);
  230. mvi->rx = dma_alloc_coherent(mvi->dev,
  231. sizeof(*mvi->rx) * (MVS_RX_RING_SZ + 1),
  232. &mvi->rx_dma, GFP_KERNEL);
  233. if (!mvi->rx)
  234. goto err_out;
  235. memset(mvi->rx, 0, sizeof(*mvi->rx) * (MVS_RX_RING_SZ + 1));
  236. mvi->rx[0] = cpu_to_le32(0xfff);
  237. mvi->rx_cons = 0xfff;
  238. mvi->slot = dma_alloc_coherent(mvi->dev,
  239. sizeof(*mvi->slot) * slot_nr,
  240. &mvi->slot_dma, GFP_KERNEL);
  241. if (!mvi->slot)
  242. goto err_out;
  243. memset(mvi->slot, 0, sizeof(*mvi->slot) * slot_nr);
  244. mvi->bulk_buffer = dma_alloc_coherent(mvi->dev,
  245. TRASH_BUCKET_SIZE,
  246. &mvi->bulk_buffer_dma, GFP_KERNEL);
  247. if (!mvi->bulk_buffer)
  248. goto err_out;
  249. mvi->bulk_buffer1 = dma_alloc_coherent(mvi->dev,
  250. TRASH_BUCKET_SIZE,
  251. &mvi->bulk_buffer_dma1, GFP_KERNEL);
  252. if (!mvi->bulk_buffer1)
  253. goto err_out;
  254. sprintf(pool_name, "%s%d", "mvs_dma_pool", mvi->id);
  255. mvi->dma_pool = pci_pool_create(pool_name, mvi->pdev, MVS_SLOT_BUF_SZ, 16, 0);
  256. if (!mvi->dma_pool) {
  257. printk(KERN_DEBUG "failed to create dma pool %s.\n", pool_name);
  258. goto err_out;
  259. }
  260. mvi->tags_num = slot_nr;
  261. /* Initialize tags */
  262. mvs_tag_init(mvi);
  263. return 0;
  264. err_out:
  265. return 1;
  266. }
  267. int mvs_ioremap(struct mvs_info *mvi, int bar, int bar_ex)
  268. {
  269. unsigned long res_start, res_len, res_flag, res_flag_ex = 0;
  270. struct pci_dev *pdev = mvi->pdev;
  271. if (bar_ex != -1) {
  272. /*
  273. * ioremap main and peripheral registers
  274. */
  275. res_start = pci_resource_start(pdev, bar_ex);
  276. res_len = pci_resource_len(pdev, bar_ex);
  277. if (!res_start || !res_len)
  278. goto err_out;
  279. res_flag_ex = pci_resource_flags(pdev, bar_ex);
  280. if (res_flag_ex & IORESOURCE_MEM) {
  281. if (res_flag_ex & IORESOURCE_CACHEABLE)
  282. mvi->regs_ex = ioremap(res_start, res_len);
  283. else
  284. mvi->regs_ex = ioremap_nocache(res_start,
  285. res_len);
  286. } else
  287. mvi->regs_ex = (void *)res_start;
  288. if (!mvi->regs_ex)
  289. goto err_out;
  290. }
  291. res_start = pci_resource_start(pdev, bar);
  292. res_len = pci_resource_len(pdev, bar);
  293. if (!res_start || !res_len)
  294. goto err_out;
  295. res_flag = pci_resource_flags(pdev, bar);
  296. if (res_flag & IORESOURCE_CACHEABLE)
  297. mvi->regs = ioremap(res_start, res_len);
  298. else
  299. mvi->regs = ioremap_nocache(res_start, res_len);
  300. if (!mvi->regs) {
  301. if (mvi->regs_ex && (res_flag_ex & IORESOURCE_MEM))
  302. iounmap(mvi->regs_ex);
  303. mvi->regs_ex = NULL;
  304. goto err_out;
  305. }
  306. return 0;
  307. err_out:
  308. return -1;
  309. }
  310. void mvs_iounmap(void __iomem *regs)
  311. {
  312. iounmap(regs);
  313. }
  314. static struct mvs_info *__devinit mvs_pci_alloc(struct pci_dev *pdev,
  315. const struct pci_device_id *ent,
  316. struct Scsi_Host *shost, unsigned int id)
  317. {
  318. struct mvs_info *mvi;
  319. struct sas_ha_struct *sha = SHOST_TO_SAS_HA(shost);
  320. mvi = kzalloc(sizeof(*mvi) + MVS_SLOTS * sizeof(struct mvs_slot_info),
  321. GFP_KERNEL);
  322. if (!mvi)
  323. return NULL;
  324. mvi->pdev = pdev;
  325. mvi->dev = &pdev->dev;
  326. mvi->chip_id = ent->driver_data;
  327. mvi->chip = &mvs_chips[mvi->chip_id];
  328. INIT_LIST_HEAD(&mvi->wq_list);
  329. mvi->irq = pdev->irq;
  330. ((struct mvs_prv_info *)sha->lldd_ha)->mvi[id] = mvi;
  331. ((struct mvs_prv_info *)sha->lldd_ha)->n_phy = mvi->chip->n_phy;
  332. mvi->id = id;
  333. mvi->sas = sha;
  334. mvi->shost = shost;
  335. #ifdef MVS_USE_TASKLET
  336. tasklet_init(&mv_tasklet, mvs_tasklet, (unsigned long)sha);
  337. #endif
  338. if (MVS_CHIP_DISP->chip_ioremap(mvi))
  339. goto err_out;
  340. if (!mvs_alloc(mvi, shost))
  341. return mvi;
  342. err_out:
  343. mvs_free(mvi);
  344. return NULL;
  345. }
  346. /* move to PCI layer or libata core? */
  347. static int pci_go_64(struct pci_dev *pdev)
  348. {
  349. int rc;
  350. if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
  351. rc = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
  352. if (rc) {
  353. rc = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
  354. if (rc) {
  355. dev_printk(KERN_ERR, &pdev->dev,
  356. "64-bit DMA enable failed\n");
  357. return rc;
  358. }
  359. }
  360. } else {
  361. rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
  362. if (rc) {
  363. dev_printk(KERN_ERR, &pdev->dev,
  364. "32-bit DMA enable failed\n");
  365. return rc;
  366. }
  367. rc = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
  368. if (rc) {
  369. dev_printk(KERN_ERR, &pdev->dev,
  370. "32-bit consistent DMA enable failed\n");
  371. return rc;
  372. }
  373. }
  374. return rc;
  375. }
  376. static int __devinit mvs_prep_sas_ha_init(struct Scsi_Host *shost,
  377. const struct mvs_chip_info *chip_info)
  378. {
  379. int phy_nr, port_nr; unsigned short core_nr;
  380. struct asd_sas_phy **arr_phy;
  381. struct asd_sas_port **arr_port;
  382. struct sas_ha_struct *sha = SHOST_TO_SAS_HA(shost);
  383. core_nr = chip_info->n_host;
  384. phy_nr = core_nr * chip_info->n_phy;
  385. port_nr = phy_nr;
  386. memset(sha, 0x00, sizeof(struct sas_ha_struct));
  387. arr_phy = kcalloc(phy_nr, sizeof(void *), GFP_KERNEL);
  388. arr_port = kcalloc(port_nr, sizeof(void *), GFP_KERNEL);
  389. if (!arr_phy || !arr_port)
  390. goto exit_free;
  391. sha->sas_phy = arr_phy;
  392. sha->sas_port = arr_port;
  393. sha->core.shost = shost;
  394. sha->lldd_ha = kzalloc(sizeof(struct mvs_prv_info), GFP_KERNEL);
  395. if (!sha->lldd_ha)
  396. goto exit_free;
  397. ((struct mvs_prv_info *)sha->lldd_ha)->n_host = core_nr;
  398. shost->transportt = mvs_stt;
  399. shost->max_id = 128;
  400. shost->max_lun = ~0;
  401. shost->max_channel = 1;
  402. shost->max_cmd_len = 16;
  403. return 0;
  404. exit_free:
  405. kfree(arr_phy);
  406. kfree(arr_port);
  407. return -1;
  408. }
  409. static void __devinit mvs_post_sas_ha_init(struct Scsi_Host *shost,
  410. const struct mvs_chip_info *chip_info)
  411. {
  412. int can_queue, i = 0, j = 0;
  413. struct mvs_info *mvi = NULL;
  414. struct sas_ha_struct *sha = SHOST_TO_SAS_HA(shost);
  415. unsigned short nr_core = ((struct mvs_prv_info *)sha->lldd_ha)->n_host;
  416. for (j = 0; j < nr_core; j++) {
  417. mvi = ((struct mvs_prv_info *)sha->lldd_ha)->mvi[j];
  418. for (i = 0; i < chip_info->n_phy; i++) {
  419. sha->sas_phy[j * chip_info->n_phy + i] =
  420. &mvi->phy[i].sas_phy;
  421. sha->sas_port[j * chip_info->n_phy + i] =
  422. &mvi->port[i].sas_port;
  423. }
  424. }
  425. sha->sas_ha_name = DRV_NAME;
  426. sha->dev = mvi->dev;
  427. sha->lldd_module = THIS_MODULE;
  428. sha->sas_addr = &mvi->sas_addr[0];
  429. sha->num_phys = nr_core * chip_info->n_phy;
  430. sha->lldd_max_execute_num = lldd_max_execute_num;
  431. if (mvi->flags & MVF_FLAG_SOC)
  432. can_queue = MVS_SOC_CAN_QUEUE;
  433. else
  434. can_queue = MVS_CAN_QUEUE;
  435. sha->lldd_queue_size = can_queue;
  436. shost->can_queue = can_queue;
  437. mvi->shost->cmd_per_lun = MVS_SLOTS/sha->num_phys;
  438. sha->core.shost = mvi->shost;
  439. }
  440. static void mvs_init_sas_add(struct mvs_info *mvi)
  441. {
  442. u8 i;
  443. for (i = 0; i < mvi->chip->n_phy; i++) {
  444. mvi->phy[i].dev_sas_addr = 0x5005043011ab0000ULL;
  445. mvi->phy[i].dev_sas_addr =
  446. cpu_to_be64((u64)(*(u64 *)&mvi->phy[i].dev_sas_addr));
  447. }
  448. memcpy(mvi->sas_addr, &mvi->phy[0].dev_sas_addr, SAS_ADDR_SIZE);
  449. }
  450. static int __devinit mvs_pci_init(struct pci_dev *pdev,
  451. const struct pci_device_id *ent)
  452. {
  453. unsigned int rc, nhost = 0;
  454. struct mvs_info *mvi;
  455. irq_handler_t irq_handler = mvs_interrupt;
  456. struct Scsi_Host *shost = NULL;
  457. const struct mvs_chip_info *chip;
  458. dev_printk(KERN_INFO, &pdev->dev,
  459. "mvsas: driver version %s\n", DRV_VERSION);
  460. rc = pci_enable_device(pdev);
  461. if (rc)
  462. goto err_out_enable;
  463. pci_set_master(pdev);
  464. rc = pci_request_regions(pdev, DRV_NAME);
  465. if (rc)
  466. goto err_out_disable;
  467. rc = pci_go_64(pdev);
  468. if (rc)
  469. goto err_out_regions;
  470. shost = scsi_host_alloc(&mvs_sht, sizeof(void *));
  471. if (!shost) {
  472. rc = -ENOMEM;
  473. goto err_out_regions;
  474. }
  475. chip = &mvs_chips[ent->driver_data];
  476. SHOST_TO_SAS_HA(shost) =
  477. kcalloc(1, sizeof(struct sas_ha_struct), GFP_KERNEL);
  478. if (!SHOST_TO_SAS_HA(shost)) {
  479. kfree(shost);
  480. rc = -ENOMEM;
  481. goto err_out_regions;
  482. }
  483. rc = mvs_prep_sas_ha_init(shost, chip);
  484. if (rc) {
  485. kfree(shost);
  486. rc = -ENOMEM;
  487. goto err_out_regions;
  488. }
  489. pci_set_drvdata(pdev, SHOST_TO_SAS_HA(shost));
  490. do {
  491. mvi = mvs_pci_alloc(pdev, ent, shost, nhost);
  492. if (!mvi) {
  493. rc = -ENOMEM;
  494. goto err_out_regions;
  495. }
  496. memset(&mvi->hba_info_param, 0xFF,
  497. sizeof(struct hba_info_page));
  498. mvs_init_sas_add(mvi);
  499. mvi->instance = nhost;
  500. rc = MVS_CHIP_DISP->chip_init(mvi);
  501. if (rc) {
  502. mvs_free(mvi);
  503. goto err_out_regions;
  504. }
  505. nhost++;
  506. } while (nhost < chip->n_host);
  507. #ifdef MVS_USE_TASKLET
  508. tasklet_init(&mv_tasklet, mvs_tasklet,
  509. (unsigned long)SHOST_TO_SAS_HA(shost));
  510. #endif
  511. mvs_post_sas_ha_init(shost, chip);
  512. rc = scsi_add_host(shost, &pdev->dev);
  513. if (rc)
  514. goto err_out_shost;
  515. rc = sas_register_ha(SHOST_TO_SAS_HA(shost));
  516. if (rc)
  517. goto err_out_shost;
  518. rc = request_irq(pdev->irq, irq_handler, IRQF_SHARED,
  519. DRV_NAME, SHOST_TO_SAS_HA(shost));
  520. if (rc)
  521. goto err_not_sas;
  522. MVS_CHIP_DISP->interrupt_enable(mvi);
  523. scsi_scan_host(mvi->shost);
  524. return 0;
  525. err_not_sas:
  526. sas_unregister_ha(SHOST_TO_SAS_HA(shost));
  527. err_out_shost:
  528. scsi_remove_host(mvi->shost);
  529. err_out_regions:
  530. pci_release_regions(pdev);
  531. err_out_disable:
  532. pci_disable_device(pdev);
  533. err_out_enable:
  534. return rc;
  535. }
  536. static void __devexit mvs_pci_remove(struct pci_dev *pdev)
  537. {
  538. unsigned short core_nr, i = 0;
  539. struct sas_ha_struct *sha = pci_get_drvdata(pdev);
  540. struct mvs_info *mvi = NULL;
  541. core_nr = ((struct mvs_prv_info *)sha->lldd_ha)->n_host;
  542. mvi = ((struct mvs_prv_info *)sha->lldd_ha)->mvi[0];
  543. #ifdef MVS_USE_TASKLET
  544. tasklet_kill(&mv_tasklet);
  545. #endif
  546. pci_set_drvdata(pdev, NULL);
  547. sas_unregister_ha(sha);
  548. sas_remove_host(mvi->shost);
  549. scsi_remove_host(mvi->shost);
  550. MVS_CHIP_DISP->interrupt_disable(mvi);
  551. free_irq(mvi->irq, sha);
  552. for (i = 0; i < core_nr; i++) {
  553. mvi = ((struct mvs_prv_info *)sha->lldd_ha)->mvi[i];
  554. mvs_free(mvi);
  555. }
  556. kfree(sha->sas_phy);
  557. kfree(sha->sas_port);
  558. kfree(sha);
  559. pci_release_regions(pdev);
  560. pci_disable_device(pdev);
  561. return;
  562. }
  563. static struct pci_device_id __devinitdata mvs_pci_table[] = {
  564. { PCI_VDEVICE(MARVELL, 0x6320), chip_6320 },
  565. { PCI_VDEVICE(MARVELL, 0x6340), chip_6440 },
  566. {
  567. .vendor = PCI_VENDOR_ID_MARVELL,
  568. .device = 0x6440,
  569. .subvendor = PCI_ANY_ID,
  570. .subdevice = 0x6480,
  571. .class = 0,
  572. .class_mask = 0,
  573. .driver_data = chip_6485,
  574. },
  575. { PCI_VDEVICE(MARVELL, 0x6440), chip_6440 },
  576. { PCI_VDEVICE(MARVELL, 0x6485), chip_6485 },
  577. { PCI_VDEVICE(MARVELL, 0x9480), chip_9480 },
  578. { PCI_VDEVICE(MARVELL, 0x9180), chip_9180 },
  579. { PCI_VDEVICE(ARECA, PCI_DEVICE_ID_ARECA_1300), chip_1300 },
  580. { PCI_VDEVICE(ARECA, PCI_DEVICE_ID_ARECA_1320), chip_1320 },
  581. { PCI_VDEVICE(ADAPTEC2, 0x0450), chip_6440 },
  582. { PCI_VDEVICE(TTI, 0x2710), chip_9480 },
  583. { PCI_VDEVICE(TTI, 0x2720), chip_9480 },
  584. { PCI_VDEVICE(TTI, 0x2721), chip_9480 },
  585. { PCI_VDEVICE(TTI, 0x2722), chip_9480 },
  586. { PCI_VDEVICE(TTI, 0x2740), chip_9480 },
  587. { PCI_VDEVICE(TTI, 0x2744), chip_9480 },
  588. { PCI_VDEVICE(TTI, 0x2760), chip_9480 },
  589. {
  590. .vendor = 0x1b4b,
  591. .device = 0x9445,
  592. .subvendor = PCI_ANY_ID,
  593. .subdevice = 0x9480,
  594. .class = 0,
  595. .class_mask = 0,
  596. .driver_data = chip_9445,
  597. },
  598. {
  599. .vendor = 0x1b4b,
  600. .device = 0x9485,
  601. .subvendor = PCI_ANY_ID,
  602. .subdevice = 0x9480,
  603. .class = 0,
  604. .class_mask = 0,
  605. .driver_data = chip_9485,
  606. },
  607. { } /* terminate list */
  608. };
  609. static struct pci_driver mvs_pci_driver = {
  610. .name = DRV_NAME,
  611. .id_table = mvs_pci_table,
  612. .probe = mvs_pci_init,
  613. .remove = __devexit_p(mvs_pci_remove),
  614. };
  615. static ssize_t
  616. mvs_show_driver_version(struct device *cdev,
  617. struct device_attribute *attr, char *buffer)
  618. {
  619. return snprintf(buffer, PAGE_SIZE, "%s\n", DRV_VERSION);
  620. }
  621. static DEVICE_ATTR(driver_version,
  622. S_IRUGO,
  623. mvs_show_driver_version,
  624. NULL);
  625. static ssize_t
  626. mvs_store_interrupt_coalescing(struct device *cdev,
  627. struct device_attribute *attr,
  628. const char *buffer, size_t size)
  629. {
  630. int val = 0;
  631. struct mvs_info *mvi = NULL;
  632. struct Scsi_Host *shost = class_to_shost(cdev);
  633. struct sas_ha_struct *sha = SHOST_TO_SAS_HA(shost);
  634. u8 i, core_nr;
  635. if (buffer == NULL)
  636. return size;
  637. if (sscanf(buffer, "%d", &val) != 1)
  638. return -EINVAL;
  639. if (val >= 0x10000) {
  640. mv_dprintk("interrupt coalescing timer %d us is"
  641. "too long\n", val);
  642. return strlen(buffer);
  643. }
  644. interrupt_coalescing = val;
  645. core_nr = ((struct mvs_prv_info *)sha->lldd_ha)->n_host;
  646. mvi = ((struct mvs_prv_info *)sha->lldd_ha)->mvi[0];
  647. if (unlikely(!mvi))
  648. return -EINVAL;
  649. for (i = 0; i < core_nr; i++) {
  650. mvi = ((struct mvs_prv_info *)sha->lldd_ha)->mvi[i];
  651. if (MVS_CHIP_DISP->tune_interrupt)
  652. MVS_CHIP_DISP->tune_interrupt(mvi,
  653. interrupt_coalescing);
  654. }
  655. mv_dprintk("set interrupt coalescing time to %d us\n",
  656. interrupt_coalescing);
  657. return strlen(buffer);
  658. }
  659. static ssize_t mvs_show_interrupt_coalescing(struct device *cdev,
  660. struct device_attribute *attr, char *buffer)
  661. {
  662. return snprintf(buffer, PAGE_SIZE, "%d\n", interrupt_coalescing);
  663. }
  664. static DEVICE_ATTR(interrupt_coalescing,
  665. S_IRUGO|S_IWUSR,
  666. mvs_show_interrupt_coalescing,
  667. mvs_store_interrupt_coalescing);
  668. /* task handler */
  669. struct task_struct *mvs_th;
  670. static int __init mvs_init(void)
  671. {
  672. int rc;
  673. mvs_stt = sas_domain_attach_transport(&mvs_transport_ops);
  674. if (!mvs_stt)
  675. return -ENOMEM;
  676. mvs_task_list_cache = kmem_cache_create("mvs_task_list", sizeof(struct mvs_task_list),
  677. 0, SLAB_HWCACHE_ALIGN, NULL);
  678. if (!mvs_task_list_cache) {
  679. rc = -ENOMEM;
  680. mv_printk("%s: mvs_task_list_cache alloc failed! \n", __func__);
  681. goto err_out;
  682. }
  683. rc = pci_register_driver(&mvs_pci_driver);
  684. if (rc)
  685. goto err_out;
  686. return 0;
  687. err_out:
  688. sas_release_transport(mvs_stt);
  689. return rc;
  690. }
  691. static void __exit mvs_exit(void)
  692. {
  693. pci_unregister_driver(&mvs_pci_driver);
  694. sas_release_transport(mvs_stt);
  695. kmem_cache_destroy(mvs_task_list_cache);
  696. }
  697. struct device_attribute *mvst_host_attrs[] = {
  698. &dev_attr_driver_version,
  699. &dev_attr_interrupt_coalescing,
  700. NULL,
  701. };
  702. module_init(mvs_init);
  703. module_exit(mvs_exit);
  704. MODULE_AUTHOR("Jeff Garzik <jgarzik@pobox.com>");
  705. MODULE_DESCRIPTION("Marvell 88SE6440 SAS/SATA controller driver");
  706. MODULE_VERSION(DRV_VERSION);
  707. MODULE_LICENSE("GPL");
  708. #ifdef CONFIG_PCI
  709. MODULE_DEVICE_TABLE(pci, mvs_pci_table);
  710. #endif