xfs_buf.c 44 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943
  1. /*
  2. * Copyright (c) 2000-2005 Silicon Graphics, Inc. All Rights Reserved.
  3. *
  4. * This program is free software; you can redistribute it and/or modify it
  5. * under the terms of version 2 of the GNU General Public License as
  6. * published by the Free Software Foundation.
  7. *
  8. * This program is distributed in the hope that it would be useful, but
  9. * WITHOUT ANY WARRANTY; without even the implied warranty of
  10. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
  11. *
  12. * Further, this software is distributed without any warranty that it is
  13. * free of the rightful claim of any third person regarding infringement
  14. * or the like. Any license provided herein, whether implied or
  15. * otherwise, applies only to this software file. Patent licenses, if
  16. * any, provided herein do not apply to combinations of this program with
  17. * other software, or any other product whatsoever.
  18. *
  19. * You should have received a copy of the GNU General Public License along
  20. * with this program; if not, write the Free Software Foundation, Inc., 59
  21. * Temple Place - Suite 330, Boston MA 02111-1307, USA.
  22. *
  23. * Contact information: Silicon Graphics, Inc., 1600 Amphitheatre Pkwy,
  24. * Mountain View, CA 94043, or:
  25. *
  26. * http://www.sgi.com
  27. *
  28. * For further information regarding this notice, see:
  29. *
  30. * http://oss.sgi.com/projects/GenInfo/SGIGPLNoticeExplan/
  31. */
  32. /*
  33. * The xfs_buf.c code provides an abstract buffer cache model on top
  34. * of the Linux page cache. Cached metadata blocks for a file system
  35. * are hashed to the inode for the block device. xfs_buf.c assembles
  36. * buffers (xfs_buf_t) on demand to aggregate such cached pages for I/O.
  37. *
  38. * Written by Steve Lord, Jim Mostek, Russell Cattelan
  39. * and Rajagopal Ananthanarayanan ("ananth") at SGI.
  40. *
  41. */
  42. #include <linux/stddef.h>
  43. #include <linux/errno.h>
  44. #include <linux/slab.h>
  45. #include <linux/pagemap.h>
  46. #include <linux/init.h>
  47. #include <linux/vmalloc.h>
  48. #include <linux/bio.h>
  49. #include <linux/sysctl.h>
  50. #include <linux/proc_fs.h>
  51. #include <linux/workqueue.h>
  52. #include <linux/percpu.h>
  53. #include <linux/blkdev.h>
  54. #include <linux/hash.h>
  55. #include <linux/kthread.h>
  56. #include "xfs_linux.h"
  57. /*
  58. * File wide globals
  59. */
  60. STATIC kmem_cache_t *pagebuf_zone;
  61. STATIC kmem_shaker_t pagebuf_shake;
  62. STATIC int xfsbufd_wakeup(int, gfp_t);
  63. STATIC void pagebuf_delwri_queue(xfs_buf_t *, int);
  64. STATIC struct workqueue_struct *xfslogd_workqueue;
  65. struct workqueue_struct *xfsdatad_workqueue;
  66. /*
  67. * Pagebuf debugging
  68. */
  69. #ifdef PAGEBUF_TRACE
  70. void
  71. pagebuf_trace(
  72. xfs_buf_t *pb,
  73. char *id,
  74. void *data,
  75. void *ra)
  76. {
  77. ktrace_enter(pagebuf_trace_buf,
  78. pb, id,
  79. (void *)(unsigned long)pb->pb_flags,
  80. (void *)(unsigned long)pb->pb_hold.counter,
  81. (void *)(unsigned long)pb->pb_sema.count.counter,
  82. (void *)current,
  83. data, ra,
  84. (void *)(unsigned long)((pb->pb_file_offset>>32) & 0xffffffff),
  85. (void *)(unsigned long)(pb->pb_file_offset & 0xffffffff),
  86. (void *)(unsigned long)pb->pb_buffer_length,
  87. NULL, NULL, NULL, NULL, NULL);
  88. }
  89. ktrace_t *pagebuf_trace_buf;
  90. #define PAGEBUF_TRACE_SIZE 4096
  91. #define PB_TRACE(pb, id, data) \
  92. pagebuf_trace(pb, id, (void *)data, (void *)__builtin_return_address(0))
  93. #else
  94. #define PB_TRACE(pb, id, data) do { } while (0)
  95. #endif
  96. #ifdef PAGEBUF_LOCK_TRACKING
  97. # define PB_SET_OWNER(pb) ((pb)->pb_last_holder = current->pid)
  98. # define PB_CLEAR_OWNER(pb) ((pb)->pb_last_holder = -1)
  99. # define PB_GET_OWNER(pb) ((pb)->pb_last_holder)
  100. #else
  101. # define PB_SET_OWNER(pb) do { } while (0)
  102. # define PB_CLEAR_OWNER(pb) do { } while (0)
  103. # define PB_GET_OWNER(pb) do { } while (0)
  104. #endif
  105. /*
  106. * Pagebuf allocation / freeing.
  107. */
  108. #define pb_to_gfp(flags) \
  109. ((((flags) & PBF_READ_AHEAD) ? __GFP_NORETRY : \
  110. ((flags) & PBF_DONT_BLOCK) ? GFP_NOFS : GFP_KERNEL) | __GFP_NOWARN)
  111. #define pb_to_km(flags) \
  112. (((flags) & PBF_DONT_BLOCK) ? KM_NOFS : KM_SLEEP)
  113. #define pagebuf_allocate(flags) \
  114. kmem_zone_alloc(pagebuf_zone, pb_to_km(flags))
  115. #define pagebuf_deallocate(pb) \
  116. kmem_zone_free(pagebuf_zone, (pb));
  117. /*
  118. * Page Region interfaces.
  119. *
  120. * For pages in filesystems where the blocksize is smaller than the
  121. * pagesize, we use the page->private field (long) to hold a bitmap
  122. * of uptodate regions within the page.
  123. *
  124. * Each such region is "bytes per page / bits per long" bytes long.
  125. *
  126. * NBPPR == number-of-bytes-per-page-region
  127. * BTOPR == bytes-to-page-region (rounded up)
  128. * BTOPRT == bytes-to-page-region-truncated (rounded down)
  129. */
  130. #if (BITS_PER_LONG == 32)
  131. #define PRSHIFT (PAGE_CACHE_SHIFT - 5) /* (32 == 1<<5) */
  132. #elif (BITS_PER_LONG == 64)
  133. #define PRSHIFT (PAGE_CACHE_SHIFT - 6) /* (64 == 1<<6) */
  134. #else
  135. #error BITS_PER_LONG must be 32 or 64
  136. #endif
  137. #define NBPPR (PAGE_CACHE_SIZE/BITS_PER_LONG)
  138. #define BTOPR(b) (((unsigned int)(b) + (NBPPR - 1)) >> PRSHIFT)
  139. #define BTOPRT(b) (((unsigned int)(b) >> PRSHIFT))
  140. STATIC unsigned long
  141. page_region_mask(
  142. size_t offset,
  143. size_t length)
  144. {
  145. unsigned long mask;
  146. int first, final;
  147. first = BTOPR(offset);
  148. final = BTOPRT(offset + length - 1);
  149. first = min(first, final);
  150. mask = ~0UL;
  151. mask <<= BITS_PER_LONG - (final - first);
  152. mask >>= BITS_PER_LONG - (final);
  153. ASSERT(offset + length <= PAGE_CACHE_SIZE);
  154. ASSERT((final - first) < BITS_PER_LONG && (final - first) >= 0);
  155. return mask;
  156. }
  157. STATIC inline void
  158. set_page_region(
  159. struct page *page,
  160. size_t offset,
  161. size_t length)
  162. {
  163. set_page_private(page,
  164. page_private(page) | page_region_mask(offset, length));
  165. if (page_private(page) == ~0UL)
  166. SetPageUptodate(page);
  167. }
  168. STATIC inline int
  169. test_page_region(
  170. struct page *page,
  171. size_t offset,
  172. size_t length)
  173. {
  174. unsigned long mask = page_region_mask(offset, length);
  175. return (mask && (page_private(page) & mask) == mask);
  176. }
  177. /*
  178. * Mapping of multi-page buffers into contiguous virtual space
  179. */
  180. typedef struct a_list {
  181. void *vm_addr;
  182. struct a_list *next;
  183. } a_list_t;
  184. STATIC a_list_t *as_free_head;
  185. STATIC int as_list_len;
  186. STATIC DEFINE_SPINLOCK(as_lock);
  187. /*
  188. * Try to batch vunmaps because they are costly.
  189. */
  190. STATIC void
  191. free_address(
  192. void *addr)
  193. {
  194. a_list_t *aentry;
  195. aentry = kmalloc(sizeof(a_list_t), GFP_ATOMIC & ~__GFP_HIGH);
  196. if (likely(aentry)) {
  197. spin_lock(&as_lock);
  198. aentry->next = as_free_head;
  199. aentry->vm_addr = addr;
  200. as_free_head = aentry;
  201. as_list_len++;
  202. spin_unlock(&as_lock);
  203. } else {
  204. vunmap(addr);
  205. }
  206. }
  207. STATIC void
  208. purge_addresses(void)
  209. {
  210. a_list_t *aentry, *old;
  211. if (as_free_head == NULL)
  212. return;
  213. spin_lock(&as_lock);
  214. aentry = as_free_head;
  215. as_free_head = NULL;
  216. as_list_len = 0;
  217. spin_unlock(&as_lock);
  218. while ((old = aentry) != NULL) {
  219. vunmap(aentry->vm_addr);
  220. aentry = aentry->next;
  221. kfree(old);
  222. }
  223. }
  224. /*
  225. * Internal pagebuf object manipulation
  226. */
  227. STATIC void
  228. _pagebuf_initialize(
  229. xfs_buf_t *pb,
  230. xfs_buftarg_t *target,
  231. loff_t range_base,
  232. size_t range_length,
  233. page_buf_flags_t flags)
  234. {
  235. /*
  236. * We don't want certain flags to appear in pb->pb_flags.
  237. */
  238. flags &= ~(PBF_LOCK|PBF_MAPPED|PBF_DONT_BLOCK|PBF_READ_AHEAD);
  239. memset(pb, 0, sizeof(xfs_buf_t));
  240. atomic_set(&pb->pb_hold, 1);
  241. init_MUTEX_LOCKED(&pb->pb_iodonesema);
  242. INIT_LIST_HEAD(&pb->pb_list);
  243. INIT_LIST_HEAD(&pb->pb_hash_list);
  244. init_MUTEX_LOCKED(&pb->pb_sema); /* held, no waiters */
  245. PB_SET_OWNER(pb);
  246. pb->pb_target = target;
  247. pb->pb_file_offset = range_base;
  248. /*
  249. * Set buffer_length and count_desired to the same value initially.
  250. * I/O routines should use count_desired, which will be the same in
  251. * most cases but may be reset (e.g. XFS recovery).
  252. */
  253. pb->pb_buffer_length = pb->pb_count_desired = range_length;
  254. pb->pb_flags = flags | PBF_NONE;
  255. pb->pb_bn = XFS_BUF_DADDR_NULL;
  256. atomic_set(&pb->pb_pin_count, 0);
  257. init_waitqueue_head(&pb->pb_waiters);
  258. XFS_STATS_INC(pb_create);
  259. PB_TRACE(pb, "initialize", target);
  260. }
  261. /*
  262. * Allocate a page array capable of holding a specified number
  263. * of pages, and point the page buf at it.
  264. */
  265. STATIC int
  266. _pagebuf_get_pages(
  267. xfs_buf_t *pb,
  268. int page_count,
  269. page_buf_flags_t flags)
  270. {
  271. /* Make sure that we have a page list */
  272. if (pb->pb_pages == NULL) {
  273. pb->pb_offset = page_buf_poff(pb->pb_file_offset);
  274. pb->pb_page_count = page_count;
  275. if (page_count <= PB_PAGES) {
  276. pb->pb_pages = pb->pb_page_array;
  277. } else {
  278. pb->pb_pages = kmem_alloc(sizeof(struct page *) *
  279. page_count, pb_to_km(flags));
  280. if (pb->pb_pages == NULL)
  281. return -ENOMEM;
  282. }
  283. memset(pb->pb_pages, 0, sizeof(struct page *) * page_count);
  284. }
  285. return 0;
  286. }
  287. /*
  288. * Frees pb_pages if it was malloced.
  289. */
  290. STATIC void
  291. _pagebuf_free_pages(
  292. xfs_buf_t *bp)
  293. {
  294. if (bp->pb_pages != bp->pb_page_array) {
  295. kmem_free(bp->pb_pages,
  296. bp->pb_page_count * sizeof(struct page *));
  297. }
  298. }
  299. /*
  300. * Releases the specified buffer.
  301. *
  302. * The modification state of any associated pages is left unchanged.
  303. * The buffer most not be on any hash - use pagebuf_rele instead for
  304. * hashed and refcounted buffers
  305. */
  306. void
  307. pagebuf_free(
  308. xfs_buf_t *bp)
  309. {
  310. PB_TRACE(bp, "free", 0);
  311. ASSERT(list_empty(&bp->pb_hash_list));
  312. if (bp->pb_flags & _PBF_PAGE_CACHE) {
  313. uint i;
  314. if ((bp->pb_flags & PBF_MAPPED) && (bp->pb_page_count > 1))
  315. free_address(bp->pb_addr - bp->pb_offset);
  316. for (i = 0; i < bp->pb_page_count; i++)
  317. page_cache_release(bp->pb_pages[i]);
  318. _pagebuf_free_pages(bp);
  319. } else if (bp->pb_flags & _PBF_KMEM_ALLOC) {
  320. /*
  321. * XXX(hch): bp->pb_count_desired might be incorrect (see
  322. * pagebuf_associate_memory for details), but fortunately
  323. * the Linux version of kmem_free ignores the len argument..
  324. */
  325. kmem_free(bp->pb_addr, bp->pb_count_desired);
  326. _pagebuf_free_pages(bp);
  327. }
  328. pagebuf_deallocate(bp);
  329. }
  330. /*
  331. * Finds all pages for buffer in question and builds it's page list.
  332. */
  333. STATIC int
  334. _pagebuf_lookup_pages(
  335. xfs_buf_t *bp,
  336. uint flags)
  337. {
  338. struct address_space *mapping = bp->pb_target->pbr_mapping;
  339. size_t blocksize = bp->pb_target->pbr_bsize;
  340. size_t size = bp->pb_count_desired;
  341. size_t nbytes, offset;
  342. gfp_t gfp_mask = pb_to_gfp(flags);
  343. unsigned short page_count, i;
  344. pgoff_t first;
  345. loff_t end;
  346. int error;
  347. end = bp->pb_file_offset + bp->pb_buffer_length;
  348. page_count = page_buf_btoc(end) - page_buf_btoct(bp->pb_file_offset);
  349. error = _pagebuf_get_pages(bp, page_count, flags);
  350. if (unlikely(error))
  351. return error;
  352. bp->pb_flags |= _PBF_PAGE_CACHE;
  353. offset = bp->pb_offset;
  354. first = bp->pb_file_offset >> PAGE_CACHE_SHIFT;
  355. for (i = 0; i < bp->pb_page_count; i++) {
  356. struct page *page;
  357. uint retries = 0;
  358. retry:
  359. page = find_or_create_page(mapping, first + i, gfp_mask);
  360. if (unlikely(page == NULL)) {
  361. if (flags & PBF_READ_AHEAD) {
  362. bp->pb_page_count = i;
  363. for (i = 0; i < bp->pb_page_count; i++)
  364. unlock_page(bp->pb_pages[i]);
  365. return -ENOMEM;
  366. }
  367. /*
  368. * This could deadlock.
  369. *
  370. * But until all the XFS lowlevel code is revamped to
  371. * handle buffer allocation failures we can't do much.
  372. */
  373. if (!(++retries % 100))
  374. printk(KERN_ERR
  375. "XFS: possible memory allocation "
  376. "deadlock in %s (mode:0x%x)\n",
  377. __FUNCTION__, gfp_mask);
  378. XFS_STATS_INC(pb_page_retries);
  379. xfsbufd_wakeup(0, gfp_mask);
  380. blk_congestion_wait(WRITE, HZ/50);
  381. goto retry;
  382. }
  383. XFS_STATS_INC(pb_page_found);
  384. nbytes = min_t(size_t, size, PAGE_CACHE_SIZE - offset);
  385. size -= nbytes;
  386. if (!PageUptodate(page)) {
  387. page_count--;
  388. if (blocksize >= PAGE_CACHE_SIZE) {
  389. if (flags & PBF_READ)
  390. bp->pb_locked = 1;
  391. } else if (!PagePrivate(page)) {
  392. if (test_page_region(page, offset, nbytes))
  393. page_count++;
  394. }
  395. }
  396. bp->pb_pages[i] = page;
  397. offset = 0;
  398. }
  399. if (!bp->pb_locked) {
  400. for (i = 0; i < bp->pb_page_count; i++)
  401. unlock_page(bp->pb_pages[i]);
  402. }
  403. bp->pb_flags &= ~PBF_NONE;
  404. PB_TRACE(bp, "lookup_pages", (long)page_count);
  405. return error;
  406. }
  407. /*
  408. * Map buffer into kernel address-space if nessecary.
  409. */
  410. STATIC int
  411. _pagebuf_map_pages(
  412. xfs_buf_t *bp,
  413. uint flags)
  414. {
  415. /* A single page buffer is always mappable */
  416. if (bp->pb_page_count == 1) {
  417. bp->pb_addr = page_address(bp->pb_pages[0]) + bp->pb_offset;
  418. bp->pb_flags |= PBF_MAPPED;
  419. } else if (flags & PBF_MAPPED) {
  420. if (as_list_len > 64)
  421. purge_addresses();
  422. bp->pb_addr = vmap(bp->pb_pages, bp->pb_page_count,
  423. VM_MAP, PAGE_KERNEL);
  424. if (unlikely(bp->pb_addr == NULL))
  425. return -ENOMEM;
  426. bp->pb_addr += bp->pb_offset;
  427. bp->pb_flags |= PBF_MAPPED;
  428. }
  429. return 0;
  430. }
  431. /*
  432. * Finding and Reading Buffers
  433. */
  434. /*
  435. * _pagebuf_find
  436. *
  437. * Looks up, and creates if absent, a lockable buffer for
  438. * a given range of an inode. The buffer is returned
  439. * locked. If other overlapping buffers exist, they are
  440. * released before the new buffer is created and locked,
  441. * which may imply that this call will block until those buffers
  442. * are unlocked. No I/O is implied by this call.
  443. */
  444. xfs_buf_t *
  445. _pagebuf_find(
  446. xfs_buftarg_t *btp, /* block device target */
  447. loff_t ioff, /* starting offset of range */
  448. size_t isize, /* length of range */
  449. page_buf_flags_t flags, /* PBF_TRYLOCK */
  450. xfs_buf_t *new_pb)/* newly allocated buffer */
  451. {
  452. loff_t range_base;
  453. size_t range_length;
  454. xfs_bufhash_t *hash;
  455. xfs_buf_t *pb, *n;
  456. range_base = (ioff << BBSHIFT);
  457. range_length = (isize << BBSHIFT);
  458. /* Check for IOs smaller than the sector size / not sector aligned */
  459. ASSERT(!(range_length < (1 << btp->pbr_sshift)));
  460. ASSERT(!(range_base & (loff_t)btp->pbr_smask));
  461. hash = &btp->bt_hash[hash_long((unsigned long)ioff, btp->bt_hashshift)];
  462. spin_lock(&hash->bh_lock);
  463. list_for_each_entry_safe(pb, n, &hash->bh_list, pb_hash_list) {
  464. ASSERT(btp == pb->pb_target);
  465. if (pb->pb_file_offset == range_base &&
  466. pb->pb_buffer_length == range_length) {
  467. /*
  468. * If we look at something bring it to the
  469. * front of the list for next time.
  470. */
  471. atomic_inc(&pb->pb_hold);
  472. list_move(&pb->pb_hash_list, &hash->bh_list);
  473. goto found;
  474. }
  475. }
  476. /* No match found */
  477. if (new_pb) {
  478. _pagebuf_initialize(new_pb, btp, range_base,
  479. range_length, flags);
  480. new_pb->pb_hash = hash;
  481. list_add(&new_pb->pb_hash_list, &hash->bh_list);
  482. } else {
  483. XFS_STATS_INC(pb_miss_locked);
  484. }
  485. spin_unlock(&hash->bh_lock);
  486. return new_pb;
  487. found:
  488. spin_unlock(&hash->bh_lock);
  489. /* Attempt to get the semaphore without sleeping,
  490. * if this does not work then we need to drop the
  491. * spinlock and do a hard attempt on the semaphore.
  492. */
  493. if (down_trylock(&pb->pb_sema)) {
  494. if (!(flags & PBF_TRYLOCK)) {
  495. /* wait for buffer ownership */
  496. PB_TRACE(pb, "get_lock", 0);
  497. pagebuf_lock(pb);
  498. XFS_STATS_INC(pb_get_locked_waited);
  499. } else {
  500. /* We asked for a trylock and failed, no need
  501. * to look at file offset and length here, we
  502. * know that this pagebuf at least overlaps our
  503. * pagebuf and is locked, therefore our buffer
  504. * either does not exist, or is this buffer
  505. */
  506. pagebuf_rele(pb);
  507. XFS_STATS_INC(pb_busy_locked);
  508. return (NULL);
  509. }
  510. } else {
  511. /* trylock worked */
  512. PB_SET_OWNER(pb);
  513. }
  514. if (pb->pb_flags & PBF_STALE) {
  515. ASSERT((pb->pb_flags & _PBF_DELWRI_Q) == 0);
  516. pb->pb_flags &= PBF_MAPPED;
  517. }
  518. PB_TRACE(pb, "got_lock", 0);
  519. XFS_STATS_INC(pb_get_locked);
  520. return (pb);
  521. }
  522. /*
  523. * xfs_buf_get_flags assembles a buffer covering the specified range.
  524. *
  525. * Storage in memory for all portions of the buffer will be allocated,
  526. * although backing storage may not be.
  527. */
  528. xfs_buf_t *
  529. xfs_buf_get_flags( /* allocate a buffer */
  530. xfs_buftarg_t *target,/* target for buffer */
  531. loff_t ioff, /* starting offset of range */
  532. size_t isize, /* length of range */
  533. page_buf_flags_t flags) /* PBF_TRYLOCK */
  534. {
  535. xfs_buf_t *pb, *new_pb;
  536. int error = 0, i;
  537. new_pb = pagebuf_allocate(flags);
  538. if (unlikely(!new_pb))
  539. return NULL;
  540. pb = _pagebuf_find(target, ioff, isize, flags, new_pb);
  541. if (pb == new_pb) {
  542. error = _pagebuf_lookup_pages(pb, flags);
  543. if (error)
  544. goto no_buffer;
  545. } else {
  546. pagebuf_deallocate(new_pb);
  547. if (unlikely(pb == NULL))
  548. return NULL;
  549. }
  550. for (i = 0; i < pb->pb_page_count; i++)
  551. mark_page_accessed(pb->pb_pages[i]);
  552. if (!(pb->pb_flags & PBF_MAPPED)) {
  553. error = _pagebuf_map_pages(pb, flags);
  554. if (unlikely(error)) {
  555. printk(KERN_WARNING "%s: failed to map pages\n",
  556. __FUNCTION__);
  557. goto no_buffer;
  558. }
  559. }
  560. XFS_STATS_INC(pb_get);
  561. /*
  562. * Always fill in the block number now, the mapped cases can do
  563. * their own overlay of this later.
  564. */
  565. pb->pb_bn = ioff;
  566. pb->pb_count_desired = pb->pb_buffer_length;
  567. PB_TRACE(pb, "get", (unsigned long)flags);
  568. return pb;
  569. no_buffer:
  570. if (flags & (PBF_LOCK | PBF_TRYLOCK))
  571. pagebuf_unlock(pb);
  572. pagebuf_rele(pb);
  573. return NULL;
  574. }
  575. xfs_buf_t *
  576. xfs_buf_read_flags(
  577. xfs_buftarg_t *target,
  578. loff_t ioff,
  579. size_t isize,
  580. page_buf_flags_t flags)
  581. {
  582. xfs_buf_t *pb;
  583. flags |= PBF_READ;
  584. pb = xfs_buf_get_flags(target, ioff, isize, flags);
  585. if (pb) {
  586. if (!XFS_BUF_ISDONE(pb)) {
  587. PB_TRACE(pb, "read", (unsigned long)flags);
  588. XFS_STATS_INC(pb_get_read);
  589. pagebuf_iostart(pb, flags);
  590. } else if (flags & PBF_ASYNC) {
  591. PB_TRACE(pb, "read_async", (unsigned long)flags);
  592. /*
  593. * Read ahead call which is already satisfied,
  594. * drop the buffer
  595. */
  596. goto no_buffer;
  597. } else {
  598. PB_TRACE(pb, "read_done", (unsigned long)flags);
  599. /* We do not want read in the flags */
  600. pb->pb_flags &= ~PBF_READ;
  601. }
  602. }
  603. return pb;
  604. no_buffer:
  605. if (flags & (PBF_LOCK | PBF_TRYLOCK))
  606. pagebuf_unlock(pb);
  607. pagebuf_rele(pb);
  608. return NULL;
  609. }
  610. /*
  611. * If we are not low on memory then do the readahead in a deadlock
  612. * safe manner.
  613. */
  614. void
  615. pagebuf_readahead(
  616. xfs_buftarg_t *target,
  617. loff_t ioff,
  618. size_t isize,
  619. page_buf_flags_t flags)
  620. {
  621. struct backing_dev_info *bdi;
  622. bdi = target->pbr_mapping->backing_dev_info;
  623. if (bdi_read_congested(bdi))
  624. return;
  625. flags |= (PBF_TRYLOCK|PBF_ASYNC|PBF_READ_AHEAD);
  626. xfs_buf_read_flags(target, ioff, isize, flags);
  627. }
  628. xfs_buf_t *
  629. pagebuf_get_empty(
  630. size_t len,
  631. xfs_buftarg_t *target)
  632. {
  633. xfs_buf_t *pb;
  634. pb = pagebuf_allocate(0);
  635. if (pb)
  636. _pagebuf_initialize(pb, target, 0, len, 0);
  637. return pb;
  638. }
  639. static inline struct page *
  640. mem_to_page(
  641. void *addr)
  642. {
  643. if (((unsigned long)addr < VMALLOC_START) ||
  644. ((unsigned long)addr >= VMALLOC_END)) {
  645. return virt_to_page(addr);
  646. } else {
  647. return vmalloc_to_page(addr);
  648. }
  649. }
  650. int
  651. pagebuf_associate_memory(
  652. xfs_buf_t *pb,
  653. void *mem,
  654. size_t len)
  655. {
  656. int rval;
  657. int i = 0;
  658. size_t ptr;
  659. size_t end, end_cur;
  660. off_t offset;
  661. int page_count;
  662. page_count = PAGE_CACHE_ALIGN(len) >> PAGE_CACHE_SHIFT;
  663. offset = (off_t) mem - ((off_t)mem & PAGE_CACHE_MASK);
  664. if (offset && (len > PAGE_CACHE_SIZE))
  665. page_count++;
  666. /* Free any previous set of page pointers */
  667. if (pb->pb_pages)
  668. _pagebuf_free_pages(pb);
  669. pb->pb_pages = NULL;
  670. pb->pb_addr = mem;
  671. rval = _pagebuf_get_pages(pb, page_count, 0);
  672. if (rval)
  673. return rval;
  674. pb->pb_offset = offset;
  675. ptr = (size_t) mem & PAGE_CACHE_MASK;
  676. end = PAGE_CACHE_ALIGN((size_t) mem + len);
  677. end_cur = end;
  678. /* set up first page */
  679. pb->pb_pages[0] = mem_to_page(mem);
  680. ptr += PAGE_CACHE_SIZE;
  681. pb->pb_page_count = ++i;
  682. while (ptr < end) {
  683. pb->pb_pages[i] = mem_to_page((void *)ptr);
  684. pb->pb_page_count = ++i;
  685. ptr += PAGE_CACHE_SIZE;
  686. }
  687. pb->pb_locked = 0;
  688. pb->pb_count_desired = pb->pb_buffer_length = len;
  689. pb->pb_flags |= PBF_MAPPED;
  690. return 0;
  691. }
  692. xfs_buf_t *
  693. pagebuf_get_no_daddr(
  694. size_t len,
  695. xfs_buftarg_t *target)
  696. {
  697. size_t malloc_len = len;
  698. xfs_buf_t *bp;
  699. void *data;
  700. int error;
  701. bp = pagebuf_allocate(0);
  702. if (unlikely(bp == NULL))
  703. goto fail;
  704. _pagebuf_initialize(bp, target, 0, len, 0);
  705. try_again:
  706. data = kmem_alloc(malloc_len, KM_SLEEP | KM_MAYFAIL);
  707. if (unlikely(data == NULL))
  708. goto fail_free_buf;
  709. /* check whether alignment matches.. */
  710. if ((__psunsigned_t)data !=
  711. ((__psunsigned_t)data & ~target->pbr_smask)) {
  712. /* .. else double the size and try again */
  713. kmem_free(data, malloc_len);
  714. malloc_len <<= 1;
  715. goto try_again;
  716. }
  717. error = pagebuf_associate_memory(bp, data, len);
  718. if (error)
  719. goto fail_free_mem;
  720. bp->pb_flags |= _PBF_KMEM_ALLOC;
  721. pagebuf_unlock(bp);
  722. PB_TRACE(bp, "no_daddr", data);
  723. return bp;
  724. fail_free_mem:
  725. kmem_free(data, malloc_len);
  726. fail_free_buf:
  727. pagebuf_free(bp);
  728. fail:
  729. return NULL;
  730. }
  731. /*
  732. * pagebuf_hold
  733. *
  734. * Increment reference count on buffer, to hold the buffer concurrently
  735. * with another thread which may release (free) the buffer asynchronously.
  736. *
  737. * Must hold the buffer already to call this function.
  738. */
  739. void
  740. pagebuf_hold(
  741. xfs_buf_t *pb)
  742. {
  743. atomic_inc(&pb->pb_hold);
  744. PB_TRACE(pb, "hold", 0);
  745. }
  746. /*
  747. * pagebuf_rele
  748. *
  749. * pagebuf_rele releases a hold on the specified buffer. If the
  750. * the hold count is 1, pagebuf_rele calls pagebuf_free.
  751. */
  752. void
  753. pagebuf_rele(
  754. xfs_buf_t *pb)
  755. {
  756. xfs_bufhash_t *hash = pb->pb_hash;
  757. PB_TRACE(pb, "rele", pb->pb_relse);
  758. /*
  759. * pagebuf_lookup buffers are not hashed, not delayed write,
  760. * and don't have their own release routines. Special case.
  761. */
  762. if (unlikely(!hash)) {
  763. ASSERT(!pb->pb_relse);
  764. if (atomic_dec_and_test(&pb->pb_hold))
  765. xfs_buf_free(pb);
  766. return;
  767. }
  768. if (atomic_dec_and_lock(&pb->pb_hold, &hash->bh_lock)) {
  769. int do_free = 1;
  770. if (pb->pb_relse) {
  771. atomic_inc(&pb->pb_hold);
  772. spin_unlock(&hash->bh_lock);
  773. (*(pb->pb_relse)) (pb);
  774. spin_lock(&hash->bh_lock);
  775. do_free = 0;
  776. }
  777. if (pb->pb_flags & PBF_FS_MANAGED) {
  778. do_free = 0;
  779. }
  780. if (do_free) {
  781. ASSERT((pb->pb_flags & (PBF_DELWRI|_PBF_DELWRI_Q)) == 0);
  782. list_del_init(&pb->pb_hash_list);
  783. spin_unlock(&hash->bh_lock);
  784. pagebuf_free(pb);
  785. } else {
  786. spin_unlock(&hash->bh_lock);
  787. }
  788. } else {
  789. /*
  790. * Catch reference count leaks
  791. */
  792. ASSERT(atomic_read(&pb->pb_hold) >= 0);
  793. }
  794. }
  795. /*
  796. * Mutual exclusion on buffers. Locking model:
  797. *
  798. * Buffers associated with inodes for which buffer locking
  799. * is not enabled are not protected by semaphores, and are
  800. * assumed to be exclusively owned by the caller. There is a
  801. * spinlock in the buffer, used by the caller when concurrent
  802. * access is possible.
  803. */
  804. /*
  805. * pagebuf_cond_lock
  806. *
  807. * pagebuf_cond_lock locks a buffer object, if it is not already locked.
  808. * Note that this in no way
  809. * locks the underlying pages, so it is only useful for synchronizing
  810. * concurrent use of page buffer objects, not for synchronizing independent
  811. * access to the underlying pages.
  812. */
  813. int
  814. pagebuf_cond_lock( /* lock buffer, if not locked */
  815. /* returns -EBUSY if locked) */
  816. xfs_buf_t *pb)
  817. {
  818. int locked;
  819. locked = down_trylock(&pb->pb_sema) == 0;
  820. if (locked) {
  821. PB_SET_OWNER(pb);
  822. }
  823. PB_TRACE(pb, "cond_lock", (long)locked);
  824. return(locked ? 0 : -EBUSY);
  825. }
  826. #if defined(DEBUG) || defined(XFS_BLI_TRACE)
  827. /*
  828. * pagebuf_lock_value
  829. *
  830. * Return lock value for a pagebuf
  831. */
  832. int
  833. pagebuf_lock_value(
  834. xfs_buf_t *pb)
  835. {
  836. return(atomic_read(&pb->pb_sema.count));
  837. }
  838. #endif
  839. /*
  840. * pagebuf_lock
  841. *
  842. * pagebuf_lock locks a buffer object. Note that this in no way
  843. * locks the underlying pages, so it is only useful for synchronizing
  844. * concurrent use of page buffer objects, not for synchronizing independent
  845. * access to the underlying pages.
  846. */
  847. int
  848. pagebuf_lock(
  849. xfs_buf_t *pb)
  850. {
  851. PB_TRACE(pb, "lock", 0);
  852. if (atomic_read(&pb->pb_io_remaining))
  853. blk_run_address_space(pb->pb_target->pbr_mapping);
  854. down(&pb->pb_sema);
  855. PB_SET_OWNER(pb);
  856. PB_TRACE(pb, "locked", 0);
  857. return 0;
  858. }
  859. /*
  860. * pagebuf_unlock
  861. *
  862. * pagebuf_unlock releases the lock on the buffer object created by
  863. * pagebuf_lock or pagebuf_cond_lock (not any pinning of underlying pages
  864. * created by pagebuf_pin).
  865. *
  866. * If the buffer is marked delwri but is not queued, do so before we
  867. * unlock the buffer as we need to set flags correctly. We also need to
  868. * take a reference for the delwri queue because the unlocker is going to
  869. * drop their's and they don't know we just queued it.
  870. */
  871. void
  872. pagebuf_unlock( /* unlock buffer */
  873. xfs_buf_t *pb) /* buffer to unlock */
  874. {
  875. if ((pb->pb_flags & (PBF_DELWRI|_PBF_DELWRI_Q)) == PBF_DELWRI) {
  876. atomic_inc(&pb->pb_hold);
  877. pb->pb_flags |= PBF_ASYNC;
  878. pagebuf_delwri_queue(pb, 0);
  879. }
  880. PB_CLEAR_OWNER(pb);
  881. up(&pb->pb_sema);
  882. PB_TRACE(pb, "unlock", 0);
  883. }
  884. /*
  885. * Pinning Buffer Storage in Memory
  886. */
  887. /*
  888. * pagebuf_pin
  889. *
  890. * pagebuf_pin locks all of the memory represented by a buffer in
  891. * memory. Multiple calls to pagebuf_pin and pagebuf_unpin, for
  892. * the same or different buffers affecting a given page, will
  893. * properly count the number of outstanding "pin" requests. The
  894. * buffer may be released after the pagebuf_pin and a different
  895. * buffer used when calling pagebuf_unpin, if desired.
  896. * pagebuf_pin should be used by the file system when it wants be
  897. * assured that no attempt will be made to force the affected
  898. * memory to disk. It does not assure that a given logical page
  899. * will not be moved to a different physical page.
  900. */
  901. void
  902. pagebuf_pin(
  903. xfs_buf_t *pb)
  904. {
  905. atomic_inc(&pb->pb_pin_count);
  906. PB_TRACE(pb, "pin", (long)pb->pb_pin_count.counter);
  907. }
  908. /*
  909. * pagebuf_unpin
  910. *
  911. * pagebuf_unpin reverses the locking of memory performed by
  912. * pagebuf_pin. Note that both functions affected the logical
  913. * pages associated with the buffer, not the buffer itself.
  914. */
  915. void
  916. pagebuf_unpin(
  917. xfs_buf_t *pb)
  918. {
  919. if (atomic_dec_and_test(&pb->pb_pin_count)) {
  920. wake_up_all(&pb->pb_waiters);
  921. }
  922. PB_TRACE(pb, "unpin", (long)pb->pb_pin_count.counter);
  923. }
  924. int
  925. pagebuf_ispin(
  926. xfs_buf_t *pb)
  927. {
  928. return atomic_read(&pb->pb_pin_count);
  929. }
  930. /*
  931. * pagebuf_wait_unpin
  932. *
  933. * pagebuf_wait_unpin waits until all of the memory associated
  934. * with the buffer is not longer locked in memory. It returns
  935. * immediately if none of the affected pages are locked.
  936. */
  937. static inline void
  938. _pagebuf_wait_unpin(
  939. xfs_buf_t *pb)
  940. {
  941. DECLARE_WAITQUEUE (wait, current);
  942. if (atomic_read(&pb->pb_pin_count) == 0)
  943. return;
  944. add_wait_queue(&pb->pb_waiters, &wait);
  945. for (;;) {
  946. set_current_state(TASK_UNINTERRUPTIBLE);
  947. if (atomic_read(&pb->pb_pin_count) == 0)
  948. break;
  949. if (atomic_read(&pb->pb_io_remaining))
  950. blk_run_address_space(pb->pb_target->pbr_mapping);
  951. schedule();
  952. }
  953. remove_wait_queue(&pb->pb_waiters, &wait);
  954. set_current_state(TASK_RUNNING);
  955. }
  956. /*
  957. * Buffer Utility Routines
  958. */
  959. /*
  960. * pagebuf_iodone
  961. *
  962. * pagebuf_iodone marks a buffer for which I/O is in progress
  963. * done with respect to that I/O. The pb_iodone routine, if
  964. * present, will be called as a side-effect.
  965. */
  966. STATIC void
  967. pagebuf_iodone_work(
  968. void *v)
  969. {
  970. xfs_buf_t *bp = (xfs_buf_t *)v;
  971. if (bp->pb_iodone)
  972. (*(bp->pb_iodone))(bp);
  973. else if (bp->pb_flags & PBF_ASYNC)
  974. xfs_buf_relse(bp);
  975. }
  976. void
  977. pagebuf_iodone(
  978. xfs_buf_t *pb,
  979. int schedule)
  980. {
  981. pb->pb_flags &= ~(PBF_READ | PBF_WRITE);
  982. if (pb->pb_error == 0)
  983. pb->pb_flags &= ~PBF_NONE;
  984. PB_TRACE(pb, "iodone", pb->pb_iodone);
  985. if ((pb->pb_iodone) || (pb->pb_flags & PBF_ASYNC)) {
  986. if (schedule) {
  987. INIT_WORK(&pb->pb_iodone_work, pagebuf_iodone_work, pb);
  988. queue_work(xfslogd_workqueue, &pb->pb_iodone_work);
  989. } else {
  990. pagebuf_iodone_work(pb);
  991. }
  992. } else {
  993. up(&pb->pb_iodonesema);
  994. }
  995. }
  996. /*
  997. * pagebuf_ioerror
  998. *
  999. * pagebuf_ioerror sets the error code for a buffer.
  1000. */
  1001. void
  1002. pagebuf_ioerror( /* mark/clear buffer error flag */
  1003. xfs_buf_t *pb, /* buffer to mark */
  1004. int error) /* error to store (0 if none) */
  1005. {
  1006. ASSERT(error >= 0 && error <= 0xffff);
  1007. pb->pb_error = (unsigned short)error;
  1008. PB_TRACE(pb, "ioerror", (unsigned long)error);
  1009. }
  1010. /*
  1011. * pagebuf_iostart
  1012. *
  1013. * pagebuf_iostart initiates I/O on a buffer, based on the flags supplied.
  1014. * If necessary, it will arrange for any disk space allocation required,
  1015. * and it will break up the request if the block mappings require it.
  1016. * The pb_iodone routine in the buffer supplied will only be called
  1017. * when all of the subsidiary I/O requests, if any, have been completed.
  1018. * pagebuf_iostart calls the pagebuf_ioinitiate routine or
  1019. * pagebuf_iorequest, if the former routine is not defined, to start
  1020. * the I/O on a given low-level request.
  1021. */
  1022. int
  1023. pagebuf_iostart( /* start I/O on a buffer */
  1024. xfs_buf_t *pb, /* buffer to start */
  1025. page_buf_flags_t flags) /* PBF_LOCK, PBF_ASYNC, PBF_READ, */
  1026. /* PBF_WRITE, PBF_DELWRI, */
  1027. /* PBF_DONT_BLOCK */
  1028. {
  1029. int status = 0;
  1030. PB_TRACE(pb, "iostart", (unsigned long)flags);
  1031. if (flags & PBF_DELWRI) {
  1032. pb->pb_flags &= ~(PBF_READ | PBF_WRITE | PBF_ASYNC);
  1033. pb->pb_flags |= flags & (PBF_DELWRI | PBF_ASYNC);
  1034. pagebuf_delwri_queue(pb, 1);
  1035. return status;
  1036. }
  1037. pb->pb_flags &= ~(PBF_READ | PBF_WRITE | PBF_ASYNC | PBF_DELWRI | \
  1038. PBF_READ_AHEAD | _PBF_RUN_QUEUES);
  1039. pb->pb_flags |= flags & (PBF_READ | PBF_WRITE | PBF_ASYNC | \
  1040. PBF_READ_AHEAD | _PBF_RUN_QUEUES);
  1041. BUG_ON(pb->pb_bn == XFS_BUF_DADDR_NULL);
  1042. /* For writes allow an alternate strategy routine to precede
  1043. * the actual I/O request (which may not be issued at all in
  1044. * a shutdown situation, for example).
  1045. */
  1046. status = (flags & PBF_WRITE) ?
  1047. pagebuf_iostrategy(pb) : pagebuf_iorequest(pb);
  1048. /* Wait for I/O if we are not an async request.
  1049. * Note: async I/O request completion will release the buffer,
  1050. * and that can already be done by this point. So using the
  1051. * buffer pointer from here on, after async I/O, is invalid.
  1052. */
  1053. if (!status && !(flags & PBF_ASYNC))
  1054. status = pagebuf_iowait(pb);
  1055. return status;
  1056. }
  1057. /*
  1058. * Helper routine for pagebuf_iorequest
  1059. */
  1060. STATIC __inline__ int
  1061. _pagebuf_iolocked(
  1062. xfs_buf_t *pb)
  1063. {
  1064. ASSERT(pb->pb_flags & (PBF_READ|PBF_WRITE));
  1065. if (pb->pb_flags & PBF_READ)
  1066. return pb->pb_locked;
  1067. return 0;
  1068. }
  1069. STATIC __inline__ void
  1070. _pagebuf_iodone(
  1071. xfs_buf_t *pb,
  1072. int schedule)
  1073. {
  1074. if (atomic_dec_and_test(&pb->pb_io_remaining) == 1) {
  1075. pb->pb_locked = 0;
  1076. pagebuf_iodone(pb, schedule);
  1077. }
  1078. }
  1079. STATIC int
  1080. bio_end_io_pagebuf(
  1081. struct bio *bio,
  1082. unsigned int bytes_done,
  1083. int error)
  1084. {
  1085. xfs_buf_t *pb = (xfs_buf_t *)bio->bi_private;
  1086. unsigned int blocksize = pb->pb_target->pbr_bsize;
  1087. struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
  1088. if (bio->bi_size)
  1089. return 1;
  1090. if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
  1091. pb->pb_error = EIO;
  1092. do {
  1093. struct page *page = bvec->bv_page;
  1094. if (unlikely(pb->pb_error)) {
  1095. if (pb->pb_flags & PBF_READ)
  1096. ClearPageUptodate(page);
  1097. SetPageError(page);
  1098. } else if (blocksize == PAGE_CACHE_SIZE) {
  1099. SetPageUptodate(page);
  1100. } else if (!PagePrivate(page) &&
  1101. (pb->pb_flags & _PBF_PAGE_CACHE)) {
  1102. set_page_region(page, bvec->bv_offset, bvec->bv_len);
  1103. }
  1104. if (--bvec >= bio->bi_io_vec)
  1105. prefetchw(&bvec->bv_page->flags);
  1106. if (_pagebuf_iolocked(pb)) {
  1107. unlock_page(page);
  1108. }
  1109. } while (bvec >= bio->bi_io_vec);
  1110. _pagebuf_iodone(pb, 1);
  1111. bio_put(bio);
  1112. return 0;
  1113. }
  1114. STATIC void
  1115. _pagebuf_ioapply(
  1116. xfs_buf_t *pb)
  1117. {
  1118. int i, rw, map_i, total_nr_pages, nr_pages;
  1119. struct bio *bio;
  1120. int offset = pb->pb_offset;
  1121. int size = pb->pb_count_desired;
  1122. sector_t sector = pb->pb_bn;
  1123. unsigned int blocksize = pb->pb_target->pbr_bsize;
  1124. int locking = _pagebuf_iolocked(pb);
  1125. total_nr_pages = pb->pb_page_count;
  1126. map_i = 0;
  1127. if (pb->pb_flags & _PBF_RUN_QUEUES) {
  1128. pb->pb_flags &= ~_PBF_RUN_QUEUES;
  1129. rw = (pb->pb_flags & PBF_READ) ? READ_SYNC : WRITE_SYNC;
  1130. } else {
  1131. rw = (pb->pb_flags & PBF_READ) ? READ : WRITE;
  1132. }
  1133. /* Special code path for reading a sub page size pagebuf in --
  1134. * we populate up the whole page, and hence the other metadata
  1135. * in the same page. This optimization is only valid when the
  1136. * filesystem block size and the page size are equal.
  1137. */
  1138. if ((pb->pb_buffer_length < PAGE_CACHE_SIZE) &&
  1139. (pb->pb_flags & PBF_READ) && locking &&
  1140. (blocksize == PAGE_CACHE_SIZE)) {
  1141. bio = bio_alloc(GFP_NOIO, 1);
  1142. bio->bi_bdev = pb->pb_target->pbr_bdev;
  1143. bio->bi_sector = sector - (offset >> BBSHIFT);
  1144. bio->bi_end_io = bio_end_io_pagebuf;
  1145. bio->bi_private = pb;
  1146. bio_add_page(bio, pb->pb_pages[0], PAGE_CACHE_SIZE, 0);
  1147. size = 0;
  1148. atomic_inc(&pb->pb_io_remaining);
  1149. goto submit_io;
  1150. }
  1151. /* Lock down the pages which we need to for the request */
  1152. if (locking && (pb->pb_flags & PBF_WRITE) && (pb->pb_locked == 0)) {
  1153. for (i = 0; size; i++) {
  1154. int nbytes = PAGE_CACHE_SIZE - offset;
  1155. struct page *page = pb->pb_pages[i];
  1156. if (nbytes > size)
  1157. nbytes = size;
  1158. lock_page(page);
  1159. size -= nbytes;
  1160. offset = 0;
  1161. }
  1162. offset = pb->pb_offset;
  1163. size = pb->pb_count_desired;
  1164. }
  1165. next_chunk:
  1166. atomic_inc(&pb->pb_io_remaining);
  1167. nr_pages = BIO_MAX_SECTORS >> (PAGE_SHIFT - BBSHIFT);
  1168. if (nr_pages > total_nr_pages)
  1169. nr_pages = total_nr_pages;
  1170. bio = bio_alloc(GFP_NOIO, nr_pages);
  1171. bio->bi_bdev = pb->pb_target->pbr_bdev;
  1172. bio->bi_sector = sector;
  1173. bio->bi_end_io = bio_end_io_pagebuf;
  1174. bio->bi_private = pb;
  1175. for (; size && nr_pages; nr_pages--, map_i++) {
  1176. int nbytes = PAGE_CACHE_SIZE - offset;
  1177. if (nbytes > size)
  1178. nbytes = size;
  1179. if (bio_add_page(bio, pb->pb_pages[map_i],
  1180. nbytes, offset) < nbytes)
  1181. break;
  1182. offset = 0;
  1183. sector += nbytes >> BBSHIFT;
  1184. size -= nbytes;
  1185. total_nr_pages--;
  1186. }
  1187. submit_io:
  1188. if (likely(bio->bi_size)) {
  1189. submit_bio(rw, bio);
  1190. if (size)
  1191. goto next_chunk;
  1192. } else {
  1193. bio_put(bio);
  1194. pagebuf_ioerror(pb, EIO);
  1195. }
  1196. }
  1197. /*
  1198. * pagebuf_iorequest -- the core I/O request routine.
  1199. */
  1200. int
  1201. pagebuf_iorequest( /* start real I/O */
  1202. xfs_buf_t *pb) /* buffer to convey to device */
  1203. {
  1204. PB_TRACE(pb, "iorequest", 0);
  1205. if (pb->pb_flags & PBF_DELWRI) {
  1206. pagebuf_delwri_queue(pb, 1);
  1207. return 0;
  1208. }
  1209. if (pb->pb_flags & PBF_WRITE) {
  1210. _pagebuf_wait_unpin(pb);
  1211. }
  1212. pagebuf_hold(pb);
  1213. /* Set the count to 1 initially, this will stop an I/O
  1214. * completion callout which happens before we have started
  1215. * all the I/O from calling pagebuf_iodone too early.
  1216. */
  1217. atomic_set(&pb->pb_io_remaining, 1);
  1218. _pagebuf_ioapply(pb);
  1219. _pagebuf_iodone(pb, 0);
  1220. pagebuf_rele(pb);
  1221. return 0;
  1222. }
  1223. /*
  1224. * pagebuf_iowait
  1225. *
  1226. * pagebuf_iowait waits for I/O to complete on the buffer supplied.
  1227. * It returns immediately if no I/O is pending. In any case, it returns
  1228. * the error code, if any, or 0 if there is no error.
  1229. */
  1230. int
  1231. pagebuf_iowait(
  1232. xfs_buf_t *pb)
  1233. {
  1234. PB_TRACE(pb, "iowait", 0);
  1235. if (atomic_read(&pb->pb_io_remaining))
  1236. blk_run_address_space(pb->pb_target->pbr_mapping);
  1237. down(&pb->pb_iodonesema);
  1238. PB_TRACE(pb, "iowaited", (long)pb->pb_error);
  1239. return pb->pb_error;
  1240. }
  1241. caddr_t
  1242. pagebuf_offset(
  1243. xfs_buf_t *pb,
  1244. size_t offset)
  1245. {
  1246. struct page *page;
  1247. offset += pb->pb_offset;
  1248. page = pb->pb_pages[offset >> PAGE_CACHE_SHIFT];
  1249. return (caddr_t) page_address(page) + (offset & (PAGE_CACHE_SIZE - 1));
  1250. }
  1251. /*
  1252. * pagebuf_iomove
  1253. *
  1254. * Move data into or out of a buffer.
  1255. */
  1256. void
  1257. pagebuf_iomove(
  1258. xfs_buf_t *pb, /* buffer to process */
  1259. size_t boff, /* starting buffer offset */
  1260. size_t bsize, /* length to copy */
  1261. caddr_t data, /* data address */
  1262. page_buf_rw_t mode) /* read/write flag */
  1263. {
  1264. size_t bend, cpoff, csize;
  1265. struct page *page;
  1266. bend = boff + bsize;
  1267. while (boff < bend) {
  1268. page = pb->pb_pages[page_buf_btoct(boff + pb->pb_offset)];
  1269. cpoff = page_buf_poff(boff + pb->pb_offset);
  1270. csize = min_t(size_t,
  1271. PAGE_CACHE_SIZE-cpoff, pb->pb_count_desired-boff);
  1272. ASSERT(((csize + cpoff) <= PAGE_CACHE_SIZE));
  1273. switch (mode) {
  1274. case PBRW_ZERO:
  1275. memset(page_address(page) + cpoff, 0, csize);
  1276. break;
  1277. case PBRW_READ:
  1278. memcpy(data, page_address(page) + cpoff, csize);
  1279. break;
  1280. case PBRW_WRITE:
  1281. memcpy(page_address(page) + cpoff, data, csize);
  1282. }
  1283. boff += csize;
  1284. data += csize;
  1285. }
  1286. }
  1287. /*
  1288. * Handling of buftargs.
  1289. */
  1290. /*
  1291. * Wait for any bufs with callbacks that have been submitted but
  1292. * have not yet returned... walk the hash list for the target.
  1293. */
  1294. void
  1295. xfs_wait_buftarg(
  1296. xfs_buftarg_t *btp)
  1297. {
  1298. xfs_buf_t *bp, *n;
  1299. xfs_bufhash_t *hash;
  1300. uint i;
  1301. for (i = 0; i < (1 << btp->bt_hashshift); i++) {
  1302. hash = &btp->bt_hash[i];
  1303. again:
  1304. spin_lock(&hash->bh_lock);
  1305. list_for_each_entry_safe(bp, n, &hash->bh_list, pb_hash_list) {
  1306. ASSERT(btp == bp->pb_target);
  1307. if (!(bp->pb_flags & PBF_FS_MANAGED)) {
  1308. spin_unlock(&hash->bh_lock);
  1309. /*
  1310. * Catch superblock reference count leaks
  1311. * immediately
  1312. */
  1313. BUG_ON(bp->pb_bn == 0);
  1314. delay(100);
  1315. goto again;
  1316. }
  1317. }
  1318. spin_unlock(&hash->bh_lock);
  1319. }
  1320. }
  1321. /*
  1322. * Allocate buffer hash table for a given target.
  1323. * For devices containing metadata (i.e. not the log/realtime devices)
  1324. * we need to allocate a much larger hash table.
  1325. */
  1326. STATIC void
  1327. xfs_alloc_bufhash(
  1328. xfs_buftarg_t *btp,
  1329. int external)
  1330. {
  1331. unsigned int i;
  1332. btp->bt_hashshift = external ? 3 : 8; /* 8 or 256 buckets */
  1333. btp->bt_hashmask = (1 << btp->bt_hashshift) - 1;
  1334. btp->bt_hash = kmem_zalloc((1 << btp->bt_hashshift) *
  1335. sizeof(xfs_bufhash_t), KM_SLEEP);
  1336. for (i = 0; i < (1 << btp->bt_hashshift); i++) {
  1337. spin_lock_init(&btp->bt_hash[i].bh_lock);
  1338. INIT_LIST_HEAD(&btp->bt_hash[i].bh_list);
  1339. }
  1340. }
  1341. STATIC void
  1342. xfs_free_bufhash(
  1343. xfs_buftarg_t *btp)
  1344. {
  1345. kmem_free(btp->bt_hash,
  1346. (1 << btp->bt_hashshift) * sizeof(xfs_bufhash_t));
  1347. btp->bt_hash = NULL;
  1348. }
  1349. void
  1350. xfs_free_buftarg(
  1351. xfs_buftarg_t *btp,
  1352. int external)
  1353. {
  1354. xfs_flush_buftarg(btp, 1);
  1355. if (external)
  1356. xfs_blkdev_put(btp->pbr_bdev);
  1357. xfs_free_bufhash(btp);
  1358. iput(btp->pbr_mapping->host);
  1359. kmem_free(btp, sizeof(*btp));
  1360. }
  1361. STATIC int
  1362. xfs_setsize_buftarg_flags(
  1363. xfs_buftarg_t *btp,
  1364. unsigned int blocksize,
  1365. unsigned int sectorsize,
  1366. int verbose)
  1367. {
  1368. btp->pbr_bsize = blocksize;
  1369. btp->pbr_sshift = ffs(sectorsize) - 1;
  1370. btp->pbr_smask = sectorsize - 1;
  1371. if (set_blocksize(btp->pbr_bdev, sectorsize)) {
  1372. printk(KERN_WARNING
  1373. "XFS: Cannot set_blocksize to %u on device %s\n",
  1374. sectorsize, XFS_BUFTARG_NAME(btp));
  1375. return EINVAL;
  1376. }
  1377. if (verbose &&
  1378. (PAGE_CACHE_SIZE / BITS_PER_LONG) > sectorsize) {
  1379. printk(KERN_WARNING
  1380. "XFS: %u byte sectors in use on device %s. "
  1381. "This is suboptimal; %u or greater is ideal.\n",
  1382. sectorsize, XFS_BUFTARG_NAME(btp),
  1383. (unsigned int)PAGE_CACHE_SIZE / BITS_PER_LONG);
  1384. }
  1385. return 0;
  1386. }
  1387. /*
  1388. * When allocating the initial buffer target we have not yet
  1389. * read in the superblock, so don't know what sized sectors
  1390. * are being used is at this early stage. Play safe.
  1391. */
  1392. STATIC int
  1393. xfs_setsize_buftarg_early(
  1394. xfs_buftarg_t *btp,
  1395. struct block_device *bdev)
  1396. {
  1397. return xfs_setsize_buftarg_flags(btp,
  1398. PAGE_CACHE_SIZE, bdev_hardsect_size(bdev), 0);
  1399. }
  1400. int
  1401. xfs_setsize_buftarg(
  1402. xfs_buftarg_t *btp,
  1403. unsigned int blocksize,
  1404. unsigned int sectorsize)
  1405. {
  1406. return xfs_setsize_buftarg_flags(btp, blocksize, sectorsize, 1);
  1407. }
  1408. STATIC int
  1409. xfs_mapping_buftarg(
  1410. xfs_buftarg_t *btp,
  1411. struct block_device *bdev)
  1412. {
  1413. struct backing_dev_info *bdi;
  1414. struct inode *inode;
  1415. struct address_space *mapping;
  1416. static struct address_space_operations mapping_aops = {
  1417. .sync_page = block_sync_page,
  1418. };
  1419. inode = new_inode(bdev->bd_inode->i_sb);
  1420. if (!inode) {
  1421. printk(KERN_WARNING
  1422. "XFS: Cannot allocate mapping inode for device %s\n",
  1423. XFS_BUFTARG_NAME(btp));
  1424. return ENOMEM;
  1425. }
  1426. inode->i_mode = S_IFBLK;
  1427. inode->i_bdev = bdev;
  1428. inode->i_rdev = bdev->bd_dev;
  1429. bdi = blk_get_backing_dev_info(bdev);
  1430. if (!bdi)
  1431. bdi = &default_backing_dev_info;
  1432. mapping = &inode->i_data;
  1433. mapping->a_ops = &mapping_aops;
  1434. mapping->backing_dev_info = bdi;
  1435. mapping_set_gfp_mask(mapping, GFP_NOFS);
  1436. btp->pbr_mapping = mapping;
  1437. return 0;
  1438. }
  1439. xfs_buftarg_t *
  1440. xfs_alloc_buftarg(
  1441. struct block_device *bdev,
  1442. int external)
  1443. {
  1444. xfs_buftarg_t *btp;
  1445. btp = kmem_zalloc(sizeof(*btp), KM_SLEEP);
  1446. btp->pbr_dev = bdev->bd_dev;
  1447. btp->pbr_bdev = bdev;
  1448. if (xfs_setsize_buftarg_early(btp, bdev))
  1449. goto error;
  1450. if (xfs_mapping_buftarg(btp, bdev))
  1451. goto error;
  1452. xfs_alloc_bufhash(btp, external);
  1453. return btp;
  1454. error:
  1455. kmem_free(btp, sizeof(*btp));
  1456. return NULL;
  1457. }
  1458. /*
  1459. * Pagebuf delayed write buffer handling
  1460. */
  1461. STATIC LIST_HEAD(pbd_delwrite_queue);
  1462. STATIC DEFINE_SPINLOCK(pbd_delwrite_lock);
  1463. STATIC void
  1464. pagebuf_delwri_queue(
  1465. xfs_buf_t *pb,
  1466. int unlock)
  1467. {
  1468. PB_TRACE(pb, "delwri_q", (long)unlock);
  1469. ASSERT((pb->pb_flags & (PBF_DELWRI|PBF_ASYNC)) ==
  1470. (PBF_DELWRI|PBF_ASYNC));
  1471. spin_lock(&pbd_delwrite_lock);
  1472. /* If already in the queue, dequeue and place at tail */
  1473. if (!list_empty(&pb->pb_list)) {
  1474. ASSERT(pb->pb_flags & _PBF_DELWRI_Q);
  1475. if (unlock) {
  1476. atomic_dec(&pb->pb_hold);
  1477. }
  1478. list_del(&pb->pb_list);
  1479. }
  1480. pb->pb_flags |= _PBF_DELWRI_Q;
  1481. list_add_tail(&pb->pb_list, &pbd_delwrite_queue);
  1482. pb->pb_queuetime = jiffies;
  1483. spin_unlock(&pbd_delwrite_lock);
  1484. if (unlock)
  1485. pagebuf_unlock(pb);
  1486. }
  1487. void
  1488. pagebuf_delwri_dequeue(
  1489. xfs_buf_t *pb)
  1490. {
  1491. int dequeued = 0;
  1492. spin_lock(&pbd_delwrite_lock);
  1493. if ((pb->pb_flags & PBF_DELWRI) && !list_empty(&pb->pb_list)) {
  1494. ASSERT(pb->pb_flags & _PBF_DELWRI_Q);
  1495. list_del_init(&pb->pb_list);
  1496. dequeued = 1;
  1497. }
  1498. pb->pb_flags &= ~(PBF_DELWRI|_PBF_DELWRI_Q);
  1499. spin_unlock(&pbd_delwrite_lock);
  1500. if (dequeued)
  1501. pagebuf_rele(pb);
  1502. PB_TRACE(pb, "delwri_dq", (long)dequeued);
  1503. }
  1504. STATIC void
  1505. pagebuf_runall_queues(
  1506. struct workqueue_struct *queue)
  1507. {
  1508. flush_workqueue(queue);
  1509. }
  1510. /* Defines for pagebuf daemon */
  1511. STATIC struct task_struct *xfsbufd_task;
  1512. STATIC int xfsbufd_force_flush;
  1513. STATIC int xfsbufd_force_sleep;
  1514. STATIC int
  1515. xfsbufd_wakeup(
  1516. int priority,
  1517. gfp_t mask)
  1518. {
  1519. if (xfsbufd_force_sleep)
  1520. return 0;
  1521. xfsbufd_force_flush = 1;
  1522. barrier();
  1523. wake_up_process(xfsbufd_task);
  1524. return 0;
  1525. }
  1526. STATIC int
  1527. xfsbufd(
  1528. void *data)
  1529. {
  1530. struct list_head tmp;
  1531. unsigned long age;
  1532. xfs_buftarg_t *target;
  1533. xfs_buf_t *pb, *n;
  1534. current->flags |= PF_MEMALLOC;
  1535. INIT_LIST_HEAD(&tmp);
  1536. do {
  1537. if (unlikely(freezing(current))) {
  1538. xfsbufd_force_sleep = 1;
  1539. refrigerator();
  1540. } else {
  1541. xfsbufd_force_sleep = 0;
  1542. }
  1543. schedule_timeout_interruptible
  1544. (xfs_buf_timer_centisecs * msecs_to_jiffies(10));
  1545. age = xfs_buf_age_centisecs * msecs_to_jiffies(10);
  1546. spin_lock(&pbd_delwrite_lock);
  1547. list_for_each_entry_safe(pb, n, &pbd_delwrite_queue, pb_list) {
  1548. PB_TRACE(pb, "walkq1", (long)pagebuf_ispin(pb));
  1549. ASSERT(pb->pb_flags & PBF_DELWRI);
  1550. if (!pagebuf_ispin(pb) && !pagebuf_cond_lock(pb)) {
  1551. if (!xfsbufd_force_flush &&
  1552. time_before(jiffies,
  1553. pb->pb_queuetime + age)) {
  1554. pagebuf_unlock(pb);
  1555. break;
  1556. }
  1557. pb->pb_flags &= ~(PBF_DELWRI|_PBF_DELWRI_Q);
  1558. pb->pb_flags |= PBF_WRITE;
  1559. list_move(&pb->pb_list, &tmp);
  1560. }
  1561. }
  1562. spin_unlock(&pbd_delwrite_lock);
  1563. while (!list_empty(&tmp)) {
  1564. pb = list_entry(tmp.next, xfs_buf_t, pb_list);
  1565. target = pb->pb_target;
  1566. list_del_init(&pb->pb_list);
  1567. pagebuf_iostrategy(pb);
  1568. blk_run_address_space(target->pbr_mapping);
  1569. }
  1570. if (as_list_len > 0)
  1571. purge_addresses();
  1572. xfsbufd_force_flush = 0;
  1573. } while (!kthread_should_stop());
  1574. return 0;
  1575. }
  1576. /*
  1577. * Go through all incore buffers, and release buffers if they belong to
  1578. * the given device. This is used in filesystem error handling to
  1579. * preserve the consistency of its metadata.
  1580. */
  1581. int
  1582. xfs_flush_buftarg(
  1583. xfs_buftarg_t *target,
  1584. int wait)
  1585. {
  1586. struct list_head tmp;
  1587. xfs_buf_t *pb, *n;
  1588. int pincount = 0;
  1589. pagebuf_runall_queues(xfsdatad_workqueue);
  1590. pagebuf_runall_queues(xfslogd_workqueue);
  1591. INIT_LIST_HEAD(&tmp);
  1592. spin_lock(&pbd_delwrite_lock);
  1593. list_for_each_entry_safe(pb, n, &pbd_delwrite_queue, pb_list) {
  1594. if (pb->pb_target != target)
  1595. continue;
  1596. ASSERT(pb->pb_flags & (PBF_DELWRI|_PBF_DELWRI_Q));
  1597. PB_TRACE(pb, "walkq2", (long)pagebuf_ispin(pb));
  1598. if (pagebuf_ispin(pb)) {
  1599. pincount++;
  1600. continue;
  1601. }
  1602. list_move(&pb->pb_list, &tmp);
  1603. }
  1604. spin_unlock(&pbd_delwrite_lock);
  1605. /*
  1606. * Dropped the delayed write list lock, now walk the temporary list
  1607. */
  1608. list_for_each_entry_safe(pb, n, &tmp, pb_list) {
  1609. pagebuf_lock(pb);
  1610. pb->pb_flags &= ~(PBF_DELWRI|_PBF_DELWRI_Q);
  1611. pb->pb_flags |= PBF_WRITE;
  1612. if (wait)
  1613. pb->pb_flags &= ~PBF_ASYNC;
  1614. else
  1615. list_del_init(&pb->pb_list);
  1616. pagebuf_iostrategy(pb);
  1617. }
  1618. /*
  1619. * Remaining list items must be flushed before returning
  1620. */
  1621. while (!list_empty(&tmp)) {
  1622. pb = list_entry(tmp.next, xfs_buf_t, pb_list);
  1623. list_del_init(&pb->pb_list);
  1624. xfs_iowait(pb);
  1625. xfs_buf_relse(pb);
  1626. }
  1627. if (wait)
  1628. blk_run_address_space(target->pbr_mapping);
  1629. return pincount;
  1630. }
  1631. int __init
  1632. pagebuf_init(void)
  1633. {
  1634. int error = -ENOMEM;
  1635. #ifdef PAGEBUF_TRACE
  1636. pagebuf_trace_buf = ktrace_alloc(PAGEBUF_TRACE_SIZE, KM_SLEEP);
  1637. #endif
  1638. pagebuf_zone = kmem_zone_init(sizeof(xfs_buf_t), "xfs_buf");
  1639. if (!pagebuf_zone)
  1640. goto out_free_trace_buf;
  1641. xfslogd_workqueue = create_workqueue("xfslogd");
  1642. if (!xfslogd_workqueue)
  1643. goto out_free_buf_zone;
  1644. xfsdatad_workqueue = create_workqueue("xfsdatad");
  1645. if (!xfsdatad_workqueue)
  1646. goto out_destroy_xfslogd_workqueue;
  1647. xfsbufd_task = kthread_run(xfsbufd, NULL, "xfsbufd");
  1648. if (IS_ERR(xfsbufd_task)) {
  1649. error = PTR_ERR(xfsbufd_task);
  1650. goto out_destroy_xfsdatad_workqueue;
  1651. }
  1652. pagebuf_shake = kmem_shake_register(xfsbufd_wakeup);
  1653. if (!pagebuf_shake)
  1654. goto out_stop_xfsbufd;
  1655. return 0;
  1656. out_stop_xfsbufd:
  1657. kthread_stop(xfsbufd_task);
  1658. out_destroy_xfsdatad_workqueue:
  1659. destroy_workqueue(xfsdatad_workqueue);
  1660. out_destroy_xfslogd_workqueue:
  1661. destroy_workqueue(xfslogd_workqueue);
  1662. out_free_buf_zone:
  1663. kmem_zone_destroy(pagebuf_zone);
  1664. out_free_trace_buf:
  1665. #ifdef PAGEBUF_TRACE
  1666. ktrace_free(pagebuf_trace_buf);
  1667. #endif
  1668. return error;
  1669. }
  1670. void
  1671. pagebuf_terminate(void)
  1672. {
  1673. kmem_shake_deregister(pagebuf_shake);
  1674. kthread_stop(xfsbufd_task);
  1675. destroy_workqueue(xfsdatad_workqueue);
  1676. destroy_workqueue(xfslogd_workqueue);
  1677. kmem_zone_destroy(pagebuf_zone);
  1678. #ifdef PAGEBUF_TRACE
  1679. ktrace_free(pagebuf_trace_buf);
  1680. #endif
  1681. }