hugetlbpage.c 13 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582
  1. /*
  2. * PPC64 (POWER4) Huge TLB Page Support for Kernel.
  3. *
  4. * Copyright (C) 2003 David Gibson, IBM Corporation.
  5. *
  6. * Based on the IA-32 version:
  7. * Copyright (C) 2002, Rohit Seth <rohit.seth@intel.com>
  8. */
  9. #include <linux/mm.h>
  10. #include <linux/io.h>
  11. #include <linux/hugetlb.h>
  12. #include <asm/pgtable.h>
  13. #include <asm/pgalloc.h>
  14. #include <asm/tlb.h>
  15. #define PAGE_SHIFT_64K 16
  16. #define PAGE_SHIFT_16M 24
  17. #define PAGE_SHIFT_16G 34
  18. #define MAX_NUMBER_GPAGES 1024
  19. /* Tracks the 16G pages after the device tree is scanned and before the
  20. * huge_boot_pages list is ready. */
  21. static unsigned long gpage_freearray[MAX_NUMBER_GPAGES];
  22. static unsigned nr_gpages;
  23. /* Flag to mark huge PD pointers. This means pmd_bad() and pud_bad()
  24. * will choke on pointers to hugepte tables, which is handy for
  25. * catching screwups early. */
  26. static inline int shift_to_mmu_psize(unsigned int shift)
  27. {
  28. int psize;
  29. for (psize = 0; psize < MMU_PAGE_COUNT; ++psize)
  30. if (mmu_psize_defs[psize].shift == shift)
  31. return psize;
  32. return -1;
  33. }
  34. static inline unsigned int mmu_psize_to_shift(unsigned int mmu_psize)
  35. {
  36. if (mmu_psize_defs[mmu_psize].shift)
  37. return mmu_psize_defs[mmu_psize].shift;
  38. BUG();
  39. }
  40. #define hugepd_none(hpd) ((hpd).pd == 0)
  41. static inline pte_t *hugepd_page(hugepd_t hpd)
  42. {
  43. BUG_ON(!hugepd_ok(hpd));
  44. return (pte_t *)((hpd.pd & ~HUGEPD_SHIFT_MASK) | 0xc000000000000000);
  45. }
  46. static inline unsigned int hugepd_shift(hugepd_t hpd)
  47. {
  48. return hpd.pd & HUGEPD_SHIFT_MASK;
  49. }
  50. static inline pte_t *hugepte_offset(hugepd_t *hpdp, unsigned long addr, unsigned pdshift)
  51. {
  52. unsigned long idx = (addr & ((1UL << pdshift) - 1)) >> hugepd_shift(*hpdp);
  53. pte_t *dir = hugepd_page(*hpdp);
  54. return dir + idx;
  55. }
  56. pte_t *find_linux_pte_or_hugepte(pgd_t *pgdir, unsigned long ea, unsigned *shift)
  57. {
  58. pgd_t *pg;
  59. pud_t *pu;
  60. pmd_t *pm;
  61. hugepd_t *hpdp = NULL;
  62. unsigned pdshift = PGDIR_SHIFT;
  63. if (shift)
  64. *shift = 0;
  65. pg = pgdir + pgd_index(ea);
  66. if (is_hugepd(pg)) {
  67. hpdp = (hugepd_t *)pg;
  68. } else if (!pgd_none(*pg)) {
  69. pdshift = PUD_SHIFT;
  70. pu = pud_offset(pg, ea);
  71. if (is_hugepd(pu))
  72. hpdp = (hugepd_t *)pu;
  73. else if (!pud_none(*pu)) {
  74. pdshift = PMD_SHIFT;
  75. pm = pmd_offset(pu, ea);
  76. if (is_hugepd(pm))
  77. hpdp = (hugepd_t *)pm;
  78. else if (!pmd_none(*pm)) {
  79. return pte_offset_map(pm, ea);
  80. }
  81. }
  82. }
  83. if (!hpdp)
  84. return NULL;
  85. if (shift)
  86. *shift = hugepd_shift(*hpdp);
  87. return hugepte_offset(hpdp, ea, pdshift);
  88. }
  89. pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr)
  90. {
  91. return find_linux_pte_or_hugepte(mm->pgd, addr, NULL);
  92. }
  93. static int __hugepte_alloc(struct mm_struct *mm, hugepd_t *hpdp,
  94. unsigned long address, unsigned pdshift, unsigned pshift)
  95. {
  96. pte_t *new = kmem_cache_zalloc(PGT_CACHE(pdshift - pshift),
  97. GFP_KERNEL|__GFP_REPEAT);
  98. BUG_ON(pshift > HUGEPD_SHIFT_MASK);
  99. BUG_ON((unsigned long)new & HUGEPD_SHIFT_MASK);
  100. if (! new)
  101. return -ENOMEM;
  102. spin_lock(&mm->page_table_lock);
  103. if (!hugepd_none(*hpdp))
  104. kmem_cache_free(PGT_CACHE(pdshift - pshift), new);
  105. else
  106. hpdp->pd = ((unsigned long)new & ~0x8000000000000000) | pshift;
  107. spin_unlock(&mm->page_table_lock);
  108. return 0;
  109. }
  110. pte_t *huge_pte_alloc(struct mm_struct *mm, unsigned long addr, unsigned long sz)
  111. {
  112. pgd_t *pg;
  113. pud_t *pu;
  114. pmd_t *pm;
  115. hugepd_t *hpdp = NULL;
  116. unsigned pshift = __ffs(sz);
  117. unsigned pdshift = PGDIR_SHIFT;
  118. addr &= ~(sz-1);
  119. pg = pgd_offset(mm, addr);
  120. if (pshift >= PUD_SHIFT) {
  121. hpdp = (hugepd_t *)pg;
  122. } else {
  123. pdshift = PUD_SHIFT;
  124. pu = pud_alloc(mm, pg, addr);
  125. if (pshift >= PMD_SHIFT) {
  126. hpdp = (hugepd_t *)pu;
  127. } else {
  128. pdshift = PMD_SHIFT;
  129. pm = pmd_alloc(mm, pu, addr);
  130. hpdp = (hugepd_t *)pm;
  131. }
  132. }
  133. if (!hpdp)
  134. return NULL;
  135. BUG_ON(!hugepd_none(*hpdp) && !hugepd_ok(*hpdp));
  136. if (hugepd_none(*hpdp) && __hugepte_alloc(mm, hpdp, addr, pdshift, pshift))
  137. return NULL;
  138. return hugepte_offset(hpdp, addr, pdshift);
  139. }
  140. /* Build list of addresses of gigantic pages. This function is used in early
  141. * boot before the buddy or bootmem allocator is setup.
  142. */
  143. void add_gpage(unsigned long addr, unsigned long page_size,
  144. unsigned long number_of_pages)
  145. {
  146. if (!addr)
  147. return;
  148. while (number_of_pages > 0) {
  149. gpage_freearray[nr_gpages] = addr;
  150. nr_gpages++;
  151. number_of_pages--;
  152. addr += page_size;
  153. }
  154. }
  155. /* Moves the gigantic page addresses from the temporary list to the
  156. * huge_boot_pages list.
  157. */
  158. int alloc_bootmem_huge_page(struct hstate *hstate)
  159. {
  160. struct huge_bootmem_page *m;
  161. if (nr_gpages == 0)
  162. return 0;
  163. m = phys_to_virt(gpage_freearray[--nr_gpages]);
  164. gpage_freearray[nr_gpages] = 0;
  165. list_add(&m->list, &huge_boot_pages);
  166. m->hstate = hstate;
  167. return 1;
  168. }
  169. int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
  170. {
  171. return 0;
  172. }
  173. static void free_hugepd_range(struct mmu_gather *tlb, hugepd_t *hpdp, int pdshift,
  174. unsigned long start, unsigned long end,
  175. unsigned long floor, unsigned long ceiling)
  176. {
  177. pte_t *hugepte = hugepd_page(*hpdp);
  178. unsigned shift = hugepd_shift(*hpdp);
  179. unsigned long pdmask = ~((1UL << pdshift) - 1);
  180. start &= pdmask;
  181. if (start < floor)
  182. return;
  183. if (ceiling) {
  184. ceiling &= pdmask;
  185. if (! ceiling)
  186. return;
  187. }
  188. if (end - 1 > ceiling - 1)
  189. return;
  190. hpdp->pd = 0;
  191. tlb->need_flush = 1;
  192. pgtable_free_tlb(tlb, hugepte, pdshift - shift);
  193. }
  194. static void hugetlb_free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
  195. unsigned long addr, unsigned long end,
  196. unsigned long floor, unsigned long ceiling)
  197. {
  198. pmd_t *pmd;
  199. unsigned long next;
  200. unsigned long start;
  201. start = addr;
  202. pmd = pmd_offset(pud, addr);
  203. do {
  204. next = pmd_addr_end(addr, end);
  205. if (pmd_none(*pmd))
  206. continue;
  207. free_hugepd_range(tlb, (hugepd_t *)pmd, PMD_SHIFT,
  208. addr, next, floor, ceiling);
  209. } while (pmd++, addr = next, addr != end);
  210. start &= PUD_MASK;
  211. if (start < floor)
  212. return;
  213. if (ceiling) {
  214. ceiling &= PUD_MASK;
  215. if (!ceiling)
  216. return;
  217. }
  218. if (end - 1 > ceiling - 1)
  219. return;
  220. pmd = pmd_offset(pud, start);
  221. pud_clear(pud);
  222. pmd_free_tlb(tlb, pmd, start);
  223. }
  224. static void hugetlb_free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
  225. unsigned long addr, unsigned long end,
  226. unsigned long floor, unsigned long ceiling)
  227. {
  228. pud_t *pud;
  229. unsigned long next;
  230. unsigned long start;
  231. start = addr;
  232. pud = pud_offset(pgd, addr);
  233. do {
  234. next = pud_addr_end(addr, end);
  235. if (!is_hugepd(pud)) {
  236. if (pud_none_or_clear_bad(pud))
  237. continue;
  238. hugetlb_free_pmd_range(tlb, pud, addr, next, floor,
  239. ceiling);
  240. } else {
  241. free_hugepd_range(tlb, (hugepd_t *)pud, PUD_SHIFT,
  242. addr, next, floor, ceiling);
  243. }
  244. } while (pud++, addr = next, addr != end);
  245. start &= PGDIR_MASK;
  246. if (start < floor)
  247. return;
  248. if (ceiling) {
  249. ceiling &= PGDIR_MASK;
  250. if (!ceiling)
  251. return;
  252. }
  253. if (end - 1 > ceiling - 1)
  254. return;
  255. pud = pud_offset(pgd, start);
  256. pgd_clear(pgd);
  257. pud_free_tlb(tlb, pud, start);
  258. }
  259. /*
  260. * This function frees user-level page tables of a process.
  261. *
  262. * Must be called with pagetable lock held.
  263. */
  264. void hugetlb_free_pgd_range(struct mmu_gather *tlb,
  265. unsigned long addr, unsigned long end,
  266. unsigned long floor, unsigned long ceiling)
  267. {
  268. pgd_t *pgd;
  269. unsigned long next;
  270. /*
  271. * Because there are a number of different possible pagetable
  272. * layouts for hugepage ranges, we limit knowledge of how
  273. * things should be laid out to the allocation path
  274. * (huge_pte_alloc(), above). Everything else works out the
  275. * structure as it goes from information in the hugepd
  276. * pointers. That means that we can't here use the
  277. * optimization used in the normal page free_pgd_range(), of
  278. * checking whether we're actually covering a large enough
  279. * range to have to do anything at the top level of the walk
  280. * instead of at the bottom.
  281. *
  282. * To make sense of this, you should probably go read the big
  283. * block comment at the top of the normal free_pgd_range(),
  284. * too.
  285. */
  286. pgd = pgd_offset(tlb->mm, addr);
  287. do {
  288. next = pgd_addr_end(addr, end);
  289. if (!is_hugepd(pgd)) {
  290. if (pgd_none_or_clear_bad(pgd))
  291. continue;
  292. hugetlb_free_pud_range(tlb, pgd, addr, next, floor, ceiling);
  293. } else {
  294. free_hugepd_range(tlb, (hugepd_t *)pgd, PGDIR_SHIFT,
  295. addr, next, floor, ceiling);
  296. }
  297. } while (pgd++, addr = next, addr != end);
  298. }
  299. void set_huge_pte_at(struct mm_struct *mm, unsigned long addr,
  300. pte_t *ptep, pte_t pte)
  301. {
  302. if (pte_present(*ptep)) {
  303. /* We open-code pte_clear because we need to pass the right
  304. * argument to hpte_need_flush (huge / !huge). Might not be
  305. * necessary anymore if we make hpte_need_flush() get the
  306. * page size from the slices
  307. */
  308. pte_update(mm, addr, ptep, ~0UL, 1);
  309. }
  310. *ptep = __pte(pte_val(pte) & ~_PAGE_HPTEFLAGS);
  311. }
  312. pte_t huge_ptep_get_and_clear(struct mm_struct *mm, unsigned long addr,
  313. pte_t *ptep)
  314. {
  315. unsigned long old = pte_update(mm, addr, ptep, ~0UL, 1);
  316. return __pte(old);
  317. }
  318. struct page *
  319. follow_huge_addr(struct mm_struct *mm, unsigned long address, int write)
  320. {
  321. pte_t *ptep;
  322. struct page *page;
  323. unsigned shift;
  324. unsigned long mask;
  325. ptep = find_linux_pte_or_hugepte(mm->pgd, address, &shift);
  326. /* Verify it is a huge page else bail. */
  327. if (!ptep || !shift)
  328. return ERR_PTR(-EINVAL);
  329. mask = (1UL << shift) - 1;
  330. page = pte_page(*ptep);
  331. if (page)
  332. page += (address & mask) / PAGE_SIZE;
  333. return page;
  334. }
  335. int pmd_huge(pmd_t pmd)
  336. {
  337. return 0;
  338. }
  339. int pud_huge(pud_t pud)
  340. {
  341. return 0;
  342. }
  343. struct page *
  344. follow_huge_pmd(struct mm_struct *mm, unsigned long address,
  345. pmd_t *pmd, int write)
  346. {
  347. BUG();
  348. return NULL;
  349. }
  350. static noinline int gup_hugepte(pte_t *ptep, unsigned long sz, unsigned long addr,
  351. unsigned long end, int write, struct page **pages, int *nr)
  352. {
  353. unsigned long mask;
  354. unsigned long pte_end;
  355. struct page *head, *page;
  356. pte_t pte;
  357. int refs;
  358. pte_end = (addr + sz) & ~(sz-1);
  359. if (pte_end < end)
  360. end = pte_end;
  361. pte = *ptep;
  362. mask = _PAGE_PRESENT | _PAGE_USER;
  363. if (write)
  364. mask |= _PAGE_RW;
  365. if ((pte_val(pte) & mask) != mask)
  366. return 0;
  367. /* hugepages are never "special" */
  368. VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
  369. refs = 0;
  370. head = pte_page(pte);
  371. page = head + ((addr & (sz-1)) >> PAGE_SHIFT);
  372. do {
  373. VM_BUG_ON(compound_head(page) != head);
  374. pages[*nr] = page;
  375. (*nr)++;
  376. page++;
  377. refs++;
  378. } while (addr += PAGE_SIZE, addr != end);
  379. if (!page_cache_add_speculative(head, refs)) {
  380. *nr -= refs;
  381. return 0;
  382. }
  383. if (unlikely(pte_val(pte) != pte_val(*ptep))) {
  384. /* Could be optimized better */
  385. while (*nr) {
  386. put_page(page);
  387. (*nr)--;
  388. }
  389. }
  390. return 1;
  391. }
  392. int gup_hugepd(hugepd_t *hugepd, unsigned pdshift,
  393. unsigned long addr, unsigned long end,
  394. int write, struct page **pages, int *nr)
  395. {
  396. pte_t *ptep;
  397. unsigned long sz = 1UL << hugepd_shift(*hugepd);
  398. ptep = hugepte_offset(hugepd, addr, pdshift);
  399. do {
  400. if (!gup_hugepte(ptep, sz, addr, end, write, pages, nr))
  401. return 0;
  402. } while (ptep++, addr += sz, addr != end);
  403. return 1;
  404. }
  405. unsigned long hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
  406. unsigned long len, unsigned long pgoff,
  407. unsigned long flags)
  408. {
  409. struct hstate *hstate = hstate_file(file);
  410. int mmu_psize = shift_to_mmu_psize(huge_page_shift(hstate));
  411. return slice_get_unmapped_area(addr, len, flags, mmu_psize, 1, 0);
  412. }
  413. unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
  414. {
  415. unsigned int psize = get_slice_psize(vma->vm_mm, vma->vm_start);
  416. return 1UL << mmu_psize_to_shift(psize);
  417. }
  418. static int __init add_huge_page_size(unsigned long long size)
  419. {
  420. int shift = __ffs(size);
  421. int mmu_psize;
  422. /* Check that it is a page size supported by the hardware and
  423. * that it fits within pagetable and slice limits. */
  424. if (!is_power_of_2(size)
  425. || (shift > SLICE_HIGH_SHIFT) || (shift <= PAGE_SHIFT))
  426. return -EINVAL;
  427. if ((mmu_psize = shift_to_mmu_psize(shift)) < 0)
  428. return -EINVAL;
  429. #ifdef CONFIG_SPU_FS_64K_LS
  430. /* Disable support for 64K huge pages when 64K SPU local store
  431. * support is enabled as the current implementation conflicts.
  432. */
  433. if (shift == PAGE_SHIFT_64K)
  434. return -EINVAL;
  435. #endif /* CONFIG_SPU_FS_64K_LS */
  436. BUG_ON(mmu_psize_defs[mmu_psize].shift != shift);
  437. /* Return if huge page size has already been setup */
  438. if (size_to_hstate(size))
  439. return 0;
  440. hugetlb_add_hstate(shift - PAGE_SHIFT);
  441. return 0;
  442. }
  443. static int __init hugepage_setup_sz(char *str)
  444. {
  445. unsigned long long size;
  446. size = memparse(str, &str);
  447. if (add_huge_page_size(size) != 0)
  448. printk(KERN_WARNING "Invalid huge page size specified(%llu)\n", size);
  449. return 1;
  450. }
  451. __setup("hugepagesz=", hugepage_setup_sz);
  452. static int __init hugetlbpage_init(void)
  453. {
  454. int psize;
  455. if (!cpu_has_feature(CPU_FTR_16M_PAGE))
  456. return -ENODEV;
  457. for (psize = 0; psize < MMU_PAGE_COUNT; ++psize) {
  458. unsigned shift;
  459. unsigned pdshift;
  460. if (!mmu_psize_defs[psize].shift)
  461. continue;
  462. shift = mmu_psize_to_shift(psize);
  463. if (add_huge_page_size(1ULL << shift) < 0)
  464. continue;
  465. if (shift < PMD_SHIFT)
  466. pdshift = PMD_SHIFT;
  467. else if (shift < PUD_SHIFT)
  468. pdshift = PUD_SHIFT;
  469. else
  470. pdshift = PGDIR_SHIFT;
  471. pgtable_cache_add(pdshift - shift, NULL);
  472. if (!PGT_CACHE(pdshift - shift))
  473. panic("hugetlbpage_init(): could not create "
  474. "pgtable cache for %d bit pagesize\n", shift);
  475. }
  476. /* Set default large page size. Currently, we pick 16M or 1M
  477. * depending on what is available
  478. */
  479. if (mmu_psize_defs[MMU_PAGE_16M].shift)
  480. HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_16M].shift;
  481. else if (mmu_psize_defs[MMU_PAGE_1M].shift)
  482. HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_1M].shift;
  483. return 0;
  484. }
  485. module_init(hugetlbpage_init);