btree.c 56 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518
  1. /*
  2. * Copyright (C) 2010 Kent Overstreet <kent.overstreet@gmail.com>
  3. *
  4. * Uses a block device as cache for other block devices; optimized for SSDs.
  5. * All allocation is done in buckets, which should match the erase block size
  6. * of the device.
  7. *
  8. * Buckets containing cached data are kept on a heap sorted by priority;
  9. * bucket priority is increased on cache hit, and periodically all the buckets
  10. * on the heap have their priority scaled down. This currently is just used as
  11. * an LRU but in the future should allow for more intelligent heuristics.
  12. *
  13. * Buckets have an 8 bit counter; freeing is accomplished by incrementing the
  14. * counter. Garbage collection is used to remove stale pointers.
  15. *
  16. * Indexing is done via a btree; nodes are not necessarily fully sorted, rather
  17. * as keys are inserted we only sort the pages that have not yet been written.
  18. * When garbage collection is run, we resort the entire node.
  19. *
  20. * All configuration is done via sysfs; see Documentation/bcache.txt.
  21. */
  22. #include "bcache.h"
  23. #include "btree.h"
  24. #include "debug.h"
  25. #include "writeback.h"
  26. #include <linux/slab.h>
  27. #include <linux/bitops.h>
  28. #include <linux/freezer.h>
  29. #include <linux/hash.h>
  30. #include <linux/kthread.h>
  31. #include <linux/prefetch.h>
  32. #include <linux/random.h>
  33. #include <linux/rcupdate.h>
  34. #include <trace/events/bcache.h>
  35. /*
  36. * Todo:
  37. * register_bcache: Return errors out to userspace correctly
  38. *
  39. * Writeback: don't undirty key until after a cache flush
  40. *
  41. * Create an iterator for key pointers
  42. *
  43. * On btree write error, mark bucket such that it won't be freed from the cache
  44. *
  45. * Journalling:
  46. * Check for bad keys in replay
  47. * Propagate barriers
  48. * Refcount journal entries in journal_replay
  49. *
  50. * Garbage collection:
  51. * Finish incremental gc
  52. * Gc should free old UUIDs, data for invalid UUIDs
  53. *
  54. * Provide a way to list backing device UUIDs we have data cached for, and
  55. * probably how long it's been since we've seen them, and a way to invalidate
  56. * dirty data for devices that will never be attached again
  57. *
  58. * Keep 1 min/5 min/15 min statistics of how busy a block device has been, so
  59. * that based on that and how much dirty data we have we can keep writeback
  60. * from being starved
  61. *
  62. * Add a tracepoint or somesuch to watch for writeback starvation
  63. *
  64. * When btree depth > 1 and splitting an interior node, we have to make sure
  65. * alloc_bucket() cannot fail. This should be true but is not completely
  66. * obvious.
  67. *
  68. * Make sure all allocations get charged to the root cgroup
  69. *
  70. * Plugging?
  71. *
  72. * If data write is less than hard sector size of ssd, round up offset in open
  73. * bucket to the next whole sector
  74. *
  75. * Also lookup by cgroup in get_open_bucket()
  76. *
  77. * Superblock needs to be fleshed out for multiple cache devices
  78. *
  79. * Add a sysfs tunable for the number of writeback IOs in flight
  80. *
  81. * Add a sysfs tunable for the number of open data buckets
  82. *
  83. * IO tracking: Can we track when one process is doing io on behalf of another?
  84. * IO tracking: Don't use just an average, weigh more recent stuff higher
  85. *
  86. * Test module load/unload
  87. */
  88. enum {
  89. BTREE_INSERT_STATUS_INSERT,
  90. BTREE_INSERT_STATUS_BACK_MERGE,
  91. BTREE_INSERT_STATUS_OVERWROTE,
  92. BTREE_INSERT_STATUS_FRONT_MERGE,
  93. };
  94. #define MAX_NEED_GC 64
  95. #define MAX_SAVE_PRIO 72
  96. #define PTR_DIRTY_BIT (((uint64_t) 1 << 36))
  97. #define PTR_HASH(c, k) \
  98. (((k)->ptr[0] >> c->bucket_bits) | PTR_GEN(k, 0))
  99. static struct workqueue_struct *btree_io_wq;
  100. static inline bool should_split(struct btree *b)
  101. {
  102. struct bset *i = write_block(b);
  103. return b->written >= btree_blocks(b) ||
  104. (b->written + __set_blocks(i, i->keys + 15, b->c)
  105. > btree_blocks(b));
  106. }
  107. #define insert_lock(s, b) ((b)->level <= (s)->lock)
  108. /*
  109. * These macros are for recursing down the btree - they handle the details of
  110. * locking and looking up nodes in the cache for you. They're best treated as
  111. * mere syntax when reading code that uses them.
  112. *
  113. * op->lock determines whether we take a read or a write lock at a given depth.
  114. * If you've got a read lock and find that you need a write lock (i.e. you're
  115. * going to have to split), set op->lock and return -EINTR; btree_root() will
  116. * call you again and you'll have the correct lock.
  117. */
  118. /**
  119. * btree - recurse down the btree on a specified key
  120. * @fn: function to call, which will be passed the child node
  121. * @key: key to recurse on
  122. * @b: parent btree node
  123. * @op: pointer to struct btree_op
  124. */
  125. #define btree(fn, key, b, op, ...) \
  126. ({ \
  127. int _r, l = (b)->level - 1; \
  128. bool _w = l <= (op)->lock; \
  129. struct btree *_child = bch_btree_node_get((b)->c, key, l, _w); \
  130. if (!IS_ERR(_child)) { \
  131. _child->parent = (b); \
  132. _r = bch_btree_ ## fn(_child, op, ##__VA_ARGS__); \
  133. rw_unlock(_w, _child); \
  134. } else \
  135. _r = PTR_ERR(_child); \
  136. _r; \
  137. })
  138. /**
  139. * btree_root - call a function on the root of the btree
  140. * @fn: function to call, which will be passed the child node
  141. * @c: cache set
  142. * @op: pointer to struct btree_op
  143. */
  144. #define btree_root(fn, c, op, ...) \
  145. ({ \
  146. int _r = -EINTR; \
  147. do { \
  148. struct btree *_b = (c)->root; \
  149. bool _w = insert_lock(op, _b); \
  150. rw_lock(_w, _b, _b->level); \
  151. if (_b == (c)->root && \
  152. _w == insert_lock(op, _b)) { \
  153. _b->parent = NULL; \
  154. _r = bch_btree_ ## fn(_b, op, ##__VA_ARGS__); \
  155. } \
  156. rw_unlock(_w, _b); \
  157. bch_cannibalize_unlock(c); \
  158. if (_r == -ENOSPC) { \
  159. wait_event((c)->try_wait, \
  160. !(c)->try_harder); \
  161. _r = -EINTR; \
  162. } \
  163. } while (_r == -EINTR); \
  164. \
  165. _r; \
  166. })
  167. /* Btree key manipulation */
  168. void bkey_put(struct cache_set *c, struct bkey *k)
  169. {
  170. unsigned i;
  171. for (i = 0; i < KEY_PTRS(k); i++)
  172. if (ptr_available(c, k, i))
  173. atomic_dec_bug(&PTR_BUCKET(c, k, i)->pin);
  174. }
  175. /* Btree IO */
  176. static uint64_t btree_csum_set(struct btree *b, struct bset *i)
  177. {
  178. uint64_t crc = b->key.ptr[0];
  179. void *data = (void *) i + 8, *end = end(i);
  180. crc = bch_crc64_update(crc, data, end - data);
  181. return crc ^ 0xffffffffffffffffULL;
  182. }
  183. static void bch_btree_node_read_done(struct btree *b)
  184. {
  185. const char *err = "bad btree header";
  186. struct bset *i = b->sets[0].data;
  187. struct btree_iter *iter;
  188. iter = mempool_alloc(b->c->fill_iter, GFP_NOWAIT);
  189. iter->size = b->c->sb.bucket_size / b->c->sb.block_size;
  190. iter->used = 0;
  191. #ifdef CONFIG_BCACHE_DEBUG
  192. iter->b = b;
  193. #endif
  194. if (!i->seq)
  195. goto err;
  196. for (;
  197. b->written < btree_blocks(b) && i->seq == b->sets[0].data->seq;
  198. i = write_block(b)) {
  199. err = "unsupported bset version";
  200. if (i->version > BCACHE_BSET_VERSION)
  201. goto err;
  202. err = "bad btree header";
  203. if (b->written + set_blocks(i, b->c) > btree_blocks(b))
  204. goto err;
  205. err = "bad magic";
  206. if (i->magic != bset_magic(&b->c->sb))
  207. goto err;
  208. err = "bad checksum";
  209. switch (i->version) {
  210. case 0:
  211. if (i->csum != csum_set(i))
  212. goto err;
  213. break;
  214. case BCACHE_BSET_VERSION:
  215. if (i->csum != btree_csum_set(b, i))
  216. goto err;
  217. break;
  218. }
  219. err = "empty set";
  220. if (i != b->sets[0].data && !i->keys)
  221. goto err;
  222. bch_btree_iter_push(iter, i->start, end(i));
  223. b->written += set_blocks(i, b->c);
  224. }
  225. err = "corrupted btree";
  226. for (i = write_block(b);
  227. index(i, b) < btree_blocks(b);
  228. i = ((void *) i) + block_bytes(b->c))
  229. if (i->seq == b->sets[0].data->seq)
  230. goto err;
  231. bch_btree_sort_and_fix_extents(b, iter);
  232. i = b->sets[0].data;
  233. err = "short btree key";
  234. if (b->sets[0].size &&
  235. bkey_cmp(&b->key, &b->sets[0].end) < 0)
  236. goto err;
  237. if (b->written < btree_blocks(b))
  238. bch_bset_init_next(b);
  239. out:
  240. mempool_free(iter, b->c->fill_iter);
  241. return;
  242. err:
  243. set_btree_node_io_error(b);
  244. bch_cache_set_error(b->c, "%s at bucket %zu, block %zu, %u keys",
  245. err, PTR_BUCKET_NR(b->c, &b->key, 0),
  246. index(i, b), i->keys);
  247. goto out;
  248. }
  249. static void btree_node_read_endio(struct bio *bio, int error)
  250. {
  251. struct closure *cl = bio->bi_private;
  252. closure_put(cl);
  253. }
  254. void bch_btree_node_read(struct btree *b)
  255. {
  256. uint64_t start_time = local_clock();
  257. struct closure cl;
  258. struct bio *bio;
  259. trace_bcache_btree_read(b);
  260. closure_init_stack(&cl);
  261. bio = bch_bbio_alloc(b->c);
  262. bio->bi_rw = REQ_META|READ_SYNC;
  263. bio->bi_size = KEY_SIZE(&b->key) << 9;
  264. bio->bi_end_io = btree_node_read_endio;
  265. bio->bi_private = &cl;
  266. bch_bio_map(bio, b->sets[0].data);
  267. bch_submit_bbio(bio, b->c, &b->key, 0);
  268. closure_sync(&cl);
  269. if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
  270. set_btree_node_io_error(b);
  271. bch_bbio_free(bio, b->c);
  272. if (btree_node_io_error(b))
  273. goto err;
  274. bch_btree_node_read_done(b);
  275. spin_lock(&b->c->btree_read_time_lock);
  276. bch_time_stats_update(&b->c->btree_read_time, start_time);
  277. spin_unlock(&b->c->btree_read_time_lock);
  278. return;
  279. err:
  280. bch_cache_set_error(b->c, "io error reading bucket %zu",
  281. PTR_BUCKET_NR(b->c, &b->key, 0));
  282. }
  283. static void btree_complete_write(struct btree *b, struct btree_write *w)
  284. {
  285. if (w->prio_blocked &&
  286. !atomic_sub_return(w->prio_blocked, &b->c->prio_blocked))
  287. wake_up_allocators(b->c);
  288. if (w->journal) {
  289. atomic_dec_bug(w->journal);
  290. __closure_wake_up(&b->c->journal.wait);
  291. }
  292. w->prio_blocked = 0;
  293. w->journal = NULL;
  294. }
  295. static void __btree_node_write_done(struct closure *cl)
  296. {
  297. struct btree *b = container_of(cl, struct btree, io.cl);
  298. struct btree_write *w = btree_prev_write(b);
  299. bch_bbio_free(b->bio, b->c);
  300. b->bio = NULL;
  301. btree_complete_write(b, w);
  302. if (btree_node_dirty(b))
  303. queue_delayed_work(btree_io_wq, &b->work,
  304. msecs_to_jiffies(30000));
  305. closure_return(cl);
  306. }
  307. static void btree_node_write_done(struct closure *cl)
  308. {
  309. struct btree *b = container_of(cl, struct btree, io.cl);
  310. struct bio_vec *bv;
  311. int n;
  312. __bio_for_each_segment(bv, b->bio, n, 0)
  313. __free_page(bv->bv_page);
  314. __btree_node_write_done(cl);
  315. }
  316. static void btree_node_write_endio(struct bio *bio, int error)
  317. {
  318. struct closure *cl = bio->bi_private;
  319. struct btree *b = container_of(cl, struct btree, io.cl);
  320. if (error)
  321. set_btree_node_io_error(b);
  322. bch_bbio_count_io_errors(b->c, bio, error, "writing btree");
  323. closure_put(cl);
  324. }
  325. static void do_btree_node_write(struct btree *b)
  326. {
  327. struct closure *cl = &b->io.cl;
  328. struct bset *i = b->sets[b->nsets].data;
  329. BKEY_PADDED(key) k;
  330. i->version = BCACHE_BSET_VERSION;
  331. i->csum = btree_csum_set(b, i);
  332. BUG_ON(b->bio);
  333. b->bio = bch_bbio_alloc(b->c);
  334. b->bio->bi_end_io = btree_node_write_endio;
  335. b->bio->bi_private = cl;
  336. b->bio->bi_rw = REQ_META|WRITE_SYNC|REQ_FUA;
  337. b->bio->bi_size = set_blocks(i, b->c) * block_bytes(b->c);
  338. bch_bio_map(b->bio, i);
  339. /*
  340. * If we're appending to a leaf node, we don't technically need FUA -
  341. * this write just needs to be persisted before the next journal write,
  342. * which will be marked FLUSH|FUA.
  343. *
  344. * Similarly if we're writing a new btree root - the pointer is going to
  345. * be in the next journal entry.
  346. *
  347. * But if we're writing a new btree node (that isn't a root) or
  348. * appending to a non leaf btree node, we need either FUA or a flush
  349. * when we write the parent with the new pointer. FUA is cheaper than a
  350. * flush, and writes appending to leaf nodes aren't blocking anything so
  351. * just make all btree node writes FUA to keep things sane.
  352. */
  353. bkey_copy(&k.key, &b->key);
  354. SET_PTR_OFFSET(&k.key, 0, PTR_OFFSET(&k.key, 0) + bset_offset(b, i));
  355. if (!bio_alloc_pages(b->bio, GFP_NOIO)) {
  356. int j;
  357. struct bio_vec *bv;
  358. void *base = (void *) ((unsigned long) i & ~(PAGE_SIZE - 1));
  359. bio_for_each_segment(bv, b->bio, j)
  360. memcpy(page_address(bv->bv_page),
  361. base + j * PAGE_SIZE, PAGE_SIZE);
  362. bch_submit_bbio(b->bio, b->c, &k.key, 0);
  363. continue_at(cl, btree_node_write_done, NULL);
  364. } else {
  365. b->bio->bi_vcnt = 0;
  366. bch_bio_map(b->bio, i);
  367. bch_submit_bbio(b->bio, b->c, &k.key, 0);
  368. closure_sync(cl);
  369. __btree_node_write_done(cl);
  370. }
  371. }
  372. void bch_btree_node_write(struct btree *b, struct closure *parent)
  373. {
  374. struct bset *i = b->sets[b->nsets].data;
  375. trace_bcache_btree_write(b);
  376. BUG_ON(current->bio_list);
  377. BUG_ON(b->written >= btree_blocks(b));
  378. BUG_ON(b->written && !i->keys);
  379. BUG_ON(b->sets->data->seq != i->seq);
  380. bch_check_keys(b, "writing");
  381. cancel_delayed_work(&b->work);
  382. /* If caller isn't waiting for write, parent refcount is cache set */
  383. closure_lock(&b->io, parent ?: &b->c->cl);
  384. clear_bit(BTREE_NODE_dirty, &b->flags);
  385. change_bit(BTREE_NODE_write_idx, &b->flags);
  386. do_btree_node_write(b);
  387. b->written += set_blocks(i, b->c);
  388. atomic_long_add(set_blocks(i, b->c) * b->c->sb.block_size,
  389. &PTR_CACHE(b->c, &b->key, 0)->btree_sectors_written);
  390. bch_btree_sort_lazy(b);
  391. if (b->written < btree_blocks(b))
  392. bch_bset_init_next(b);
  393. }
  394. static void bch_btree_node_write_sync(struct btree *b)
  395. {
  396. struct closure cl;
  397. closure_init_stack(&cl);
  398. bch_btree_node_write(b, &cl);
  399. closure_sync(&cl);
  400. }
  401. static void btree_node_write_work(struct work_struct *w)
  402. {
  403. struct btree *b = container_of(to_delayed_work(w), struct btree, work);
  404. rw_lock(true, b, b->level);
  405. if (btree_node_dirty(b))
  406. bch_btree_node_write(b, NULL);
  407. rw_unlock(true, b);
  408. }
  409. static void bch_btree_leaf_dirty(struct btree *b, atomic_t *journal_ref)
  410. {
  411. struct bset *i = b->sets[b->nsets].data;
  412. struct btree_write *w = btree_current_write(b);
  413. BUG_ON(!b->written);
  414. BUG_ON(!i->keys);
  415. if (!btree_node_dirty(b))
  416. queue_delayed_work(btree_io_wq, &b->work, 30 * HZ);
  417. set_btree_node_dirty(b);
  418. if (journal_ref) {
  419. if (w->journal &&
  420. journal_pin_cmp(b->c, w->journal, journal_ref)) {
  421. atomic_dec_bug(w->journal);
  422. w->journal = NULL;
  423. }
  424. if (!w->journal) {
  425. w->journal = journal_ref;
  426. atomic_inc(w->journal);
  427. }
  428. }
  429. /* Force write if set is too big */
  430. if (set_bytes(i) > PAGE_SIZE - 48 &&
  431. !current->bio_list)
  432. bch_btree_node_write(b, NULL);
  433. }
  434. /*
  435. * Btree in memory cache - allocation/freeing
  436. * mca -> memory cache
  437. */
  438. static void mca_reinit(struct btree *b)
  439. {
  440. unsigned i;
  441. b->flags = 0;
  442. b->written = 0;
  443. b->nsets = 0;
  444. for (i = 0; i < MAX_BSETS; i++)
  445. b->sets[i].size = 0;
  446. /*
  447. * Second loop starts at 1 because b->sets[0]->data is the memory we
  448. * allocated
  449. */
  450. for (i = 1; i < MAX_BSETS; i++)
  451. b->sets[i].data = NULL;
  452. }
  453. #define mca_reserve(c) (((c->root && c->root->level) \
  454. ? c->root->level : 1) * 8 + 16)
  455. #define mca_can_free(c) \
  456. max_t(int, 0, c->bucket_cache_used - mca_reserve(c))
  457. static void mca_data_free(struct btree *b)
  458. {
  459. struct bset_tree *t = b->sets;
  460. BUG_ON(!closure_is_unlocked(&b->io.cl));
  461. if (bset_prev_bytes(b) < PAGE_SIZE)
  462. kfree(t->prev);
  463. else
  464. free_pages((unsigned long) t->prev,
  465. get_order(bset_prev_bytes(b)));
  466. if (bset_tree_bytes(b) < PAGE_SIZE)
  467. kfree(t->tree);
  468. else
  469. free_pages((unsigned long) t->tree,
  470. get_order(bset_tree_bytes(b)));
  471. free_pages((unsigned long) t->data, b->page_order);
  472. t->prev = NULL;
  473. t->tree = NULL;
  474. t->data = NULL;
  475. list_move(&b->list, &b->c->btree_cache_freed);
  476. b->c->bucket_cache_used--;
  477. }
  478. static void mca_bucket_free(struct btree *b)
  479. {
  480. BUG_ON(btree_node_dirty(b));
  481. b->key.ptr[0] = 0;
  482. hlist_del_init_rcu(&b->hash);
  483. list_move(&b->list, &b->c->btree_cache_freeable);
  484. }
  485. static unsigned btree_order(struct bkey *k)
  486. {
  487. return ilog2(KEY_SIZE(k) / PAGE_SECTORS ?: 1);
  488. }
  489. static void mca_data_alloc(struct btree *b, struct bkey *k, gfp_t gfp)
  490. {
  491. struct bset_tree *t = b->sets;
  492. BUG_ON(t->data);
  493. b->page_order = max_t(unsigned,
  494. ilog2(b->c->btree_pages),
  495. btree_order(k));
  496. t->data = (void *) __get_free_pages(gfp, b->page_order);
  497. if (!t->data)
  498. goto err;
  499. t->tree = bset_tree_bytes(b) < PAGE_SIZE
  500. ? kmalloc(bset_tree_bytes(b), gfp)
  501. : (void *) __get_free_pages(gfp, get_order(bset_tree_bytes(b)));
  502. if (!t->tree)
  503. goto err;
  504. t->prev = bset_prev_bytes(b) < PAGE_SIZE
  505. ? kmalloc(bset_prev_bytes(b), gfp)
  506. : (void *) __get_free_pages(gfp, get_order(bset_prev_bytes(b)));
  507. if (!t->prev)
  508. goto err;
  509. list_move(&b->list, &b->c->btree_cache);
  510. b->c->bucket_cache_used++;
  511. return;
  512. err:
  513. mca_data_free(b);
  514. }
  515. static struct btree *mca_bucket_alloc(struct cache_set *c,
  516. struct bkey *k, gfp_t gfp)
  517. {
  518. struct btree *b = kzalloc(sizeof(struct btree), gfp);
  519. if (!b)
  520. return NULL;
  521. init_rwsem(&b->lock);
  522. lockdep_set_novalidate_class(&b->lock);
  523. INIT_LIST_HEAD(&b->list);
  524. INIT_DELAYED_WORK(&b->work, btree_node_write_work);
  525. b->c = c;
  526. closure_init_unlocked(&b->io);
  527. mca_data_alloc(b, k, gfp);
  528. return b;
  529. }
  530. static int mca_reap(struct btree *b, unsigned min_order, bool flush)
  531. {
  532. struct closure cl;
  533. closure_init_stack(&cl);
  534. lockdep_assert_held(&b->c->bucket_lock);
  535. if (!down_write_trylock(&b->lock))
  536. return -ENOMEM;
  537. BUG_ON(btree_node_dirty(b) && !b->sets[0].data);
  538. if (b->page_order < min_order ||
  539. (!flush &&
  540. (btree_node_dirty(b) ||
  541. atomic_read(&b->io.cl.remaining) != -1))) {
  542. rw_unlock(true, b);
  543. return -ENOMEM;
  544. }
  545. if (btree_node_dirty(b))
  546. bch_btree_node_write_sync(b);
  547. /* wait for any in flight btree write */
  548. closure_wait_event(&b->io.wait, &cl,
  549. atomic_read(&b->io.cl.remaining) == -1);
  550. return 0;
  551. }
  552. static unsigned long bch_mca_scan(struct shrinker *shrink,
  553. struct shrink_control *sc)
  554. {
  555. struct cache_set *c = container_of(shrink, struct cache_set, shrink);
  556. struct btree *b, *t;
  557. unsigned long i, nr = sc->nr_to_scan;
  558. unsigned long freed = 0;
  559. if (c->shrinker_disabled)
  560. return SHRINK_STOP;
  561. if (c->try_harder)
  562. return SHRINK_STOP;
  563. /* Return -1 if we can't do anything right now */
  564. if (sc->gfp_mask & __GFP_IO)
  565. mutex_lock(&c->bucket_lock);
  566. else if (!mutex_trylock(&c->bucket_lock))
  567. return -1;
  568. /*
  569. * It's _really_ critical that we don't free too many btree nodes - we
  570. * have to always leave ourselves a reserve. The reserve is how we
  571. * guarantee that allocating memory for a new btree node can always
  572. * succeed, so that inserting keys into the btree can always succeed and
  573. * IO can always make forward progress:
  574. */
  575. nr /= c->btree_pages;
  576. nr = min_t(unsigned long, nr, mca_can_free(c));
  577. i = 0;
  578. list_for_each_entry_safe(b, t, &c->btree_cache_freeable, list) {
  579. if (freed >= nr)
  580. break;
  581. if (++i > 3 &&
  582. !mca_reap(b, 0, false)) {
  583. mca_data_free(b);
  584. rw_unlock(true, b);
  585. freed++;
  586. }
  587. }
  588. /*
  589. * Can happen right when we first start up, before we've read in any
  590. * btree nodes
  591. */
  592. if (list_empty(&c->btree_cache))
  593. goto out;
  594. for (i = 0; (nr--) && i < c->bucket_cache_used; i++) {
  595. b = list_first_entry(&c->btree_cache, struct btree, list);
  596. list_rotate_left(&c->btree_cache);
  597. if (!b->accessed &&
  598. !mca_reap(b, 0, false)) {
  599. mca_bucket_free(b);
  600. mca_data_free(b);
  601. rw_unlock(true, b);
  602. freed++;
  603. } else
  604. b->accessed = 0;
  605. }
  606. out:
  607. mutex_unlock(&c->bucket_lock);
  608. return freed;
  609. }
  610. static unsigned long bch_mca_count(struct shrinker *shrink,
  611. struct shrink_control *sc)
  612. {
  613. struct cache_set *c = container_of(shrink, struct cache_set, shrink);
  614. if (c->shrinker_disabled)
  615. return 0;
  616. if (c->try_harder)
  617. return 0;
  618. return mca_can_free(c) * c->btree_pages;
  619. }
  620. void bch_btree_cache_free(struct cache_set *c)
  621. {
  622. struct btree *b;
  623. struct closure cl;
  624. closure_init_stack(&cl);
  625. if (c->shrink.list.next)
  626. unregister_shrinker(&c->shrink);
  627. mutex_lock(&c->bucket_lock);
  628. #ifdef CONFIG_BCACHE_DEBUG
  629. if (c->verify_data)
  630. list_move(&c->verify_data->list, &c->btree_cache);
  631. #endif
  632. list_splice(&c->btree_cache_freeable,
  633. &c->btree_cache);
  634. while (!list_empty(&c->btree_cache)) {
  635. b = list_first_entry(&c->btree_cache, struct btree, list);
  636. if (btree_node_dirty(b))
  637. btree_complete_write(b, btree_current_write(b));
  638. clear_bit(BTREE_NODE_dirty, &b->flags);
  639. mca_data_free(b);
  640. }
  641. while (!list_empty(&c->btree_cache_freed)) {
  642. b = list_first_entry(&c->btree_cache_freed,
  643. struct btree, list);
  644. list_del(&b->list);
  645. cancel_delayed_work_sync(&b->work);
  646. kfree(b);
  647. }
  648. mutex_unlock(&c->bucket_lock);
  649. }
  650. int bch_btree_cache_alloc(struct cache_set *c)
  651. {
  652. unsigned i;
  653. for (i = 0; i < mca_reserve(c); i++)
  654. if (!mca_bucket_alloc(c, &ZERO_KEY, GFP_KERNEL))
  655. return -ENOMEM;
  656. list_splice_init(&c->btree_cache,
  657. &c->btree_cache_freeable);
  658. #ifdef CONFIG_BCACHE_DEBUG
  659. mutex_init(&c->verify_lock);
  660. c->verify_data = mca_bucket_alloc(c, &ZERO_KEY, GFP_KERNEL);
  661. if (c->verify_data &&
  662. c->verify_data->sets[0].data)
  663. list_del_init(&c->verify_data->list);
  664. else
  665. c->verify_data = NULL;
  666. #endif
  667. c->shrink.count_objects = bch_mca_count;
  668. c->shrink.scan_objects = bch_mca_scan;
  669. c->shrink.seeks = 4;
  670. c->shrink.batch = c->btree_pages * 2;
  671. register_shrinker(&c->shrink);
  672. return 0;
  673. }
  674. /* Btree in memory cache - hash table */
  675. static struct hlist_head *mca_hash(struct cache_set *c, struct bkey *k)
  676. {
  677. return &c->bucket_hash[hash_32(PTR_HASH(c, k), BUCKET_HASH_BITS)];
  678. }
  679. static struct btree *mca_find(struct cache_set *c, struct bkey *k)
  680. {
  681. struct btree *b;
  682. rcu_read_lock();
  683. hlist_for_each_entry_rcu(b, mca_hash(c, k), hash)
  684. if (PTR_HASH(c, &b->key) == PTR_HASH(c, k))
  685. goto out;
  686. b = NULL;
  687. out:
  688. rcu_read_unlock();
  689. return b;
  690. }
  691. static struct btree *mca_cannibalize(struct cache_set *c, struct bkey *k)
  692. {
  693. struct btree *b;
  694. trace_bcache_btree_cache_cannibalize(c);
  695. if (!c->try_harder) {
  696. c->try_harder = current;
  697. c->try_harder_start = local_clock();
  698. } else if (c->try_harder != current)
  699. return ERR_PTR(-ENOSPC);
  700. list_for_each_entry_reverse(b, &c->btree_cache, list)
  701. if (!mca_reap(b, btree_order(k), false))
  702. return b;
  703. list_for_each_entry_reverse(b, &c->btree_cache, list)
  704. if (!mca_reap(b, btree_order(k), true))
  705. return b;
  706. return ERR_PTR(-ENOMEM);
  707. }
  708. /*
  709. * We can only have one thread cannibalizing other cached btree nodes at a time,
  710. * or we'll deadlock. We use an open coded mutex to ensure that, which a
  711. * cannibalize_bucket() will take. This means every time we unlock the root of
  712. * the btree, we need to release this lock if we have it held.
  713. */
  714. static void bch_cannibalize_unlock(struct cache_set *c)
  715. {
  716. if (c->try_harder == current) {
  717. bch_time_stats_update(&c->try_harder_time, c->try_harder_start);
  718. c->try_harder = NULL;
  719. wake_up(&c->try_wait);
  720. }
  721. }
  722. static struct btree *mca_alloc(struct cache_set *c, struct bkey *k, int level)
  723. {
  724. struct btree *b;
  725. BUG_ON(current->bio_list);
  726. lockdep_assert_held(&c->bucket_lock);
  727. if (mca_find(c, k))
  728. return NULL;
  729. /* btree_free() doesn't free memory; it sticks the node on the end of
  730. * the list. Check if there's any freed nodes there:
  731. */
  732. list_for_each_entry(b, &c->btree_cache_freeable, list)
  733. if (!mca_reap(b, btree_order(k), false))
  734. goto out;
  735. /* We never free struct btree itself, just the memory that holds the on
  736. * disk node. Check the freed list before allocating a new one:
  737. */
  738. list_for_each_entry(b, &c->btree_cache_freed, list)
  739. if (!mca_reap(b, 0, false)) {
  740. mca_data_alloc(b, k, __GFP_NOWARN|GFP_NOIO);
  741. if (!b->sets[0].data)
  742. goto err;
  743. else
  744. goto out;
  745. }
  746. b = mca_bucket_alloc(c, k, __GFP_NOWARN|GFP_NOIO);
  747. if (!b)
  748. goto err;
  749. BUG_ON(!down_write_trylock(&b->lock));
  750. if (!b->sets->data)
  751. goto err;
  752. out:
  753. BUG_ON(!closure_is_unlocked(&b->io.cl));
  754. bkey_copy(&b->key, k);
  755. list_move(&b->list, &c->btree_cache);
  756. hlist_del_init_rcu(&b->hash);
  757. hlist_add_head_rcu(&b->hash, mca_hash(c, k));
  758. lock_set_subclass(&b->lock.dep_map, level + 1, _THIS_IP_);
  759. b->level = level;
  760. b->parent = (void *) ~0UL;
  761. mca_reinit(b);
  762. return b;
  763. err:
  764. if (b)
  765. rw_unlock(true, b);
  766. b = mca_cannibalize(c, k);
  767. if (!IS_ERR(b))
  768. goto out;
  769. return b;
  770. }
  771. /**
  772. * bch_btree_node_get - find a btree node in the cache and lock it, reading it
  773. * in from disk if necessary.
  774. *
  775. * If IO is necessary and running under generic_make_request, returns -EAGAIN.
  776. *
  777. * The btree node will have either a read or a write lock held, depending on
  778. * level and op->lock.
  779. */
  780. struct btree *bch_btree_node_get(struct cache_set *c, struct bkey *k,
  781. int level, bool write)
  782. {
  783. int i = 0;
  784. struct btree *b;
  785. BUG_ON(level < 0);
  786. retry:
  787. b = mca_find(c, k);
  788. if (!b) {
  789. if (current->bio_list)
  790. return ERR_PTR(-EAGAIN);
  791. mutex_lock(&c->bucket_lock);
  792. b = mca_alloc(c, k, level);
  793. mutex_unlock(&c->bucket_lock);
  794. if (!b)
  795. goto retry;
  796. if (IS_ERR(b))
  797. return b;
  798. bch_btree_node_read(b);
  799. if (!write)
  800. downgrade_write(&b->lock);
  801. } else {
  802. rw_lock(write, b, level);
  803. if (PTR_HASH(c, &b->key) != PTR_HASH(c, k)) {
  804. rw_unlock(write, b);
  805. goto retry;
  806. }
  807. BUG_ON(b->level != level);
  808. }
  809. b->accessed = 1;
  810. for (; i <= b->nsets && b->sets[i].size; i++) {
  811. prefetch(b->sets[i].tree);
  812. prefetch(b->sets[i].data);
  813. }
  814. for (; i <= b->nsets; i++)
  815. prefetch(b->sets[i].data);
  816. if (btree_node_io_error(b)) {
  817. rw_unlock(write, b);
  818. return ERR_PTR(-EIO);
  819. }
  820. BUG_ON(!b->written);
  821. return b;
  822. }
  823. static void btree_node_prefetch(struct cache_set *c, struct bkey *k, int level)
  824. {
  825. struct btree *b;
  826. mutex_lock(&c->bucket_lock);
  827. b = mca_alloc(c, k, level);
  828. mutex_unlock(&c->bucket_lock);
  829. if (!IS_ERR_OR_NULL(b)) {
  830. bch_btree_node_read(b);
  831. rw_unlock(true, b);
  832. }
  833. }
  834. /* Btree alloc */
  835. static void btree_node_free(struct btree *b)
  836. {
  837. unsigned i;
  838. trace_bcache_btree_node_free(b);
  839. BUG_ON(b == b->c->root);
  840. if (btree_node_dirty(b))
  841. btree_complete_write(b, btree_current_write(b));
  842. clear_bit(BTREE_NODE_dirty, &b->flags);
  843. cancel_delayed_work(&b->work);
  844. mutex_lock(&b->c->bucket_lock);
  845. for (i = 0; i < KEY_PTRS(&b->key); i++) {
  846. BUG_ON(atomic_read(&PTR_BUCKET(b->c, &b->key, i)->pin));
  847. bch_inc_gen(PTR_CACHE(b->c, &b->key, i),
  848. PTR_BUCKET(b->c, &b->key, i));
  849. }
  850. bch_bucket_free(b->c, &b->key);
  851. mca_bucket_free(b);
  852. mutex_unlock(&b->c->bucket_lock);
  853. }
  854. struct btree *bch_btree_node_alloc(struct cache_set *c, int level)
  855. {
  856. BKEY_PADDED(key) k;
  857. struct btree *b = ERR_PTR(-EAGAIN);
  858. mutex_lock(&c->bucket_lock);
  859. retry:
  860. if (__bch_bucket_alloc_set(c, WATERMARK_METADATA, &k.key, 1, true))
  861. goto err;
  862. bkey_put(c, &k.key);
  863. SET_KEY_SIZE(&k.key, c->btree_pages * PAGE_SECTORS);
  864. b = mca_alloc(c, &k.key, level);
  865. if (IS_ERR(b))
  866. goto err_free;
  867. if (!b) {
  868. cache_bug(c,
  869. "Tried to allocate bucket that was in btree cache");
  870. goto retry;
  871. }
  872. b->accessed = 1;
  873. bch_bset_init_next(b);
  874. mutex_unlock(&c->bucket_lock);
  875. trace_bcache_btree_node_alloc(b);
  876. return b;
  877. err_free:
  878. bch_bucket_free(c, &k.key);
  879. err:
  880. mutex_unlock(&c->bucket_lock);
  881. trace_bcache_btree_node_alloc_fail(b);
  882. return b;
  883. }
  884. static struct btree *btree_node_alloc_replacement(struct btree *b)
  885. {
  886. struct btree *n = bch_btree_node_alloc(b->c, b->level);
  887. if (!IS_ERR_OR_NULL(n))
  888. bch_btree_sort_into(b, n);
  889. return n;
  890. }
  891. static void make_btree_freeing_key(struct btree *b, struct bkey *k)
  892. {
  893. unsigned i;
  894. bkey_copy(k, &b->key);
  895. bkey_copy_key(k, &ZERO_KEY);
  896. for (i = 0; i < KEY_PTRS(k); i++) {
  897. uint8_t g = PTR_BUCKET(b->c, k, i)->gen + 1;
  898. SET_PTR_GEN(k, i, g);
  899. }
  900. atomic_inc(&b->c->prio_blocked);
  901. }
  902. /* Garbage collection */
  903. uint8_t __bch_btree_mark_key(struct cache_set *c, int level, struct bkey *k)
  904. {
  905. uint8_t stale = 0;
  906. unsigned i;
  907. struct bucket *g;
  908. /*
  909. * ptr_invalid() can't return true for the keys that mark btree nodes as
  910. * freed, but since ptr_bad() returns true we'll never actually use them
  911. * for anything and thus we don't want mark their pointers here
  912. */
  913. if (!bkey_cmp(k, &ZERO_KEY))
  914. return stale;
  915. for (i = 0; i < KEY_PTRS(k); i++) {
  916. if (!ptr_available(c, k, i))
  917. continue;
  918. g = PTR_BUCKET(c, k, i);
  919. if (gen_after(g->gc_gen, PTR_GEN(k, i)))
  920. g->gc_gen = PTR_GEN(k, i);
  921. if (ptr_stale(c, k, i)) {
  922. stale = max(stale, ptr_stale(c, k, i));
  923. continue;
  924. }
  925. cache_bug_on(GC_MARK(g) &&
  926. (GC_MARK(g) == GC_MARK_METADATA) != (level != 0),
  927. c, "inconsistent ptrs: mark = %llu, level = %i",
  928. GC_MARK(g), level);
  929. if (level)
  930. SET_GC_MARK(g, GC_MARK_METADATA);
  931. else if (KEY_DIRTY(k))
  932. SET_GC_MARK(g, GC_MARK_DIRTY);
  933. /* guard against overflow */
  934. SET_GC_SECTORS_USED(g, min_t(unsigned,
  935. GC_SECTORS_USED(g) + KEY_SIZE(k),
  936. (1 << 14) - 1));
  937. BUG_ON(!GC_SECTORS_USED(g));
  938. }
  939. return stale;
  940. }
  941. #define btree_mark_key(b, k) __bch_btree_mark_key(b->c, b->level, k)
  942. static int btree_gc_mark_node(struct btree *b, unsigned *keys,
  943. struct gc_stat *gc)
  944. {
  945. uint8_t stale = 0;
  946. unsigned last_dev = -1;
  947. struct bcache_device *d = NULL;
  948. struct bkey *k;
  949. struct btree_iter iter;
  950. struct bset_tree *t;
  951. gc->nodes++;
  952. for_each_key_filter(b, k, &iter, bch_ptr_invalid) {
  953. if (last_dev != KEY_INODE(k)) {
  954. last_dev = KEY_INODE(k);
  955. d = KEY_INODE(k) < b->c->nr_uuids
  956. ? b->c->devices[last_dev]
  957. : NULL;
  958. }
  959. stale = max(stale, btree_mark_key(b, k));
  960. if (bch_ptr_bad(b, k))
  961. continue;
  962. *keys += bkey_u64s(k);
  963. gc->key_bytes += bkey_u64s(k);
  964. gc->nkeys++;
  965. gc->data += KEY_SIZE(k);
  966. if (KEY_DIRTY(k))
  967. gc->dirty += KEY_SIZE(k);
  968. }
  969. for (t = b->sets; t <= &b->sets[b->nsets]; t++)
  970. btree_bug_on(t->size &&
  971. bset_written(b, t) &&
  972. bkey_cmp(&b->key, &t->end) < 0,
  973. b, "found short btree key in gc");
  974. return stale;
  975. }
  976. static struct btree *btree_gc_alloc(struct btree *b, struct bkey *k)
  977. {
  978. /*
  979. * We block priorities from being written for the duration of garbage
  980. * collection, so we can't sleep in btree_alloc() ->
  981. * bch_bucket_alloc_set(), or we'd risk deadlock - so we don't pass it
  982. * our closure.
  983. */
  984. struct btree *n = btree_node_alloc_replacement(b);
  985. if (!IS_ERR_OR_NULL(n)) {
  986. swap(b, n);
  987. memcpy(k->ptr, b->key.ptr,
  988. sizeof(uint64_t) * KEY_PTRS(&b->key));
  989. btree_node_free(n);
  990. up_write(&n->lock);
  991. }
  992. return b;
  993. }
  994. /*
  995. * Leaving this at 2 until we've got incremental garbage collection done; it
  996. * could be higher (and has been tested with 4) except that garbage collection
  997. * could take much longer, adversely affecting latency.
  998. */
  999. #define GC_MERGE_NODES 2U
  1000. struct gc_merge_info {
  1001. struct btree *b;
  1002. struct bkey *k;
  1003. unsigned keys;
  1004. };
  1005. static void btree_gc_coalesce(struct btree *b, struct gc_stat *gc,
  1006. struct gc_merge_info *r)
  1007. {
  1008. unsigned nodes = 0, keys = 0, blocks;
  1009. int i;
  1010. struct closure cl;
  1011. closure_init_stack(&cl);
  1012. while (nodes < GC_MERGE_NODES && r[nodes].b)
  1013. keys += r[nodes++].keys;
  1014. blocks = btree_default_blocks(b->c) * 2 / 3;
  1015. if (nodes < 2 ||
  1016. __set_blocks(b->sets[0].data, keys, b->c) > blocks * (nodes - 1))
  1017. return;
  1018. for (i = nodes - 1; i >= 0; --i) {
  1019. if (r[i].b->written)
  1020. r[i].b = btree_gc_alloc(r[i].b, r[i].k);
  1021. if (r[i].b->written)
  1022. return;
  1023. }
  1024. for (i = nodes - 1; i > 0; --i) {
  1025. struct bset *n1 = r[i].b->sets->data;
  1026. struct bset *n2 = r[i - 1].b->sets->data;
  1027. struct bkey *k, *last = NULL;
  1028. keys = 0;
  1029. if (i == 1) {
  1030. /*
  1031. * Last node we're not getting rid of - we're getting
  1032. * rid of the node at r[0]. Have to try and fit all of
  1033. * the remaining keys into this node; we can't ensure
  1034. * they will always fit due to rounding and variable
  1035. * length keys (shouldn't be possible in practice,
  1036. * though)
  1037. */
  1038. if (__set_blocks(n1, n1->keys + r->keys,
  1039. b->c) > btree_blocks(r[i].b))
  1040. return;
  1041. keys = n2->keys;
  1042. last = &r->b->key;
  1043. } else
  1044. for (k = n2->start;
  1045. k < end(n2);
  1046. k = bkey_next(k)) {
  1047. if (__set_blocks(n1, n1->keys + keys +
  1048. bkey_u64s(k), b->c) > blocks)
  1049. break;
  1050. last = k;
  1051. keys += bkey_u64s(k);
  1052. }
  1053. BUG_ON(__set_blocks(n1, n1->keys + keys,
  1054. b->c) > btree_blocks(r[i].b));
  1055. if (last) {
  1056. bkey_copy_key(&r[i].b->key, last);
  1057. bkey_copy_key(r[i].k, last);
  1058. }
  1059. memcpy(end(n1),
  1060. n2->start,
  1061. (void *) node(n2, keys) - (void *) n2->start);
  1062. n1->keys += keys;
  1063. memmove(n2->start,
  1064. node(n2, keys),
  1065. (void *) end(n2) - (void *) node(n2, keys));
  1066. n2->keys -= keys;
  1067. r[i].keys = n1->keys;
  1068. r[i - 1].keys = n2->keys;
  1069. }
  1070. btree_node_free(r->b);
  1071. up_write(&r->b->lock);
  1072. trace_bcache_btree_gc_coalesce(nodes);
  1073. gc->nodes--;
  1074. nodes--;
  1075. memmove(&r[0], &r[1], sizeof(struct gc_merge_info) * nodes);
  1076. memset(&r[nodes], 0, sizeof(struct gc_merge_info));
  1077. }
  1078. static int btree_gc_recurse(struct btree *b, struct btree_op *op,
  1079. struct closure *writes, struct gc_stat *gc)
  1080. {
  1081. void write(struct btree *r)
  1082. {
  1083. if (!r->written || btree_node_dirty(r))
  1084. bch_btree_node_write(r, writes);
  1085. up_write(&r->lock);
  1086. }
  1087. int ret = 0, stale;
  1088. unsigned i;
  1089. struct gc_merge_info r[GC_MERGE_NODES];
  1090. memset(r, 0, sizeof(r));
  1091. while ((r->k = bch_next_recurse_key(b, &b->c->gc_done))) {
  1092. r->b = bch_btree_node_get(b->c, r->k, b->level - 1, true);
  1093. if (IS_ERR(r->b)) {
  1094. ret = PTR_ERR(r->b);
  1095. break;
  1096. }
  1097. r->keys = 0;
  1098. stale = btree_gc_mark_node(r->b, &r->keys, gc);
  1099. if (!b->written &&
  1100. (r->b->level || stale > 10 ||
  1101. b->c->gc_always_rewrite))
  1102. r->b = btree_gc_alloc(r->b, r->k);
  1103. if (r->b->level)
  1104. ret = btree_gc_recurse(r->b, op, writes, gc);
  1105. if (ret) {
  1106. write(r->b);
  1107. break;
  1108. }
  1109. bkey_copy_key(&b->c->gc_done, r->k);
  1110. if (!b->written)
  1111. btree_gc_coalesce(b, gc, r);
  1112. if (r[GC_MERGE_NODES - 1].b)
  1113. write(r[GC_MERGE_NODES - 1].b);
  1114. memmove(&r[1], &r[0],
  1115. sizeof(struct gc_merge_info) * (GC_MERGE_NODES - 1));
  1116. /* When we've got incremental GC working, we'll want to do
  1117. * if (should_resched())
  1118. * return -EAGAIN;
  1119. */
  1120. cond_resched();
  1121. #if 0
  1122. if (need_resched()) {
  1123. ret = -EAGAIN;
  1124. break;
  1125. }
  1126. #endif
  1127. }
  1128. for (i = 1; i < GC_MERGE_NODES && r[i].b; i++)
  1129. write(r[i].b);
  1130. /* Might have freed some children, must remove their keys */
  1131. if (!b->written)
  1132. bch_btree_sort(b);
  1133. return ret;
  1134. }
  1135. static int bch_btree_gc_root(struct btree *b, struct btree_op *op,
  1136. struct closure *writes, struct gc_stat *gc)
  1137. {
  1138. struct btree *n = NULL;
  1139. unsigned keys = 0;
  1140. int ret = 0, stale = btree_gc_mark_node(b, &keys, gc);
  1141. if (b->level || stale > 10)
  1142. n = btree_node_alloc_replacement(b);
  1143. if (!IS_ERR_OR_NULL(n))
  1144. swap(b, n);
  1145. if (b->level)
  1146. ret = btree_gc_recurse(b, op, writes, gc);
  1147. if (!b->written || btree_node_dirty(b))
  1148. bch_btree_node_write_sync(b);
  1149. if (!IS_ERR_OR_NULL(n)) {
  1150. bch_btree_set_root(b);
  1151. btree_node_free(n);
  1152. rw_unlock(true, b);
  1153. }
  1154. return ret;
  1155. }
  1156. static void btree_gc_start(struct cache_set *c)
  1157. {
  1158. struct cache *ca;
  1159. struct bucket *b;
  1160. unsigned i;
  1161. if (!c->gc_mark_valid)
  1162. return;
  1163. mutex_lock(&c->bucket_lock);
  1164. c->gc_mark_valid = 0;
  1165. c->gc_done = ZERO_KEY;
  1166. for_each_cache(ca, c, i)
  1167. for_each_bucket(b, ca) {
  1168. b->gc_gen = b->gen;
  1169. if (!atomic_read(&b->pin)) {
  1170. SET_GC_MARK(b, GC_MARK_RECLAIMABLE);
  1171. SET_GC_SECTORS_USED(b, 0);
  1172. }
  1173. }
  1174. mutex_unlock(&c->bucket_lock);
  1175. }
  1176. size_t bch_btree_gc_finish(struct cache_set *c)
  1177. {
  1178. size_t available = 0;
  1179. struct bucket *b;
  1180. struct cache *ca;
  1181. unsigned i;
  1182. mutex_lock(&c->bucket_lock);
  1183. set_gc_sectors(c);
  1184. c->gc_mark_valid = 1;
  1185. c->need_gc = 0;
  1186. if (c->root)
  1187. for (i = 0; i < KEY_PTRS(&c->root->key); i++)
  1188. SET_GC_MARK(PTR_BUCKET(c, &c->root->key, i),
  1189. GC_MARK_METADATA);
  1190. for (i = 0; i < KEY_PTRS(&c->uuid_bucket); i++)
  1191. SET_GC_MARK(PTR_BUCKET(c, &c->uuid_bucket, i),
  1192. GC_MARK_METADATA);
  1193. for_each_cache(ca, c, i) {
  1194. uint64_t *i;
  1195. ca->invalidate_needs_gc = 0;
  1196. for (i = ca->sb.d; i < ca->sb.d + ca->sb.keys; i++)
  1197. SET_GC_MARK(ca->buckets + *i, GC_MARK_METADATA);
  1198. for (i = ca->prio_buckets;
  1199. i < ca->prio_buckets + prio_buckets(ca) * 2; i++)
  1200. SET_GC_MARK(ca->buckets + *i, GC_MARK_METADATA);
  1201. for_each_bucket(b, ca) {
  1202. b->last_gc = b->gc_gen;
  1203. c->need_gc = max(c->need_gc, bucket_gc_gen(b));
  1204. if (!atomic_read(&b->pin) &&
  1205. GC_MARK(b) == GC_MARK_RECLAIMABLE) {
  1206. available++;
  1207. if (!GC_SECTORS_USED(b))
  1208. bch_bucket_add_unused(ca, b);
  1209. }
  1210. }
  1211. }
  1212. mutex_unlock(&c->bucket_lock);
  1213. return available;
  1214. }
  1215. static void bch_btree_gc(struct cache_set *c)
  1216. {
  1217. int ret;
  1218. unsigned long available;
  1219. struct gc_stat stats;
  1220. struct closure writes;
  1221. struct btree_op op;
  1222. uint64_t start_time = local_clock();
  1223. trace_bcache_gc_start(c);
  1224. memset(&stats, 0, sizeof(struct gc_stat));
  1225. closure_init_stack(&writes);
  1226. bch_btree_op_init(&op, SHRT_MAX);
  1227. btree_gc_start(c);
  1228. atomic_inc(&c->prio_blocked);
  1229. ret = btree_root(gc_root, c, &op, &writes, &stats);
  1230. closure_sync(&writes);
  1231. if (ret) {
  1232. pr_warn("gc failed!");
  1233. return;
  1234. }
  1235. /* Possibly wait for new UUIDs or whatever to hit disk */
  1236. bch_journal_meta(c, &writes);
  1237. closure_sync(&writes);
  1238. available = bch_btree_gc_finish(c);
  1239. atomic_dec(&c->prio_blocked);
  1240. wake_up_allocators(c);
  1241. bch_time_stats_update(&c->btree_gc_time, start_time);
  1242. stats.key_bytes *= sizeof(uint64_t);
  1243. stats.dirty <<= 9;
  1244. stats.data <<= 9;
  1245. stats.in_use = (c->nbuckets - available) * 100 / c->nbuckets;
  1246. memcpy(&c->gc_stats, &stats, sizeof(struct gc_stat));
  1247. trace_bcache_gc_end(c);
  1248. bch_moving_gc(c);
  1249. }
  1250. static int bch_gc_thread(void *arg)
  1251. {
  1252. struct cache_set *c = arg;
  1253. while (1) {
  1254. bch_btree_gc(c);
  1255. set_current_state(TASK_INTERRUPTIBLE);
  1256. if (kthread_should_stop())
  1257. break;
  1258. try_to_freeze();
  1259. schedule();
  1260. }
  1261. return 0;
  1262. }
  1263. int bch_gc_thread_start(struct cache_set *c)
  1264. {
  1265. c->gc_thread = kthread_create(bch_gc_thread, c, "bcache_gc");
  1266. if (IS_ERR(c->gc_thread))
  1267. return PTR_ERR(c->gc_thread);
  1268. set_task_state(c->gc_thread, TASK_INTERRUPTIBLE);
  1269. return 0;
  1270. }
  1271. /* Initial partial gc */
  1272. static int bch_btree_check_recurse(struct btree *b, struct btree_op *op,
  1273. unsigned long **seen)
  1274. {
  1275. int ret;
  1276. unsigned i;
  1277. struct bkey *k;
  1278. struct bucket *g;
  1279. struct btree_iter iter;
  1280. for_each_key_filter(b, k, &iter, bch_ptr_invalid) {
  1281. for (i = 0; i < KEY_PTRS(k); i++) {
  1282. if (!ptr_available(b->c, k, i))
  1283. continue;
  1284. g = PTR_BUCKET(b->c, k, i);
  1285. if (!__test_and_set_bit(PTR_BUCKET_NR(b->c, k, i),
  1286. seen[PTR_DEV(k, i)]) ||
  1287. !ptr_stale(b->c, k, i)) {
  1288. g->gen = PTR_GEN(k, i);
  1289. if (b->level)
  1290. g->prio = BTREE_PRIO;
  1291. else if (g->prio == BTREE_PRIO)
  1292. g->prio = INITIAL_PRIO;
  1293. }
  1294. }
  1295. btree_mark_key(b, k);
  1296. }
  1297. if (b->level) {
  1298. k = bch_next_recurse_key(b, &ZERO_KEY);
  1299. while (k) {
  1300. struct bkey *p = bch_next_recurse_key(b, k);
  1301. if (p)
  1302. btree_node_prefetch(b->c, p, b->level - 1);
  1303. ret = btree(check_recurse, k, b, op, seen);
  1304. if (ret)
  1305. return ret;
  1306. k = p;
  1307. }
  1308. }
  1309. return 0;
  1310. }
  1311. int bch_btree_check(struct cache_set *c)
  1312. {
  1313. int ret = -ENOMEM;
  1314. unsigned i;
  1315. unsigned long *seen[MAX_CACHES_PER_SET];
  1316. struct btree_op op;
  1317. memset(seen, 0, sizeof(seen));
  1318. bch_btree_op_init(&op, SHRT_MAX);
  1319. for (i = 0; c->cache[i]; i++) {
  1320. size_t n = DIV_ROUND_UP(c->cache[i]->sb.nbuckets, 8);
  1321. seen[i] = kmalloc(n, GFP_KERNEL);
  1322. if (!seen[i])
  1323. goto err;
  1324. /* Disables the seen array until prio_read() uses it too */
  1325. memset(seen[i], 0xFF, n);
  1326. }
  1327. ret = btree_root(check_recurse, c, &op, seen);
  1328. err:
  1329. for (i = 0; i < MAX_CACHES_PER_SET; i++)
  1330. kfree(seen[i]);
  1331. return ret;
  1332. }
  1333. /* Btree insertion */
  1334. static void shift_keys(struct btree *b, struct bkey *where, struct bkey *insert)
  1335. {
  1336. struct bset *i = b->sets[b->nsets].data;
  1337. memmove((uint64_t *) where + bkey_u64s(insert),
  1338. where,
  1339. (void *) end(i) - (void *) where);
  1340. i->keys += bkey_u64s(insert);
  1341. bkey_copy(where, insert);
  1342. bch_bset_fix_lookup_table(b, where);
  1343. }
  1344. static bool fix_overlapping_extents(struct btree *b, struct bkey *insert,
  1345. struct btree_iter *iter,
  1346. struct bkey *replace_key)
  1347. {
  1348. void subtract_dirty(struct bkey *k, uint64_t offset, int sectors)
  1349. {
  1350. if (KEY_DIRTY(k))
  1351. bcache_dev_sectors_dirty_add(b->c, KEY_INODE(k),
  1352. offset, -sectors);
  1353. }
  1354. uint64_t old_offset;
  1355. unsigned old_size, sectors_found = 0;
  1356. while (1) {
  1357. struct bkey *k = bch_btree_iter_next(iter);
  1358. if (!k ||
  1359. bkey_cmp(&START_KEY(k), insert) >= 0)
  1360. break;
  1361. if (bkey_cmp(k, &START_KEY(insert)) <= 0)
  1362. continue;
  1363. old_offset = KEY_START(k);
  1364. old_size = KEY_SIZE(k);
  1365. /*
  1366. * We might overlap with 0 size extents; we can't skip these
  1367. * because if they're in the set we're inserting to we have to
  1368. * adjust them so they don't overlap with the key we're
  1369. * inserting. But we don't want to check them for replace
  1370. * operations.
  1371. */
  1372. if (replace_key && KEY_SIZE(k)) {
  1373. /*
  1374. * k might have been split since we inserted/found the
  1375. * key we're replacing
  1376. */
  1377. unsigned i;
  1378. uint64_t offset = KEY_START(k) -
  1379. KEY_START(replace_key);
  1380. /* But it must be a subset of the replace key */
  1381. if (KEY_START(k) < KEY_START(replace_key) ||
  1382. KEY_OFFSET(k) > KEY_OFFSET(replace_key))
  1383. goto check_failed;
  1384. /* We didn't find a key that we were supposed to */
  1385. if (KEY_START(k) > KEY_START(insert) + sectors_found)
  1386. goto check_failed;
  1387. if (KEY_PTRS(replace_key) != KEY_PTRS(k))
  1388. goto check_failed;
  1389. /* skip past gen */
  1390. offset <<= 8;
  1391. BUG_ON(!KEY_PTRS(replace_key));
  1392. for (i = 0; i < KEY_PTRS(replace_key); i++)
  1393. if (k->ptr[i] != replace_key->ptr[i] + offset)
  1394. goto check_failed;
  1395. sectors_found = KEY_OFFSET(k) - KEY_START(insert);
  1396. }
  1397. if (bkey_cmp(insert, k) < 0 &&
  1398. bkey_cmp(&START_KEY(insert), &START_KEY(k)) > 0) {
  1399. /*
  1400. * We overlapped in the middle of an existing key: that
  1401. * means we have to split the old key. But we have to do
  1402. * slightly different things depending on whether the
  1403. * old key has been written out yet.
  1404. */
  1405. struct bkey *top;
  1406. subtract_dirty(k, KEY_START(insert), KEY_SIZE(insert));
  1407. if (bkey_written(b, k)) {
  1408. /*
  1409. * We insert a new key to cover the top of the
  1410. * old key, and the old key is modified in place
  1411. * to represent the bottom split.
  1412. *
  1413. * It's completely arbitrary whether the new key
  1414. * is the top or the bottom, but it has to match
  1415. * up with what btree_sort_fixup() does - it
  1416. * doesn't check for this kind of overlap, it
  1417. * depends on us inserting a new key for the top
  1418. * here.
  1419. */
  1420. top = bch_bset_search(b, &b->sets[b->nsets],
  1421. insert);
  1422. shift_keys(b, top, k);
  1423. } else {
  1424. BKEY_PADDED(key) temp;
  1425. bkey_copy(&temp.key, k);
  1426. shift_keys(b, k, &temp.key);
  1427. top = bkey_next(k);
  1428. }
  1429. bch_cut_front(insert, top);
  1430. bch_cut_back(&START_KEY(insert), k);
  1431. bch_bset_fix_invalidated_key(b, k);
  1432. return false;
  1433. }
  1434. if (bkey_cmp(insert, k) < 0) {
  1435. bch_cut_front(insert, k);
  1436. } else {
  1437. if (bkey_cmp(&START_KEY(insert), &START_KEY(k)) > 0)
  1438. old_offset = KEY_START(insert);
  1439. if (bkey_written(b, k) &&
  1440. bkey_cmp(&START_KEY(insert), &START_KEY(k)) <= 0) {
  1441. /*
  1442. * Completely overwrote, so we don't have to
  1443. * invalidate the binary search tree
  1444. */
  1445. bch_cut_front(k, k);
  1446. } else {
  1447. __bch_cut_back(&START_KEY(insert), k);
  1448. bch_bset_fix_invalidated_key(b, k);
  1449. }
  1450. }
  1451. subtract_dirty(k, old_offset, old_size - KEY_SIZE(k));
  1452. }
  1453. check_failed:
  1454. if (replace_key) {
  1455. if (!sectors_found) {
  1456. return true;
  1457. } else if (sectors_found < KEY_SIZE(insert)) {
  1458. SET_KEY_OFFSET(insert, KEY_OFFSET(insert) -
  1459. (KEY_SIZE(insert) - sectors_found));
  1460. SET_KEY_SIZE(insert, sectors_found);
  1461. }
  1462. }
  1463. return false;
  1464. }
  1465. static bool btree_insert_key(struct btree *b, struct btree_op *op,
  1466. struct bkey *k, struct bkey *replace_key)
  1467. {
  1468. struct bset *i = b->sets[b->nsets].data;
  1469. struct bkey *m, *prev;
  1470. unsigned status = BTREE_INSERT_STATUS_INSERT;
  1471. BUG_ON(bkey_cmp(k, &b->key) > 0);
  1472. BUG_ON(b->level && !KEY_PTRS(k));
  1473. BUG_ON(!b->level && !KEY_OFFSET(k));
  1474. if (!b->level) {
  1475. struct btree_iter iter;
  1476. /*
  1477. * bset_search() returns the first key that is strictly greater
  1478. * than the search key - but for back merging, we want to find
  1479. * the previous key.
  1480. */
  1481. prev = NULL;
  1482. m = bch_btree_iter_init(b, &iter, PRECEDING_KEY(&START_KEY(k)));
  1483. if (fix_overlapping_extents(b, k, &iter, replace_key)) {
  1484. op->insert_collision = true;
  1485. return false;
  1486. }
  1487. if (KEY_DIRTY(k))
  1488. bcache_dev_sectors_dirty_add(b->c, KEY_INODE(k),
  1489. KEY_START(k), KEY_SIZE(k));
  1490. while (m != end(i) &&
  1491. bkey_cmp(k, &START_KEY(m)) > 0)
  1492. prev = m, m = bkey_next(m);
  1493. if (key_merging_disabled(b->c))
  1494. goto insert;
  1495. /* prev is in the tree, if we merge we're done */
  1496. status = BTREE_INSERT_STATUS_BACK_MERGE;
  1497. if (prev &&
  1498. bch_bkey_try_merge(b, prev, k))
  1499. goto merged;
  1500. status = BTREE_INSERT_STATUS_OVERWROTE;
  1501. if (m != end(i) &&
  1502. KEY_PTRS(m) == KEY_PTRS(k) && !KEY_SIZE(m))
  1503. goto copy;
  1504. status = BTREE_INSERT_STATUS_FRONT_MERGE;
  1505. if (m != end(i) &&
  1506. bch_bkey_try_merge(b, k, m))
  1507. goto copy;
  1508. } else {
  1509. BUG_ON(replace_key);
  1510. m = bch_bset_search(b, &b->sets[b->nsets], k);
  1511. }
  1512. insert: shift_keys(b, m, k);
  1513. copy: bkey_copy(m, k);
  1514. merged:
  1515. bch_check_keys(b, "%u for %s", status,
  1516. replace_key ? "replace" : "insert");
  1517. if (b->level && !KEY_OFFSET(k))
  1518. btree_current_write(b)->prio_blocked++;
  1519. trace_bcache_btree_insert_key(b, k, replace_key != NULL, status);
  1520. return true;
  1521. }
  1522. static bool bch_btree_insert_keys(struct btree *b, struct btree_op *op,
  1523. struct keylist *insert_keys,
  1524. struct bkey *replace_key)
  1525. {
  1526. bool ret = false;
  1527. int oldsize = bch_count_data(b);
  1528. while (!bch_keylist_empty(insert_keys)) {
  1529. struct bset *i = write_block(b);
  1530. struct bkey *k = insert_keys->keys;
  1531. if (b->written + __set_blocks(i, i->keys + bkey_u64s(k), b->c)
  1532. > btree_blocks(b))
  1533. break;
  1534. if (bkey_cmp(k, &b->key) <= 0) {
  1535. if (!b->level)
  1536. bkey_put(b->c, k);
  1537. ret |= btree_insert_key(b, op, k, replace_key);
  1538. bch_keylist_pop_front(insert_keys);
  1539. } else if (bkey_cmp(&START_KEY(k), &b->key) < 0) {
  1540. BKEY_PADDED(key) temp;
  1541. bkey_copy(&temp.key, insert_keys->keys);
  1542. bch_cut_back(&b->key, &temp.key);
  1543. bch_cut_front(&b->key, insert_keys->keys);
  1544. ret |= btree_insert_key(b, op, &temp.key, replace_key);
  1545. break;
  1546. } else {
  1547. break;
  1548. }
  1549. }
  1550. BUG_ON(!bch_keylist_empty(insert_keys) && b->level);
  1551. BUG_ON(bch_count_data(b) < oldsize);
  1552. return ret;
  1553. }
  1554. static int btree_split(struct btree *b, struct btree_op *op,
  1555. struct keylist *insert_keys,
  1556. struct keylist *parent_keys,
  1557. struct bkey *replace_key)
  1558. {
  1559. bool split;
  1560. struct btree *n1, *n2 = NULL, *n3 = NULL;
  1561. uint64_t start_time = local_clock();
  1562. struct closure cl;
  1563. closure_init_stack(&cl);
  1564. n1 = btree_node_alloc_replacement(b);
  1565. if (IS_ERR(n1))
  1566. goto err;
  1567. split = set_blocks(n1->sets[0].data, n1->c) > (btree_blocks(b) * 4) / 5;
  1568. if (split) {
  1569. unsigned keys = 0;
  1570. trace_bcache_btree_node_split(b, n1->sets[0].data->keys);
  1571. n2 = bch_btree_node_alloc(b->c, b->level);
  1572. if (IS_ERR(n2))
  1573. goto err_free1;
  1574. if (!b->parent) {
  1575. n3 = bch_btree_node_alloc(b->c, b->level + 1);
  1576. if (IS_ERR(n3))
  1577. goto err_free2;
  1578. }
  1579. bch_btree_insert_keys(n1, op, insert_keys, replace_key);
  1580. /*
  1581. * Has to be a linear search because we don't have an auxiliary
  1582. * search tree yet
  1583. */
  1584. while (keys < (n1->sets[0].data->keys * 3) / 5)
  1585. keys += bkey_u64s(node(n1->sets[0].data, keys));
  1586. bkey_copy_key(&n1->key, node(n1->sets[0].data, keys));
  1587. keys += bkey_u64s(node(n1->sets[0].data, keys));
  1588. n2->sets[0].data->keys = n1->sets[0].data->keys - keys;
  1589. n1->sets[0].data->keys = keys;
  1590. memcpy(n2->sets[0].data->start,
  1591. end(n1->sets[0].data),
  1592. n2->sets[0].data->keys * sizeof(uint64_t));
  1593. bkey_copy_key(&n2->key, &b->key);
  1594. bch_keylist_add(parent_keys, &n2->key);
  1595. bch_btree_node_write(n2, &cl);
  1596. rw_unlock(true, n2);
  1597. } else {
  1598. trace_bcache_btree_node_compact(b, n1->sets[0].data->keys);
  1599. bch_btree_insert_keys(n1, op, insert_keys, replace_key);
  1600. }
  1601. bch_keylist_add(parent_keys, &n1->key);
  1602. bch_btree_node_write(n1, &cl);
  1603. if (n3) {
  1604. /* Depth increases, make a new root */
  1605. bkey_copy_key(&n3->key, &MAX_KEY);
  1606. bch_btree_insert_keys(n3, op, parent_keys, NULL);
  1607. bch_btree_node_write(n3, &cl);
  1608. closure_sync(&cl);
  1609. bch_btree_set_root(n3);
  1610. rw_unlock(true, n3);
  1611. } else if (!b->parent) {
  1612. /* Root filled up but didn't need to be split */
  1613. bch_keylist_reset(parent_keys);
  1614. closure_sync(&cl);
  1615. bch_btree_set_root(n1);
  1616. } else {
  1617. closure_sync(&cl);
  1618. make_btree_freeing_key(b, parent_keys->top);
  1619. bch_keylist_push(parent_keys);
  1620. }
  1621. rw_unlock(true, n1);
  1622. btree_node_free(b);
  1623. bch_time_stats_update(&b->c->btree_split_time, start_time);
  1624. return 0;
  1625. err_free2:
  1626. btree_node_free(n2);
  1627. rw_unlock(true, n2);
  1628. err_free1:
  1629. btree_node_free(n1);
  1630. rw_unlock(true, n1);
  1631. err:
  1632. if (n3 == ERR_PTR(-EAGAIN) ||
  1633. n2 == ERR_PTR(-EAGAIN) ||
  1634. n1 == ERR_PTR(-EAGAIN))
  1635. return -EAGAIN;
  1636. pr_warn("couldn't split");
  1637. return -ENOMEM;
  1638. }
  1639. static int bch_btree_insert_node(struct btree *b, struct btree_op *op,
  1640. struct keylist *insert_keys,
  1641. atomic_t *journal_ref,
  1642. struct bkey *replace_key)
  1643. {
  1644. int ret = 0;
  1645. struct keylist split_keys;
  1646. bch_keylist_init(&split_keys);
  1647. BUG_ON(b->level);
  1648. do {
  1649. BUG_ON(b->level && replace_key);
  1650. if (should_split(b)) {
  1651. if (current->bio_list) {
  1652. op->lock = b->c->root->level + 1;
  1653. ret = -EAGAIN;
  1654. } else if (op->lock <= b->c->root->level) {
  1655. op->lock = b->c->root->level + 1;
  1656. ret = -EINTR;
  1657. } else {
  1658. struct btree *parent = b->parent;
  1659. ret = btree_split(b, op, insert_keys,
  1660. &split_keys, replace_key);
  1661. insert_keys = &split_keys;
  1662. replace_key = NULL;
  1663. b = parent;
  1664. if (!ret)
  1665. ret = -EINTR;
  1666. }
  1667. } else {
  1668. BUG_ON(write_block(b) != b->sets[b->nsets].data);
  1669. if (bch_btree_insert_keys(b, op, insert_keys,
  1670. replace_key)) {
  1671. if (!b->level)
  1672. bch_btree_leaf_dirty(b, journal_ref);
  1673. else
  1674. bch_btree_node_write_sync(b);
  1675. }
  1676. }
  1677. } while (!bch_keylist_empty(&split_keys));
  1678. return ret;
  1679. }
  1680. int bch_btree_insert_check_key(struct btree *b, struct btree_op *op,
  1681. struct bkey *check_key)
  1682. {
  1683. int ret = -EINTR;
  1684. uint64_t btree_ptr = b->key.ptr[0];
  1685. unsigned long seq = b->seq;
  1686. struct keylist insert;
  1687. bool upgrade = op->lock == -1;
  1688. bch_keylist_init(&insert);
  1689. if (upgrade) {
  1690. rw_unlock(false, b);
  1691. rw_lock(true, b, b->level);
  1692. if (b->key.ptr[0] != btree_ptr ||
  1693. b->seq != seq + 1)
  1694. goto out;
  1695. }
  1696. SET_KEY_PTRS(check_key, 1);
  1697. get_random_bytes(&check_key->ptr[0], sizeof(uint64_t));
  1698. SET_PTR_DEV(check_key, 0, PTR_CHECK_DEV);
  1699. bch_keylist_add(&insert, check_key);
  1700. ret = bch_btree_insert_node(b, op, &insert, NULL, NULL);
  1701. BUG_ON(!ret && !bch_keylist_empty(&insert));
  1702. out:
  1703. if (upgrade)
  1704. downgrade_write(&b->lock);
  1705. return ret;
  1706. }
  1707. struct btree_insert_op {
  1708. struct btree_op op;
  1709. struct keylist *keys;
  1710. atomic_t *journal_ref;
  1711. struct bkey *replace_key;
  1712. };
  1713. int btree_insert_fn(struct btree_op *b_op, struct btree *b)
  1714. {
  1715. struct btree_insert_op *op = container_of(b_op,
  1716. struct btree_insert_op, op);
  1717. int ret = bch_btree_insert_node(b, &op->op, op->keys,
  1718. op->journal_ref, op->replace_key);
  1719. if (ret && !bch_keylist_empty(op->keys))
  1720. return ret;
  1721. else
  1722. return MAP_DONE;
  1723. }
  1724. int bch_btree_insert(struct cache_set *c, struct keylist *keys,
  1725. atomic_t *journal_ref, struct bkey *replace_key)
  1726. {
  1727. struct btree_insert_op op;
  1728. int ret = 0;
  1729. BUG_ON(current->bio_list);
  1730. BUG_ON(bch_keylist_empty(keys));
  1731. bch_btree_op_init(&op.op, 0);
  1732. op.keys = keys;
  1733. op.journal_ref = journal_ref;
  1734. op.replace_key = replace_key;
  1735. while (!ret && !bch_keylist_empty(keys)) {
  1736. op.op.lock = 0;
  1737. ret = bch_btree_map_leaf_nodes(&op.op, c,
  1738. &START_KEY(keys->keys),
  1739. btree_insert_fn);
  1740. }
  1741. if (ret) {
  1742. struct bkey *k;
  1743. pr_err("error %i", ret);
  1744. while ((k = bch_keylist_pop(keys)))
  1745. bkey_put(c, k);
  1746. } else if (op.op.insert_collision)
  1747. ret = -ESRCH;
  1748. return ret;
  1749. }
  1750. void bch_btree_set_root(struct btree *b)
  1751. {
  1752. unsigned i;
  1753. struct closure cl;
  1754. closure_init_stack(&cl);
  1755. trace_bcache_btree_set_root(b);
  1756. BUG_ON(!b->written);
  1757. for (i = 0; i < KEY_PTRS(&b->key); i++)
  1758. BUG_ON(PTR_BUCKET(b->c, &b->key, i)->prio != BTREE_PRIO);
  1759. mutex_lock(&b->c->bucket_lock);
  1760. list_del_init(&b->list);
  1761. mutex_unlock(&b->c->bucket_lock);
  1762. b->c->root = b;
  1763. bch_journal_meta(b->c, &cl);
  1764. closure_sync(&cl);
  1765. }
  1766. /* Map across nodes or keys */
  1767. static int bch_btree_map_nodes_recurse(struct btree *b, struct btree_op *op,
  1768. struct bkey *from,
  1769. btree_map_nodes_fn *fn, int flags)
  1770. {
  1771. int ret = MAP_CONTINUE;
  1772. if (b->level) {
  1773. struct bkey *k;
  1774. struct btree_iter iter;
  1775. bch_btree_iter_init(b, &iter, from);
  1776. while ((k = bch_btree_iter_next_filter(&iter, b,
  1777. bch_ptr_bad))) {
  1778. ret = btree(map_nodes_recurse, k, b,
  1779. op, from, fn, flags);
  1780. from = NULL;
  1781. if (ret != MAP_CONTINUE)
  1782. return ret;
  1783. }
  1784. }
  1785. if (!b->level || flags == MAP_ALL_NODES)
  1786. ret = fn(op, b);
  1787. return ret;
  1788. }
  1789. int __bch_btree_map_nodes(struct btree_op *op, struct cache_set *c,
  1790. struct bkey *from, btree_map_nodes_fn *fn, int flags)
  1791. {
  1792. return btree_root(map_nodes_recurse, c, op, from, fn, flags);
  1793. }
  1794. static int bch_btree_map_keys_recurse(struct btree *b, struct btree_op *op,
  1795. struct bkey *from, btree_map_keys_fn *fn,
  1796. int flags)
  1797. {
  1798. int ret = MAP_CONTINUE;
  1799. struct bkey *k;
  1800. struct btree_iter iter;
  1801. bch_btree_iter_init(b, &iter, from);
  1802. while ((k = bch_btree_iter_next_filter(&iter, b, bch_ptr_bad))) {
  1803. ret = !b->level
  1804. ? fn(op, b, k)
  1805. : btree(map_keys_recurse, k, b, op, from, fn, flags);
  1806. from = NULL;
  1807. if (ret != MAP_CONTINUE)
  1808. return ret;
  1809. }
  1810. if (!b->level && (flags & MAP_END_KEY))
  1811. ret = fn(op, b, &KEY(KEY_INODE(&b->key),
  1812. KEY_OFFSET(&b->key), 0));
  1813. return ret;
  1814. }
  1815. int bch_btree_map_keys(struct btree_op *op, struct cache_set *c,
  1816. struct bkey *from, btree_map_keys_fn *fn, int flags)
  1817. {
  1818. return btree_root(map_keys_recurse, c, op, from, fn, flags);
  1819. }
  1820. /* Keybuf code */
  1821. static inline int keybuf_cmp(struct keybuf_key *l, struct keybuf_key *r)
  1822. {
  1823. /* Overlapping keys compare equal */
  1824. if (bkey_cmp(&l->key, &START_KEY(&r->key)) <= 0)
  1825. return -1;
  1826. if (bkey_cmp(&START_KEY(&l->key), &r->key) >= 0)
  1827. return 1;
  1828. return 0;
  1829. }
  1830. static inline int keybuf_nonoverlapping_cmp(struct keybuf_key *l,
  1831. struct keybuf_key *r)
  1832. {
  1833. return clamp_t(int64_t, bkey_cmp(&l->key, &r->key), -1, 1);
  1834. }
  1835. struct refill {
  1836. struct btree_op op;
  1837. struct keybuf *buf;
  1838. struct bkey *end;
  1839. keybuf_pred_fn *pred;
  1840. };
  1841. static int refill_keybuf_fn(struct btree_op *op, struct btree *b,
  1842. struct bkey *k)
  1843. {
  1844. struct refill *refill = container_of(op, struct refill, op);
  1845. struct keybuf *buf = refill->buf;
  1846. int ret = MAP_CONTINUE;
  1847. if (bkey_cmp(k, refill->end) >= 0) {
  1848. ret = MAP_DONE;
  1849. goto out;
  1850. }
  1851. if (!KEY_SIZE(k)) /* end key */
  1852. goto out;
  1853. if (refill->pred(buf, k)) {
  1854. struct keybuf_key *w;
  1855. spin_lock(&buf->lock);
  1856. w = array_alloc(&buf->freelist);
  1857. if (!w) {
  1858. spin_unlock(&buf->lock);
  1859. return MAP_DONE;
  1860. }
  1861. w->private = NULL;
  1862. bkey_copy(&w->key, k);
  1863. if (RB_INSERT(&buf->keys, w, node, keybuf_cmp))
  1864. array_free(&buf->freelist, w);
  1865. if (array_freelist_empty(&buf->freelist))
  1866. ret = MAP_DONE;
  1867. spin_unlock(&buf->lock);
  1868. }
  1869. out:
  1870. buf->last_scanned = *k;
  1871. return ret;
  1872. }
  1873. void bch_refill_keybuf(struct cache_set *c, struct keybuf *buf,
  1874. struct bkey *end, keybuf_pred_fn *pred)
  1875. {
  1876. struct bkey start = buf->last_scanned;
  1877. struct refill refill;
  1878. cond_resched();
  1879. bch_btree_op_init(&refill.op, -1);
  1880. refill.buf = buf;
  1881. refill.end = end;
  1882. refill.pred = pred;
  1883. bch_btree_map_keys(&refill.op, c, &buf->last_scanned,
  1884. refill_keybuf_fn, MAP_END_KEY);
  1885. pr_debug("found %s keys from %llu:%llu to %llu:%llu",
  1886. RB_EMPTY_ROOT(&buf->keys) ? "no" :
  1887. array_freelist_empty(&buf->freelist) ? "some" : "a few",
  1888. KEY_INODE(&start), KEY_OFFSET(&start),
  1889. KEY_INODE(&buf->last_scanned), KEY_OFFSET(&buf->last_scanned));
  1890. spin_lock(&buf->lock);
  1891. if (!RB_EMPTY_ROOT(&buf->keys)) {
  1892. struct keybuf_key *w;
  1893. w = RB_FIRST(&buf->keys, struct keybuf_key, node);
  1894. buf->start = START_KEY(&w->key);
  1895. w = RB_LAST(&buf->keys, struct keybuf_key, node);
  1896. buf->end = w->key;
  1897. } else {
  1898. buf->start = MAX_KEY;
  1899. buf->end = MAX_KEY;
  1900. }
  1901. spin_unlock(&buf->lock);
  1902. }
  1903. static void __bch_keybuf_del(struct keybuf *buf, struct keybuf_key *w)
  1904. {
  1905. rb_erase(&w->node, &buf->keys);
  1906. array_free(&buf->freelist, w);
  1907. }
  1908. void bch_keybuf_del(struct keybuf *buf, struct keybuf_key *w)
  1909. {
  1910. spin_lock(&buf->lock);
  1911. __bch_keybuf_del(buf, w);
  1912. spin_unlock(&buf->lock);
  1913. }
  1914. bool bch_keybuf_check_overlapping(struct keybuf *buf, struct bkey *start,
  1915. struct bkey *end)
  1916. {
  1917. bool ret = false;
  1918. struct keybuf_key *p, *w, s;
  1919. s.key = *start;
  1920. if (bkey_cmp(end, &buf->start) <= 0 ||
  1921. bkey_cmp(start, &buf->end) >= 0)
  1922. return false;
  1923. spin_lock(&buf->lock);
  1924. w = RB_GREATER(&buf->keys, s, node, keybuf_nonoverlapping_cmp);
  1925. while (w && bkey_cmp(&START_KEY(&w->key), end) < 0) {
  1926. p = w;
  1927. w = RB_NEXT(w, node);
  1928. if (p->private)
  1929. ret = true;
  1930. else
  1931. __bch_keybuf_del(buf, p);
  1932. }
  1933. spin_unlock(&buf->lock);
  1934. return ret;
  1935. }
  1936. struct keybuf_key *bch_keybuf_next(struct keybuf *buf)
  1937. {
  1938. struct keybuf_key *w;
  1939. spin_lock(&buf->lock);
  1940. w = RB_FIRST(&buf->keys, struct keybuf_key, node);
  1941. while (w && w->private)
  1942. w = RB_NEXT(w, node);
  1943. if (w)
  1944. w->private = ERR_PTR(-EINTR);
  1945. spin_unlock(&buf->lock);
  1946. return w;
  1947. }
  1948. struct keybuf_key *bch_keybuf_next_rescan(struct cache_set *c,
  1949. struct keybuf *buf,
  1950. struct bkey *end,
  1951. keybuf_pred_fn *pred)
  1952. {
  1953. struct keybuf_key *ret;
  1954. while (1) {
  1955. ret = bch_keybuf_next(buf);
  1956. if (ret)
  1957. break;
  1958. if (bkey_cmp(&buf->last_scanned, end) >= 0) {
  1959. pr_debug("scan finished");
  1960. break;
  1961. }
  1962. bch_refill_keybuf(c, buf, end, pred);
  1963. }
  1964. return ret;
  1965. }
  1966. void bch_keybuf_init(struct keybuf *buf)
  1967. {
  1968. buf->last_scanned = MAX_KEY;
  1969. buf->keys = RB_ROOT;
  1970. spin_lock_init(&buf->lock);
  1971. array_allocator_init(&buf->freelist);
  1972. }
  1973. void bch_btree_exit(void)
  1974. {
  1975. if (btree_io_wq)
  1976. destroy_workqueue(btree_io_wq);
  1977. }
  1978. int __init bch_btree_init(void)
  1979. {
  1980. btree_io_wq = create_singlethread_workqueue("bch_btree_io");
  1981. if (!btree_io_wq)
  1982. return -ENOMEM;
  1983. return 0;
  1984. }