efx.c 57 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218
  1. /****************************************************************************
  2. * Driver for Solarflare Solarstorm network controllers and boards
  3. * Copyright 2005-2006 Fen Systems Ltd.
  4. * Copyright 2005-2008 Solarflare Communications Inc.
  5. *
  6. * This program is free software; you can redistribute it and/or modify it
  7. * under the terms of the GNU General Public License version 2 as published
  8. * by the Free Software Foundation, incorporated herein by reference.
  9. */
  10. #include <linux/module.h>
  11. #include <linux/pci.h>
  12. #include <linux/netdevice.h>
  13. #include <linux/etherdevice.h>
  14. #include <linux/delay.h>
  15. #include <linux/notifier.h>
  16. #include <linux/ip.h>
  17. #include <linux/tcp.h>
  18. #include <linux/in.h>
  19. #include <linux/crc32.h>
  20. #include <linux/ethtool.h>
  21. #include <linux/topology.h>
  22. #include "net_driver.h"
  23. #include "gmii.h"
  24. #include "ethtool.h"
  25. #include "tx.h"
  26. #include "rx.h"
  27. #include "efx.h"
  28. #include "mdio_10g.h"
  29. #include "falcon.h"
  30. #include "mac.h"
  31. #define EFX_MAX_MTU (9 * 1024)
  32. /* RX slow fill workqueue. If memory allocation fails in the fast path,
  33. * a work item is pushed onto this work queue to retry the allocation later,
  34. * to avoid the NIC being starved of RX buffers. Since this is a per cpu
  35. * workqueue, there is nothing to be gained in making it per NIC
  36. */
  37. static struct workqueue_struct *refill_workqueue;
  38. /**************************************************************************
  39. *
  40. * Configurable values
  41. *
  42. *************************************************************************/
  43. /*
  44. * Enable large receive offload (LRO) aka soft segment reassembly (SSR)
  45. *
  46. * This sets the default for new devices. It can be controlled later
  47. * using ethtool.
  48. */
  49. static int lro = true;
  50. module_param(lro, int, 0644);
  51. MODULE_PARM_DESC(lro, "Large receive offload acceleration");
  52. /*
  53. * Use separate channels for TX and RX events
  54. *
  55. * Set this to 1 to use separate channels for TX and RX. It allows us to
  56. * apply a higher level of interrupt moderation to TX events.
  57. *
  58. * This is forced to 0 for MSI interrupt mode as the interrupt vector
  59. * is not written
  60. */
  61. static unsigned int separate_tx_and_rx_channels = true;
  62. /* This is the weight assigned to each of the (per-channel) virtual
  63. * NAPI devices.
  64. */
  65. static int napi_weight = 64;
  66. /* This is the time (in jiffies) between invocations of the hardware
  67. * monitor, which checks for known hardware bugs and resets the
  68. * hardware and driver as necessary.
  69. */
  70. unsigned int efx_monitor_interval = 1 * HZ;
  71. /* This controls whether or not the hardware monitor will trigger a
  72. * reset when it detects an error condition.
  73. */
  74. static unsigned int monitor_reset = true;
  75. /* This controls whether or not the driver will initialise devices
  76. * with invalid MAC addresses stored in the EEPROM or flash. If true,
  77. * such devices will be initialised with a random locally-generated
  78. * MAC address. This allows for loading the sfc_mtd driver to
  79. * reprogram the flash, even if the flash contents (including the MAC
  80. * address) have previously been erased.
  81. */
  82. static unsigned int allow_bad_hwaddr;
  83. /* Initial interrupt moderation settings. They can be modified after
  84. * module load with ethtool.
  85. *
  86. * The default for RX should strike a balance between increasing the
  87. * round-trip latency and reducing overhead.
  88. */
  89. static unsigned int rx_irq_mod_usec = 60;
  90. /* Initial interrupt moderation settings. They can be modified after
  91. * module load with ethtool.
  92. *
  93. * This default is chosen to ensure that a 10G link does not go idle
  94. * while a TX queue is stopped after it has become full. A queue is
  95. * restarted when it drops below half full. The time this takes (assuming
  96. * worst case 3 descriptors per packet and 1024 descriptors) is
  97. * 512 / 3 * 1.2 = 205 usec.
  98. */
  99. static unsigned int tx_irq_mod_usec = 150;
  100. /* This is the first interrupt mode to try out of:
  101. * 0 => MSI-X
  102. * 1 => MSI
  103. * 2 => legacy
  104. */
  105. static unsigned int interrupt_mode;
  106. /* This is the requested number of CPUs to use for Receive-Side Scaling (RSS),
  107. * i.e. the number of CPUs among which we may distribute simultaneous
  108. * interrupt handling.
  109. *
  110. * Cards without MSI-X will only target one CPU via legacy or MSI interrupt.
  111. * The default (0) means to assign an interrupt to each package (level II cache)
  112. */
  113. static unsigned int rss_cpus;
  114. module_param(rss_cpus, uint, 0444);
  115. MODULE_PARM_DESC(rss_cpus, "Number of CPUs to use for Receive-Side Scaling");
  116. /**************************************************************************
  117. *
  118. * Utility functions and prototypes
  119. *
  120. *************************************************************************/
  121. static void efx_remove_channel(struct efx_channel *channel);
  122. static void efx_remove_port(struct efx_nic *efx);
  123. static void efx_fini_napi(struct efx_nic *efx);
  124. static void efx_fini_channels(struct efx_nic *efx);
  125. #define EFX_ASSERT_RESET_SERIALISED(efx) \
  126. do { \
  127. if ((efx->state == STATE_RUNNING) || \
  128. (efx->state == STATE_RESETTING)) \
  129. ASSERT_RTNL(); \
  130. } while (0)
  131. /**************************************************************************
  132. *
  133. * Event queue processing
  134. *
  135. *************************************************************************/
  136. /* Process channel's event queue
  137. *
  138. * This function is responsible for processing the event queue of a
  139. * single channel. The caller must guarantee that this function will
  140. * never be concurrently called more than once on the same channel,
  141. * though different channels may be being processed concurrently.
  142. */
  143. static int efx_process_channel(struct efx_channel *channel, int rx_quota)
  144. {
  145. int rxdmaqs;
  146. struct efx_rx_queue *rx_queue;
  147. if (unlikely(channel->efx->reset_pending != RESET_TYPE_NONE ||
  148. !channel->enabled))
  149. return rx_quota;
  150. rxdmaqs = falcon_process_eventq(channel, &rx_quota);
  151. /* Deliver last RX packet. */
  152. if (channel->rx_pkt) {
  153. __efx_rx_packet(channel, channel->rx_pkt,
  154. channel->rx_pkt_csummed);
  155. channel->rx_pkt = NULL;
  156. }
  157. efx_flush_lro(channel);
  158. efx_rx_strategy(channel);
  159. /* Refill descriptor rings as necessary */
  160. rx_queue = &channel->efx->rx_queue[0];
  161. while (rxdmaqs) {
  162. if (rxdmaqs & 0x01)
  163. efx_fast_push_rx_descriptors(rx_queue);
  164. rx_queue++;
  165. rxdmaqs >>= 1;
  166. }
  167. return rx_quota;
  168. }
  169. /* Mark channel as finished processing
  170. *
  171. * Note that since we will not receive further interrupts for this
  172. * channel before we finish processing and call the eventq_read_ack()
  173. * method, there is no need to use the interrupt hold-off timers.
  174. */
  175. static inline void efx_channel_processed(struct efx_channel *channel)
  176. {
  177. /* The interrupt handler for this channel may set work_pending
  178. * as soon as we acknowledge the events we've seen. Make sure
  179. * it's cleared before then. */
  180. channel->work_pending = false;
  181. smp_wmb();
  182. falcon_eventq_read_ack(channel);
  183. }
  184. /* NAPI poll handler
  185. *
  186. * NAPI guarantees serialisation of polls of the same device, which
  187. * provides the guarantee required by efx_process_channel().
  188. */
  189. static int efx_poll(struct napi_struct *napi, int budget)
  190. {
  191. struct efx_channel *channel =
  192. container_of(napi, struct efx_channel, napi_str);
  193. struct net_device *napi_dev = channel->napi_dev;
  194. int unused;
  195. int rx_packets;
  196. EFX_TRACE(channel->efx, "channel %d NAPI poll executing on CPU %d\n",
  197. channel->channel, raw_smp_processor_id());
  198. unused = efx_process_channel(channel, budget);
  199. rx_packets = (budget - unused);
  200. if (rx_packets < budget) {
  201. /* There is no race here; although napi_disable() will
  202. * only wait for netif_rx_complete(), this isn't a problem
  203. * since efx_channel_processed() will have no effect if
  204. * interrupts have already been disabled.
  205. */
  206. netif_rx_complete(napi_dev, napi);
  207. efx_channel_processed(channel);
  208. }
  209. return rx_packets;
  210. }
  211. /* Process the eventq of the specified channel immediately on this CPU
  212. *
  213. * Disable hardware generated interrupts, wait for any existing
  214. * processing to finish, then directly poll (and ack ) the eventq.
  215. * Finally reenable NAPI and interrupts.
  216. *
  217. * Since we are touching interrupts the caller should hold the suspend lock
  218. */
  219. void efx_process_channel_now(struct efx_channel *channel)
  220. {
  221. struct efx_nic *efx = channel->efx;
  222. BUG_ON(!channel->used_flags);
  223. BUG_ON(!channel->enabled);
  224. /* Disable interrupts and wait for ISRs to complete */
  225. falcon_disable_interrupts(efx);
  226. if (efx->legacy_irq)
  227. synchronize_irq(efx->legacy_irq);
  228. if (channel->irq)
  229. synchronize_irq(channel->irq);
  230. /* Wait for any NAPI processing to complete */
  231. napi_disable(&channel->napi_str);
  232. /* Poll the channel */
  233. efx_process_channel(channel, efx->type->evq_size);
  234. /* Ack the eventq. This may cause an interrupt to be generated
  235. * when they are reenabled */
  236. efx_channel_processed(channel);
  237. napi_enable(&channel->napi_str);
  238. falcon_enable_interrupts(efx);
  239. }
  240. /* Create event queue
  241. * Event queue memory allocations are done only once. If the channel
  242. * is reset, the memory buffer will be reused; this guards against
  243. * errors during channel reset and also simplifies interrupt handling.
  244. */
  245. static int efx_probe_eventq(struct efx_channel *channel)
  246. {
  247. EFX_LOG(channel->efx, "chan %d create event queue\n", channel->channel);
  248. return falcon_probe_eventq(channel);
  249. }
  250. /* Prepare channel's event queue */
  251. static int efx_init_eventq(struct efx_channel *channel)
  252. {
  253. EFX_LOG(channel->efx, "chan %d init event queue\n", channel->channel);
  254. channel->eventq_read_ptr = 0;
  255. return falcon_init_eventq(channel);
  256. }
  257. static void efx_fini_eventq(struct efx_channel *channel)
  258. {
  259. EFX_LOG(channel->efx, "chan %d fini event queue\n", channel->channel);
  260. falcon_fini_eventq(channel);
  261. }
  262. static void efx_remove_eventq(struct efx_channel *channel)
  263. {
  264. EFX_LOG(channel->efx, "chan %d remove event queue\n", channel->channel);
  265. falcon_remove_eventq(channel);
  266. }
  267. /**************************************************************************
  268. *
  269. * Channel handling
  270. *
  271. *************************************************************************/
  272. static int efx_probe_channel(struct efx_channel *channel)
  273. {
  274. struct efx_tx_queue *tx_queue;
  275. struct efx_rx_queue *rx_queue;
  276. int rc;
  277. EFX_LOG(channel->efx, "creating channel %d\n", channel->channel);
  278. rc = efx_probe_eventq(channel);
  279. if (rc)
  280. goto fail1;
  281. efx_for_each_channel_tx_queue(tx_queue, channel) {
  282. rc = efx_probe_tx_queue(tx_queue);
  283. if (rc)
  284. goto fail2;
  285. }
  286. efx_for_each_channel_rx_queue(rx_queue, channel) {
  287. rc = efx_probe_rx_queue(rx_queue);
  288. if (rc)
  289. goto fail3;
  290. }
  291. channel->n_rx_frm_trunc = 0;
  292. return 0;
  293. fail3:
  294. efx_for_each_channel_rx_queue(rx_queue, channel)
  295. efx_remove_rx_queue(rx_queue);
  296. fail2:
  297. efx_for_each_channel_tx_queue(tx_queue, channel)
  298. efx_remove_tx_queue(tx_queue);
  299. fail1:
  300. return rc;
  301. }
  302. /* Channels are shutdown and reinitialised whilst the NIC is running
  303. * to propagate configuration changes (mtu, checksum offload), or
  304. * to clear hardware error conditions
  305. */
  306. static int efx_init_channels(struct efx_nic *efx)
  307. {
  308. struct efx_tx_queue *tx_queue;
  309. struct efx_rx_queue *rx_queue;
  310. struct efx_channel *channel;
  311. int rc = 0;
  312. /* Calculate the rx buffer allocation parameters required to
  313. * support the current MTU, including padding for header
  314. * alignment and overruns.
  315. */
  316. efx->rx_buffer_len = (max(EFX_PAGE_IP_ALIGN, NET_IP_ALIGN) +
  317. EFX_MAX_FRAME_LEN(efx->net_dev->mtu) +
  318. efx->type->rx_buffer_padding);
  319. efx->rx_buffer_order = get_order(efx->rx_buffer_len);
  320. /* Initialise the channels */
  321. efx_for_each_channel(channel, efx) {
  322. EFX_LOG(channel->efx, "init chan %d\n", channel->channel);
  323. rc = efx_init_eventq(channel);
  324. if (rc)
  325. goto err;
  326. efx_for_each_channel_tx_queue(tx_queue, channel) {
  327. rc = efx_init_tx_queue(tx_queue);
  328. if (rc)
  329. goto err;
  330. }
  331. /* The rx buffer allocation strategy is MTU dependent */
  332. efx_rx_strategy(channel);
  333. efx_for_each_channel_rx_queue(rx_queue, channel) {
  334. rc = efx_init_rx_queue(rx_queue);
  335. if (rc)
  336. goto err;
  337. }
  338. WARN_ON(channel->rx_pkt != NULL);
  339. efx_rx_strategy(channel);
  340. }
  341. return 0;
  342. err:
  343. EFX_ERR(efx, "failed to initialise channel %d\n",
  344. channel ? channel->channel : -1);
  345. efx_fini_channels(efx);
  346. return rc;
  347. }
  348. /* This enables event queue processing and packet transmission.
  349. *
  350. * Note that this function is not allowed to fail, since that would
  351. * introduce too much complexity into the suspend/resume path.
  352. */
  353. static void efx_start_channel(struct efx_channel *channel)
  354. {
  355. struct efx_rx_queue *rx_queue;
  356. EFX_LOG(channel->efx, "starting chan %d\n", channel->channel);
  357. if (!(channel->efx->net_dev->flags & IFF_UP))
  358. netif_napi_add(channel->napi_dev, &channel->napi_str,
  359. efx_poll, napi_weight);
  360. /* The interrupt handler for this channel may set work_pending
  361. * as soon as we enable it. Make sure it's cleared before
  362. * then. Similarly, make sure it sees the enabled flag set. */
  363. channel->work_pending = false;
  364. channel->enabled = true;
  365. smp_wmb();
  366. napi_enable(&channel->napi_str);
  367. /* Load up RX descriptors */
  368. efx_for_each_channel_rx_queue(rx_queue, channel)
  369. efx_fast_push_rx_descriptors(rx_queue);
  370. }
  371. /* This disables event queue processing and packet transmission.
  372. * This function does not guarantee that all queue processing
  373. * (e.g. RX refill) is complete.
  374. */
  375. static void efx_stop_channel(struct efx_channel *channel)
  376. {
  377. struct efx_rx_queue *rx_queue;
  378. if (!channel->enabled)
  379. return;
  380. EFX_LOG(channel->efx, "stop chan %d\n", channel->channel);
  381. channel->enabled = false;
  382. napi_disable(&channel->napi_str);
  383. /* Ensure that any worker threads have exited or will be no-ops */
  384. efx_for_each_channel_rx_queue(rx_queue, channel) {
  385. spin_lock_bh(&rx_queue->add_lock);
  386. spin_unlock_bh(&rx_queue->add_lock);
  387. }
  388. }
  389. static void efx_fini_channels(struct efx_nic *efx)
  390. {
  391. struct efx_channel *channel;
  392. struct efx_tx_queue *tx_queue;
  393. struct efx_rx_queue *rx_queue;
  394. EFX_ASSERT_RESET_SERIALISED(efx);
  395. BUG_ON(efx->port_enabled);
  396. efx_for_each_channel(channel, efx) {
  397. EFX_LOG(channel->efx, "shut down chan %d\n", channel->channel);
  398. efx_for_each_channel_rx_queue(rx_queue, channel)
  399. efx_fini_rx_queue(rx_queue);
  400. efx_for_each_channel_tx_queue(tx_queue, channel)
  401. efx_fini_tx_queue(tx_queue);
  402. }
  403. /* Do the event queues last so that we can handle flush events
  404. * for all DMA queues. */
  405. efx_for_each_channel(channel, efx) {
  406. EFX_LOG(channel->efx, "shut down evq %d\n", channel->channel);
  407. efx_fini_eventq(channel);
  408. }
  409. }
  410. static void efx_remove_channel(struct efx_channel *channel)
  411. {
  412. struct efx_tx_queue *tx_queue;
  413. struct efx_rx_queue *rx_queue;
  414. EFX_LOG(channel->efx, "destroy chan %d\n", channel->channel);
  415. efx_for_each_channel_rx_queue(rx_queue, channel)
  416. efx_remove_rx_queue(rx_queue);
  417. efx_for_each_channel_tx_queue(tx_queue, channel)
  418. efx_remove_tx_queue(tx_queue);
  419. efx_remove_eventq(channel);
  420. channel->used_flags = 0;
  421. }
  422. void efx_schedule_slow_fill(struct efx_rx_queue *rx_queue, int delay)
  423. {
  424. queue_delayed_work(refill_workqueue, &rx_queue->work, delay);
  425. }
  426. /**************************************************************************
  427. *
  428. * Port handling
  429. *
  430. **************************************************************************/
  431. /* This ensures that the kernel is kept informed (via
  432. * netif_carrier_on/off) of the link status, and also maintains the
  433. * link status's stop on the port's TX queue.
  434. */
  435. static void efx_link_status_changed(struct efx_nic *efx)
  436. {
  437. /* SFC Bug 5356: A net_dev notifier is registered, so we must ensure
  438. * that no events are triggered between unregister_netdev() and the
  439. * driver unloading. A more general condition is that NETDEV_CHANGE
  440. * can only be generated between NETDEV_UP and NETDEV_DOWN */
  441. if (!netif_running(efx->net_dev))
  442. return;
  443. if (efx->link_up != netif_carrier_ok(efx->net_dev)) {
  444. efx->n_link_state_changes++;
  445. if (efx->link_up)
  446. netif_carrier_on(efx->net_dev);
  447. else
  448. netif_carrier_off(efx->net_dev);
  449. }
  450. /* Status message for kernel log */
  451. if (efx->link_up) {
  452. struct mii_if_info *gmii = &efx->mii;
  453. unsigned adv, lpa;
  454. /* NONE here means direct XAUI from the controller, with no
  455. * MDIO-attached device we can query. */
  456. if (efx->phy_type != PHY_TYPE_NONE) {
  457. adv = gmii_advertised(gmii);
  458. lpa = gmii_lpa(gmii);
  459. } else {
  460. lpa = GM_LPA_10000 | LPA_DUPLEX;
  461. adv = lpa;
  462. }
  463. EFX_INFO(efx, "link up at %dMbps %s-duplex "
  464. "(adv %04x lpa %04x) (MTU %d)%s\n",
  465. (efx->link_options & GM_LPA_10000 ? 10000 :
  466. (efx->link_options & GM_LPA_1000 ? 1000 :
  467. (efx->link_options & GM_LPA_100 ? 100 :
  468. 10))),
  469. (efx->link_options & GM_LPA_DUPLEX ?
  470. "full" : "half"),
  471. adv, lpa,
  472. efx->net_dev->mtu,
  473. (efx->promiscuous ? " [PROMISC]" : ""));
  474. } else {
  475. EFX_INFO(efx, "link down\n");
  476. }
  477. }
  478. /* This call reinitialises the MAC to pick up new PHY settings. The
  479. * caller must hold the mac_lock */
  480. static void __efx_reconfigure_port(struct efx_nic *efx)
  481. {
  482. WARN_ON(!mutex_is_locked(&efx->mac_lock));
  483. EFX_LOG(efx, "reconfiguring MAC from PHY settings on CPU %d\n",
  484. raw_smp_processor_id());
  485. falcon_reconfigure_xmac(efx);
  486. /* Inform kernel of loss/gain of carrier */
  487. efx_link_status_changed(efx);
  488. }
  489. /* Reinitialise the MAC to pick up new PHY settings, even if the port is
  490. * disabled. */
  491. void efx_reconfigure_port(struct efx_nic *efx)
  492. {
  493. EFX_ASSERT_RESET_SERIALISED(efx);
  494. mutex_lock(&efx->mac_lock);
  495. __efx_reconfigure_port(efx);
  496. mutex_unlock(&efx->mac_lock);
  497. }
  498. /* Asynchronous efx_reconfigure_port work item. To speed up efx_flush_all()
  499. * we don't efx_reconfigure_port() if the port is disabled. Care is taken
  500. * in efx_stop_all() and efx_start_port() to prevent PHY events being lost */
  501. static void efx_reconfigure_work(struct work_struct *data)
  502. {
  503. struct efx_nic *efx = container_of(data, struct efx_nic,
  504. reconfigure_work);
  505. mutex_lock(&efx->mac_lock);
  506. if (efx->port_enabled)
  507. __efx_reconfigure_port(efx);
  508. mutex_unlock(&efx->mac_lock);
  509. }
  510. static int efx_probe_port(struct efx_nic *efx)
  511. {
  512. int rc;
  513. EFX_LOG(efx, "create port\n");
  514. /* Connect up MAC/PHY operations table and read MAC address */
  515. rc = falcon_probe_port(efx);
  516. if (rc)
  517. goto err;
  518. /* Sanity check MAC address */
  519. if (is_valid_ether_addr(efx->mac_address)) {
  520. memcpy(efx->net_dev->dev_addr, efx->mac_address, ETH_ALEN);
  521. } else {
  522. DECLARE_MAC_BUF(mac);
  523. EFX_ERR(efx, "invalid MAC address %s\n",
  524. print_mac(mac, efx->mac_address));
  525. if (!allow_bad_hwaddr) {
  526. rc = -EINVAL;
  527. goto err;
  528. }
  529. random_ether_addr(efx->net_dev->dev_addr);
  530. EFX_INFO(efx, "using locally-generated MAC %s\n",
  531. print_mac(mac, efx->net_dev->dev_addr));
  532. }
  533. return 0;
  534. err:
  535. efx_remove_port(efx);
  536. return rc;
  537. }
  538. static int efx_init_port(struct efx_nic *efx)
  539. {
  540. int rc;
  541. EFX_LOG(efx, "init port\n");
  542. /* Initialise the MAC and PHY */
  543. rc = falcon_init_xmac(efx);
  544. if (rc)
  545. return rc;
  546. efx->port_initialized = true;
  547. /* Reconfigure port to program MAC registers */
  548. falcon_reconfigure_xmac(efx);
  549. return 0;
  550. }
  551. /* Allow efx_reconfigure_port() to be scheduled, and close the window
  552. * between efx_stop_port and efx_flush_all whereby a previously scheduled
  553. * efx_reconfigure_port() may have been cancelled */
  554. static void efx_start_port(struct efx_nic *efx)
  555. {
  556. EFX_LOG(efx, "start port\n");
  557. BUG_ON(efx->port_enabled);
  558. mutex_lock(&efx->mac_lock);
  559. efx->port_enabled = true;
  560. __efx_reconfigure_port(efx);
  561. mutex_unlock(&efx->mac_lock);
  562. }
  563. /* Prevent efx_reconfigure_work and efx_monitor() from executing, and
  564. * efx_set_multicast_list() from scheduling efx_reconfigure_work.
  565. * efx_reconfigure_work can still be scheduled via NAPI processing
  566. * until efx_flush_all() is called */
  567. static void efx_stop_port(struct efx_nic *efx)
  568. {
  569. EFX_LOG(efx, "stop port\n");
  570. mutex_lock(&efx->mac_lock);
  571. efx->port_enabled = false;
  572. mutex_unlock(&efx->mac_lock);
  573. /* Serialise against efx_set_multicast_list() */
  574. if (efx_dev_registered(efx)) {
  575. netif_addr_lock_bh(efx->net_dev);
  576. netif_addr_unlock_bh(efx->net_dev);
  577. }
  578. }
  579. static void efx_fini_port(struct efx_nic *efx)
  580. {
  581. EFX_LOG(efx, "shut down port\n");
  582. if (!efx->port_initialized)
  583. return;
  584. falcon_fini_xmac(efx);
  585. efx->port_initialized = false;
  586. efx->link_up = false;
  587. efx_link_status_changed(efx);
  588. }
  589. static void efx_remove_port(struct efx_nic *efx)
  590. {
  591. EFX_LOG(efx, "destroying port\n");
  592. falcon_remove_port(efx);
  593. }
  594. /**************************************************************************
  595. *
  596. * NIC handling
  597. *
  598. **************************************************************************/
  599. /* This configures the PCI device to enable I/O and DMA. */
  600. static int efx_init_io(struct efx_nic *efx)
  601. {
  602. struct pci_dev *pci_dev = efx->pci_dev;
  603. dma_addr_t dma_mask = efx->type->max_dma_mask;
  604. int rc;
  605. EFX_LOG(efx, "initialising I/O\n");
  606. rc = pci_enable_device(pci_dev);
  607. if (rc) {
  608. EFX_ERR(efx, "failed to enable PCI device\n");
  609. goto fail1;
  610. }
  611. pci_set_master(pci_dev);
  612. /* Set the PCI DMA mask. Try all possibilities from our
  613. * genuine mask down to 32 bits, because some architectures
  614. * (e.g. x86_64 with iommu_sac_force set) will allow 40 bit
  615. * masks event though they reject 46 bit masks.
  616. */
  617. while (dma_mask > 0x7fffffffUL) {
  618. if (pci_dma_supported(pci_dev, dma_mask) &&
  619. ((rc = pci_set_dma_mask(pci_dev, dma_mask)) == 0))
  620. break;
  621. dma_mask >>= 1;
  622. }
  623. if (rc) {
  624. EFX_ERR(efx, "could not find a suitable DMA mask\n");
  625. goto fail2;
  626. }
  627. EFX_LOG(efx, "using DMA mask %llx\n", (unsigned long long) dma_mask);
  628. rc = pci_set_consistent_dma_mask(pci_dev, dma_mask);
  629. if (rc) {
  630. /* pci_set_consistent_dma_mask() is not *allowed* to
  631. * fail with a mask that pci_set_dma_mask() accepted,
  632. * but just in case...
  633. */
  634. EFX_ERR(efx, "failed to set consistent DMA mask\n");
  635. goto fail2;
  636. }
  637. efx->membase_phys = pci_resource_start(efx->pci_dev,
  638. efx->type->mem_bar);
  639. rc = pci_request_region(pci_dev, efx->type->mem_bar, "sfc");
  640. if (rc) {
  641. EFX_ERR(efx, "request for memory BAR failed\n");
  642. rc = -EIO;
  643. goto fail3;
  644. }
  645. efx->membase = ioremap_nocache(efx->membase_phys,
  646. efx->type->mem_map_size);
  647. if (!efx->membase) {
  648. EFX_ERR(efx, "could not map memory BAR %d at %llx+%x\n",
  649. efx->type->mem_bar,
  650. (unsigned long long)efx->membase_phys,
  651. efx->type->mem_map_size);
  652. rc = -ENOMEM;
  653. goto fail4;
  654. }
  655. EFX_LOG(efx, "memory BAR %u at %llx+%x (virtual %p)\n",
  656. efx->type->mem_bar, (unsigned long long)efx->membase_phys,
  657. efx->type->mem_map_size, efx->membase);
  658. return 0;
  659. fail4:
  660. release_mem_region(efx->membase_phys, efx->type->mem_map_size);
  661. fail3:
  662. efx->membase_phys = 0;
  663. fail2:
  664. pci_disable_device(efx->pci_dev);
  665. fail1:
  666. return rc;
  667. }
  668. static void efx_fini_io(struct efx_nic *efx)
  669. {
  670. EFX_LOG(efx, "shutting down I/O\n");
  671. if (efx->membase) {
  672. iounmap(efx->membase);
  673. efx->membase = NULL;
  674. }
  675. if (efx->membase_phys) {
  676. pci_release_region(efx->pci_dev, efx->type->mem_bar);
  677. efx->membase_phys = 0;
  678. }
  679. pci_disable_device(efx->pci_dev);
  680. }
  681. /* Get number of RX queues wanted. Return number of online CPU
  682. * packages in the expectation that an IRQ balancer will spread
  683. * interrupts across them. */
  684. static int efx_wanted_rx_queues(void)
  685. {
  686. cpumask_t core_mask;
  687. int count;
  688. int cpu;
  689. cpus_clear(core_mask);
  690. count = 0;
  691. for_each_online_cpu(cpu) {
  692. if (!cpu_isset(cpu, core_mask)) {
  693. ++count;
  694. cpus_or(core_mask, core_mask,
  695. topology_core_siblings(cpu));
  696. }
  697. }
  698. return count;
  699. }
  700. /* Probe the number and type of interrupts we are able to obtain, and
  701. * the resulting numbers of channels and RX queues.
  702. */
  703. static void efx_probe_interrupts(struct efx_nic *efx)
  704. {
  705. int max_channels =
  706. min_t(int, efx->type->phys_addr_channels, EFX_MAX_CHANNELS);
  707. int rc, i;
  708. if (efx->interrupt_mode == EFX_INT_MODE_MSIX) {
  709. struct msix_entry xentries[EFX_MAX_CHANNELS];
  710. int wanted_ints;
  711. /* We want one RX queue and interrupt per CPU package
  712. * (or as specified by the rss_cpus module parameter).
  713. * We will need one channel per interrupt.
  714. */
  715. wanted_ints = rss_cpus ? rss_cpus : efx_wanted_rx_queues();
  716. efx->n_rx_queues = min(wanted_ints, max_channels);
  717. for (i = 0; i < efx->n_rx_queues; i++)
  718. xentries[i].entry = i;
  719. rc = pci_enable_msix(efx->pci_dev, xentries, efx->n_rx_queues);
  720. if (rc > 0) {
  721. EFX_BUG_ON_PARANOID(rc >= efx->n_rx_queues);
  722. efx->n_rx_queues = rc;
  723. rc = pci_enable_msix(efx->pci_dev, xentries,
  724. efx->n_rx_queues);
  725. }
  726. if (rc == 0) {
  727. for (i = 0; i < efx->n_rx_queues; i++)
  728. efx->channel[i].irq = xentries[i].vector;
  729. } else {
  730. /* Fall back to single channel MSI */
  731. efx->interrupt_mode = EFX_INT_MODE_MSI;
  732. EFX_ERR(efx, "could not enable MSI-X\n");
  733. }
  734. }
  735. /* Try single interrupt MSI */
  736. if (efx->interrupt_mode == EFX_INT_MODE_MSI) {
  737. efx->n_rx_queues = 1;
  738. rc = pci_enable_msi(efx->pci_dev);
  739. if (rc == 0) {
  740. efx->channel[0].irq = efx->pci_dev->irq;
  741. } else {
  742. EFX_ERR(efx, "could not enable MSI\n");
  743. efx->interrupt_mode = EFX_INT_MODE_LEGACY;
  744. }
  745. }
  746. /* Assume legacy interrupts */
  747. if (efx->interrupt_mode == EFX_INT_MODE_LEGACY) {
  748. efx->n_rx_queues = 1;
  749. efx->legacy_irq = efx->pci_dev->irq;
  750. }
  751. }
  752. static void efx_remove_interrupts(struct efx_nic *efx)
  753. {
  754. struct efx_channel *channel;
  755. /* Remove MSI/MSI-X interrupts */
  756. efx_for_each_channel(channel, efx)
  757. channel->irq = 0;
  758. pci_disable_msi(efx->pci_dev);
  759. pci_disable_msix(efx->pci_dev);
  760. /* Remove legacy interrupt */
  761. efx->legacy_irq = 0;
  762. }
  763. static void efx_set_channels(struct efx_nic *efx)
  764. {
  765. struct efx_tx_queue *tx_queue;
  766. struct efx_rx_queue *rx_queue;
  767. efx_for_each_tx_queue(tx_queue, efx) {
  768. if (!EFX_INT_MODE_USE_MSI(efx) && separate_tx_and_rx_channels)
  769. tx_queue->channel = &efx->channel[1];
  770. else
  771. tx_queue->channel = &efx->channel[0];
  772. tx_queue->channel->used_flags |= EFX_USED_BY_TX;
  773. }
  774. efx_for_each_rx_queue(rx_queue, efx) {
  775. rx_queue->channel = &efx->channel[rx_queue->queue];
  776. rx_queue->channel->used_flags |= EFX_USED_BY_RX;
  777. }
  778. }
  779. static int efx_probe_nic(struct efx_nic *efx)
  780. {
  781. int rc;
  782. EFX_LOG(efx, "creating NIC\n");
  783. /* Carry out hardware-type specific initialisation */
  784. rc = falcon_probe_nic(efx);
  785. if (rc)
  786. return rc;
  787. /* Determine the number of channels and RX queues by trying to hook
  788. * in MSI-X interrupts. */
  789. efx_probe_interrupts(efx);
  790. efx_set_channels(efx);
  791. /* Initialise the interrupt moderation settings */
  792. efx_init_irq_moderation(efx, tx_irq_mod_usec, rx_irq_mod_usec);
  793. return 0;
  794. }
  795. static void efx_remove_nic(struct efx_nic *efx)
  796. {
  797. EFX_LOG(efx, "destroying NIC\n");
  798. efx_remove_interrupts(efx);
  799. falcon_remove_nic(efx);
  800. }
  801. /**************************************************************************
  802. *
  803. * NIC startup/shutdown
  804. *
  805. *************************************************************************/
  806. static int efx_probe_all(struct efx_nic *efx)
  807. {
  808. struct efx_channel *channel;
  809. int rc;
  810. /* Create NIC */
  811. rc = efx_probe_nic(efx);
  812. if (rc) {
  813. EFX_ERR(efx, "failed to create NIC\n");
  814. goto fail1;
  815. }
  816. /* Create port */
  817. rc = efx_probe_port(efx);
  818. if (rc) {
  819. EFX_ERR(efx, "failed to create port\n");
  820. goto fail2;
  821. }
  822. /* Create channels */
  823. efx_for_each_channel(channel, efx) {
  824. rc = efx_probe_channel(channel);
  825. if (rc) {
  826. EFX_ERR(efx, "failed to create channel %d\n",
  827. channel->channel);
  828. goto fail3;
  829. }
  830. }
  831. return 0;
  832. fail3:
  833. efx_for_each_channel(channel, efx)
  834. efx_remove_channel(channel);
  835. efx_remove_port(efx);
  836. fail2:
  837. efx_remove_nic(efx);
  838. fail1:
  839. return rc;
  840. }
  841. /* Called after previous invocation(s) of efx_stop_all, restarts the
  842. * port, kernel transmit queue, NAPI processing and hardware interrupts,
  843. * and ensures that the port is scheduled to be reconfigured.
  844. * This function is safe to call multiple times when the NIC is in any
  845. * state. */
  846. static void efx_start_all(struct efx_nic *efx)
  847. {
  848. struct efx_channel *channel;
  849. EFX_ASSERT_RESET_SERIALISED(efx);
  850. /* Check that it is appropriate to restart the interface. All
  851. * of these flags are safe to read under just the rtnl lock */
  852. if (efx->port_enabled)
  853. return;
  854. if ((efx->state != STATE_RUNNING) && (efx->state != STATE_INIT))
  855. return;
  856. if (efx_dev_registered(efx) && !netif_running(efx->net_dev))
  857. return;
  858. /* Mark the port as enabled so port reconfigurations can start, then
  859. * restart the transmit interface early so the watchdog timer stops */
  860. efx_start_port(efx);
  861. efx_wake_queue(efx);
  862. efx_for_each_channel(channel, efx)
  863. efx_start_channel(channel);
  864. falcon_enable_interrupts(efx);
  865. /* Start hardware monitor if we're in RUNNING */
  866. if (efx->state == STATE_RUNNING)
  867. queue_delayed_work(efx->workqueue, &efx->monitor_work,
  868. efx_monitor_interval);
  869. }
  870. /* Flush all delayed work. Should only be called when no more delayed work
  871. * will be scheduled. This doesn't flush pending online resets (efx_reset),
  872. * since we're holding the rtnl_lock at this point. */
  873. static void efx_flush_all(struct efx_nic *efx)
  874. {
  875. struct efx_rx_queue *rx_queue;
  876. /* Make sure the hardware monitor is stopped */
  877. cancel_delayed_work_sync(&efx->monitor_work);
  878. /* Ensure that all RX slow refills are complete. */
  879. efx_for_each_rx_queue(rx_queue, efx)
  880. cancel_delayed_work_sync(&rx_queue->work);
  881. /* Stop scheduled port reconfigurations */
  882. cancel_work_sync(&efx->reconfigure_work);
  883. }
  884. /* Quiesce hardware and software without bringing the link down.
  885. * Safe to call multiple times, when the nic and interface is in any
  886. * state. The caller is guaranteed to subsequently be in a position
  887. * to modify any hardware and software state they see fit without
  888. * taking locks. */
  889. static void efx_stop_all(struct efx_nic *efx)
  890. {
  891. struct efx_channel *channel;
  892. EFX_ASSERT_RESET_SERIALISED(efx);
  893. /* port_enabled can be read safely under the rtnl lock */
  894. if (!efx->port_enabled)
  895. return;
  896. /* Disable interrupts and wait for ISR to complete */
  897. falcon_disable_interrupts(efx);
  898. if (efx->legacy_irq)
  899. synchronize_irq(efx->legacy_irq);
  900. efx_for_each_channel(channel, efx) {
  901. if (channel->irq)
  902. synchronize_irq(channel->irq);
  903. }
  904. /* Stop all NAPI processing and synchronous rx refills */
  905. efx_for_each_channel(channel, efx)
  906. efx_stop_channel(channel);
  907. /* Stop all asynchronous port reconfigurations. Since all
  908. * event processing has already been stopped, there is no
  909. * window to loose phy events */
  910. efx_stop_port(efx);
  911. /* Flush reconfigure_work, refill_workqueue, monitor_work */
  912. efx_flush_all(efx);
  913. /* Isolate the MAC from the TX and RX engines, so that queue
  914. * flushes will complete in a timely fashion. */
  915. falcon_deconfigure_mac_wrapper(efx);
  916. falcon_drain_tx_fifo(efx);
  917. /* Stop the kernel transmit interface late, so the watchdog
  918. * timer isn't ticking over the flush */
  919. efx_stop_queue(efx);
  920. if (efx_dev_registered(efx)) {
  921. netif_tx_lock_bh(efx->net_dev);
  922. netif_tx_unlock_bh(efx->net_dev);
  923. }
  924. }
  925. static void efx_remove_all(struct efx_nic *efx)
  926. {
  927. struct efx_channel *channel;
  928. efx_for_each_channel(channel, efx)
  929. efx_remove_channel(channel);
  930. efx_remove_port(efx);
  931. efx_remove_nic(efx);
  932. }
  933. /* A convinience function to safely flush all the queues */
  934. int efx_flush_queues(struct efx_nic *efx)
  935. {
  936. int rc;
  937. EFX_ASSERT_RESET_SERIALISED(efx);
  938. efx_stop_all(efx);
  939. efx_fini_channels(efx);
  940. rc = efx_init_channels(efx);
  941. if (rc) {
  942. efx_schedule_reset(efx, RESET_TYPE_DISABLE);
  943. return rc;
  944. }
  945. efx_start_all(efx);
  946. return 0;
  947. }
  948. /**************************************************************************
  949. *
  950. * Interrupt moderation
  951. *
  952. **************************************************************************/
  953. /* Set interrupt moderation parameters */
  954. void efx_init_irq_moderation(struct efx_nic *efx, int tx_usecs, int rx_usecs)
  955. {
  956. struct efx_tx_queue *tx_queue;
  957. struct efx_rx_queue *rx_queue;
  958. EFX_ASSERT_RESET_SERIALISED(efx);
  959. efx_for_each_tx_queue(tx_queue, efx)
  960. tx_queue->channel->irq_moderation = tx_usecs;
  961. efx_for_each_rx_queue(rx_queue, efx)
  962. rx_queue->channel->irq_moderation = rx_usecs;
  963. }
  964. /**************************************************************************
  965. *
  966. * Hardware monitor
  967. *
  968. **************************************************************************/
  969. /* Run periodically off the general workqueue. Serialised against
  970. * efx_reconfigure_port via the mac_lock */
  971. static void efx_monitor(struct work_struct *data)
  972. {
  973. struct efx_nic *efx = container_of(data, struct efx_nic,
  974. monitor_work.work);
  975. int rc = 0;
  976. EFX_TRACE(efx, "hardware monitor executing on CPU %d\n",
  977. raw_smp_processor_id());
  978. /* If the mac_lock is already held then it is likely a port
  979. * reconfiguration is already in place, which will likely do
  980. * most of the work of check_hw() anyway. */
  981. if (!mutex_trylock(&efx->mac_lock)) {
  982. queue_delayed_work(efx->workqueue, &efx->monitor_work,
  983. efx_monitor_interval);
  984. return;
  985. }
  986. if (efx->port_enabled)
  987. rc = falcon_check_xmac(efx);
  988. mutex_unlock(&efx->mac_lock);
  989. if (rc) {
  990. if (monitor_reset) {
  991. EFX_ERR(efx, "hardware monitor detected a fault: "
  992. "triggering reset\n");
  993. efx_schedule_reset(efx, RESET_TYPE_MONITOR);
  994. } else {
  995. EFX_ERR(efx, "hardware monitor detected a fault, "
  996. "skipping reset\n");
  997. }
  998. }
  999. queue_delayed_work(efx->workqueue, &efx->monitor_work,
  1000. efx_monitor_interval);
  1001. }
  1002. /**************************************************************************
  1003. *
  1004. * ioctls
  1005. *
  1006. *************************************************************************/
  1007. /* Net device ioctl
  1008. * Context: process, rtnl_lock() held.
  1009. */
  1010. static int efx_ioctl(struct net_device *net_dev, struct ifreq *ifr, int cmd)
  1011. {
  1012. struct efx_nic *efx = netdev_priv(net_dev);
  1013. EFX_ASSERT_RESET_SERIALISED(efx);
  1014. return generic_mii_ioctl(&efx->mii, if_mii(ifr), cmd, NULL);
  1015. }
  1016. /**************************************************************************
  1017. *
  1018. * NAPI interface
  1019. *
  1020. **************************************************************************/
  1021. static int efx_init_napi(struct efx_nic *efx)
  1022. {
  1023. struct efx_channel *channel;
  1024. int rc;
  1025. efx_for_each_channel(channel, efx) {
  1026. channel->napi_dev = efx->net_dev;
  1027. rc = efx_lro_init(&channel->lro_mgr, efx);
  1028. if (rc)
  1029. goto err;
  1030. }
  1031. return 0;
  1032. err:
  1033. efx_fini_napi(efx);
  1034. return rc;
  1035. }
  1036. static void efx_fini_napi(struct efx_nic *efx)
  1037. {
  1038. struct efx_channel *channel;
  1039. efx_for_each_channel(channel, efx) {
  1040. efx_lro_fini(&channel->lro_mgr);
  1041. channel->napi_dev = NULL;
  1042. }
  1043. }
  1044. /**************************************************************************
  1045. *
  1046. * Kernel netpoll interface
  1047. *
  1048. *************************************************************************/
  1049. #ifdef CONFIG_NET_POLL_CONTROLLER
  1050. /* Although in the common case interrupts will be disabled, this is not
  1051. * guaranteed. However, all our work happens inside the NAPI callback,
  1052. * so no locking is required.
  1053. */
  1054. static void efx_netpoll(struct net_device *net_dev)
  1055. {
  1056. struct efx_nic *efx = netdev_priv(net_dev);
  1057. struct efx_channel *channel;
  1058. efx_for_each_channel(channel, efx)
  1059. efx_schedule_channel(channel);
  1060. }
  1061. #endif
  1062. /**************************************************************************
  1063. *
  1064. * Kernel net device interface
  1065. *
  1066. *************************************************************************/
  1067. /* Context: process, rtnl_lock() held. */
  1068. static int efx_net_open(struct net_device *net_dev)
  1069. {
  1070. struct efx_nic *efx = netdev_priv(net_dev);
  1071. EFX_ASSERT_RESET_SERIALISED(efx);
  1072. EFX_LOG(efx, "opening device %s on CPU %d\n", net_dev->name,
  1073. raw_smp_processor_id());
  1074. efx_start_all(efx);
  1075. return 0;
  1076. }
  1077. /* Context: process, rtnl_lock() held.
  1078. * Note that the kernel will ignore our return code; this method
  1079. * should really be a void.
  1080. */
  1081. static int efx_net_stop(struct net_device *net_dev)
  1082. {
  1083. struct efx_nic *efx = netdev_priv(net_dev);
  1084. int rc;
  1085. EFX_LOG(efx, "closing %s on CPU %d\n", net_dev->name,
  1086. raw_smp_processor_id());
  1087. /* Stop the device and flush all the channels */
  1088. efx_stop_all(efx);
  1089. efx_fini_channels(efx);
  1090. rc = efx_init_channels(efx);
  1091. if (rc)
  1092. efx_schedule_reset(efx, RESET_TYPE_DISABLE);
  1093. return 0;
  1094. }
  1095. /* Context: process, dev_base_lock or RTNL held, non-blocking. */
  1096. static struct net_device_stats *efx_net_stats(struct net_device *net_dev)
  1097. {
  1098. struct efx_nic *efx = netdev_priv(net_dev);
  1099. struct efx_mac_stats *mac_stats = &efx->mac_stats;
  1100. struct net_device_stats *stats = &net_dev->stats;
  1101. /* Update stats if possible, but do not wait if another thread
  1102. * is updating them (or resetting the NIC); slightly stale
  1103. * stats are acceptable.
  1104. */
  1105. if (!spin_trylock(&efx->stats_lock))
  1106. return stats;
  1107. if (efx->state == STATE_RUNNING) {
  1108. falcon_update_stats_xmac(efx);
  1109. falcon_update_nic_stats(efx);
  1110. }
  1111. spin_unlock(&efx->stats_lock);
  1112. stats->rx_packets = mac_stats->rx_packets;
  1113. stats->tx_packets = mac_stats->tx_packets;
  1114. stats->rx_bytes = mac_stats->rx_bytes;
  1115. stats->tx_bytes = mac_stats->tx_bytes;
  1116. stats->multicast = mac_stats->rx_multicast;
  1117. stats->collisions = mac_stats->tx_collision;
  1118. stats->rx_length_errors = (mac_stats->rx_gtjumbo +
  1119. mac_stats->rx_length_error);
  1120. stats->rx_over_errors = efx->n_rx_nodesc_drop_cnt;
  1121. stats->rx_crc_errors = mac_stats->rx_bad;
  1122. stats->rx_frame_errors = mac_stats->rx_align_error;
  1123. stats->rx_fifo_errors = mac_stats->rx_overflow;
  1124. stats->rx_missed_errors = mac_stats->rx_missed;
  1125. stats->tx_window_errors = mac_stats->tx_late_collision;
  1126. stats->rx_errors = (stats->rx_length_errors +
  1127. stats->rx_over_errors +
  1128. stats->rx_crc_errors +
  1129. stats->rx_frame_errors +
  1130. stats->rx_fifo_errors +
  1131. stats->rx_missed_errors +
  1132. mac_stats->rx_symbol_error);
  1133. stats->tx_errors = (stats->tx_window_errors +
  1134. mac_stats->tx_bad);
  1135. return stats;
  1136. }
  1137. /* Context: netif_tx_lock held, BHs disabled. */
  1138. static void efx_watchdog(struct net_device *net_dev)
  1139. {
  1140. struct efx_nic *efx = netdev_priv(net_dev);
  1141. EFX_ERR(efx, "TX stuck with stop_count=%d port_enabled=%d: %s\n",
  1142. atomic_read(&efx->netif_stop_count), efx->port_enabled,
  1143. monitor_reset ? "resetting channels" : "skipping reset");
  1144. if (monitor_reset)
  1145. efx_schedule_reset(efx, RESET_TYPE_MONITOR);
  1146. }
  1147. /* Context: process, rtnl_lock() held. */
  1148. static int efx_change_mtu(struct net_device *net_dev, int new_mtu)
  1149. {
  1150. struct efx_nic *efx = netdev_priv(net_dev);
  1151. int rc = 0;
  1152. EFX_ASSERT_RESET_SERIALISED(efx);
  1153. if (new_mtu > EFX_MAX_MTU)
  1154. return -EINVAL;
  1155. efx_stop_all(efx);
  1156. EFX_LOG(efx, "changing MTU to %d\n", new_mtu);
  1157. efx_fini_channels(efx);
  1158. net_dev->mtu = new_mtu;
  1159. rc = efx_init_channels(efx);
  1160. if (rc)
  1161. goto fail;
  1162. efx_start_all(efx);
  1163. return rc;
  1164. fail:
  1165. efx_schedule_reset(efx, RESET_TYPE_DISABLE);
  1166. return rc;
  1167. }
  1168. static int efx_set_mac_address(struct net_device *net_dev, void *data)
  1169. {
  1170. struct efx_nic *efx = netdev_priv(net_dev);
  1171. struct sockaddr *addr = data;
  1172. char *new_addr = addr->sa_data;
  1173. EFX_ASSERT_RESET_SERIALISED(efx);
  1174. if (!is_valid_ether_addr(new_addr)) {
  1175. DECLARE_MAC_BUF(mac);
  1176. EFX_ERR(efx, "invalid ethernet MAC address requested: %s\n",
  1177. print_mac(mac, new_addr));
  1178. return -EINVAL;
  1179. }
  1180. memcpy(net_dev->dev_addr, new_addr, net_dev->addr_len);
  1181. /* Reconfigure the MAC */
  1182. efx_reconfigure_port(efx);
  1183. return 0;
  1184. }
  1185. /* Context: netif_tx_lock held, BHs disabled. */
  1186. static void efx_set_multicast_list(struct net_device *net_dev)
  1187. {
  1188. struct efx_nic *efx = netdev_priv(net_dev);
  1189. struct dev_mc_list *mc_list = net_dev->mc_list;
  1190. union efx_multicast_hash *mc_hash = &efx->multicast_hash;
  1191. bool promiscuous;
  1192. u32 crc;
  1193. int bit;
  1194. int i;
  1195. /* Set per-MAC promiscuity flag and reconfigure MAC if necessary */
  1196. promiscuous = !!(net_dev->flags & IFF_PROMISC);
  1197. if (efx->promiscuous != promiscuous) {
  1198. efx->promiscuous = promiscuous;
  1199. /* Close the window between efx_stop_port() and efx_flush_all()
  1200. * by only queuing work when the port is enabled. */
  1201. if (efx->port_enabled)
  1202. queue_work(efx->workqueue, &efx->reconfigure_work);
  1203. }
  1204. /* Build multicast hash table */
  1205. if (promiscuous || (net_dev->flags & IFF_ALLMULTI)) {
  1206. memset(mc_hash, 0xff, sizeof(*mc_hash));
  1207. } else {
  1208. memset(mc_hash, 0x00, sizeof(*mc_hash));
  1209. for (i = 0; i < net_dev->mc_count; i++) {
  1210. crc = ether_crc_le(ETH_ALEN, mc_list->dmi_addr);
  1211. bit = crc & (EFX_MCAST_HASH_ENTRIES - 1);
  1212. set_bit_le(bit, mc_hash->byte);
  1213. mc_list = mc_list->next;
  1214. }
  1215. }
  1216. /* Create and activate new global multicast hash table */
  1217. falcon_set_multicast_hash(efx);
  1218. }
  1219. static int efx_netdev_event(struct notifier_block *this,
  1220. unsigned long event, void *ptr)
  1221. {
  1222. struct net_device *net_dev = ptr;
  1223. if (net_dev->open == efx_net_open && event == NETDEV_CHANGENAME) {
  1224. struct efx_nic *efx = netdev_priv(net_dev);
  1225. strcpy(efx->name, net_dev->name);
  1226. }
  1227. return NOTIFY_DONE;
  1228. }
  1229. static struct notifier_block efx_netdev_notifier = {
  1230. .notifier_call = efx_netdev_event,
  1231. };
  1232. static int efx_register_netdev(struct efx_nic *efx)
  1233. {
  1234. struct net_device *net_dev = efx->net_dev;
  1235. int rc;
  1236. net_dev->watchdog_timeo = 5 * HZ;
  1237. net_dev->irq = efx->pci_dev->irq;
  1238. net_dev->open = efx_net_open;
  1239. net_dev->stop = efx_net_stop;
  1240. net_dev->get_stats = efx_net_stats;
  1241. net_dev->tx_timeout = &efx_watchdog;
  1242. net_dev->hard_start_xmit = efx_hard_start_xmit;
  1243. net_dev->do_ioctl = efx_ioctl;
  1244. net_dev->change_mtu = efx_change_mtu;
  1245. net_dev->set_mac_address = efx_set_mac_address;
  1246. net_dev->set_multicast_list = efx_set_multicast_list;
  1247. #ifdef CONFIG_NET_POLL_CONTROLLER
  1248. net_dev->poll_controller = efx_netpoll;
  1249. #endif
  1250. SET_NETDEV_DEV(net_dev, &efx->pci_dev->dev);
  1251. SET_ETHTOOL_OPS(net_dev, &efx_ethtool_ops);
  1252. /* Always start with carrier off; PHY events will detect the link */
  1253. netif_carrier_off(efx->net_dev);
  1254. /* Clear MAC statistics */
  1255. falcon_update_stats_xmac(efx);
  1256. memset(&efx->mac_stats, 0, sizeof(efx->mac_stats));
  1257. rc = register_netdev(net_dev);
  1258. if (rc) {
  1259. EFX_ERR(efx, "could not register net dev\n");
  1260. return rc;
  1261. }
  1262. strcpy(efx->name, net_dev->name);
  1263. return 0;
  1264. }
  1265. static void efx_unregister_netdev(struct efx_nic *efx)
  1266. {
  1267. struct efx_tx_queue *tx_queue;
  1268. if (!efx->net_dev)
  1269. return;
  1270. BUG_ON(netdev_priv(efx->net_dev) != efx);
  1271. /* Free up any skbs still remaining. This has to happen before
  1272. * we try to unregister the netdev as running their destructors
  1273. * may be needed to get the device ref. count to 0. */
  1274. efx_for_each_tx_queue(tx_queue, efx)
  1275. efx_release_tx_buffers(tx_queue);
  1276. if (efx_dev_registered(efx)) {
  1277. strlcpy(efx->name, pci_name(efx->pci_dev), sizeof(efx->name));
  1278. unregister_netdev(efx->net_dev);
  1279. }
  1280. }
  1281. /**************************************************************************
  1282. *
  1283. * Device reset and suspend
  1284. *
  1285. **************************************************************************/
  1286. /* The final hardware and software finalisation before reset. */
  1287. static int efx_reset_down(struct efx_nic *efx, struct ethtool_cmd *ecmd)
  1288. {
  1289. int rc;
  1290. EFX_ASSERT_RESET_SERIALISED(efx);
  1291. rc = falcon_xmac_get_settings(efx, ecmd);
  1292. if (rc) {
  1293. EFX_ERR(efx, "could not back up PHY settings\n");
  1294. goto fail;
  1295. }
  1296. efx_fini_channels(efx);
  1297. return 0;
  1298. fail:
  1299. return rc;
  1300. }
  1301. /* The first part of software initialisation after a hardware reset
  1302. * This function does not handle serialisation with the kernel, it
  1303. * assumes the caller has done this */
  1304. static int efx_reset_up(struct efx_nic *efx, struct ethtool_cmd *ecmd)
  1305. {
  1306. int rc;
  1307. rc = efx_init_channels(efx);
  1308. if (rc)
  1309. goto fail1;
  1310. /* Restore MAC and PHY settings. */
  1311. rc = falcon_xmac_set_settings(efx, ecmd);
  1312. if (rc) {
  1313. EFX_ERR(efx, "could not restore PHY settings\n");
  1314. goto fail2;
  1315. }
  1316. return 0;
  1317. fail2:
  1318. efx_fini_channels(efx);
  1319. fail1:
  1320. return rc;
  1321. }
  1322. /* Reset the NIC as transparently as possible. Do not reset the PHY
  1323. * Note that the reset may fail, in which case the card will be left
  1324. * in a most-probably-unusable state.
  1325. *
  1326. * This function will sleep. You cannot reset from within an atomic
  1327. * state; use efx_schedule_reset() instead.
  1328. *
  1329. * Grabs the rtnl_lock.
  1330. */
  1331. static int efx_reset(struct efx_nic *efx)
  1332. {
  1333. struct ethtool_cmd ecmd;
  1334. enum reset_type method = efx->reset_pending;
  1335. int rc;
  1336. /* Serialise with kernel interfaces */
  1337. rtnl_lock();
  1338. /* If we're not RUNNING then don't reset. Leave the reset_pending
  1339. * flag set so that efx_pci_probe_main will be retried */
  1340. if (efx->state != STATE_RUNNING) {
  1341. EFX_INFO(efx, "scheduled reset quenched. NIC not RUNNING\n");
  1342. goto unlock_rtnl;
  1343. }
  1344. efx->state = STATE_RESETTING;
  1345. EFX_INFO(efx, "resetting (%d)\n", method);
  1346. /* The net_dev->get_stats handler is quite slow, and will fail
  1347. * if a fetch is pending over reset. Serialise against it. */
  1348. spin_lock(&efx->stats_lock);
  1349. spin_unlock(&efx->stats_lock);
  1350. efx_stop_all(efx);
  1351. mutex_lock(&efx->mac_lock);
  1352. rc = efx_reset_down(efx, &ecmd);
  1353. if (rc)
  1354. goto fail1;
  1355. rc = falcon_reset_hw(efx, method);
  1356. if (rc) {
  1357. EFX_ERR(efx, "failed to reset hardware\n");
  1358. goto fail2;
  1359. }
  1360. /* Allow resets to be rescheduled. */
  1361. efx->reset_pending = RESET_TYPE_NONE;
  1362. /* Reinitialise bus-mastering, which may have been turned off before
  1363. * the reset was scheduled. This is still appropriate, even in the
  1364. * RESET_TYPE_DISABLE since this driver generally assumes the hardware
  1365. * can respond to requests. */
  1366. pci_set_master(efx->pci_dev);
  1367. /* Reinitialise device. This is appropriate in the RESET_TYPE_DISABLE
  1368. * case so the driver can talk to external SRAM */
  1369. rc = falcon_init_nic(efx);
  1370. if (rc) {
  1371. EFX_ERR(efx, "failed to initialise NIC\n");
  1372. goto fail3;
  1373. }
  1374. /* Leave device stopped if necessary */
  1375. if (method == RESET_TYPE_DISABLE) {
  1376. /* Reinitialise the device anyway so the driver unload sequence
  1377. * can talk to the external SRAM */
  1378. falcon_init_nic(efx);
  1379. rc = -EIO;
  1380. goto fail4;
  1381. }
  1382. rc = efx_reset_up(efx, &ecmd);
  1383. if (rc)
  1384. goto fail5;
  1385. mutex_unlock(&efx->mac_lock);
  1386. EFX_LOG(efx, "reset complete\n");
  1387. efx->state = STATE_RUNNING;
  1388. efx_start_all(efx);
  1389. unlock_rtnl:
  1390. rtnl_unlock();
  1391. return 0;
  1392. fail5:
  1393. fail4:
  1394. fail3:
  1395. fail2:
  1396. fail1:
  1397. EFX_ERR(efx, "has been disabled\n");
  1398. efx->state = STATE_DISABLED;
  1399. mutex_unlock(&efx->mac_lock);
  1400. rtnl_unlock();
  1401. efx_unregister_netdev(efx);
  1402. efx_fini_port(efx);
  1403. return rc;
  1404. }
  1405. /* The worker thread exists so that code that cannot sleep can
  1406. * schedule a reset for later.
  1407. */
  1408. static void efx_reset_work(struct work_struct *data)
  1409. {
  1410. struct efx_nic *nic = container_of(data, struct efx_nic, reset_work);
  1411. efx_reset(nic);
  1412. }
  1413. void efx_schedule_reset(struct efx_nic *efx, enum reset_type type)
  1414. {
  1415. enum reset_type method;
  1416. if (efx->reset_pending != RESET_TYPE_NONE) {
  1417. EFX_INFO(efx, "quenching already scheduled reset\n");
  1418. return;
  1419. }
  1420. switch (type) {
  1421. case RESET_TYPE_INVISIBLE:
  1422. case RESET_TYPE_ALL:
  1423. case RESET_TYPE_WORLD:
  1424. case RESET_TYPE_DISABLE:
  1425. method = type;
  1426. break;
  1427. case RESET_TYPE_RX_RECOVERY:
  1428. case RESET_TYPE_RX_DESC_FETCH:
  1429. case RESET_TYPE_TX_DESC_FETCH:
  1430. case RESET_TYPE_TX_SKIP:
  1431. method = RESET_TYPE_INVISIBLE;
  1432. break;
  1433. default:
  1434. method = RESET_TYPE_ALL;
  1435. break;
  1436. }
  1437. if (method != type)
  1438. EFX_LOG(efx, "scheduling reset (%d:%d)\n", type, method);
  1439. else
  1440. EFX_LOG(efx, "scheduling reset (%d)\n", method);
  1441. efx->reset_pending = method;
  1442. queue_work(efx->reset_workqueue, &efx->reset_work);
  1443. }
  1444. /**************************************************************************
  1445. *
  1446. * List of NICs we support
  1447. *
  1448. **************************************************************************/
  1449. /* PCI device ID table */
  1450. static struct pci_device_id efx_pci_table[] __devinitdata = {
  1451. {PCI_DEVICE(EFX_VENDID_SFC, FALCON_A_P_DEVID),
  1452. .driver_data = (unsigned long) &falcon_a_nic_type},
  1453. {PCI_DEVICE(EFX_VENDID_SFC, FALCON_B_P_DEVID),
  1454. .driver_data = (unsigned long) &falcon_b_nic_type},
  1455. {0} /* end of list */
  1456. };
  1457. /**************************************************************************
  1458. *
  1459. * Dummy PHY/MAC/Board operations
  1460. *
  1461. * Can be used where the MAC does not implement this operation
  1462. * Needed so all function pointers are valid and do not have to be tested
  1463. * before use
  1464. *
  1465. **************************************************************************/
  1466. int efx_port_dummy_op_int(struct efx_nic *efx)
  1467. {
  1468. return 0;
  1469. }
  1470. void efx_port_dummy_op_void(struct efx_nic *efx) {}
  1471. void efx_port_dummy_op_blink(struct efx_nic *efx, bool blink) {}
  1472. static struct efx_phy_operations efx_dummy_phy_operations = {
  1473. .init = efx_port_dummy_op_int,
  1474. .reconfigure = efx_port_dummy_op_void,
  1475. .check_hw = efx_port_dummy_op_int,
  1476. .fini = efx_port_dummy_op_void,
  1477. .clear_interrupt = efx_port_dummy_op_void,
  1478. .reset_xaui = efx_port_dummy_op_void,
  1479. };
  1480. /* Dummy board operations */
  1481. static int efx_nic_dummy_op_int(struct efx_nic *nic)
  1482. {
  1483. return 0;
  1484. }
  1485. static struct efx_board efx_dummy_board_info = {
  1486. .init = efx_nic_dummy_op_int,
  1487. .init_leds = efx_port_dummy_op_int,
  1488. .set_fault_led = efx_port_dummy_op_blink,
  1489. .fini = efx_port_dummy_op_void,
  1490. };
  1491. /**************************************************************************
  1492. *
  1493. * Data housekeeping
  1494. *
  1495. **************************************************************************/
  1496. /* This zeroes out and then fills in the invariants in a struct
  1497. * efx_nic (including all sub-structures).
  1498. */
  1499. static int efx_init_struct(struct efx_nic *efx, struct efx_nic_type *type,
  1500. struct pci_dev *pci_dev, struct net_device *net_dev)
  1501. {
  1502. struct efx_channel *channel;
  1503. struct efx_tx_queue *tx_queue;
  1504. struct efx_rx_queue *rx_queue;
  1505. int i, rc;
  1506. /* Initialise common structures */
  1507. memset(efx, 0, sizeof(*efx));
  1508. spin_lock_init(&efx->biu_lock);
  1509. spin_lock_init(&efx->phy_lock);
  1510. INIT_WORK(&efx->reset_work, efx_reset_work);
  1511. INIT_DELAYED_WORK(&efx->monitor_work, efx_monitor);
  1512. efx->pci_dev = pci_dev;
  1513. efx->state = STATE_INIT;
  1514. efx->reset_pending = RESET_TYPE_NONE;
  1515. strlcpy(efx->name, pci_name(pci_dev), sizeof(efx->name));
  1516. efx->board_info = efx_dummy_board_info;
  1517. efx->net_dev = net_dev;
  1518. efx->rx_checksum_enabled = true;
  1519. spin_lock_init(&efx->netif_stop_lock);
  1520. spin_lock_init(&efx->stats_lock);
  1521. mutex_init(&efx->mac_lock);
  1522. efx->phy_op = &efx_dummy_phy_operations;
  1523. efx->mii.dev = net_dev;
  1524. INIT_WORK(&efx->reconfigure_work, efx_reconfigure_work);
  1525. atomic_set(&efx->netif_stop_count, 1);
  1526. for (i = 0; i < EFX_MAX_CHANNELS; i++) {
  1527. channel = &efx->channel[i];
  1528. channel->efx = efx;
  1529. channel->channel = i;
  1530. channel->evqnum = i;
  1531. channel->work_pending = false;
  1532. }
  1533. for (i = 0; i < EFX_TX_QUEUE_COUNT; i++) {
  1534. tx_queue = &efx->tx_queue[i];
  1535. tx_queue->efx = efx;
  1536. tx_queue->queue = i;
  1537. tx_queue->buffer = NULL;
  1538. tx_queue->channel = &efx->channel[0]; /* for safety */
  1539. tx_queue->tso_headers_free = NULL;
  1540. }
  1541. for (i = 0; i < EFX_MAX_RX_QUEUES; i++) {
  1542. rx_queue = &efx->rx_queue[i];
  1543. rx_queue->efx = efx;
  1544. rx_queue->queue = i;
  1545. rx_queue->channel = &efx->channel[0]; /* for safety */
  1546. rx_queue->buffer = NULL;
  1547. spin_lock_init(&rx_queue->add_lock);
  1548. INIT_DELAYED_WORK(&rx_queue->work, efx_rx_work);
  1549. }
  1550. efx->type = type;
  1551. /* Sanity-check NIC type */
  1552. EFX_BUG_ON_PARANOID(efx->type->txd_ring_mask &
  1553. (efx->type->txd_ring_mask + 1));
  1554. EFX_BUG_ON_PARANOID(efx->type->rxd_ring_mask &
  1555. (efx->type->rxd_ring_mask + 1));
  1556. EFX_BUG_ON_PARANOID(efx->type->evq_size &
  1557. (efx->type->evq_size - 1));
  1558. /* As close as we can get to guaranteeing that we don't overflow */
  1559. EFX_BUG_ON_PARANOID(efx->type->evq_size <
  1560. (efx->type->txd_ring_mask + 1 +
  1561. efx->type->rxd_ring_mask + 1));
  1562. EFX_BUG_ON_PARANOID(efx->type->phys_addr_channels > EFX_MAX_CHANNELS);
  1563. /* Higher numbered interrupt modes are less capable! */
  1564. efx->interrupt_mode = max(efx->type->max_interrupt_mode,
  1565. interrupt_mode);
  1566. efx->workqueue = create_singlethread_workqueue("sfc_work");
  1567. if (!efx->workqueue) {
  1568. rc = -ENOMEM;
  1569. goto fail1;
  1570. }
  1571. efx->reset_workqueue = create_singlethread_workqueue("sfc_reset");
  1572. if (!efx->reset_workqueue) {
  1573. rc = -ENOMEM;
  1574. goto fail2;
  1575. }
  1576. return 0;
  1577. fail2:
  1578. destroy_workqueue(efx->workqueue);
  1579. efx->workqueue = NULL;
  1580. fail1:
  1581. return rc;
  1582. }
  1583. static void efx_fini_struct(struct efx_nic *efx)
  1584. {
  1585. if (efx->reset_workqueue) {
  1586. destroy_workqueue(efx->reset_workqueue);
  1587. efx->reset_workqueue = NULL;
  1588. }
  1589. if (efx->workqueue) {
  1590. destroy_workqueue(efx->workqueue);
  1591. efx->workqueue = NULL;
  1592. }
  1593. }
  1594. /**************************************************************************
  1595. *
  1596. * PCI interface
  1597. *
  1598. **************************************************************************/
  1599. /* Main body of final NIC shutdown code
  1600. * This is called only at module unload (or hotplug removal).
  1601. */
  1602. static void efx_pci_remove_main(struct efx_nic *efx)
  1603. {
  1604. EFX_ASSERT_RESET_SERIALISED(efx);
  1605. /* Skip everything if we never obtained a valid membase */
  1606. if (!efx->membase)
  1607. return;
  1608. efx_fini_channels(efx);
  1609. efx_fini_port(efx);
  1610. /* Shutdown the board, then the NIC and board state */
  1611. efx->board_info.fini(efx);
  1612. falcon_fini_interrupt(efx);
  1613. efx_fini_napi(efx);
  1614. efx_remove_all(efx);
  1615. }
  1616. /* Final NIC shutdown
  1617. * This is called only at module unload (or hotplug removal).
  1618. */
  1619. static void efx_pci_remove(struct pci_dev *pci_dev)
  1620. {
  1621. struct efx_nic *efx;
  1622. efx = pci_get_drvdata(pci_dev);
  1623. if (!efx)
  1624. return;
  1625. /* Mark the NIC as fini, then stop the interface */
  1626. rtnl_lock();
  1627. efx->state = STATE_FINI;
  1628. dev_close(efx->net_dev);
  1629. /* Allow any queued efx_resets() to complete */
  1630. rtnl_unlock();
  1631. if (efx->membase == NULL)
  1632. goto out;
  1633. efx_unregister_netdev(efx);
  1634. /* Wait for any scheduled resets to complete. No more will be
  1635. * scheduled from this point because efx_stop_all() has been
  1636. * called, we are no longer registered with driverlink, and
  1637. * the net_device's have been removed. */
  1638. flush_workqueue(efx->reset_workqueue);
  1639. efx_pci_remove_main(efx);
  1640. out:
  1641. efx_fini_io(efx);
  1642. EFX_LOG(efx, "shutdown successful\n");
  1643. pci_set_drvdata(pci_dev, NULL);
  1644. efx_fini_struct(efx);
  1645. free_netdev(efx->net_dev);
  1646. };
  1647. /* Main body of NIC initialisation
  1648. * This is called at module load (or hotplug insertion, theoretically).
  1649. */
  1650. static int efx_pci_probe_main(struct efx_nic *efx)
  1651. {
  1652. int rc;
  1653. /* Do start-of-day initialisation */
  1654. rc = efx_probe_all(efx);
  1655. if (rc)
  1656. goto fail1;
  1657. rc = efx_init_napi(efx);
  1658. if (rc)
  1659. goto fail2;
  1660. /* Initialise the board */
  1661. rc = efx->board_info.init(efx);
  1662. if (rc) {
  1663. EFX_ERR(efx, "failed to initialise board\n");
  1664. goto fail3;
  1665. }
  1666. rc = falcon_init_nic(efx);
  1667. if (rc) {
  1668. EFX_ERR(efx, "failed to initialise NIC\n");
  1669. goto fail4;
  1670. }
  1671. rc = efx_init_port(efx);
  1672. if (rc) {
  1673. EFX_ERR(efx, "failed to initialise port\n");
  1674. goto fail5;
  1675. }
  1676. rc = efx_init_channels(efx);
  1677. if (rc)
  1678. goto fail6;
  1679. rc = falcon_init_interrupt(efx);
  1680. if (rc)
  1681. goto fail7;
  1682. return 0;
  1683. fail7:
  1684. efx_fini_channels(efx);
  1685. fail6:
  1686. efx_fini_port(efx);
  1687. fail5:
  1688. fail4:
  1689. fail3:
  1690. efx_fini_napi(efx);
  1691. fail2:
  1692. efx_remove_all(efx);
  1693. fail1:
  1694. return rc;
  1695. }
  1696. /* NIC initialisation
  1697. *
  1698. * This is called at module load (or hotplug insertion,
  1699. * theoretically). It sets up PCI mappings, tests and resets the NIC,
  1700. * sets up and registers the network devices with the kernel and hooks
  1701. * the interrupt service routine. It does not prepare the device for
  1702. * transmission; this is left to the first time one of the network
  1703. * interfaces is brought up (i.e. efx_net_open).
  1704. */
  1705. static int __devinit efx_pci_probe(struct pci_dev *pci_dev,
  1706. const struct pci_device_id *entry)
  1707. {
  1708. struct efx_nic_type *type = (struct efx_nic_type *) entry->driver_data;
  1709. struct net_device *net_dev;
  1710. struct efx_nic *efx;
  1711. int i, rc;
  1712. /* Allocate and initialise a struct net_device and struct efx_nic */
  1713. net_dev = alloc_etherdev(sizeof(*efx));
  1714. if (!net_dev)
  1715. return -ENOMEM;
  1716. net_dev->features |= (NETIF_F_IP_CSUM | NETIF_F_SG |
  1717. NETIF_F_HIGHDMA | NETIF_F_TSO);
  1718. if (lro)
  1719. net_dev->features |= NETIF_F_LRO;
  1720. /* Mask for features that also apply to VLAN devices */
  1721. net_dev->vlan_features |= (NETIF_F_ALL_CSUM | NETIF_F_SG |
  1722. NETIF_F_HIGHDMA);
  1723. efx = netdev_priv(net_dev);
  1724. pci_set_drvdata(pci_dev, efx);
  1725. rc = efx_init_struct(efx, type, pci_dev, net_dev);
  1726. if (rc)
  1727. goto fail1;
  1728. EFX_INFO(efx, "Solarflare Communications NIC detected\n");
  1729. /* Set up basic I/O (BAR mappings etc) */
  1730. rc = efx_init_io(efx);
  1731. if (rc)
  1732. goto fail2;
  1733. /* No serialisation is required with the reset path because
  1734. * we're in STATE_INIT. */
  1735. for (i = 0; i < 5; i++) {
  1736. rc = efx_pci_probe_main(efx);
  1737. if (rc == 0)
  1738. break;
  1739. /* Serialise against efx_reset(). No more resets will be
  1740. * scheduled since efx_stop_all() has been called, and we
  1741. * have not and never have been registered with either
  1742. * the rtnetlink or driverlink layers. */
  1743. flush_workqueue(efx->reset_workqueue);
  1744. /* Retry if a recoverably reset event has been scheduled */
  1745. if ((efx->reset_pending != RESET_TYPE_INVISIBLE) &&
  1746. (efx->reset_pending != RESET_TYPE_ALL))
  1747. goto fail3;
  1748. efx->reset_pending = RESET_TYPE_NONE;
  1749. }
  1750. if (rc) {
  1751. EFX_ERR(efx, "Could not reset NIC\n");
  1752. goto fail4;
  1753. }
  1754. /* Switch to the running state before we expose the device to
  1755. * the OS. This is to ensure that the initial gathering of
  1756. * MAC stats succeeds. */
  1757. rtnl_lock();
  1758. efx->state = STATE_RUNNING;
  1759. rtnl_unlock();
  1760. rc = efx_register_netdev(efx);
  1761. if (rc)
  1762. goto fail5;
  1763. EFX_LOG(efx, "initialisation successful\n");
  1764. return 0;
  1765. fail5:
  1766. efx_pci_remove_main(efx);
  1767. fail4:
  1768. fail3:
  1769. efx_fini_io(efx);
  1770. fail2:
  1771. efx_fini_struct(efx);
  1772. fail1:
  1773. EFX_LOG(efx, "initialisation failed. rc=%d\n", rc);
  1774. free_netdev(net_dev);
  1775. return rc;
  1776. }
  1777. static struct pci_driver efx_pci_driver = {
  1778. .name = EFX_DRIVER_NAME,
  1779. .id_table = efx_pci_table,
  1780. .probe = efx_pci_probe,
  1781. .remove = efx_pci_remove,
  1782. };
  1783. /**************************************************************************
  1784. *
  1785. * Kernel module interface
  1786. *
  1787. *************************************************************************/
  1788. module_param(interrupt_mode, uint, 0444);
  1789. MODULE_PARM_DESC(interrupt_mode,
  1790. "Interrupt mode (0=>MSIX 1=>MSI 2=>legacy)");
  1791. static int __init efx_init_module(void)
  1792. {
  1793. int rc;
  1794. printk(KERN_INFO "Solarflare NET driver v" EFX_DRIVER_VERSION "\n");
  1795. rc = register_netdevice_notifier(&efx_netdev_notifier);
  1796. if (rc)
  1797. goto err_notifier;
  1798. refill_workqueue = create_workqueue("sfc_refill");
  1799. if (!refill_workqueue) {
  1800. rc = -ENOMEM;
  1801. goto err_refill;
  1802. }
  1803. rc = pci_register_driver(&efx_pci_driver);
  1804. if (rc < 0)
  1805. goto err_pci;
  1806. return 0;
  1807. err_pci:
  1808. destroy_workqueue(refill_workqueue);
  1809. err_refill:
  1810. unregister_netdevice_notifier(&efx_netdev_notifier);
  1811. err_notifier:
  1812. return rc;
  1813. }
  1814. static void __exit efx_exit_module(void)
  1815. {
  1816. printk(KERN_INFO "Solarflare NET driver unloading\n");
  1817. pci_unregister_driver(&efx_pci_driver);
  1818. destroy_workqueue(refill_workqueue);
  1819. unregister_netdevice_notifier(&efx_netdev_notifier);
  1820. }
  1821. module_init(efx_init_module);
  1822. module_exit(efx_exit_module);
  1823. MODULE_AUTHOR("Michael Brown <mbrown@fensystems.co.uk> and "
  1824. "Solarflare Communications");
  1825. MODULE_DESCRIPTION("Solarflare Communications network driver");
  1826. MODULE_LICENSE("GPL");
  1827. MODULE_DEVICE_TABLE(pci, efx_pci_table);