intel_display.c 294 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071807280738074807580768077807880798080808180828083808480858086808780888089809080918092809380948095809680978098809981008101810281038104810581068107810881098110811181128113811481158116811781188119812081218122812381248125812681278128812981308131813281338134813581368137813881398140814181428143814481458146814781488149815081518152815381548155815681578158815981608161816281638164816581668167816881698170817181728173817481758176817781788179818081818182818381848185818681878188818981908191819281938194819581968197819881998200820182028203820482058206820782088209821082118212821382148215821682178218821982208221822282238224822582268227822882298230823182328233823482358236823782388239824082418242824382448245824682478248824982508251825282538254825582568257825882598260826182628263826482658266826782688269827082718272827382748275827682778278827982808281828282838284828582868287828882898290829182928293829482958296829782988299830083018302830383048305830683078308830983108311831283138314831583168317831883198320832183228323832483258326832783288329833083318332833383348335833683378338833983408341834283438344834583468347834883498350835183528353835483558356835783588359836083618362836383648365836683678368836983708371837283738374837583768377837883798380838183828383838483858386838783888389839083918392839383948395839683978398839984008401840284038404840584068407840884098410841184128413841484158416841784188419842084218422842384248425842684278428842984308431843284338434843584368437843884398440844184428443844484458446844784488449845084518452845384548455845684578458845984608461846284638464846584668467846884698470847184728473847484758476847784788479848084818482848384848485848684878488848984908491849284938494849584968497849884998500850185028503850485058506850785088509851085118512851385148515851685178518851985208521852285238524852585268527852885298530853185328533853485358536853785388539854085418542854385448545854685478548854985508551855285538554855585568557855885598560856185628563856485658566856785688569857085718572857385748575857685778578857985808581858285838584858585868587858885898590859185928593859485958596859785988599860086018602860386048605860686078608860986108611861286138614861586168617861886198620862186228623862486258626862786288629863086318632863386348635863686378638863986408641864286438644864586468647864886498650865186528653865486558656865786588659866086618662866386648665866686678668866986708671867286738674867586768677867886798680868186828683868486858686868786888689869086918692869386948695869686978698869987008701870287038704870587068707870887098710871187128713871487158716871787188719872087218722872387248725872687278728872987308731873287338734873587368737873887398740874187428743874487458746874787488749875087518752875387548755875687578758875987608761876287638764876587668767876887698770877187728773877487758776877787788779878087818782878387848785878687878788878987908791879287938794879587968797879887998800880188028803880488058806880788088809881088118812881388148815881688178818881988208821882288238824882588268827882888298830883188328833883488358836883788388839884088418842884388448845884688478848884988508851885288538854885588568857885888598860886188628863886488658866886788688869887088718872887388748875887688778878887988808881888288838884888588868887888888898890889188928893889488958896889788988899890089018902890389048905890689078908890989108911891289138914891589168917891889198920892189228923892489258926892789288929893089318932893389348935893689378938893989408941894289438944894589468947894889498950895189528953895489558956895789588959896089618962896389648965896689678968896989708971897289738974897589768977897889798980898189828983898489858986898789888989899089918992899389948995899689978998899990009001900290039004900590069007900890099010901190129013901490159016901790189019902090219022902390249025902690279028902990309031903290339034903590369037903890399040904190429043904490459046904790489049905090519052905390549055905690579058905990609061906290639064906590669067906890699070907190729073907490759076907790789079908090819082908390849085908690879088908990909091909290939094909590969097909890999100910191029103910491059106910791089109911091119112911391149115911691179118911991209121912291239124912591269127912891299130913191329133913491359136913791389139914091419142914391449145914691479148914991509151915291539154915591569157915891599160916191629163916491659166916791689169917091719172917391749175917691779178917991809181918291839184918591869187918891899190919191929193919491959196919791989199920092019202920392049205920692079208920992109211921292139214921592169217921892199220922192229223922492259226922792289229923092319232923392349235923692379238923992409241924292439244924592469247924892499250925192529253925492559256925792589259926092619262926392649265926692679268926992709271927292739274927592769277927892799280928192829283928492859286928792889289929092919292929392949295929692979298929993009301930293039304930593069307930893099310931193129313931493159316931793189319932093219322932393249325932693279328932993309331933293339334933593369337933893399340934193429343934493459346934793489349935093519352935393549355935693579358935993609361936293639364936593669367936893699370937193729373937493759376937793789379938093819382938393849385938693879388938993909391939293939394939593969397939893999400940194029403940494059406940794089409941094119412941394149415941694179418941994209421942294239424942594269427942894299430943194329433943494359436943794389439944094419442944394449445944694479448944994509451945294539454945594569457945894599460946194629463946494659466946794689469947094719472947394749475947694779478947994809481948294839484948594869487948894899490949194929493949494959496949794989499950095019502950395049505950695079508950995109511951295139514951595169517951895199520952195229523952495259526952795289529953095319532953395349535953695379538953995409541954295439544954595469547954895499550955195529553955495559556955795589559956095619562956395649565956695679568956995709571957295739574957595769577957895799580958195829583958495859586958795889589959095919592959395949595959695979598959996009601960296039604960596069607960896099610961196129613961496159616961796189619962096219622962396249625962696279628962996309631963296339634963596369637963896399640964196429643964496459646964796489649965096519652965396549655965696579658965996609661966296639664966596669667966896699670967196729673967496759676967796789679968096819682968396849685968696879688968996909691969296939694969596969697969896999700970197029703970497059706970797089709971097119712971397149715971697179718971997209721972297239724972597269727972897299730973197329733973497359736973797389739974097419742974397449745974697479748974997509751975297539754975597569757975897599760976197629763976497659766976797689769977097719772977397749775977697779778977997809781978297839784978597869787978897899790979197929793979497959796979797989799980098019802980398049805980698079808980998109811981298139814981598169817981898199820982198229823982498259826982798289829983098319832983398349835983698379838983998409841984298439844984598469847984898499850985198529853985498559856985798589859986098619862986398649865986698679868986998709871987298739874987598769877987898799880988198829883988498859886988798889889989098919892989398949895989698979898989999009901990299039904990599069907990899099910991199129913991499159916991799189919992099219922992399249925992699279928992999309931993299339934993599369937993899399940994199429943994499459946994799489949995099519952995399549955995699579958995999609961996299639964996599669967996899699970997199729973997499759976997799789979998099819982998399849985998699879988998999909991999299939994999599969997999899991000010001100021000310004100051000610007100081000910010100111001210013100141001510016100171001810019100201002110022100231002410025100261002710028100291003010031100321003310034100351003610037100381003910040100411004210043100441004510046100471004810049100501005110052100531005410055100561005710058100591006010061100621006310064100651006610067100681006910070100711007210073100741007510076100771007810079100801008110082100831008410085100861008710088100891009010091100921009310094100951009610097100981009910100101011010210103101041010510106101071010810109101101011110112101131011410115101161011710118101191012010121101221012310124101251012610127101281012910130101311013210133101341013510136101371013810139101401014110142101431014410145101461014710148101491015010151101521015310154101551015610157101581015910160101611016210163101641016510166101671016810169101701017110172101731017410175101761017710178101791018010181101821018310184101851018610187101881018910190101911019210193101941019510196101971019810199102001020110202102031020410205102061020710208102091021010211102121021310214102151021610217102181021910220102211022210223102241022510226102271022810229102301023110232102331023410235102361023710238102391024010241102421024310244102451024610247102481024910250102511025210253102541025510256102571025810259102601026110262102631026410265102661026710268102691027010271102721027310274102751027610277102781027910280102811028210283102841028510286102871028810289102901029110292102931029410295102961029710298102991030010301103021030310304103051030610307103081030910310103111031210313103141031510316103171031810319103201032110322103231032410325103261032710328103291033010331103321033310334103351033610337103381033910340103411034210343103441034510346103471034810349103501035110352103531035410355103561035710358103591036010361103621036310364103651036610367103681036910370103711037210373103741037510376103771037810379103801038110382103831038410385103861038710388103891039010391103921039310394103951039610397103981039910400104011040210403104041040510406104071040810409104101041110412104131041410415104161041710418104191042010421104221042310424104251042610427104281042910430104311043210433104341043510436104371043810439104401044110442104431044410445104461044710448104491045010451104521045310454104551045610457104581045910460104611046210463104641046510466104671046810469104701047110472104731047410475104761047710478104791048010481104821048310484104851048610487104881048910490104911049210493104941049510496104971049810499105001050110502105031050410505105061050710508105091051010511105121051310514105151051610517105181051910520105211052210523105241052510526105271052810529105301053110532105331053410535105361053710538105391054010541105421054310544105451054610547105481054910550105511055210553105541055510556105571055810559105601056110562105631056410565105661056710568105691057010571105721057310574105751057610577105781057910580105811058210583105841058510586105871058810589105901059110592105931059410595105961059710598105991060010601106021060310604106051060610607106081060910610106111061210613106141061510616106171061810619106201062110622106231062410625106261062710628106291063010631106321063310634106351063610637106381063910640106411064210643106441064510646106471064810649106501065110652106531065410655106561065710658106591066010661106621066310664106651066610667106681066910670106711067210673106741067510676106771067810679106801068110682106831068410685106861068710688106891069010691106921069310694106951069610697106981069910700107011070210703107041070510706107071070810709107101071110712107131071410715107161071710718107191072010721107221072310724107251072610727107281072910730107311073210733107341073510736107371073810739107401074110742107431074410745107461074710748107491075010751107521075310754107551075610757107581075910760107611076210763107641076510766107671076810769107701077110772107731077410775107761077710778107791078010781107821078310784107851078610787107881078910790107911079210793107941079510796107971079810799108001080110802108031080410805108061080710808108091081010811108121081310814108151081610817108181081910820108211082210823108241082510826108271082810829
  1. /*
  2. * Copyright © 2006-2007 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
  21. * DEALINGS IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Eric Anholt <eric@anholt.net>
  25. */
  26. #include <linux/dmi.h>
  27. #include <linux/module.h>
  28. #include <linux/input.h>
  29. #include <linux/i2c.h>
  30. #include <linux/kernel.h>
  31. #include <linux/slab.h>
  32. #include <linux/vgaarb.h>
  33. #include <drm/drm_edid.h>
  34. #include <drm/drmP.h>
  35. #include "intel_drv.h"
  36. #include <drm/i915_drm.h>
  37. #include "i915_drv.h"
  38. #include "i915_trace.h"
  39. #include <drm/drm_dp_helper.h>
  40. #include <drm/drm_crtc_helper.h>
  41. #include <linux/dma_remapping.h>
  42. bool intel_pipe_has_type(struct drm_crtc *crtc, int type);
  43. static void intel_increase_pllclock(struct drm_crtc *crtc);
  44. static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
  45. static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
  46. struct intel_crtc_config *pipe_config);
  47. static void ironlake_crtc_clock_get(struct intel_crtc *crtc,
  48. struct intel_crtc_config *pipe_config);
  49. static int intel_set_mode(struct drm_crtc *crtc, struct drm_display_mode *mode,
  50. int x, int y, struct drm_framebuffer *old_fb);
  51. typedef struct {
  52. int min, max;
  53. } intel_range_t;
  54. typedef struct {
  55. int dot_limit;
  56. int p2_slow, p2_fast;
  57. } intel_p2_t;
  58. typedef struct intel_limit intel_limit_t;
  59. struct intel_limit {
  60. intel_range_t dot, vco, n, m, m1, m2, p, p1;
  61. intel_p2_t p2;
  62. };
  63. /* FDI */
  64. #define IRONLAKE_FDI_FREQ 2700000 /* in kHz for mode->clock */
  65. int
  66. intel_pch_rawclk(struct drm_device *dev)
  67. {
  68. struct drm_i915_private *dev_priv = dev->dev_private;
  69. WARN_ON(!HAS_PCH_SPLIT(dev));
  70. return I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK;
  71. }
  72. static inline u32 /* units of 100MHz */
  73. intel_fdi_link_freq(struct drm_device *dev)
  74. {
  75. if (IS_GEN5(dev)) {
  76. struct drm_i915_private *dev_priv = dev->dev_private;
  77. return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
  78. } else
  79. return 27;
  80. }
  81. static const intel_limit_t intel_limits_i8xx_dac = {
  82. .dot = { .min = 25000, .max = 350000 },
  83. .vco = { .min = 930000, .max = 1400000 },
  84. .n = { .min = 3, .max = 16 },
  85. .m = { .min = 96, .max = 140 },
  86. .m1 = { .min = 18, .max = 26 },
  87. .m2 = { .min = 6, .max = 16 },
  88. .p = { .min = 4, .max = 128 },
  89. .p1 = { .min = 2, .max = 33 },
  90. .p2 = { .dot_limit = 165000,
  91. .p2_slow = 4, .p2_fast = 2 },
  92. };
  93. static const intel_limit_t intel_limits_i8xx_dvo = {
  94. .dot = { .min = 25000, .max = 350000 },
  95. .vco = { .min = 930000, .max = 1400000 },
  96. .n = { .min = 3, .max = 16 },
  97. .m = { .min = 96, .max = 140 },
  98. .m1 = { .min = 18, .max = 26 },
  99. .m2 = { .min = 6, .max = 16 },
  100. .p = { .min = 4, .max = 128 },
  101. .p1 = { .min = 2, .max = 33 },
  102. .p2 = { .dot_limit = 165000,
  103. .p2_slow = 4, .p2_fast = 4 },
  104. };
  105. static const intel_limit_t intel_limits_i8xx_lvds = {
  106. .dot = { .min = 25000, .max = 350000 },
  107. .vco = { .min = 930000, .max = 1400000 },
  108. .n = { .min = 3, .max = 16 },
  109. .m = { .min = 96, .max = 140 },
  110. .m1 = { .min = 18, .max = 26 },
  111. .m2 = { .min = 6, .max = 16 },
  112. .p = { .min = 4, .max = 128 },
  113. .p1 = { .min = 1, .max = 6 },
  114. .p2 = { .dot_limit = 165000,
  115. .p2_slow = 14, .p2_fast = 7 },
  116. };
  117. static const intel_limit_t intel_limits_i9xx_sdvo = {
  118. .dot = { .min = 20000, .max = 400000 },
  119. .vco = { .min = 1400000, .max = 2800000 },
  120. .n = { .min = 1, .max = 6 },
  121. .m = { .min = 70, .max = 120 },
  122. .m1 = { .min = 8, .max = 18 },
  123. .m2 = { .min = 3, .max = 7 },
  124. .p = { .min = 5, .max = 80 },
  125. .p1 = { .min = 1, .max = 8 },
  126. .p2 = { .dot_limit = 200000,
  127. .p2_slow = 10, .p2_fast = 5 },
  128. };
  129. static const intel_limit_t intel_limits_i9xx_lvds = {
  130. .dot = { .min = 20000, .max = 400000 },
  131. .vco = { .min = 1400000, .max = 2800000 },
  132. .n = { .min = 1, .max = 6 },
  133. .m = { .min = 70, .max = 120 },
  134. .m1 = { .min = 8, .max = 18 },
  135. .m2 = { .min = 3, .max = 7 },
  136. .p = { .min = 7, .max = 98 },
  137. .p1 = { .min = 1, .max = 8 },
  138. .p2 = { .dot_limit = 112000,
  139. .p2_slow = 14, .p2_fast = 7 },
  140. };
  141. static const intel_limit_t intel_limits_g4x_sdvo = {
  142. .dot = { .min = 25000, .max = 270000 },
  143. .vco = { .min = 1750000, .max = 3500000},
  144. .n = { .min = 1, .max = 4 },
  145. .m = { .min = 104, .max = 138 },
  146. .m1 = { .min = 17, .max = 23 },
  147. .m2 = { .min = 5, .max = 11 },
  148. .p = { .min = 10, .max = 30 },
  149. .p1 = { .min = 1, .max = 3},
  150. .p2 = { .dot_limit = 270000,
  151. .p2_slow = 10,
  152. .p2_fast = 10
  153. },
  154. };
  155. static const intel_limit_t intel_limits_g4x_hdmi = {
  156. .dot = { .min = 22000, .max = 400000 },
  157. .vco = { .min = 1750000, .max = 3500000},
  158. .n = { .min = 1, .max = 4 },
  159. .m = { .min = 104, .max = 138 },
  160. .m1 = { .min = 16, .max = 23 },
  161. .m2 = { .min = 5, .max = 11 },
  162. .p = { .min = 5, .max = 80 },
  163. .p1 = { .min = 1, .max = 8},
  164. .p2 = { .dot_limit = 165000,
  165. .p2_slow = 10, .p2_fast = 5 },
  166. };
  167. static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
  168. .dot = { .min = 20000, .max = 115000 },
  169. .vco = { .min = 1750000, .max = 3500000 },
  170. .n = { .min = 1, .max = 3 },
  171. .m = { .min = 104, .max = 138 },
  172. .m1 = { .min = 17, .max = 23 },
  173. .m2 = { .min = 5, .max = 11 },
  174. .p = { .min = 28, .max = 112 },
  175. .p1 = { .min = 2, .max = 8 },
  176. .p2 = { .dot_limit = 0,
  177. .p2_slow = 14, .p2_fast = 14
  178. },
  179. };
  180. static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
  181. .dot = { .min = 80000, .max = 224000 },
  182. .vco = { .min = 1750000, .max = 3500000 },
  183. .n = { .min = 1, .max = 3 },
  184. .m = { .min = 104, .max = 138 },
  185. .m1 = { .min = 17, .max = 23 },
  186. .m2 = { .min = 5, .max = 11 },
  187. .p = { .min = 14, .max = 42 },
  188. .p1 = { .min = 2, .max = 6 },
  189. .p2 = { .dot_limit = 0,
  190. .p2_slow = 7, .p2_fast = 7
  191. },
  192. };
  193. static const intel_limit_t intel_limits_pineview_sdvo = {
  194. .dot = { .min = 20000, .max = 400000},
  195. .vco = { .min = 1700000, .max = 3500000 },
  196. /* Pineview's Ncounter is a ring counter */
  197. .n = { .min = 3, .max = 6 },
  198. .m = { .min = 2, .max = 256 },
  199. /* Pineview only has one combined m divider, which we treat as m2. */
  200. .m1 = { .min = 0, .max = 0 },
  201. .m2 = { .min = 0, .max = 254 },
  202. .p = { .min = 5, .max = 80 },
  203. .p1 = { .min = 1, .max = 8 },
  204. .p2 = { .dot_limit = 200000,
  205. .p2_slow = 10, .p2_fast = 5 },
  206. };
  207. static const intel_limit_t intel_limits_pineview_lvds = {
  208. .dot = { .min = 20000, .max = 400000 },
  209. .vco = { .min = 1700000, .max = 3500000 },
  210. .n = { .min = 3, .max = 6 },
  211. .m = { .min = 2, .max = 256 },
  212. .m1 = { .min = 0, .max = 0 },
  213. .m2 = { .min = 0, .max = 254 },
  214. .p = { .min = 7, .max = 112 },
  215. .p1 = { .min = 1, .max = 8 },
  216. .p2 = { .dot_limit = 112000,
  217. .p2_slow = 14, .p2_fast = 14 },
  218. };
  219. /* Ironlake / Sandybridge
  220. *
  221. * We calculate clock using (register_value + 2) for N/M1/M2, so here
  222. * the range value for them is (actual_value - 2).
  223. */
  224. static const intel_limit_t intel_limits_ironlake_dac = {
  225. .dot = { .min = 25000, .max = 350000 },
  226. .vco = { .min = 1760000, .max = 3510000 },
  227. .n = { .min = 1, .max = 5 },
  228. .m = { .min = 79, .max = 127 },
  229. .m1 = { .min = 12, .max = 22 },
  230. .m2 = { .min = 5, .max = 9 },
  231. .p = { .min = 5, .max = 80 },
  232. .p1 = { .min = 1, .max = 8 },
  233. .p2 = { .dot_limit = 225000,
  234. .p2_slow = 10, .p2_fast = 5 },
  235. };
  236. static const intel_limit_t intel_limits_ironlake_single_lvds = {
  237. .dot = { .min = 25000, .max = 350000 },
  238. .vco = { .min = 1760000, .max = 3510000 },
  239. .n = { .min = 1, .max = 3 },
  240. .m = { .min = 79, .max = 118 },
  241. .m1 = { .min = 12, .max = 22 },
  242. .m2 = { .min = 5, .max = 9 },
  243. .p = { .min = 28, .max = 112 },
  244. .p1 = { .min = 2, .max = 8 },
  245. .p2 = { .dot_limit = 225000,
  246. .p2_slow = 14, .p2_fast = 14 },
  247. };
  248. static const intel_limit_t intel_limits_ironlake_dual_lvds = {
  249. .dot = { .min = 25000, .max = 350000 },
  250. .vco = { .min = 1760000, .max = 3510000 },
  251. .n = { .min = 1, .max = 3 },
  252. .m = { .min = 79, .max = 127 },
  253. .m1 = { .min = 12, .max = 22 },
  254. .m2 = { .min = 5, .max = 9 },
  255. .p = { .min = 14, .max = 56 },
  256. .p1 = { .min = 2, .max = 8 },
  257. .p2 = { .dot_limit = 225000,
  258. .p2_slow = 7, .p2_fast = 7 },
  259. };
  260. /* LVDS 100mhz refclk limits. */
  261. static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
  262. .dot = { .min = 25000, .max = 350000 },
  263. .vco = { .min = 1760000, .max = 3510000 },
  264. .n = { .min = 1, .max = 2 },
  265. .m = { .min = 79, .max = 126 },
  266. .m1 = { .min = 12, .max = 22 },
  267. .m2 = { .min = 5, .max = 9 },
  268. .p = { .min = 28, .max = 112 },
  269. .p1 = { .min = 2, .max = 8 },
  270. .p2 = { .dot_limit = 225000,
  271. .p2_slow = 14, .p2_fast = 14 },
  272. };
  273. static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
  274. .dot = { .min = 25000, .max = 350000 },
  275. .vco = { .min = 1760000, .max = 3510000 },
  276. .n = { .min = 1, .max = 3 },
  277. .m = { .min = 79, .max = 126 },
  278. .m1 = { .min = 12, .max = 22 },
  279. .m2 = { .min = 5, .max = 9 },
  280. .p = { .min = 14, .max = 42 },
  281. .p1 = { .min = 2, .max = 6 },
  282. .p2 = { .dot_limit = 225000,
  283. .p2_slow = 7, .p2_fast = 7 },
  284. };
  285. static const intel_limit_t intel_limits_vlv_dac = {
  286. .dot = { .min = 25000, .max = 270000 },
  287. .vco = { .min = 4000000, .max = 6000000 },
  288. .n = { .min = 1, .max = 7 },
  289. .m = { .min = 22, .max = 450 }, /* guess */
  290. .m1 = { .min = 2, .max = 3 },
  291. .m2 = { .min = 11, .max = 156 },
  292. .p = { .min = 10, .max = 30 },
  293. .p1 = { .min = 1, .max = 3 },
  294. .p2 = { .dot_limit = 270000,
  295. .p2_slow = 2, .p2_fast = 20 },
  296. };
  297. static const intel_limit_t intel_limits_vlv_hdmi = {
  298. .dot = { .min = 25000, .max = 270000 },
  299. .vco = { .min = 4000000, .max = 6000000 },
  300. .n = { .min = 1, .max = 7 },
  301. .m = { .min = 60, .max = 300 }, /* guess */
  302. .m1 = { .min = 2, .max = 3 },
  303. .m2 = { .min = 11, .max = 156 },
  304. .p = { .min = 10, .max = 30 },
  305. .p1 = { .min = 2, .max = 3 },
  306. .p2 = { .dot_limit = 270000,
  307. .p2_slow = 2, .p2_fast = 20 },
  308. };
  309. static const intel_limit_t intel_limits_vlv_dp = {
  310. .dot = { .min = 25000, .max = 270000 },
  311. .vco = { .min = 4000000, .max = 6000000 },
  312. .n = { .min = 1, .max = 7 },
  313. .m = { .min = 22, .max = 450 },
  314. .m1 = { .min = 2, .max = 3 },
  315. .m2 = { .min = 11, .max = 156 },
  316. .p = { .min = 10, .max = 30 },
  317. .p1 = { .min = 1, .max = 3 },
  318. .p2 = { .dot_limit = 270000,
  319. .p2_slow = 2, .p2_fast = 20 },
  320. };
  321. static const intel_limit_t *intel_ironlake_limit(struct drm_crtc *crtc,
  322. int refclk)
  323. {
  324. struct drm_device *dev = crtc->dev;
  325. const intel_limit_t *limit;
  326. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  327. if (intel_is_dual_link_lvds(dev)) {
  328. if (refclk == 100000)
  329. limit = &intel_limits_ironlake_dual_lvds_100m;
  330. else
  331. limit = &intel_limits_ironlake_dual_lvds;
  332. } else {
  333. if (refclk == 100000)
  334. limit = &intel_limits_ironlake_single_lvds_100m;
  335. else
  336. limit = &intel_limits_ironlake_single_lvds;
  337. }
  338. } else
  339. limit = &intel_limits_ironlake_dac;
  340. return limit;
  341. }
  342. static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
  343. {
  344. struct drm_device *dev = crtc->dev;
  345. const intel_limit_t *limit;
  346. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  347. if (intel_is_dual_link_lvds(dev))
  348. limit = &intel_limits_g4x_dual_channel_lvds;
  349. else
  350. limit = &intel_limits_g4x_single_channel_lvds;
  351. } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
  352. intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
  353. limit = &intel_limits_g4x_hdmi;
  354. } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
  355. limit = &intel_limits_g4x_sdvo;
  356. } else /* The option is for other outputs */
  357. limit = &intel_limits_i9xx_sdvo;
  358. return limit;
  359. }
  360. static const intel_limit_t *intel_limit(struct drm_crtc *crtc, int refclk)
  361. {
  362. struct drm_device *dev = crtc->dev;
  363. const intel_limit_t *limit;
  364. if (HAS_PCH_SPLIT(dev))
  365. limit = intel_ironlake_limit(crtc, refclk);
  366. else if (IS_G4X(dev)) {
  367. limit = intel_g4x_limit(crtc);
  368. } else if (IS_PINEVIEW(dev)) {
  369. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
  370. limit = &intel_limits_pineview_lvds;
  371. else
  372. limit = &intel_limits_pineview_sdvo;
  373. } else if (IS_VALLEYVIEW(dev)) {
  374. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG))
  375. limit = &intel_limits_vlv_dac;
  376. else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI))
  377. limit = &intel_limits_vlv_hdmi;
  378. else
  379. limit = &intel_limits_vlv_dp;
  380. } else if (!IS_GEN2(dev)) {
  381. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
  382. limit = &intel_limits_i9xx_lvds;
  383. else
  384. limit = &intel_limits_i9xx_sdvo;
  385. } else {
  386. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
  387. limit = &intel_limits_i8xx_lvds;
  388. else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO))
  389. limit = &intel_limits_i8xx_dvo;
  390. else
  391. limit = &intel_limits_i8xx_dac;
  392. }
  393. return limit;
  394. }
  395. /* m1 is reserved as 0 in Pineview, n is a ring counter */
  396. static void pineview_clock(int refclk, intel_clock_t *clock)
  397. {
  398. clock->m = clock->m2 + 2;
  399. clock->p = clock->p1 * clock->p2;
  400. clock->vco = refclk * clock->m / clock->n;
  401. clock->dot = clock->vco / clock->p;
  402. }
  403. static uint32_t i9xx_dpll_compute_m(struct dpll *dpll)
  404. {
  405. return 5 * (dpll->m1 + 2) + (dpll->m2 + 2);
  406. }
  407. static void i9xx_clock(int refclk, intel_clock_t *clock)
  408. {
  409. clock->m = i9xx_dpll_compute_m(clock);
  410. clock->p = clock->p1 * clock->p2;
  411. clock->vco = refclk * clock->m / (clock->n + 2);
  412. clock->dot = clock->vco / clock->p;
  413. }
  414. /**
  415. * Returns whether any output on the specified pipe is of the specified type
  416. */
  417. bool intel_pipe_has_type(struct drm_crtc *crtc, int type)
  418. {
  419. struct drm_device *dev = crtc->dev;
  420. struct intel_encoder *encoder;
  421. for_each_encoder_on_crtc(dev, crtc, encoder)
  422. if (encoder->type == type)
  423. return true;
  424. return false;
  425. }
  426. #define INTELPllInvalid(s) do { /* DRM_DEBUG(s); */ return false; } while (0)
  427. /**
  428. * Returns whether the given set of divisors are valid for a given refclk with
  429. * the given connectors.
  430. */
  431. static bool intel_PLL_is_valid(struct drm_device *dev,
  432. const intel_limit_t *limit,
  433. const intel_clock_t *clock)
  434. {
  435. if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
  436. INTELPllInvalid("p1 out of range\n");
  437. if (clock->p < limit->p.min || limit->p.max < clock->p)
  438. INTELPllInvalid("p out of range\n");
  439. if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
  440. INTELPllInvalid("m2 out of range\n");
  441. if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
  442. INTELPllInvalid("m1 out of range\n");
  443. if (clock->m1 <= clock->m2 && !IS_PINEVIEW(dev))
  444. INTELPllInvalid("m1 <= m2\n");
  445. if (clock->m < limit->m.min || limit->m.max < clock->m)
  446. INTELPllInvalid("m out of range\n");
  447. if (clock->n < limit->n.min || limit->n.max < clock->n)
  448. INTELPllInvalid("n out of range\n");
  449. if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
  450. INTELPllInvalid("vco out of range\n");
  451. /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
  452. * connector, etc., rather than just a single range.
  453. */
  454. if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
  455. INTELPllInvalid("dot out of range\n");
  456. return true;
  457. }
  458. static bool
  459. i9xx_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
  460. int target, int refclk, intel_clock_t *match_clock,
  461. intel_clock_t *best_clock)
  462. {
  463. struct drm_device *dev = crtc->dev;
  464. intel_clock_t clock;
  465. int err = target;
  466. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  467. /*
  468. * For LVDS just rely on its current settings for dual-channel.
  469. * We haven't figured out how to reliably set up different
  470. * single/dual channel state, if we even can.
  471. */
  472. if (intel_is_dual_link_lvds(dev))
  473. clock.p2 = limit->p2.p2_fast;
  474. else
  475. clock.p2 = limit->p2.p2_slow;
  476. } else {
  477. if (target < limit->p2.dot_limit)
  478. clock.p2 = limit->p2.p2_slow;
  479. else
  480. clock.p2 = limit->p2.p2_fast;
  481. }
  482. memset(best_clock, 0, sizeof(*best_clock));
  483. for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
  484. clock.m1++) {
  485. for (clock.m2 = limit->m2.min;
  486. clock.m2 <= limit->m2.max; clock.m2++) {
  487. if (clock.m2 >= clock.m1)
  488. break;
  489. for (clock.n = limit->n.min;
  490. clock.n <= limit->n.max; clock.n++) {
  491. for (clock.p1 = limit->p1.min;
  492. clock.p1 <= limit->p1.max; clock.p1++) {
  493. int this_err;
  494. i9xx_clock(refclk, &clock);
  495. if (!intel_PLL_is_valid(dev, limit,
  496. &clock))
  497. continue;
  498. if (match_clock &&
  499. clock.p != match_clock->p)
  500. continue;
  501. this_err = abs(clock.dot - target);
  502. if (this_err < err) {
  503. *best_clock = clock;
  504. err = this_err;
  505. }
  506. }
  507. }
  508. }
  509. }
  510. return (err != target);
  511. }
  512. static bool
  513. pnv_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
  514. int target, int refclk, intel_clock_t *match_clock,
  515. intel_clock_t *best_clock)
  516. {
  517. struct drm_device *dev = crtc->dev;
  518. intel_clock_t clock;
  519. int err = target;
  520. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  521. /*
  522. * For LVDS just rely on its current settings for dual-channel.
  523. * We haven't figured out how to reliably set up different
  524. * single/dual channel state, if we even can.
  525. */
  526. if (intel_is_dual_link_lvds(dev))
  527. clock.p2 = limit->p2.p2_fast;
  528. else
  529. clock.p2 = limit->p2.p2_slow;
  530. } else {
  531. if (target < limit->p2.dot_limit)
  532. clock.p2 = limit->p2.p2_slow;
  533. else
  534. clock.p2 = limit->p2.p2_fast;
  535. }
  536. memset(best_clock, 0, sizeof(*best_clock));
  537. for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
  538. clock.m1++) {
  539. for (clock.m2 = limit->m2.min;
  540. clock.m2 <= limit->m2.max; clock.m2++) {
  541. for (clock.n = limit->n.min;
  542. clock.n <= limit->n.max; clock.n++) {
  543. for (clock.p1 = limit->p1.min;
  544. clock.p1 <= limit->p1.max; clock.p1++) {
  545. int this_err;
  546. pineview_clock(refclk, &clock);
  547. if (!intel_PLL_is_valid(dev, limit,
  548. &clock))
  549. continue;
  550. if (match_clock &&
  551. clock.p != match_clock->p)
  552. continue;
  553. this_err = abs(clock.dot - target);
  554. if (this_err < err) {
  555. *best_clock = clock;
  556. err = this_err;
  557. }
  558. }
  559. }
  560. }
  561. }
  562. return (err != target);
  563. }
  564. static bool
  565. g4x_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
  566. int target, int refclk, intel_clock_t *match_clock,
  567. intel_clock_t *best_clock)
  568. {
  569. struct drm_device *dev = crtc->dev;
  570. intel_clock_t clock;
  571. int max_n;
  572. bool found;
  573. /* approximately equals target * 0.00585 */
  574. int err_most = (target >> 8) + (target >> 9);
  575. found = false;
  576. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  577. if (intel_is_dual_link_lvds(dev))
  578. clock.p2 = limit->p2.p2_fast;
  579. else
  580. clock.p2 = limit->p2.p2_slow;
  581. } else {
  582. if (target < limit->p2.dot_limit)
  583. clock.p2 = limit->p2.p2_slow;
  584. else
  585. clock.p2 = limit->p2.p2_fast;
  586. }
  587. memset(best_clock, 0, sizeof(*best_clock));
  588. max_n = limit->n.max;
  589. /* based on hardware requirement, prefer smaller n to precision */
  590. for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
  591. /* based on hardware requirement, prefere larger m1,m2 */
  592. for (clock.m1 = limit->m1.max;
  593. clock.m1 >= limit->m1.min; clock.m1--) {
  594. for (clock.m2 = limit->m2.max;
  595. clock.m2 >= limit->m2.min; clock.m2--) {
  596. for (clock.p1 = limit->p1.max;
  597. clock.p1 >= limit->p1.min; clock.p1--) {
  598. int this_err;
  599. i9xx_clock(refclk, &clock);
  600. if (!intel_PLL_is_valid(dev, limit,
  601. &clock))
  602. continue;
  603. this_err = abs(clock.dot - target);
  604. if (this_err < err_most) {
  605. *best_clock = clock;
  606. err_most = this_err;
  607. max_n = clock.n;
  608. found = true;
  609. }
  610. }
  611. }
  612. }
  613. }
  614. return found;
  615. }
  616. static bool
  617. vlv_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
  618. int target, int refclk, intel_clock_t *match_clock,
  619. intel_clock_t *best_clock)
  620. {
  621. u32 p1, p2, m1, m2, vco, bestn, bestm1, bestm2, bestp1, bestp2;
  622. u32 m, n, fastclk;
  623. u32 updrate, minupdate, p;
  624. unsigned long bestppm, ppm, absppm;
  625. int dotclk, flag;
  626. flag = 0;
  627. dotclk = target * 1000;
  628. bestppm = 1000000;
  629. ppm = absppm = 0;
  630. fastclk = dotclk / (2*100);
  631. updrate = 0;
  632. minupdate = 19200;
  633. n = p = p1 = p2 = m = m1 = m2 = vco = bestn = 0;
  634. bestm1 = bestm2 = bestp1 = bestp2 = 0;
  635. /* based on hardware requirement, prefer smaller n to precision */
  636. for (n = limit->n.min; n <= ((refclk) / minupdate); n++) {
  637. updrate = refclk / n;
  638. for (p1 = limit->p1.max; p1 > limit->p1.min; p1--) {
  639. for (p2 = limit->p2.p2_fast+1; p2 > 0; p2--) {
  640. if (p2 > 10)
  641. p2 = p2 - 1;
  642. p = p1 * p2;
  643. /* based on hardware requirement, prefer bigger m1,m2 values */
  644. for (m1 = limit->m1.min; m1 <= limit->m1.max; m1++) {
  645. m2 = (((2*(fastclk * p * n / m1 )) +
  646. refclk) / (2*refclk));
  647. m = m1 * m2;
  648. vco = updrate * m;
  649. if (vco >= limit->vco.min && vco < limit->vco.max) {
  650. ppm = 1000000 * ((vco / p) - fastclk) / fastclk;
  651. absppm = (ppm > 0) ? ppm : (-ppm);
  652. if (absppm < 100 && ((p1 * p2) > (bestp1 * bestp2))) {
  653. bestppm = 0;
  654. flag = 1;
  655. }
  656. if (absppm < bestppm - 10) {
  657. bestppm = absppm;
  658. flag = 1;
  659. }
  660. if (flag) {
  661. bestn = n;
  662. bestm1 = m1;
  663. bestm2 = m2;
  664. bestp1 = p1;
  665. bestp2 = p2;
  666. flag = 0;
  667. }
  668. }
  669. }
  670. }
  671. }
  672. }
  673. best_clock->n = bestn;
  674. best_clock->m1 = bestm1;
  675. best_clock->m2 = bestm2;
  676. best_clock->p1 = bestp1;
  677. best_clock->p2 = bestp2;
  678. return true;
  679. }
  680. enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
  681. enum pipe pipe)
  682. {
  683. struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
  684. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  685. return intel_crtc->config.cpu_transcoder;
  686. }
  687. static void ironlake_wait_for_vblank(struct drm_device *dev, int pipe)
  688. {
  689. struct drm_i915_private *dev_priv = dev->dev_private;
  690. u32 frame, frame_reg = PIPEFRAME(pipe);
  691. frame = I915_READ(frame_reg);
  692. if (wait_for(I915_READ_NOTRACE(frame_reg) != frame, 50))
  693. DRM_DEBUG_KMS("vblank wait timed out\n");
  694. }
  695. /**
  696. * intel_wait_for_vblank - wait for vblank on a given pipe
  697. * @dev: drm device
  698. * @pipe: pipe to wait for
  699. *
  700. * Wait for vblank to occur on a given pipe. Needed for various bits of
  701. * mode setting code.
  702. */
  703. void intel_wait_for_vblank(struct drm_device *dev, int pipe)
  704. {
  705. struct drm_i915_private *dev_priv = dev->dev_private;
  706. int pipestat_reg = PIPESTAT(pipe);
  707. if (INTEL_INFO(dev)->gen >= 5) {
  708. ironlake_wait_for_vblank(dev, pipe);
  709. return;
  710. }
  711. /* Clear existing vblank status. Note this will clear any other
  712. * sticky status fields as well.
  713. *
  714. * This races with i915_driver_irq_handler() with the result
  715. * that either function could miss a vblank event. Here it is not
  716. * fatal, as we will either wait upon the next vblank interrupt or
  717. * timeout. Generally speaking intel_wait_for_vblank() is only
  718. * called during modeset at which time the GPU should be idle and
  719. * should *not* be performing page flips and thus not waiting on
  720. * vblanks...
  721. * Currently, the result of us stealing a vblank from the irq
  722. * handler is that a single frame will be skipped during swapbuffers.
  723. */
  724. I915_WRITE(pipestat_reg,
  725. I915_READ(pipestat_reg) | PIPE_VBLANK_INTERRUPT_STATUS);
  726. /* Wait for vblank interrupt bit to set */
  727. if (wait_for(I915_READ(pipestat_reg) &
  728. PIPE_VBLANK_INTERRUPT_STATUS,
  729. 50))
  730. DRM_DEBUG_KMS("vblank wait timed out\n");
  731. }
  732. /*
  733. * intel_wait_for_pipe_off - wait for pipe to turn off
  734. * @dev: drm device
  735. * @pipe: pipe to wait for
  736. *
  737. * After disabling a pipe, we can't wait for vblank in the usual way,
  738. * spinning on the vblank interrupt status bit, since we won't actually
  739. * see an interrupt when the pipe is disabled.
  740. *
  741. * On Gen4 and above:
  742. * wait for the pipe register state bit to turn off
  743. *
  744. * Otherwise:
  745. * wait for the display line value to settle (it usually
  746. * ends up stopping at the start of the next frame).
  747. *
  748. */
  749. void intel_wait_for_pipe_off(struct drm_device *dev, int pipe)
  750. {
  751. struct drm_i915_private *dev_priv = dev->dev_private;
  752. enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
  753. pipe);
  754. if (INTEL_INFO(dev)->gen >= 4) {
  755. int reg = PIPECONF(cpu_transcoder);
  756. /* Wait for the Pipe State to go off */
  757. if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
  758. 100))
  759. WARN(1, "pipe_off wait timed out\n");
  760. } else {
  761. u32 last_line, line_mask;
  762. int reg = PIPEDSL(pipe);
  763. unsigned long timeout = jiffies + msecs_to_jiffies(100);
  764. if (IS_GEN2(dev))
  765. line_mask = DSL_LINEMASK_GEN2;
  766. else
  767. line_mask = DSL_LINEMASK_GEN3;
  768. /* Wait for the display line to settle */
  769. do {
  770. last_line = I915_READ(reg) & line_mask;
  771. mdelay(5);
  772. } while (((I915_READ(reg) & line_mask) != last_line) &&
  773. time_after(timeout, jiffies));
  774. if (time_after(jiffies, timeout))
  775. WARN(1, "pipe_off wait timed out\n");
  776. }
  777. }
  778. /*
  779. * ibx_digital_port_connected - is the specified port connected?
  780. * @dev_priv: i915 private structure
  781. * @port: the port to test
  782. *
  783. * Returns true if @port is connected, false otherwise.
  784. */
  785. bool ibx_digital_port_connected(struct drm_i915_private *dev_priv,
  786. struct intel_digital_port *port)
  787. {
  788. u32 bit;
  789. if (HAS_PCH_IBX(dev_priv->dev)) {
  790. switch(port->port) {
  791. case PORT_B:
  792. bit = SDE_PORTB_HOTPLUG;
  793. break;
  794. case PORT_C:
  795. bit = SDE_PORTC_HOTPLUG;
  796. break;
  797. case PORT_D:
  798. bit = SDE_PORTD_HOTPLUG;
  799. break;
  800. default:
  801. return true;
  802. }
  803. } else {
  804. switch(port->port) {
  805. case PORT_B:
  806. bit = SDE_PORTB_HOTPLUG_CPT;
  807. break;
  808. case PORT_C:
  809. bit = SDE_PORTC_HOTPLUG_CPT;
  810. break;
  811. case PORT_D:
  812. bit = SDE_PORTD_HOTPLUG_CPT;
  813. break;
  814. default:
  815. return true;
  816. }
  817. }
  818. return I915_READ(SDEISR) & bit;
  819. }
  820. static const char *state_string(bool enabled)
  821. {
  822. return enabled ? "on" : "off";
  823. }
  824. /* Only for pre-ILK configs */
  825. void assert_pll(struct drm_i915_private *dev_priv,
  826. enum pipe pipe, bool state)
  827. {
  828. int reg;
  829. u32 val;
  830. bool cur_state;
  831. reg = DPLL(pipe);
  832. val = I915_READ(reg);
  833. cur_state = !!(val & DPLL_VCO_ENABLE);
  834. WARN(cur_state != state,
  835. "PLL state assertion failure (expected %s, current %s)\n",
  836. state_string(state), state_string(cur_state));
  837. }
  838. /* XXX: the dsi pll is shared between MIPI DSI ports */
  839. static void assert_dsi_pll(struct drm_i915_private *dev_priv, bool state)
  840. {
  841. u32 val;
  842. bool cur_state;
  843. mutex_lock(&dev_priv->dpio_lock);
  844. val = vlv_cck_read(dev_priv, CCK_REG_DSI_PLL_CONTROL);
  845. mutex_unlock(&dev_priv->dpio_lock);
  846. cur_state = val & DSI_PLL_VCO_EN;
  847. WARN(cur_state != state,
  848. "DSI PLL state assertion failure (expected %s, current %s)\n",
  849. state_string(state), state_string(cur_state));
  850. }
  851. #define assert_dsi_pll_enabled(d) assert_dsi_pll(d, true)
  852. #define assert_dsi_pll_disabled(d) assert_dsi_pll(d, false)
  853. struct intel_shared_dpll *
  854. intel_crtc_to_shared_dpll(struct intel_crtc *crtc)
  855. {
  856. struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
  857. if (crtc->config.shared_dpll < 0)
  858. return NULL;
  859. return &dev_priv->shared_dplls[crtc->config.shared_dpll];
  860. }
  861. /* For ILK+ */
  862. void assert_shared_dpll(struct drm_i915_private *dev_priv,
  863. struct intel_shared_dpll *pll,
  864. bool state)
  865. {
  866. bool cur_state;
  867. struct intel_dpll_hw_state hw_state;
  868. if (HAS_PCH_LPT(dev_priv->dev)) {
  869. DRM_DEBUG_DRIVER("LPT detected: skipping PCH PLL test\n");
  870. return;
  871. }
  872. if (WARN (!pll,
  873. "asserting DPLL %s with no DPLL\n", state_string(state)))
  874. return;
  875. cur_state = pll->get_hw_state(dev_priv, pll, &hw_state);
  876. WARN(cur_state != state,
  877. "%s assertion failure (expected %s, current %s)\n",
  878. pll->name, state_string(state), state_string(cur_state));
  879. }
  880. static void assert_fdi_tx(struct drm_i915_private *dev_priv,
  881. enum pipe pipe, bool state)
  882. {
  883. int reg;
  884. u32 val;
  885. bool cur_state;
  886. enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
  887. pipe);
  888. if (HAS_DDI(dev_priv->dev)) {
  889. /* DDI does not have a specific FDI_TX register */
  890. reg = TRANS_DDI_FUNC_CTL(cpu_transcoder);
  891. val = I915_READ(reg);
  892. cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
  893. } else {
  894. reg = FDI_TX_CTL(pipe);
  895. val = I915_READ(reg);
  896. cur_state = !!(val & FDI_TX_ENABLE);
  897. }
  898. WARN(cur_state != state,
  899. "FDI TX state assertion failure (expected %s, current %s)\n",
  900. state_string(state), state_string(cur_state));
  901. }
  902. #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
  903. #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
  904. static void assert_fdi_rx(struct drm_i915_private *dev_priv,
  905. enum pipe pipe, bool state)
  906. {
  907. int reg;
  908. u32 val;
  909. bool cur_state;
  910. reg = FDI_RX_CTL(pipe);
  911. val = I915_READ(reg);
  912. cur_state = !!(val & FDI_RX_ENABLE);
  913. WARN(cur_state != state,
  914. "FDI RX state assertion failure (expected %s, current %s)\n",
  915. state_string(state), state_string(cur_state));
  916. }
  917. #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
  918. #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
  919. static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
  920. enum pipe pipe)
  921. {
  922. int reg;
  923. u32 val;
  924. /* ILK FDI PLL is always enabled */
  925. if (dev_priv->info->gen == 5)
  926. return;
  927. /* On Haswell, DDI ports are responsible for the FDI PLL setup */
  928. if (HAS_DDI(dev_priv->dev))
  929. return;
  930. reg = FDI_TX_CTL(pipe);
  931. val = I915_READ(reg);
  932. WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
  933. }
  934. void assert_fdi_rx_pll(struct drm_i915_private *dev_priv,
  935. enum pipe pipe, bool state)
  936. {
  937. int reg;
  938. u32 val;
  939. bool cur_state;
  940. reg = FDI_RX_CTL(pipe);
  941. val = I915_READ(reg);
  942. cur_state = !!(val & FDI_RX_PLL_ENABLE);
  943. WARN(cur_state != state,
  944. "FDI RX PLL assertion failure (expected %s, current %s)\n",
  945. state_string(state), state_string(cur_state));
  946. }
  947. static void assert_panel_unlocked(struct drm_i915_private *dev_priv,
  948. enum pipe pipe)
  949. {
  950. int pp_reg, lvds_reg;
  951. u32 val;
  952. enum pipe panel_pipe = PIPE_A;
  953. bool locked = true;
  954. if (HAS_PCH_SPLIT(dev_priv->dev)) {
  955. pp_reg = PCH_PP_CONTROL;
  956. lvds_reg = PCH_LVDS;
  957. } else {
  958. pp_reg = PP_CONTROL;
  959. lvds_reg = LVDS;
  960. }
  961. val = I915_READ(pp_reg);
  962. if (!(val & PANEL_POWER_ON) ||
  963. ((val & PANEL_UNLOCK_REGS) == PANEL_UNLOCK_REGS))
  964. locked = false;
  965. if (I915_READ(lvds_reg) & LVDS_PIPEB_SELECT)
  966. panel_pipe = PIPE_B;
  967. WARN(panel_pipe == pipe && locked,
  968. "panel assertion failure, pipe %c regs locked\n",
  969. pipe_name(pipe));
  970. }
  971. void assert_pipe(struct drm_i915_private *dev_priv,
  972. enum pipe pipe, bool state)
  973. {
  974. int reg;
  975. u32 val;
  976. bool cur_state;
  977. enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
  978. pipe);
  979. /* if we need the pipe A quirk it must be always on */
  980. if (pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE)
  981. state = true;
  982. if (!intel_display_power_enabled(dev_priv->dev,
  983. POWER_DOMAIN_TRANSCODER(cpu_transcoder))) {
  984. cur_state = false;
  985. } else {
  986. reg = PIPECONF(cpu_transcoder);
  987. val = I915_READ(reg);
  988. cur_state = !!(val & PIPECONF_ENABLE);
  989. }
  990. WARN(cur_state != state,
  991. "pipe %c assertion failure (expected %s, current %s)\n",
  992. pipe_name(pipe), state_string(state), state_string(cur_state));
  993. }
  994. static void assert_plane(struct drm_i915_private *dev_priv,
  995. enum plane plane, bool state)
  996. {
  997. int reg;
  998. u32 val;
  999. bool cur_state;
  1000. reg = DSPCNTR(plane);
  1001. val = I915_READ(reg);
  1002. cur_state = !!(val & DISPLAY_PLANE_ENABLE);
  1003. WARN(cur_state != state,
  1004. "plane %c assertion failure (expected %s, current %s)\n",
  1005. plane_name(plane), state_string(state), state_string(cur_state));
  1006. }
  1007. #define assert_plane_enabled(d, p) assert_plane(d, p, true)
  1008. #define assert_plane_disabled(d, p) assert_plane(d, p, false)
  1009. static void assert_planes_disabled(struct drm_i915_private *dev_priv,
  1010. enum pipe pipe)
  1011. {
  1012. struct drm_device *dev = dev_priv->dev;
  1013. int reg, i;
  1014. u32 val;
  1015. int cur_pipe;
  1016. /* Primary planes are fixed to pipes on gen4+ */
  1017. if (INTEL_INFO(dev)->gen >= 4) {
  1018. reg = DSPCNTR(pipe);
  1019. val = I915_READ(reg);
  1020. WARN((val & DISPLAY_PLANE_ENABLE),
  1021. "plane %c assertion failure, should be disabled but not\n",
  1022. plane_name(pipe));
  1023. return;
  1024. }
  1025. /* Need to check both planes against the pipe */
  1026. for_each_pipe(i) {
  1027. reg = DSPCNTR(i);
  1028. val = I915_READ(reg);
  1029. cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
  1030. DISPPLANE_SEL_PIPE_SHIFT;
  1031. WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
  1032. "plane %c assertion failure, should be off on pipe %c but is still active\n",
  1033. plane_name(i), pipe_name(pipe));
  1034. }
  1035. }
  1036. static void assert_sprites_disabled(struct drm_i915_private *dev_priv,
  1037. enum pipe pipe)
  1038. {
  1039. struct drm_device *dev = dev_priv->dev;
  1040. int reg, i;
  1041. u32 val;
  1042. if (IS_VALLEYVIEW(dev)) {
  1043. for (i = 0; i < dev_priv->num_plane; i++) {
  1044. reg = SPCNTR(pipe, i);
  1045. val = I915_READ(reg);
  1046. WARN((val & SP_ENABLE),
  1047. "sprite %c assertion failure, should be off on pipe %c but is still active\n",
  1048. sprite_name(pipe, i), pipe_name(pipe));
  1049. }
  1050. } else if (INTEL_INFO(dev)->gen >= 7) {
  1051. reg = SPRCTL(pipe);
  1052. val = I915_READ(reg);
  1053. WARN((val & SPRITE_ENABLE),
  1054. "sprite %c assertion failure, should be off on pipe %c but is still active\n",
  1055. plane_name(pipe), pipe_name(pipe));
  1056. } else if (INTEL_INFO(dev)->gen >= 5) {
  1057. reg = DVSCNTR(pipe);
  1058. val = I915_READ(reg);
  1059. WARN((val & DVS_ENABLE),
  1060. "sprite %c assertion failure, should be off on pipe %c but is still active\n",
  1061. plane_name(pipe), pipe_name(pipe));
  1062. }
  1063. }
  1064. static void assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
  1065. {
  1066. u32 val;
  1067. bool enabled;
  1068. if (HAS_PCH_LPT(dev_priv->dev)) {
  1069. DRM_DEBUG_DRIVER("LPT does not has PCH refclk, skipping check\n");
  1070. return;
  1071. }
  1072. val = I915_READ(PCH_DREF_CONTROL);
  1073. enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
  1074. DREF_SUPERSPREAD_SOURCE_MASK));
  1075. WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
  1076. }
  1077. static void assert_pch_transcoder_disabled(struct drm_i915_private *dev_priv,
  1078. enum pipe pipe)
  1079. {
  1080. int reg;
  1081. u32 val;
  1082. bool enabled;
  1083. reg = PCH_TRANSCONF(pipe);
  1084. val = I915_READ(reg);
  1085. enabled = !!(val & TRANS_ENABLE);
  1086. WARN(enabled,
  1087. "transcoder assertion failed, should be off on pipe %c but is still active\n",
  1088. pipe_name(pipe));
  1089. }
  1090. static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
  1091. enum pipe pipe, u32 port_sel, u32 val)
  1092. {
  1093. if ((val & DP_PORT_EN) == 0)
  1094. return false;
  1095. if (HAS_PCH_CPT(dev_priv->dev)) {
  1096. u32 trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
  1097. u32 trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
  1098. if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
  1099. return false;
  1100. } else {
  1101. if ((val & DP_PIPE_MASK) != (pipe << 30))
  1102. return false;
  1103. }
  1104. return true;
  1105. }
  1106. static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
  1107. enum pipe pipe, u32 val)
  1108. {
  1109. if ((val & SDVO_ENABLE) == 0)
  1110. return false;
  1111. if (HAS_PCH_CPT(dev_priv->dev)) {
  1112. if ((val & SDVO_PIPE_SEL_MASK_CPT) != SDVO_PIPE_SEL_CPT(pipe))
  1113. return false;
  1114. } else {
  1115. if ((val & SDVO_PIPE_SEL_MASK) != SDVO_PIPE_SEL(pipe))
  1116. return false;
  1117. }
  1118. return true;
  1119. }
  1120. static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
  1121. enum pipe pipe, u32 val)
  1122. {
  1123. if ((val & LVDS_PORT_EN) == 0)
  1124. return false;
  1125. if (HAS_PCH_CPT(dev_priv->dev)) {
  1126. if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
  1127. return false;
  1128. } else {
  1129. if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
  1130. return false;
  1131. }
  1132. return true;
  1133. }
  1134. static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
  1135. enum pipe pipe, u32 val)
  1136. {
  1137. if ((val & ADPA_DAC_ENABLE) == 0)
  1138. return false;
  1139. if (HAS_PCH_CPT(dev_priv->dev)) {
  1140. if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
  1141. return false;
  1142. } else {
  1143. if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
  1144. return false;
  1145. }
  1146. return true;
  1147. }
  1148. static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
  1149. enum pipe pipe, int reg, u32 port_sel)
  1150. {
  1151. u32 val = I915_READ(reg);
  1152. WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
  1153. "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
  1154. reg, pipe_name(pipe));
  1155. WARN(HAS_PCH_IBX(dev_priv->dev) && (val & DP_PORT_EN) == 0
  1156. && (val & DP_PIPEB_SELECT),
  1157. "IBX PCH dp port still using transcoder B\n");
  1158. }
  1159. static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
  1160. enum pipe pipe, int reg)
  1161. {
  1162. u32 val = I915_READ(reg);
  1163. WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
  1164. "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
  1165. reg, pipe_name(pipe));
  1166. WARN(HAS_PCH_IBX(dev_priv->dev) && (val & SDVO_ENABLE) == 0
  1167. && (val & SDVO_PIPE_B_SELECT),
  1168. "IBX PCH hdmi port still using transcoder B\n");
  1169. }
  1170. static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
  1171. enum pipe pipe)
  1172. {
  1173. int reg;
  1174. u32 val;
  1175. assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
  1176. assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
  1177. assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
  1178. reg = PCH_ADPA;
  1179. val = I915_READ(reg);
  1180. WARN(adpa_pipe_enabled(dev_priv, pipe, val),
  1181. "PCH VGA enabled on transcoder %c, should be disabled\n",
  1182. pipe_name(pipe));
  1183. reg = PCH_LVDS;
  1184. val = I915_READ(reg);
  1185. WARN(lvds_pipe_enabled(dev_priv, pipe, val),
  1186. "PCH LVDS enabled on transcoder %c, should be disabled\n",
  1187. pipe_name(pipe));
  1188. assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIB);
  1189. assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIC);
  1190. assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMID);
  1191. }
  1192. static void vlv_enable_pll(struct intel_crtc *crtc)
  1193. {
  1194. struct drm_device *dev = crtc->base.dev;
  1195. struct drm_i915_private *dev_priv = dev->dev_private;
  1196. int reg = DPLL(crtc->pipe);
  1197. u32 dpll = crtc->config.dpll_hw_state.dpll;
  1198. assert_pipe_disabled(dev_priv, crtc->pipe);
  1199. /* No really, not for ILK+ */
  1200. BUG_ON(!IS_VALLEYVIEW(dev_priv->dev));
  1201. /* PLL is protected by panel, make sure we can write it */
  1202. if (IS_MOBILE(dev_priv->dev) && !IS_I830(dev_priv->dev))
  1203. assert_panel_unlocked(dev_priv, crtc->pipe);
  1204. I915_WRITE(reg, dpll);
  1205. POSTING_READ(reg);
  1206. udelay(150);
  1207. if (wait_for(((I915_READ(reg) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
  1208. DRM_ERROR("DPLL %d failed to lock\n", crtc->pipe);
  1209. I915_WRITE(DPLL_MD(crtc->pipe), crtc->config.dpll_hw_state.dpll_md);
  1210. POSTING_READ(DPLL_MD(crtc->pipe));
  1211. /* We do this three times for luck */
  1212. I915_WRITE(reg, dpll);
  1213. POSTING_READ(reg);
  1214. udelay(150); /* wait for warmup */
  1215. I915_WRITE(reg, dpll);
  1216. POSTING_READ(reg);
  1217. udelay(150); /* wait for warmup */
  1218. I915_WRITE(reg, dpll);
  1219. POSTING_READ(reg);
  1220. udelay(150); /* wait for warmup */
  1221. }
  1222. static void i9xx_enable_pll(struct intel_crtc *crtc)
  1223. {
  1224. struct drm_device *dev = crtc->base.dev;
  1225. struct drm_i915_private *dev_priv = dev->dev_private;
  1226. int reg = DPLL(crtc->pipe);
  1227. u32 dpll = crtc->config.dpll_hw_state.dpll;
  1228. assert_pipe_disabled(dev_priv, crtc->pipe);
  1229. /* No really, not for ILK+ */
  1230. BUG_ON(dev_priv->info->gen >= 5);
  1231. /* PLL is protected by panel, make sure we can write it */
  1232. if (IS_MOBILE(dev) && !IS_I830(dev))
  1233. assert_panel_unlocked(dev_priv, crtc->pipe);
  1234. I915_WRITE(reg, dpll);
  1235. /* Wait for the clocks to stabilize. */
  1236. POSTING_READ(reg);
  1237. udelay(150);
  1238. if (INTEL_INFO(dev)->gen >= 4) {
  1239. I915_WRITE(DPLL_MD(crtc->pipe),
  1240. crtc->config.dpll_hw_state.dpll_md);
  1241. } else {
  1242. /* The pixel multiplier can only be updated once the
  1243. * DPLL is enabled and the clocks are stable.
  1244. *
  1245. * So write it again.
  1246. */
  1247. I915_WRITE(reg, dpll);
  1248. }
  1249. /* We do this three times for luck */
  1250. I915_WRITE(reg, dpll);
  1251. POSTING_READ(reg);
  1252. udelay(150); /* wait for warmup */
  1253. I915_WRITE(reg, dpll);
  1254. POSTING_READ(reg);
  1255. udelay(150); /* wait for warmup */
  1256. I915_WRITE(reg, dpll);
  1257. POSTING_READ(reg);
  1258. udelay(150); /* wait for warmup */
  1259. }
  1260. /**
  1261. * i9xx_disable_pll - disable a PLL
  1262. * @dev_priv: i915 private structure
  1263. * @pipe: pipe PLL to disable
  1264. *
  1265. * Disable the PLL for @pipe, making sure the pipe is off first.
  1266. *
  1267. * Note! This is for pre-ILK only.
  1268. */
  1269. static void i9xx_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
  1270. {
  1271. /* Don't disable pipe A or pipe A PLLs if needed */
  1272. if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
  1273. return;
  1274. /* Make sure the pipe isn't still relying on us */
  1275. assert_pipe_disabled(dev_priv, pipe);
  1276. I915_WRITE(DPLL(pipe), 0);
  1277. POSTING_READ(DPLL(pipe));
  1278. }
  1279. void vlv_wait_port_ready(struct drm_i915_private *dev_priv, int port)
  1280. {
  1281. u32 port_mask;
  1282. if (!port)
  1283. port_mask = DPLL_PORTB_READY_MASK;
  1284. else
  1285. port_mask = DPLL_PORTC_READY_MASK;
  1286. if (wait_for((I915_READ(DPLL(0)) & port_mask) == 0, 1000))
  1287. WARN(1, "timed out waiting for port %c ready: 0x%08x\n",
  1288. 'B' + port, I915_READ(DPLL(0)));
  1289. }
  1290. /**
  1291. * ironlake_enable_shared_dpll - enable PCH PLL
  1292. * @dev_priv: i915 private structure
  1293. * @pipe: pipe PLL to enable
  1294. *
  1295. * The PCH PLL needs to be enabled before the PCH transcoder, since it
  1296. * drives the transcoder clock.
  1297. */
  1298. static void ironlake_enable_shared_dpll(struct intel_crtc *crtc)
  1299. {
  1300. struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
  1301. struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
  1302. /* PCH PLLs only available on ILK, SNB and IVB */
  1303. BUG_ON(dev_priv->info->gen < 5);
  1304. if (WARN_ON(pll == NULL))
  1305. return;
  1306. if (WARN_ON(pll->refcount == 0))
  1307. return;
  1308. DRM_DEBUG_KMS("enable %s (active %d, on? %d)for crtc %d\n",
  1309. pll->name, pll->active, pll->on,
  1310. crtc->base.base.id);
  1311. if (pll->active++) {
  1312. WARN_ON(!pll->on);
  1313. assert_shared_dpll_enabled(dev_priv, pll);
  1314. return;
  1315. }
  1316. WARN_ON(pll->on);
  1317. DRM_DEBUG_KMS("enabling %s\n", pll->name);
  1318. pll->enable(dev_priv, pll);
  1319. pll->on = true;
  1320. }
  1321. static void intel_disable_shared_dpll(struct intel_crtc *crtc)
  1322. {
  1323. struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
  1324. struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
  1325. /* PCH only available on ILK+ */
  1326. BUG_ON(dev_priv->info->gen < 5);
  1327. if (WARN_ON(pll == NULL))
  1328. return;
  1329. if (WARN_ON(pll->refcount == 0))
  1330. return;
  1331. DRM_DEBUG_KMS("disable %s (active %d, on? %d) for crtc %d\n",
  1332. pll->name, pll->active, pll->on,
  1333. crtc->base.base.id);
  1334. if (WARN_ON(pll->active == 0)) {
  1335. assert_shared_dpll_disabled(dev_priv, pll);
  1336. return;
  1337. }
  1338. assert_shared_dpll_enabled(dev_priv, pll);
  1339. WARN_ON(!pll->on);
  1340. if (--pll->active)
  1341. return;
  1342. DRM_DEBUG_KMS("disabling %s\n", pll->name);
  1343. pll->disable(dev_priv, pll);
  1344. pll->on = false;
  1345. }
  1346. static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv,
  1347. enum pipe pipe)
  1348. {
  1349. struct drm_device *dev = dev_priv->dev;
  1350. struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
  1351. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1352. uint32_t reg, val, pipeconf_val;
  1353. /* PCH only available on ILK+ */
  1354. BUG_ON(dev_priv->info->gen < 5);
  1355. /* Make sure PCH DPLL is enabled */
  1356. assert_shared_dpll_enabled(dev_priv,
  1357. intel_crtc_to_shared_dpll(intel_crtc));
  1358. /* FDI must be feeding us bits for PCH ports */
  1359. assert_fdi_tx_enabled(dev_priv, pipe);
  1360. assert_fdi_rx_enabled(dev_priv, pipe);
  1361. if (HAS_PCH_CPT(dev)) {
  1362. /* Workaround: Set the timing override bit before enabling the
  1363. * pch transcoder. */
  1364. reg = TRANS_CHICKEN2(pipe);
  1365. val = I915_READ(reg);
  1366. val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
  1367. I915_WRITE(reg, val);
  1368. }
  1369. reg = PCH_TRANSCONF(pipe);
  1370. val = I915_READ(reg);
  1371. pipeconf_val = I915_READ(PIPECONF(pipe));
  1372. if (HAS_PCH_IBX(dev_priv->dev)) {
  1373. /*
  1374. * make the BPC in transcoder be consistent with
  1375. * that in pipeconf reg.
  1376. */
  1377. val &= ~PIPECONF_BPC_MASK;
  1378. val |= pipeconf_val & PIPECONF_BPC_MASK;
  1379. }
  1380. val &= ~TRANS_INTERLACE_MASK;
  1381. if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
  1382. if (HAS_PCH_IBX(dev_priv->dev) &&
  1383. intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO))
  1384. val |= TRANS_LEGACY_INTERLACED_ILK;
  1385. else
  1386. val |= TRANS_INTERLACED;
  1387. else
  1388. val |= TRANS_PROGRESSIVE;
  1389. I915_WRITE(reg, val | TRANS_ENABLE);
  1390. if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
  1391. DRM_ERROR("failed to enable transcoder %c\n", pipe_name(pipe));
  1392. }
  1393. static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
  1394. enum transcoder cpu_transcoder)
  1395. {
  1396. u32 val, pipeconf_val;
  1397. /* PCH only available on ILK+ */
  1398. BUG_ON(dev_priv->info->gen < 5);
  1399. /* FDI must be feeding us bits for PCH ports */
  1400. assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder);
  1401. assert_fdi_rx_enabled(dev_priv, TRANSCODER_A);
  1402. /* Workaround: set timing override bit. */
  1403. val = I915_READ(_TRANSA_CHICKEN2);
  1404. val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
  1405. I915_WRITE(_TRANSA_CHICKEN2, val);
  1406. val = TRANS_ENABLE;
  1407. pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
  1408. if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
  1409. PIPECONF_INTERLACED_ILK)
  1410. val |= TRANS_INTERLACED;
  1411. else
  1412. val |= TRANS_PROGRESSIVE;
  1413. I915_WRITE(LPT_TRANSCONF, val);
  1414. if (wait_for(I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE, 100))
  1415. DRM_ERROR("Failed to enable PCH transcoder\n");
  1416. }
  1417. static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
  1418. enum pipe pipe)
  1419. {
  1420. struct drm_device *dev = dev_priv->dev;
  1421. uint32_t reg, val;
  1422. /* FDI relies on the transcoder */
  1423. assert_fdi_tx_disabled(dev_priv, pipe);
  1424. assert_fdi_rx_disabled(dev_priv, pipe);
  1425. /* Ports must be off as well */
  1426. assert_pch_ports_disabled(dev_priv, pipe);
  1427. reg = PCH_TRANSCONF(pipe);
  1428. val = I915_READ(reg);
  1429. val &= ~TRANS_ENABLE;
  1430. I915_WRITE(reg, val);
  1431. /* wait for PCH transcoder off, transcoder state */
  1432. if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
  1433. DRM_ERROR("failed to disable transcoder %c\n", pipe_name(pipe));
  1434. if (!HAS_PCH_IBX(dev)) {
  1435. /* Workaround: Clear the timing override chicken bit again. */
  1436. reg = TRANS_CHICKEN2(pipe);
  1437. val = I915_READ(reg);
  1438. val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
  1439. I915_WRITE(reg, val);
  1440. }
  1441. }
  1442. static void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
  1443. {
  1444. u32 val;
  1445. val = I915_READ(LPT_TRANSCONF);
  1446. val &= ~TRANS_ENABLE;
  1447. I915_WRITE(LPT_TRANSCONF, val);
  1448. /* wait for PCH transcoder off, transcoder state */
  1449. if (wait_for((I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE) == 0, 50))
  1450. DRM_ERROR("Failed to disable PCH transcoder\n");
  1451. /* Workaround: clear timing override bit. */
  1452. val = I915_READ(_TRANSA_CHICKEN2);
  1453. val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
  1454. I915_WRITE(_TRANSA_CHICKEN2, val);
  1455. }
  1456. /**
  1457. * intel_enable_pipe - enable a pipe, asserting requirements
  1458. * @dev_priv: i915 private structure
  1459. * @pipe: pipe to enable
  1460. * @pch_port: on ILK+, is this pipe driving a PCH port or not
  1461. *
  1462. * Enable @pipe, making sure that various hardware specific requirements
  1463. * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
  1464. *
  1465. * @pipe should be %PIPE_A or %PIPE_B.
  1466. *
  1467. * Will wait until the pipe is actually running (i.e. first vblank) before
  1468. * returning.
  1469. */
  1470. static void intel_enable_pipe(struct drm_i915_private *dev_priv, enum pipe pipe,
  1471. bool pch_port, bool dsi)
  1472. {
  1473. enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
  1474. pipe);
  1475. enum pipe pch_transcoder;
  1476. int reg;
  1477. u32 val;
  1478. assert_planes_disabled(dev_priv, pipe);
  1479. assert_sprites_disabled(dev_priv, pipe);
  1480. if (HAS_PCH_LPT(dev_priv->dev))
  1481. pch_transcoder = TRANSCODER_A;
  1482. else
  1483. pch_transcoder = pipe;
  1484. /*
  1485. * A pipe without a PLL won't actually be able to drive bits from
  1486. * a plane. On ILK+ the pipe PLLs are integrated, so we don't
  1487. * need the check.
  1488. */
  1489. if (!HAS_PCH_SPLIT(dev_priv->dev))
  1490. if (dsi)
  1491. assert_dsi_pll_enabled(dev_priv);
  1492. else
  1493. assert_pll_enabled(dev_priv, pipe);
  1494. else {
  1495. if (pch_port) {
  1496. /* if driving the PCH, we need FDI enabled */
  1497. assert_fdi_rx_pll_enabled(dev_priv, pch_transcoder);
  1498. assert_fdi_tx_pll_enabled(dev_priv,
  1499. (enum pipe) cpu_transcoder);
  1500. }
  1501. /* FIXME: assert CPU port conditions for SNB+ */
  1502. }
  1503. reg = PIPECONF(cpu_transcoder);
  1504. val = I915_READ(reg);
  1505. if (val & PIPECONF_ENABLE)
  1506. return;
  1507. I915_WRITE(reg, val | PIPECONF_ENABLE);
  1508. intel_wait_for_vblank(dev_priv->dev, pipe);
  1509. }
  1510. /**
  1511. * intel_disable_pipe - disable a pipe, asserting requirements
  1512. * @dev_priv: i915 private structure
  1513. * @pipe: pipe to disable
  1514. *
  1515. * Disable @pipe, making sure that various hardware specific requirements
  1516. * are met, if applicable, e.g. plane disabled, panel fitter off, etc.
  1517. *
  1518. * @pipe should be %PIPE_A or %PIPE_B.
  1519. *
  1520. * Will wait until the pipe has shut down before returning.
  1521. */
  1522. static void intel_disable_pipe(struct drm_i915_private *dev_priv,
  1523. enum pipe pipe)
  1524. {
  1525. enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
  1526. pipe);
  1527. int reg;
  1528. u32 val;
  1529. /*
  1530. * Make sure planes won't keep trying to pump pixels to us,
  1531. * or we might hang the display.
  1532. */
  1533. assert_planes_disabled(dev_priv, pipe);
  1534. assert_sprites_disabled(dev_priv, pipe);
  1535. /* Don't disable pipe A or pipe A PLLs if needed */
  1536. if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
  1537. return;
  1538. reg = PIPECONF(cpu_transcoder);
  1539. val = I915_READ(reg);
  1540. if ((val & PIPECONF_ENABLE) == 0)
  1541. return;
  1542. I915_WRITE(reg, val & ~PIPECONF_ENABLE);
  1543. intel_wait_for_pipe_off(dev_priv->dev, pipe);
  1544. }
  1545. /*
  1546. * Plane regs are double buffered, going from enabled->disabled needs a
  1547. * trigger in order to latch. The display address reg provides this.
  1548. */
  1549. void intel_flush_display_plane(struct drm_i915_private *dev_priv,
  1550. enum plane plane)
  1551. {
  1552. if (dev_priv->info->gen >= 4)
  1553. I915_WRITE(DSPSURF(plane), I915_READ(DSPSURF(plane)));
  1554. else
  1555. I915_WRITE(DSPADDR(plane), I915_READ(DSPADDR(plane)));
  1556. }
  1557. /**
  1558. * intel_enable_plane - enable a display plane on a given pipe
  1559. * @dev_priv: i915 private structure
  1560. * @plane: plane to enable
  1561. * @pipe: pipe being fed
  1562. *
  1563. * Enable @plane on @pipe, making sure that @pipe is running first.
  1564. */
  1565. static void intel_enable_plane(struct drm_i915_private *dev_priv,
  1566. enum plane plane, enum pipe pipe)
  1567. {
  1568. int reg;
  1569. u32 val;
  1570. /* If the pipe isn't enabled, we can't pump pixels and may hang */
  1571. assert_pipe_enabled(dev_priv, pipe);
  1572. reg = DSPCNTR(plane);
  1573. val = I915_READ(reg);
  1574. if (val & DISPLAY_PLANE_ENABLE)
  1575. return;
  1576. I915_WRITE(reg, val | DISPLAY_PLANE_ENABLE);
  1577. intel_flush_display_plane(dev_priv, plane);
  1578. intel_wait_for_vblank(dev_priv->dev, pipe);
  1579. }
  1580. /**
  1581. * intel_disable_plane - disable a display plane
  1582. * @dev_priv: i915 private structure
  1583. * @plane: plane to disable
  1584. * @pipe: pipe consuming the data
  1585. *
  1586. * Disable @plane; should be an independent operation.
  1587. */
  1588. static void intel_disable_plane(struct drm_i915_private *dev_priv,
  1589. enum plane plane, enum pipe pipe)
  1590. {
  1591. int reg;
  1592. u32 val;
  1593. reg = DSPCNTR(plane);
  1594. val = I915_READ(reg);
  1595. if ((val & DISPLAY_PLANE_ENABLE) == 0)
  1596. return;
  1597. I915_WRITE(reg, val & ~DISPLAY_PLANE_ENABLE);
  1598. intel_flush_display_plane(dev_priv, plane);
  1599. intel_wait_for_vblank(dev_priv->dev, pipe);
  1600. }
  1601. static bool need_vtd_wa(struct drm_device *dev)
  1602. {
  1603. #ifdef CONFIG_INTEL_IOMMU
  1604. if (INTEL_INFO(dev)->gen >= 6 && intel_iommu_gfx_mapped)
  1605. return true;
  1606. #endif
  1607. return false;
  1608. }
  1609. int
  1610. intel_pin_and_fence_fb_obj(struct drm_device *dev,
  1611. struct drm_i915_gem_object *obj,
  1612. struct intel_ring_buffer *pipelined)
  1613. {
  1614. struct drm_i915_private *dev_priv = dev->dev_private;
  1615. u32 alignment;
  1616. int ret;
  1617. switch (obj->tiling_mode) {
  1618. case I915_TILING_NONE:
  1619. if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
  1620. alignment = 128 * 1024;
  1621. else if (INTEL_INFO(dev)->gen >= 4)
  1622. alignment = 4 * 1024;
  1623. else
  1624. alignment = 64 * 1024;
  1625. break;
  1626. case I915_TILING_X:
  1627. /* pin() will align the object as required by fence */
  1628. alignment = 0;
  1629. break;
  1630. case I915_TILING_Y:
  1631. /* Despite that we check this in framebuffer_init userspace can
  1632. * screw us over and change the tiling after the fact. Only
  1633. * pinned buffers can't change their tiling. */
  1634. DRM_DEBUG_DRIVER("Y tiled not allowed for scan out buffers\n");
  1635. return -EINVAL;
  1636. default:
  1637. BUG();
  1638. }
  1639. /* Note that the w/a also requires 64 PTE of padding following the
  1640. * bo. We currently fill all unused PTE with the shadow page and so
  1641. * we should always have valid PTE following the scanout preventing
  1642. * the VT-d warning.
  1643. */
  1644. if (need_vtd_wa(dev) && alignment < 256 * 1024)
  1645. alignment = 256 * 1024;
  1646. dev_priv->mm.interruptible = false;
  1647. ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined);
  1648. if (ret)
  1649. goto err_interruptible;
  1650. /* Install a fence for tiled scan-out. Pre-i965 always needs a
  1651. * fence, whereas 965+ only requires a fence if using
  1652. * framebuffer compression. For simplicity, we always install
  1653. * a fence as the cost is not that onerous.
  1654. */
  1655. ret = i915_gem_object_get_fence(obj);
  1656. if (ret)
  1657. goto err_unpin;
  1658. i915_gem_object_pin_fence(obj);
  1659. dev_priv->mm.interruptible = true;
  1660. return 0;
  1661. err_unpin:
  1662. i915_gem_object_unpin_from_display_plane(obj);
  1663. err_interruptible:
  1664. dev_priv->mm.interruptible = true;
  1665. return ret;
  1666. }
  1667. void intel_unpin_fb_obj(struct drm_i915_gem_object *obj)
  1668. {
  1669. i915_gem_object_unpin_fence(obj);
  1670. i915_gem_object_unpin_from_display_plane(obj);
  1671. }
  1672. /* Computes the linear offset to the base tile and adjusts x, y. bytes per pixel
  1673. * is assumed to be a power-of-two. */
  1674. unsigned long intel_gen4_compute_page_offset(int *x, int *y,
  1675. unsigned int tiling_mode,
  1676. unsigned int cpp,
  1677. unsigned int pitch)
  1678. {
  1679. if (tiling_mode != I915_TILING_NONE) {
  1680. unsigned int tile_rows, tiles;
  1681. tile_rows = *y / 8;
  1682. *y %= 8;
  1683. tiles = *x / (512/cpp);
  1684. *x %= 512/cpp;
  1685. return tile_rows * pitch * 8 + tiles * 4096;
  1686. } else {
  1687. unsigned int offset;
  1688. offset = *y * pitch + *x * cpp;
  1689. *y = 0;
  1690. *x = (offset & 4095) / cpp;
  1691. return offset & -4096;
  1692. }
  1693. }
  1694. static int i9xx_update_plane(struct drm_crtc *crtc, struct drm_framebuffer *fb,
  1695. int x, int y)
  1696. {
  1697. struct drm_device *dev = crtc->dev;
  1698. struct drm_i915_private *dev_priv = dev->dev_private;
  1699. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1700. struct intel_framebuffer *intel_fb;
  1701. struct drm_i915_gem_object *obj;
  1702. int plane = intel_crtc->plane;
  1703. unsigned long linear_offset;
  1704. u32 dspcntr;
  1705. u32 reg;
  1706. switch (plane) {
  1707. case 0:
  1708. case 1:
  1709. break;
  1710. default:
  1711. DRM_ERROR("Can't update plane %c in SAREA\n", plane_name(plane));
  1712. return -EINVAL;
  1713. }
  1714. intel_fb = to_intel_framebuffer(fb);
  1715. obj = intel_fb->obj;
  1716. reg = DSPCNTR(plane);
  1717. dspcntr = I915_READ(reg);
  1718. /* Mask out pixel format bits in case we change it */
  1719. dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
  1720. switch (fb->pixel_format) {
  1721. case DRM_FORMAT_C8:
  1722. dspcntr |= DISPPLANE_8BPP;
  1723. break;
  1724. case DRM_FORMAT_XRGB1555:
  1725. case DRM_FORMAT_ARGB1555:
  1726. dspcntr |= DISPPLANE_BGRX555;
  1727. break;
  1728. case DRM_FORMAT_RGB565:
  1729. dspcntr |= DISPPLANE_BGRX565;
  1730. break;
  1731. case DRM_FORMAT_XRGB8888:
  1732. case DRM_FORMAT_ARGB8888:
  1733. dspcntr |= DISPPLANE_BGRX888;
  1734. break;
  1735. case DRM_FORMAT_XBGR8888:
  1736. case DRM_FORMAT_ABGR8888:
  1737. dspcntr |= DISPPLANE_RGBX888;
  1738. break;
  1739. case DRM_FORMAT_XRGB2101010:
  1740. case DRM_FORMAT_ARGB2101010:
  1741. dspcntr |= DISPPLANE_BGRX101010;
  1742. break;
  1743. case DRM_FORMAT_XBGR2101010:
  1744. case DRM_FORMAT_ABGR2101010:
  1745. dspcntr |= DISPPLANE_RGBX101010;
  1746. break;
  1747. default:
  1748. BUG();
  1749. }
  1750. if (INTEL_INFO(dev)->gen >= 4) {
  1751. if (obj->tiling_mode != I915_TILING_NONE)
  1752. dspcntr |= DISPPLANE_TILED;
  1753. else
  1754. dspcntr &= ~DISPPLANE_TILED;
  1755. }
  1756. if (IS_G4X(dev))
  1757. dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
  1758. I915_WRITE(reg, dspcntr);
  1759. linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
  1760. if (INTEL_INFO(dev)->gen >= 4) {
  1761. intel_crtc->dspaddr_offset =
  1762. intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
  1763. fb->bits_per_pixel / 8,
  1764. fb->pitches[0]);
  1765. linear_offset -= intel_crtc->dspaddr_offset;
  1766. } else {
  1767. intel_crtc->dspaddr_offset = linear_offset;
  1768. }
  1769. DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
  1770. i915_gem_obj_ggtt_offset(obj), linear_offset, x, y,
  1771. fb->pitches[0]);
  1772. I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
  1773. if (INTEL_INFO(dev)->gen >= 4) {
  1774. I915_MODIFY_DISPBASE(DSPSURF(plane),
  1775. i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
  1776. I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
  1777. I915_WRITE(DSPLINOFF(plane), linear_offset);
  1778. } else
  1779. I915_WRITE(DSPADDR(plane), i915_gem_obj_ggtt_offset(obj) + linear_offset);
  1780. POSTING_READ(reg);
  1781. return 0;
  1782. }
  1783. static int ironlake_update_plane(struct drm_crtc *crtc,
  1784. struct drm_framebuffer *fb, int x, int y)
  1785. {
  1786. struct drm_device *dev = crtc->dev;
  1787. struct drm_i915_private *dev_priv = dev->dev_private;
  1788. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1789. struct intel_framebuffer *intel_fb;
  1790. struct drm_i915_gem_object *obj;
  1791. int plane = intel_crtc->plane;
  1792. unsigned long linear_offset;
  1793. u32 dspcntr;
  1794. u32 reg;
  1795. switch (plane) {
  1796. case 0:
  1797. case 1:
  1798. case 2:
  1799. break;
  1800. default:
  1801. DRM_ERROR("Can't update plane %c in SAREA\n", plane_name(plane));
  1802. return -EINVAL;
  1803. }
  1804. intel_fb = to_intel_framebuffer(fb);
  1805. obj = intel_fb->obj;
  1806. reg = DSPCNTR(plane);
  1807. dspcntr = I915_READ(reg);
  1808. /* Mask out pixel format bits in case we change it */
  1809. dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
  1810. switch (fb->pixel_format) {
  1811. case DRM_FORMAT_C8:
  1812. dspcntr |= DISPPLANE_8BPP;
  1813. break;
  1814. case DRM_FORMAT_RGB565:
  1815. dspcntr |= DISPPLANE_BGRX565;
  1816. break;
  1817. case DRM_FORMAT_XRGB8888:
  1818. case DRM_FORMAT_ARGB8888:
  1819. dspcntr |= DISPPLANE_BGRX888;
  1820. break;
  1821. case DRM_FORMAT_XBGR8888:
  1822. case DRM_FORMAT_ABGR8888:
  1823. dspcntr |= DISPPLANE_RGBX888;
  1824. break;
  1825. case DRM_FORMAT_XRGB2101010:
  1826. case DRM_FORMAT_ARGB2101010:
  1827. dspcntr |= DISPPLANE_BGRX101010;
  1828. break;
  1829. case DRM_FORMAT_XBGR2101010:
  1830. case DRM_FORMAT_ABGR2101010:
  1831. dspcntr |= DISPPLANE_RGBX101010;
  1832. break;
  1833. default:
  1834. BUG();
  1835. }
  1836. if (obj->tiling_mode != I915_TILING_NONE)
  1837. dspcntr |= DISPPLANE_TILED;
  1838. else
  1839. dspcntr &= ~DISPPLANE_TILED;
  1840. if (IS_HASWELL(dev))
  1841. dspcntr &= ~DISPPLANE_TRICKLE_FEED_DISABLE;
  1842. else
  1843. dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
  1844. I915_WRITE(reg, dspcntr);
  1845. linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
  1846. intel_crtc->dspaddr_offset =
  1847. intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
  1848. fb->bits_per_pixel / 8,
  1849. fb->pitches[0]);
  1850. linear_offset -= intel_crtc->dspaddr_offset;
  1851. DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
  1852. i915_gem_obj_ggtt_offset(obj), linear_offset, x, y,
  1853. fb->pitches[0]);
  1854. I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
  1855. I915_MODIFY_DISPBASE(DSPSURF(plane),
  1856. i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
  1857. if (IS_HASWELL(dev)) {
  1858. I915_WRITE(DSPOFFSET(plane), (y << 16) | x);
  1859. } else {
  1860. I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
  1861. I915_WRITE(DSPLINOFF(plane), linear_offset);
  1862. }
  1863. POSTING_READ(reg);
  1864. return 0;
  1865. }
  1866. /* Assume fb object is pinned & idle & fenced and just update base pointers */
  1867. static int
  1868. intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
  1869. int x, int y, enum mode_set_atomic state)
  1870. {
  1871. struct drm_device *dev = crtc->dev;
  1872. struct drm_i915_private *dev_priv = dev->dev_private;
  1873. if (dev_priv->display.disable_fbc)
  1874. dev_priv->display.disable_fbc(dev);
  1875. intel_increase_pllclock(crtc);
  1876. return dev_priv->display.update_plane(crtc, fb, x, y);
  1877. }
  1878. void intel_display_handle_reset(struct drm_device *dev)
  1879. {
  1880. struct drm_i915_private *dev_priv = dev->dev_private;
  1881. struct drm_crtc *crtc;
  1882. /*
  1883. * Flips in the rings have been nuked by the reset,
  1884. * so complete all pending flips so that user space
  1885. * will get its events and not get stuck.
  1886. *
  1887. * Also update the base address of all primary
  1888. * planes to the the last fb to make sure we're
  1889. * showing the correct fb after a reset.
  1890. *
  1891. * Need to make two loops over the crtcs so that we
  1892. * don't try to grab a crtc mutex before the
  1893. * pending_flip_queue really got woken up.
  1894. */
  1895. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  1896. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1897. enum plane plane = intel_crtc->plane;
  1898. intel_prepare_page_flip(dev, plane);
  1899. intel_finish_page_flip_plane(dev, plane);
  1900. }
  1901. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  1902. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1903. mutex_lock(&crtc->mutex);
  1904. if (intel_crtc->active)
  1905. dev_priv->display.update_plane(crtc, crtc->fb,
  1906. crtc->x, crtc->y);
  1907. mutex_unlock(&crtc->mutex);
  1908. }
  1909. }
  1910. static int
  1911. intel_finish_fb(struct drm_framebuffer *old_fb)
  1912. {
  1913. struct drm_i915_gem_object *obj = to_intel_framebuffer(old_fb)->obj;
  1914. struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
  1915. bool was_interruptible = dev_priv->mm.interruptible;
  1916. int ret;
  1917. /* Big Hammer, we also need to ensure that any pending
  1918. * MI_WAIT_FOR_EVENT inside a user batch buffer on the
  1919. * current scanout is retired before unpinning the old
  1920. * framebuffer.
  1921. *
  1922. * This should only fail upon a hung GPU, in which case we
  1923. * can safely continue.
  1924. */
  1925. dev_priv->mm.interruptible = false;
  1926. ret = i915_gem_object_finish_gpu(obj);
  1927. dev_priv->mm.interruptible = was_interruptible;
  1928. return ret;
  1929. }
  1930. static void intel_crtc_update_sarea_pos(struct drm_crtc *crtc, int x, int y)
  1931. {
  1932. struct drm_device *dev = crtc->dev;
  1933. struct drm_i915_master_private *master_priv;
  1934. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1935. if (!dev->primary->master)
  1936. return;
  1937. master_priv = dev->primary->master->driver_priv;
  1938. if (!master_priv->sarea_priv)
  1939. return;
  1940. switch (intel_crtc->pipe) {
  1941. case 0:
  1942. master_priv->sarea_priv->pipeA_x = x;
  1943. master_priv->sarea_priv->pipeA_y = y;
  1944. break;
  1945. case 1:
  1946. master_priv->sarea_priv->pipeB_x = x;
  1947. master_priv->sarea_priv->pipeB_y = y;
  1948. break;
  1949. default:
  1950. break;
  1951. }
  1952. }
  1953. static int
  1954. intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
  1955. struct drm_framebuffer *fb)
  1956. {
  1957. struct drm_device *dev = crtc->dev;
  1958. struct drm_i915_private *dev_priv = dev->dev_private;
  1959. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1960. struct drm_framebuffer *old_fb;
  1961. int ret;
  1962. /* no fb bound */
  1963. if (!fb) {
  1964. DRM_ERROR("No FB bound\n");
  1965. return 0;
  1966. }
  1967. if (intel_crtc->plane > INTEL_INFO(dev)->num_pipes) {
  1968. DRM_ERROR("no plane for crtc: plane %c, num_pipes %d\n",
  1969. plane_name(intel_crtc->plane),
  1970. INTEL_INFO(dev)->num_pipes);
  1971. return -EINVAL;
  1972. }
  1973. mutex_lock(&dev->struct_mutex);
  1974. ret = intel_pin_and_fence_fb_obj(dev,
  1975. to_intel_framebuffer(fb)->obj,
  1976. NULL);
  1977. if (ret != 0) {
  1978. mutex_unlock(&dev->struct_mutex);
  1979. DRM_ERROR("pin & fence failed\n");
  1980. return ret;
  1981. }
  1982. /* Update pipe size and adjust fitter if needed */
  1983. if (i915_fastboot) {
  1984. I915_WRITE(PIPESRC(intel_crtc->pipe),
  1985. ((crtc->mode.hdisplay - 1) << 16) |
  1986. (crtc->mode.vdisplay - 1));
  1987. if (!intel_crtc->config.pch_pfit.size &&
  1988. (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) ||
  1989. intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
  1990. I915_WRITE(PF_CTL(intel_crtc->pipe), 0);
  1991. I915_WRITE(PF_WIN_POS(intel_crtc->pipe), 0);
  1992. I915_WRITE(PF_WIN_SZ(intel_crtc->pipe), 0);
  1993. }
  1994. }
  1995. ret = dev_priv->display.update_plane(crtc, fb, x, y);
  1996. if (ret) {
  1997. intel_unpin_fb_obj(to_intel_framebuffer(fb)->obj);
  1998. mutex_unlock(&dev->struct_mutex);
  1999. DRM_ERROR("failed to update base address\n");
  2000. return ret;
  2001. }
  2002. old_fb = crtc->fb;
  2003. crtc->fb = fb;
  2004. crtc->x = x;
  2005. crtc->y = y;
  2006. if (old_fb) {
  2007. if (intel_crtc->active && old_fb != fb)
  2008. intel_wait_for_vblank(dev, intel_crtc->pipe);
  2009. intel_unpin_fb_obj(to_intel_framebuffer(old_fb)->obj);
  2010. }
  2011. intel_update_fbc(dev);
  2012. intel_edp_psr_update(dev);
  2013. mutex_unlock(&dev->struct_mutex);
  2014. intel_crtc_update_sarea_pos(crtc, x, y);
  2015. return 0;
  2016. }
  2017. static void intel_fdi_normal_train(struct drm_crtc *crtc)
  2018. {
  2019. struct drm_device *dev = crtc->dev;
  2020. struct drm_i915_private *dev_priv = dev->dev_private;
  2021. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2022. int pipe = intel_crtc->pipe;
  2023. u32 reg, temp;
  2024. /* enable normal train */
  2025. reg = FDI_TX_CTL(pipe);
  2026. temp = I915_READ(reg);
  2027. if (IS_IVYBRIDGE(dev)) {
  2028. temp &= ~FDI_LINK_TRAIN_NONE_IVB;
  2029. temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
  2030. } else {
  2031. temp &= ~FDI_LINK_TRAIN_NONE;
  2032. temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
  2033. }
  2034. I915_WRITE(reg, temp);
  2035. reg = FDI_RX_CTL(pipe);
  2036. temp = I915_READ(reg);
  2037. if (HAS_PCH_CPT(dev)) {
  2038. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  2039. temp |= FDI_LINK_TRAIN_NORMAL_CPT;
  2040. } else {
  2041. temp &= ~FDI_LINK_TRAIN_NONE;
  2042. temp |= FDI_LINK_TRAIN_NONE;
  2043. }
  2044. I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
  2045. /* wait one idle pattern time */
  2046. POSTING_READ(reg);
  2047. udelay(1000);
  2048. /* IVB wants error correction enabled */
  2049. if (IS_IVYBRIDGE(dev))
  2050. I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
  2051. FDI_FE_ERRC_ENABLE);
  2052. }
  2053. static bool pipe_has_enabled_pch(struct intel_crtc *intel_crtc)
  2054. {
  2055. return intel_crtc->base.enabled && intel_crtc->config.has_pch_encoder;
  2056. }
  2057. static void ivb_modeset_global_resources(struct drm_device *dev)
  2058. {
  2059. struct drm_i915_private *dev_priv = dev->dev_private;
  2060. struct intel_crtc *pipe_B_crtc =
  2061. to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
  2062. struct intel_crtc *pipe_C_crtc =
  2063. to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_C]);
  2064. uint32_t temp;
  2065. /*
  2066. * When everything is off disable fdi C so that we could enable fdi B
  2067. * with all lanes. Note that we don't care about enabled pipes without
  2068. * an enabled pch encoder.
  2069. */
  2070. if (!pipe_has_enabled_pch(pipe_B_crtc) &&
  2071. !pipe_has_enabled_pch(pipe_C_crtc)) {
  2072. WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
  2073. WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
  2074. temp = I915_READ(SOUTH_CHICKEN1);
  2075. temp &= ~FDI_BC_BIFURCATION_SELECT;
  2076. DRM_DEBUG_KMS("disabling fdi C rx\n");
  2077. I915_WRITE(SOUTH_CHICKEN1, temp);
  2078. }
  2079. }
  2080. /* The FDI link training functions for ILK/Ibexpeak. */
  2081. static void ironlake_fdi_link_train(struct drm_crtc *crtc)
  2082. {
  2083. struct drm_device *dev = crtc->dev;
  2084. struct drm_i915_private *dev_priv = dev->dev_private;
  2085. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2086. int pipe = intel_crtc->pipe;
  2087. int plane = intel_crtc->plane;
  2088. u32 reg, temp, tries;
  2089. /* FDI needs bits from pipe & plane first */
  2090. assert_pipe_enabled(dev_priv, pipe);
  2091. assert_plane_enabled(dev_priv, plane);
  2092. /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
  2093. for train result */
  2094. reg = FDI_RX_IMR(pipe);
  2095. temp = I915_READ(reg);
  2096. temp &= ~FDI_RX_SYMBOL_LOCK;
  2097. temp &= ~FDI_RX_BIT_LOCK;
  2098. I915_WRITE(reg, temp);
  2099. I915_READ(reg);
  2100. udelay(150);
  2101. /* enable CPU FDI TX and PCH FDI RX */
  2102. reg = FDI_TX_CTL(pipe);
  2103. temp = I915_READ(reg);
  2104. temp &= ~FDI_DP_PORT_WIDTH_MASK;
  2105. temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
  2106. temp &= ~FDI_LINK_TRAIN_NONE;
  2107. temp |= FDI_LINK_TRAIN_PATTERN_1;
  2108. I915_WRITE(reg, temp | FDI_TX_ENABLE);
  2109. reg = FDI_RX_CTL(pipe);
  2110. temp = I915_READ(reg);
  2111. temp &= ~FDI_LINK_TRAIN_NONE;
  2112. temp |= FDI_LINK_TRAIN_PATTERN_1;
  2113. I915_WRITE(reg, temp | FDI_RX_ENABLE);
  2114. POSTING_READ(reg);
  2115. udelay(150);
  2116. /* Ironlake workaround, enable clock pointer after FDI enable*/
  2117. I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
  2118. I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
  2119. FDI_RX_PHASE_SYNC_POINTER_EN);
  2120. reg = FDI_RX_IIR(pipe);
  2121. for (tries = 0; tries < 5; tries++) {
  2122. temp = I915_READ(reg);
  2123. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2124. if ((temp & FDI_RX_BIT_LOCK)) {
  2125. DRM_DEBUG_KMS("FDI train 1 done.\n");
  2126. I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
  2127. break;
  2128. }
  2129. }
  2130. if (tries == 5)
  2131. DRM_ERROR("FDI train 1 fail!\n");
  2132. /* Train 2 */
  2133. reg = FDI_TX_CTL(pipe);
  2134. temp = I915_READ(reg);
  2135. temp &= ~FDI_LINK_TRAIN_NONE;
  2136. temp |= FDI_LINK_TRAIN_PATTERN_2;
  2137. I915_WRITE(reg, temp);
  2138. reg = FDI_RX_CTL(pipe);
  2139. temp = I915_READ(reg);
  2140. temp &= ~FDI_LINK_TRAIN_NONE;
  2141. temp |= FDI_LINK_TRAIN_PATTERN_2;
  2142. I915_WRITE(reg, temp);
  2143. POSTING_READ(reg);
  2144. udelay(150);
  2145. reg = FDI_RX_IIR(pipe);
  2146. for (tries = 0; tries < 5; tries++) {
  2147. temp = I915_READ(reg);
  2148. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2149. if (temp & FDI_RX_SYMBOL_LOCK) {
  2150. I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
  2151. DRM_DEBUG_KMS("FDI train 2 done.\n");
  2152. break;
  2153. }
  2154. }
  2155. if (tries == 5)
  2156. DRM_ERROR("FDI train 2 fail!\n");
  2157. DRM_DEBUG_KMS("FDI train done\n");
  2158. }
  2159. static const int snb_b_fdi_train_param[] = {
  2160. FDI_LINK_TRAIN_400MV_0DB_SNB_B,
  2161. FDI_LINK_TRAIN_400MV_6DB_SNB_B,
  2162. FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
  2163. FDI_LINK_TRAIN_800MV_0DB_SNB_B,
  2164. };
  2165. /* The FDI link training functions for SNB/Cougarpoint. */
  2166. static void gen6_fdi_link_train(struct drm_crtc *crtc)
  2167. {
  2168. struct drm_device *dev = crtc->dev;
  2169. struct drm_i915_private *dev_priv = dev->dev_private;
  2170. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2171. int pipe = intel_crtc->pipe;
  2172. u32 reg, temp, i, retry;
  2173. /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
  2174. for train result */
  2175. reg = FDI_RX_IMR(pipe);
  2176. temp = I915_READ(reg);
  2177. temp &= ~FDI_RX_SYMBOL_LOCK;
  2178. temp &= ~FDI_RX_BIT_LOCK;
  2179. I915_WRITE(reg, temp);
  2180. POSTING_READ(reg);
  2181. udelay(150);
  2182. /* enable CPU FDI TX and PCH FDI RX */
  2183. reg = FDI_TX_CTL(pipe);
  2184. temp = I915_READ(reg);
  2185. temp &= ~FDI_DP_PORT_WIDTH_MASK;
  2186. temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
  2187. temp &= ~FDI_LINK_TRAIN_NONE;
  2188. temp |= FDI_LINK_TRAIN_PATTERN_1;
  2189. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2190. /* SNB-B */
  2191. temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
  2192. I915_WRITE(reg, temp | FDI_TX_ENABLE);
  2193. I915_WRITE(FDI_RX_MISC(pipe),
  2194. FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
  2195. reg = FDI_RX_CTL(pipe);
  2196. temp = I915_READ(reg);
  2197. if (HAS_PCH_CPT(dev)) {
  2198. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  2199. temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
  2200. } else {
  2201. temp &= ~FDI_LINK_TRAIN_NONE;
  2202. temp |= FDI_LINK_TRAIN_PATTERN_1;
  2203. }
  2204. I915_WRITE(reg, temp | FDI_RX_ENABLE);
  2205. POSTING_READ(reg);
  2206. udelay(150);
  2207. for (i = 0; i < 4; i++) {
  2208. reg = FDI_TX_CTL(pipe);
  2209. temp = I915_READ(reg);
  2210. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2211. temp |= snb_b_fdi_train_param[i];
  2212. I915_WRITE(reg, temp);
  2213. POSTING_READ(reg);
  2214. udelay(500);
  2215. for (retry = 0; retry < 5; retry++) {
  2216. reg = FDI_RX_IIR(pipe);
  2217. temp = I915_READ(reg);
  2218. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2219. if (temp & FDI_RX_BIT_LOCK) {
  2220. I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
  2221. DRM_DEBUG_KMS("FDI train 1 done.\n");
  2222. break;
  2223. }
  2224. udelay(50);
  2225. }
  2226. if (retry < 5)
  2227. break;
  2228. }
  2229. if (i == 4)
  2230. DRM_ERROR("FDI train 1 fail!\n");
  2231. /* Train 2 */
  2232. reg = FDI_TX_CTL(pipe);
  2233. temp = I915_READ(reg);
  2234. temp &= ~FDI_LINK_TRAIN_NONE;
  2235. temp |= FDI_LINK_TRAIN_PATTERN_2;
  2236. if (IS_GEN6(dev)) {
  2237. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2238. /* SNB-B */
  2239. temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
  2240. }
  2241. I915_WRITE(reg, temp);
  2242. reg = FDI_RX_CTL(pipe);
  2243. temp = I915_READ(reg);
  2244. if (HAS_PCH_CPT(dev)) {
  2245. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  2246. temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
  2247. } else {
  2248. temp &= ~FDI_LINK_TRAIN_NONE;
  2249. temp |= FDI_LINK_TRAIN_PATTERN_2;
  2250. }
  2251. I915_WRITE(reg, temp);
  2252. POSTING_READ(reg);
  2253. udelay(150);
  2254. for (i = 0; i < 4; i++) {
  2255. reg = FDI_TX_CTL(pipe);
  2256. temp = I915_READ(reg);
  2257. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2258. temp |= snb_b_fdi_train_param[i];
  2259. I915_WRITE(reg, temp);
  2260. POSTING_READ(reg);
  2261. udelay(500);
  2262. for (retry = 0; retry < 5; retry++) {
  2263. reg = FDI_RX_IIR(pipe);
  2264. temp = I915_READ(reg);
  2265. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2266. if (temp & FDI_RX_SYMBOL_LOCK) {
  2267. I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
  2268. DRM_DEBUG_KMS("FDI train 2 done.\n");
  2269. break;
  2270. }
  2271. udelay(50);
  2272. }
  2273. if (retry < 5)
  2274. break;
  2275. }
  2276. if (i == 4)
  2277. DRM_ERROR("FDI train 2 fail!\n");
  2278. DRM_DEBUG_KMS("FDI train done.\n");
  2279. }
  2280. /* Manual link training for Ivy Bridge A0 parts */
  2281. static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
  2282. {
  2283. struct drm_device *dev = crtc->dev;
  2284. struct drm_i915_private *dev_priv = dev->dev_private;
  2285. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2286. int pipe = intel_crtc->pipe;
  2287. u32 reg, temp, i, j;
  2288. /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
  2289. for train result */
  2290. reg = FDI_RX_IMR(pipe);
  2291. temp = I915_READ(reg);
  2292. temp &= ~FDI_RX_SYMBOL_LOCK;
  2293. temp &= ~FDI_RX_BIT_LOCK;
  2294. I915_WRITE(reg, temp);
  2295. POSTING_READ(reg);
  2296. udelay(150);
  2297. DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
  2298. I915_READ(FDI_RX_IIR(pipe)));
  2299. /* Try each vswing and preemphasis setting twice before moving on */
  2300. for (j = 0; j < ARRAY_SIZE(snb_b_fdi_train_param) * 2; j++) {
  2301. /* disable first in case we need to retry */
  2302. reg = FDI_TX_CTL(pipe);
  2303. temp = I915_READ(reg);
  2304. temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
  2305. temp &= ~FDI_TX_ENABLE;
  2306. I915_WRITE(reg, temp);
  2307. reg = FDI_RX_CTL(pipe);
  2308. temp = I915_READ(reg);
  2309. temp &= ~FDI_LINK_TRAIN_AUTO;
  2310. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  2311. temp &= ~FDI_RX_ENABLE;
  2312. I915_WRITE(reg, temp);
  2313. /* enable CPU FDI TX and PCH FDI RX */
  2314. reg = FDI_TX_CTL(pipe);
  2315. temp = I915_READ(reg);
  2316. temp &= ~FDI_DP_PORT_WIDTH_MASK;
  2317. temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
  2318. temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
  2319. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2320. temp |= snb_b_fdi_train_param[j/2];
  2321. temp |= FDI_COMPOSITE_SYNC;
  2322. I915_WRITE(reg, temp | FDI_TX_ENABLE);
  2323. I915_WRITE(FDI_RX_MISC(pipe),
  2324. FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
  2325. reg = FDI_RX_CTL(pipe);
  2326. temp = I915_READ(reg);
  2327. temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
  2328. temp |= FDI_COMPOSITE_SYNC;
  2329. I915_WRITE(reg, temp | FDI_RX_ENABLE);
  2330. POSTING_READ(reg);
  2331. udelay(1); /* should be 0.5us */
  2332. for (i = 0; i < 4; i++) {
  2333. reg = FDI_RX_IIR(pipe);
  2334. temp = I915_READ(reg);
  2335. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2336. if (temp & FDI_RX_BIT_LOCK ||
  2337. (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
  2338. I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
  2339. DRM_DEBUG_KMS("FDI train 1 done, level %i.\n",
  2340. i);
  2341. break;
  2342. }
  2343. udelay(1); /* should be 0.5us */
  2344. }
  2345. if (i == 4) {
  2346. DRM_DEBUG_KMS("FDI train 1 fail on vswing %d\n", j / 2);
  2347. continue;
  2348. }
  2349. /* Train 2 */
  2350. reg = FDI_TX_CTL(pipe);
  2351. temp = I915_READ(reg);
  2352. temp &= ~FDI_LINK_TRAIN_NONE_IVB;
  2353. temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
  2354. I915_WRITE(reg, temp);
  2355. reg = FDI_RX_CTL(pipe);
  2356. temp = I915_READ(reg);
  2357. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  2358. temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
  2359. I915_WRITE(reg, temp);
  2360. POSTING_READ(reg);
  2361. udelay(2); /* should be 1.5us */
  2362. for (i = 0; i < 4; i++) {
  2363. reg = FDI_RX_IIR(pipe);
  2364. temp = I915_READ(reg);
  2365. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2366. if (temp & FDI_RX_SYMBOL_LOCK ||
  2367. (I915_READ(reg) & FDI_RX_SYMBOL_LOCK)) {
  2368. I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
  2369. DRM_DEBUG_KMS("FDI train 2 done, level %i.\n",
  2370. i);
  2371. goto train_done;
  2372. }
  2373. udelay(2); /* should be 1.5us */
  2374. }
  2375. if (i == 4)
  2376. DRM_DEBUG_KMS("FDI train 2 fail on vswing %d\n", j / 2);
  2377. }
  2378. train_done:
  2379. DRM_DEBUG_KMS("FDI train done.\n");
  2380. }
  2381. static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
  2382. {
  2383. struct drm_device *dev = intel_crtc->base.dev;
  2384. struct drm_i915_private *dev_priv = dev->dev_private;
  2385. int pipe = intel_crtc->pipe;
  2386. u32 reg, temp;
  2387. /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
  2388. reg = FDI_RX_CTL(pipe);
  2389. temp = I915_READ(reg);
  2390. temp &= ~(FDI_DP_PORT_WIDTH_MASK | (0x7 << 16));
  2391. temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
  2392. temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
  2393. I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
  2394. POSTING_READ(reg);
  2395. udelay(200);
  2396. /* Switch from Rawclk to PCDclk */
  2397. temp = I915_READ(reg);
  2398. I915_WRITE(reg, temp | FDI_PCDCLK);
  2399. POSTING_READ(reg);
  2400. udelay(200);
  2401. /* Enable CPU FDI TX PLL, always on for Ironlake */
  2402. reg = FDI_TX_CTL(pipe);
  2403. temp = I915_READ(reg);
  2404. if ((temp & FDI_TX_PLL_ENABLE) == 0) {
  2405. I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
  2406. POSTING_READ(reg);
  2407. udelay(100);
  2408. }
  2409. }
  2410. static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
  2411. {
  2412. struct drm_device *dev = intel_crtc->base.dev;
  2413. struct drm_i915_private *dev_priv = dev->dev_private;
  2414. int pipe = intel_crtc->pipe;
  2415. u32 reg, temp;
  2416. /* Switch from PCDclk to Rawclk */
  2417. reg = FDI_RX_CTL(pipe);
  2418. temp = I915_READ(reg);
  2419. I915_WRITE(reg, temp & ~FDI_PCDCLK);
  2420. /* Disable CPU FDI TX PLL */
  2421. reg = FDI_TX_CTL(pipe);
  2422. temp = I915_READ(reg);
  2423. I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
  2424. POSTING_READ(reg);
  2425. udelay(100);
  2426. reg = FDI_RX_CTL(pipe);
  2427. temp = I915_READ(reg);
  2428. I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
  2429. /* Wait for the clocks to turn off. */
  2430. POSTING_READ(reg);
  2431. udelay(100);
  2432. }
  2433. static void ironlake_fdi_disable(struct drm_crtc *crtc)
  2434. {
  2435. struct drm_device *dev = crtc->dev;
  2436. struct drm_i915_private *dev_priv = dev->dev_private;
  2437. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2438. int pipe = intel_crtc->pipe;
  2439. u32 reg, temp;
  2440. /* disable CPU FDI tx and PCH FDI rx */
  2441. reg = FDI_TX_CTL(pipe);
  2442. temp = I915_READ(reg);
  2443. I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
  2444. POSTING_READ(reg);
  2445. reg = FDI_RX_CTL(pipe);
  2446. temp = I915_READ(reg);
  2447. temp &= ~(0x7 << 16);
  2448. temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
  2449. I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
  2450. POSTING_READ(reg);
  2451. udelay(100);
  2452. /* Ironlake workaround, disable clock pointer after downing FDI */
  2453. if (HAS_PCH_IBX(dev)) {
  2454. I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
  2455. }
  2456. /* still set train pattern 1 */
  2457. reg = FDI_TX_CTL(pipe);
  2458. temp = I915_READ(reg);
  2459. temp &= ~FDI_LINK_TRAIN_NONE;
  2460. temp |= FDI_LINK_TRAIN_PATTERN_1;
  2461. I915_WRITE(reg, temp);
  2462. reg = FDI_RX_CTL(pipe);
  2463. temp = I915_READ(reg);
  2464. if (HAS_PCH_CPT(dev)) {
  2465. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  2466. temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
  2467. } else {
  2468. temp &= ~FDI_LINK_TRAIN_NONE;
  2469. temp |= FDI_LINK_TRAIN_PATTERN_1;
  2470. }
  2471. /* BPC in FDI rx is consistent with that in PIPECONF */
  2472. temp &= ~(0x07 << 16);
  2473. temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
  2474. I915_WRITE(reg, temp);
  2475. POSTING_READ(reg);
  2476. udelay(100);
  2477. }
  2478. static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
  2479. {
  2480. struct drm_device *dev = crtc->dev;
  2481. struct drm_i915_private *dev_priv = dev->dev_private;
  2482. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2483. unsigned long flags;
  2484. bool pending;
  2485. if (i915_reset_in_progress(&dev_priv->gpu_error) ||
  2486. intel_crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
  2487. return false;
  2488. spin_lock_irqsave(&dev->event_lock, flags);
  2489. pending = to_intel_crtc(crtc)->unpin_work != NULL;
  2490. spin_unlock_irqrestore(&dev->event_lock, flags);
  2491. return pending;
  2492. }
  2493. static void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
  2494. {
  2495. struct drm_device *dev = crtc->dev;
  2496. struct drm_i915_private *dev_priv = dev->dev_private;
  2497. if (crtc->fb == NULL)
  2498. return;
  2499. WARN_ON(waitqueue_active(&dev_priv->pending_flip_queue));
  2500. wait_event(dev_priv->pending_flip_queue,
  2501. !intel_crtc_has_pending_flip(crtc));
  2502. mutex_lock(&dev->struct_mutex);
  2503. intel_finish_fb(crtc->fb);
  2504. mutex_unlock(&dev->struct_mutex);
  2505. }
  2506. /* Program iCLKIP clock to the desired frequency */
  2507. static void lpt_program_iclkip(struct drm_crtc *crtc)
  2508. {
  2509. struct drm_device *dev = crtc->dev;
  2510. struct drm_i915_private *dev_priv = dev->dev_private;
  2511. u32 divsel, phaseinc, auxdiv, phasedir = 0;
  2512. u32 temp;
  2513. mutex_lock(&dev_priv->dpio_lock);
  2514. /* It is necessary to ungate the pixclk gate prior to programming
  2515. * the divisors, and gate it back when it is done.
  2516. */
  2517. I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
  2518. /* Disable SSCCTL */
  2519. intel_sbi_write(dev_priv, SBI_SSCCTL6,
  2520. intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK) |
  2521. SBI_SSCCTL_DISABLE,
  2522. SBI_ICLK);
  2523. /* 20MHz is a corner case which is out of range for the 7-bit divisor */
  2524. if (crtc->mode.clock == 20000) {
  2525. auxdiv = 1;
  2526. divsel = 0x41;
  2527. phaseinc = 0x20;
  2528. } else {
  2529. /* The iCLK virtual clock root frequency is in MHz,
  2530. * but the crtc->mode.clock in in KHz. To get the divisors,
  2531. * it is necessary to divide one by another, so we
  2532. * convert the virtual clock precision to KHz here for higher
  2533. * precision.
  2534. */
  2535. u32 iclk_virtual_root_freq = 172800 * 1000;
  2536. u32 iclk_pi_range = 64;
  2537. u32 desired_divisor, msb_divisor_value, pi_value;
  2538. desired_divisor = (iclk_virtual_root_freq / crtc->mode.clock);
  2539. msb_divisor_value = desired_divisor / iclk_pi_range;
  2540. pi_value = desired_divisor % iclk_pi_range;
  2541. auxdiv = 0;
  2542. divsel = msb_divisor_value - 2;
  2543. phaseinc = pi_value;
  2544. }
  2545. /* This should not happen with any sane values */
  2546. WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
  2547. ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
  2548. WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
  2549. ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
  2550. DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
  2551. crtc->mode.clock,
  2552. auxdiv,
  2553. divsel,
  2554. phasedir,
  2555. phaseinc);
  2556. /* Program SSCDIVINTPHASE6 */
  2557. temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
  2558. temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
  2559. temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
  2560. temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
  2561. temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
  2562. temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
  2563. temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
  2564. intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK);
  2565. /* Program SSCAUXDIV */
  2566. temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
  2567. temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
  2568. temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
  2569. intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK);
  2570. /* Enable modulator and associated divider */
  2571. temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
  2572. temp &= ~SBI_SSCCTL_DISABLE;
  2573. intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
  2574. /* Wait for initialization time */
  2575. udelay(24);
  2576. I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
  2577. mutex_unlock(&dev_priv->dpio_lock);
  2578. }
  2579. static void ironlake_pch_transcoder_set_timings(struct intel_crtc *crtc,
  2580. enum pipe pch_transcoder)
  2581. {
  2582. struct drm_device *dev = crtc->base.dev;
  2583. struct drm_i915_private *dev_priv = dev->dev_private;
  2584. enum transcoder cpu_transcoder = crtc->config.cpu_transcoder;
  2585. I915_WRITE(PCH_TRANS_HTOTAL(pch_transcoder),
  2586. I915_READ(HTOTAL(cpu_transcoder)));
  2587. I915_WRITE(PCH_TRANS_HBLANK(pch_transcoder),
  2588. I915_READ(HBLANK(cpu_transcoder)));
  2589. I915_WRITE(PCH_TRANS_HSYNC(pch_transcoder),
  2590. I915_READ(HSYNC(cpu_transcoder)));
  2591. I915_WRITE(PCH_TRANS_VTOTAL(pch_transcoder),
  2592. I915_READ(VTOTAL(cpu_transcoder)));
  2593. I915_WRITE(PCH_TRANS_VBLANK(pch_transcoder),
  2594. I915_READ(VBLANK(cpu_transcoder)));
  2595. I915_WRITE(PCH_TRANS_VSYNC(pch_transcoder),
  2596. I915_READ(VSYNC(cpu_transcoder)));
  2597. I915_WRITE(PCH_TRANS_VSYNCSHIFT(pch_transcoder),
  2598. I915_READ(VSYNCSHIFT(cpu_transcoder)));
  2599. }
  2600. /*
  2601. * Enable PCH resources required for PCH ports:
  2602. * - PCH PLLs
  2603. * - FDI training & RX/TX
  2604. * - update transcoder timings
  2605. * - DP transcoding bits
  2606. * - transcoder
  2607. */
  2608. static void ironlake_pch_enable(struct drm_crtc *crtc)
  2609. {
  2610. struct drm_device *dev = crtc->dev;
  2611. struct drm_i915_private *dev_priv = dev->dev_private;
  2612. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2613. int pipe = intel_crtc->pipe;
  2614. u32 reg, temp;
  2615. assert_pch_transcoder_disabled(dev_priv, pipe);
  2616. /* Write the TU size bits before fdi link training, so that error
  2617. * detection works. */
  2618. I915_WRITE(FDI_RX_TUSIZE1(pipe),
  2619. I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
  2620. /* For PCH output, training FDI link */
  2621. dev_priv->display.fdi_link_train(crtc);
  2622. /* We need to program the right clock selection before writing the pixel
  2623. * mutliplier into the DPLL. */
  2624. if (HAS_PCH_CPT(dev)) {
  2625. u32 sel;
  2626. temp = I915_READ(PCH_DPLL_SEL);
  2627. temp |= TRANS_DPLL_ENABLE(pipe);
  2628. sel = TRANS_DPLLB_SEL(pipe);
  2629. if (intel_crtc->config.shared_dpll == DPLL_ID_PCH_PLL_B)
  2630. temp |= sel;
  2631. else
  2632. temp &= ~sel;
  2633. I915_WRITE(PCH_DPLL_SEL, temp);
  2634. }
  2635. /* XXX: pch pll's can be enabled any time before we enable the PCH
  2636. * transcoder, and we actually should do this to not upset any PCH
  2637. * transcoder that already use the clock when we share it.
  2638. *
  2639. * Note that enable_shared_dpll tries to do the right thing, but
  2640. * get_shared_dpll unconditionally resets the pll - we need that to have
  2641. * the right LVDS enable sequence. */
  2642. ironlake_enable_shared_dpll(intel_crtc);
  2643. /* set transcoder timing, panel must allow it */
  2644. assert_panel_unlocked(dev_priv, pipe);
  2645. ironlake_pch_transcoder_set_timings(intel_crtc, pipe);
  2646. intel_fdi_normal_train(crtc);
  2647. /* For PCH DP, enable TRANS_DP_CTL */
  2648. if (HAS_PCH_CPT(dev) &&
  2649. (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
  2650. intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
  2651. u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5;
  2652. reg = TRANS_DP_CTL(pipe);
  2653. temp = I915_READ(reg);
  2654. temp &= ~(TRANS_DP_PORT_SEL_MASK |
  2655. TRANS_DP_SYNC_MASK |
  2656. TRANS_DP_BPC_MASK);
  2657. temp |= (TRANS_DP_OUTPUT_ENABLE |
  2658. TRANS_DP_ENH_FRAMING);
  2659. temp |= bpc << 9; /* same format but at 11:9 */
  2660. if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
  2661. temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
  2662. if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
  2663. temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
  2664. switch (intel_trans_dp_port_sel(crtc)) {
  2665. case PCH_DP_B:
  2666. temp |= TRANS_DP_PORT_SEL_B;
  2667. break;
  2668. case PCH_DP_C:
  2669. temp |= TRANS_DP_PORT_SEL_C;
  2670. break;
  2671. case PCH_DP_D:
  2672. temp |= TRANS_DP_PORT_SEL_D;
  2673. break;
  2674. default:
  2675. BUG();
  2676. }
  2677. I915_WRITE(reg, temp);
  2678. }
  2679. ironlake_enable_pch_transcoder(dev_priv, pipe);
  2680. }
  2681. static void lpt_pch_enable(struct drm_crtc *crtc)
  2682. {
  2683. struct drm_device *dev = crtc->dev;
  2684. struct drm_i915_private *dev_priv = dev->dev_private;
  2685. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2686. enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
  2687. assert_pch_transcoder_disabled(dev_priv, TRANSCODER_A);
  2688. lpt_program_iclkip(crtc);
  2689. /* Set transcoder timing. */
  2690. ironlake_pch_transcoder_set_timings(intel_crtc, PIPE_A);
  2691. lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
  2692. }
  2693. static void intel_put_shared_dpll(struct intel_crtc *crtc)
  2694. {
  2695. struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
  2696. if (pll == NULL)
  2697. return;
  2698. if (pll->refcount == 0) {
  2699. WARN(1, "bad %s refcount\n", pll->name);
  2700. return;
  2701. }
  2702. if (--pll->refcount == 0) {
  2703. WARN_ON(pll->on);
  2704. WARN_ON(pll->active);
  2705. }
  2706. crtc->config.shared_dpll = DPLL_ID_PRIVATE;
  2707. }
  2708. static struct intel_shared_dpll *intel_get_shared_dpll(struct intel_crtc *crtc)
  2709. {
  2710. struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
  2711. struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
  2712. enum intel_dpll_id i;
  2713. if (pll) {
  2714. DRM_DEBUG_KMS("CRTC:%d dropping existing %s\n",
  2715. crtc->base.base.id, pll->name);
  2716. intel_put_shared_dpll(crtc);
  2717. }
  2718. if (HAS_PCH_IBX(dev_priv->dev)) {
  2719. /* Ironlake PCH has a fixed PLL->PCH pipe mapping. */
  2720. i = (enum intel_dpll_id) crtc->pipe;
  2721. pll = &dev_priv->shared_dplls[i];
  2722. DRM_DEBUG_KMS("CRTC:%d using pre-allocated %s\n",
  2723. crtc->base.base.id, pll->name);
  2724. goto found;
  2725. }
  2726. for (i = 0; i < dev_priv->num_shared_dpll; i++) {
  2727. pll = &dev_priv->shared_dplls[i];
  2728. /* Only want to check enabled timings first */
  2729. if (pll->refcount == 0)
  2730. continue;
  2731. if (memcmp(&crtc->config.dpll_hw_state, &pll->hw_state,
  2732. sizeof(pll->hw_state)) == 0) {
  2733. DRM_DEBUG_KMS("CRTC:%d sharing existing %s (refcount %d, ative %d)\n",
  2734. crtc->base.base.id,
  2735. pll->name, pll->refcount, pll->active);
  2736. goto found;
  2737. }
  2738. }
  2739. /* Ok no matching timings, maybe there's a free one? */
  2740. for (i = 0; i < dev_priv->num_shared_dpll; i++) {
  2741. pll = &dev_priv->shared_dplls[i];
  2742. if (pll->refcount == 0) {
  2743. DRM_DEBUG_KMS("CRTC:%d allocated %s\n",
  2744. crtc->base.base.id, pll->name);
  2745. goto found;
  2746. }
  2747. }
  2748. return NULL;
  2749. found:
  2750. crtc->config.shared_dpll = i;
  2751. DRM_DEBUG_DRIVER("using %s for pipe %c\n", pll->name,
  2752. pipe_name(crtc->pipe));
  2753. if (pll->active == 0) {
  2754. memcpy(&pll->hw_state, &crtc->config.dpll_hw_state,
  2755. sizeof(pll->hw_state));
  2756. DRM_DEBUG_DRIVER("setting up %s\n", pll->name);
  2757. WARN_ON(pll->on);
  2758. assert_shared_dpll_disabled(dev_priv, pll);
  2759. pll->mode_set(dev_priv, pll);
  2760. }
  2761. pll->refcount++;
  2762. return pll;
  2763. }
  2764. static void cpt_verify_modeset(struct drm_device *dev, int pipe)
  2765. {
  2766. struct drm_i915_private *dev_priv = dev->dev_private;
  2767. int dslreg = PIPEDSL(pipe);
  2768. u32 temp;
  2769. temp = I915_READ(dslreg);
  2770. udelay(500);
  2771. if (wait_for(I915_READ(dslreg) != temp, 5)) {
  2772. if (wait_for(I915_READ(dslreg) != temp, 5))
  2773. DRM_ERROR("mode set failed: pipe %c stuck\n", pipe_name(pipe));
  2774. }
  2775. }
  2776. static void ironlake_pfit_enable(struct intel_crtc *crtc)
  2777. {
  2778. struct drm_device *dev = crtc->base.dev;
  2779. struct drm_i915_private *dev_priv = dev->dev_private;
  2780. int pipe = crtc->pipe;
  2781. if (crtc->config.pch_pfit.size) {
  2782. /* Force use of hard-coded filter coefficients
  2783. * as some pre-programmed values are broken,
  2784. * e.g. x201.
  2785. */
  2786. if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
  2787. I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
  2788. PF_PIPE_SEL_IVB(pipe));
  2789. else
  2790. I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
  2791. I915_WRITE(PF_WIN_POS(pipe), crtc->config.pch_pfit.pos);
  2792. I915_WRITE(PF_WIN_SZ(pipe), crtc->config.pch_pfit.size);
  2793. }
  2794. }
  2795. static void intel_enable_planes(struct drm_crtc *crtc)
  2796. {
  2797. struct drm_device *dev = crtc->dev;
  2798. enum pipe pipe = to_intel_crtc(crtc)->pipe;
  2799. struct intel_plane *intel_plane;
  2800. list_for_each_entry(intel_plane, &dev->mode_config.plane_list, base.head)
  2801. if (intel_plane->pipe == pipe)
  2802. intel_plane_restore(&intel_plane->base);
  2803. }
  2804. static void intel_disable_planes(struct drm_crtc *crtc)
  2805. {
  2806. struct drm_device *dev = crtc->dev;
  2807. enum pipe pipe = to_intel_crtc(crtc)->pipe;
  2808. struct intel_plane *intel_plane;
  2809. list_for_each_entry(intel_plane, &dev->mode_config.plane_list, base.head)
  2810. if (intel_plane->pipe == pipe)
  2811. intel_plane_disable(&intel_plane->base);
  2812. }
  2813. static void ironlake_crtc_enable(struct drm_crtc *crtc)
  2814. {
  2815. struct drm_device *dev = crtc->dev;
  2816. struct drm_i915_private *dev_priv = dev->dev_private;
  2817. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2818. struct intel_encoder *encoder;
  2819. int pipe = intel_crtc->pipe;
  2820. int plane = intel_crtc->plane;
  2821. WARN_ON(!crtc->enabled);
  2822. if (intel_crtc->active)
  2823. return;
  2824. intel_crtc->active = true;
  2825. intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
  2826. intel_set_pch_fifo_underrun_reporting(dev, pipe, true);
  2827. intel_update_watermarks(dev);
  2828. for_each_encoder_on_crtc(dev, crtc, encoder)
  2829. if (encoder->pre_enable)
  2830. encoder->pre_enable(encoder);
  2831. if (intel_crtc->config.has_pch_encoder) {
  2832. /* Note: FDI PLL enabling _must_ be done before we enable the
  2833. * cpu pipes, hence this is separate from all the other fdi/pch
  2834. * enabling. */
  2835. ironlake_fdi_pll_enable(intel_crtc);
  2836. } else {
  2837. assert_fdi_tx_disabled(dev_priv, pipe);
  2838. assert_fdi_rx_disabled(dev_priv, pipe);
  2839. }
  2840. ironlake_pfit_enable(intel_crtc);
  2841. /*
  2842. * On ILK+ LUT must be loaded before the pipe is running but with
  2843. * clocks enabled
  2844. */
  2845. intel_crtc_load_lut(crtc);
  2846. intel_enable_pipe(dev_priv, pipe,
  2847. intel_crtc->config.has_pch_encoder, false);
  2848. intel_enable_plane(dev_priv, plane, pipe);
  2849. intel_enable_planes(crtc);
  2850. intel_crtc_update_cursor(crtc, true);
  2851. if (intel_crtc->config.has_pch_encoder)
  2852. ironlake_pch_enable(crtc);
  2853. mutex_lock(&dev->struct_mutex);
  2854. intel_update_fbc(dev);
  2855. mutex_unlock(&dev->struct_mutex);
  2856. for_each_encoder_on_crtc(dev, crtc, encoder)
  2857. encoder->enable(encoder);
  2858. if (HAS_PCH_CPT(dev))
  2859. cpt_verify_modeset(dev, intel_crtc->pipe);
  2860. /*
  2861. * There seems to be a race in PCH platform hw (at least on some
  2862. * outputs) where an enabled pipe still completes any pageflip right
  2863. * away (as if the pipe is off) instead of waiting for vblank. As soon
  2864. * as the first vblank happend, everything works as expected. Hence just
  2865. * wait for one vblank before returning to avoid strange things
  2866. * happening.
  2867. */
  2868. intel_wait_for_vblank(dev, intel_crtc->pipe);
  2869. }
  2870. /* IPS only exists on ULT machines and is tied to pipe A. */
  2871. static bool hsw_crtc_supports_ips(struct intel_crtc *crtc)
  2872. {
  2873. return HAS_IPS(crtc->base.dev) && crtc->pipe == PIPE_A;
  2874. }
  2875. static void hsw_enable_ips(struct intel_crtc *crtc)
  2876. {
  2877. struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
  2878. if (!crtc->config.ips_enabled)
  2879. return;
  2880. /* We can only enable IPS after we enable a plane and wait for a vblank.
  2881. * We guarantee that the plane is enabled by calling intel_enable_ips
  2882. * only after intel_enable_plane. And intel_enable_plane already waits
  2883. * for a vblank, so all we need to do here is to enable the IPS bit. */
  2884. assert_plane_enabled(dev_priv, crtc->plane);
  2885. I915_WRITE(IPS_CTL, IPS_ENABLE);
  2886. }
  2887. static void hsw_disable_ips(struct intel_crtc *crtc)
  2888. {
  2889. struct drm_device *dev = crtc->base.dev;
  2890. struct drm_i915_private *dev_priv = dev->dev_private;
  2891. if (!crtc->config.ips_enabled)
  2892. return;
  2893. assert_plane_enabled(dev_priv, crtc->plane);
  2894. I915_WRITE(IPS_CTL, 0);
  2895. /* We need to wait for a vblank before we can disable the plane. */
  2896. intel_wait_for_vblank(dev, crtc->pipe);
  2897. }
  2898. static void haswell_crtc_enable(struct drm_crtc *crtc)
  2899. {
  2900. struct drm_device *dev = crtc->dev;
  2901. struct drm_i915_private *dev_priv = dev->dev_private;
  2902. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2903. struct intel_encoder *encoder;
  2904. int pipe = intel_crtc->pipe;
  2905. int plane = intel_crtc->plane;
  2906. WARN_ON(!crtc->enabled);
  2907. if (intel_crtc->active)
  2908. return;
  2909. intel_crtc->active = true;
  2910. intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
  2911. if (intel_crtc->config.has_pch_encoder)
  2912. intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, true);
  2913. intel_update_watermarks(dev);
  2914. if (intel_crtc->config.has_pch_encoder)
  2915. dev_priv->display.fdi_link_train(crtc);
  2916. for_each_encoder_on_crtc(dev, crtc, encoder)
  2917. if (encoder->pre_enable)
  2918. encoder->pre_enable(encoder);
  2919. intel_ddi_enable_pipe_clock(intel_crtc);
  2920. ironlake_pfit_enable(intel_crtc);
  2921. /*
  2922. * On ILK+ LUT must be loaded before the pipe is running but with
  2923. * clocks enabled
  2924. */
  2925. intel_crtc_load_lut(crtc);
  2926. intel_ddi_set_pipe_settings(crtc);
  2927. intel_ddi_enable_transcoder_func(crtc);
  2928. intel_enable_pipe(dev_priv, pipe,
  2929. intel_crtc->config.has_pch_encoder, false);
  2930. intel_enable_plane(dev_priv, plane, pipe);
  2931. intel_enable_planes(crtc);
  2932. intel_crtc_update_cursor(crtc, true);
  2933. hsw_enable_ips(intel_crtc);
  2934. if (intel_crtc->config.has_pch_encoder)
  2935. lpt_pch_enable(crtc);
  2936. mutex_lock(&dev->struct_mutex);
  2937. intel_update_fbc(dev);
  2938. mutex_unlock(&dev->struct_mutex);
  2939. for_each_encoder_on_crtc(dev, crtc, encoder) {
  2940. encoder->enable(encoder);
  2941. intel_opregion_notify_encoder(encoder, true);
  2942. }
  2943. /*
  2944. * There seems to be a race in PCH platform hw (at least on some
  2945. * outputs) where an enabled pipe still completes any pageflip right
  2946. * away (as if the pipe is off) instead of waiting for vblank. As soon
  2947. * as the first vblank happend, everything works as expected. Hence just
  2948. * wait for one vblank before returning to avoid strange things
  2949. * happening.
  2950. */
  2951. intel_wait_for_vblank(dev, intel_crtc->pipe);
  2952. }
  2953. static void ironlake_pfit_disable(struct intel_crtc *crtc)
  2954. {
  2955. struct drm_device *dev = crtc->base.dev;
  2956. struct drm_i915_private *dev_priv = dev->dev_private;
  2957. int pipe = crtc->pipe;
  2958. /* To avoid upsetting the power well on haswell only disable the pfit if
  2959. * it's in use. The hw state code will make sure we get this right. */
  2960. if (crtc->config.pch_pfit.size) {
  2961. I915_WRITE(PF_CTL(pipe), 0);
  2962. I915_WRITE(PF_WIN_POS(pipe), 0);
  2963. I915_WRITE(PF_WIN_SZ(pipe), 0);
  2964. }
  2965. }
  2966. static void ironlake_crtc_disable(struct drm_crtc *crtc)
  2967. {
  2968. struct drm_device *dev = crtc->dev;
  2969. struct drm_i915_private *dev_priv = dev->dev_private;
  2970. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2971. struct intel_encoder *encoder;
  2972. int pipe = intel_crtc->pipe;
  2973. int plane = intel_crtc->plane;
  2974. u32 reg, temp;
  2975. if (!intel_crtc->active)
  2976. return;
  2977. for_each_encoder_on_crtc(dev, crtc, encoder)
  2978. encoder->disable(encoder);
  2979. intel_crtc_wait_for_pending_flips(crtc);
  2980. drm_vblank_off(dev, pipe);
  2981. if (dev_priv->fbc.plane == plane)
  2982. intel_disable_fbc(dev);
  2983. intel_crtc_update_cursor(crtc, false);
  2984. intel_disable_planes(crtc);
  2985. intel_disable_plane(dev_priv, plane, pipe);
  2986. if (intel_crtc->config.has_pch_encoder)
  2987. intel_set_pch_fifo_underrun_reporting(dev, pipe, false);
  2988. intel_disable_pipe(dev_priv, pipe);
  2989. ironlake_pfit_disable(intel_crtc);
  2990. for_each_encoder_on_crtc(dev, crtc, encoder)
  2991. if (encoder->post_disable)
  2992. encoder->post_disable(encoder);
  2993. if (intel_crtc->config.has_pch_encoder) {
  2994. ironlake_fdi_disable(crtc);
  2995. ironlake_disable_pch_transcoder(dev_priv, pipe);
  2996. intel_set_pch_fifo_underrun_reporting(dev, pipe, true);
  2997. if (HAS_PCH_CPT(dev)) {
  2998. /* disable TRANS_DP_CTL */
  2999. reg = TRANS_DP_CTL(pipe);
  3000. temp = I915_READ(reg);
  3001. temp &= ~(TRANS_DP_OUTPUT_ENABLE |
  3002. TRANS_DP_PORT_SEL_MASK);
  3003. temp |= TRANS_DP_PORT_SEL_NONE;
  3004. I915_WRITE(reg, temp);
  3005. /* disable DPLL_SEL */
  3006. temp = I915_READ(PCH_DPLL_SEL);
  3007. temp &= ~(TRANS_DPLL_ENABLE(pipe) | TRANS_DPLLB_SEL(pipe));
  3008. I915_WRITE(PCH_DPLL_SEL, temp);
  3009. }
  3010. /* disable PCH DPLL */
  3011. intel_disable_shared_dpll(intel_crtc);
  3012. ironlake_fdi_pll_disable(intel_crtc);
  3013. }
  3014. intel_crtc->active = false;
  3015. intel_update_watermarks(dev);
  3016. mutex_lock(&dev->struct_mutex);
  3017. intel_update_fbc(dev);
  3018. mutex_unlock(&dev->struct_mutex);
  3019. }
  3020. static void haswell_crtc_disable(struct drm_crtc *crtc)
  3021. {
  3022. struct drm_device *dev = crtc->dev;
  3023. struct drm_i915_private *dev_priv = dev->dev_private;
  3024. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3025. struct intel_encoder *encoder;
  3026. int pipe = intel_crtc->pipe;
  3027. int plane = intel_crtc->plane;
  3028. enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
  3029. if (!intel_crtc->active)
  3030. return;
  3031. for_each_encoder_on_crtc(dev, crtc, encoder) {
  3032. intel_opregion_notify_encoder(encoder, false);
  3033. encoder->disable(encoder);
  3034. }
  3035. intel_crtc_wait_for_pending_flips(crtc);
  3036. drm_vblank_off(dev, pipe);
  3037. /* FBC must be disabled before disabling the plane on HSW. */
  3038. if (dev_priv->fbc.plane == plane)
  3039. intel_disable_fbc(dev);
  3040. hsw_disable_ips(intel_crtc);
  3041. intel_crtc_update_cursor(crtc, false);
  3042. intel_disable_planes(crtc);
  3043. intel_disable_plane(dev_priv, plane, pipe);
  3044. if (intel_crtc->config.has_pch_encoder)
  3045. intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, false);
  3046. intel_disable_pipe(dev_priv, pipe);
  3047. intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
  3048. ironlake_pfit_disable(intel_crtc);
  3049. intel_ddi_disable_pipe_clock(intel_crtc);
  3050. for_each_encoder_on_crtc(dev, crtc, encoder)
  3051. if (encoder->post_disable)
  3052. encoder->post_disable(encoder);
  3053. if (intel_crtc->config.has_pch_encoder) {
  3054. lpt_disable_pch_transcoder(dev_priv);
  3055. intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, true);
  3056. intel_ddi_fdi_disable(crtc);
  3057. }
  3058. intel_crtc->active = false;
  3059. intel_update_watermarks(dev);
  3060. mutex_lock(&dev->struct_mutex);
  3061. intel_update_fbc(dev);
  3062. mutex_unlock(&dev->struct_mutex);
  3063. }
  3064. static void ironlake_crtc_off(struct drm_crtc *crtc)
  3065. {
  3066. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3067. intel_put_shared_dpll(intel_crtc);
  3068. }
  3069. static void haswell_crtc_off(struct drm_crtc *crtc)
  3070. {
  3071. intel_ddi_put_crtc_pll(crtc);
  3072. }
  3073. static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
  3074. {
  3075. if (!enable && intel_crtc->overlay) {
  3076. struct drm_device *dev = intel_crtc->base.dev;
  3077. struct drm_i915_private *dev_priv = dev->dev_private;
  3078. mutex_lock(&dev->struct_mutex);
  3079. dev_priv->mm.interruptible = false;
  3080. (void) intel_overlay_switch_off(intel_crtc->overlay);
  3081. dev_priv->mm.interruptible = true;
  3082. mutex_unlock(&dev->struct_mutex);
  3083. }
  3084. /* Let userspace switch the overlay on again. In most cases userspace
  3085. * has to recompute where to put it anyway.
  3086. */
  3087. }
  3088. /**
  3089. * i9xx_fixup_plane - ugly workaround for G45 to fire up the hardware
  3090. * cursor plane briefly if not already running after enabling the display
  3091. * plane.
  3092. * This workaround avoids occasional blank screens when self refresh is
  3093. * enabled.
  3094. */
  3095. static void
  3096. g4x_fixup_plane(struct drm_i915_private *dev_priv, enum pipe pipe)
  3097. {
  3098. u32 cntl = I915_READ(CURCNTR(pipe));
  3099. if ((cntl & CURSOR_MODE) == 0) {
  3100. u32 fw_bcl_self = I915_READ(FW_BLC_SELF);
  3101. I915_WRITE(FW_BLC_SELF, fw_bcl_self & ~FW_BLC_SELF_EN);
  3102. I915_WRITE(CURCNTR(pipe), CURSOR_MODE_64_ARGB_AX);
  3103. intel_wait_for_vblank(dev_priv->dev, pipe);
  3104. I915_WRITE(CURCNTR(pipe), cntl);
  3105. I915_WRITE(CURBASE(pipe), I915_READ(CURBASE(pipe)));
  3106. I915_WRITE(FW_BLC_SELF, fw_bcl_self);
  3107. }
  3108. }
  3109. static void i9xx_pfit_enable(struct intel_crtc *crtc)
  3110. {
  3111. struct drm_device *dev = crtc->base.dev;
  3112. struct drm_i915_private *dev_priv = dev->dev_private;
  3113. struct intel_crtc_config *pipe_config = &crtc->config;
  3114. if (!crtc->config.gmch_pfit.control)
  3115. return;
  3116. /*
  3117. * The panel fitter should only be adjusted whilst the pipe is disabled,
  3118. * according to register description and PRM.
  3119. */
  3120. WARN_ON(I915_READ(PFIT_CONTROL) & PFIT_ENABLE);
  3121. assert_pipe_disabled(dev_priv, crtc->pipe);
  3122. I915_WRITE(PFIT_PGM_RATIOS, pipe_config->gmch_pfit.pgm_ratios);
  3123. I915_WRITE(PFIT_CONTROL, pipe_config->gmch_pfit.control);
  3124. /* Border color in case we don't scale up to the full screen. Black by
  3125. * default, change to something else for debugging. */
  3126. I915_WRITE(BCLRPAT(crtc->pipe), 0);
  3127. }
  3128. static void valleyview_crtc_enable(struct drm_crtc *crtc)
  3129. {
  3130. struct drm_device *dev = crtc->dev;
  3131. struct drm_i915_private *dev_priv = dev->dev_private;
  3132. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3133. struct intel_encoder *encoder;
  3134. int pipe = intel_crtc->pipe;
  3135. int plane = intel_crtc->plane;
  3136. bool is_dsi;
  3137. WARN_ON(!crtc->enabled);
  3138. if (intel_crtc->active)
  3139. return;
  3140. intel_crtc->active = true;
  3141. intel_update_watermarks(dev);
  3142. for_each_encoder_on_crtc(dev, crtc, encoder)
  3143. if (encoder->pre_pll_enable)
  3144. encoder->pre_pll_enable(encoder);
  3145. is_dsi = intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI);
  3146. if (!is_dsi)
  3147. vlv_enable_pll(intel_crtc);
  3148. for_each_encoder_on_crtc(dev, crtc, encoder)
  3149. if (encoder->pre_enable)
  3150. encoder->pre_enable(encoder);
  3151. i9xx_pfit_enable(intel_crtc);
  3152. intel_crtc_load_lut(crtc);
  3153. intel_enable_pipe(dev_priv, pipe, false, is_dsi);
  3154. intel_enable_plane(dev_priv, plane, pipe);
  3155. intel_enable_planes(crtc);
  3156. intel_crtc_update_cursor(crtc, true);
  3157. intel_update_fbc(dev);
  3158. for_each_encoder_on_crtc(dev, crtc, encoder)
  3159. encoder->enable(encoder);
  3160. }
  3161. static void i9xx_crtc_enable(struct drm_crtc *crtc)
  3162. {
  3163. struct drm_device *dev = crtc->dev;
  3164. struct drm_i915_private *dev_priv = dev->dev_private;
  3165. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3166. struct intel_encoder *encoder;
  3167. int pipe = intel_crtc->pipe;
  3168. int plane = intel_crtc->plane;
  3169. WARN_ON(!crtc->enabled);
  3170. if (intel_crtc->active)
  3171. return;
  3172. intel_crtc->active = true;
  3173. intel_update_watermarks(dev);
  3174. for_each_encoder_on_crtc(dev, crtc, encoder)
  3175. if (encoder->pre_enable)
  3176. encoder->pre_enable(encoder);
  3177. i9xx_enable_pll(intel_crtc);
  3178. i9xx_pfit_enable(intel_crtc);
  3179. intel_crtc_load_lut(crtc);
  3180. intel_enable_pipe(dev_priv, pipe, false, false);
  3181. intel_enable_plane(dev_priv, plane, pipe);
  3182. intel_enable_planes(crtc);
  3183. /* The fixup needs to happen before cursor is enabled */
  3184. if (IS_G4X(dev))
  3185. g4x_fixup_plane(dev_priv, pipe);
  3186. intel_crtc_update_cursor(crtc, true);
  3187. /* Give the overlay scaler a chance to enable if it's on this pipe */
  3188. intel_crtc_dpms_overlay(intel_crtc, true);
  3189. intel_update_fbc(dev);
  3190. for_each_encoder_on_crtc(dev, crtc, encoder)
  3191. encoder->enable(encoder);
  3192. }
  3193. static void i9xx_pfit_disable(struct intel_crtc *crtc)
  3194. {
  3195. struct drm_device *dev = crtc->base.dev;
  3196. struct drm_i915_private *dev_priv = dev->dev_private;
  3197. if (!crtc->config.gmch_pfit.control)
  3198. return;
  3199. assert_pipe_disabled(dev_priv, crtc->pipe);
  3200. DRM_DEBUG_DRIVER("disabling pfit, current: 0x%08x\n",
  3201. I915_READ(PFIT_CONTROL));
  3202. I915_WRITE(PFIT_CONTROL, 0);
  3203. }
  3204. static void i9xx_crtc_disable(struct drm_crtc *crtc)
  3205. {
  3206. struct drm_device *dev = crtc->dev;
  3207. struct drm_i915_private *dev_priv = dev->dev_private;
  3208. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3209. struct intel_encoder *encoder;
  3210. int pipe = intel_crtc->pipe;
  3211. int plane = intel_crtc->plane;
  3212. if (!intel_crtc->active)
  3213. return;
  3214. for_each_encoder_on_crtc(dev, crtc, encoder)
  3215. encoder->disable(encoder);
  3216. /* Give the overlay scaler a chance to disable if it's on this pipe */
  3217. intel_crtc_wait_for_pending_flips(crtc);
  3218. drm_vblank_off(dev, pipe);
  3219. if (dev_priv->fbc.plane == plane)
  3220. intel_disable_fbc(dev);
  3221. intel_crtc_dpms_overlay(intel_crtc, false);
  3222. intel_crtc_update_cursor(crtc, false);
  3223. intel_disable_planes(crtc);
  3224. intel_disable_plane(dev_priv, plane, pipe);
  3225. intel_disable_pipe(dev_priv, pipe);
  3226. i9xx_pfit_disable(intel_crtc);
  3227. for_each_encoder_on_crtc(dev, crtc, encoder)
  3228. if (encoder->post_disable)
  3229. encoder->post_disable(encoder);
  3230. if (!intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI))
  3231. i9xx_disable_pll(dev_priv, pipe);
  3232. intel_crtc->active = false;
  3233. intel_update_fbc(dev);
  3234. intel_update_watermarks(dev);
  3235. }
  3236. static void i9xx_crtc_off(struct drm_crtc *crtc)
  3237. {
  3238. }
  3239. static void intel_crtc_update_sarea(struct drm_crtc *crtc,
  3240. bool enabled)
  3241. {
  3242. struct drm_device *dev = crtc->dev;
  3243. struct drm_i915_master_private *master_priv;
  3244. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3245. int pipe = intel_crtc->pipe;
  3246. if (!dev->primary->master)
  3247. return;
  3248. master_priv = dev->primary->master->driver_priv;
  3249. if (!master_priv->sarea_priv)
  3250. return;
  3251. switch (pipe) {
  3252. case 0:
  3253. master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
  3254. master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
  3255. break;
  3256. case 1:
  3257. master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
  3258. master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
  3259. break;
  3260. default:
  3261. DRM_ERROR("Can't update pipe %c in SAREA\n", pipe_name(pipe));
  3262. break;
  3263. }
  3264. }
  3265. /**
  3266. * Sets the power management mode of the pipe and plane.
  3267. */
  3268. void intel_crtc_update_dpms(struct drm_crtc *crtc)
  3269. {
  3270. struct drm_device *dev = crtc->dev;
  3271. struct drm_i915_private *dev_priv = dev->dev_private;
  3272. struct intel_encoder *intel_encoder;
  3273. bool enable = false;
  3274. for_each_encoder_on_crtc(dev, crtc, intel_encoder)
  3275. enable |= intel_encoder->connectors_active;
  3276. if (enable)
  3277. dev_priv->display.crtc_enable(crtc);
  3278. else
  3279. dev_priv->display.crtc_disable(crtc);
  3280. intel_crtc_update_sarea(crtc, enable);
  3281. }
  3282. static void intel_crtc_disable(struct drm_crtc *crtc)
  3283. {
  3284. struct drm_device *dev = crtc->dev;
  3285. struct drm_connector *connector;
  3286. struct drm_i915_private *dev_priv = dev->dev_private;
  3287. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3288. /* crtc should still be enabled when we disable it. */
  3289. WARN_ON(!crtc->enabled);
  3290. dev_priv->display.crtc_disable(crtc);
  3291. intel_crtc->eld_vld = false;
  3292. intel_crtc_update_sarea(crtc, false);
  3293. dev_priv->display.off(crtc);
  3294. assert_plane_disabled(dev->dev_private, to_intel_crtc(crtc)->plane);
  3295. assert_pipe_disabled(dev->dev_private, to_intel_crtc(crtc)->pipe);
  3296. if (crtc->fb) {
  3297. mutex_lock(&dev->struct_mutex);
  3298. intel_unpin_fb_obj(to_intel_framebuffer(crtc->fb)->obj);
  3299. mutex_unlock(&dev->struct_mutex);
  3300. crtc->fb = NULL;
  3301. }
  3302. /* Update computed state. */
  3303. list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
  3304. if (!connector->encoder || !connector->encoder->crtc)
  3305. continue;
  3306. if (connector->encoder->crtc != crtc)
  3307. continue;
  3308. connector->dpms = DRM_MODE_DPMS_OFF;
  3309. to_intel_encoder(connector->encoder)->connectors_active = false;
  3310. }
  3311. }
  3312. void intel_encoder_destroy(struct drm_encoder *encoder)
  3313. {
  3314. struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
  3315. drm_encoder_cleanup(encoder);
  3316. kfree(intel_encoder);
  3317. }
  3318. /* Simple dpms helper for encoders with just one connector, no cloning and only
  3319. * one kind of off state. It clamps all !ON modes to fully OFF and changes the
  3320. * state of the entire output pipe. */
  3321. static void intel_encoder_dpms(struct intel_encoder *encoder, int mode)
  3322. {
  3323. if (mode == DRM_MODE_DPMS_ON) {
  3324. encoder->connectors_active = true;
  3325. intel_crtc_update_dpms(encoder->base.crtc);
  3326. } else {
  3327. encoder->connectors_active = false;
  3328. intel_crtc_update_dpms(encoder->base.crtc);
  3329. }
  3330. }
  3331. /* Cross check the actual hw state with our own modeset state tracking (and it's
  3332. * internal consistency). */
  3333. static void intel_connector_check_state(struct intel_connector *connector)
  3334. {
  3335. if (connector->get_hw_state(connector)) {
  3336. struct intel_encoder *encoder = connector->encoder;
  3337. struct drm_crtc *crtc;
  3338. bool encoder_enabled;
  3339. enum pipe pipe;
  3340. DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
  3341. connector->base.base.id,
  3342. drm_get_connector_name(&connector->base));
  3343. WARN(connector->base.dpms == DRM_MODE_DPMS_OFF,
  3344. "wrong connector dpms state\n");
  3345. WARN(connector->base.encoder != &encoder->base,
  3346. "active connector not linked to encoder\n");
  3347. WARN(!encoder->connectors_active,
  3348. "encoder->connectors_active not set\n");
  3349. encoder_enabled = encoder->get_hw_state(encoder, &pipe);
  3350. WARN(!encoder_enabled, "encoder not enabled\n");
  3351. if (WARN_ON(!encoder->base.crtc))
  3352. return;
  3353. crtc = encoder->base.crtc;
  3354. WARN(!crtc->enabled, "crtc not enabled\n");
  3355. WARN(!to_intel_crtc(crtc)->active, "crtc not active\n");
  3356. WARN(pipe != to_intel_crtc(crtc)->pipe,
  3357. "encoder active on the wrong pipe\n");
  3358. }
  3359. }
  3360. /* Even simpler default implementation, if there's really no special case to
  3361. * consider. */
  3362. void intel_connector_dpms(struct drm_connector *connector, int mode)
  3363. {
  3364. struct intel_encoder *encoder = intel_attached_encoder(connector);
  3365. /* All the simple cases only support two dpms states. */
  3366. if (mode != DRM_MODE_DPMS_ON)
  3367. mode = DRM_MODE_DPMS_OFF;
  3368. if (mode == connector->dpms)
  3369. return;
  3370. connector->dpms = mode;
  3371. /* Only need to change hw state when actually enabled */
  3372. if (encoder->base.crtc)
  3373. intel_encoder_dpms(encoder, mode);
  3374. else
  3375. WARN_ON(encoder->connectors_active != false);
  3376. intel_modeset_check_state(connector->dev);
  3377. }
  3378. /* Simple connector->get_hw_state implementation for encoders that support only
  3379. * one connector and no cloning and hence the encoder state determines the state
  3380. * of the connector. */
  3381. bool intel_connector_get_hw_state(struct intel_connector *connector)
  3382. {
  3383. enum pipe pipe = 0;
  3384. struct intel_encoder *encoder = connector->encoder;
  3385. return encoder->get_hw_state(encoder, &pipe);
  3386. }
  3387. static bool ironlake_check_fdi_lanes(struct drm_device *dev, enum pipe pipe,
  3388. struct intel_crtc_config *pipe_config)
  3389. {
  3390. struct drm_i915_private *dev_priv = dev->dev_private;
  3391. struct intel_crtc *pipe_B_crtc =
  3392. to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
  3393. DRM_DEBUG_KMS("checking fdi config on pipe %c, lanes %i\n",
  3394. pipe_name(pipe), pipe_config->fdi_lanes);
  3395. if (pipe_config->fdi_lanes > 4) {
  3396. DRM_DEBUG_KMS("invalid fdi lane config on pipe %c: %i lanes\n",
  3397. pipe_name(pipe), pipe_config->fdi_lanes);
  3398. return false;
  3399. }
  3400. if (IS_HASWELL(dev)) {
  3401. if (pipe_config->fdi_lanes > 2) {
  3402. DRM_DEBUG_KMS("only 2 lanes on haswell, required: %i lanes\n",
  3403. pipe_config->fdi_lanes);
  3404. return false;
  3405. } else {
  3406. return true;
  3407. }
  3408. }
  3409. if (INTEL_INFO(dev)->num_pipes == 2)
  3410. return true;
  3411. /* Ivybridge 3 pipe is really complicated */
  3412. switch (pipe) {
  3413. case PIPE_A:
  3414. return true;
  3415. case PIPE_B:
  3416. if (dev_priv->pipe_to_crtc_mapping[PIPE_C]->enabled &&
  3417. pipe_config->fdi_lanes > 2) {
  3418. DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
  3419. pipe_name(pipe), pipe_config->fdi_lanes);
  3420. return false;
  3421. }
  3422. return true;
  3423. case PIPE_C:
  3424. if (!pipe_has_enabled_pch(pipe_B_crtc) ||
  3425. pipe_B_crtc->config.fdi_lanes <= 2) {
  3426. if (pipe_config->fdi_lanes > 2) {
  3427. DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
  3428. pipe_name(pipe), pipe_config->fdi_lanes);
  3429. return false;
  3430. }
  3431. } else {
  3432. DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
  3433. return false;
  3434. }
  3435. return true;
  3436. default:
  3437. BUG();
  3438. }
  3439. }
  3440. #define RETRY 1
  3441. static int ironlake_fdi_compute_config(struct intel_crtc *intel_crtc,
  3442. struct intel_crtc_config *pipe_config)
  3443. {
  3444. struct drm_device *dev = intel_crtc->base.dev;
  3445. struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
  3446. int lane, link_bw, fdi_dotclock;
  3447. bool setup_ok, needs_recompute = false;
  3448. retry:
  3449. /* FDI is a binary signal running at ~2.7GHz, encoding
  3450. * each output octet as 10 bits. The actual frequency
  3451. * is stored as a divider into a 100MHz clock, and the
  3452. * mode pixel clock is stored in units of 1KHz.
  3453. * Hence the bw of each lane in terms of the mode signal
  3454. * is:
  3455. */
  3456. link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
  3457. fdi_dotclock = adjusted_mode->clock;
  3458. fdi_dotclock /= pipe_config->pixel_multiplier;
  3459. lane = ironlake_get_lanes_required(fdi_dotclock, link_bw,
  3460. pipe_config->pipe_bpp);
  3461. pipe_config->fdi_lanes = lane;
  3462. intel_link_compute_m_n(pipe_config->pipe_bpp, lane, fdi_dotclock,
  3463. link_bw, &pipe_config->fdi_m_n);
  3464. setup_ok = ironlake_check_fdi_lanes(intel_crtc->base.dev,
  3465. intel_crtc->pipe, pipe_config);
  3466. if (!setup_ok && pipe_config->pipe_bpp > 6*3) {
  3467. pipe_config->pipe_bpp -= 2*3;
  3468. DRM_DEBUG_KMS("fdi link bw constraint, reducing pipe bpp to %i\n",
  3469. pipe_config->pipe_bpp);
  3470. needs_recompute = true;
  3471. pipe_config->bw_constrained = true;
  3472. goto retry;
  3473. }
  3474. if (needs_recompute)
  3475. return RETRY;
  3476. return setup_ok ? 0 : -EINVAL;
  3477. }
  3478. static void hsw_compute_ips_config(struct intel_crtc *crtc,
  3479. struct intel_crtc_config *pipe_config)
  3480. {
  3481. pipe_config->ips_enabled = i915_enable_ips &&
  3482. hsw_crtc_supports_ips(crtc) &&
  3483. pipe_config->pipe_bpp <= 24;
  3484. }
  3485. static int intel_crtc_compute_config(struct intel_crtc *crtc,
  3486. struct intel_crtc_config *pipe_config)
  3487. {
  3488. struct drm_device *dev = crtc->base.dev;
  3489. struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
  3490. if (HAS_PCH_SPLIT(dev)) {
  3491. /* FDI link clock is fixed at 2.7G */
  3492. if (pipe_config->requested_mode.clock * 3
  3493. > IRONLAKE_FDI_FREQ * 4)
  3494. return -EINVAL;
  3495. }
  3496. /* Cantiga+ cannot handle modes with a hsync front porch of 0.
  3497. * WaPruneModeWithIncorrectHsyncOffset:ctg,elk,ilk,snb,ivb,vlv,hsw.
  3498. */
  3499. if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
  3500. adjusted_mode->hsync_start == adjusted_mode->hdisplay)
  3501. return -EINVAL;
  3502. if ((IS_G4X(dev) || IS_VALLEYVIEW(dev)) && pipe_config->pipe_bpp > 10*3) {
  3503. pipe_config->pipe_bpp = 10*3; /* 12bpc is gen5+ */
  3504. } else if (INTEL_INFO(dev)->gen <= 4 && pipe_config->pipe_bpp > 8*3) {
  3505. /* only a 8bpc pipe, with 6bpc dither through the panel fitter
  3506. * for lvds. */
  3507. pipe_config->pipe_bpp = 8*3;
  3508. }
  3509. if (HAS_IPS(dev))
  3510. hsw_compute_ips_config(crtc, pipe_config);
  3511. /* XXX: PCH clock sharing is done in ->mode_set, so make sure the old
  3512. * clock survives for now. */
  3513. if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
  3514. pipe_config->shared_dpll = crtc->config.shared_dpll;
  3515. if (pipe_config->has_pch_encoder)
  3516. return ironlake_fdi_compute_config(crtc, pipe_config);
  3517. return 0;
  3518. }
  3519. static int valleyview_get_display_clock_speed(struct drm_device *dev)
  3520. {
  3521. return 400000; /* FIXME */
  3522. }
  3523. static int i945_get_display_clock_speed(struct drm_device *dev)
  3524. {
  3525. return 400000;
  3526. }
  3527. static int i915_get_display_clock_speed(struct drm_device *dev)
  3528. {
  3529. return 333000;
  3530. }
  3531. static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
  3532. {
  3533. return 200000;
  3534. }
  3535. static int pnv_get_display_clock_speed(struct drm_device *dev)
  3536. {
  3537. u16 gcfgc = 0;
  3538. pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
  3539. switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
  3540. case GC_DISPLAY_CLOCK_267_MHZ_PNV:
  3541. return 267000;
  3542. case GC_DISPLAY_CLOCK_333_MHZ_PNV:
  3543. return 333000;
  3544. case GC_DISPLAY_CLOCK_444_MHZ_PNV:
  3545. return 444000;
  3546. case GC_DISPLAY_CLOCK_200_MHZ_PNV:
  3547. return 200000;
  3548. default:
  3549. DRM_ERROR("Unknown pnv display core clock 0x%04x\n", gcfgc);
  3550. case GC_DISPLAY_CLOCK_133_MHZ_PNV:
  3551. return 133000;
  3552. case GC_DISPLAY_CLOCK_167_MHZ_PNV:
  3553. return 167000;
  3554. }
  3555. }
  3556. static int i915gm_get_display_clock_speed(struct drm_device *dev)
  3557. {
  3558. u16 gcfgc = 0;
  3559. pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
  3560. if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
  3561. return 133000;
  3562. else {
  3563. switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
  3564. case GC_DISPLAY_CLOCK_333_MHZ:
  3565. return 333000;
  3566. default:
  3567. case GC_DISPLAY_CLOCK_190_200_MHZ:
  3568. return 190000;
  3569. }
  3570. }
  3571. }
  3572. static int i865_get_display_clock_speed(struct drm_device *dev)
  3573. {
  3574. return 266000;
  3575. }
  3576. static int i855_get_display_clock_speed(struct drm_device *dev)
  3577. {
  3578. u16 hpllcc = 0;
  3579. /* Assume that the hardware is in the high speed state. This
  3580. * should be the default.
  3581. */
  3582. switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
  3583. case GC_CLOCK_133_200:
  3584. case GC_CLOCK_100_200:
  3585. return 200000;
  3586. case GC_CLOCK_166_250:
  3587. return 250000;
  3588. case GC_CLOCK_100_133:
  3589. return 133000;
  3590. }
  3591. /* Shouldn't happen */
  3592. return 0;
  3593. }
  3594. static int i830_get_display_clock_speed(struct drm_device *dev)
  3595. {
  3596. return 133000;
  3597. }
  3598. static void
  3599. intel_reduce_m_n_ratio(uint32_t *num, uint32_t *den)
  3600. {
  3601. while (*num > DATA_LINK_M_N_MASK ||
  3602. *den > DATA_LINK_M_N_MASK) {
  3603. *num >>= 1;
  3604. *den >>= 1;
  3605. }
  3606. }
  3607. static void compute_m_n(unsigned int m, unsigned int n,
  3608. uint32_t *ret_m, uint32_t *ret_n)
  3609. {
  3610. *ret_n = min_t(unsigned int, roundup_pow_of_two(n), DATA_LINK_N_MAX);
  3611. *ret_m = div_u64((uint64_t) m * *ret_n, n);
  3612. intel_reduce_m_n_ratio(ret_m, ret_n);
  3613. }
  3614. void
  3615. intel_link_compute_m_n(int bits_per_pixel, int nlanes,
  3616. int pixel_clock, int link_clock,
  3617. struct intel_link_m_n *m_n)
  3618. {
  3619. m_n->tu = 64;
  3620. compute_m_n(bits_per_pixel * pixel_clock,
  3621. link_clock * nlanes * 8,
  3622. &m_n->gmch_m, &m_n->gmch_n);
  3623. compute_m_n(pixel_clock, link_clock,
  3624. &m_n->link_m, &m_n->link_n);
  3625. }
  3626. static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
  3627. {
  3628. if (i915_panel_use_ssc >= 0)
  3629. return i915_panel_use_ssc != 0;
  3630. return dev_priv->vbt.lvds_use_ssc
  3631. && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
  3632. }
  3633. static int vlv_get_refclk(struct drm_crtc *crtc)
  3634. {
  3635. struct drm_device *dev = crtc->dev;
  3636. struct drm_i915_private *dev_priv = dev->dev_private;
  3637. int refclk = 27000; /* for DP & HDMI */
  3638. return 100000; /* only one validated so far */
  3639. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
  3640. refclk = 96000;
  3641. } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  3642. if (intel_panel_use_ssc(dev_priv))
  3643. refclk = 100000;
  3644. else
  3645. refclk = 96000;
  3646. } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP)) {
  3647. refclk = 100000;
  3648. }
  3649. return refclk;
  3650. }
  3651. static int i9xx_get_refclk(struct drm_crtc *crtc, int num_connectors)
  3652. {
  3653. struct drm_device *dev = crtc->dev;
  3654. struct drm_i915_private *dev_priv = dev->dev_private;
  3655. int refclk;
  3656. if (IS_VALLEYVIEW(dev)) {
  3657. refclk = vlv_get_refclk(crtc);
  3658. } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
  3659. intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
  3660. refclk = dev_priv->vbt.lvds_ssc_freq * 1000;
  3661. DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
  3662. refclk / 1000);
  3663. } else if (!IS_GEN2(dev)) {
  3664. refclk = 96000;
  3665. } else {
  3666. refclk = 48000;
  3667. }
  3668. return refclk;
  3669. }
  3670. static uint32_t pnv_dpll_compute_fp(struct dpll *dpll)
  3671. {
  3672. return (1 << dpll->n) << 16 | dpll->m2;
  3673. }
  3674. static uint32_t i9xx_dpll_compute_fp(struct dpll *dpll)
  3675. {
  3676. return dpll->n << 16 | dpll->m1 << 8 | dpll->m2;
  3677. }
  3678. static void i9xx_update_pll_dividers(struct intel_crtc *crtc,
  3679. intel_clock_t *reduced_clock)
  3680. {
  3681. struct drm_device *dev = crtc->base.dev;
  3682. struct drm_i915_private *dev_priv = dev->dev_private;
  3683. int pipe = crtc->pipe;
  3684. u32 fp, fp2 = 0;
  3685. if (IS_PINEVIEW(dev)) {
  3686. fp = pnv_dpll_compute_fp(&crtc->config.dpll);
  3687. if (reduced_clock)
  3688. fp2 = pnv_dpll_compute_fp(reduced_clock);
  3689. } else {
  3690. fp = i9xx_dpll_compute_fp(&crtc->config.dpll);
  3691. if (reduced_clock)
  3692. fp2 = i9xx_dpll_compute_fp(reduced_clock);
  3693. }
  3694. I915_WRITE(FP0(pipe), fp);
  3695. crtc->config.dpll_hw_state.fp0 = fp;
  3696. crtc->lowfreq_avail = false;
  3697. if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
  3698. reduced_clock && i915_powersave) {
  3699. I915_WRITE(FP1(pipe), fp2);
  3700. crtc->config.dpll_hw_state.fp1 = fp2;
  3701. crtc->lowfreq_avail = true;
  3702. } else {
  3703. I915_WRITE(FP1(pipe), fp);
  3704. crtc->config.dpll_hw_state.fp1 = fp;
  3705. }
  3706. }
  3707. static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv)
  3708. {
  3709. u32 reg_val;
  3710. /*
  3711. * PLLB opamp always calibrates to max value of 0x3f, force enable it
  3712. * and set it to a reasonable value instead.
  3713. */
  3714. reg_val = vlv_dpio_read(dev_priv, DPIO_IREF(1));
  3715. reg_val &= 0xffffff00;
  3716. reg_val |= 0x00000030;
  3717. vlv_dpio_write(dev_priv, DPIO_IREF(1), reg_val);
  3718. reg_val = vlv_dpio_read(dev_priv, DPIO_CALIBRATION);
  3719. reg_val &= 0x8cffffff;
  3720. reg_val = 0x8c000000;
  3721. vlv_dpio_write(dev_priv, DPIO_CALIBRATION, reg_val);
  3722. reg_val = vlv_dpio_read(dev_priv, DPIO_IREF(1));
  3723. reg_val &= 0xffffff00;
  3724. vlv_dpio_write(dev_priv, DPIO_IREF(1), reg_val);
  3725. reg_val = vlv_dpio_read(dev_priv, DPIO_CALIBRATION);
  3726. reg_val &= 0x00ffffff;
  3727. reg_val |= 0xb0000000;
  3728. vlv_dpio_write(dev_priv, DPIO_CALIBRATION, reg_val);
  3729. }
  3730. static void intel_pch_transcoder_set_m_n(struct intel_crtc *crtc,
  3731. struct intel_link_m_n *m_n)
  3732. {
  3733. struct drm_device *dev = crtc->base.dev;
  3734. struct drm_i915_private *dev_priv = dev->dev_private;
  3735. int pipe = crtc->pipe;
  3736. I915_WRITE(PCH_TRANS_DATA_M1(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
  3737. I915_WRITE(PCH_TRANS_DATA_N1(pipe), m_n->gmch_n);
  3738. I915_WRITE(PCH_TRANS_LINK_M1(pipe), m_n->link_m);
  3739. I915_WRITE(PCH_TRANS_LINK_N1(pipe), m_n->link_n);
  3740. }
  3741. static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
  3742. struct intel_link_m_n *m_n)
  3743. {
  3744. struct drm_device *dev = crtc->base.dev;
  3745. struct drm_i915_private *dev_priv = dev->dev_private;
  3746. int pipe = crtc->pipe;
  3747. enum transcoder transcoder = crtc->config.cpu_transcoder;
  3748. if (INTEL_INFO(dev)->gen >= 5) {
  3749. I915_WRITE(PIPE_DATA_M1(transcoder), TU_SIZE(m_n->tu) | m_n->gmch_m);
  3750. I915_WRITE(PIPE_DATA_N1(transcoder), m_n->gmch_n);
  3751. I915_WRITE(PIPE_LINK_M1(transcoder), m_n->link_m);
  3752. I915_WRITE(PIPE_LINK_N1(transcoder), m_n->link_n);
  3753. } else {
  3754. I915_WRITE(PIPE_DATA_M_G4X(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
  3755. I915_WRITE(PIPE_DATA_N_G4X(pipe), m_n->gmch_n);
  3756. I915_WRITE(PIPE_LINK_M_G4X(pipe), m_n->link_m);
  3757. I915_WRITE(PIPE_LINK_N_G4X(pipe), m_n->link_n);
  3758. }
  3759. }
  3760. static void intel_dp_set_m_n(struct intel_crtc *crtc)
  3761. {
  3762. if (crtc->config.has_pch_encoder)
  3763. intel_pch_transcoder_set_m_n(crtc, &crtc->config.dp_m_n);
  3764. else
  3765. intel_cpu_transcoder_set_m_n(crtc, &crtc->config.dp_m_n);
  3766. }
  3767. static void vlv_update_pll(struct intel_crtc *crtc)
  3768. {
  3769. struct drm_device *dev = crtc->base.dev;
  3770. struct drm_i915_private *dev_priv = dev->dev_private;
  3771. int pipe = crtc->pipe;
  3772. u32 dpll, mdiv;
  3773. u32 bestn, bestm1, bestm2, bestp1, bestp2;
  3774. u32 coreclk, reg_val, dpll_md;
  3775. mutex_lock(&dev_priv->dpio_lock);
  3776. bestn = crtc->config.dpll.n;
  3777. bestm1 = crtc->config.dpll.m1;
  3778. bestm2 = crtc->config.dpll.m2;
  3779. bestp1 = crtc->config.dpll.p1;
  3780. bestp2 = crtc->config.dpll.p2;
  3781. /* See eDP HDMI DPIO driver vbios notes doc */
  3782. /* PLL B needs special handling */
  3783. if (pipe)
  3784. vlv_pllb_recal_opamp(dev_priv);
  3785. /* Set up Tx target for periodic Rcomp update */
  3786. vlv_dpio_write(dev_priv, DPIO_IREF_BCAST, 0x0100000f);
  3787. /* Disable target IRef on PLL */
  3788. reg_val = vlv_dpio_read(dev_priv, DPIO_IREF_CTL(pipe));
  3789. reg_val &= 0x00ffffff;
  3790. vlv_dpio_write(dev_priv, DPIO_IREF_CTL(pipe), reg_val);
  3791. /* Disable fast lock */
  3792. vlv_dpio_write(dev_priv, DPIO_FASTCLK_DISABLE, 0x610);
  3793. /* Set idtafcrecal before PLL is enabled */
  3794. mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
  3795. mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
  3796. mdiv |= ((bestn << DPIO_N_SHIFT));
  3797. mdiv |= (1 << DPIO_K_SHIFT);
  3798. /*
  3799. * Post divider depends on pixel clock rate, DAC vs digital (and LVDS,
  3800. * but we don't support that).
  3801. * Note: don't use the DAC post divider as it seems unstable.
  3802. */
  3803. mdiv |= (DPIO_POST_DIV_HDMIDP << DPIO_POST_DIV_SHIFT);
  3804. vlv_dpio_write(dev_priv, DPIO_DIV(pipe), mdiv);
  3805. mdiv |= DPIO_ENABLE_CALIBRATION;
  3806. vlv_dpio_write(dev_priv, DPIO_DIV(pipe), mdiv);
  3807. /* Set HBR and RBR LPF coefficients */
  3808. if (crtc->config.port_clock == 162000 ||
  3809. intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_ANALOG) ||
  3810. intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI))
  3811. vlv_dpio_write(dev_priv, DPIO_LPF_COEFF(pipe),
  3812. 0x009f0003);
  3813. else
  3814. vlv_dpio_write(dev_priv, DPIO_LPF_COEFF(pipe),
  3815. 0x00d0000f);
  3816. if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_EDP) ||
  3817. intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT)) {
  3818. /* Use SSC source */
  3819. if (!pipe)
  3820. vlv_dpio_write(dev_priv, DPIO_REFSFR(pipe),
  3821. 0x0df40000);
  3822. else
  3823. vlv_dpio_write(dev_priv, DPIO_REFSFR(pipe),
  3824. 0x0df70000);
  3825. } else { /* HDMI or VGA */
  3826. /* Use bend source */
  3827. if (!pipe)
  3828. vlv_dpio_write(dev_priv, DPIO_REFSFR(pipe),
  3829. 0x0df70000);
  3830. else
  3831. vlv_dpio_write(dev_priv, DPIO_REFSFR(pipe),
  3832. 0x0df40000);
  3833. }
  3834. coreclk = vlv_dpio_read(dev_priv, DPIO_CORE_CLK(pipe));
  3835. coreclk = (coreclk & 0x0000ff00) | 0x01c00000;
  3836. if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT) ||
  3837. intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_EDP))
  3838. coreclk |= 0x01000000;
  3839. vlv_dpio_write(dev_priv, DPIO_CORE_CLK(pipe), coreclk);
  3840. vlv_dpio_write(dev_priv, DPIO_PLL_CML(pipe), 0x87871000);
  3841. /* Enable DPIO clock input */
  3842. dpll = DPLL_EXT_BUFFER_ENABLE_VLV | DPLL_REFA_CLK_ENABLE_VLV |
  3843. DPLL_VGA_MODE_DIS | DPLL_INTEGRATED_CLOCK_VLV;
  3844. if (pipe)
  3845. dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
  3846. dpll |= DPLL_VCO_ENABLE;
  3847. crtc->config.dpll_hw_state.dpll = dpll;
  3848. dpll_md = (crtc->config.pixel_multiplier - 1)
  3849. << DPLL_MD_UDI_MULTIPLIER_SHIFT;
  3850. crtc->config.dpll_hw_state.dpll_md = dpll_md;
  3851. if (crtc->config.has_dp_encoder)
  3852. intel_dp_set_m_n(crtc);
  3853. mutex_unlock(&dev_priv->dpio_lock);
  3854. }
  3855. static void i9xx_update_pll(struct intel_crtc *crtc,
  3856. intel_clock_t *reduced_clock,
  3857. int num_connectors)
  3858. {
  3859. struct drm_device *dev = crtc->base.dev;
  3860. struct drm_i915_private *dev_priv = dev->dev_private;
  3861. u32 dpll;
  3862. bool is_sdvo;
  3863. struct dpll *clock = &crtc->config.dpll;
  3864. i9xx_update_pll_dividers(crtc, reduced_clock);
  3865. is_sdvo = intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_SDVO) ||
  3866. intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI);
  3867. dpll = DPLL_VGA_MODE_DIS;
  3868. if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS))
  3869. dpll |= DPLLB_MODE_LVDS;
  3870. else
  3871. dpll |= DPLLB_MODE_DAC_SERIAL;
  3872. if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
  3873. dpll |= (crtc->config.pixel_multiplier - 1)
  3874. << SDVO_MULTIPLIER_SHIFT_HIRES;
  3875. }
  3876. if (is_sdvo)
  3877. dpll |= DPLL_SDVO_HIGH_SPEED;
  3878. if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT))
  3879. dpll |= DPLL_SDVO_HIGH_SPEED;
  3880. /* compute bitmask from p1 value */
  3881. if (IS_PINEVIEW(dev))
  3882. dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
  3883. else {
  3884. dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
  3885. if (IS_G4X(dev) && reduced_clock)
  3886. dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
  3887. }
  3888. switch (clock->p2) {
  3889. case 5:
  3890. dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
  3891. break;
  3892. case 7:
  3893. dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
  3894. break;
  3895. case 10:
  3896. dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
  3897. break;
  3898. case 14:
  3899. dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
  3900. break;
  3901. }
  3902. if (INTEL_INFO(dev)->gen >= 4)
  3903. dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
  3904. if (crtc->config.sdvo_tv_clock)
  3905. dpll |= PLL_REF_INPUT_TVCLKINBC;
  3906. else if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
  3907. intel_panel_use_ssc(dev_priv) && num_connectors < 2)
  3908. dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
  3909. else
  3910. dpll |= PLL_REF_INPUT_DREFCLK;
  3911. dpll |= DPLL_VCO_ENABLE;
  3912. crtc->config.dpll_hw_state.dpll = dpll;
  3913. if (INTEL_INFO(dev)->gen >= 4) {
  3914. u32 dpll_md = (crtc->config.pixel_multiplier - 1)
  3915. << DPLL_MD_UDI_MULTIPLIER_SHIFT;
  3916. crtc->config.dpll_hw_state.dpll_md = dpll_md;
  3917. }
  3918. if (crtc->config.has_dp_encoder)
  3919. intel_dp_set_m_n(crtc);
  3920. }
  3921. static void i8xx_update_pll(struct intel_crtc *crtc,
  3922. intel_clock_t *reduced_clock,
  3923. int num_connectors)
  3924. {
  3925. struct drm_device *dev = crtc->base.dev;
  3926. struct drm_i915_private *dev_priv = dev->dev_private;
  3927. u32 dpll;
  3928. struct dpll *clock = &crtc->config.dpll;
  3929. i9xx_update_pll_dividers(crtc, reduced_clock);
  3930. dpll = DPLL_VGA_MODE_DIS;
  3931. if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS)) {
  3932. dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
  3933. } else {
  3934. if (clock->p1 == 2)
  3935. dpll |= PLL_P1_DIVIDE_BY_TWO;
  3936. else
  3937. dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
  3938. if (clock->p2 == 4)
  3939. dpll |= PLL_P2_DIVIDE_BY_4;
  3940. }
  3941. if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DVO))
  3942. dpll |= DPLL_DVO_2X_MODE;
  3943. if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
  3944. intel_panel_use_ssc(dev_priv) && num_connectors < 2)
  3945. dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
  3946. else
  3947. dpll |= PLL_REF_INPUT_DREFCLK;
  3948. dpll |= DPLL_VCO_ENABLE;
  3949. crtc->config.dpll_hw_state.dpll = dpll;
  3950. }
  3951. static void intel_set_pipe_timings(struct intel_crtc *intel_crtc)
  3952. {
  3953. struct drm_device *dev = intel_crtc->base.dev;
  3954. struct drm_i915_private *dev_priv = dev->dev_private;
  3955. enum pipe pipe = intel_crtc->pipe;
  3956. enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
  3957. struct drm_display_mode *adjusted_mode =
  3958. &intel_crtc->config.adjusted_mode;
  3959. struct drm_display_mode *mode = &intel_crtc->config.requested_mode;
  3960. uint32_t vsyncshift, crtc_vtotal, crtc_vblank_end;
  3961. /* We need to be careful not to changed the adjusted mode, for otherwise
  3962. * the hw state checker will get angry at the mismatch. */
  3963. crtc_vtotal = adjusted_mode->crtc_vtotal;
  3964. crtc_vblank_end = adjusted_mode->crtc_vblank_end;
  3965. if (!IS_GEN2(dev) && adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
  3966. /* the chip adds 2 halflines automatically */
  3967. crtc_vtotal -= 1;
  3968. crtc_vblank_end -= 1;
  3969. vsyncshift = adjusted_mode->crtc_hsync_start
  3970. - adjusted_mode->crtc_htotal / 2;
  3971. } else {
  3972. vsyncshift = 0;
  3973. }
  3974. if (INTEL_INFO(dev)->gen > 3)
  3975. I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
  3976. I915_WRITE(HTOTAL(cpu_transcoder),
  3977. (adjusted_mode->crtc_hdisplay - 1) |
  3978. ((adjusted_mode->crtc_htotal - 1) << 16));
  3979. I915_WRITE(HBLANK(cpu_transcoder),
  3980. (adjusted_mode->crtc_hblank_start - 1) |
  3981. ((adjusted_mode->crtc_hblank_end - 1) << 16));
  3982. I915_WRITE(HSYNC(cpu_transcoder),
  3983. (adjusted_mode->crtc_hsync_start - 1) |
  3984. ((adjusted_mode->crtc_hsync_end - 1) << 16));
  3985. I915_WRITE(VTOTAL(cpu_transcoder),
  3986. (adjusted_mode->crtc_vdisplay - 1) |
  3987. ((crtc_vtotal - 1) << 16));
  3988. I915_WRITE(VBLANK(cpu_transcoder),
  3989. (adjusted_mode->crtc_vblank_start - 1) |
  3990. ((crtc_vblank_end - 1) << 16));
  3991. I915_WRITE(VSYNC(cpu_transcoder),
  3992. (adjusted_mode->crtc_vsync_start - 1) |
  3993. ((adjusted_mode->crtc_vsync_end - 1) << 16));
  3994. /* Workaround: when the EDP input selection is B, the VTOTAL_B must be
  3995. * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
  3996. * documented on the DDI_FUNC_CTL register description, EDP Input Select
  3997. * bits. */
  3998. if (IS_HASWELL(dev) && cpu_transcoder == TRANSCODER_EDP &&
  3999. (pipe == PIPE_B || pipe == PIPE_C))
  4000. I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
  4001. /* pipesrc controls the size that is scaled from, which should
  4002. * always be the user's requested size.
  4003. */
  4004. I915_WRITE(PIPESRC(pipe),
  4005. ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
  4006. }
  4007. static void intel_get_pipe_timings(struct intel_crtc *crtc,
  4008. struct intel_crtc_config *pipe_config)
  4009. {
  4010. struct drm_device *dev = crtc->base.dev;
  4011. struct drm_i915_private *dev_priv = dev->dev_private;
  4012. enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
  4013. uint32_t tmp;
  4014. tmp = I915_READ(HTOTAL(cpu_transcoder));
  4015. pipe_config->adjusted_mode.crtc_hdisplay = (tmp & 0xffff) + 1;
  4016. pipe_config->adjusted_mode.crtc_htotal = ((tmp >> 16) & 0xffff) + 1;
  4017. tmp = I915_READ(HBLANK(cpu_transcoder));
  4018. pipe_config->adjusted_mode.crtc_hblank_start = (tmp & 0xffff) + 1;
  4019. pipe_config->adjusted_mode.crtc_hblank_end = ((tmp >> 16) & 0xffff) + 1;
  4020. tmp = I915_READ(HSYNC(cpu_transcoder));
  4021. pipe_config->adjusted_mode.crtc_hsync_start = (tmp & 0xffff) + 1;
  4022. pipe_config->adjusted_mode.crtc_hsync_end = ((tmp >> 16) & 0xffff) + 1;
  4023. tmp = I915_READ(VTOTAL(cpu_transcoder));
  4024. pipe_config->adjusted_mode.crtc_vdisplay = (tmp & 0xffff) + 1;
  4025. pipe_config->adjusted_mode.crtc_vtotal = ((tmp >> 16) & 0xffff) + 1;
  4026. tmp = I915_READ(VBLANK(cpu_transcoder));
  4027. pipe_config->adjusted_mode.crtc_vblank_start = (tmp & 0xffff) + 1;
  4028. pipe_config->adjusted_mode.crtc_vblank_end = ((tmp >> 16) & 0xffff) + 1;
  4029. tmp = I915_READ(VSYNC(cpu_transcoder));
  4030. pipe_config->adjusted_mode.crtc_vsync_start = (tmp & 0xffff) + 1;
  4031. pipe_config->adjusted_mode.crtc_vsync_end = ((tmp >> 16) & 0xffff) + 1;
  4032. if (I915_READ(PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK) {
  4033. pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_INTERLACE;
  4034. pipe_config->adjusted_mode.crtc_vtotal += 1;
  4035. pipe_config->adjusted_mode.crtc_vblank_end += 1;
  4036. }
  4037. tmp = I915_READ(PIPESRC(crtc->pipe));
  4038. pipe_config->requested_mode.vdisplay = (tmp & 0xffff) + 1;
  4039. pipe_config->requested_mode.hdisplay = ((tmp >> 16) & 0xffff) + 1;
  4040. }
  4041. static void intel_crtc_mode_from_pipe_config(struct intel_crtc *intel_crtc,
  4042. struct intel_crtc_config *pipe_config)
  4043. {
  4044. struct drm_crtc *crtc = &intel_crtc->base;
  4045. crtc->mode.hdisplay = pipe_config->adjusted_mode.crtc_hdisplay;
  4046. crtc->mode.htotal = pipe_config->adjusted_mode.crtc_htotal;
  4047. crtc->mode.hsync_start = pipe_config->adjusted_mode.crtc_hsync_start;
  4048. crtc->mode.hsync_end = pipe_config->adjusted_mode.crtc_hsync_end;
  4049. crtc->mode.vdisplay = pipe_config->adjusted_mode.crtc_vdisplay;
  4050. crtc->mode.vtotal = pipe_config->adjusted_mode.crtc_vtotal;
  4051. crtc->mode.vsync_start = pipe_config->adjusted_mode.crtc_vsync_start;
  4052. crtc->mode.vsync_end = pipe_config->adjusted_mode.crtc_vsync_end;
  4053. crtc->mode.flags = pipe_config->adjusted_mode.flags;
  4054. crtc->mode.clock = pipe_config->adjusted_mode.clock;
  4055. crtc->mode.flags |= pipe_config->adjusted_mode.flags;
  4056. }
  4057. static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc)
  4058. {
  4059. struct drm_device *dev = intel_crtc->base.dev;
  4060. struct drm_i915_private *dev_priv = dev->dev_private;
  4061. uint32_t pipeconf;
  4062. pipeconf = 0;
  4063. if (intel_crtc->pipe == 0 && INTEL_INFO(dev)->gen < 4) {
  4064. /* Enable pixel doubling when the dot clock is > 90% of the (display)
  4065. * core speed.
  4066. *
  4067. * XXX: No double-wide on 915GM pipe B. Is that the only reason for the
  4068. * pipe == 0 check?
  4069. */
  4070. if (intel_crtc->config.requested_mode.clock >
  4071. dev_priv->display.get_display_clock_speed(dev) * 9 / 10)
  4072. pipeconf |= PIPECONF_DOUBLE_WIDE;
  4073. }
  4074. /* only g4x and later have fancy bpc/dither controls */
  4075. if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
  4076. /* Bspec claims that we can't use dithering for 30bpp pipes. */
  4077. if (intel_crtc->config.dither && intel_crtc->config.pipe_bpp != 30)
  4078. pipeconf |= PIPECONF_DITHER_EN |
  4079. PIPECONF_DITHER_TYPE_SP;
  4080. switch (intel_crtc->config.pipe_bpp) {
  4081. case 18:
  4082. pipeconf |= PIPECONF_6BPC;
  4083. break;
  4084. case 24:
  4085. pipeconf |= PIPECONF_8BPC;
  4086. break;
  4087. case 30:
  4088. pipeconf |= PIPECONF_10BPC;
  4089. break;
  4090. default:
  4091. /* Case prevented by intel_choose_pipe_bpp_dither. */
  4092. BUG();
  4093. }
  4094. }
  4095. if (HAS_PIPE_CXSR(dev)) {
  4096. if (intel_crtc->lowfreq_avail) {
  4097. DRM_DEBUG_KMS("enabling CxSR downclocking\n");
  4098. pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
  4099. } else {
  4100. DRM_DEBUG_KMS("disabling CxSR downclocking\n");
  4101. }
  4102. }
  4103. if (!IS_GEN2(dev) &&
  4104. intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
  4105. pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
  4106. else
  4107. pipeconf |= PIPECONF_PROGRESSIVE;
  4108. if (IS_VALLEYVIEW(dev) && intel_crtc->config.limited_color_range)
  4109. pipeconf |= PIPECONF_COLOR_RANGE_SELECT;
  4110. I915_WRITE(PIPECONF(intel_crtc->pipe), pipeconf);
  4111. POSTING_READ(PIPECONF(intel_crtc->pipe));
  4112. }
  4113. static int i9xx_crtc_mode_set(struct drm_crtc *crtc,
  4114. int x, int y,
  4115. struct drm_framebuffer *fb)
  4116. {
  4117. struct drm_device *dev = crtc->dev;
  4118. struct drm_i915_private *dev_priv = dev->dev_private;
  4119. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4120. struct drm_display_mode *mode = &intel_crtc->config.requested_mode;
  4121. int pipe = intel_crtc->pipe;
  4122. int plane = intel_crtc->plane;
  4123. int refclk, num_connectors = 0;
  4124. intel_clock_t clock, reduced_clock;
  4125. u32 dspcntr;
  4126. bool ok, has_reduced_clock = false;
  4127. bool is_lvds = false, is_dsi = false;
  4128. struct intel_encoder *encoder;
  4129. const intel_limit_t *limit;
  4130. int ret;
  4131. for_each_encoder_on_crtc(dev, crtc, encoder) {
  4132. switch (encoder->type) {
  4133. case INTEL_OUTPUT_LVDS:
  4134. is_lvds = true;
  4135. break;
  4136. case INTEL_OUTPUT_DSI:
  4137. is_dsi = true;
  4138. break;
  4139. }
  4140. num_connectors++;
  4141. }
  4142. refclk = i9xx_get_refclk(crtc, num_connectors);
  4143. if (!is_dsi) {
  4144. /*
  4145. * Returns a set of divisors for the desired target clock with
  4146. * the given refclk, or FALSE. The returned values represent
  4147. * the clock equation: reflck * (5 * (m1 + 2) + (m2 + 2)) / (n +
  4148. * 2) / p1 / p2.
  4149. */
  4150. limit = intel_limit(crtc, refclk);
  4151. ok = dev_priv->display.find_dpll(limit, crtc,
  4152. intel_crtc->config.port_clock,
  4153. refclk, NULL, &clock);
  4154. if (!ok && !intel_crtc->config.clock_set) {
  4155. DRM_ERROR("Couldn't find PLL settings for mode!\n");
  4156. return -EINVAL;
  4157. }
  4158. }
  4159. /* Ensure that the cursor is valid for the new mode before changing... */
  4160. intel_crtc_update_cursor(crtc, true);
  4161. if (!is_dsi && is_lvds && dev_priv->lvds_downclock_avail) {
  4162. /*
  4163. * Ensure we match the reduced clock's P to the target clock.
  4164. * If the clocks don't match, we can't switch the display clock
  4165. * by using the FP0/FP1. In such case we will disable the LVDS
  4166. * downclock feature.
  4167. */
  4168. has_reduced_clock =
  4169. dev_priv->display.find_dpll(limit, crtc,
  4170. dev_priv->lvds_downclock,
  4171. refclk, &clock,
  4172. &reduced_clock);
  4173. }
  4174. /* Compat-code for transition, will disappear. */
  4175. if (!intel_crtc->config.clock_set) {
  4176. intel_crtc->config.dpll.n = clock.n;
  4177. intel_crtc->config.dpll.m1 = clock.m1;
  4178. intel_crtc->config.dpll.m2 = clock.m2;
  4179. intel_crtc->config.dpll.p1 = clock.p1;
  4180. intel_crtc->config.dpll.p2 = clock.p2;
  4181. }
  4182. if (IS_GEN2(dev)) {
  4183. i8xx_update_pll(intel_crtc,
  4184. has_reduced_clock ? &reduced_clock : NULL,
  4185. num_connectors);
  4186. } else if (IS_VALLEYVIEW(dev)) {
  4187. if (!is_dsi)
  4188. vlv_update_pll(intel_crtc);
  4189. } else {
  4190. i9xx_update_pll(intel_crtc,
  4191. has_reduced_clock ? &reduced_clock : NULL,
  4192. num_connectors);
  4193. }
  4194. /* Set up the display plane register */
  4195. dspcntr = DISPPLANE_GAMMA_ENABLE;
  4196. if (!IS_VALLEYVIEW(dev)) {
  4197. if (pipe == 0)
  4198. dspcntr &= ~DISPPLANE_SEL_PIPE_MASK;
  4199. else
  4200. dspcntr |= DISPPLANE_SEL_PIPE_B;
  4201. }
  4202. intel_set_pipe_timings(intel_crtc);
  4203. /* pipesrc and dspsize control the size that is scaled from,
  4204. * which should always be the user's requested size.
  4205. */
  4206. I915_WRITE(DSPSIZE(plane),
  4207. ((mode->vdisplay - 1) << 16) |
  4208. (mode->hdisplay - 1));
  4209. I915_WRITE(DSPPOS(plane), 0);
  4210. i9xx_set_pipeconf(intel_crtc);
  4211. I915_WRITE(DSPCNTR(plane), dspcntr);
  4212. POSTING_READ(DSPCNTR(plane));
  4213. ret = intel_pipe_set_base(crtc, x, y, fb);
  4214. intel_update_watermarks(dev);
  4215. return ret;
  4216. }
  4217. static void i9xx_get_pfit_config(struct intel_crtc *crtc,
  4218. struct intel_crtc_config *pipe_config)
  4219. {
  4220. struct drm_device *dev = crtc->base.dev;
  4221. struct drm_i915_private *dev_priv = dev->dev_private;
  4222. uint32_t tmp;
  4223. tmp = I915_READ(PFIT_CONTROL);
  4224. if (!(tmp & PFIT_ENABLE))
  4225. return;
  4226. /* Check whether the pfit is attached to our pipe. */
  4227. if (INTEL_INFO(dev)->gen < 4) {
  4228. if (crtc->pipe != PIPE_B)
  4229. return;
  4230. } else {
  4231. if ((tmp & PFIT_PIPE_MASK) != (crtc->pipe << PFIT_PIPE_SHIFT))
  4232. return;
  4233. }
  4234. pipe_config->gmch_pfit.control = tmp;
  4235. pipe_config->gmch_pfit.pgm_ratios = I915_READ(PFIT_PGM_RATIOS);
  4236. if (INTEL_INFO(dev)->gen < 5)
  4237. pipe_config->gmch_pfit.lvds_border_bits =
  4238. I915_READ(LVDS) & LVDS_BORDER_ENABLE;
  4239. }
  4240. static bool i9xx_get_pipe_config(struct intel_crtc *crtc,
  4241. struct intel_crtc_config *pipe_config)
  4242. {
  4243. struct drm_device *dev = crtc->base.dev;
  4244. struct drm_i915_private *dev_priv = dev->dev_private;
  4245. uint32_t tmp;
  4246. pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
  4247. pipe_config->shared_dpll = DPLL_ID_PRIVATE;
  4248. tmp = I915_READ(PIPECONF(crtc->pipe));
  4249. if (!(tmp & PIPECONF_ENABLE))
  4250. return false;
  4251. intel_get_pipe_timings(crtc, pipe_config);
  4252. i9xx_get_pfit_config(crtc, pipe_config);
  4253. if (INTEL_INFO(dev)->gen >= 4) {
  4254. tmp = I915_READ(DPLL_MD(crtc->pipe));
  4255. pipe_config->pixel_multiplier =
  4256. ((tmp & DPLL_MD_UDI_MULTIPLIER_MASK)
  4257. >> DPLL_MD_UDI_MULTIPLIER_SHIFT) + 1;
  4258. pipe_config->dpll_hw_state.dpll_md = tmp;
  4259. } else if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
  4260. tmp = I915_READ(DPLL(crtc->pipe));
  4261. pipe_config->pixel_multiplier =
  4262. ((tmp & SDVO_MULTIPLIER_MASK)
  4263. >> SDVO_MULTIPLIER_SHIFT_HIRES) + 1;
  4264. } else {
  4265. /* Note that on i915G/GM the pixel multiplier is in the sdvo
  4266. * port and will be fixed up in the encoder->get_config
  4267. * function. */
  4268. pipe_config->pixel_multiplier = 1;
  4269. }
  4270. pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(crtc->pipe));
  4271. if (!IS_VALLEYVIEW(dev)) {
  4272. pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(crtc->pipe));
  4273. pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(crtc->pipe));
  4274. } else {
  4275. /* Mask out read-only status bits. */
  4276. pipe_config->dpll_hw_state.dpll &= ~(DPLL_LOCK_VLV |
  4277. DPLL_PORTC_READY_MASK |
  4278. DPLL_PORTB_READY_MASK);
  4279. }
  4280. return true;
  4281. }
  4282. static void ironlake_init_pch_refclk(struct drm_device *dev)
  4283. {
  4284. struct drm_i915_private *dev_priv = dev->dev_private;
  4285. struct drm_mode_config *mode_config = &dev->mode_config;
  4286. struct intel_encoder *encoder;
  4287. u32 val, final;
  4288. bool has_lvds = false;
  4289. bool has_cpu_edp = false;
  4290. bool has_panel = false;
  4291. bool has_ck505 = false;
  4292. bool can_ssc = false;
  4293. /* We need to take the global config into account */
  4294. list_for_each_entry(encoder, &mode_config->encoder_list,
  4295. base.head) {
  4296. switch (encoder->type) {
  4297. case INTEL_OUTPUT_LVDS:
  4298. has_panel = true;
  4299. has_lvds = true;
  4300. break;
  4301. case INTEL_OUTPUT_EDP:
  4302. has_panel = true;
  4303. if (enc_to_dig_port(&encoder->base)->port == PORT_A)
  4304. has_cpu_edp = true;
  4305. break;
  4306. }
  4307. }
  4308. if (HAS_PCH_IBX(dev)) {
  4309. has_ck505 = dev_priv->vbt.display_clock_mode;
  4310. can_ssc = has_ck505;
  4311. } else {
  4312. has_ck505 = false;
  4313. can_ssc = true;
  4314. }
  4315. DRM_DEBUG_KMS("has_panel %d has_lvds %d has_ck505 %d\n",
  4316. has_panel, has_lvds, has_ck505);
  4317. /* Ironlake: try to setup display ref clock before DPLL
  4318. * enabling. This is only under driver's control after
  4319. * PCH B stepping, previous chipset stepping should be
  4320. * ignoring this setting.
  4321. */
  4322. val = I915_READ(PCH_DREF_CONTROL);
  4323. /* As we must carefully and slowly disable/enable each source in turn,
  4324. * compute the final state we want first and check if we need to
  4325. * make any changes at all.
  4326. */
  4327. final = val;
  4328. final &= ~DREF_NONSPREAD_SOURCE_MASK;
  4329. if (has_ck505)
  4330. final |= DREF_NONSPREAD_CK505_ENABLE;
  4331. else
  4332. final |= DREF_NONSPREAD_SOURCE_ENABLE;
  4333. final &= ~DREF_SSC_SOURCE_MASK;
  4334. final &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
  4335. final &= ~DREF_SSC1_ENABLE;
  4336. if (has_panel) {
  4337. final |= DREF_SSC_SOURCE_ENABLE;
  4338. if (intel_panel_use_ssc(dev_priv) && can_ssc)
  4339. final |= DREF_SSC1_ENABLE;
  4340. if (has_cpu_edp) {
  4341. if (intel_panel_use_ssc(dev_priv) && can_ssc)
  4342. final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
  4343. else
  4344. final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
  4345. } else
  4346. final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
  4347. } else {
  4348. final |= DREF_SSC_SOURCE_DISABLE;
  4349. final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
  4350. }
  4351. if (final == val)
  4352. return;
  4353. /* Always enable nonspread source */
  4354. val &= ~DREF_NONSPREAD_SOURCE_MASK;
  4355. if (has_ck505)
  4356. val |= DREF_NONSPREAD_CK505_ENABLE;
  4357. else
  4358. val |= DREF_NONSPREAD_SOURCE_ENABLE;
  4359. if (has_panel) {
  4360. val &= ~DREF_SSC_SOURCE_MASK;
  4361. val |= DREF_SSC_SOURCE_ENABLE;
  4362. /* SSC must be turned on before enabling the CPU output */
  4363. if (intel_panel_use_ssc(dev_priv) && can_ssc) {
  4364. DRM_DEBUG_KMS("Using SSC on panel\n");
  4365. val |= DREF_SSC1_ENABLE;
  4366. } else
  4367. val &= ~DREF_SSC1_ENABLE;
  4368. /* Get SSC going before enabling the outputs */
  4369. I915_WRITE(PCH_DREF_CONTROL, val);
  4370. POSTING_READ(PCH_DREF_CONTROL);
  4371. udelay(200);
  4372. val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
  4373. /* Enable CPU source on CPU attached eDP */
  4374. if (has_cpu_edp) {
  4375. if (intel_panel_use_ssc(dev_priv) && can_ssc) {
  4376. DRM_DEBUG_KMS("Using SSC on eDP\n");
  4377. val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
  4378. }
  4379. else
  4380. val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
  4381. } else
  4382. val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
  4383. I915_WRITE(PCH_DREF_CONTROL, val);
  4384. POSTING_READ(PCH_DREF_CONTROL);
  4385. udelay(200);
  4386. } else {
  4387. DRM_DEBUG_KMS("Disabling SSC entirely\n");
  4388. val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
  4389. /* Turn off CPU output */
  4390. val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
  4391. I915_WRITE(PCH_DREF_CONTROL, val);
  4392. POSTING_READ(PCH_DREF_CONTROL);
  4393. udelay(200);
  4394. /* Turn off the SSC source */
  4395. val &= ~DREF_SSC_SOURCE_MASK;
  4396. val |= DREF_SSC_SOURCE_DISABLE;
  4397. /* Turn off SSC1 */
  4398. val &= ~DREF_SSC1_ENABLE;
  4399. I915_WRITE(PCH_DREF_CONTROL, val);
  4400. POSTING_READ(PCH_DREF_CONTROL);
  4401. udelay(200);
  4402. }
  4403. BUG_ON(val != final);
  4404. }
  4405. static void lpt_reset_fdi_mphy(struct drm_i915_private *dev_priv)
  4406. {
  4407. uint32_t tmp;
  4408. tmp = I915_READ(SOUTH_CHICKEN2);
  4409. tmp |= FDI_MPHY_IOSFSB_RESET_CTL;
  4410. I915_WRITE(SOUTH_CHICKEN2, tmp);
  4411. if (wait_for_atomic_us(I915_READ(SOUTH_CHICKEN2) &
  4412. FDI_MPHY_IOSFSB_RESET_STATUS, 100))
  4413. DRM_ERROR("FDI mPHY reset assert timeout\n");
  4414. tmp = I915_READ(SOUTH_CHICKEN2);
  4415. tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL;
  4416. I915_WRITE(SOUTH_CHICKEN2, tmp);
  4417. if (wait_for_atomic_us((I915_READ(SOUTH_CHICKEN2) &
  4418. FDI_MPHY_IOSFSB_RESET_STATUS) == 0, 100))
  4419. DRM_ERROR("FDI mPHY reset de-assert timeout\n");
  4420. }
  4421. /* WaMPhyProgramming:hsw */
  4422. static void lpt_program_fdi_mphy(struct drm_i915_private *dev_priv)
  4423. {
  4424. uint32_t tmp;
  4425. tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY);
  4426. tmp &= ~(0xFF << 24);
  4427. tmp |= (0x12 << 24);
  4428. intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY);
  4429. tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY);
  4430. tmp |= (1 << 11);
  4431. intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY);
  4432. tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY);
  4433. tmp |= (1 << 11);
  4434. intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY);
  4435. tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY);
  4436. tmp |= (1 << 24) | (1 << 21) | (1 << 18);
  4437. intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY);
  4438. tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY);
  4439. tmp |= (1 << 24) | (1 << 21) | (1 << 18);
  4440. intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY);
  4441. tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY);
  4442. tmp &= ~(7 << 13);
  4443. tmp |= (5 << 13);
  4444. intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY);
  4445. tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY);
  4446. tmp &= ~(7 << 13);
  4447. tmp |= (5 << 13);
  4448. intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY);
  4449. tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY);
  4450. tmp &= ~0xFF;
  4451. tmp |= 0x1C;
  4452. intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY);
  4453. tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY);
  4454. tmp &= ~0xFF;
  4455. tmp |= 0x1C;
  4456. intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY);
  4457. tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY);
  4458. tmp &= ~(0xFF << 16);
  4459. tmp |= (0x1C << 16);
  4460. intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY);
  4461. tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY);
  4462. tmp &= ~(0xFF << 16);
  4463. tmp |= (0x1C << 16);
  4464. intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY);
  4465. tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY);
  4466. tmp |= (1 << 27);
  4467. intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY);
  4468. tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY);
  4469. tmp |= (1 << 27);
  4470. intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY);
  4471. tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY);
  4472. tmp &= ~(0xF << 28);
  4473. tmp |= (4 << 28);
  4474. intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY);
  4475. tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY);
  4476. tmp &= ~(0xF << 28);
  4477. tmp |= (4 << 28);
  4478. intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY);
  4479. }
  4480. /* Implements 3 different sequences from BSpec chapter "Display iCLK
  4481. * Programming" based on the parameters passed:
  4482. * - Sequence to enable CLKOUT_DP
  4483. * - Sequence to enable CLKOUT_DP without spread
  4484. * - Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O
  4485. */
  4486. static void lpt_enable_clkout_dp(struct drm_device *dev, bool with_spread,
  4487. bool with_fdi)
  4488. {
  4489. struct drm_i915_private *dev_priv = dev->dev_private;
  4490. uint32_t reg, tmp;
  4491. if (WARN(with_fdi && !with_spread, "FDI requires downspread\n"))
  4492. with_spread = true;
  4493. if (WARN(dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE &&
  4494. with_fdi, "LP PCH doesn't have FDI\n"))
  4495. with_fdi = false;
  4496. mutex_lock(&dev_priv->dpio_lock);
  4497. tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
  4498. tmp &= ~SBI_SSCCTL_DISABLE;
  4499. tmp |= SBI_SSCCTL_PATHALT;
  4500. intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
  4501. udelay(24);
  4502. if (with_spread) {
  4503. tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
  4504. tmp &= ~SBI_SSCCTL_PATHALT;
  4505. intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
  4506. if (with_fdi) {
  4507. lpt_reset_fdi_mphy(dev_priv);
  4508. lpt_program_fdi_mphy(dev_priv);
  4509. }
  4510. }
  4511. reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
  4512. SBI_GEN0 : SBI_DBUFF0;
  4513. tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
  4514. tmp |= SBI_GEN0_CFG_BUFFENABLE_DISABLE;
  4515. intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
  4516. mutex_unlock(&dev_priv->dpio_lock);
  4517. }
  4518. /* Sequence to disable CLKOUT_DP */
  4519. static void lpt_disable_clkout_dp(struct drm_device *dev)
  4520. {
  4521. struct drm_i915_private *dev_priv = dev->dev_private;
  4522. uint32_t reg, tmp;
  4523. mutex_lock(&dev_priv->dpio_lock);
  4524. reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
  4525. SBI_GEN0 : SBI_DBUFF0;
  4526. tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
  4527. tmp &= ~SBI_GEN0_CFG_BUFFENABLE_DISABLE;
  4528. intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
  4529. tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
  4530. if (!(tmp & SBI_SSCCTL_DISABLE)) {
  4531. if (!(tmp & SBI_SSCCTL_PATHALT)) {
  4532. tmp |= SBI_SSCCTL_PATHALT;
  4533. intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
  4534. udelay(32);
  4535. }
  4536. tmp |= SBI_SSCCTL_DISABLE;
  4537. intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
  4538. }
  4539. mutex_unlock(&dev_priv->dpio_lock);
  4540. }
  4541. static void lpt_init_pch_refclk(struct drm_device *dev)
  4542. {
  4543. struct drm_mode_config *mode_config = &dev->mode_config;
  4544. struct intel_encoder *encoder;
  4545. bool has_vga = false;
  4546. list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
  4547. switch (encoder->type) {
  4548. case INTEL_OUTPUT_ANALOG:
  4549. has_vga = true;
  4550. break;
  4551. }
  4552. }
  4553. if (has_vga)
  4554. lpt_enable_clkout_dp(dev, true, true);
  4555. else
  4556. lpt_disable_clkout_dp(dev);
  4557. }
  4558. /*
  4559. * Initialize reference clocks when the driver loads
  4560. */
  4561. void intel_init_pch_refclk(struct drm_device *dev)
  4562. {
  4563. if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
  4564. ironlake_init_pch_refclk(dev);
  4565. else if (HAS_PCH_LPT(dev))
  4566. lpt_init_pch_refclk(dev);
  4567. }
  4568. static int ironlake_get_refclk(struct drm_crtc *crtc)
  4569. {
  4570. struct drm_device *dev = crtc->dev;
  4571. struct drm_i915_private *dev_priv = dev->dev_private;
  4572. struct intel_encoder *encoder;
  4573. int num_connectors = 0;
  4574. bool is_lvds = false;
  4575. for_each_encoder_on_crtc(dev, crtc, encoder) {
  4576. switch (encoder->type) {
  4577. case INTEL_OUTPUT_LVDS:
  4578. is_lvds = true;
  4579. break;
  4580. }
  4581. num_connectors++;
  4582. }
  4583. if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
  4584. DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
  4585. dev_priv->vbt.lvds_ssc_freq);
  4586. return dev_priv->vbt.lvds_ssc_freq * 1000;
  4587. }
  4588. return 120000;
  4589. }
  4590. static void ironlake_set_pipeconf(struct drm_crtc *crtc)
  4591. {
  4592. struct drm_i915_private *dev_priv = crtc->dev->dev_private;
  4593. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4594. int pipe = intel_crtc->pipe;
  4595. uint32_t val;
  4596. val = 0;
  4597. switch (intel_crtc->config.pipe_bpp) {
  4598. case 18:
  4599. val |= PIPECONF_6BPC;
  4600. break;
  4601. case 24:
  4602. val |= PIPECONF_8BPC;
  4603. break;
  4604. case 30:
  4605. val |= PIPECONF_10BPC;
  4606. break;
  4607. case 36:
  4608. val |= PIPECONF_12BPC;
  4609. break;
  4610. default:
  4611. /* Case prevented by intel_choose_pipe_bpp_dither. */
  4612. BUG();
  4613. }
  4614. if (intel_crtc->config.dither)
  4615. val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
  4616. if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
  4617. val |= PIPECONF_INTERLACED_ILK;
  4618. else
  4619. val |= PIPECONF_PROGRESSIVE;
  4620. if (intel_crtc->config.limited_color_range)
  4621. val |= PIPECONF_COLOR_RANGE_SELECT;
  4622. I915_WRITE(PIPECONF(pipe), val);
  4623. POSTING_READ(PIPECONF(pipe));
  4624. }
  4625. /*
  4626. * Set up the pipe CSC unit.
  4627. *
  4628. * Currently only full range RGB to limited range RGB conversion
  4629. * is supported, but eventually this should handle various
  4630. * RGB<->YCbCr scenarios as well.
  4631. */
  4632. static void intel_set_pipe_csc(struct drm_crtc *crtc)
  4633. {
  4634. struct drm_device *dev = crtc->dev;
  4635. struct drm_i915_private *dev_priv = dev->dev_private;
  4636. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4637. int pipe = intel_crtc->pipe;
  4638. uint16_t coeff = 0x7800; /* 1.0 */
  4639. /*
  4640. * TODO: Check what kind of values actually come out of the pipe
  4641. * with these coeff/postoff values and adjust to get the best
  4642. * accuracy. Perhaps we even need to take the bpc value into
  4643. * consideration.
  4644. */
  4645. if (intel_crtc->config.limited_color_range)
  4646. coeff = ((235 - 16) * (1 << 12) / 255) & 0xff8; /* 0.xxx... */
  4647. /*
  4648. * GY/GU and RY/RU should be the other way around according
  4649. * to BSpec, but reality doesn't agree. Just set them up in
  4650. * a way that results in the correct picture.
  4651. */
  4652. I915_WRITE(PIPE_CSC_COEFF_RY_GY(pipe), coeff << 16);
  4653. I915_WRITE(PIPE_CSC_COEFF_BY(pipe), 0);
  4654. I915_WRITE(PIPE_CSC_COEFF_RU_GU(pipe), coeff);
  4655. I915_WRITE(PIPE_CSC_COEFF_BU(pipe), 0);
  4656. I915_WRITE(PIPE_CSC_COEFF_RV_GV(pipe), 0);
  4657. I915_WRITE(PIPE_CSC_COEFF_BV(pipe), coeff << 16);
  4658. I915_WRITE(PIPE_CSC_PREOFF_HI(pipe), 0);
  4659. I915_WRITE(PIPE_CSC_PREOFF_ME(pipe), 0);
  4660. I915_WRITE(PIPE_CSC_PREOFF_LO(pipe), 0);
  4661. if (INTEL_INFO(dev)->gen > 6) {
  4662. uint16_t postoff = 0;
  4663. if (intel_crtc->config.limited_color_range)
  4664. postoff = (16 * (1 << 13) / 255) & 0x1fff;
  4665. I915_WRITE(PIPE_CSC_POSTOFF_HI(pipe), postoff);
  4666. I915_WRITE(PIPE_CSC_POSTOFF_ME(pipe), postoff);
  4667. I915_WRITE(PIPE_CSC_POSTOFF_LO(pipe), postoff);
  4668. I915_WRITE(PIPE_CSC_MODE(pipe), 0);
  4669. } else {
  4670. uint32_t mode = CSC_MODE_YUV_TO_RGB;
  4671. if (intel_crtc->config.limited_color_range)
  4672. mode |= CSC_BLACK_SCREEN_OFFSET;
  4673. I915_WRITE(PIPE_CSC_MODE(pipe), mode);
  4674. }
  4675. }
  4676. static void haswell_set_pipeconf(struct drm_crtc *crtc)
  4677. {
  4678. struct drm_i915_private *dev_priv = crtc->dev->dev_private;
  4679. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4680. enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
  4681. uint32_t val;
  4682. val = 0;
  4683. if (intel_crtc->config.dither)
  4684. val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
  4685. if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
  4686. val |= PIPECONF_INTERLACED_ILK;
  4687. else
  4688. val |= PIPECONF_PROGRESSIVE;
  4689. I915_WRITE(PIPECONF(cpu_transcoder), val);
  4690. POSTING_READ(PIPECONF(cpu_transcoder));
  4691. I915_WRITE(GAMMA_MODE(intel_crtc->pipe), GAMMA_MODE_MODE_8BIT);
  4692. POSTING_READ(GAMMA_MODE(intel_crtc->pipe));
  4693. }
  4694. static bool ironlake_compute_clocks(struct drm_crtc *crtc,
  4695. intel_clock_t *clock,
  4696. bool *has_reduced_clock,
  4697. intel_clock_t *reduced_clock)
  4698. {
  4699. struct drm_device *dev = crtc->dev;
  4700. struct drm_i915_private *dev_priv = dev->dev_private;
  4701. struct intel_encoder *intel_encoder;
  4702. int refclk;
  4703. const intel_limit_t *limit;
  4704. bool ret, is_lvds = false;
  4705. for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
  4706. switch (intel_encoder->type) {
  4707. case INTEL_OUTPUT_LVDS:
  4708. is_lvds = true;
  4709. break;
  4710. }
  4711. }
  4712. refclk = ironlake_get_refclk(crtc);
  4713. /*
  4714. * Returns a set of divisors for the desired target clock with the given
  4715. * refclk, or FALSE. The returned values represent the clock equation:
  4716. * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
  4717. */
  4718. limit = intel_limit(crtc, refclk);
  4719. ret = dev_priv->display.find_dpll(limit, crtc,
  4720. to_intel_crtc(crtc)->config.port_clock,
  4721. refclk, NULL, clock);
  4722. if (!ret)
  4723. return false;
  4724. if (is_lvds && dev_priv->lvds_downclock_avail) {
  4725. /*
  4726. * Ensure we match the reduced clock's P to the target clock.
  4727. * If the clocks don't match, we can't switch the display clock
  4728. * by using the FP0/FP1. In such case we will disable the LVDS
  4729. * downclock feature.
  4730. */
  4731. *has_reduced_clock =
  4732. dev_priv->display.find_dpll(limit, crtc,
  4733. dev_priv->lvds_downclock,
  4734. refclk, clock,
  4735. reduced_clock);
  4736. }
  4737. return true;
  4738. }
  4739. static void cpt_enable_fdi_bc_bifurcation(struct drm_device *dev)
  4740. {
  4741. struct drm_i915_private *dev_priv = dev->dev_private;
  4742. uint32_t temp;
  4743. temp = I915_READ(SOUTH_CHICKEN1);
  4744. if (temp & FDI_BC_BIFURCATION_SELECT)
  4745. return;
  4746. WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
  4747. WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
  4748. temp |= FDI_BC_BIFURCATION_SELECT;
  4749. DRM_DEBUG_KMS("enabling fdi C rx\n");
  4750. I915_WRITE(SOUTH_CHICKEN1, temp);
  4751. POSTING_READ(SOUTH_CHICKEN1);
  4752. }
  4753. static void ivybridge_update_fdi_bc_bifurcation(struct intel_crtc *intel_crtc)
  4754. {
  4755. struct drm_device *dev = intel_crtc->base.dev;
  4756. struct drm_i915_private *dev_priv = dev->dev_private;
  4757. switch (intel_crtc->pipe) {
  4758. case PIPE_A:
  4759. break;
  4760. case PIPE_B:
  4761. if (intel_crtc->config.fdi_lanes > 2)
  4762. WARN_ON(I915_READ(SOUTH_CHICKEN1) & FDI_BC_BIFURCATION_SELECT);
  4763. else
  4764. cpt_enable_fdi_bc_bifurcation(dev);
  4765. break;
  4766. case PIPE_C:
  4767. cpt_enable_fdi_bc_bifurcation(dev);
  4768. break;
  4769. default:
  4770. BUG();
  4771. }
  4772. }
  4773. int ironlake_get_lanes_required(int target_clock, int link_bw, int bpp)
  4774. {
  4775. /*
  4776. * Account for spread spectrum to avoid
  4777. * oversubscribing the link. Max center spread
  4778. * is 2.5%; use 5% for safety's sake.
  4779. */
  4780. u32 bps = target_clock * bpp * 21 / 20;
  4781. return bps / (link_bw * 8) + 1;
  4782. }
  4783. static bool ironlake_needs_fb_cb_tune(struct dpll *dpll, int factor)
  4784. {
  4785. return i9xx_dpll_compute_m(dpll) < factor * dpll->n;
  4786. }
  4787. static uint32_t ironlake_compute_dpll(struct intel_crtc *intel_crtc,
  4788. u32 *fp,
  4789. intel_clock_t *reduced_clock, u32 *fp2)
  4790. {
  4791. struct drm_crtc *crtc = &intel_crtc->base;
  4792. struct drm_device *dev = crtc->dev;
  4793. struct drm_i915_private *dev_priv = dev->dev_private;
  4794. struct intel_encoder *intel_encoder;
  4795. uint32_t dpll;
  4796. int factor, num_connectors = 0;
  4797. bool is_lvds = false, is_sdvo = false;
  4798. for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
  4799. switch (intel_encoder->type) {
  4800. case INTEL_OUTPUT_LVDS:
  4801. is_lvds = true;
  4802. break;
  4803. case INTEL_OUTPUT_SDVO:
  4804. case INTEL_OUTPUT_HDMI:
  4805. is_sdvo = true;
  4806. break;
  4807. }
  4808. num_connectors++;
  4809. }
  4810. /* Enable autotuning of the PLL clock (if permissible) */
  4811. factor = 21;
  4812. if (is_lvds) {
  4813. if ((intel_panel_use_ssc(dev_priv) &&
  4814. dev_priv->vbt.lvds_ssc_freq == 100) ||
  4815. (HAS_PCH_IBX(dev) && intel_is_dual_link_lvds(dev)))
  4816. factor = 25;
  4817. } else if (intel_crtc->config.sdvo_tv_clock)
  4818. factor = 20;
  4819. if (ironlake_needs_fb_cb_tune(&intel_crtc->config.dpll, factor))
  4820. *fp |= FP_CB_TUNE;
  4821. if (fp2 && (reduced_clock->m < factor * reduced_clock->n))
  4822. *fp2 |= FP_CB_TUNE;
  4823. dpll = 0;
  4824. if (is_lvds)
  4825. dpll |= DPLLB_MODE_LVDS;
  4826. else
  4827. dpll |= DPLLB_MODE_DAC_SERIAL;
  4828. dpll |= (intel_crtc->config.pixel_multiplier - 1)
  4829. << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
  4830. if (is_sdvo)
  4831. dpll |= DPLL_SDVO_HIGH_SPEED;
  4832. if (intel_crtc->config.has_dp_encoder)
  4833. dpll |= DPLL_SDVO_HIGH_SPEED;
  4834. /* compute bitmask from p1 value */
  4835. dpll |= (1 << (intel_crtc->config.dpll.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
  4836. /* also FPA1 */
  4837. dpll |= (1 << (intel_crtc->config.dpll.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
  4838. switch (intel_crtc->config.dpll.p2) {
  4839. case 5:
  4840. dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
  4841. break;
  4842. case 7:
  4843. dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
  4844. break;
  4845. case 10:
  4846. dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
  4847. break;
  4848. case 14:
  4849. dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
  4850. break;
  4851. }
  4852. if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
  4853. dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
  4854. else
  4855. dpll |= PLL_REF_INPUT_DREFCLK;
  4856. return dpll | DPLL_VCO_ENABLE;
  4857. }
  4858. static int ironlake_crtc_mode_set(struct drm_crtc *crtc,
  4859. int x, int y,
  4860. struct drm_framebuffer *fb)
  4861. {
  4862. struct drm_device *dev = crtc->dev;
  4863. struct drm_i915_private *dev_priv = dev->dev_private;
  4864. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4865. int pipe = intel_crtc->pipe;
  4866. int plane = intel_crtc->plane;
  4867. int num_connectors = 0;
  4868. intel_clock_t clock, reduced_clock;
  4869. u32 dpll = 0, fp = 0, fp2 = 0;
  4870. bool ok, has_reduced_clock = false;
  4871. bool is_lvds = false;
  4872. struct intel_encoder *encoder;
  4873. struct intel_shared_dpll *pll;
  4874. int ret;
  4875. for_each_encoder_on_crtc(dev, crtc, encoder) {
  4876. switch (encoder->type) {
  4877. case INTEL_OUTPUT_LVDS:
  4878. is_lvds = true;
  4879. break;
  4880. }
  4881. num_connectors++;
  4882. }
  4883. WARN(!(HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)),
  4884. "Unexpected PCH type %d\n", INTEL_PCH_TYPE(dev));
  4885. ok = ironlake_compute_clocks(crtc, &clock,
  4886. &has_reduced_clock, &reduced_clock);
  4887. if (!ok && !intel_crtc->config.clock_set) {
  4888. DRM_ERROR("Couldn't find PLL settings for mode!\n");
  4889. return -EINVAL;
  4890. }
  4891. /* Compat-code for transition, will disappear. */
  4892. if (!intel_crtc->config.clock_set) {
  4893. intel_crtc->config.dpll.n = clock.n;
  4894. intel_crtc->config.dpll.m1 = clock.m1;
  4895. intel_crtc->config.dpll.m2 = clock.m2;
  4896. intel_crtc->config.dpll.p1 = clock.p1;
  4897. intel_crtc->config.dpll.p2 = clock.p2;
  4898. }
  4899. /* Ensure that the cursor is valid for the new mode before changing... */
  4900. intel_crtc_update_cursor(crtc, true);
  4901. /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
  4902. if (intel_crtc->config.has_pch_encoder) {
  4903. fp = i9xx_dpll_compute_fp(&intel_crtc->config.dpll);
  4904. if (has_reduced_clock)
  4905. fp2 = i9xx_dpll_compute_fp(&reduced_clock);
  4906. dpll = ironlake_compute_dpll(intel_crtc,
  4907. &fp, &reduced_clock,
  4908. has_reduced_clock ? &fp2 : NULL);
  4909. intel_crtc->config.dpll_hw_state.dpll = dpll;
  4910. intel_crtc->config.dpll_hw_state.fp0 = fp;
  4911. if (has_reduced_clock)
  4912. intel_crtc->config.dpll_hw_state.fp1 = fp2;
  4913. else
  4914. intel_crtc->config.dpll_hw_state.fp1 = fp;
  4915. pll = intel_get_shared_dpll(intel_crtc);
  4916. if (pll == NULL) {
  4917. DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
  4918. pipe_name(pipe));
  4919. return -EINVAL;
  4920. }
  4921. } else
  4922. intel_put_shared_dpll(intel_crtc);
  4923. if (intel_crtc->config.has_dp_encoder)
  4924. intel_dp_set_m_n(intel_crtc);
  4925. if (is_lvds && has_reduced_clock && i915_powersave)
  4926. intel_crtc->lowfreq_avail = true;
  4927. else
  4928. intel_crtc->lowfreq_avail = false;
  4929. if (intel_crtc->config.has_pch_encoder) {
  4930. pll = intel_crtc_to_shared_dpll(intel_crtc);
  4931. }
  4932. intel_set_pipe_timings(intel_crtc);
  4933. if (intel_crtc->config.has_pch_encoder) {
  4934. intel_cpu_transcoder_set_m_n(intel_crtc,
  4935. &intel_crtc->config.fdi_m_n);
  4936. }
  4937. if (IS_IVYBRIDGE(dev))
  4938. ivybridge_update_fdi_bc_bifurcation(intel_crtc);
  4939. ironlake_set_pipeconf(crtc);
  4940. /* Set up the display plane register */
  4941. I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE);
  4942. POSTING_READ(DSPCNTR(plane));
  4943. ret = intel_pipe_set_base(crtc, x, y, fb);
  4944. intel_update_watermarks(dev);
  4945. return ret;
  4946. }
  4947. static void ironlake_get_fdi_m_n_config(struct intel_crtc *crtc,
  4948. struct intel_crtc_config *pipe_config)
  4949. {
  4950. struct drm_device *dev = crtc->base.dev;
  4951. struct drm_i915_private *dev_priv = dev->dev_private;
  4952. enum transcoder transcoder = pipe_config->cpu_transcoder;
  4953. pipe_config->fdi_m_n.link_m = I915_READ(PIPE_LINK_M1(transcoder));
  4954. pipe_config->fdi_m_n.link_n = I915_READ(PIPE_LINK_N1(transcoder));
  4955. pipe_config->fdi_m_n.gmch_m = I915_READ(PIPE_DATA_M1(transcoder))
  4956. & ~TU_SIZE_MASK;
  4957. pipe_config->fdi_m_n.gmch_n = I915_READ(PIPE_DATA_N1(transcoder));
  4958. pipe_config->fdi_m_n.tu = ((I915_READ(PIPE_DATA_M1(transcoder))
  4959. & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
  4960. }
  4961. static void ironlake_get_pfit_config(struct intel_crtc *crtc,
  4962. struct intel_crtc_config *pipe_config)
  4963. {
  4964. struct drm_device *dev = crtc->base.dev;
  4965. struct drm_i915_private *dev_priv = dev->dev_private;
  4966. uint32_t tmp;
  4967. tmp = I915_READ(PF_CTL(crtc->pipe));
  4968. if (tmp & PF_ENABLE) {
  4969. pipe_config->pch_pfit.pos = I915_READ(PF_WIN_POS(crtc->pipe));
  4970. pipe_config->pch_pfit.size = I915_READ(PF_WIN_SZ(crtc->pipe));
  4971. /* We currently do not free assignements of panel fitters on
  4972. * ivb/hsw (since we don't use the higher upscaling modes which
  4973. * differentiates them) so just WARN about this case for now. */
  4974. if (IS_GEN7(dev)) {
  4975. WARN_ON((tmp & PF_PIPE_SEL_MASK_IVB) !=
  4976. PF_PIPE_SEL_IVB(crtc->pipe));
  4977. }
  4978. }
  4979. }
  4980. static bool ironlake_get_pipe_config(struct intel_crtc *crtc,
  4981. struct intel_crtc_config *pipe_config)
  4982. {
  4983. struct drm_device *dev = crtc->base.dev;
  4984. struct drm_i915_private *dev_priv = dev->dev_private;
  4985. uint32_t tmp;
  4986. pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
  4987. pipe_config->shared_dpll = DPLL_ID_PRIVATE;
  4988. tmp = I915_READ(PIPECONF(crtc->pipe));
  4989. if (!(tmp & PIPECONF_ENABLE))
  4990. return false;
  4991. if (I915_READ(PCH_TRANSCONF(crtc->pipe)) & TRANS_ENABLE) {
  4992. struct intel_shared_dpll *pll;
  4993. pipe_config->has_pch_encoder = true;
  4994. tmp = I915_READ(FDI_RX_CTL(crtc->pipe));
  4995. pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
  4996. FDI_DP_PORT_WIDTH_SHIFT) + 1;
  4997. ironlake_get_fdi_m_n_config(crtc, pipe_config);
  4998. if (HAS_PCH_IBX(dev_priv->dev)) {
  4999. pipe_config->shared_dpll =
  5000. (enum intel_dpll_id) crtc->pipe;
  5001. } else {
  5002. tmp = I915_READ(PCH_DPLL_SEL);
  5003. if (tmp & TRANS_DPLLB_SEL(crtc->pipe))
  5004. pipe_config->shared_dpll = DPLL_ID_PCH_PLL_B;
  5005. else
  5006. pipe_config->shared_dpll = DPLL_ID_PCH_PLL_A;
  5007. }
  5008. pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
  5009. WARN_ON(!pll->get_hw_state(dev_priv, pll,
  5010. &pipe_config->dpll_hw_state));
  5011. tmp = pipe_config->dpll_hw_state.dpll;
  5012. pipe_config->pixel_multiplier =
  5013. ((tmp & PLL_REF_SDVO_HDMI_MULTIPLIER_MASK)
  5014. >> PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT) + 1;
  5015. } else {
  5016. pipe_config->pixel_multiplier = 1;
  5017. }
  5018. intel_get_pipe_timings(crtc, pipe_config);
  5019. ironlake_get_pfit_config(crtc, pipe_config);
  5020. return true;
  5021. }
  5022. static void assert_can_disable_lcpll(struct drm_i915_private *dev_priv)
  5023. {
  5024. struct drm_device *dev = dev_priv->dev;
  5025. struct intel_ddi_plls *plls = &dev_priv->ddi_plls;
  5026. struct intel_crtc *crtc;
  5027. unsigned long irqflags;
  5028. uint32_t val;
  5029. list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head)
  5030. WARN(crtc->base.enabled, "CRTC for pipe %c enabled\n",
  5031. pipe_name(crtc->pipe));
  5032. WARN(I915_READ(HSW_PWR_WELL_DRIVER), "Power well on\n");
  5033. WARN(plls->spll_refcount, "SPLL enabled\n");
  5034. WARN(plls->wrpll1_refcount, "WRPLL1 enabled\n");
  5035. WARN(plls->wrpll2_refcount, "WRPLL2 enabled\n");
  5036. WARN(I915_READ(PCH_PP_STATUS) & PP_ON, "Panel power on\n");
  5037. WARN(I915_READ(BLC_PWM_CPU_CTL2) & BLM_PWM_ENABLE,
  5038. "CPU PWM1 enabled\n");
  5039. WARN(I915_READ(HSW_BLC_PWM2_CTL) & BLM_PWM_ENABLE,
  5040. "CPU PWM2 enabled\n");
  5041. WARN(I915_READ(BLC_PWM_PCH_CTL1) & BLM_PCH_PWM_ENABLE,
  5042. "PCH PWM1 enabled\n");
  5043. WARN(I915_READ(UTIL_PIN_CTL) & UTIL_PIN_ENABLE,
  5044. "Utility pin enabled\n");
  5045. WARN(I915_READ(PCH_GTC_CTL) & PCH_GTC_ENABLE, "PCH GTC enabled\n");
  5046. spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
  5047. val = I915_READ(DEIMR);
  5048. WARN((val & ~DE_PCH_EVENT_IVB) != val,
  5049. "Unexpected DEIMR bits enabled: 0x%x\n", val);
  5050. val = I915_READ(SDEIMR);
  5051. WARN((val | SDE_HOTPLUG_MASK_CPT) != 0xffffffff,
  5052. "Unexpected SDEIMR bits enabled: 0x%x\n", val);
  5053. spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
  5054. }
  5055. /*
  5056. * This function implements pieces of two sequences from BSpec:
  5057. * - Sequence for display software to disable LCPLL
  5058. * - Sequence for display software to allow package C8+
  5059. * The steps implemented here are just the steps that actually touch the LCPLL
  5060. * register. Callers should take care of disabling all the display engine
  5061. * functions, doing the mode unset, fixing interrupts, etc.
  5062. */
  5063. void hsw_disable_lcpll(struct drm_i915_private *dev_priv,
  5064. bool switch_to_fclk, bool allow_power_down)
  5065. {
  5066. uint32_t val;
  5067. assert_can_disable_lcpll(dev_priv);
  5068. val = I915_READ(LCPLL_CTL);
  5069. if (switch_to_fclk) {
  5070. val |= LCPLL_CD_SOURCE_FCLK;
  5071. I915_WRITE(LCPLL_CTL, val);
  5072. if (wait_for_atomic_us(I915_READ(LCPLL_CTL) &
  5073. LCPLL_CD_SOURCE_FCLK_DONE, 1))
  5074. DRM_ERROR("Switching to FCLK failed\n");
  5075. val = I915_READ(LCPLL_CTL);
  5076. }
  5077. val |= LCPLL_PLL_DISABLE;
  5078. I915_WRITE(LCPLL_CTL, val);
  5079. POSTING_READ(LCPLL_CTL);
  5080. if (wait_for((I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK) == 0, 1))
  5081. DRM_ERROR("LCPLL still locked\n");
  5082. val = I915_READ(D_COMP);
  5083. val |= D_COMP_COMP_DISABLE;
  5084. I915_WRITE(D_COMP, val);
  5085. POSTING_READ(D_COMP);
  5086. ndelay(100);
  5087. if (wait_for((I915_READ(D_COMP) & D_COMP_RCOMP_IN_PROGRESS) == 0, 1))
  5088. DRM_ERROR("D_COMP RCOMP still in progress\n");
  5089. if (allow_power_down) {
  5090. val = I915_READ(LCPLL_CTL);
  5091. val |= LCPLL_POWER_DOWN_ALLOW;
  5092. I915_WRITE(LCPLL_CTL, val);
  5093. POSTING_READ(LCPLL_CTL);
  5094. }
  5095. }
  5096. /*
  5097. * Fully restores LCPLL, disallowing power down and switching back to LCPLL
  5098. * source.
  5099. */
  5100. void hsw_restore_lcpll(struct drm_i915_private *dev_priv)
  5101. {
  5102. uint32_t val;
  5103. val = I915_READ(LCPLL_CTL);
  5104. if ((val & (LCPLL_PLL_LOCK | LCPLL_PLL_DISABLE | LCPLL_CD_SOURCE_FCLK |
  5105. LCPLL_POWER_DOWN_ALLOW)) == LCPLL_PLL_LOCK)
  5106. return;
  5107. /* Make sure we're not on PC8 state before disabling PC8, otherwise
  5108. * we'll hang the machine! */
  5109. dev_priv->uncore.funcs.force_wake_get(dev_priv);
  5110. if (val & LCPLL_POWER_DOWN_ALLOW) {
  5111. val &= ~LCPLL_POWER_DOWN_ALLOW;
  5112. I915_WRITE(LCPLL_CTL, val);
  5113. POSTING_READ(LCPLL_CTL);
  5114. }
  5115. val = I915_READ(D_COMP);
  5116. val |= D_COMP_COMP_FORCE;
  5117. val &= ~D_COMP_COMP_DISABLE;
  5118. I915_WRITE(D_COMP, val);
  5119. POSTING_READ(D_COMP);
  5120. val = I915_READ(LCPLL_CTL);
  5121. val &= ~LCPLL_PLL_DISABLE;
  5122. I915_WRITE(LCPLL_CTL, val);
  5123. if (wait_for(I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK, 5))
  5124. DRM_ERROR("LCPLL not locked yet\n");
  5125. if (val & LCPLL_CD_SOURCE_FCLK) {
  5126. val = I915_READ(LCPLL_CTL);
  5127. val &= ~LCPLL_CD_SOURCE_FCLK;
  5128. I915_WRITE(LCPLL_CTL, val);
  5129. if (wait_for_atomic_us((I915_READ(LCPLL_CTL) &
  5130. LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
  5131. DRM_ERROR("Switching back to LCPLL failed\n");
  5132. }
  5133. dev_priv->uncore.funcs.force_wake_put(dev_priv);
  5134. }
  5135. void hsw_enable_pc8_work(struct work_struct *__work)
  5136. {
  5137. struct drm_i915_private *dev_priv =
  5138. container_of(to_delayed_work(__work), struct drm_i915_private,
  5139. pc8.enable_work);
  5140. struct drm_device *dev = dev_priv->dev;
  5141. uint32_t val;
  5142. if (dev_priv->pc8.enabled)
  5143. return;
  5144. DRM_DEBUG_KMS("Enabling package C8+\n");
  5145. dev_priv->pc8.enabled = true;
  5146. if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
  5147. val = I915_READ(SOUTH_DSPCLK_GATE_D);
  5148. val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
  5149. I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
  5150. }
  5151. lpt_disable_clkout_dp(dev);
  5152. hsw_pc8_disable_interrupts(dev);
  5153. hsw_disable_lcpll(dev_priv, true, true);
  5154. }
  5155. static void __hsw_enable_package_c8(struct drm_i915_private *dev_priv)
  5156. {
  5157. WARN_ON(!mutex_is_locked(&dev_priv->pc8.lock));
  5158. WARN(dev_priv->pc8.disable_count < 1,
  5159. "pc8.disable_count: %d\n", dev_priv->pc8.disable_count);
  5160. dev_priv->pc8.disable_count--;
  5161. if (dev_priv->pc8.disable_count != 0)
  5162. return;
  5163. schedule_delayed_work(&dev_priv->pc8.enable_work,
  5164. msecs_to_jiffies(i915_pc8_timeout));
  5165. }
  5166. static void __hsw_disable_package_c8(struct drm_i915_private *dev_priv)
  5167. {
  5168. struct drm_device *dev = dev_priv->dev;
  5169. uint32_t val;
  5170. WARN_ON(!mutex_is_locked(&dev_priv->pc8.lock));
  5171. WARN(dev_priv->pc8.disable_count < 0,
  5172. "pc8.disable_count: %d\n", dev_priv->pc8.disable_count);
  5173. dev_priv->pc8.disable_count++;
  5174. if (dev_priv->pc8.disable_count != 1)
  5175. return;
  5176. cancel_delayed_work_sync(&dev_priv->pc8.enable_work);
  5177. if (!dev_priv->pc8.enabled)
  5178. return;
  5179. DRM_DEBUG_KMS("Disabling package C8+\n");
  5180. hsw_restore_lcpll(dev_priv);
  5181. hsw_pc8_restore_interrupts(dev);
  5182. lpt_init_pch_refclk(dev);
  5183. if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
  5184. val = I915_READ(SOUTH_DSPCLK_GATE_D);
  5185. val |= PCH_LP_PARTITION_LEVEL_DISABLE;
  5186. I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
  5187. }
  5188. intel_prepare_ddi(dev);
  5189. i915_gem_init_swizzling(dev);
  5190. mutex_lock(&dev_priv->rps.hw_lock);
  5191. gen6_update_ring_freq(dev);
  5192. mutex_unlock(&dev_priv->rps.hw_lock);
  5193. dev_priv->pc8.enabled = false;
  5194. }
  5195. void hsw_enable_package_c8(struct drm_i915_private *dev_priv)
  5196. {
  5197. mutex_lock(&dev_priv->pc8.lock);
  5198. __hsw_enable_package_c8(dev_priv);
  5199. mutex_unlock(&dev_priv->pc8.lock);
  5200. }
  5201. void hsw_disable_package_c8(struct drm_i915_private *dev_priv)
  5202. {
  5203. mutex_lock(&dev_priv->pc8.lock);
  5204. __hsw_disable_package_c8(dev_priv);
  5205. mutex_unlock(&dev_priv->pc8.lock);
  5206. }
  5207. static bool hsw_can_enable_package_c8(struct drm_i915_private *dev_priv)
  5208. {
  5209. struct drm_device *dev = dev_priv->dev;
  5210. struct intel_crtc *crtc;
  5211. uint32_t val;
  5212. list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head)
  5213. if (crtc->base.enabled)
  5214. return false;
  5215. /* This case is still possible since we have the i915.disable_power_well
  5216. * parameter and also the KVMr or something else might be requesting the
  5217. * power well. */
  5218. val = I915_READ(HSW_PWR_WELL_DRIVER);
  5219. if (val != 0) {
  5220. DRM_DEBUG_KMS("Not enabling PC8: power well on\n");
  5221. return false;
  5222. }
  5223. return true;
  5224. }
  5225. /* Since we're called from modeset_global_resources there's no way to
  5226. * symmetrically increase and decrease the refcount, so we use
  5227. * dev_priv->pc8.requirements_met to track whether we already have the refcount
  5228. * or not.
  5229. */
  5230. static void hsw_update_package_c8(struct drm_device *dev)
  5231. {
  5232. struct drm_i915_private *dev_priv = dev->dev_private;
  5233. bool allow;
  5234. if (!i915_enable_pc8)
  5235. return;
  5236. mutex_lock(&dev_priv->pc8.lock);
  5237. allow = hsw_can_enable_package_c8(dev_priv);
  5238. if (allow == dev_priv->pc8.requirements_met)
  5239. goto done;
  5240. dev_priv->pc8.requirements_met = allow;
  5241. if (allow)
  5242. __hsw_enable_package_c8(dev_priv);
  5243. else
  5244. __hsw_disable_package_c8(dev_priv);
  5245. done:
  5246. mutex_unlock(&dev_priv->pc8.lock);
  5247. }
  5248. static void hsw_package_c8_gpu_idle(struct drm_i915_private *dev_priv)
  5249. {
  5250. if (!dev_priv->pc8.gpu_idle) {
  5251. dev_priv->pc8.gpu_idle = true;
  5252. hsw_enable_package_c8(dev_priv);
  5253. }
  5254. }
  5255. static void hsw_package_c8_gpu_busy(struct drm_i915_private *dev_priv)
  5256. {
  5257. if (dev_priv->pc8.gpu_idle) {
  5258. dev_priv->pc8.gpu_idle = false;
  5259. hsw_disable_package_c8(dev_priv);
  5260. }
  5261. }
  5262. static void haswell_modeset_global_resources(struct drm_device *dev)
  5263. {
  5264. bool enable = false;
  5265. struct intel_crtc *crtc;
  5266. list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head) {
  5267. if (!crtc->base.enabled)
  5268. continue;
  5269. if (crtc->pipe != PIPE_A || crtc->config.pch_pfit.size ||
  5270. crtc->config.cpu_transcoder != TRANSCODER_EDP)
  5271. enable = true;
  5272. }
  5273. intel_set_power_well(dev, enable);
  5274. hsw_update_package_c8(dev);
  5275. }
  5276. static int haswell_crtc_mode_set(struct drm_crtc *crtc,
  5277. int x, int y,
  5278. struct drm_framebuffer *fb)
  5279. {
  5280. struct drm_device *dev = crtc->dev;
  5281. struct drm_i915_private *dev_priv = dev->dev_private;
  5282. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5283. int plane = intel_crtc->plane;
  5284. int ret;
  5285. if (!intel_ddi_pll_mode_set(crtc))
  5286. return -EINVAL;
  5287. /* Ensure that the cursor is valid for the new mode before changing... */
  5288. intel_crtc_update_cursor(crtc, true);
  5289. if (intel_crtc->config.has_dp_encoder)
  5290. intel_dp_set_m_n(intel_crtc);
  5291. intel_crtc->lowfreq_avail = false;
  5292. intel_set_pipe_timings(intel_crtc);
  5293. if (intel_crtc->config.has_pch_encoder) {
  5294. intel_cpu_transcoder_set_m_n(intel_crtc,
  5295. &intel_crtc->config.fdi_m_n);
  5296. }
  5297. haswell_set_pipeconf(crtc);
  5298. intel_set_pipe_csc(crtc);
  5299. /* Set up the display plane register */
  5300. I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE | DISPPLANE_PIPE_CSC_ENABLE);
  5301. POSTING_READ(DSPCNTR(plane));
  5302. ret = intel_pipe_set_base(crtc, x, y, fb);
  5303. intel_update_watermarks(dev);
  5304. return ret;
  5305. }
  5306. static bool haswell_get_pipe_config(struct intel_crtc *crtc,
  5307. struct intel_crtc_config *pipe_config)
  5308. {
  5309. struct drm_device *dev = crtc->base.dev;
  5310. struct drm_i915_private *dev_priv = dev->dev_private;
  5311. enum intel_display_power_domain pfit_domain;
  5312. uint32_t tmp;
  5313. pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
  5314. pipe_config->shared_dpll = DPLL_ID_PRIVATE;
  5315. tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
  5316. if (tmp & TRANS_DDI_FUNC_ENABLE) {
  5317. enum pipe trans_edp_pipe;
  5318. switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
  5319. default:
  5320. WARN(1, "unknown pipe linked to edp transcoder\n");
  5321. case TRANS_DDI_EDP_INPUT_A_ONOFF:
  5322. case TRANS_DDI_EDP_INPUT_A_ON:
  5323. trans_edp_pipe = PIPE_A;
  5324. break;
  5325. case TRANS_DDI_EDP_INPUT_B_ONOFF:
  5326. trans_edp_pipe = PIPE_B;
  5327. break;
  5328. case TRANS_DDI_EDP_INPUT_C_ONOFF:
  5329. trans_edp_pipe = PIPE_C;
  5330. break;
  5331. }
  5332. if (trans_edp_pipe == crtc->pipe)
  5333. pipe_config->cpu_transcoder = TRANSCODER_EDP;
  5334. }
  5335. if (!intel_display_power_enabled(dev,
  5336. POWER_DOMAIN_TRANSCODER(pipe_config->cpu_transcoder)))
  5337. return false;
  5338. tmp = I915_READ(PIPECONF(pipe_config->cpu_transcoder));
  5339. if (!(tmp & PIPECONF_ENABLE))
  5340. return false;
  5341. /*
  5342. * Haswell has only FDI/PCH transcoder A. It is which is connected to
  5343. * DDI E. So just check whether this pipe is wired to DDI E and whether
  5344. * the PCH transcoder is on.
  5345. */
  5346. tmp = I915_READ(TRANS_DDI_FUNC_CTL(pipe_config->cpu_transcoder));
  5347. if ((tmp & TRANS_DDI_PORT_MASK) == TRANS_DDI_SELECT_PORT(PORT_E) &&
  5348. I915_READ(LPT_TRANSCONF) & TRANS_ENABLE) {
  5349. pipe_config->has_pch_encoder = true;
  5350. tmp = I915_READ(FDI_RX_CTL(PIPE_A));
  5351. pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
  5352. FDI_DP_PORT_WIDTH_SHIFT) + 1;
  5353. ironlake_get_fdi_m_n_config(crtc, pipe_config);
  5354. }
  5355. intel_get_pipe_timings(crtc, pipe_config);
  5356. pfit_domain = POWER_DOMAIN_PIPE_PANEL_FITTER(crtc->pipe);
  5357. if (intel_display_power_enabled(dev, pfit_domain))
  5358. ironlake_get_pfit_config(crtc, pipe_config);
  5359. pipe_config->ips_enabled = hsw_crtc_supports_ips(crtc) &&
  5360. (I915_READ(IPS_CTL) & IPS_ENABLE);
  5361. pipe_config->pixel_multiplier = 1;
  5362. return true;
  5363. }
  5364. static int intel_crtc_mode_set(struct drm_crtc *crtc,
  5365. int x, int y,
  5366. struct drm_framebuffer *fb)
  5367. {
  5368. struct drm_device *dev = crtc->dev;
  5369. struct drm_i915_private *dev_priv = dev->dev_private;
  5370. struct intel_encoder *encoder;
  5371. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5372. struct drm_display_mode *mode = &intel_crtc->config.requested_mode;
  5373. int pipe = intel_crtc->pipe;
  5374. int ret;
  5375. drm_vblank_pre_modeset(dev, pipe);
  5376. ret = dev_priv->display.crtc_mode_set(crtc, x, y, fb);
  5377. drm_vblank_post_modeset(dev, pipe);
  5378. if (ret != 0)
  5379. return ret;
  5380. for_each_encoder_on_crtc(dev, crtc, encoder) {
  5381. DRM_DEBUG_KMS("[ENCODER:%d:%s] set [MODE:%d:%s]\n",
  5382. encoder->base.base.id,
  5383. drm_get_encoder_name(&encoder->base),
  5384. mode->base.id, mode->name);
  5385. encoder->mode_set(encoder);
  5386. }
  5387. return 0;
  5388. }
  5389. static bool intel_eld_uptodate(struct drm_connector *connector,
  5390. int reg_eldv, uint32_t bits_eldv,
  5391. int reg_elda, uint32_t bits_elda,
  5392. int reg_edid)
  5393. {
  5394. struct drm_i915_private *dev_priv = connector->dev->dev_private;
  5395. uint8_t *eld = connector->eld;
  5396. uint32_t i;
  5397. i = I915_READ(reg_eldv);
  5398. i &= bits_eldv;
  5399. if (!eld[0])
  5400. return !i;
  5401. if (!i)
  5402. return false;
  5403. i = I915_READ(reg_elda);
  5404. i &= ~bits_elda;
  5405. I915_WRITE(reg_elda, i);
  5406. for (i = 0; i < eld[2]; i++)
  5407. if (I915_READ(reg_edid) != *((uint32_t *)eld + i))
  5408. return false;
  5409. return true;
  5410. }
  5411. static void g4x_write_eld(struct drm_connector *connector,
  5412. struct drm_crtc *crtc)
  5413. {
  5414. struct drm_i915_private *dev_priv = connector->dev->dev_private;
  5415. uint8_t *eld = connector->eld;
  5416. uint32_t eldv;
  5417. uint32_t len;
  5418. uint32_t i;
  5419. i = I915_READ(G4X_AUD_VID_DID);
  5420. if (i == INTEL_AUDIO_DEVBLC || i == INTEL_AUDIO_DEVCL)
  5421. eldv = G4X_ELDV_DEVCL_DEVBLC;
  5422. else
  5423. eldv = G4X_ELDV_DEVCTG;
  5424. if (intel_eld_uptodate(connector,
  5425. G4X_AUD_CNTL_ST, eldv,
  5426. G4X_AUD_CNTL_ST, G4X_ELD_ADDR,
  5427. G4X_HDMIW_HDMIEDID))
  5428. return;
  5429. i = I915_READ(G4X_AUD_CNTL_ST);
  5430. i &= ~(eldv | G4X_ELD_ADDR);
  5431. len = (i >> 9) & 0x1f; /* ELD buffer size */
  5432. I915_WRITE(G4X_AUD_CNTL_ST, i);
  5433. if (!eld[0])
  5434. return;
  5435. len = min_t(uint8_t, eld[2], len);
  5436. DRM_DEBUG_DRIVER("ELD size %d\n", len);
  5437. for (i = 0; i < len; i++)
  5438. I915_WRITE(G4X_HDMIW_HDMIEDID, *((uint32_t *)eld + i));
  5439. i = I915_READ(G4X_AUD_CNTL_ST);
  5440. i |= eldv;
  5441. I915_WRITE(G4X_AUD_CNTL_ST, i);
  5442. }
  5443. static void haswell_write_eld(struct drm_connector *connector,
  5444. struct drm_crtc *crtc)
  5445. {
  5446. struct drm_i915_private *dev_priv = connector->dev->dev_private;
  5447. uint8_t *eld = connector->eld;
  5448. struct drm_device *dev = crtc->dev;
  5449. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5450. uint32_t eldv;
  5451. uint32_t i;
  5452. int len;
  5453. int pipe = to_intel_crtc(crtc)->pipe;
  5454. int tmp;
  5455. int hdmiw_hdmiedid = HSW_AUD_EDID_DATA(pipe);
  5456. int aud_cntl_st = HSW_AUD_DIP_ELD_CTRL(pipe);
  5457. int aud_config = HSW_AUD_CFG(pipe);
  5458. int aud_cntrl_st2 = HSW_AUD_PIN_ELD_CP_VLD;
  5459. DRM_DEBUG_DRIVER("HDMI: Haswell Audio initialize....\n");
  5460. /* Audio output enable */
  5461. DRM_DEBUG_DRIVER("HDMI audio: enable codec\n");
  5462. tmp = I915_READ(aud_cntrl_st2);
  5463. tmp |= (AUDIO_OUTPUT_ENABLE_A << (pipe * 4));
  5464. I915_WRITE(aud_cntrl_st2, tmp);
  5465. /* Wait for 1 vertical blank */
  5466. intel_wait_for_vblank(dev, pipe);
  5467. /* Set ELD valid state */
  5468. tmp = I915_READ(aud_cntrl_st2);
  5469. DRM_DEBUG_DRIVER("HDMI audio: pin eld vld status=0x%8x\n", tmp);
  5470. tmp |= (AUDIO_ELD_VALID_A << (pipe * 4));
  5471. I915_WRITE(aud_cntrl_st2, tmp);
  5472. tmp = I915_READ(aud_cntrl_st2);
  5473. DRM_DEBUG_DRIVER("HDMI audio: eld vld status=0x%8x\n", tmp);
  5474. /* Enable HDMI mode */
  5475. tmp = I915_READ(aud_config);
  5476. DRM_DEBUG_DRIVER("HDMI audio: audio conf: 0x%8x\n", tmp);
  5477. /* clear N_programing_enable and N_value_index */
  5478. tmp &= ~(AUD_CONFIG_N_VALUE_INDEX | AUD_CONFIG_N_PROG_ENABLE);
  5479. I915_WRITE(aud_config, tmp);
  5480. DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
  5481. eldv = AUDIO_ELD_VALID_A << (pipe * 4);
  5482. intel_crtc->eld_vld = true;
  5483. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
  5484. DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
  5485. eld[5] |= (1 << 2); /* Conn_Type, 0x1 = DisplayPort */
  5486. I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
  5487. } else
  5488. I915_WRITE(aud_config, 0);
  5489. if (intel_eld_uptodate(connector,
  5490. aud_cntrl_st2, eldv,
  5491. aud_cntl_st, IBX_ELD_ADDRESS,
  5492. hdmiw_hdmiedid))
  5493. return;
  5494. i = I915_READ(aud_cntrl_st2);
  5495. i &= ~eldv;
  5496. I915_WRITE(aud_cntrl_st2, i);
  5497. if (!eld[0])
  5498. return;
  5499. i = I915_READ(aud_cntl_st);
  5500. i &= ~IBX_ELD_ADDRESS;
  5501. I915_WRITE(aud_cntl_st, i);
  5502. i = (i >> 29) & DIP_PORT_SEL_MASK; /* DIP_Port_Select, 0x1 = PortB */
  5503. DRM_DEBUG_DRIVER("port num:%d\n", i);
  5504. len = min_t(uint8_t, eld[2], 21); /* 84 bytes of hw ELD buffer */
  5505. DRM_DEBUG_DRIVER("ELD size %d\n", len);
  5506. for (i = 0; i < len; i++)
  5507. I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
  5508. i = I915_READ(aud_cntrl_st2);
  5509. i |= eldv;
  5510. I915_WRITE(aud_cntrl_st2, i);
  5511. }
  5512. static void ironlake_write_eld(struct drm_connector *connector,
  5513. struct drm_crtc *crtc)
  5514. {
  5515. struct drm_i915_private *dev_priv = connector->dev->dev_private;
  5516. uint8_t *eld = connector->eld;
  5517. uint32_t eldv;
  5518. uint32_t i;
  5519. int len;
  5520. int hdmiw_hdmiedid;
  5521. int aud_config;
  5522. int aud_cntl_st;
  5523. int aud_cntrl_st2;
  5524. int pipe = to_intel_crtc(crtc)->pipe;
  5525. if (HAS_PCH_IBX(connector->dev)) {
  5526. hdmiw_hdmiedid = IBX_HDMIW_HDMIEDID(pipe);
  5527. aud_config = IBX_AUD_CFG(pipe);
  5528. aud_cntl_st = IBX_AUD_CNTL_ST(pipe);
  5529. aud_cntrl_st2 = IBX_AUD_CNTL_ST2;
  5530. } else {
  5531. hdmiw_hdmiedid = CPT_HDMIW_HDMIEDID(pipe);
  5532. aud_config = CPT_AUD_CFG(pipe);
  5533. aud_cntl_st = CPT_AUD_CNTL_ST(pipe);
  5534. aud_cntrl_st2 = CPT_AUD_CNTRL_ST2;
  5535. }
  5536. DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
  5537. i = I915_READ(aud_cntl_st);
  5538. i = (i >> 29) & DIP_PORT_SEL_MASK; /* DIP_Port_Select, 0x1 = PortB */
  5539. if (!i) {
  5540. DRM_DEBUG_DRIVER("Audio directed to unknown port\n");
  5541. /* operate blindly on all ports */
  5542. eldv = IBX_ELD_VALIDB;
  5543. eldv |= IBX_ELD_VALIDB << 4;
  5544. eldv |= IBX_ELD_VALIDB << 8;
  5545. } else {
  5546. DRM_DEBUG_DRIVER("ELD on port %c\n", port_name(i));
  5547. eldv = IBX_ELD_VALIDB << ((i - 1) * 4);
  5548. }
  5549. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
  5550. DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
  5551. eld[5] |= (1 << 2); /* Conn_Type, 0x1 = DisplayPort */
  5552. I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
  5553. } else
  5554. I915_WRITE(aud_config, 0);
  5555. if (intel_eld_uptodate(connector,
  5556. aud_cntrl_st2, eldv,
  5557. aud_cntl_st, IBX_ELD_ADDRESS,
  5558. hdmiw_hdmiedid))
  5559. return;
  5560. i = I915_READ(aud_cntrl_st2);
  5561. i &= ~eldv;
  5562. I915_WRITE(aud_cntrl_st2, i);
  5563. if (!eld[0])
  5564. return;
  5565. i = I915_READ(aud_cntl_st);
  5566. i &= ~IBX_ELD_ADDRESS;
  5567. I915_WRITE(aud_cntl_st, i);
  5568. len = min_t(uint8_t, eld[2], 21); /* 84 bytes of hw ELD buffer */
  5569. DRM_DEBUG_DRIVER("ELD size %d\n", len);
  5570. for (i = 0; i < len; i++)
  5571. I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
  5572. i = I915_READ(aud_cntrl_st2);
  5573. i |= eldv;
  5574. I915_WRITE(aud_cntrl_st2, i);
  5575. }
  5576. void intel_write_eld(struct drm_encoder *encoder,
  5577. struct drm_display_mode *mode)
  5578. {
  5579. struct drm_crtc *crtc = encoder->crtc;
  5580. struct drm_connector *connector;
  5581. struct drm_device *dev = encoder->dev;
  5582. struct drm_i915_private *dev_priv = dev->dev_private;
  5583. connector = drm_select_eld(encoder, mode);
  5584. if (!connector)
  5585. return;
  5586. DRM_DEBUG_DRIVER("ELD on [CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
  5587. connector->base.id,
  5588. drm_get_connector_name(connector),
  5589. connector->encoder->base.id,
  5590. drm_get_encoder_name(connector->encoder));
  5591. connector->eld[6] = drm_av_sync_delay(connector, mode) / 2;
  5592. if (dev_priv->display.write_eld)
  5593. dev_priv->display.write_eld(connector, crtc);
  5594. }
  5595. /** Loads the palette/gamma unit for the CRTC with the prepared values */
  5596. void intel_crtc_load_lut(struct drm_crtc *crtc)
  5597. {
  5598. struct drm_device *dev = crtc->dev;
  5599. struct drm_i915_private *dev_priv = dev->dev_private;
  5600. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5601. enum pipe pipe = intel_crtc->pipe;
  5602. int palreg = PALETTE(pipe);
  5603. int i;
  5604. bool reenable_ips = false;
  5605. /* The clocks have to be on to load the palette. */
  5606. if (!crtc->enabled || !intel_crtc->active)
  5607. return;
  5608. if (!HAS_PCH_SPLIT(dev_priv->dev)) {
  5609. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI))
  5610. assert_dsi_pll_enabled(dev_priv);
  5611. else
  5612. assert_pll_enabled(dev_priv, pipe);
  5613. }
  5614. /* use legacy palette for Ironlake */
  5615. if (HAS_PCH_SPLIT(dev))
  5616. palreg = LGC_PALETTE(pipe);
  5617. /* Workaround : Do not read or write the pipe palette/gamma data while
  5618. * GAMMA_MODE is configured for split gamma and IPS_CTL has IPS enabled.
  5619. */
  5620. if (intel_crtc->config.ips_enabled &&
  5621. ((I915_READ(GAMMA_MODE(pipe)) & GAMMA_MODE_MODE_MASK) ==
  5622. GAMMA_MODE_MODE_SPLIT)) {
  5623. hsw_disable_ips(intel_crtc);
  5624. reenable_ips = true;
  5625. }
  5626. for (i = 0; i < 256; i++) {
  5627. I915_WRITE(palreg + 4 * i,
  5628. (intel_crtc->lut_r[i] << 16) |
  5629. (intel_crtc->lut_g[i] << 8) |
  5630. intel_crtc->lut_b[i]);
  5631. }
  5632. if (reenable_ips)
  5633. hsw_enable_ips(intel_crtc);
  5634. }
  5635. static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
  5636. {
  5637. struct drm_device *dev = crtc->dev;
  5638. struct drm_i915_private *dev_priv = dev->dev_private;
  5639. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5640. bool visible = base != 0;
  5641. u32 cntl;
  5642. if (intel_crtc->cursor_visible == visible)
  5643. return;
  5644. cntl = I915_READ(_CURACNTR);
  5645. if (visible) {
  5646. /* On these chipsets we can only modify the base whilst
  5647. * the cursor is disabled.
  5648. */
  5649. I915_WRITE(_CURABASE, base);
  5650. cntl &= ~(CURSOR_FORMAT_MASK);
  5651. /* XXX width must be 64, stride 256 => 0x00 << 28 */
  5652. cntl |= CURSOR_ENABLE |
  5653. CURSOR_GAMMA_ENABLE |
  5654. CURSOR_FORMAT_ARGB;
  5655. } else
  5656. cntl &= ~(CURSOR_ENABLE | CURSOR_GAMMA_ENABLE);
  5657. I915_WRITE(_CURACNTR, cntl);
  5658. intel_crtc->cursor_visible = visible;
  5659. }
  5660. static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
  5661. {
  5662. struct drm_device *dev = crtc->dev;
  5663. struct drm_i915_private *dev_priv = dev->dev_private;
  5664. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5665. int pipe = intel_crtc->pipe;
  5666. bool visible = base != 0;
  5667. if (intel_crtc->cursor_visible != visible) {
  5668. uint32_t cntl = I915_READ(CURCNTR(pipe));
  5669. if (base) {
  5670. cntl &= ~(CURSOR_MODE | MCURSOR_PIPE_SELECT);
  5671. cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
  5672. cntl |= pipe << 28; /* Connect to correct pipe */
  5673. } else {
  5674. cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
  5675. cntl |= CURSOR_MODE_DISABLE;
  5676. }
  5677. I915_WRITE(CURCNTR(pipe), cntl);
  5678. intel_crtc->cursor_visible = visible;
  5679. }
  5680. /* and commit changes on next vblank */
  5681. I915_WRITE(CURBASE(pipe), base);
  5682. }
  5683. static void ivb_update_cursor(struct drm_crtc *crtc, u32 base)
  5684. {
  5685. struct drm_device *dev = crtc->dev;
  5686. struct drm_i915_private *dev_priv = dev->dev_private;
  5687. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5688. int pipe = intel_crtc->pipe;
  5689. bool visible = base != 0;
  5690. if (intel_crtc->cursor_visible != visible) {
  5691. uint32_t cntl = I915_READ(CURCNTR_IVB(pipe));
  5692. if (base) {
  5693. cntl &= ~CURSOR_MODE;
  5694. cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
  5695. } else {
  5696. cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
  5697. cntl |= CURSOR_MODE_DISABLE;
  5698. }
  5699. if (IS_HASWELL(dev)) {
  5700. cntl |= CURSOR_PIPE_CSC_ENABLE;
  5701. cntl &= ~CURSOR_TRICKLE_FEED_DISABLE;
  5702. }
  5703. I915_WRITE(CURCNTR_IVB(pipe), cntl);
  5704. intel_crtc->cursor_visible = visible;
  5705. }
  5706. /* and commit changes on next vblank */
  5707. I915_WRITE(CURBASE_IVB(pipe), base);
  5708. }
  5709. /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
  5710. static void intel_crtc_update_cursor(struct drm_crtc *crtc,
  5711. bool on)
  5712. {
  5713. struct drm_device *dev = crtc->dev;
  5714. struct drm_i915_private *dev_priv = dev->dev_private;
  5715. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5716. int pipe = intel_crtc->pipe;
  5717. int x = intel_crtc->cursor_x;
  5718. int y = intel_crtc->cursor_y;
  5719. u32 base, pos;
  5720. bool visible;
  5721. pos = 0;
  5722. if (on && crtc->enabled && crtc->fb) {
  5723. base = intel_crtc->cursor_addr;
  5724. if (x > (int) crtc->fb->width)
  5725. base = 0;
  5726. if (y > (int) crtc->fb->height)
  5727. base = 0;
  5728. } else
  5729. base = 0;
  5730. if (x < 0) {
  5731. if (x + intel_crtc->cursor_width < 0)
  5732. base = 0;
  5733. pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
  5734. x = -x;
  5735. }
  5736. pos |= x << CURSOR_X_SHIFT;
  5737. if (y < 0) {
  5738. if (y + intel_crtc->cursor_height < 0)
  5739. base = 0;
  5740. pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
  5741. y = -y;
  5742. }
  5743. pos |= y << CURSOR_Y_SHIFT;
  5744. visible = base != 0;
  5745. if (!visible && !intel_crtc->cursor_visible)
  5746. return;
  5747. if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) {
  5748. I915_WRITE(CURPOS_IVB(pipe), pos);
  5749. ivb_update_cursor(crtc, base);
  5750. } else {
  5751. I915_WRITE(CURPOS(pipe), pos);
  5752. if (IS_845G(dev) || IS_I865G(dev))
  5753. i845_update_cursor(crtc, base);
  5754. else
  5755. i9xx_update_cursor(crtc, base);
  5756. }
  5757. }
  5758. static int intel_crtc_cursor_set(struct drm_crtc *crtc,
  5759. struct drm_file *file,
  5760. uint32_t handle,
  5761. uint32_t width, uint32_t height)
  5762. {
  5763. struct drm_device *dev = crtc->dev;
  5764. struct drm_i915_private *dev_priv = dev->dev_private;
  5765. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5766. struct drm_i915_gem_object *obj;
  5767. uint32_t addr;
  5768. int ret;
  5769. /* if we want to turn off the cursor ignore width and height */
  5770. if (!handle) {
  5771. DRM_DEBUG_KMS("cursor off\n");
  5772. addr = 0;
  5773. obj = NULL;
  5774. mutex_lock(&dev->struct_mutex);
  5775. goto finish;
  5776. }
  5777. /* Currently we only support 64x64 cursors */
  5778. if (width != 64 || height != 64) {
  5779. DRM_ERROR("we currently only support 64x64 cursors\n");
  5780. return -EINVAL;
  5781. }
  5782. obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
  5783. if (&obj->base == NULL)
  5784. return -ENOENT;
  5785. if (obj->base.size < width * height * 4) {
  5786. DRM_ERROR("buffer is to small\n");
  5787. ret = -ENOMEM;
  5788. goto fail;
  5789. }
  5790. /* we only need to pin inside GTT if cursor is non-phy */
  5791. mutex_lock(&dev->struct_mutex);
  5792. if (!dev_priv->info->cursor_needs_physical) {
  5793. unsigned alignment;
  5794. if (obj->tiling_mode) {
  5795. DRM_ERROR("cursor cannot be tiled\n");
  5796. ret = -EINVAL;
  5797. goto fail_locked;
  5798. }
  5799. /* Note that the w/a also requires 2 PTE of padding following
  5800. * the bo. We currently fill all unused PTE with the shadow
  5801. * page and so we should always have valid PTE following the
  5802. * cursor preventing the VT-d warning.
  5803. */
  5804. alignment = 0;
  5805. if (need_vtd_wa(dev))
  5806. alignment = 64*1024;
  5807. ret = i915_gem_object_pin_to_display_plane(obj, alignment, NULL);
  5808. if (ret) {
  5809. DRM_ERROR("failed to move cursor bo into the GTT\n");
  5810. goto fail_locked;
  5811. }
  5812. ret = i915_gem_object_put_fence(obj);
  5813. if (ret) {
  5814. DRM_ERROR("failed to release fence for cursor");
  5815. goto fail_unpin;
  5816. }
  5817. addr = i915_gem_obj_ggtt_offset(obj);
  5818. } else {
  5819. int align = IS_I830(dev) ? 16 * 1024 : 256;
  5820. ret = i915_gem_attach_phys_object(dev, obj,
  5821. (intel_crtc->pipe == 0) ? I915_GEM_PHYS_CURSOR_0 : I915_GEM_PHYS_CURSOR_1,
  5822. align);
  5823. if (ret) {
  5824. DRM_ERROR("failed to attach phys object\n");
  5825. goto fail_locked;
  5826. }
  5827. addr = obj->phys_obj->handle->busaddr;
  5828. }
  5829. if (IS_GEN2(dev))
  5830. I915_WRITE(CURSIZE, (height << 12) | width);
  5831. finish:
  5832. if (intel_crtc->cursor_bo) {
  5833. if (dev_priv->info->cursor_needs_physical) {
  5834. if (intel_crtc->cursor_bo != obj)
  5835. i915_gem_detach_phys_object(dev, intel_crtc->cursor_bo);
  5836. } else
  5837. i915_gem_object_unpin_from_display_plane(intel_crtc->cursor_bo);
  5838. drm_gem_object_unreference(&intel_crtc->cursor_bo->base);
  5839. }
  5840. mutex_unlock(&dev->struct_mutex);
  5841. intel_crtc->cursor_addr = addr;
  5842. intel_crtc->cursor_bo = obj;
  5843. intel_crtc->cursor_width = width;
  5844. intel_crtc->cursor_height = height;
  5845. intel_crtc_update_cursor(crtc, intel_crtc->cursor_bo != NULL);
  5846. return 0;
  5847. fail_unpin:
  5848. i915_gem_object_unpin_from_display_plane(obj);
  5849. fail_locked:
  5850. mutex_unlock(&dev->struct_mutex);
  5851. fail:
  5852. drm_gem_object_unreference_unlocked(&obj->base);
  5853. return ret;
  5854. }
  5855. static int intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
  5856. {
  5857. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5858. intel_crtc->cursor_x = x;
  5859. intel_crtc->cursor_y = y;
  5860. intel_crtc_update_cursor(crtc, intel_crtc->cursor_bo != NULL);
  5861. return 0;
  5862. }
  5863. /** Sets the color ramps on behalf of RandR */
  5864. void intel_crtc_fb_gamma_set(struct drm_crtc *crtc, u16 red, u16 green,
  5865. u16 blue, int regno)
  5866. {
  5867. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5868. intel_crtc->lut_r[regno] = red >> 8;
  5869. intel_crtc->lut_g[regno] = green >> 8;
  5870. intel_crtc->lut_b[regno] = blue >> 8;
  5871. }
  5872. void intel_crtc_fb_gamma_get(struct drm_crtc *crtc, u16 *red, u16 *green,
  5873. u16 *blue, int regno)
  5874. {
  5875. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5876. *red = intel_crtc->lut_r[regno] << 8;
  5877. *green = intel_crtc->lut_g[regno] << 8;
  5878. *blue = intel_crtc->lut_b[regno] << 8;
  5879. }
  5880. static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
  5881. u16 *blue, uint32_t start, uint32_t size)
  5882. {
  5883. int end = (start + size > 256) ? 256 : start + size, i;
  5884. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5885. for (i = start; i < end; i++) {
  5886. intel_crtc->lut_r[i] = red[i] >> 8;
  5887. intel_crtc->lut_g[i] = green[i] >> 8;
  5888. intel_crtc->lut_b[i] = blue[i] >> 8;
  5889. }
  5890. intel_crtc_load_lut(crtc);
  5891. }
  5892. /* VESA 640x480x72Hz mode to set on the pipe */
  5893. static struct drm_display_mode load_detect_mode = {
  5894. DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
  5895. 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
  5896. };
  5897. static struct drm_framebuffer *
  5898. intel_framebuffer_create(struct drm_device *dev,
  5899. struct drm_mode_fb_cmd2 *mode_cmd,
  5900. struct drm_i915_gem_object *obj)
  5901. {
  5902. struct intel_framebuffer *intel_fb;
  5903. int ret;
  5904. intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
  5905. if (!intel_fb) {
  5906. drm_gem_object_unreference_unlocked(&obj->base);
  5907. return ERR_PTR(-ENOMEM);
  5908. }
  5909. ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
  5910. if (ret) {
  5911. drm_gem_object_unreference_unlocked(&obj->base);
  5912. kfree(intel_fb);
  5913. return ERR_PTR(ret);
  5914. }
  5915. return &intel_fb->base;
  5916. }
  5917. static u32
  5918. intel_framebuffer_pitch_for_width(int width, int bpp)
  5919. {
  5920. u32 pitch = DIV_ROUND_UP(width * bpp, 8);
  5921. return ALIGN(pitch, 64);
  5922. }
  5923. static u32
  5924. intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
  5925. {
  5926. u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
  5927. return ALIGN(pitch * mode->vdisplay, PAGE_SIZE);
  5928. }
  5929. static struct drm_framebuffer *
  5930. intel_framebuffer_create_for_mode(struct drm_device *dev,
  5931. struct drm_display_mode *mode,
  5932. int depth, int bpp)
  5933. {
  5934. struct drm_i915_gem_object *obj;
  5935. struct drm_mode_fb_cmd2 mode_cmd = { 0 };
  5936. obj = i915_gem_alloc_object(dev,
  5937. intel_framebuffer_size_for_mode(mode, bpp));
  5938. if (obj == NULL)
  5939. return ERR_PTR(-ENOMEM);
  5940. mode_cmd.width = mode->hdisplay;
  5941. mode_cmd.height = mode->vdisplay;
  5942. mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
  5943. bpp);
  5944. mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
  5945. return intel_framebuffer_create(dev, &mode_cmd, obj);
  5946. }
  5947. static struct drm_framebuffer *
  5948. mode_fits_in_fbdev(struct drm_device *dev,
  5949. struct drm_display_mode *mode)
  5950. {
  5951. struct drm_i915_private *dev_priv = dev->dev_private;
  5952. struct drm_i915_gem_object *obj;
  5953. struct drm_framebuffer *fb;
  5954. if (dev_priv->fbdev == NULL)
  5955. return NULL;
  5956. obj = dev_priv->fbdev->ifb.obj;
  5957. if (obj == NULL)
  5958. return NULL;
  5959. fb = &dev_priv->fbdev->ifb.base;
  5960. if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
  5961. fb->bits_per_pixel))
  5962. return NULL;
  5963. if (obj->base.size < mode->vdisplay * fb->pitches[0])
  5964. return NULL;
  5965. return fb;
  5966. }
  5967. bool intel_get_load_detect_pipe(struct drm_connector *connector,
  5968. struct drm_display_mode *mode,
  5969. struct intel_load_detect_pipe *old)
  5970. {
  5971. struct intel_crtc *intel_crtc;
  5972. struct intel_encoder *intel_encoder =
  5973. intel_attached_encoder(connector);
  5974. struct drm_crtc *possible_crtc;
  5975. struct drm_encoder *encoder = &intel_encoder->base;
  5976. struct drm_crtc *crtc = NULL;
  5977. struct drm_device *dev = encoder->dev;
  5978. struct drm_framebuffer *fb;
  5979. int i = -1;
  5980. DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
  5981. connector->base.id, drm_get_connector_name(connector),
  5982. encoder->base.id, drm_get_encoder_name(encoder));
  5983. /*
  5984. * Algorithm gets a little messy:
  5985. *
  5986. * - if the connector already has an assigned crtc, use it (but make
  5987. * sure it's on first)
  5988. *
  5989. * - try to find the first unused crtc that can drive this connector,
  5990. * and use that if we find one
  5991. */
  5992. /* See if we already have a CRTC for this connector */
  5993. if (encoder->crtc) {
  5994. crtc = encoder->crtc;
  5995. mutex_lock(&crtc->mutex);
  5996. old->dpms_mode = connector->dpms;
  5997. old->load_detect_temp = false;
  5998. /* Make sure the crtc and connector are running */
  5999. if (connector->dpms != DRM_MODE_DPMS_ON)
  6000. connector->funcs->dpms(connector, DRM_MODE_DPMS_ON);
  6001. return true;
  6002. }
  6003. /* Find an unused one (if possible) */
  6004. list_for_each_entry(possible_crtc, &dev->mode_config.crtc_list, head) {
  6005. i++;
  6006. if (!(encoder->possible_crtcs & (1 << i)))
  6007. continue;
  6008. if (!possible_crtc->enabled) {
  6009. crtc = possible_crtc;
  6010. break;
  6011. }
  6012. }
  6013. /*
  6014. * If we didn't find an unused CRTC, don't use any.
  6015. */
  6016. if (!crtc) {
  6017. DRM_DEBUG_KMS("no pipe available for load-detect\n");
  6018. return false;
  6019. }
  6020. mutex_lock(&crtc->mutex);
  6021. intel_encoder->new_crtc = to_intel_crtc(crtc);
  6022. to_intel_connector(connector)->new_encoder = intel_encoder;
  6023. intel_crtc = to_intel_crtc(crtc);
  6024. old->dpms_mode = connector->dpms;
  6025. old->load_detect_temp = true;
  6026. old->release_fb = NULL;
  6027. if (!mode)
  6028. mode = &load_detect_mode;
  6029. /* We need a framebuffer large enough to accommodate all accesses
  6030. * that the plane may generate whilst we perform load detection.
  6031. * We can not rely on the fbcon either being present (we get called
  6032. * during its initialisation to detect all boot displays, or it may
  6033. * not even exist) or that it is large enough to satisfy the
  6034. * requested mode.
  6035. */
  6036. fb = mode_fits_in_fbdev(dev, mode);
  6037. if (fb == NULL) {
  6038. DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
  6039. fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
  6040. old->release_fb = fb;
  6041. } else
  6042. DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
  6043. if (IS_ERR(fb)) {
  6044. DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
  6045. mutex_unlock(&crtc->mutex);
  6046. return false;
  6047. }
  6048. if (intel_set_mode(crtc, mode, 0, 0, fb)) {
  6049. DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
  6050. if (old->release_fb)
  6051. old->release_fb->funcs->destroy(old->release_fb);
  6052. mutex_unlock(&crtc->mutex);
  6053. return false;
  6054. }
  6055. /* let the connector get through one full cycle before testing */
  6056. intel_wait_for_vblank(dev, intel_crtc->pipe);
  6057. return true;
  6058. }
  6059. void intel_release_load_detect_pipe(struct drm_connector *connector,
  6060. struct intel_load_detect_pipe *old)
  6061. {
  6062. struct intel_encoder *intel_encoder =
  6063. intel_attached_encoder(connector);
  6064. struct drm_encoder *encoder = &intel_encoder->base;
  6065. struct drm_crtc *crtc = encoder->crtc;
  6066. DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
  6067. connector->base.id, drm_get_connector_name(connector),
  6068. encoder->base.id, drm_get_encoder_name(encoder));
  6069. if (old->load_detect_temp) {
  6070. to_intel_connector(connector)->new_encoder = NULL;
  6071. intel_encoder->new_crtc = NULL;
  6072. intel_set_mode(crtc, NULL, 0, 0, NULL);
  6073. if (old->release_fb) {
  6074. drm_framebuffer_unregister_private(old->release_fb);
  6075. drm_framebuffer_unreference(old->release_fb);
  6076. }
  6077. mutex_unlock(&crtc->mutex);
  6078. return;
  6079. }
  6080. /* Switch crtc and encoder back off if necessary */
  6081. if (old->dpms_mode != DRM_MODE_DPMS_ON)
  6082. connector->funcs->dpms(connector, old->dpms_mode);
  6083. mutex_unlock(&crtc->mutex);
  6084. }
  6085. /* Returns the clock of the currently programmed mode of the given pipe. */
  6086. static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
  6087. struct intel_crtc_config *pipe_config)
  6088. {
  6089. struct drm_device *dev = crtc->base.dev;
  6090. struct drm_i915_private *dev_priv = dev->dev_private;
  6091. int pipe = pipe_config->cpu_transcoder;
  6092. u32 dpll = I915_READ(DPLL(pipe));
  6093. u32 fp;
  6094. intel_clock_t clock;
  6095. if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
  6096. fp = I915_READ(FP0(pipe));
  6097. else
  6098. fp = I915_READ(FP1(pipe));
  6099. clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
  6100. if (IS_PINEVIEW(dev)) {
  6101. clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
  6102. clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
  6103. } else {
  6104. clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
  6105. clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
  6106. }
  6107. if (!IS_GEN2(dev)) {
  6108. if (IS_PINEVIEW(dev))
  6109. clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
  6110. DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
  6111. else
  6112. clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
  6113. DPLL_FPA01_P1_POST_DIV_SHIFT);
  6114. switch (dpll & DPLL_MODE_MASK) {
  6115. case DPLLB_MODE_DAC_SERIAL:
  6116. clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
  6117. 5 : 10;
  6118. break;
  6119. case DPLLB_MODE_LVDS:
  6120. clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
  6121. 7 : 14;
  6122. break;
  6123. default:
  6124. DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
  6125. "mode\n", (int)(dpll & DPLL_MODE_MASK));
  6126. pipe_config->adjusted_mode.clock = 0;
  6127. return;
  6128. }
  6129. if (IS_PINEVIEW(dev))
  6130. pineview_clock(96000, &clock);
  6131. else
  6132. i9xx_clock(96000, &clock);
  6133. } else {
  6134. bool is_lvds = (pipe == 1) && (I915_READ(LVDS) & LVDS_PORT_EN);
  6135. if (is_lvds) {
  6136. clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
  6137. DPLL_FPA01_P1_POST_DIV_SHIFT);
  6138. clock.p2 = 14;
  6139. if ((dpll & PLL_REF_INPUT_MASK) ==
  6140. PLLB_REF_INPUT_SPREADSPECTRUMIN) {
  6141. /* XXX: might not be 66MHz */
  6142. i9xx_clock(66000, &clock);
  6143. } else
  6144. i9xx_clock(48000, &clock);
  6145. } else {
  6146. if (dpll & PLL_P1_DIVIDE_BY_TWO)
  6147. clock.p1 = 2;
  6148. else {
  6149. clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
  6150. DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
  6151. }
  6152. if (dpll & PLL_P2_DIVIDE_BY_4)
  6153. clock.p2 = 4;
  6154. else
  6155. clock.p2 = 2;
  6156. i9xx_clock(48000, &clock);
  6157. }
  6158. }
  6159. pipe_config->adjusted_mode.clock = clock.dot;
  6160. }
  6161. static void ironlake_crtc_clock_get(struct intel_crtc *crtc,
  6162. struct intel_crtc_config *pipe_config)
  6163. {
  6164. struct drm_device *dev = crtc->base.dev;
  6165. struct drm_i915_private *dev_priv = dev->dev_private;
  6166. enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
  6167. int link_freq, repeat;
  6168. u64 clock;
  6169. u32 link_m, link_n;
  6170. repeat = pipe_config->pixel_multiplier;
  6171. /*
  6172. * The calculation for the data clock is:
  6173. * pixel_clock = ((m/n)*(link_clock * nr_lanes * repeat))/bpp
  6174. * But we want to avoid losing precison if possible, so:
  6175. * pixel_clock = ((m * link_clock * nr_lanes * repeat)/(n*bpp))
  6176. *
  6177. * and the link clock is simpler:
  6178. * link_clock = (m * link_clock * repeat) / n
  6179. */
  6180. /*
  6181. * We need to get the FDI or DP link clock here to derive
  6182. * the M/N dividers.
  6183. *
  6184. * For FDI, we read it from the BIOS or use a fixed 2.7GHz.
  6185. * For DP, it's either 1.62GHz or 2.7GHz.
  6186. * We do our calculations in 10*MHz since we don't need much precison.
  6187. */
  6188. if (pipe_config->has_pch_encoder)
  6189. link_freq = intel_fdi_link_freq(dev) * 10000;
  6190. else
  6191. link_freq = pipe_config->port_clock;
  6192. link_m = I915_READ(PIPE_LINK_M1(cpu_transcoder));
  6193. link_n = I915_READ(PIPE_LINK_N1(cpu_transcoder));
  6194. if (!link_m || !link_n)
  6195. return;
  6196. clock = ((u64)link_m * (u64)link_freq * (u64)repeat);
  6197. do_div(clock, link_n);
  6198. pipe_config->adjusted_mode.clock = clock;
  6199. }
  6200. /** Returns the currently programmed mode of the given pipe. */
  6201. struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
  6202. struct drm_crtc *crtc)
  6203. {
  6204. struct drm_i915_private *dev_priv = dev->dev_private;
  6205. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6206. enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
  6207. struct drm_display_mode *mode;
  6208. struct intel_crtc_config pipe_config;
  6209. int htot = I915_READ(HTOTAL(cpu_transcoder));
  6210. int hsync = I915_READ(HSYNC(cpu_transcoder));
  6211. int vtot = I915_READ(VTOTAL(cpu_transcoder));
  6212. int vsync = I915_READ(VSYNC(cpu_transcoder));
  6213. mode = kzalloc(sizeof(*mode), GFP_KERNEL);
  6214. if (!mode)
  6215. return NULL;
  6216. /*
  6217. * Construct a pipe_config sufficient for getting the clock info
  6218. * back out of crtc_clock_get.
  6219. *
  6220. * Note, if LVDS ever uses a non-1 pixel multiplier, we'll need
  6221. * to use a real value here instead.
  6222. */
  6223. pipe_config.cpu_transcoder = (enum transcoder) intel_crtc->pipe;
  6224. pipe_config.pixel_multiplier = 1;
  6225. i9xx_crtc_clock_get(intel_crtc, &pipe_config);
  6226. mode->clock = pipe_config.adjusted_mode.clock;
  6227. mode->hdisplay = (htot & 0xffff) + 1;
  6228. mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
  6229. mode->hsync_start = (hsync & 0xffff) + 1;
  6230. mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
  6231. mode->vdisplay = (vtot & 0xffff) + 1;
  6232. mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
  6233. mode->vsync_start = (vsync & 0xffff) + 1;
  6234. mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
  6235. drm_mode_set_name(mode);
  6236. return mode;
  6237. }
  6238. static void intel_increase_pllclock(struct drm_crtc *crtc)
  6239. {
  6240. struct drm_device *dev = crtc->dev;
  6241. drm_i915_private_t *dev_priv = dev->dev_private;
  6242. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6243. int pipe = intel_crtc->pipe;
  6244. int dpll_reg = DPLL(pipe);
  6245. int dpll;
  6246. if (HAS_PCH_SPLIT(dev))
  6247. return;
  6248. if (!dev_priv->lvds_downclock_avail)
  6249. return;
  6250. dpll = I915_READ(dpll_reg);
  6251. if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) {
  6252. DRM_DEBUG_DRIVER("upclocking LVDS\n");
  6253. assert_panel_unlocked(dev_priv, pipe);
  6254. dpll &= ~DISPLAY_RATE_SELECT_FPA1;
  6255. I915_WRITE(dpll_reg, dpll);
  6256. intel_wait_for_vblank(dev, pipe);
  6257. dpll = I915_READ(dpll_reg);
  6258. if (dpll & DISPLAY_RATE_SELECT_FPA1)
  6259. DRM_DEBUG_DRIVER("failed to upclock LVDS!\n");
  6260. }
  6261. }
  6262. static void intel_decrease_pllclock(struct drm_crtc *crtc)
  6263. {
  6264. struct drm_device *dev = crtc->dev;
  6265. drm_i915_private_t *dev_priv = dev->dev_private;
  6266. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6267. if (HAS_PCH_SPLIT(dev))
  6268. return;
  6269. if (!dev_priv->lvds_downclock_avail)
  6270. return;
  6271. /*
  6272. * Since this is called by a timer, we should never get here in
  6273. * the manual case.
  6274. */
  6275. if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
  6276. int pipe = intel_crtc->pipe;
  6277. int dpll_reg = DPLL(pipe);
  6278. int dpll;
  6279. DRM_DEBUG_DRIVER("downclocking LVDS\n");
  6280. assert_panel_unlocked(dev_priv, pipe);
  6281. dpll = I915_READ(dpll_reg);
  6282. dpll |= DISPLAY_RATE_SELECT_FPA1;
  6283. I915_WRITE(dpll_reg, dpll);
  6284. intel_wait_for_vblank(dev, pipe);
  6285. dpll = I915_READ(dpll_reg);
  6286. if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
  6287. DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
  6288. }
  6289. }
  6290. void intel_mark_busy(struct drm_device *dev)
  6291. {
  6292. struct drm_i915_private *dev_priv = dev->dev_private;
  6293. hsw_package_c8_gpu_busy(dev_priv);
  6294. i915_update_gfx_val(dev_priv);
  6295. }
  6296. void intel_mark_idle(struct drm_device *dev)
  6297. {
  6298. struct drm_i915_private *dev_priv = dev->dev_private;
  6299. struct drm_crtc *crtc;
  6300. hsw_package_c8_gpu_idle(dev_priv);
  6301. if (!i915_powersave)
  6302. return;
  6303. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  6304. if (!crtc->fb)
  6305. continue;
  6306. intel_decrease_pllclock(crtc);
  6307. }
  6308. }
  6309. void intel_mark_fb_busy(struct drm_i915_gem_object *obj,
  6310. struct intel_ring_buffer *ring)
  6311. {
  6312. struct drm_device *dev = obj->base.dev;
  6313. struct drm_crtc *crtc;
  6314. if (!i915_powersave)
  6315. return;
  6316. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  6317. if (!crtc->fb)
  6318. continue;
  6319. if (to_intel_framebuffer(crtc->fb)->obj != obj)
  6320. continue;
  6321. intel_increase_pllclock(crtc);
  6322. if (ring && intel_fbc_enabled(dev))
  6323. ring->fbc_dirty = true;
  6324. }
  6325. }
  6326. static void intel_crtc_destroy(struct drm_crtc *crtc)
  6327. {
  6328. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6329. struct drm_device *dev = crtc->dev;
  6330. struct intel_unpin_work *work;
  6331. unsigned long flags;
  6332. spin_lock_irqsave(&dev->event_lock, flags);
  6333. work = intel_crtc->unpin_work;
  6334. intel_crtc->unpin_work = NULL;
  6335. spin_unlock_irqrestore(&dev->event_lock, flags);
  6336. if (work) {
  6337. cancel_work_sync(&work->work);
  6338. kfree(work);
  6339. }
  6340. intel_crtc_cursor_set(crtc, NULL, 0, 0, 0);
  6341. drm_crtc_cleanup(crtc);
  6342. kfree(intel_crtc);
  6343. }
  6344. static void intel_unpin_work_fn(struct work_struct *__work)
  6345. {
  6346. struct intel_unpin_work *work =
  6347. container_of(__work, struct intel_unpin_work, work);
  6348. struct drm_device *dev = work->crtc->dev;
  6349. mutex_lock(&dev->struct_mutex);
  6350. intel_unpin_fb_obj(work->old_fb_obj);
  6351. drm_gem_object_unreference(&work->pending_flip_obj->base);
  6352. drm_gem_object_unreference(&work->old_fb_obj->base);
  6353. intel_update_fbc(dev);
  6354. mutex_unlock(&dev->struct_mutex);
  6355. BUG_ON(atomic_read(&to_intel_crtc(work->crtc)->unpin_work_count) == 0);
  6356. atomic_dec(&to_intel_crtc(work->crtc)->unpin_work_count);
  6357. kfree(work);
  6358. }
  6359. static void do_intel_finish_page_flip(struct drm_device *dev,
  6360. struct drm_crtc *crtc)
  6361. {
  6362. drm_i915_private_t *dev_priv = dev->dev_private;
  6363. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6364. struct intel_unpin_work *work;
  6365. unsigned long flags;
  6366. /* Ignore early vblank irqs */
  6367. if (intel_crtc == NULL)
  6368. return;
  6369. spin_lock_irqsave(&dev->event_lock, flags);
  6370. work = intel_crtc->unpin_work;
  6371. /* Ensure we don't miss a work->pending update ... */
  6372. smp_rmb();
  6373. if (work == NULL || atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) {
  6374. spin_unlock_irqrestore(&dev->event_lock, flags);
  6375. return;
  6376. }
  6377. /* and that the unpin work is consistent wrt ->pending. */
  6378. smp_rmb();
  6379. intel_crtc->unpin_work = NULL;
  6380. if (work->event)
  6381. drm_send_vblank_event(dev, intel_crtc->pipe, work->event);
  6382. drm_vblank_put(dev, intel_crtc->pipe);
  6383. spin_unlock_irqrestore(&dev->event_lock, flags);
  6384. wake_up_all(&dev_priv->pending_flip_queue);
  6385. queue_work(dev_priv->wq, &work->work);
  6386. trace_i915_flip_complete(intel_crtc->plane, work->pending_flip_obj);
  6387. }
  6388. void intel_finish_page_flip(struct drm_device *dev, int pipe)
  6389. {
  6390. drm_i915_private_t *dev_priv = dev->dev_private;
  6391. struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
  6392. do_intel_finish_page_flip(dev, crtc);
  6393. }
  6394. void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
  6395. {
  6396. drm_i915_private_t *dev_priv = dev->dev_private;
  6397. struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
  6398. do_intel_finish_page_flip(dev, crtc);
  6399. }
  6400. void intel_prepare_page_flip(struct drm_device *dev, int plane)
  6401. {
  6402. drm_i915_private_t *dev_priv = dev->dev_private;
  6403. struct intel_crtc *intel_crtc =
  6404. to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
  6405. unsigned long flags;
  6406. /* NB: An MMIO update of the plane base pointer will also
  6407. * generate a page-flip completion irq, i.e. every modeset
  6408. * is also accompanied by a spurious intel_prepare_page_flip().
  6409. */
  6410. spin_lock_irqsave(&dev->event_lock, flags);
  6411. if (intel_crtc->unpin_work)
  6412. atomic_inc_not_zero(&intel_crtc->unpin_work->pending);
  6413. spin_unlock_irqrestore(&dev->event_lock, flags);
  6414. }
  6415. inline static void intel_mark_page_flip_active(struct intel_crtc *intel_crtc)
  6416. {
  6417. /* Ensure that the work item is consistent when activating it ... */
  6418. smp_wmb();
  6419. atomic_set(&intel_crtc->unpin_work->pending, INTEL_FLIP_PENDING);
  6420. /* and that it is marked active as soon as the irq could fire. */
  6421. smp_wmb();
  6422. }
  6423. static int intel_gen2_queue_flip(struct drm_device *dev,
  6424. struct drm_crtc *crtc,
  6425. struct drm_framebuffer *fb,
  6426. struct drm_i915_gem_object *obj,
  6427. uint32_t flags)
  6428. {
  6429. struct drm_i915_private *dev_priv = dev->dev_private;
  6430. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6431. u32 flip_mask;
  6432. struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
  6433. int ret;
  6434. ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
  6435. if (ret)
  6436. goto err;
  6437. ret = intel_ring_begin(ring, 6);
  6438. if (ret)
  6439. goto err_unpin;
  6440. /* Can't queue multiple flips, so wait for the previous
  6441. * one to finish before executing the next.
  6442. */
  6443. if (intel_crtc->plane)
  6444. flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
  6445. else
  6446. flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
  6447. intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
  6448. intel_ring_emit(ring, MI_NOOP);
  6449. intel_ring_emit(ring, MI_DISPLAY_FLIP |
  6450. MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
  6451. intel_ring_emit(ring, fb->pitches[0]);
  6452. intel_ring_emit(ring, i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
  6453. intel_ring_emit(ring, 0); /* aux display base address, unused */
  6454. intel_mark_page_flip_active(intel_crtc);
  6455. intel_ring_advance(ring);
  6456. return 0;
  6457. err_unpin:
  6458. intel_unpin_fb_obj(obj);
  6459. err:
  6460. return ret;
  6461. }
  6462. static int intel_gen3_queue_flip(struct drm_device *dev,
  6463. struct drm_crtc *crtc,
  6464. struct drm_framebuffer *fb,
  6465. struct drm_i915_gem_object *obj,
  6466. uint32_t flags)
  6467. {
  6468. struct drm_i915_private *dev_priv = dev->dev_private;
  6469. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6470. u32 flip_mask;
  6471. struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
  6472. int ret;
  6473. ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
  6474. if (ret)
  6475. goto err;
  6476. ret = intel_ring_begin(ring, 6);
  6477. if (ret)
  6478. goto err_unpin;
  6479. if (intel_crtc->plane)
  6480. flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
  6481. else
  6482. flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
  6483. intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
  6484. intel_ring_emit(ring, MI_NOOP);
  6485. intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
  6486. MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
  6487. intel_ring_emit(ring, fb->pitches[0]);
  6488. intel_ring_emit(ring, i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
  6489. intel_ring_emit(ring, MI_NOOP);
  6490. intel_mark_page_flip_active(intel_crtc);
  6491. intel_ring_advance(ring);
  6492. return 0;
  6493. err_unpin:
  6494. intel_unpin_fb_obj(obj);
  6495. err:
  6496. return ret;
  6497. }
  6498. static int intel_gen4_queue_flip(struct drm_device *dev,
  6499. struct drm_crtc *crtc,
  6500. struct drm_framebuffer *fb,
  6501. struct drm_i915_gem_object *obj,
  6502. uint32_t flags)
  6503. {
  6504. struct drm_i915_private *dev_priv = dev->dev_private;
  6505. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6506. uint32_t pf, pipesrc;
  6507. struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
  6508. int ret;
  6509. ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
  6510. if (ret)
  6511. goto err;
  6512. ret = intel_ring_begin(ring, 4);
  6513. if (ret)
  6514. goto err_unpin;
  6515. /* i965+ uses the linear or tiled offsets from the
  6516. * Display Registers (which do not change across a page-flip)
  6517. * so we need only reprogram the base address.
  6518. */
  6519. intel_ring_emit(ring, MI_DISPLAY_FLIP |
  6520. MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
  6521. intel_ring_emit(ring, fb->pitches[0]);
  6522. intel_ring_emit(ring,
  6523. (i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset) |
  6524. obj->tiling_mode);
  6525. /* XXX Enabling the panel-fitter across page-flip is so far
  6526. * untested on non-native modes, so ignore it for now.
  6527. * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
  6528. */
  6529. pf = 0;
  6530. pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
  6531. intel_ring_emit(ring, pf | pipesrc);
  6532. intel_mark_page_flip_active(intel_crtc);
  6533. intel_ring_advance(ring);
  6534. return 0;
  6535. err_unpin:
  6536. intel_unpin_fb_obj(obj);
  6537. err:
  6538. return ret;
  6539. }
  6540. static int intel_gen6_queue_flip(struct drm_device *dev,
  6541. struct drm_crtc *crtc,
  6542. struct drm_framebuffer *fb,
  6543. struct drm_i915_gem_object *obj,
  6544. uint32_t flags)
  6545. {
  6546. struct drm_i915_private *dev_priv = dev->dev_private;
  6547. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6548. struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
  6549. uint32_t pf, pipesrc;
  6550. int ret;
  6551. ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
  6552. if (ret)
  6553. goto err;
  6554. ret = intel_ring_begin(ring, 4);
  6555. if (ret)
  6556. goto err_unpin;
  6557. intel_ring_emit(ring, MI_DISPLAY_FLIP |
  6558. MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
  6559. intel_ring_emit(ring, fb->pitches[0] | obj->tiling_mode);
  6560. intel_ring_emit(ring, i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
  6561. /* Contrary to the suggestions in the documentation,
  6562. * "Enable Panel Fitter" does not seem to be required when page
  6563. * flipping with a non-native mode, and worse causes a normal
  6564. * modeset to fail.
  6565. * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
  6566. */
  6567. pf = 0;
  6568. pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
  6569. intel_ring_emit(ring, pf | pipesrc);
  6570. intel_mark_page_flip_active(intel_crtc);
  6571. intel_ring_advance(ring);
  6572. return 0;
  6573. err_unpin:
  6574. intel_unpin_fb_obj(obj);
  6575. err:
  6576. return ret;
  6577. }
  6578. static int intel_gen7_queue_flip(struct drm_device *dev,
  6579. struct drm_crtc *crtc,
  6580. struct drm_framebuffer *fb,
  6581. struct drm_i915_gem_object *obj,
  6582. uint32_t flags)
  6583. {
  6584. struct drm_i915_private *dev_priv = dev->dev_private;
  6585. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6586. struct intel_ring_buffer *ring;
  6587. uint32_t plane_bit = 0;
  6588. int len, ret;
  6589. ring = obj->ring;
  6590. if (ring == NULL || ring->id != RCS)
  6591. ring = &dev_priv->ring[BCS];
  6592. ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
  6593. if (ret)
  6594. goto err;
  6595. switch(intel_crtc->plane) {
  6596. case PLANE_A:
  6597. plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
  6598. break;
  6599. case PLANE_B:
  6600. plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
  6601. break;
  6602. case PLANE_C:
  6603. plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
  6604. break;
  6605. default:
  6606. WARN_ONCE(1, "unknown plane in flip command\n");
  6607. ret = -ENODEV;
  6608. goto err_unpin;
  6609. }
  6610. len = 4;
  6611. if (ring->id == RCS)
  6612. len += 6;
  6613. ret = intel_ring_begin(ring, len);
  6614. if (ret)
  6615. goto err_unpin;
  6616. /* Unmask the flip-done completion message. Note that the bspec says that
  6617. * we should do this for both the BCS and RCS, and that we must not unmask
  6618. * more than one flip event at any time (or ensure that one flip message
  6619. * can be sent by waiting for flip-done prior to queueing new flips).
  6620. * Experimentation says that BCS works despite DERRMR masking all
  6621. * flip-done completion events and that unmasking all planes at once
  6622. * for the RCS also doesn't appear to drop events. Setting the DERRMR
  6623. * to zero does lead to lockups within MI_DISPLAY_FLIP.
  6624. */
  6625. if (ring->id == RCS) {
  6626. intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
  6627. intel_ring_emit(ring, DERRMR);
  6628. intel_ring_emit(ring, ~(DERRMR_PIPEA_PRI_FLIP_DONE |
  6629. DERRMR_PIPEB_PRI_FLIP_DONE |
  6630. DERRMR_PIPEC_PRI_FLIP_DONE));
  6631. intel_ring_emit(ring, MI_STORE_REGISTER_MEM(1));
  6632. intel_ring_emit(ring, DERRMR);
  6633. intel_ring_emit(ring, ring->scratch.gtt_offset + 256);
  6634. }
  6635. intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
  6636. intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
  6637. intel_ring_emit(ring, i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
  6638. intel_ring_emit(ring, (MI_NOOP));
  6639. intel_mark_page_flip_active(intel_crtc);
  6640. intel_ring_advance(ring);
  6641. return 0;
  6642. err_unpin:
  6643. intel_unpin_fb_obj(obj);
  6644. err:
  6645. return ret;
  6646. }
  6647. static int intel_default_queue_flip(struct drm_device *dev,
  6648. struct drm_crtc *crtc,
  6649. struct drm_framebuffer *fb,
  6650. struct drm_i915_gem_object *obj,
  6651. uint32_t flags)
  6652. {
  6653. return -ENODEV;
  6654. }
  6655. static int intel_crtc_page_flip(struct drm_crtc *crtc,
  6656. struct drm_framebuffer *fb,
  6657. struct drm_pending_vblank_event *event,
  6658. uint32_t page_flip_flags)
  6659. {
  6660. struct drm_device *dev = crtc->dev;
  6661. struct drm_i915_private *dev_priv = dev->dev_private;
  6662. struct drm_framebuffer *old_fb = crtc->fb;
  6663. struct drm_i915_gem_object *obj = to_intel_framebuffer(fb)->obj;
  6664. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6665. struct intel_unpin_work *work;
  6666. unsigned long flags;
  6667. int ret;
  6668. /* Can't change pixel format via MI display flips. */
  6669. if (fb->pixel_format != crtc->fb->pixel_format)
  6670. return -EINVAL;
  6671. /*
  6672. * TILEOFF/LINOFF registers can't be changed via MI display flips.
  6673. * Note that pitch changes could also affect these register.
  6674. */
  6675. if (INTEL_INFO(dev)->gen > 3 &&
  6676. (fb->offsets[0] != crtc->fb->offsets[0] ||
  6677. fb->pitches[0] != crtc->fb->pitches[0]))
  6678. return -EINVAL;
  6679. work = kzalloc(sizeof *work, GFP_KERNEL);
  6680. if (work == NULL)
  6681. return -ENOMEM;
  6682. work->event = event;
  6683. work->crtc = crtc;
  6684. work->old_fb_obj = to_intel_framebuffer(old_fb)->obj;
  6685. INIT_WORK(&work->work, intel_unpin_work_fn);
  6686. ret = drm_vblank_get(dev, intel_crtc->pipe);
  6687. if (ret)
  6688. goto free_work;
  6689. /* We borrow the event spin lock for protecting unpin_work */
  6690. spin_lock_irqsave(&dev->event_lock, flags);
  6691. if (intel_crtc->unpin_work) {
  6692. spin_unlock_irqrestore(&dev->event_lock, flags);
  6693. kfree(work);
  6694. drm_vblank_put(dev, intel_crtc->pipe);
  6695. DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
  6696. return -EBUSY;
  6697. }
  6698. intel_crtc->unpin_work = work;
  6699. spin_unlock_irqrestore(&dev->event_lock, flags);
  6700. if (atomic_read(&intel_crtc->unpin_work_count) >= 2)
  6701. flush_workqueue(dev_priv->wq);
  6702. ret = i915_mutex_lock_interruptible(dev);
  6703. if (ret)
  6704. goto cleanup;
  6705. /* Reference the objects for the scheduled work. */
  6706. drm_gem_object_reference(&work->old_fb_obj->base);
  6707. drm_gem_object_reference(&obj->base);
  6708. crtc->fb = fb;
  6709. work->pending_flip_obj = obj;
  6710. work->enable_stall_check = true;
  6711. atomic_inc(&intel_crtc->unpin_work_count);
  6712. intel_crtc->reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
  6713. ret = dev_priv->display.queue_flip(dev, crtc, fb, obj, page_flip_flags);
  6714. if (ret)
  6715. goto cleanup_pending;
  6716. intel_disable_fbc(dev);
  6717. intel_mark_fb_busy(obj, NULL);
  6718. mutex_unlock(&dev->struct_mutex);
  6719. trace_i915_flip_request(intel_crtc->plane, obj);
  6720. return 0;
  6721. cleanup_pending:
  6722. atomic_dec(&intel_crtc->unpin_work_count);
  6723. crtc->fb = old_fb;
  6724. drm_gem_object_unreference(&work->old_fb_obj->base);
  6725. drm_gem_object_unreference(&obj->base);
  6726. mutex_unlock(&dev->struct_mutex);
  6727. cleanup:
  6728. spin_lock_irqsave(&dev->event_lock, flags);
  6729. intel_crtc->unpin_work = NULL;
  6730. spin_unlock_irqrestore(&dev->event_lock, flags);
  6731. drm_vblank_put(dev, intel_crtc->pipe);
  6732. free_work:
  6733. kfree(work);
  6734. return ret;
  6735. }
  6736. static struct drm_crtc_helper_funcs intel_helper_funcs = {
  6737. .mode_set_base_atomic = intel_pipe_set_base_atomic,
  6738. .load_lut = intel_crtc_load_lut,
  6739. };
  6740. static bool intel_encoder_crtc_ok(struct drm_encoder *encoder,
  6741. struct drm_crtc *crtc)
  6742. {
  6743. struct drm_device *dev;
  6744. struct drm_crtc *tmp;
  6745. int crtc_mask = 1;
  6746. WARN(!crtc, "checking null crtc?\n");
  6747. dev = crtc->dev;
  6748. list_for_each_entry(tmp, &dev->mode_config.crtc_list, head) {
  6749. if (tmp == crtc)
  6750. break;
  6751. crtc_mask <<= 1;
  6752. }
  6753. if (encoder->possible_crtcs & crtc_mask)
  6754. return true;
  6755. return false;
  6756. }
  6757. /**
  6758. * intel_modeset_update_staged_output_state
  6759. *
  6760. * Updates the staged output configuration state, e.g. after we've read out the
  6761. * current hw state.
  6762. */
  6763. static void intel_modeset_update_staged_output_state(struct drm_device *dev)
  6764. {
  6765. struct intel_encoder *encoder;
  6766. struct intel_connector *connector;
  6767. list_for_each_entry(connector, &dev->mode_config.connector_list,
  6768. base.head) {
  6769. connector->new_encoder =
  6770. to_intel_encoder(connector->base.encoder);
  6771. }
  6772. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  6773. base.head) {
  6774. encoder->new_crtc =
  6775. to_intel_crtc(encoder->base.crtc);
  6776. }
  6777. }
  6778. /**
  6779. * intel_modeset_commit_output_state
  6780. *
  6781. * This function copies the stage display pipe configuration to the real one.
  6782. */
  6783. static void intel_modeset_commit_output_state(struct drm_device *dev)
  6784. {
  6785. struct intel_encoder *encoder;
  6786. struct intel_connector *connector;
  6787. list_for_each_entry(connector, &dev->mode_config.connector_list,
  6788. base.head) {
  6789. connector->base.encoder = &connector->new_encoder->base;
  6790. }
  6791. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  6792. base.head) {
  6793. encoder->base.crtc = &encoder->new_crtc->base;
  6794. }
  6795. }
  6796. static void
  6797. connected_sink_compute_bpp(struct intel_connector * connector,
  6798. struct intel_crtc_config *pipe_config)
  6799. {
  6800. int bpp = pipe_config->pipe_bpp;
  6801. DRM_DEBUG_KMS("[CONNECTOR:%d:%s] checking for sink bpp constrains\n",
  6802. connector->base.base.id,
  6803. drm_get_connector_name(&connector->base));
  6804. /* Don't use an invalid EDID bpc value */
  6805. if (connector->base.display_info.bpc &&
  6806. connector->base.display_info.bpc * 3 < bpp) {
  6807. DRM_DEBUG_KMS("clamping display bpp (was %d) to EDID reported max of %d\n",
  6808. bpp, connector->base.display_info.bpc*3);
  6809. pipe_config->pipe_bpp = connector->base.display_info.bpc*3;
  6810. }
  6811. /* Clamp bpp to 8 on screens without EDID 1.4 */
  6812. if (connector->base.display_info.bpc == 0 && bpp > 24) {
  6813. DRM_DEBUG_KMS("clamping display bpp (was %d) to default limit of 24\n",
  6814. bpp);
  6815. pipe_config->pipe_bpp = 24;
  6816. }
  6817. }
  6818. static int
  6819. compute_baseline_pipe_bpp(struct intel_crtc *crtc,
  6820. struct drm_framebuffer *fb,
  6821. struct intel_crtc_config *pipe_config)
  6822. {
  6823. struct drm_device *dev = crtc->base.dev;
  6824. struct intel_connector *connector;
  6825. int bpp;
  6826. switch (fb->pixel_format) {
  6827. case DRM_FORMAT_C8:
  6828. bpp = 8*3; /* since we go through a colormap */
  6829. break;
  6830. case DRM_FORMAT_XRGB1555:
  6831. case DRM_FORMAT_ARGB1555:
  6832. /* checked in intel_framebuffer_init already */
  6833. if (WARN_ON(INTEL_INFO(dev)->gen > 3))
  6834. return -EINVAL;
  6835. case DRM_FORMAT_RGB565:
  6836. bpp = 6*3; /* min is 18bpp */
  6837. break;
  6838. case DRM_FORMAT_XBGR8888:
  6839. case DRM_FORMAT_ABGR8888:
  6840. /* checked in intel_framebuffer_init already */
  6841. if (WARN_ON(INTEL_INFO(dev)->gen < 4))
  6842. return -EINVAL;
  6843. case DRM_FORMAT_XRGB8888:
  6844. case DRM_FORMAT_ARGB8888:
  6845. bpp = 8*3;
  6846. break;
  6847. case DRM_FORMAT_XRGB2101010:
  6848. case DRM_FORMAT_ARGB2101010:
  6849. case DRM_FORMAT_XBGR2101010:
  6850. case DRM_FORMAT_ABGR2101010:
  6851. /* checked in intel_framebuffer_init already */
  6852. if (WARN_ON(INTEL_INFO(dev)->gen < 4))
  6853. return -EINVAL;
  6854. bpp = 10*3;
  6855. break;
  6856. /* TODO: gen4+ supports 16 bpc floating point, too. */
  6857. default:
  6858. DRM_DEBUG_KMS("unsupported depth\n");
  6859. return -EINVAL;
  6860. }
  6861. pipe_config->pipe_bpp = bpp;
  6862. /* Clamp display bpp to EDID value */
  6863. list_for_each_entry(connector, &dev->mode_config.connector_list,
  6864. base.head) {
  6865. if (!connector->new_encoder ||
  6866. connector->new_encoder->new_crtc != crtc)
  6867. continue;
  6868. connected_sink_compute_bpp(connector, pipe_config);
  6869. }
  6870. return bpp;
  6871. }
  6872. static void intel_dump_pipe_config(struct intel_crtc *crtc,
  6873. struct intel_crtc_config *pipe_config,
  6874. const char *context)
  6875. {
  6876. DRM_DEBUG_KMS("[CRTC:%d]%s config for pipe %c\n", crtc->base.base.id,
  6877. context, pipe_name(crtc->pipe));
  6878. DRM_DEBUG_KMS("cpu_transcoder: %c\n", transcoder_name(pipe_config->cpu_transcoder));
  6879. DRM_DEBUG_KMS("pipe bpp: %i, dithering: %i\n",
  6880. pipe_config->pipe_bpp, pipe_config->dither);
  6881. DRM_DEBUG_KMS("fdi/pch: %i, lanes: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
  6882. pipe_config->has_pch_encoder,
  6883. pipe_config->fdi_lanes,
  6884. pipe_config->fdi_m_n.gmch_m, pipe_config->fdi_m_n.gmch_n,
  6885. pipe_config->fdi_m_n.link_m, pipe_config->fdi_m_n.link_n,
  6886. pipe_config->fdi_m_n.tu);
  6887. DRM_DEBUG_KMS("requested mode:\n");
  6888. drm_mode_debug_printmodeline(&pipe_config->requested_mode);
  6889. DRM_DEBUG_KMS("adjusted mode:\n");
  6890. drm_mode_debug_printmodeline(&pipe_config->adjusted_mode);
  6891. DRM_DEBUG_KMS("gmch pfit: control: 0x%08x, ratios: 0x%08x, lvds border: 0x%08x\n",
  6892. pipe_config->gmch_pfit.control,
  6893. pipe_config->gmch_pfit.pgm_ratios,
  6894. pipe_config->gmch_pfit.lvds_border_bits);
  6895. DRM_DEBUG_KMS("pch pfit: pos: 0x%08x, size: 0x%08x\n",
  6896. pipe_config->pch_pfit.pos,
  6897. pipe_config->pch_pfit.size);
  6898. DRM_DEBUG_KMS("ips: %i\n", pipe_config->ips_enabled);
  6899. }
  6900. static bool check_encoder_cloning(struct drm_crtc *crtc)
  6901. {
  6902. int num_encoders = 0;
  6903. bool uncloneable_encoders = false;
  6904. struct intel_encoder *encoder;
  6905. list_for_each_entry(encoder, &crtc->dev->mode_config.encoder_list,
  6906. base.head) {
  6907. if (&encoder->new_crtc->base != crtc)
  6908. continue;
  6909. num_encoders++;
  6910. if (!encoder->cloneable)
  6911. uncloneable_encoders = true;
  6912. }
  6913. return !(num_encoders > 1 && uncloneable_encoders);
  6914. }
  6915. static struct intel_crtc_config *
  6916. intel_modeset_pipe_config(struct drm_crtc *crtc,
  6917. struct drm_framebuffer *fb,
  6918. struct drm_display_mode *mode)
  6919. {
  6920. struct drm_device *dev = crtc->dev;
  6921. struct intel_encoder *encoder;
  6922. struct intel_crtc_config *pipe_config;
  6923. int plane_bpp, ret = -EINVAL;
  6924. bool retry = true;
  6925. if (!check_encoder_cloning(crtc)) {
  6926. DRM_DEBUG_KMS("rejecting invalid cloning configuration\n");
  6927. return ERR_PTR(-EINVAL);
  6928. }
  6929. pipe_config = kzalloc(sizeof(*pipe_config), GFP_KERNEL);
  6930. if (!pipe_config)
  6931. return ERR_PTR(-ENOMEM);
  6932. drm_mode_copy(&pipe_config->adjusted_mode, mode);
  6933. drm_mode_copy(&pipe_config->requested_mode, mode);
  6934. pipe_config->cpu_transcoder =
  6935. (enum transcoder) to_intel_crtc(crtc)->pipe;
  6936. pipe_config->shared_dpll = DPLL_ID_PRIVATE;
  6937. /*
  6938. * Sanitize sync polarity flags based on requested ones. If neither
  6939. * positive or negative polarity is requested, treat this as meaning
  6940. * negative polarity.
  6941. */
  6942. if (!(pipe_config->adjusted_mode.flags &
  6943. (DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NHSYNC)))
  6944. pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_NHSYNC;
  6945. if (!(pipe_config->adjusted_mode.flags &
  6946. (DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_NVSYNC)))
  6947. pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_NVSYNC;
  6948. /* Compute a starting value for pipe_config->pipe_bpp taking the source
  6949. * plane pixel format and any sink constraints into account. Returns the
  6950. * source plane bpp so that dithering can be selected on mismatches
  6951. * after encoders and crtc also have had their say. */
  6952. plane_bpp = compute_baseline_pipe_bpp(to_intel_crtc(crtc),
  6953. fb, pipe_config);
  6954. if (plane_bpp < 0)
  6955. goto fail;
  6956. encoder_retry:
  6957. /* Ensure the port clock defaults are reset when retrying. */
  6958. pipe_config->port_clock = 0;
  6959. pipe_config->pixel_multiplier = 1;
  6960. /* Fill in default crtc timings, allow encoders to overwrite them. */
  6961. drm_mode_set_crtcinfo(&pipe_config->adjusted_mode, 0);
  6962. /* Pass our mode to the connectors and the CRTC to give them a chance to
  6963. * adjust it according to limitations or connector properties, and also
  6964. * a chance to reject the mode entirely.
  6965. */
  6966. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  6967. base.head) {
  6968. if (&encoder->new_crtc->base != crtc)
  6969. continue;
  6970. if (!(encoder->compute_config(encoder, pipe_config))) {
  6971. DRM_DEBUG_KMS("Encoder config failure\n");
  6972. goto fail;
  6973. }
  6974. }
  6975. /* Set default port clock if not overwritten by the encoder. Needs to be
  6976. * done afterwards in case the encoder adjusts the mode. */
  6977. if (!pipe_config->port_clock)
  6978. pipe_config->port_clock = pipe_config->adjusted_mode.clock;
  6979. ret = intel_crtc_compute_config(to_intel_crtc(crtc), pipe_config);
  6980. if (ret < 0) {
  6981. DRM_DEBUG_KMS("CRTC fixup failed\n");
  6982. goto fail;
  6983. }
  6984. if (ret == RETRY) {
  6985. if (WARN(!retry, "loop in pipe configuration computation\n")) {
  6986. ret = -EINVAL;
  6987. goto fail;
  6988. }
  6989. DRM_DEBUG_KMS("CRTC bw constrained, retrying\n");
  6990. retry = false;
  6991. goto encoder_retry;
  6992. }
  6993. pipe_config->dither = pipe_config->pipe_bpp != plane_bpp;
  6994. DRM_DEBUG_KMS("plane bpp: %i, pipe bpp: %i, dithering: %i\n",
  6995. plane_bpp, pipe_config->pipe_bpp, pipe_config->dither);
  6996. return pipe_config;
  6997. fail:
  6998. kfree(pipe_config);
  6999. return ERR_PTR(ret);
  7000. }
  7001. /* Computes which crtcs are affected and sets the relevant bits in the mask. For
  7002. * simplicity we use the crtc's pipe number (because it's easier to obtain). */
  7003. static void
  7004. intel_modeset_affected_pipes(struct drm_crtc *crtc, unsigned *modeset_pipes,
  7005. unsigned *prepare_pipes, unsigned *disable_pipes)
  7006. {
  7007. struct intel_crtc *intel_crtc;
  7008. struct drm_device *dev = crtc->dev;
  7009. struct intel_encoder *encoder;
  7010. struct intel_connector *connector;
  7011. struct drm_crtc *tmp_crtc;
  7012. *disable_pipes = *modeset_pipes = *prepare_pipes = 0;
  7013. /* Check which crtcs have changed outputs connected to them, these need
  7014. * to be part of the prepare_pipes mask. We don't (yet) support global
  7015. * modeset across multiple crtcs, so modeset_pipes will only have one
  7016. * bit set at most. */
  7017. list_for_each_entry(connector, &dev->mode_config.connector_list,
  7018. base.head) {
  7019. if (connector->base.encoder == &connector->new_encoder->base)
  7020. continue;
  7021. if (connector->base.encoder) {
  7022. tmp_crtc = connector->base.encoder->crtc;
  7023. *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
  7024. }
  7025. if (connector->new_encoder)
  7026. *prepare_pipes |=
  7027. 1 << connector->new_encoder->new_crtc->pipe;
  7028. }
  7029. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  7030. base.head) {
  7031. if (encoder->base.crtc == &encoder->new_crtc->base)
  7032. continue;
  7033. if (encoder->base.crtc) {
  7034. tmp_crtc = encoder->base.crtc;
  7035. *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
  7036. }
  7037. if (encoder->new_crtc)
  7038. *prepare_pipes |= 1 << encoder->new_crtc->pipe;
  7039. }
  7040. /* Check for any pipes that will be fully disabled ... */
  7041. list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
  7042. base.head) {
  7043. bool used = false;
  7044. /* Don't try to disable disabled crtcs. */
  7045. if (!intel_crtc->base.enabled)
  7046. continue;
  7047. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  7048. base.head) {
  7049. if (encoder->new_crtc == intel_crtc)
  7050. used = true;
  7051. }
  7052. if (!used)
  7053. *disable_pipes |= 1 << intel_crtc->pipe;
  7054. }
  7055. /* set_mode is also used to update properties on life display pipes. */
  7056. intel_crtc = to_intel_crtc(crtc);
  7057. if (crtc->enabled)
  7058. *prepare_pipes |= 1 << intel_crtc->pipe;
  7059. /*
  7060. * For simplicity do a full modeset on any pipe where the output routing
  7061. * changed. We could be more clever, but that would require us to be
  7062. * more careful with calling the relevant encoder->mode_set functions.
  7063. */
  7064. if (*prepare_pipes)
  7065. *modeset_pipes = *prepare_pipes;
  7066. /* ... and mask these out. */
  7067. *modeset_pipes &= ~(*disable_pipes);
  7068. *prepare_pipes &= ~(*disable_pipes);
  7069. /*
  7070. * HACK: We don't (yet) fully support global modesets. intel_set_config
  7071. * obies this rule, but the modeset restore mode of
  7072. * intel_modeset_setup_hw_state does not.
  7073. */
  7074. *modeset_pipes &= 1 << intel_crtc->pipe;
  7075. *prepare_pipes &= 1 << intel_crtc->pipe;
  7076. DRM_DEBUG_KMS("set mode pipe masks: modeset: %x, prepare: %x, disable: %x\n",
  7077. *modeset_pipes, *prepare_pipes, *disable_pipes);
  7078. }
  7079. static bool intel_crtc_in_use(struct drm_crtc *crtc)
  7080. {
  7081. struct drm_encoder *encoder;
  7082. struct drm_device *dev = crtc->dev;
  7083. list_for_each_entry(encoder, &dev->mode_config.encoder_list, head)
  7084. if (encoder->crtc == crtc)
  7085. return true;
  7086. return false;
  7087. }
  7088. static void
  7089. intel_modeset_update_state(struct drm_device *dev, unsigned prepare_pipes)
  7090. {
  7091. struct intel_encoder *intel_encoder;
  7092. struct intel_crtc *intel_crtc;
  7093. struct drm_connector *connector;
  7094. list_for_each_entry(intel_encoder, &dev->mode_config.encoder_list,
  7095. base.head) {
  7096. if (!intel_encoder->base.crtc)
  7097. continue;
  7098. intel_crtc = to_intel_crtc(intel_encoder->base.crtc);
  7099. if (prepare_pipes & (1 << intel_crtc->pipe))
  7100. intel_encoder->connectors_active = false;
  7101. }
  7102. intel_modeset_commit_output_state(dev);
  7103. /* Update computed state. */
  7104. list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
  7105. base.head) {
  7106. intel_crtc->base.enabled = intel_crtc_in_use(&intel_crtc->base);
  7107. }
  7108. list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
  7109. if (!connector->encoder || !connector->encoder->crtc)
  7110. continue;
  7111. intel_crtc = to_intel_crtc(connector->encoder->crtc);
  7112. if (prepare_pipes & (1 << intel_crtc->pipe)) {
  7113. struct drm_property *dpms_property =
  7114. dev->mode_config.dpms_property;
  7115. connector->dpms = DRM_MODE_DPMS_ON;
  7116. drm_object_property_set_value(&connector->base,
  7117. dpms_property,
  7118. DRM_MODE_DPMS_ON);
  7119. intel_encoder = to_intel_encoder(connector->encoder);
  7120. intel_encoder->connectors_active = true;
  7121. }
  7122. }
  7123. }
  7124. static bool intel_fuzzy_clock_check(struct intel_crtc_config *cur,
  7125. struct intel_crtc_config *new)
  7126. {
  7127. int clock1, clock2, diff;
  7128. clock1 = cur->adjusted_mode.clock;
  7129. clock2 = new->adjusted_mode.clock;
  7130. if (clock1 == clock2)
  7131. return true;
  7132. if (!clock1 || !clock2)
  7133. return false;
  7134. diff = abs(clock1 - clock2);
  7135. if (((((diff + clock1 + clock2) * 100)) / (clock1 + clock2)) < 105)
  7136. return true;
  7137. return false;
  7138. }
  7139. #define for_each_intel_crtc_masked(dev, mask, intel_crtc) \
  7140. list_for_each_entry((intel_crtc), \
  7141. &(dev)->mode_config.crtc_list, \
  7142. base.head) \
  7143. if (mask & (1 <<(intel_crtc)->pipe))
  7144. static bool
  7145. intel_pipe_config_compare(struct drm_device *dev,
  7146. struct intel_crtc_config *current_config,
  7147. struct intel_crtc_config *pipe_config)
  7148. {
  7149. #define PIPE_CONF_CHECK_X(name) \
  7150. if (current_config->name != pipe_config->name) { \
  7151. DRM_ERROR("mismatch in " #name " " \
  7152. "(expected 0x%08x, found 0x%08x)\n", \
  7153. current_config->name, \
  7154. pipe_config->name); \
  7155. return false; \
  7156. }
  7157. #define PIPE_CONF_CHECK_I(name) \
  7158. if (current_config->name != pipe_config->name) { \
  7159. DRM_ERROR("mismatch in " #name " " \
  7160. "(expected %i, found %i)\n", \
  7161. current_config->name, \
  7162. pipe_config->name); \
  7163. return false; \
  7164. }
  7165. #define PIPE_CONF_CHECK_FLAGS(name, mask) \
  7166. if ((current_config->name ^ pipe_config->name) & (mask)) { \
  7167. DRM_ERROR("mismatch in " #name "(" #mask ") " \
  7168. "(expected %i, found %i)\n", \
  7169. current_config->name & (mask), \
  7170. pipe_config->name & (mask)); \
  7171. return false; \
  7172. }
  7173. #define PIPE_CONF_QUIRK(quirk) \
  7174. ((current_config->quirks | pipe_config->quirks) & (quirk))
  7175. PIPE_CONF_CHECK_I(cpu_transcoder);
  7176. PIPE_CONF_CHECK_I(has_pch_encoder);
  7177. PIPE_CONF_CHECK_I(fdi_lanes);
  7178. PIPE_CONF_CHECK_I(fdi_m_n.gmch_m);
  7179. PIPE_CONF_CHECK_I(fdi_m_n.gmch_n);
  7180. PIPE_CONF_CHECK_I(fdi_m_n.link_m);
  7181. PIPE_CONF_CHECK_I(fdi_m_n.link_n);
  7182. PIPE_CONF_CHECK_I(fdi_m_n.tu);
  7183. PIPE_CONF_CHECK_I(adjusted_mode.crtc_hdisplay);
  7184. PIPE_CONF_CHECK_I(adjusted_mode.crtc_htotal);
  7185. PIPE_CONF_CHECK_I(adjusted_mode.crtc_hblank_start);
  7186. PIPE_CONF_CHECK_I(adjusted_mode.crtc_hblank_end);
  7187. PIPE_CONF_CHECK_I(adjusted_mode.crtc_hsync_start);
  7188. PIPE_CONF_CHECK_I(adjusted_mode.crtc_hsync_end);
  7189. PIPE_CONF_CHECK_I(adjusted_mode.crtc_vdisplay);
  7190. PIPE_CONF_CHECK_I(adjusted_mode.crtc_vtotal);
  7191. PIPE_CONF_CHECK_I(adjusted_mode.crtc_vblank_start);
  7192. PIPE_CONF_CHECK_I(adjusted_mode.crtc_vblank_end);
  7193. PIPE_CONF_CHECK_I(adjusted_mode.crtc_vsync_start);
  7194. PIPE_CONF_CHECK_I(adjusted_mode.crtc_vsync_end);
  7195. PIPE_CONF_CHECK_I(pixel_multiplier);
  7196. PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
  7197. DRM_MODE_FLAG_INTERLACE);
  7198. if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_MODE_SYNC_FLAGS)) {
  7199. PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
  7200. DRM_MODE_FLAG_PHSYNC);
  7201. PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
  7202. DRM_MODE_FLAG_NHSYNC);
  7203. PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
  7204. DRM_MODE_FLAG_PVSYNC);
  7205. PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
  7206. DRM_MODE_FLAG_NVSYNC);
  7207. }
  7208. PIPE_CONF_CHECK_I(requested_mode.hdisplay);
  7209. PIPE_CONF_CHECK_I(requested_mode.vdisplay);
  7210. PIPE_CONF_CHECK_I(gmch_pfit.control);
  7211. /* pfit ratios are autocomputed by the hw on gen4+ */
  7212. if (INTEL_INFO(dev)->gen < 4)
  7213. PIPE_CONF_CHECK_I(gmch_pfit.pgm_ratios);
  7214. PIPE_CONF_CHECK_I(gmch_pfit.lvds_border_bits);
  7215. PIPE_CONF_CHECK_I(pch_pfit.pos);
  7216. PIPE_CONF_CHECK_I(pch_pfit.size);
  7217. PIPE_CONF_CHECK_I(ips_enabled);
  7218. PIPE_CONF_CHECK_I(shared_dpll);
  7219. PIPE_CONF_CHECK_X(dpll_hw_state.dpll);
  7220. PIPE_CONF_CHECK_X(dpll_hw_state.dpll_md);
  7221. PIPE_CONF_CHECK_X(dpll_hw_state.fp0);
  7222. PIPE_CONF_CHECK_X(dpll_hw_state.fp1);
  7223. #undef PIPE_CONF_CHECK_X
  7224. #undef PIPE_CONF_CHECK_I
  7225. #undef PIPE_CONF_CHECK_FLAGS
  7226. #undef PIPE_CONF_QUIRK
  7227. if (!IS_HASWELL(dev)) {
  7228. if (!intel_fuzzy_clock_check(current_config, pipe_config)) {
  7229. DRM_ERROR("mismatch in clock (expected %d, found %d)\n",
  7230. current_config->adjusted_mode.clock,
  7231. pipe_config->adjusted_mode.clock);
  7232. return false;
  7233. }
  7234. }
  7235. return true;
  7236. }
  7237. static void
  7238. check_connector_state(struct drm_device *dev)
  7239. {
  7240. struct intel_connector *connector;
  7241. list_for_each_entry(connector, &dev->mode_config.connector_list,
  7242. base.head) {
  7243. /* This also checks the encoder/connector hw state with the
  7244. * ->get_hw_state callbacks. */
  7245. intel_connector_check_state(connector);
  7246. WARN(&connector->new_encoder->base != connector->base.encoder,
  7247. "connector's staged encoder doesn't match current encoder\n");
  7248. }
  7249. }
  7250. static void
  7251. check_encoder_state(struct drm_device *dev)
  7252. {
  7253. struct intel_encoder *encoder;
  7254. struct intel_connector *connector;
  7255. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  7256. base.head) {
  7257. bool enabled = false;
  7258. bool active = false;
  7259. enum pipe pipe, tracked_pipe;
  7260. DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
  7261. encoder->base.base.id,
  7262. drm_get_encoder_name(&encoder->base));
  7263. WARN(&encoder->new_crtc->base != encoder->base.crtc,
  7264. "encoder's stage crtc doesn't match current crtc\n");
  7265. WARN(encoder->connectors_active && !encoder->base.crtc,
  7266. "encoder's active_connectors set, but no crtc\n");
  7267. list_for_each_entry(connector, &dev->mode_config.connector_list,
  7268. base.head) {
  7269. if (connector->base.encoder != &encoder->base)
  7270. continue;
  7271. enabled = true;
  7272. if (connector->base.dpms != DRM_MODE_DPMS_OFF)
  7273. active = true;
  7274. }
  7275. WARN(!!encoder->base.crtc != enabled,
  7276. "encoder's enabled state mismatch "
  7277. "(expected %i, found %i)\n",
  7278. !!encoder->base.crtc, enabled);
  7279. WARN(active && !encoder->base.crtc,
  7280. "active encoder with no crtc\n");
  7281. WARN(encoder->connectors_active != active,
  7282. "encoder's computed active state doesn't match tracked active state "
  7283. "(expected %i, found %i)\n", active, encoder->connectors_active);
  7284. active = encoder->get_hw_state(encoder, &pipe);
  7285. WARN(active != encoder->connectors_active,
  7286. "encoder's hw state doesn't match sw tracking "
  7287. "(expected %i, found %i)\n",
  7288. encoder->connectors_active, active);
  7289. if (!encoder->base.crtc)
  7290. continue;
  7291. tracked_pipe = to_intel_crtc(encoder->base.crtc)->pipe;
  7292. WARN(active && pipe != tracked_pipe,
  7293. "active encoder's pipe doesn't match"
  7294. "(expected %i, found %i)\n",
  7295. tracked_pipe, pipe);
  7296. }
  7297. }
  7298. static void
  7299. check_crtc_state(struct drm_device *dev)
  7300. {
  7301. drm_i915_private_t *dev_priv = dev->dev_private;
  7302. struct intel_crtc *crtc;
  7303. struct intel_encoder *encoder;
  7304. struct intel_crtc_config pipe_config;
  7305. list_for_each_entry(crtc, &dev->mode_config.crtc_list,
  7306. base.head) {
  7307. bool enabled = false;
  7308. bool active = false;
  7309. memset(&pipe_config, 0, sizeof(pipe_config));
  7310. DRM_DEBUG_KMS("[CRTC:%d]\n",
  7311. crtc->base.base.id);
  7312. WARN(crtc->active && !crtc->base.enabled,
  7313. "active crtc, but not enabled in sw tracking\n");
  7314. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  7315. base.head) {
  7316. if (encoder->base.crtc != &crtc->base)
  7317. continue;
  7318. enabled = true;
  7319. if (encoder->connectors_active)
  7320. active = true;
  7321. }
  7322. WARN(active != crtc->active,
  7323. "crtc's computed active state doesn't match tracked active state "
  7324. "(expected %i, found %i)\n", active, crtc->active);
  7325. WARN(enabled != crtc->base.enabled,
  7326. "crtc's computed enabled state doesn't match tracked enabled state "
  7327. "(expected %i, found %i)\n", enabled, crtc->base.enabled);
  7328. active = dev_priv->display.get_pipe_config(crtc,
  7329. &pipe_config);
  7330. /* hw state is inconsistent with the pipe A quirk */
  7331. if (crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE)
  7332. active = crtc->active;
  7333. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  7334. base.head) {
  7335. enum pipe pipe;
  7336. if (encoder->base.crtc != &crtc->base)
  7337. continue;
  7338. if (encoder->get_config &&
  7339. encoder->get_hw_state(encoder, &pipe))
  7340. encoder->get_config(encoder, &pipe_config);
  7341. }
  7342. if (dev_priv->display.get_clock)
  7343. dev_priv->display.get_clock(crtc, &pipe_config);
  7344. WARN(crtc->active != active,
  7345. "crtc active state doesn't match with hw state "
  7346. "(expected %i, found %i)\n", crtc->active, active);
  7347. if (active &&
  7348. !intel_pipe_config_compare(dev, &crtc->config, &pipe_config)) {
  7349. WARN(1, "pipe state doesn't match!\n");
  7350. intel_dump_pipe_config(crtc, &pipe_config,
  7351. "[hw state]");
  7352. intel_dump_pipe_config(crtc, &crtc->config,
  7353. "[sw state]");
  7354. }
  7355. }
  7356. }
  7357. static void
  7358. check_shared_dpll_state(struct drm_device *dev)
  7359. {
  7360. drm_i915_private_t *dev_priv = dev->dev_private;
  7361. struct intel_crtc *crtc;
  7362. struct intel_dpll_hw_state dpll_hw_state;
  7363. int i;
  7364. for (i = 0; i < dev_priv->num_shared_dpll; i++) {
  7365. struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
  7366. int enabled_crtcs = 0, active_crtcs = 0;
  7367. bool active;
  7368. memset(&dpll_hw_state, 0, sizeof(dpll_hw_state));
  7369. DRM_DEBUG_KMS("%s\n", pll->name);
  7370. active = pll->get_hw_state(dev_priv, pll, &dpll_hw_state);
  7371. WARN(pll->active > pll->refcount,
  7372. "more active pll users than references: %i vs %i\n",
  7373. pll->active, pll->refcount);
  7374. WARN(pll->active && !pll->on,
  7375. "pll in active use but not on in sw tracking\n");
  7376. WARN(pll->on && !pll->active,
  7377. "pll in on but not on in use in sw tracking\n");
  7378. WARN(pll->on != active,
  7379. "pll on state mismatch (expected %i, found %i)\n",
  7380. pll->on, active);
  7381. list_for_each_entry(crtc, &dev->mode_config.crtc_list,
  7382. base.head) {
  7383. if (crtc->base.enabled && intel_crtc_to_shared_dpll(crtc) == pll)
  7384. enabled_crtcs++;
  7385. if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll)
  7386. active_crtcs++;
  7387. }
  7388. WARN(pll->active != active_crtcs,
  7389. "pll active crtcs mismatch (expected %i, found %i)\n",
  7390. pll->active, active_crtcs);
  7391. WARN(pll->refcount != enabled_crtcs,
  7392. "pll enabled crtcs mismatch (expected %i, found %i)\n",
  7393. pll->refcount, enabled_crtcs);
  7394. WARN(pll->on && memcmp(&pll->hw_state, &dpll_hw_state,
  7395. sizeof(dpll_hw_state)),
  7396. "pll hw state mismatch\n");
  7397. }
  7398. }
  7399. void
  7400. intel_modeset_check_state(struct drm_device *dev)
  7401. {
  7402. check_connector_state(dev);
  7403. check_encoder_state(dev);
  7404. check_crtc_state(dev);
  7405. check_shared_dpll_state(dev);
  7406. }
  7407. static int __intel_set_mode(struct drm_crtc *crtc,
  7408. struct drm_display_mode *mode,
  7409. int x, int y, struct drm_framebuffer *fb)
  7410. {
  7411. struct drm_device *dev = crtc->dev;
  7412. drm_i915_private_t *dev_priv = dev->dev_private;
  7413. struct drm_display_mode *saved_mode, *saved_hwmode;
  7414. struct intel_crtc_config *pipe_config = NULL;
  7415. struct intel_crtc *intel_crtc;
  7416. unsigned disable_pipes, prepare_pipes, modeset_pipes;
  7417. int ret = 0;
  7418. saved_mode = kmalloc(2 * sizeof(*saved_mode), GFP_KERNEL);
  7419. if (!saved_mode)
  7420. return -ENOMEM;
  7421. saved_hwmode = saved_mode + 1;
  7422. intel_modeset_affected_pipes(crtc, &modeset_pipes,
  7423. &prepare_pipes, &disable_pipes);
  7424. *saved_hwmode = crtc->hwmode;
  7425. *saved_mode = crtc->mode;
  7426. /* Hack: Because we don't (yet) support global modeset on multiple
  7427. * crtcs, we don't keep track of the new mode for more than one crtc.
  7428. * Hence simply check whether any bit is set in modeset_pipes in all the
  7429. * pieces of code that are not yet converted to deal with mutliple crtcs
  7430. * changing their mode at the same time. */
  7431. if (modeset_pipes) {
  7432. pipe_config = intel_modeset_pipe_config(crtc, fb, mode);
  7433. if (IS_ERR(pipe_config)) {
  7434. ret = PTR_ERR(pipe_config);
  7435. pipe_config = NULL;
  7436. goto out;
  7437. }
  7438. intel_dump_pipe_config(to_intel_crtc(crtc), pipe_config,
  7439. "[modeset]");
  7440. }
  7441. for_each_intel_crtc_masked(dev, disable_pipes, intel_crtc)
  7442. intel_crtc_disable(&intel_crtc->base);
  7443. for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
  7444. if (intel_crtc->base.enabled)
  7445. dev_priv->display.crtc_disable(&intel_crtc->base);
  7446. }
  7447. /* crtc->mode is already used by the ->mode_set callbacks, hence we need
  7448. * to set it here already despite that we pass it down the callchain.
  7449. */
  7450. if (modeset_pipes) {
  7451. crtc->mode = *mode;
  7452. /* mode_set/enable/disable functions rely on a correct pipe
  7453. * config. */
  7454. to_intel_crtc(crtc)->config = *pipe_config;
  7455. }
  7456. /* Only after disabling all output pipelines that will be changed can we
  7457. * update the the output configuration. */
  7458. intel_modeset_update_state(dev, prepare_pipes);
  7459. if (dev_priv->display.modeset_global_resources)
  7460. dev_priv->display.modeset_global_resources(dev);
  7461. /* Set up the DPLL and any encoders state that needs to adjust or depend
  7462. * on the DPLL.
  7463. */
  7464. for_each_intel_crtc_masked(dev, modeset_pipes, intel_crtc) {
  7465. ret = intel_crtc_mode_set(&intel_crtc->base,
  7466. x, y, fb);
  7467. if (ret)
  7468. goto done;
  7469. }
  7470. /* Now enable the clocks, plane, pipe, and connectors that we set up. */
  7471. for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc)
  7472. dev_priv->display.crtc_enable(&intel_crtc->base);
  7473. if (modeset_pipes) {
  7474. /* Store real post-adjustment hardware mode. */
  7475. crtc->hwmode = pipe_config->adjusted_mode;
  7476. /* Calculate and store various constants which
  7477. * are later needed by vblank and swap-completion
  7478. * timestamping. They are derived from true hwmode.
  7479. */
  7480. drm_calc_timestamping_constants(crtc);
  7481. }
  7482. /* FIXME: add subpixel order */
  7483. done:
  7484. if (ret && crtc->enabled) {
  7485. crtc->hwmode = *saved_hwmode;
  7486. crtc->mode = *saved_mode;
  7487. }
  7488. out:
  7489. kfree(pipe_config);
  7490. kfree(saved_mode);
  7491. return ret;
  7492. }
  7493. static int intel_set_mode(struct drm_crtc *crtc,
  7494. struct drm_display_mode *mode,
  7495. int x, int y, struct drm_framebuffer *fb)
  7496. {
  7497. int ret;
  7498. ret = __intel_set_mode(crtc, mode, x, y, fb);
  7499. if (ret == 0)
  7500. intel_modeset_check_state(crtc->dev);
  7501. return ret;
  7502. }
  7503. void intel_crtc_restore_mode(struct drm_crtc *crtc)
  7504. {
  7505. intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y, crtc->fb);
  7506. }
  7507. #undef for_each_intel_crtc_masked
  7508. static void intel_set_config_free(struct intel_set_config *config)
  7509. {
  7510. if (!config)
  7511. return;
  7512. kfree(config->save_connector_encoders);
  7513. kfree(config->save_encoder_crtcs);
  7514. kfree(config);
  7515. }
  7516. static int intel_set_config_save_state(struct drm_device *dev,
  7517. struct intel_set_config *config)
  7518. {
  7519. struct drm_encoder *encoder;
  7520. struct drm_connector *connector;
  7521. int count;
  7522. config->save_encoder_crtcs =
  7523. kcalloc(dev->mode_config.num_encoder,
  7524. sizeof(struct drm_crtc *), GFP_KERNEL);
  7525. if (!config->save_encoder_crtcs)
  7526. return -ENOMEM;
  7527. config->save_connector_encoders =
  7528. kcalloc(dev->mode_config.num_connector,
  7529. sizeof(struct drm_encoder *), GFP_KERNEL);
  7530. if (!config->save_connector_encoders)
  7531. return -ENOMEM;
  7532. /* Copy data. Note that driver private data is not affected.
  7533. * Should anything bad happen only the expected state is
  7534. * restored, not the drivers personal bookkeeping.
  7535. */
  7536. count = 0;
  7537. list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
  7538. config->save_encoder_crtcs[count++] = encoder->crtc;
  7539. }
  7540. count = 0;
  7541. list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
  7542. config->save_connector_encoders[count++] = connector->encoder;
  7543. }
  7544. return 0;
  7545. }
  7546. static void intel_set_config_restore_state(struct drm_device *dev,
  7547. struct intel_set_config *config)
  7548. {
  7549. struct intel_encoder *encoder;
  7550. struct intel_connector *connector;
  7551. int count;
  7552. count = 0;
  7553. list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
  7554. encoder->new_crtc =
  7555. to_intel_crtc(config->save_encoder_crtcs[count++]);
  7556. }
  7557. count = 0;
  7558. list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) {
  7559. connector->new_encoder =
  7560. to_intel_encoder(config->save_connector_encoders[count++]);
  7561. }
  7562. }
  7563. static bool
  7564. is_crtc_connector_off(struct drm_mode_set *set)
  7565. {
  7566. int i;
  7567. if (set->num_connectors == 0)
  7568. return false;
  7569. if (WARN_ON(set->connectors == NULL))
  7570. return false;
  7571. for (i = 0; i < set->num_connectors; i++)
  7572. if (set->connectors[i]->encoder &&
  7573. set->connectors[i]->encoder->crtc == set->crtc &&
  7574. set->connectors[i]->dpms != DRM_MODE_DPMS_ON)
  7575. return true;
  7576. return false;
  7577. }
  7578. static void
  7579. intel_set_config_compute_mode_changes(struct drm_mode_set *set,
  7580. struct intel_set_config *config)
  7581. {
  7582. /* We should be able to check here if the fb has the same properties
  7583. * and then just flip_or_move it */
  7584. if (is_crtc_connector_off(set)) {
  7585. config->mode_changed = true;
  7586. } else if (set->crtc->fb != set->fb) {
  7587. /* If we have no fb then treat it as a full mode set */
  7588. if (set->crtc->fb == NULL) {
  7589. struct intel_crtc *intel_crtc =
  7590. to_intel_crtc(set->crtc);
  7591. if (intel_crtc->active && i915_fastboot) {
  7592. DRM_DEBUG_KMS("crtc has no fb, will flip\n");
  7593. config->fb_changed = true;
  7594. } else {
  7595. DRM_DEBUG_KMS("inactive crtc, full mode set\n");
  7596. config->mode_changed = true;
  7597. }
  7598. } else if (set->fb == NULL) {
  7599. config->mode_changed = true;
  7600. } else if (set->fb->pixel_format !=
  7601. set->crtc->fb->pixel_format) {
  7602. config->mode_changed = true;
  7603. } else {
  7604. config->fb_changed = true;
  7605. }
  7606. }
  7607. if (set->fb && (set->x != set->crtc->x || set->y != set->crtc->y))
  7608. config->fb_changed = true;
  7609. if (set->mode && !drm_mode_equal(set->mode, &set->crtc->mode)) {
  7610. DRM_DEBUG_KMS("modes are different, full mode set\n");
  7611. drm_mode_debug_printmodeline(&set->crtc->mode);
  7612. drm_mode_debug_printmodeline(set->mode);
  7613. config->mode_changed = true;
  7614. }
  7615. DRM_DEBUG_KMS("computed changes for [CRTC:%d], mode_changed=%d, fb_changed=%d\n",
  7616. set->crtc->base.id, config->mode_changed, config->fb_changed);
  7617. }
  7618. static int
  7619. intel_modeset_stage_output_state(struct drm_device *dev,
  7620. struct drm_mode_set *set,
  7621. struct intel_set_config *config)
  7622. {
  7623. struct drm_crtc *new_crtc;
  7624. struct intel_connector *connector;
  7625. struct intel_encoder *encoder;
  7626. int ro;
  7627. /* The upper layers ensure that we either disable a crtc or have a list
  7628. * of connectors. For paranoia, double-check this. */
  7629. WARN_ON(!set->fb && (set->num_connectors != 0));
  7630. WARN_ON(set->fb && (set->num_connectors == 0));
  7631. list_for_each_entry(connector, &dev->mode_config.connector_list,
  7632. base.head) {
  7633. /* Otherwise traverse passed in connector list and get encoders
  7634. * for them. */
  7635. for (ro = 0; ro < set->num_connectors; ro++) {
  7636. if (set->connectors[ro] == &connector->base) {
  7637. connector->new_encoder = connector->encoder;
  7638. break;
  7639. }
  7640. }
  7641. /* If we disable the crtc, disable all its connectors. Also, if
  7642. * the connector is on the changing crtc but not on the new
  7643. * connector list, disable it. */
  7644. if ((!set->fb || ro == set->num_connectors) &&
  7645. connector->base.encoder &&
  7646. connector->base.encoder->crtc == set->crtc) {
  7647. connector->new_encoder = NULL;
  7648. DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [NOCRTC]\n",
  7649. connector->base.base.id,
  7650. drm_get_connector_name(&connector->base));
  7651. }
  7652. if (&connector->new_encoder->base != connector->base.encoder) {
  7653. DRM_DEBUG_KMS("encoder changed, full mode switch\n");
  7654. config->mode_changed = true;
  7655. }
  7656. }
  7657. /* connector->new_encoder is now updated for all connectors. */
  7658. /* Update crtc of enabled connectors. */
  7659. list_for_each_entry(connector, &dev->mode_config.connector_list,
  7660. base.head) {
  7661. if (!connector->new_encoder)
  7662. continue;
  7663. new_crtc = connector->new_encoder->base.crtc;
  7664. for (ro = 0; ro < set->num_connectors; ro++) {
  7665. if (set->connectors[ro] == &connector->base)
  7666. new_crtc = set->crtc;
  7667. }
  7668. /* Make sure the new CRTC will work with the encoder */
  7669. if (!intel_encoder_crtc_ok(&connector->new_encoder->base,
  7670. new_crtc)) {
  7671. return -EINVAL;
  7672. }
  7673. connector->encoder->new_crtc = to_intel_crtc(new_crtc);
  7674. DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [CRTC:%d]\n",
  7675. connector->base.base.id,
  7676. drm_get_connector_name(&connector->base),
  7677. new_crtc->base.id);
  7678. }
  7679. /* Check for any encoders that needs to be disabled. */
  7680. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  7681. base.head) {
  7682. list_for_each_entry(connector,
  7683. &dev->mode_config.connector_list,
  7684. base.head) {
  7685. if (connector->new_encoder == encoder) {
  7686. WARN_ON(!connector->new_encoder->new_crtc);
  7687. goto next_encoder;
  7688. }
  7689. }
  7690. encoder->new_crtc = NULL;
  7691. next_encoder:
  7692. /* Only now check for crtc changes so we don't miss encoders
  7693. * that will be disabled. */
  7694. if (&encoder->new_crtc->base != encoder->base.crtc) {
  7695. DRM_DEBUG_KMS("crtc changed, full mode switch\n");
  7696. config->mode_changed = true;
  7697. }
  7698. }
  7699. /* Now we've also updated encoder->new_crtc for all encoders. */
  7700. return 0;
  7701. }
  7702. static int intel_crtc_set_config(struct drm_mode_set *set)
  7703. {
  7704. struct drm_device *dev;
  7705. struct drm_mode_set save_set;
  7706. struct intel_set_config *config;
  7707. int ret;
  7708. BUG_ON(!set);
  7709. BUG_ON(!set->crtc);
  7710. BUG_ON(!set->crtc->helper_private);
  7711. /* Enforce sane interface api - has been abused by the fb helper. */
  7712. BUG_ON(!set->mode && set->fb);
  7713. BUG_ON(set->fb && set->num_connectors == 0);
  7714. if (set->fb) {
  7715. DRM_DEBUG_KMS("[CRTC:%d] [FB:%d] #connectors=%d (x y) (%i %i)\n",
  7716. set->crtc->base.id, set->fb->base.id,
  7717. (int)set->num_connectors, set->x, set->y);
  7718. } else {
  7719. DRM_DEBUG_KMS("[CRTC:%d] [NOFB]\n", set->crtc->base.id);
  7720. }
  7721. dev = set->crtc->dev;
  7722. ret = -ENOMEM;
  7723. config = kzalloc(sizeof(*config), GFP_KERNEL);
  7724. if (!config)
  7725. goto out_config;
  7726. ret = intel_set_config_save_state(dev, config);
  7727. if (ret)
  7728. goto out_config;
  7729. save_set.crtc = set->crtc;
  7730. save_set.mode = &set->crtc->mode;
  7731. save_set.x = set->crtc->x;
  7732. save_set.y = set->crtc->y;
  7733. save_set.fb = set->crtc->fb;
  7734. /* Compute whether we need a full modeset, only an fb base update or no
  7735. * change at all. In the future we might also check whether only the
  7736. * mode changed, e.g. for LVDS where we only change the panel fitter in
  7737. * such cases. */
  7738. intel_set_config_compute_mode_changes(set, config);
  7739. ret = intel_modeset_stage_output_state(dev, set, config);
  7740. if (ret)
  7741. goto fail;
  7742. if (config->mode_changed) {
  7743. ret = intel_set_mode(set->crtc, set->mode,
  7744. set->x, set->y, set->fb);
  7745. } else if (config->fb_changed) {
  7746. intel_crtc_wait_for_pending_flips(set->crtc);
  7747. ret = intel_pipe_set_base(set->crtc,
  7748. set->x, set->y, set->fb);
  7749. }
  7750. if (ret) {
  7751. DRM_DEBUG_KMS("failed to set mode on [CRTC:%d], err = %d\n",
  7752. set->crtc->base.id, ret);
  7753. fail:
  7754. intel_set_config_restore_state(dev, config);
  7755. /* Try to restore the config */
  7756. if (config->mode_changed &&
  7757. intel_set_mode(save_set.crtc, save_set.mode,
  7758. save_set.x, save_set.y, save_set.fb))
  7759. DRM_ERROR("failed to restore config after modeset failure\n");
  7760. }
  7761. out_config:
  7762. intel_set_config_free(config);
  7763. return ret;
  7764. }
  7765. static const struct drm_crtc_funcs intel_crtc_funcs = {
  7766. .cursor_set = intel_crtc_cursor_set,
  7767. .cursor_move = intel_crtc_cursor_move,
  7768. .gamma_set = intel_crtc_gamma_set,
  7769. .set_config = intel_crtc_set_config,
  7770. .destroy = intel_crtc_destroy,
  7771. .page_flip = intel_crtc_page_flip,
  7772. };
  7773. static void intel_cpu_pll_init(struct drm_device *dev)
  7774. {
  7775. if (HAS_DDI(dev))
  7776. intel_ddi_pll_init(dev);
  7777. }
  7778. static bool ibx_pch_dpll_get_hw_state(struct drm_i915_private *dev_priv,
  7779. struct intel_shared_dpll *pll,
  7780. struct intel_dpll_hw_state *hw_state)
  7781. {
  7782. uint32_t val;
  7783. val = I915_READ(PCH_DPLL(pll->id));
  7784. hw_state->dpll = val;
  7785. hw_state->fp0 = I915_READ(PCH_FP0(pll->id));
  7786. hw_state->fp1 = I915_READ(PCH_FP1(pll->id));
  7787. return val & DPLL_VCO_ENABLE;
  7788. }
  7789. static void ibx_pch_dpll_mode_set(struct drm_i915_private *dev_priv,
  7790. struct intel_shared_dpll *pll)
  7791. {
  7792. I915_WRITE(PCH_FP0(pll->id), pll->hw_state.fp0);
  7793. I915_WRITE(PCH_FP1(pll->id), pll->hw_state.fp1);
  7794. }
  7795. static void ibx_pch_dpll_enable(struct drm_i915_private *dev_priv,
  7796. struct intel_shared_dpll *pll)
  7797. {
  7798. /* PCH refclock must be enabled first */
  7799. assert_pch_refclk_enabled(dev_priv);
  7800. I915_WRITE(PCH_DPLL(pll->id), pll->hw_state.dpll);
  7801. /* Wait for the clocks to stabilize. */
  7802. POSTING_READ(PCH_DPLL(pll->id));
  7803. udelay(150);
  7804. /* The pixel multiplier can only be updated once the
  7805. * DPLL is enabled and the clocks are stable.
  7806. *
  7807. * So write it again.
  7808. */
  7809. I915_WRITE(PCH_DPLL(pll->id), pll->hw_state.dpll);
  7810. POSTING_READ(PCH_DPLL(pll->id));
  7811. udelay(200);
  7812. }
  7813. static void ibx_pch_dpll_disable(struct drm_i915_private *dev_priv,
  7814. struct intel_shared_dpll *pll)
  7815. {
  7816. struct drm_device *dev = dev_priv->dev;
  7817. struct intel_crtc *crtc;
  7818. /* Make sure no transcoder isn't still depending on us. */
  7819. list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head) {
  7820. if (intel_crtc_to_shared_dpll(crtc) == pll)
  7821. assert_pch_transcoder_disabled(dev_priv, crtc->pipe);
  7822. }
  7823. I915_WRITE(PCH_DPLL(pll->id), 0);
  7824. POSTING_READ(PCH_DPLL(pll->id));
  7825. udelay(200);
  7826. }
  7827. static char *ibx_pch_dpll_names[] = {
  7828. "PCH DPLL A",
  7829. "PCH DPLL B",
  7830. };
  7831. static void ibx_pch_dpll_init(struct drm_device *dev)
  7832. {
  7833. struct drm_i915_private *dev_priv = dev->dev_private;
  7834. int i;
  7835. dev_priv->num_shared_dpll = 2;
  7836. for (i = 0; i < dev_priv->num_shared_dpll; i++) {
  7837. dev_priv->shared_dplls[i].id = i;
  7838. dev_priv->shared_dplls[i].name = ibx_pch_dpll_names[i];
  7839. dev_priv->shared_dplls[i].mode_set = ibx_pch_dpll_mode_set;
  7840. dev_priv->shared_dplls[i].enable = ibx_pch_dpll_enable;
  7841. dev_priv->shared_dplls[i].disable = ibx_pch_dpll_disable;
  7842. dev_priv->shared_dplls[i].get_hw_state =
  7843. ibx_pch_dpll_get_hw_state;
  7844. }
  7845. }
  7846. static void intel_shared_dpll_init(struct drm_device *dev)
  7847. {
  7848. struct drm_i915_private *dev_priv = dev->dev_private;
  7849. if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
  7850. ibx_pch_dpll_init(dev);
  7851. else
  7852. dev_priv->num_shared_dpll = 0;
  7853. BUG_ON(dev_priv->num_shared_dpll > I915_NUM_PLLS);
  7854. DRM_DEBUG_KMS("%i shared PLLs initialized\n",
  7855. dev_priv->num_shared_dpll);
  7856. }
  7857. static void intel_crtc_init(struct drm_device *dev, int pipe)
  7858. {
  7859. drm_i915_private_t *dev_priv = dev->dev_private;
  7860. struct intel_crtc *intel_crtc;
  7861. int i;
  7862. intel_crtc = kzalloc(sizeof(struct intel_crtc) + (INTELFB_CONN_LIMIT * sizeof(struct drm_connector *)), GFP_KERNEL);
  7863. if (intel_crtc == NULL)
  7864. return;
  7865. drm_crtc_init(dev, &intel_crtc->base, &intel_crtc_funcs);
  7866. drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
  7867. for (i = 0; i < 256; i++) {
  7868. intel_crtc->lut_r[i] = i;
  7869. intel_crtc->lut_g[i] = i;
  7870. intel_crtc->lut_b[i] = i;
  7871. }
  7872. /* Swap pipes & planes for FBC on pre-965 */
  7873. intel_crtc->pipe = pipe;
  7874. intel_crtc->plane = pipe;
  7875. if (IS_MOBILE(dev) && IS_GEN3(dev)) {
  7876. DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
  7877. intel_crtc->plane = !pipe;
  7878. }
  7879. BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
  7880. dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
  7881. dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
  7882. dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
  7883. drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
  7884. }
  7885. int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
  7886. struct drm_file *file)
  7887. {
  7888. struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
  7889. struct drm_mode_object *drmmode_obj;
  7890. struct intel_crtc *crtc;
  7891. if (!drm_core_check_feature(dev, DRIVER_MODESET))
  7892. return -ENODEV;
  7893. drmmode_obj = drm_mode_object_find(dev, pipe_from_crtc_id->crtc_id,
  7894. DRM_MODE_OBJECT_CRTC);
  7895. if (!drmmode_obj) {
  7896. DRM_ERROR("no such CRTC id\n");
  7897. return -EINVAL;
  7898. }
  7899. crtc = to_intel_crtc(obj_to_crtc(drmmode_obj));
  7900. pipe_from_crtc_id->pipe = crtc->pipe;
  7901. return 0;
  7902. }
  7903. static int intel_encoder_clones(struct intel_encoder *encoder)
  7904. {
  7905. struct drm_device *dev = encoder->base.dev;
  7906. struct intel_encoder *source_encoder;
  7907. int index_mask = 0;
  7908. int entry = 0;
  7909. list_for_each_entry(source_encoder,
  7910. &dev->mode_config.encoder_list, base.head) {
  7911. if (encoder == source_encoder)
  7912. index_mask |= (1 << entry);
  7913. /* Intel hw has only one MUX where enocoders could be cloned. */
  7914. if (encoder->cloneable && source_encoder->cloneable)
  7915. index_mask |= (1 << entry);
  7916. entry++;
  7917. }
  7918. return index_mask;
  7919. }
  7920. static bool has_edp_a(struct drm_device *dev)
  7921. {
  7922. struct drm_i915_private *dev_priv = dev->dev_private;
  7923. if (!IS_MOBILE(dev))
  7924. return false;
  7925. if ((I915_READ(DP_A) & DP_DETECTED) == 0)
  7926. return false;
  7927. if (IS_GEN5(dev) &&
  7928. (I915_READ(ILK_DISPLAY_CHICKEN_FUSES) & ILK_eDP_A_DISABLE))
  7929. return false;
  7930. return true;
  7931. }
  7932. static void intel_setup_outputs(struct drm_device *dev)
  7933. {
  7934. struct drm_i915_private *dev_priv = dev->dev_private;
  7935. struct intel_encoder *encoder;
  7936. bool dpd_is_edp = false;
  7937. intel_lvds_init(dev);
  7938. if (!IS_ULT(dev))
  7939. intel_crt_init(dev);
  7940. if (HAS_DDI(dev)) {
  7941. int found;
  7942. /* Haswell uses DDI functions to detect digital outputs */
  7943. found = I915_READ(DDI_BUF_CTL_A) & DDI_INIT_DISPLAY_DETECTED;
  7944. /* DDI A only supports eDP */
  7945. if (found)
  7946. intel_ddi_init(dev, PORT_A);
  7947. /* DDI B, C and D detection is indicated by the SFUSE_STRAP
  7948. * register */
  7949. found = I915_READ(SFUSE_STRAP);
  7950. if (found & SFUSE_STRAP_DDIB_DETECTED)
  7951. intel_ddi_init(dev, PORT_B);
  7952. if (found & SFUSE_STRAP_DDIC_DETECTED)
  7953. intel_ddi_init(dev, PORT_C);
  7954. if (found & SFUSE_STRAP_DDID_DETECTED)
  7955. intel_ddi_init(dev, PORT_D);
  7956. } else if (HAS_PCH_SPLIT(dev)) {
  7957. int found;
  7958. dpd_is_edp = intel_dpd_is_edp(dev);
  7959. if (has_edp_a(dev))
  7960. intel_dp_init(dev, DP_A, PORT_A);
  7961. if (I915_READ(PCH_HDMIB) & SDVO_DETECTED) {
  7962. /* PCH SDVOB multiplex with HDMIB */
  7963. found = intel_sdvo_init(dev, PCH_SDVOB, true);
  7964. if (!found)
  7965. intel_hdmi_init(dev, PCH_HDMIB, PORT_B);
  7966. if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
  7967. intel_dp_init(dev, PCH_DP_B, PORT_B);
  7968. }
  7969. if (I915_READ(PCH_HDMIC) & SDVO_DETECTED)
  7970. intel_hdmi_init(dev, PCH_HDMIC, PORT_C);
  7971. if (!dpd_is_edp && I915_READ(PCH_HDMID) & SDVO_DETECTED)
  7972. intel_hdmi_init(dev, PCH_HDMID, PORT_D);
  7973. if (I915_READ(PCH_DP_C) & DP_DETECTED)
  7974. intel_dp_init(dev, PCH_DP_C, PORT_C);
  7975. if (I915_READ(PCH_DP_D) & DP_DETECTED)
  7976. intel_dp_init(dev, PCH_DP_D, PORT_D);
  7977. } else if (IS_VALLEYVIEW(dev)) {
  7978. /* Check for built-in panel first. Shares lanes with HDMI on SDVOC */
  7979. if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIC) & SDVO_DETECTED) {
  7980. intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIC,
  7981. PORT_C);
  7982. if (I915_READ(VLV_DISPLAY_BASE + DP_C) & DP_DETECTED)
  7983. intel_dp_init(dev, VLV_DISPLAY_BASE + DP_C,
  7984. PORT_C);
  7985. }
  7986. if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIB) & SDVO_DETECTED) {
  7987. intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIB,
  7988. PORT_B);
  7989. if (I915_READ(VLV_DISPLAY_BASE + DP_B) & DP_DETECTED)
  7990. intel_dp_init(dev, VLV_DISPLAY_BASE + DP_B, PORT_B);
  7991. }
  7992. intel_dsi_init(dev);
  7993. } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
  7994. bool found = false;
  7995. if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
  7996. DRM_DEBUG_KMS("probing SDVOB\n");
  7997. found = intel_sdvo_init(dev, GEN3_SDVOB, true);
  7998. if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
  7999. DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
  8000. intel_hdmi_init(dev, GEN4_HDMIB, PORT_B);
  8001. }
  8002. if (!found && SUPPORTS_INTEGRATED_DP(dev))
  8003. intel_dp_init(dev, DP_B, PORT_B);
  8004. }
  8005. /* Before G4X SDVOC doesn't have its own detect register */
  8006. if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
  8007. DRM_DEBUG_KMS("probing SDVOC\n");
  8008. found = intel_sdvo_init(dev, GEN3_SDVOC, false);
  8009. }
  8010. if (!found && (I915_READ(GEN3_SDVOC) & SDVO_DETECTED)) {
  8011. if (SUPPORTS_INTEGRATED_HDMI(dev)) {
  8012. DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
  8013. intel_hdmi_init(dev, GEN4_HDMIC, PORT_C);
  8014. }
  8015. if (SUPPORTS_INTEGRATED_DP(dev))
  8016. intel_dp_init(dev, DP_C, PORT_C);
  8017. }
  8018. if (SUPPORTS_INTEGRATED_DP(dev) &&
  8019. (I915_READ(DP_D) & DP_DETECTED))
  8020. intel_dp_init(dev, DP_D, PORT_D);
  8021. } else if (IS_GEN2(dev))
  8022. intel_dvo_init(dev);
  8023. if (SUPPORTS_TV(dev))
  8024. intel_tv_init(dev);
  8025. list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
  8026. encoder->base.possible_crtcs = encoder->crtc_mask;
  8027. encoder->base.possible_clones =
  8028. intel_encoder_clones(encoder);
  8029. }
  8030. intel_init_pch_refclk(dev);
  8031. drm_helper_move_panel_connectors_to_head(dev);
  8032. }
  8033. void intel_framebuffer_fini(struct intel_framebuffer *fb)
  8034. {
  8035. drm_framebuffer_cleanup(&fb->base);
  8036. drm_gem_object_unreference_unlocked(&fb->obj->base);
  8037. }
  8038. static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
  8039. {
  8040. struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
  8041. intel_framebuffer_fini(intel_fb);
  8042. kfree(intel_fb);
  8043. }
  8044. static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
  8045. struct drm_file *file,
  8046. unsigned int *handle)
  8047. {
  8048. struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
  8049. struct drm_i915_gem_object *obj = intel_fb->obj;
  8050. return drm_gem_handle_create(file, &obj->base, handle);
  8051. }
  8052. static const struct drm_framebuffer_funcs intel_fb_funcs = {
  8053. .destroy = intel_user_framebuffer_destroy,
  8054. .create_handle = intel_user_framebuffer_create_handle,
  8055. };
  8056. int intel_framebuffer_init(struct drm_device *dev,
  8057. struct intel_framebuffer *intel_fb,
  8058. struct drm_mode_fb_cmd2 *mode_cmd,
  8059. struct drm_i915_gem_object *obj)
  8060. {
  8061. int pitch_limit;
  8062. int ret;
  8063. if (obj->tiling_mode == I915_TILING_Y) {
  8064. DRM_DEBUG("hardware does not support tiling Y\n");
  8065. return -EINVAL;
  8066. }
  8067. if (mode_cmd->pitches[0] & 63) {
  8068. DRM_DEBUG("pitch (%d) must be at least 64 byte aligned\n",
  8069. mode_cmd->pitches[0]);
  8070. return -EINVAL;
  8071. }
  8072. if (INTEL_INFO(dev)->gen >= 5 && !IS_VALLEYVIEW(dev)) {
  8073. pitch_limit = 32*1024;
  8074. } else if (INTEL_INFO(dev)->gen >= 4) {
  8075. if (obj->tiling_mode)
  8076. pitch_limit = 16*1024;
  8077. else
  8078. pitch_limit = 32*1024;
  8079. } else if (INTEL_INFO(dev)->gen >= 3) {
  8080. if (obj->tiling_mode)
  8081. pitch_limit = 8*1024;
  8082. else
  8083. pitch_limit = 16*1024;
  8084. } else
  8085. /* XXX DSPC is limited to 4k tiled */
  8086. pitch_limit = 8*1024;
  8087. if (mode_cmd->pitches[0] > pitch_limit) {
  8088. DRM_DEBUG("%s pitch (%d) must be at less than %d\n",
  8089. obj->tiling_mode ? "tiled" : "linear",
  8090. mode_cmd->pitches[0], pitch_limit);
  8091. return -EINVAL;
  8092. }
  8093. if (obj->tiling_mode != I915_TILING_NONE &&
  8094. mode_cmd->pitches[0] != obj->stride) {
  8095. DRM_DEBUG("pitch (%d) must match tiling stride (%d)\n",
  8096. mode_cmd->pitches[0], obj->stride);
  8097. return -EINVAL;
  8098. }
  8099. /* Reject formats not supported by any plane early. */
  8100. switch (mode_cmd->pixel_format) {
  8101. case DRM_FORMAT_C8:
  8102. case DRM_FORMAT_RGB565:
  8103. case DRM_FORMAT_XRGB8888:
  8104. case DRM_FORMAT_ARGB8888:
  8105. break;
  8106. case DRM_FORMAT_XRGB1555:
  8107. case DRM_FORMAT_ARGB1555:
  8108. if (INTEL_INFO(dev)->gen > 3) {
  8109. DRM_DEBUG("unsupported pixel format: %s\n",
  8110. drm_get_format_name(mode_cmd->pixel_format));
  8111. return -EINVAL;
  8112. }
  8113. break;
  8114. case DRM_FORMAT_XBGR8888:
  8115. case DRM_FORMAT_ABGR8888:
  8116. case DRM_FORMAT_XRGB2101010:
  8117. case DRM_FORMAT_ARGB2101010:
  8118. case DRM_FORMAT_XBGR2101010:
  8119. case DRM_FORMAT_ABGR2101010:
  8120. if (INTEL_INFO(dev)->gen < 4) {
  8121. DRM_DEBUG("unsupported pixel format: %s\n",
  8122. drm_get_format_name(mode_cmd->pixel_format));
  8123. return -EINVAL;
  8124. }
  8125. break;
  8126. case DRM_FORMAT_YUYV:
  8127. case DRM_FORMAT_UYVY:
  8128. case DRM_FORMAT_YVYU:
  8129. case DRM_FORMAT_VYUY:
  8130. if (INTEL_INFO(dev)->gen < 5) {
  8131. DRM_DEBUG("unsupported pixel format: %s\n",
  8132. drm_get_format_name(mode_cmd->pixel_format));
  8133. return -EINVAL;
  8134. }
  8135. break;
  8136. default:
  8137. DRM_DEBUG("unsupported pixel format: %s\n",
  8138. drm_get_format_name(mode_cmd->pixel_format));
  8139. return -EINVAL;
  8140. }
  8141. /* FIXME need to adjust LINOFF/TILEOFF accordingly. */
  8142. if (mode_cmd->offsets[0] != 0)
  8143. return -EINVAL;
  8144. drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
  8145. intel_fb->obj = obj;
  8146. ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
  8147. if (ret) {
  8148. DRM_ERROR("framebuffer init failed %d\n", ret);
  8149. return ret;
  8150. }
  8151. return 0;
  8152. }
  8153. static struct drm_framebuffer *
  8154. intel_user_framebuffer_create(struct drm_device *dev,
  8155. struct drm_file *filp,
  8156. struct drm_mode_fb_cmd2 *mode_cmd)
  8157. {
  8158. struct drm_i915_gem_object *obj;
  8159. obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
  8160. mode_cmd->handles[0]));
  8161. if (&obj->base == NULL)
  8162. return ERR_PTR(-ENOENT);
  8163. return intel_framebuffer_create(dev, mode_cmd, obj);
  8164. }
  8165. static const struct drm_mode_config_funcs intel_mode_funcs = {
  8166. .fb_create = intel_user_framebuffer_create,
  8167. .output_poll_changed = intel_fb_output_poll_changed,
  8168. };
  8169. /* Set up chip specific display functions */
  8170. static void intel_init_display(struct drm_device *dev)
  8171. {
  8172. struct drm_i915_private *dev_priv = dev->dev_private;
  8173. if (HAS_PCH_SPLIT(dev) || IS_G4X(dev))
  8174. dev_priv->display.find_dpll = g4x_find_best_dpll;
  8175. else if (IS_VALLEYVIEW(dev))
  8176. dev_priv->display.find_dpll = vlv_find_best_dpll;
  8177. else if (IS_PINEVIEW(dev))
  8178. dev_priv->display.find_dpll = pnv_find_best_dpll;
  8179. else
  8180. dev_priv->display.find_dpll = i9xx_find_best_dpll;
  8181. if (HAS_DDI(dev)) {
  8182. dev_priv->display.get_pipe_config = haswell_get_pipe_config;
  8183. dev_priv->display.crtc_mode_set = haswell_crtc_mode_set;
  8184. dev_priv->display.crtc_enable = haswell_crtc_enable;
  8185. dev_priv->display.crtc_disable = haswell_crtc_disable;
  8186. dev_priv->display.off = haswell_crtc_off;
  8187. dev_priv->display.update_plane = ironlake_update_plane;
  8188. } else if (HAS_PCH_SPLIT(dev)) {
  8189. dev_priv->display.get_pipe_config = ironlake_get_pipe_config;
  8190. dev_priv->display.get_clock = ironlake_crtc_clock_get;
  8191. dev_priv->display.crtc_mode_set = ironlake_crtc_mode_set;
  8192. dev_priv->display.crtc_enable = ironlake_crtc_enable;
  8193. dev_priv->display.crtc_disable = ironlake_crtc_disable;
  8194. dev_priv->display.off = ironlake_crtc_off;
  8195. dev_priv->display.update_plane = ironlake_update_plane;
  8196. } else if (IS_VALLEYVIEW(dev)) {
  8197. dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
  8198. dev_priv->display.get_clock = i9xx_crtc_clock_get;
  8199. dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
  8200. dev_priv->display.crtc_enable = valleyview_crtc_enable;
  8201. dev_priv->display.crtc_disable = i9xx_crtc_disable;
  8202. dev_priv->display.off = i9xx_crtc_off;
  8203. dev_priv->display.update_plane = i9xx_update_plane;
  8204. } else {
  8205. dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
  8206. dev_priv->display.get_clock = i9xx_crtc_clock_get;
  8207. dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
  8208. dev_priv->display.crtc_enable = i9xx_crtc_enable;
  8209. dev_priv->display.crtc_disable = i9xx_crtc_disable;
  8210. dev_priv->display.off = i9xx_crtc_off;
  8211. dev_priv->display.update_plane = i9xx_update_plane;
  8212. }
  8213. /* Returns the core display clock speed */
  8214. if (IS_VALLEYVIEW(dev))
  8215. dev_priv->display.get_display_clock_speed =
  8216. valleyview_get_display_clock_speed;
  8217. else if (IS_I945G(dev) || (IS_G33(dev) && !IS_PINEVIEW_M(dev)))
  8218. dev_priv->display.get_display_clock_speed =
  8219. i945_get_display_clock_speed;
  8220. else if (IS_I915G(dev))
  8221. dev_priv->display.get_display_clock_speed =
  8222. i915_get_display_clock_speed;
  8223. else if (IS_I945GM(dev) || IS_845G(dev))
  8224. dev_priv->display.get_display_clock_speed =
  8225. i9xx_misc_get_display_clock_speed;
  8226. else if (IS_PINEVIEW(dev))
  8227. dev_priv->display.get_display_clock_speed =
  8228. pnv_get_display_clock_speed;
  8229. else if (IS_I915GM(dev))
  8230. dev_priv->display.get_display_clock_speed =
  8231. i915gm_get_display_clock_speed;
  8232. else if (IS_I865G(dev))
  8233. dev_priv->display.get_display_clock_speed =
  8234. i865_get_display_clock_speed;
  8235. else if (IS_I85X(dev))
  8236. dev_priv->display.get_display_clock_speed =
  8237. i855_get_display_clock_speed;
  8238. else /* 852, 830 */
  8239. dev_priv->display.get_display_clock_speed =
  8240. i830_get_display_clock_speed;
  8241. if (HAS_PCH_SPLIT(dev)) {
  8242. if (IS_GEN5(dev)) {
  8243. dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
  8244. dev_priv->display.write_eld = ironlake_write_eld;
  8245. } else if (IS_GEN6(dev)) {
  8246. dev_priv->display.fdi_link_train = gen6_fdi_link_train;
  8247. dev_priv->display.write_eld = ironlake_write_eld;
  8248. } else if (IS_IVYBRIDGE(dev)) {
  8249. /* FIXME: detect B0+ stepping and use auto training */
  8250. dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
  8251. dev_priv->display.write_eld = ironlake_write_eld;
  8252. dev_priv->display.modeset_global_resources =
  8253. ivb_modeset_global_resources;
  8254. } else if (IS_HASWELL(dev)) {
  8255. dev_priv->display.fdi_link_train = hsw_fdi_link_train;
  8256. dev_priv->display.write_eld = haswell_write_eld;
  8257. dev_priv->display.modeset_global_resources =
  8258. haswell_modeset_global_resources;
  8259. }
  8260. } else if (IS_G4X(dev)) {
  8261. dev_priv->display.write_eld = g4x_write_eld;
  8262. }
  8263. /* Default just returns -ENODEV to indicate unsupported */
  8264. dev_priv->display.queue_flip = intel_default_queue_flip;
  8265. switch (INTEL_INFO(dev)->gen) {
  8266. case 2:
  8267. dev_priv->display.queue_flip = intel_gen2_queue_flip;
  8268. break;
  8269. case 3:
  8270. dev_priv->display.queue_flip = intel_gen3_queue_flip;
  8271. break;
  8272. case 4:
  8273. case 5:
  8274. dev_priv->display.queue_flip = intel_gen4_queue_flip;
  8275. break;
  8276. case 6:
  8277. dev_priv->display.queue_flip = intel_gen6_queue_flip;
  8278. break;
  8279. case 7:
  8280. dev_priv->display.queue_flip = intel_gen7_queue_flip;
  8281. break;
  8282. }
  8283. }
  8284. /*
  8285. * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
  8286. * resume, or other times. This quirk makes sure that's the case for
  8287. * affected systems.
  8288. */
  8289. static void quirk_pipea_force(struct drm_device *dev)
  8290. {
  8291. struct drm_i915_private *dev_priv = dev->dev_private;
  8292. dev_priv->quirks |= QUIRK_PIPEA_FORCE;
  8293. DRM_INFO("applying pipe a force quirk\n");
  8294. }
  8295. /*
  8296. * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
  8297. */
  8298. static void quirk_ssc_force_disable(struct drm_device *dev)
  8299. {
  8300. struct drm_i915_private *dev_priv = dev->dev_private;
  8301. dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
  8302. DRM_INFO("applying lvds SSC disable quirk\n");
  8303. }
  8304. /*
  8305. * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
  8306. * brightness value
  8307. */
  8308. static void quirk_invert_brightness(struct drm_device *dev)
  8309. {
  8310. struct drm_i915_private *dev_priv = dev->dev_private;
  8311. dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
  8312. DRM_INFO("applying inverted panel brightness quirk\n");
  8313. }
  8314. /*
  8315. * Some machines (Dell XPS13) suffer broken backlight controls if
  8316. * BLM_PCH_PWM_ENABLE is set.
  8317. */
  8318. static void quirk_no_pcm_pwm_enable(struct drm_device *dev)
  8319. {
  8320. struct drm_i915_private *dev_priv = dev->dev_private;
  8321. dev_priv->quirks |= QUIRK_NO_PCH_PWM_ENABLE;
  8322. DRM_INFO("applying no-PCH_PWM_ENABLE quirk\n");
  8323. }
  8324. struct intel_quirk {
  8325. int device;
  8326. int subsystem_vendor;
  8327. int subsystem_device;
  8328. void (*hook)(struct drm_device *dev);
  8329. };
  8330. /* For systems that don't have a meaningful PCI subdevice/subvendor ID */
  8331. struct intel_dmi_quirk {
  8332. void (*hook)(struct drm_device *dev);
  8333. const struct dmi_system_id (*dmi_id_list)[];
  8334. };
  8335. static int intel_dmi_reverse_brightness(const struct dmi_system_id *id)
  8336. {
  8337. DRM_INFO("Backlight polarity reversed on %s\n", id->ident);
  8338. return 1;
  8339. }
  8340. static const struct intel_dmi_quirk intel_dmi_quirks[] = {
  8341. {
  8342. .dmi_id_list = &(const struct dmi_system_id[]) {
  8343. {
  8344. .callback = intel_dmi_reverse_brightness,
  8345. .ident = "NCR Corporation",
  8346. .matches = {DMI_MATCH(DMI_SYS_VENDOR, "NCR Corporation"),
  8347. DMI_MATCH(DMI_PRODUCT_NAME, ""),
  8348. },
  8349. },
  8350. { } /* terminating entry */
  8351. },
  8352. .hook = quirk_invert_brightness,
  8353. },
  8354. };
  8355. static struct intel_quirk intel_quirks[] = {
  8356. /* HP Mini needs pipe A force quirk (LP: #322104) */
  8357. { 0x27ae, 0x103c, 0x361a, quirk_pipea_force },
  8358. /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
  8359. { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
  8360. /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
  8361. { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
  8362. /* 830/845 need to leave pipe A & dpll A up */
  8363. { 0x2562, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
  8364. { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
  8365. /* Lenovo U160 cannot use SSC on LVDS */
  8366. { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
  8367. /* Sony Vaio Y cannot use SSC on LVDS */
  8368. { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
  8369. /* Acer Aspire 5734Z must invert backlight brightness */
  8370. { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
  8371. /* Acer/eMachines G725 */
  8372. { 0x2a42, 0x1025, 0x0210, quirk_invert_brightness },
  8373. /* Acer/eMachines e725 */
  8374. { 0x2a42, 0x1025, 0x0212, quirk_invert_brightness },
  8375. /* Acer/Packard Bell NCL20 */
  8376. { 0x2a42, 0x1025, 0x034b, quirk_invert_brightness },
  8377. /* Acer Aspire 4736Z */
  8378. { 0x2a42, 0x1025, 0x0260, quirk_invert_brightness },
  8379. /* Dell XPS13 HD Sandy Bridge */
  8380. { 0x0116, 0x1028, 0x052e, quirk_no_pcm_pwm_enable },
  8381. /* Dell XPS13 HD and XPS13 FHD Ivy Bridge */
  8382. { 0x0166, 0x1028, 0x058b, quirk_no_pcm_pwm_enable },
  8383. };
  8384. static void intel_init_quirks(struct drm_device *dev)
  8385. {
  8386. struct pci_dev *d = dev->pdev;
  8387. int i;
  8388. for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
  8389. struct intel_quirk *q = &intel_quirks[i];
  8390. if (d->device == q->device &&
  8391. (d->subsystem_vendor == q->subsystem_vendor ||
  8392. q->subsystem_vendor == PCI_ANY_ID) &&
  8393. (d->subsystem_device == q->subsystem_device ||
  8394. q->subsystem_device == PCI_ANY_ID))
  8395. q->hook(dev);
  8396. }
  8397. for (i = 0; i < ARRAY_SIZE(intel_dmi_quirks); i++) {
  8398. if (dmi_check_system(*intel_dmi_quirks[i].dmi_id_list) != 0)
  8399. intel_dmi_quirks[i].hook(dev);
  8400. }
  8401. }
  8402. /* Disable the VGA plane that we never use */
  8403. static void i915_disable_vga(struct drm_device *dev)
  8404. {
  8405. struct drm_i915_private *dev_priv = dev->dev_private;
  8406. u8 sr1;
  8407. u32 vga_reg = i915_vgacntrl_reg(dev);
  8408. vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
  8409. outb(SR01, VGA_SR_INDEX);
  8410. sr1 = inb(VGA_SR_DATA);
  8411. outb(sr1 | 1<<5, VGA_SR_DATA);
  8412. /* Disable VGA memory on Intel HD */
  8413. if (HAS_PCH_SPLIT(dev)) {
  8414. outb(inb(VGA_MSR_READ) & ~VGA_MSR_MEM_EN, VGA_MSR_WRITE);
  8415. vga_set_legacy_decoding(dev->pdev, VGA_RSRC_LEGACY_IO |
  8416. VGA_RSRC_NORMAL_IO |
  8417. VGA_RSRC_NORMAL_MEM);
  8418. }
  8419. vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
  8420. udelay(300);
  8421. I915_WRITE(vga_reg, VGA_DISP_DISABLE);
  8422. POSTING_READ(vga_reg);
  8423. }
  8424. static void i915_enable_vga(struct drm_device *dev)
  8425. {
  8426. /* Enable VGA memory on Intel HD */
  8427. if (HAS_PCH_SPLIT(dev)) {
  8428. vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
  8429. outb(inb(VGA_MSR_READ) | VGA_MSR_MEM_EN, VGA_MSR_WRITE);
  8430. vga_set_legacy_decoding(dev->pdev, VGA_RSRC_LEGACY_IO |
  8431. VGA_RSRC_LEGACY_MEM |
  8432. VGA_RSRC_NORMAL_IO |
  8433. VGA_RSRC_NORMAL_MEM);
  8434. vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
  8435. }
  8436. }
  8437. void intel_modeset_init_hw(struct drm_device *dev)
  8438. {
  8439. intel_init_power_well(dev);
  8440. intel_prepare_ddi(dev);
  8441. intel_init_clock_gating(dev);
  8442. mutex_lock(&dev->struct_mutex);
  8443. intel_enable_gt_powersave(dev);
  8444. mutex_unlock(&dev->struct_mutex);
  8445. }
  8446. void intel_modeset_suspend_hw(struct drm_device *dev)
  8447. {
  8448. intel_suspend_hw(dev);
  8449. }
  8450. void intel_modeset_init(struct drm_device *dev)
  8451. {
  8452. struct drm_i915_private *dev_priv = dev->dev_private;
  8453. int i, j, ret;
  8454. drm_mode_config_init(dev);
  8455. dev->mode_config.min_width = 0;
  8456. dev->mode_config.min_height = 0;
  8457. dev->mode_config.preferred_depth = 24;
  8458. dev->mode_config.prefer_shadow = 1;
  8459. dev->mode_config.funcs = &intel_mode_funcs;
  8460. intel_init_quirks(dev);
  8461. intel_init_pm(dev);
  8462. if (INTEL_INFO(dev)->num_pipes == 0)
  8463. return;
  8464. intel_init_display(dev);
  8465. if (IS_GEN2(dev)) {
  8466. dev->mode_config.max_width = 2048;
  8467. dev->mode_config.max_height = 2048;
  8468. } else if (IS_GEN3(dev)) {
  8469. dev->mode_config.max_width = 4096;
  8470. dev->mode_config.max_height = 4096;
  8471. } else {
  8472. dev->mode_config.max_width = 8192;
  8473. dev->mode_config.max_height = 8192;
  8474. }
  8475. dev->mode_config.fb_base = dev_priv->gtt.mappable_base;
  8476. DRM_DEBUG_KMS("%d display pipe%s available.\n",
  8477. INTEL_INFO(dev)->num_pipes,
  8478. INTEL_INFO(dev)->num_pipes > 1 ? "s" : "");
  8479. for_each_pipe(i) {
  8480. intel_crtc_init(dev, i);
  8481. for (j = 0; j < dev_priv->num_plane; j++) {
  8482. ret = intel_plane_init(dev, i, j);
  8483. if (ret)
  8484. DRM_DEBUG_KMS("pipe %c sprite %c init failed: %d\n",
  8485. pipe_name(i), sprite_name(i, j), ret);
  8486. }
  8487. }
  8488. intel_cpu_pll_init(dev);
  8489. intel_shared_dpll_init(dev);
  8490. /* Just disable it once at startup */
  8491. i915_disable_vga(dev);
  8492. intel_setup_outputs(dev);
  8493. /* Just in case the BIOS is doing something questionable. */
  8494. intel_disable_fbc(dev);
  8495. }
  8496. static void
  8497. intel_connector_break_all_links(struct intel_connector *connector)
  8498. {
  8499. connector->base.dpms = DRM_MODE_DPMS_OFF;
  8500. connector->base.encoder = NULL;
  8501. connector->encoder->connectors_active = false;
  8502. connector->encoder->base.crtc = NULL;
  8503. }
  8504. static void intel_enable_pipe_a(struct drm_device *dev)
  8505. {
  8506. struct intel_connector *connector;
  8507. struct drm_connector *crt = NULL;
  8508. struct intel_load_detect_pipe load_detect_temp;
  8509. /* We can't just switch on the pipe A, we need to set things up with a
  8510. * proper mode and output configuration. As a gross hack, enable pipe A
  8511. * by enabling the load detect pipe once. */
  8512. list_for_each_entry(connector,
  8513. &dev->mode_config.connector_list,
  8514. base.head) {
  8515. if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
  8516. crt = &connector->base;
  8517. break;
  8518. }
  8519. }
  8520. if (!crt)
  8521. return;
  8522. if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp))
  8523. intel_release_load_detect_pipe(crt, &load_detect_temp);
  8524. }
  8525. static bool
  8526. intel_check_plane_mapping(struct intel_crtc *crtc)
  8527. {
  8528. struct drm_device *dev = crtc->base.dev;
  8529. struct drm_i915_private *dev_priv = dev->dev_private;
  8530. u32 reg, val;
  8531. if (INTEL_INFO(dev)->num_pipes == 1)
  8532. return true;
  8533. reg = DSPCNTR(!crtc->plane);
  8534. val = I915_READ(reg);
  8535. if ((val & DISPLAY_PLANE_ENABLE) &&
  8536. (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
  8537. return false;
  8538. return true;
  8539. }
  8540. static void intel_sanitize_crtc(struct intel_crtc *crtc)
  8541. {
  8542. struct drm_device *dev = crtc->base.dev;
  8543. struct drm_i915_private *dev_priv = dev->dev_private;
  8544. u32 reg;
  8545. /* Clear any frame start delays used for debugging left by the BIOS */
  8546. reg = PIPECONF(crtc->config.cpu_transcoder);
  8547. I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
  8548. /* We need to sanitize the plane -> pipe mapping first because this will
  8549. * disable the crtc (and hence change the state) if it is wrong. Note
  8550. * that gen4+ has a fixed plane -> pipe mapping. */
  8551. if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) {
  8552. struct intel_connector *connector;
  8553. bool plane;
  8554. DRM_DEBUG_KMS("[CRTC:%d] wrong plane connection detected!\n",
  8555. crtc->base.base.id);
  8556. /* Pipe has the wrong plane attached and the plane is active.
  8557. * Temporarily change the plane mapping and disable everything
  8558. * ... */
  8559. plane = crtc->plane;
  8560. crtc->plane = !plane;
  8561. dev_priv->display.crtc_disable(&crtc->base);
  8562. crtc->plane = plane;
  8563. /* ... and break all links. */
  8564. list_for_each_entry(connector, &dev->mode_config.connector_list,
  8565. base.head) {
  8566. if (connector->encoder->base.crtc != &crtc->base)
  8567. continue;
  8568. intel_connector_break_all_links(connector);
  8569. }
  8570. WARN_ON(crtc->active);
  8571. crtc->base.enabled = false;
  8572. }
  8573. if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
  8574. crtc->pipe == PIPE_A && !crtc->active) {
  8575. /* BIOS forgot to enable pipe A, this mostly happens after
  8576. * resume. Force-enable the pipe to fix this, the update_dpms
  8577. * call below we restore the pipe to the right state, but leave
  8578. * the required bits on. */
  8579. intel_enable_pipe_a(dev);
  8580. }
  8581. /* Adjust the state of the output pipe according to whether we
  8582. * have active connectors/encoders. */
  8583. intel_crtc_update_dpms(&crtc->base);
  8584. if (crtc->active != crtc->base.enabled) {
  8585. struct intel_encoder *encoder;
  8586. /* This can happen either due to bugs in the get_hw_state
  8587. * functions or because the pipe is force-enabled due to the
  8588. * pipe A quirk. */
  8589. DRM_DEBUG_KMS("[CRTC:%d] hw state adjusted, was %s, now %s\n",
  8590. crtc->base.base.id,
  8591. crtc->base.enabled ? "enabled" : "disabled",
  8592. crtc->active ? "enabled" : "disabled");
  8593. crtc->base.enabled = crtc->active;
  8594. /* Because we only establish the connector -> encoder ->
  8595. * crtc links if something is active, this means the
  8596. * crtc is now deactivated. Break the links. connector
  8597. * -> encoder links are only establish when things are
  8598. * actually up, hence no need to break them. */
  8599. WARN_ON(crtc->active);
  8600. for_each_encoder_on_crtc(dev, &crtc->base, encoder) {
  8601. WARN_ON(encoder->connectors_active);
  8602. encoder->base.crtc = NULL;
  8603. }
  8604. }
  8605. }
  8606. static void intel_sanitize_encoder(struct intel_encoder *encoder)
  8607. {
  8608. struct intel_connector *connector;
  8609. struct drm_device *dev = encoder->base.dev;
  8610. /* We need to check both for a crtc link (meaning that the
  8611. * encoder is active and trying to read from a pipe) and the
  8612. * pipe itself being active. */
  8613. bool has_active_crtc = encoder->base.crtc &&
  8614. to_intel_crtc(encoder->base.crtc)->active;
  8615. if (encoder->connectors_active && !has_active_crtc) {
  8616. DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
  8617. encoder->base.base.id,
  8618. drm_get_encoder_name(&encoder->base));
  8619. /* Connector is active, but has no active pipe. This is
  8620. * fallout from our resume register restoring. Disable
  8621. * the encoder manually again. */
  8622. if (encoder->base.crtc) {
  8623. DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
  8624. encoder->base.base.id,
  8625. drm_get_encoder_name(&encoder->base));
  8626. encoder->disable(encoder);
  8627. }
  8628. /* Inconsistent output/port/pipe state happens presumably due to
  8629. * a bug in one of the get_hw_state functions. Or someplace else
  8630. * in our code, like the register restore mess on resume. Clamp
  8631. * things to off as a safer default. */
  8632. list_for_each_entry(connector,
  8633. &dev->mode_config.connector_list,
  8634. base.head) {
  8635. if (connector->encoder != encoder)
  8636. continue;
  8637. intel_connector_break_all_links(connector);
  8638. }
  8639. }
  8640. /* Enabled encoders without active connectors will be fixed in
  8641. * the crtc fixup. */
  8642. }
  8643. void i915_redisable_vga(struct drm_device *dev)
  8644. {
  8645. struct drm_i915_private *dev_priv = dev->dev_private;
  8646. u32 vga_reg = i915_vgacntrl_reg(dev);
  8647. /* This function can be called both from intel_modeset_setup_hw_state or
  8648. * at a very early point in our resume sequence, where the power well
  8649. * structures are not yet restored. Since this function is at a very
  8650. * paranoid "someone might have enabled VGA while we were not looking"
  8651. * level, just check if the power well is enabled instead of trying to
  8652. * follow the "don't touch the power well if we don't need it" policy
  8653. * the rest of the driver uses. */
  8654. if (HAS_POWER_WELL(dev) &&
  8655. (I915_READ(HSW_PWR_WELL_DRIVER) & HSW_PWR_WELL_STATE_ENABLED) == 0)
  8656. return;
  8657. if (I915_READ(vga_reg) != VGA_DISP_DISABLE) {
  8658. DRM_DEBUG_KMS("Something enabled VGA plane, disabling it\n");
  8659. i915_disable_vga(dev);
  8660. }
  8661. }
  8662. static void intel_modeset_readout_hw_state(struct drm_device *dev)
  8663. {
  8664. struct drm_i915_private *dev_priv = dev->dev_private;
  8665. enum pipe pipe;
  8666. struct intel_crtc *crtc;
  8667. struct intel_encoder *encoder;
  8668. struct intel_connector *connector;
  8669. int i;
  8670. list_for_each_entry(crtc, &dev->mode_config.crtc_list,
  8671. base.head) {
  8672. memset(&crtc->config, 0, sizeof(crtc->config));
  8673. crtc->active = dev_priv->display.get_pipe_config(crtc,
  8674. &crtc->config);
  8675. crtc->base.enabled = crtc->active;
  8676. DRM_DEBUG_KMS("[CRTC:%d] hw state readout: %s\n",
  8677. crtc->base.base.id,
  8678. crtc->active ? "enabled" : "disabled");
  8679. }
  8680. /* FIXME: Smash this into the new shared dpll infrastructure. */
  8681. if (HAS_DDI(dev))
  8682. intel_ddi_setup_hw_pll_state(dev);
  8683. for (i = 0; i < dev_priv->num_shared_dpll; i++) {
  8684. struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
  8685. pll->on = pll->get_hw_state(dev_priv, pll, &pll->hw_state);
  8686. pll->active = 0;
  8687. list_for_each_entry(crtc, &dev->mode_config.crtc_list,
  8688. base.head) {
  8689. if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll)
  8690. pll->active++;
  8691. }
  8692. pll->refcount = pll->active;
  8693. DRM_DEBUG_KMS("%s hw state readout: refcount %i, on %i\n",
  8694. pll->name, pll->refcount, pll->on);
  8695. }
  8696. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  8697. base.head) {
  8698. pipe = 0;
  8699. if (encoder->get_hw_state(encoder, &pipe)) {
  8700. crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
  8701. encoder->base.crtc = &crtc->base;
  8702. if (encoder->get_config)
  8703. encoder->get_config(encoder, &crtc->config);
  8704. } else {
  8705. encoder->base.crtc = NULL;
  8706. }
  8707. encoder->connectors_active = false;
  8708. DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe=%i\n",
  8709. encoder->base.base.id,
  8710. drm_get_encoder_name(&encoder->base),
  8711. encoder->base.crtc ? "enabled" : "disabled",
  8712. pipe);
  8713. }
  8714. list_for_each_entry(crtc, &dev->mode_config.crtc_list,
  8715. base.head) {
  8716. if (!crtc->active)
  8717. continue;
  8718. if (dev_priv->display.get_clock)
  8719. dev_priv->display.get_clock(crtc,
  8720. &crtc->config);
  8721. }
  8722. list_for_each_entry(connector, &dev->mode_config.connector_list,
  8723. base.head) {
  8724. if (connector->get_hw_state(connector)) {
  8725. connector->base.dpms = DRM_MODE_DPMS_ON;
  8726. connector->encoder->connectors_active = true;
  8727. connector->base.encoder = &connector->encoder->base;
  8728. } else {
  8729. connector->base.dpms = DRM_MODE_DPMS_OFF;
  8730. connector->base.encoder = NULL;
  8731. }
  8732. DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
  8733. connector->base.base.id,
  8734. drm_get_connector_name(&connector->base),
  8735. connector->base.encoder ? "enabled" : "disabled");
  8736. }
  8737. }
  8738. /* Scan out the current hw modeset state, sanitizes it and maps it into the drm
  8739. * and i915 state tracking structures. */
  8740. void intel_modeset_setup_hw_state(struct drm_device *dev,
  8741. bool force_restore)
  8742. {
  8743. struct drm_i915_private *dev_priv = dev->dev_private;
  8744. enum pipe pipe;
  8745. struct drm_plane *plane;
  8746. struct intel_crtc *crtc;
  8747. struct intel_encoder *encoder;
  8748. int i;
  8749. intel_modeset_readout_hw_state(dev);
  8750. /*
  8751. * Now that we have the config, copy it to each CRTC struct
  8752. * Note that this could go away if we move to using crtc_config
  8753. * checking everywhere.
  8754. */
  8755. list_for_each_entry(crtc, &dev->mode_config.crtc_list,
  8756. base.head) {
  8757. if (crtc->active && i915_fastboot) {
  8758. intel_crtc_mode_from_pipe_config(crtc, &crtc->config);
  8759. DRM_DEBUG_KMS("[CRTC:%d] found active mode: ",
  8760. crtc->base.base.id);
  8761. drm_mode_debug_printmodeline(&crtc->base.mode);
  8762. }
  8763. }
  8764. /* HW state is read out, now we need to sanitize this mess. */
  8765. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  8766. base.head) {
  8767. intel_sanitize_encoder(encoder);
  8768. }
  8769. for_each_pipe(pipe) {
  8770. crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
  8771. intel_sanitize_crtc(crtc);
  8772. intel_dump_pipe_config(crtc, &crtc->config, "[setup_hw_state]");
  8773. }
  8774. for (i = 0; i < dev_priv->num_shared_dpll; i++) {
  8775. struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
  8776. if (!pll->on || pll->active)
  8777. continue;
  8778. DRM_DEBUG_KMS("%s enabled but not in use, disabling\n", pll->name);
  8779. pll->disable(dev_priv, pll);
  8780. pll->on = false;
  8781. }
  8782. if (force_restore) {
  8783. /*
  8784. * We need to use raw interfaces for restoring state to avoid
  8785. * checking (bogus) intermediate states.
  8786. */
  8787. for_each_pipe(pipe) {
  8788. struct drm_crtc *crtc =
  8789. dev_priv->pipe_to_crtc_mapping[pipe];
  8790. __intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y,
  8791. crtc->fb);
  8792. }
  8793. list_for_each_entry(plane, &dev->mode_config.plane_list, head)
  8794. intel_plane_restore(plane);
  8795. i915_redisable_vga(dev);
  8796. } else {
  8797. intel_modeset_update_staged_output_state(dev);
  8798. }
  8799. intel_modeset_check_state(dev);
  8800. drm_mode_config_reset(dev);
  8801. }
  8802. void intel_modeset_gem_init(struct drm_device *dev)
  8803. {
  8804. intel_modeset_init_hw(dev);
  8805. intel_setup_overlay(dev);
  8806. intel_modeset_setup_hw_state(dev, false);
  8807. }
  8808. void intel_modeset_cleanup(struct drm_device *dev)
  8809. {
  8810. struct drm_i915_private *dev_priv = dev->dev_private;
  8811. struct drm_crtc *crtc;
  8812. /*
  8813. * Interrupts and polling as the first thing to avoid creating havoc.
  8814. * Too much stuff here (turning of rps, connectors, ...) would
  8815. * experience fancy races otherwise.
  8816. */
  8817. drm_irq_uninstall(dev);
  8818. cancel_work_sync(&dev_priv->hotplug_work);
  8819. /*
  8820. * Due to the hpd irq storm handling the hotplug work can re-arm the
  8821. * poll handlers. Hence disable polling after hpd handling is shut down.
  8822. */
  8823. drm_kms_helper_poll_fini(dev);
  8824. mutex_lock(&dev->struct_mutex);
  8825. intel_unregister_dsm_handler();
  8826. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  8827. /* Skip inactive CRTCs */
  8828. if (!crtc->fb)
  8829. continue;
  8830. intel_increase_pllclock(crtc);
  8831. }
  8832. intel_disable_fbc(dev);
  8833. i915_enable_vga(dev);
  8834. intel_disable_gt_powersave(dev);
  8835. ironlake_teardown_rc6(dev);
  8836. mutex_unlock(&dev->struct_mutex);
  8837. /* flush any delayed tasks or pending work */
  8838. flush_scheduled_work();
  8839. /* destroy backlight, if any, before the connectors */
  8840. intel_panel_destroy_backlight(dev);
  8841. drm_mode_config_cleanup(dev);
  8842. intel_cleanup_overlay(dev);
  8843. }
  8844. /*
  8845. * Return which encoder is currently attached for connector.
  8846. */
  8847. struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
  8848. {
  8849. return &intel_attached_encoder(connector)->base;
  8850. }
  8851. void intel_connector_attach_encoder(struct intel_connector *connector,
  8852. struct intel_encoder *encoder)
  8853. {
  8854. connector->encoder = encoder;
  8855. drm_mode_connector_attach_encoder(&connector->base,
  8856. &encoder->base);
  8857. }
  8858. /*
  8859. * set vga decode state - true == enable VGA decode
  8860. */
  8861. int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
  8862. {
  8863. struct drm_i915_private *dev_priv = dev->dev_private;
  8864. u16 gmch_ctrl;
  8865. pci_read_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, &gmch_ctrl);
  8866. if (state)
  8867. gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
  8868. else
  8869. gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
  8870. pci_write_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, gmch_ctrl);
  8871. return 0;
  8872. }
  8873. struct intel_display_error_state {
  8874. u32 power_well_driver;
  8875. int num_transcoders;
  8876. struct intel_cursor_error_state {
  8877. u32 control;
  8878. u32 position;
  8879. u32 base;
  8880. u32 size;
  8881. } cursor[I915_MAX_PIPES];
  8882. struct intel_pipe_error_state {
  8883. u32 source;
  8884. } pipe[I915_MAX_PIPES];
  8885. struct intel_plane_error_state {
  8886. u32 control;
  8887. u32 stride;
  8888. u32 size;
  8889. u32 pos;
  8890. u32 addr;
  8891. u32 surface;
  8892. u32 tile_offset;
  8893. } plane[I915_MAX_PIPES];
  8894. struct intel_transcoder_error_state {
  8895. enum transcoder cpu_transcoder;
  8896. u32 conf;
  8897. u32 htotal;
  8898. u32 hblank;
  8899. u32 hsync;
  8900. u32 vtotal;
  8901. u32 vblank;
  8902. u32 vsync;
  8903. } transcoder[4];
  8904. };
  8905. struct intel_display_error_state *
  8906. intel_display_capture_error_state(struct drm_device *dev)
  8907. {
  8908. drm_i915_private_t *dev_priv = dev->dev_private;
  8909. struct intel_display_error_state *error;
  8910. int transcoders[] = {
  8911. TRANSCODER_A,
  8912. TRANSCODER_B,
  8913. TRANSCODER_C,
  8914. TRANSCODER_EDP,
  8915. };
  8916. int i;
  8917. if (INTEL_INFO(dev)->num_pipes == 0)
  8918. return NULL;
  8919. error = kmalloc(sizeof(*error), GFP_ATOMIC);
  8920. if (error == NULL)
  8921. return NULL;
  8922. if (HAS_POWER_WELL(dev))
  8923. error->power_well_driver = I915_READ(HSW_PWR_WELL_DRIVER);
  8924. for_each_pipe(i) {
  8925. if (INTEL_INFO(dev)->gen <= 6 || IS_VALLEYVIEW(dev)) {
  8926. error->cursor[i].control = I915_READ(CURCNTR(i));
  8927. error->cursor[i].position = I915_READ(CURPOS(i));
  8928. error->cursor[i].base = I915_READ(CURBASE(i));
  8929. } else {
  8930. error->cursor[i].control = I915_READ(CURCNTR_IVB(i));
  8931. error->cursor[i].position = I915_READ(CURPOS_IVB(i));
  8932. error->cursor[i].base = I915_READ(CURBASE_IVB(i));
  8933. }
  8934. error->plane[i].control = I915_READ(DSPCNTR(i));
  8935. error->plane[i].stride = I915_READ(DSPSTRIDE(i));
  8936. if (INTEL_INFO(dev)->gen <= 3) {
  8937. error->plane[i].size = I915_READ(DSPSIZE(i));
  8938. error->plane[i].pos = I915_READ(DSPPOS(i));
  8939. }
  8940. if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
  8941. error->plane[i].addr = I915_READ(DSPADDR(i));
  8942. if (INTEL_INFO(dev)->gen >= 4) {
  8943. error->plane[i].surface = I915_READ(DSPSURF(i));
  8944. error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
  8945. }
  8946. error->pipe[i].source = I915_READ(PIPESRC(i));
  8947. }
  8948. error->num_transcoders = INTEL_INFO(dev)->num_pipes;
  8949. if (HAS_DDI(dev_priv->dev))
  8950. error->num_transcoders++; /* Account for eDP. */
  8951. for (i = 0; i < error->num_transcoders; i++) {
  8952. enum transcoder cpu_transcoder = transcoders[i];
  8953. error->transcoder[i].cpu_transcoder = cpu_transcoder;
  8954. error->transcoder[i].conf = I915_READ(PIPECONF(cpu_transcoder));
  8955. error->transcoder[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
  8956. error->transcoder[i].hblank = I915_READ(HBLANK(cpu_transcoder));
  8957. error->transcoder[i].hsync = I915_READ(HSYNC(cpu_transcoder));
  8958. error->transcoder[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
  8959. error->transcoder[i].vblank = I915_READ(VBLANK(cpu_transcoder));
  8960. error->transcoder[i].vsync = I915_READ(VSYNC(cpu_transcoder));
  8961. }
  8962. /* In the code above we read the registers without checking if the power
  8963. * well was on, so here we have to clear the FPGA_DBG_RM_NOCLAIM bit to
  8964. * prevent the next I915_WRITE from detecting it and printing an error
  8965. * message. */
  8966. intel_uncore_clear_errors(dev);
  8967. return error;
  8968. }
  8969. #define err_printf(e, ...) i915_error_printf(e, __VA_ARGS__)
  8970. void
  8971. intel_display_print_error_state(struct drm_i915_error_state_buf *m,
  8972. struct drm_device *dev,
  8973. struct intel_display_error_state *error)
  8974. {
  8975. int i;
  8976. if (!error)
  8977. return;
  8978. err_printf(m, "Num Pipes: %d\n", INTEL_INFO(dev)->num_pipes);
  8979. if (HAS_POWER_WELL(dev))
  8980. err_printf(m, "PWR_WELL_CTL2: %08x\n",
  8981. error->power_well_driver);
  8982. for_each_pipe(i) {
  8983. err_printf(m, "Pipe [%d]:\n", i);
  8984. err_printf(m, " SRC: %08x\n", error->pipe[i].source);
  8985. err_printf(m, "Plane [%d]:\n", i);
  8986. err_printf(m, " CNTR: %08x\n", error->plane[i].control);
  8987. err_printf(m, " STRIDE: %08x\n", error->plane[i].stride);
  8988. if (INTEL_INFO(dev)->gen <= 3) {
  8989. err_printf(m, " SIZE: %08x\n", error->plane[i].size);
  8990. err_printf(m, " POS: %08x\n", error->plane[i].pos);
  8991. }
  8992. if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
  8993. err_printf(m, " ADDR: %08x\n", error->plane[i].addr);
  8994. if (INTEL_INFO(dev)->gen >= 4) {
  8995. err_printf(m, " SURF: %08x\n", error->plane[i].surface);
  8996. err_printf(m, " TILEOFF: %08x\n", error->plane[i].tile_offset);
  8997. }
  8998. err_printf(m, "Cursor [%d]:\n", i);
  8999. err_printf(m, " CNTR: %08x\n", error->cursor[i].control);
  9000. err_printf(m, " POS: %08x\n", error->cursor[i].position);
  9001. err_printf(m, " BASE: %08x\n", error->cursor[i].base);
  9002. }
  9003. for (i = 0; i < error->num_transcoders; i++) {
  9004. err_printf(m, " CPU transcoder: %c\n",
  9005. transcoder_name(error->transcoder[i].cpu_transcoder));
  9006. err_printf(m, " CONF: %08x\n", error->transcoder[i].conf);
  9007. err_printf(m, " HTOTAL: %08x\n", error->transcoder[i].htotal);
  9008. err_printf(m, " HBLANK: %08x\n", error->transcoder[i].hblank);
  9009. err_printf(m, " HSYNC: %08x\n", error->transcoder[i].hsync);
  9010. err_printf(m, " VTOTAL: %08x\n", error->transcoder[i].vtotal);
  9011. err_printf(m, " VBLANK: %08x\n", error->transcoder[i].vblank);
  9012. err_printf(m, " VSYNC: %08x\n", error->transcoder[i].vsync);
  9013. }
  9014. }