vmem.c 8.2 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381
  1. /*
  2. * arch/s390/mm/vmem.c
  3. *
  4. * Copyright IBM Corp. 2006
  5. * Author(s): Heiko Carstens <heiko.carstens@de.ibm.com>
  6. */
  7. #include <linux/bootmem.h>
  8. #include <linux/pfn.h>
  9. #include <linux/mm.h>
  10. #include <linux/module.h>
  11. #include <linux/list.h>
  12. #include <asm/pgalloc.h>
  13. #include <asm/pgtable.h>
  14. #include <asm/setup.h>
  15. #include <asm/tlbflush.h>
  16. unsigned long vmalloc_end;
  17. EXPORT_SYMBOL(vmalloc_end);
  18. static struct page *vmem_map;
  19. static DEFINE_MUTEX(vmem_mutex);
  20. struct memory_segment {
  21. struct list_head list;
  22. unsigned long start;
  23. unsigned long size;
  24. };
  25. static LIST_HEAD(mem_segs);
  26. void memmap_init(unsigned long size, int nid, unsigned long zone,
  27. unsigned long start_pfn)
  28. {
  29. struct page *start, *end;
  30. struct page *map_start, *map_end;
  31. int i;
  32. start = pfn_to_page(start_pfn);
  33. end = start + size;
  34. for (i = 0; i < MEMORY_CHUNKS && memory_chunk[i].size > 0; i++) {
  35. unsigned long cstart, cend;
  36. cstart = PFN_DOWN(memory_chunk[i].addr);
  37. cend = cstart + PFN_DOWN(memory_chunk[i].size);
  38. map_start = mem_map + cstart;
  39. map_end = mem_map + cend;
  40. if (map_start < start)
  41. map_start = start;
  42. if (map_end > end)
  43. map_end = end;
  44. map_start -= ((unsigned long) map_start & (PAGE_SIZE - 1))
  45. / sizeof(struct page);
  46. map_end += ((PFN_ALIGN((unsigned long) map_end)
  47. - (unsigned long) map_end)
  48. / sizeof(struct page));
  49. if (map_start < map_end)
  50. memmap_init_zone((unsigned long)(map_end - map_start),
  51. nid, zone, page_to_pfn(map_start));
  52. }
  53. }
  54. static inline void *vmem_alloc_pages(unsigned int order)
  55. {
  56. if (slab_is_available())
  57. return (void *)__get_free_pages(GFP_KERNEL, order);
  58. return alloc_bootmem_pages((1 << order) * PAGE_SIZE);
  59. }
  60. static inline pmd_t *vmem_pmd_alloc(void)
  61. {
  62. pmd_t *pmd;
  63. int i;
  64. pmd = vmem_alloc_pages(PMD_ALLOC_ORDER);
  65. if (!pmd)
  66. return NULL;
  67. for (i = 0; i < PTRS_PER_PMD; i++)
  68. pmd_clear(pmd + i);
  69. return pmd;
  70. }
  71. static inline pte_t *vmem_pte_alloc(void)
  72. {
  73. pte_t *pte;
  74. pte_t empty_pte;
  75. int i;
  76. pte = vmem_alloc_pages(PTE_ALLOC_ORDER);
  77. if (!pte)
  78. return NULL;
  79. pte_val(empty_pte) = _PAGE_TYPE_EMPTY;
  80. for (i = 0; i < PTRS_PER_PTE; i++)
  81. set_pte(pte + i, empty_pte);
  82. return pte;
  83. }
  84. /*
  85. * Add a physical memory range to the 1:1 mapping.
  86. */
  87. static int vmem_add_range(unsigned long start, unsigned long size)
  88. {
  89. unsigned long address;
  90. pgd_t *pg_dir;
  91. pmd_t *pm_dir;
  92. pte_t *pt_dir;
  93. pte_t pte;
  94. int ret = -ENOMEM;
  95. for (address = start; address < start + size; address += PAGE_SIZE) {
  96. pg_dir = pgd_offset_k(address);
  97. if (pgd_none(*pg_dir)) {
  98. pm_dir = vmem_pmd_alloc();
  99. if (!pm_dir)
  100. goto out;
  101. pgd_populate(&init_mm, pg_dir, pm_dir);
  102. }
  103. pm_dir = pmd_offset(pg_dir, address);
  104. if (pmd_none(*pm_dir)) {
  105. pt_dir = vmem_pte_alloc();
  106. if (!pt_dir)
  107. goto out;
  108. pmd_populate_kernel(&init_mm, pm_dir, pt_dir);
  109. }
  110. pt_dir = pte_offset_kernel(pm_dir, address);
  111. pte = pfn_pte(address >> PAGE_SHIFT, PAGE_KERNEL);
  112. set_pte(pt_dir, pte);
  113. }
  114. ret = 0;
  115. out:
  116. flush_tlb_kernel_range(start, start + size);
  117. return ret;
  118. }
  119. /*
  120. * Remove a physical memory range from the 1:1 mapping.
  121. * Currently only invalidates page table entries.
  122. */
  123. static void vmem_remove_range(unsigned long start, unsigned long size)
  124. {
  125. unsigned long address;
  126. pgd_t *pg_dir;
  127. pmd_t *pm_dir;
  128. pte_t *pt_dir;
  129. pte_t pte;
  130. pte_val(pte) = _PAGE_TYPE_EMPTY;
  131. for (address = start; address < start + size; address += PAGE_SIZE) {
  132. pg_dir = pgd_offset_k(address);
  133. if (pgd_none(*pg_dir))
  134. continue;
  135. pm_dir = pmd_offset(pg_dir, address);
  136. if (pmd_none(*pm_dir))
  137. continue;
  138. pt_dir = pte_offset_kernel(pm_dir, address);
  139. set_pte(pt_dir, pte);
  140. }
  141. flush_tlb_kernel_range(start, start + size);
  142. }
  143. /*
  144. * Add a backed mem_map array to the virtual mem_map array.
  145. */
  146. static int vmem_add_mem_map(unsigned long start, unsigned long size)
  147. {
  148. unsigned long address, start_addr, end_addr;
  149. struct page *map_start, *map_end;
  150. pgd_t *pg_dir;
  151. pmd_t *pm_dir;
  152. pte_t *pt_dir;
  153. pte_t pte;
  154. int ret = -ENOMEM;
  155. map_start = vmem_map + PFN_DOWN(start);
  156. map_end = vmem_map + PFN_DOWN(start + size);
  157. start_addr = (unsigned long) map_start & PAGE_MASK;
  158. end_addr = PFN_ALIGN((unsigned long) map_end);
  159. for (address = start_addr; address < end_addr; address += PAGE_SIZE) {
  160. pg_dir = pgd_offset_k(address);
  161. if (pgd_none(*pg_dir)) {
  162. pm_dir = vmem_pmd_alloc();
  163. if (!pm_dir)
  164. goto out;
  165. pgd_populate(&init_mm, pg_dir, pm_dir);
  166. }
  167. pm_dir = pmd_offset(pg_dir, address);
  168. if (pmd_none(*pm_dir)) {
  169. pt_dir = vmem_pte_alloc();
  170. if (!pt_dir)
  171. goto out;
  172. pmd_populate_kernel(&init_mm, pm_dir, pt_dir);
  173. }
  174. pt_dir = pte_offset_kernel(pm_dir, address);
  175. if (pte_none(*pt_dir)) {
  176. unsigned long new_page;
  177. new_page =__pa(vmem_alloc_pages(0));
  178. if (!new_page)
  179. goto out;
  180. pte = pfn_pte(new_page >> PAGE_SHIFT, PAGE_KERNEL);
  181. set_pte(pt_dir, pte);
  182. }
  183. }
  184. ret = 0;
  185. out:
  186. flush_tlb_kernel_range(start_addr, end_addr);
  187. return ret;
  188. }
  189. static int vmem_add_mem(unsigned long start, unsigned long size)
  190. {
  191. int ret;
  192. ret = vmem_add_range(start, size);
  193. if (ret)
  194. return ret;
  195. return vmem_add_mem_map(start, size);
  196. }
  197. /*
  198. * Add memory segment to the segment list if it doesn't overlap with
  199. * an already present segment.
  200. */
  201. static int insert_memory_segment(struct memory_segment *seg)
  202. {
  203. struct memory_segment *tmp;
  204. if (PFN_DOWN(seg->start + seg->size) > max_pfn ||
  205. seg->start + seg->size < seg->start)
  206. return -ERANGE;
  207. list_for_each_entry(tmp, &mem_segs, list) {
  208. if (seg->start >= tmp->start + tmp->size)
  209. continue;
  210. if (seg->start + seg->size <= tmp->start)
  211. continue;
  212. return -ENOSPC;
  213. }
  214. list_add(&seg->list, &mem_segs);
  215. return 0;
  216. }
  217. /*
  218. * Remove memory segment from the segment list.
  219. */
  220. static void remove_memory_segment(struct memory_segment *seg)
  221. {
  222. list_del(&seg->list);
  223. }
  224. static void __remove_shared_memory(struct memory_segment *seg)
  225. {
  226. remove_memory_segment(seg);
  227. vmem_remove_range(seg->start, seg->size);
  228. }
  229. int remove_shared_memory(unsigned long start, unsigned long size)
  230. {
  231. struct memory_segment *seg;
  232. int ret;
  233. mutex_lock(&vmem_mutex);
  234. ret = -ENOENT;
  235. list_for_each_entry(seg, &mem_segs, list) {
  236. if (seg->start == start && seg->size == size)
  237. break;
  238. }
  239. if (seg->start != start || seg->size != size)
  240. goto out;
  241. ret = 0;
  242. __remove_shared_memory(seg);
  243. kfree(seg);
  244. out:
  245. mutex_unlock(&vmem_mutex);
  246. return ret;
  247. }
  248. int add_shared_memory(unsigned long start, unsigned long size)
  249. {
  250. struct memory_segment *seg;
  251. struct page *page;
  252. unsigned long pfn, num_pfn, end_pfn;
  253. int ret;
  254. mutex_lock(&vmem_mutex);
  255. ret = -ENOMEM;
  256. seg = kzalloc(sizeof(*seg), GFP_KERNEL);
  257. if (!seg)
  258. goto out;
  259. seg->start = start;
  260. seg->size = size;
  261. ret = insert_memory_segment(seg);
  262. if (ret)
  263. goto out_free;
  264. ret = vmem_add_mem(start, size);
  265. if (ret)
  266. goto out_remove;
  267. pfn = PFN_DOWN(start);
  268. num_pfn = PFN_DOWN(size);
  269. end_pfn = pfn + num_pfn;
  270. page = pfn_to_page(pfn);
  271. memset(page, 0, num_pfn * sizeof(struct page));
  272. for (; pfn < end_pfn; pfn++) {
  273. page = pfn_to_page(pfn);
  274. init_page_count(page);
  275. reset_page_mapcount(page);
  276. SetPageReserved(page);
  277. INIT_LIST_HEAD(&page->lru);
  278. }
  279. goto out;
  280. out_remove:
  281. __remove_shared_memory(seg);
  282. out_free:
  283. kfree(seg);
  284. out:
  285. mutex_unlock(&vmem_mutex);
  286. return ret;
  287. }
  288. /*
  289. * map whole physical memory to virtual memory (identity mapping)
  290. */
  291. void __init vmem_map_init(void)
  292. {
  293. unsigned long map_size;
  294. int i;
  295. map_size = ALIGN(max_low_pfn, MAX_ORDER_NR_PAGES) * sizeof(struct page);
  296. vmalloc_end = PFN_ALIGN(VMALLOC_END_INIT) - PFN_ALIGN(map_size);
  297. vmem_map = (struct page *) vmalloc_end;
  298. NODE_DATA(0)->node_mem_map = vmem_map;
  299. for (i = 0; i < MEMORY_CHUNKS && memory_chunk[i].size > 0; i++)
  300. vmem_add_mem(memory_chunk[i].addr, memory_chunk[i].size);
  301. }
  302. /*
  303. * Convert memory chunk array to a memory segment list so there is a single
  304. * list that contains both r/w memory and shared memory segments.
  305. */
  306. static int __init vmem_convert_memory_chunk(void)
  307. {
  308. struct memory_segment *seg;
  309. int i;
  310. mutex_lock(&vmem_mutex);
  311. for (i = 0; i < MEMORY_CHUNKS && memory_chunk[i].size > 0; i++) {
  312. if (!memory_chunk[i].size)
  313. continue;
  314. seg = kzalloc(sizeof(*seg), GFP_KERNEL);
  315. if (!seg)
  316. panic("Out of memory...\n");
  317. seg->start = memory_chunk[i].addr;
  318. seg->size = memory_chunk[i].size;
  319. insert_memory_segment(seg);
  320. }
  321. mutex_unlock(&vmem_mutex);
  322. return 0;
  323. }
  324. core_initcall(vmem_convert_memory_chunk);