atl1c_hw.c 24 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882
  1. /*
  2. * Copyright(c) 2007 Atheros Corporation. All rights reserved.
  3. *
  4. * Derived from Intel e1000 driver
  5. * Copyright(c) 1999 - 2005 Intel Corporation. All rights reserved.
  6. *
  7. * This program is free software; you can redistribute it and/or modify it
  8. * under the terms of the GNU General Public License as published by the Free
  9. * Software Foundation; either version 2 of the License, or (at your option)
  10. * any later version.
  11. *
  12. * This program is distributed in the hope that it will be useful, but WITHOUT
  13. * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  14. * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
  15. * more details.
  16. *
  17. * You should have received a copy of the GNU General Public License along with
  18. * this program; if not, write to the Free Software Foundation, Inc., 59
  19. * Temple Place - Suite 330, Boston, MA 02111-1307, USA.
  20. */
  21. #include <linux/pci.h>
  22. #include <linux/delay.h>
  23. #include <linux/mii.h>
  24. #include <linux/crc32.h>
  25. #include "atl1c.h"
  26. /*
  27. * check_eeprom_exist
  28. * return 1 if eeprom exist
  29. */
  30. int atl1c_check_eeprom_exist(struct atl1c_hw *hw)
  31. {
  32. u32 data;
  33. AT_READ_REG(hw, REG_TWSI_DEBUG, &data);
  34. if (data & TWSI_DEBUG_DEV_EXIST)
  35. return 1;
  36. AT_READ_REG(hw, REG_MASTER_CTRL, &data);
  37. if (data & MASTER_CTRL_OTP_SEL)
  38. return 1;
  39. return 0;
  40. }
  41. void atl1c_hw_set_mac_addr(struct atl1c_hw *hw)
  42. {
  43. u32 value;
  44. /*
  45. * 00-0B-6A-F6-00-DC
  46. * 0: 6AF600DC 1: 000B
  47. * low dword
  48. */
  49. value = (((u32)hw->mac_addr[2]) << 24) |
  50. (((u32)hw->mac_addr[3]) << 16) |
  51. (((u32)hw->mac_addr[4]) << 8) |
  52. (((u32)hw->mac_addr[5])) ;
  53. AT_WRITE_REG_ARRAY(hw, REG_MAC_STA_ADDR, 0, value);
  54. /* hight dword */
  55. value = (((u32)hw->mac_addr[0]) << 8) |
  56. (((u32)hw->mac_addr[1])) ;
  57. AT_WRITE_REG_ARRAY(hw, REG_MAC_STA_ADDR, 1, value);
  58. }
  59. /*
  60. * atl1c_get_permanent_address
  61. * return 0 if get valid mac address,
  62. */
  63. static int atl1c_get_permanent_address(struct atl1c_hw *hw)
  64. {
  65. u32 addr[2];
  66. u32 i;
  67. u32 otp_ctrl_data;
  68. u32 twsi_ctrl_data;
  69. u32 ltssm_ctrl_data;
  70. u8 eth_addr[ETH_ALEN];
  71. u16 phy_data;
  72. bool raise_vol = false;
  73. /* init */
  74. addr[0] = addr[1] = 0;
  75. AT_READ_REG(hw, REG_OTP_CTRL, &otp_ctrl_data);
  76. if (atl1c_check_eeprom_exist(hw)) {
  77. if (hw->nic_type == athr_l1c || hw->nic_type == athr_l2c) {
  78. /* Enable OTP CLK */
  79. if (!(otp_ctrl_data & OTP_CTRL_CLK_EN)) {
  80. otp_ctrl_data |= OTP_CTRL_CLK_EN;
  81. AT_WRITE_REG(hw, REG_OTP_CTRL, otp_ctrl_data);
  82. AT_WRITE_FLUSH(hw);
  83. msleep(1);
  84. }
  85. }
  86. if (hw->nic_type == athr_l2c_b ||
  87. hw->nic_type == athr_l2c_b2 ||
  88. hw->nic_type == athr_l1d) {
  89. atl1c_write_phy_reg(hw, MII_DBG_ADDR, 0x00);
  90. if (atl1c_read_phy_reg(hw, MII_DBG_DATA, &phy_data))
  91. goto out;
  92. phy_data &= 0xFF7F;
  93. atl1c_write_phy_reg(hw, MII_DBG_DATA, phy_data);
  94. atl1c_write_phy_reg(hw, MII_DBG_ADDR, 0x3B);
  95. if (atl1c_read_phy_reg(hw, MII_DBG_DATA, &phy_data))
  96. goto out;
  97. phy_data |= 0x8;
  98. atl1c_write_phy_reg(hw, MII_DBG_DATA, phy_data);
  99. udelay(20);
  100. raise_vol = true;
  101. }
  102. /* close open bit of ReadOnly*/
  103. AT_READ_REG(hw, REG_LTSSM_ID_CTRL, &ltssm_ctrl_data);
  104. ltssm_ctrl_data &= ~LTSSM_ID_EN_WRO;
  105. AT_WRITE_REG(hw, REG_LTSSM_ID_CTRL, ltssm_ctrl_data);
  106. AT_READ_REG(hw, REG_TWSI_CTRL, &twsi_ctrl_data);
  107. twsi_ctrl_data |= TWSI_CTRL_SW_LDSTART;
  108. AT_WRITE_REG(hw, REG_TWSI_CTRL, twsi_ctrl_data);
  109. for (i = 0; i < AT_TWSI_EEPROM_TIMEOUT; i++) {
  110. msleep(10);
  111. AT_READ_REG(hw, REG_TWSI_CTRL, &twsi_ctrl_data);
  112. if ((twsi_ctrl_data & TWSI_CTRL_SW_LDSTART) == 0)
  113. break;
  114. }
  115. if (i >= AT_TWSI_EEPROM_TIMEOUT)
  116. return -1;
  117. }
  118. /* Disable OTP_CLK */
  119. if ((hw->nic_type == athr_l1c || hw->nic_type == athr_l2c)) {
  120. otp_ctrl_data &= ~OTP_CTRL_CLK_EN;
  121. AT_WRITE_REG(hw, REG_OTP_CTRL, otp_ctrl_data);
  122. msleep(1);
  123. }
  124. if (raise_vol) {
  125. if (hw->nic_type == athr_l2c_b ||
  126. hw->nic_type == athr_l2c_b2 ||
  127. hw->nic_type == athr_l1d ||
  128. hw->nic_type == athr_l1d_2) {
  129. atl1c_write_phy_reg(hw, MII_DBG_ADDR, 0x00);
  130. if (atl1c_read_phy_reg(hw, MII_DBG_DATA, &phy_data))
  131. goto out;
  132. phy_data |= 0x80;
  133. atl1c_write_phy_reg(hw, MII_DBG_DATA, phy_data);
  134. atl1c_write_phy_reg(hw, MII_DBG_ADDR, 0x3B);
  135. if (atl1c_read_phy_reg(hw, MII_DBG_DATA, &phy_data))
  136. goto out;
  137. phy_data &= 0xFFF7;
  138. atl1c_write_phy_reg(hw, MII_DBG_DATA, phy_data);
  139. udelay(20);
  140. }
  141. }
  142. /* maybe MAC-address is from BIOS */
  143. AT_READ_REG(hw, REG_MAC_STA_ADDR, &addr[0]);
  144. AT_READ_REG(hw, REG_MAC_STA_ADDR + 4, &addr[1]);
  145. *(u32 *) &eth_addr[2] = swab32(addr[0]);
  146. *(u16 *) &eth_addr[0] = swab16(*(u16 *)&addr[1]);
  147. if (is_valid_ether_addr(eth_addr)) {
  148. memcpy(hw->perm_mac_addr, eth_addr, ETH_ALEN);
  149. return 0;
  150. }
  151. out:
  152. return -1;
  153. }
  154. bool atl1c_read_eeprom(struct atl1c_hw *hw, u32 offset, u32 *p_value)
  155. {
  156. int i;
  157. int ret = false;
  158. u32 otp_ctrl_data;
  159. u32 control;
  160. u32 data;
  161. if (offset & 3)
  162. return ret; /* address do not align */
  163. AT_READ_REG(hw, REG_OTP_CTRL, &otp_ctrl_data);
  164. if (!(otp_ctrl_data & OTP_CTRL_CLK_EN))
  165. AT_WRITE_REG(hw, REG_OTP_CTRL,
  166. (otp_ctrl_data | OTP_CTRL_CLK_EN));
  167. AT_WRITE_REG(hw, REG_EEPROM_DATA_LO, 0);
  168. control = (offset & EEPROM_CTRL_ADDR_MASK) << EEPROM_CTRL_ADDR_SHIFT;
  169. AT_WRITE_REG(hw, REG_EEPROM_CTRL, control);
  170. for (i = 0; i < 10; i++) {
  171. udelay(100);
  172. AT_READ_REG(hw, REG_EEPROM_CTRL, &control);
  173. if (control & EEPROM_CTRL_RW)
  174. break;
  175. }
  176. if (control & EEPROM_CTRL_RW) {
  177. AT_READ_REG(hw, REG_EEPROM_CTRL, &data);
  178. AT_READ_REG(hw, REG_EEPROM_DATA_LO, p_value);
  179. data = data & 0xFFFF;
  180. *p_value = swab32((data << 16) | (*p_value >> 16));
  181. ret = true;
  182. }
  183. if (!(otp_ctrl_data & OTP_CTRL_CLK_EN))
  184. AT_WRITE_REG(hw, REG_OTP_CTRL, otp_ctrl_data);
  185. return ret;
  186. }
  187. /*
  188. * Reads the adapter's MAC address from the EEPROM
  189. *
  190. * hw - Struct containing variables accessed by shared code
  191. */
  192. int atl1c_read_mac_addr(struct atl1c_hw *hw)
  193. {
  194. int err = 0;
  195. err = atl1c_get_permanent_address(hw);
  196. if (err)
  197. random_ether_addr(hw->perm_mac_addr);
  198. memcpy(hw->mac_addr, hw->perm_mac_addr, sizeof(hw->perm_mac_addr));
  199. return err;
  200. }
  201. /*
  202. * atl1c_hash_mc_addr
  203. * purpose
  204. * set hash value for a multicast address
  205. * hash calcu processing :
  206. * 1. calcu 32bit CRC for multicast address
  207. * 2. reverse crc with MSB to LSB
  208. */
  209. u32 atl1c_hash_mc_addr(struct atl1c_hw *hw, u8 *mc_addr)
  210. {
  211. u32 crc32;
  212. u32 value = 0;
  213. int i;
  214. crc32 = ether_crc_le(6, mc_addr);
  215. for (i = 0; i < 32; i++)
  216. value |= (((crc32 >> i) & 1) << (31 - i));
  217. return value;
  218. }
  219. /*
  220. * Sets the bit in the multicast table corresponding to the hash value.
  221. * hw - Struct containing variables accessed by shared code
  222. * hash_value - Multicast address hash value
  223. */
  224. void atl1c_hash_set(struct atl1c_hw *hw, u32 hash_value)
  225. {
  226. u32 hash_bit, hash_reg;
  227. u32 mta;
  228. /*
  229. * The HASH Table is a register array of 2 32-bit registers.
  230. * It is treated like an array of 64 bits. We want to set
  231. * bit BitArray[hash_value]. So we figure out what register
  232. * the bit is in, read it, OR in the new bit, then write
  233. * back the new value. The register is determined by the
  234. * upper bit of the hash value and the bit within that
  235. * register are determined by the lower 5 bits of the value.
  236. */
  237. hash_reg = (hash_value >> 31) & 0x1;
  238. hash_bit = (hash_value >> 26) & 0x1F;
  239. mta = AT_READ_REG_ARRAY(hw, REG_RX_HASH_TABLE, hash_reg);
  240. mta |= (1 << hash_bit);
  241. AT_WRITE_REG_ARRAY(hw, REG_RX_HASH_TABLE, hash_reg, mta);
  242. }
  243. /*
  244. * wait mdio module be idle
  245. * return true: idle
  246. * false: still busy
  247. */
  248. bool atl1c_wait_mdio_idle(struct atl1c_hw *hw)
  249. {
  250. u32 val;
  251. int i;
  252. for (i = 0; i < MDIO_MAX_AC_TO; i++) {
  253. AT_READ_REG(hw, REG_MDIO_CTRL, &val);
  254. if (!(val & (MDIO_CTRL_BUSY | MDIO_CTRL_START)))
  255. break;
  256. udelay(10);
  257. }
  258. return i != MDIO_MAX_AC_TO;
  259. }
  260. void atl1c_stop_phy_polling(struct atl1c_hw *hw)
  261. {
  262. if (!(hw->ctrl_flags & ATL1C_FPGA_VERSION))
  263. return;
  264. AT_WRITE_REG(hw, REG_MDIO_CTRL, 0);
  265. atl1c_wait_mdio_idle(hw);
  266. }
  267. void atl1c_start_phy_polling(struct atl1c_hw *hw, u16 clk_sel)
  268. {
  269. u32 val;
  270. if (!(hw->ctrl_flags & ATL1C_FPGA_VERSION))
  271. return;
  272. val = MDIO_CTRL_SPRES_PRMBL |
  273. FIELDX(MDIO_CTRL_CLK_SEL, clk_sel) |
  274. FIELDX(MDIO_CTRL_REG, 1) |
  275. MDIO_CTRL_START |
  276. MDIO_CTRL_OP_READ;
  277. AT_WRITE_REG(hw, REG_MDIO_CTRL, val);
  278. atl1c_wait_mdio_idle(hw);
  279. val |= MDIO_CTRL_AP_EN;
  280. val &= ~MDIO_CTRL_START;
  281. AT_WRITE_REG(hw, REG_MDIO_CTRL, val);
  282. udelay(30);
  283. }
  284. /*
  285. * atl1c_read_phy_core
  286. * core funtion to read register in PHY via MDIO control regsiter.
  287. * ext: extension register (see IEEE 802.3)
  288. * dev: device address (see IEEE 802.3 DEVAD, PRTAD is fixed to 0)
  289. * reg: reg to read
  290. */
  291. int atl1c_read_phy_core(struct atl1c_hw *hw, bool ext, u8 dev,
  292. u16 reg, u16 *phy_data)
  293. {
  294. u32 val;
  295. u16 clk_sel = MDIO_CTRL_CLK_25_4;
  296. atl1c_stop_phy_polling(hw);
  297. *phy_data = 0;
  298. /* only l2c_b2 & l1d_2 could use slow clock */
  299. if ((hw->nic_type == athr_l2c_b2 || hw->nic_type == athr_l1d_2) &&
  300. hw->hibernate)
  301. clk_sel = MDIO_CTRL_CLK_25_128;
  302. if (ext) {
  303. val = FIELDX(MDIO_EXTN_DEVAD, dev) | FIELDX(MDIO_EXTN_REG, reg);
  304. AT_WRITE_REG(hw, REG_MDIO_EXTN, val);
  305. val = MDIO_CTRL_SPRES_PRMBL |
  306. FIELDX(MDIO_CTRL_CLK_SEL, clk_sel) |
  307. MDIO_CTRL_START |
  308. MDIO_CTRL_MODE_EXT |
  309. MDIO_CTRL_OP_READ;
  310. } else {
  311. val = MDIO_CTRL_SPRES_PRMBL |
  312. FIELDX(MDIO_CTRL_CLK_SEL, clk_sel) |
  313. FIELDX(MDIO_CTRL_REG, reg) |
  314. MDIO_CTRL_START |
  315. MDIO_CTRL_OP_READ;
  316. }
  317. AT_WRITE_REG(hw, REG_MDIO_CTRL, val);
  318. if (!atl1c_wait_mdio_idle(hw))
  319. return -1;
  320. AT_READ_REG(hw, REG_MDIO_CTRL, &val);
  321. *phy_data = (u16)FIELD_GETX(val, MDIO_CTRL_DATA);
  322. atl1c_start_phy_polling(hw, clk_sel);
  323. return 0;
  324. }
  325. /*
  326. * atl1c_write_phy_core
  327. * core funtion to write to register in PHY via MDIO control regsiter.
  328. * ext: extension register (see IEEE 802.3)
  329. * dev: device address (see IEEE 802.3 DEVAD, PRTAD is fixed to 0)
  330. * reg: reg to write
  331. */
  332. int atl1c_write_phy_core(struct atl1c_hw *hw, bool ext, u8 dev,
  333. u16 reg, u16 phy_data)
  334. {
  335. u32 val;
  336. u16 clk_sel = MDIO_CTRL_CLK_25_4;
  337. atl1c_stop_phy_polling(hw);
  338. /* only l2c_b2 & l1d_2 could use slow clock */
  339. if ((hw->nic_type == athr_l2c_b2 || hw->nic_type == athr_l1d_2) &&
  340. hw->hibernate)
  341. clk_sel = MDIO_CTRL_CLK_25_128;
  342. if (ext) {
  343. val = FIELDX(MDIO_EXTN_DEVAD, dev) | FIELDX(MDIO_EXTN_REG, reg);
  344. AT_WRITE_REG(hw, REG_MDIO_EXTN, val);
  345. val = MDIO_CTRL_SPRES_PRMBL |
  346. FIELDX(MDIO_CTRL_CLK_SEL, clk_sel) |
  347. FIELDX(MDIO_CTRL_DATA, phy_data) |
  348. MDIO_CTRL_START |
  349. MDIO_CTRL_MODE_EXT;
  350. } else {
  351. val = MDIO_CTRL_SPRES_PRMBL |
  352. FIELDX(MDIO_CTRL_CLK_SEL, clk_sel) |
  353. FIELDX(MDIO_CTRL_DATA, phy_data) |
  354. FIELDX(MDIO_CTRL_REG, reg) |
  355. MDIO_CTRL_START;
  356. }
  357. AT_WRITE_REG(hw, REG_MDIO_CTRL, val);
  358. if (!atl1c_wait_mdio_idle(hw))
  359. return -1;
  360. atl1c_start_phy_polling(hw, clk_sel);
  361. return 0;
  362. }
  363. /*
  364. * Reads the value from a PHY register
  365. * hw - Struct containing variables accessed by shared code
  366. * reg_addr - address of the PHY register to read
  367. */
  368. int atl1c_read_phy_reg(struct atl1c_hw *hw, u16 reg_addr, u16 *phy_data)
  369. {
  370. return atl1c_read_phy_core(hw, false, 0, reg_addr, phy_data);
  371. }
  372. /*
  373. * Writes a value to a PHY register
  374. * hw - Struct containing variables accessed by shared code
  375. * reg_addr - address of the PHY register to write
  376. * data - data to write to the PHY
  377. */
  378. int atl1c_write_phy_reg(struct atl1c_hw *hw, u32 reg_addr, u16 phy_data)
  379. {
  380. return atl1c_write_phy_core(hw, false, 0, reg_addr, phy_data);
  381. }
  382. /* read from PHY extension register */
  383. int atl1c_read_phy_ext(struct atl1c_hw *hw, u8 dev_addr,
  384. u16 reg_addr, u16 *phy_data)
  385. {
  386. return atl1c_read_phy_core(hw, true, dev_addr, reg_addr, phy_data);
  387. }
  388. /* write to PHY extension register */
  389. int atl1c_write_phy_ext(struct atl1c_hw *hw, u8 dev_addr,
  390. u16 reg_addr, u16 phy_data)
  391. {
  392. return atl1c_write_phy_core(hw, true, dev_addr, reg_addr, phy_data);
  393. }
  394. int atl1c_read_phy_dbg(struct atl1c_hw *hw, u16 reg_addr, u16 *phy_data)
  395. {
  396. int err;
  397. err = atl1c_write_phy_reg(hw, MII_DBG_ADDR, reg_addr);
  398. if (unlikely(err))
  399. return err;
  400. else
  401. err = atl1c_read_phy_reg(hw, MII_DBG_DATA, phy_data);
  402. return err;
  403. }
  404. int atl1c_write_phy_dbg(struct atl1c_hw *hw, u16 reg_addr, u16 phy_data)
  405. {
  406. int err;
  407. err = atl1c_write_phy_reg(hw, MII_DBG_ADDR, reg_addr);
  408. if (unlikely(err))
  409. return err;
  410. else
  411. err = atl1c_write_phy_reg(hw, MII_DBG_DATA, phy_data);
  412. return err;
  413. }
  414. /*
  415. * Configures PHY autoneg and flow control advertisement settings
  416. *
  417. * hw - Struct containing variables accessed by shared code
  418. */
  419. static int atl1c_phy_setup_adv(struct atl1c_hw *hw)
  420. {
  421. u16 mii_adv_data = ADVERTISE_DEFAULT_CAP & ~ADVERTISE_ALL;
  422. u16 mii_giga_ctrl_data = GIGA_CR_1000T_DEFAULT_CAP &
  423. ~GIGA_CR_1000T_SPEED_MASK;
  424. if (hw->autoneg_advertised & ADVERTISED_10baseT_Half)
  425. mii_adv_data |= ADVERTISE_10HALF;
  426. if (hw->autoneg_advertised & ADVERTISED_10baseT_Full)
  427. mii_adv_data |= ADVERTISE_10FULL;
  428. if (hw->autoneg_advertised & ADVERTISED_100baseT_Half)
  429. mii_adv_data |= ADVERTISE_100HALF;
  430. if (hw->autoneg_advertised & ADVERTISED_100baseT_Full)
  431. mii_adv_data |= ADVERTISE_100FULL;
  432. if (hw->autoneg_advertised & ADVERTISED_Autoneg)
  433. mii_adv_data |= ADVERTISE_10HALF | ADVERTISE_10FULL |
  434. ADVERTISE_100HALF | ADVERTISE_100FULL;
  435. if (hw->link_cap_flags & ATL1C_LINK_CAP_1000M) {
  436. if (hw->autoneg_advertised & ADVERTISED_1000baseT_Half)
  437. mii_giga_ctrl_data |= ADVERTISE_1000HALF;
  438. if (hw->autoneg_advertised & ADVERTISED_1000baseT_Full)
  439. mii_giga_ctrl_data |= ADVERTISE_1000FULL;
  440. if (hw->autoneg_advertised & ADVERTISED_Autoneg)
  441. mii_giga_ctrl_data |= ADVERTISE_1000HALF |
  442. ADVERTISE_1000FULL;
  443. }
  444. if (atl1c_write_phy_reg(hw, MII_ADVERTISE, mii_adv_data) != 0 ||
  445. atl1c_write_phy_reg(hw, MII_CTRL1000, mii_giga_ctrl_data) != 0)
  446. return -1;
  447. return 0;
  448. }
  449. void atl1c_phy_disable(struct atl1c_hw *hw)
  450. {
  451. atl1c_power_saving(hw, 0);
  452. }
  453. int atl1c_phy_reset(struct atl1c_hw *hw)
  454. {
  455. struct atl1c_adapter *adapter = hw->adapter;
  456. struct pci_dev *pdev = adapter->pdev;
  457. u16 phy_data;
  458. u32 phy_ctrl_data, lpi_ctrl;
  459. int err;
  460. /* reset PHY core */
  461. AT_READ_REG(hw, REG_GPHY_CTRL, &phy_ctrl_data);
  462. phy_ctrl_data &= ~(GPHY_CTRL_EXT_RESET | GPHY_CTRL_PHY_IDDQ |
  463. GPHY_CTRL_GATE_25M_EN | GPHY_CTRL_PWDOWN_HW | GPHY_CTRL_CLS);
  464. phy_ctrl_data |= GPHY_CTRL_SEL_ANA_RST;
  465. if (!(hw->ctrl_flags & ATL1C_HIB_DISABLE))
  466. phy_ctrl_data |= (GPHY_CTRL_HIB_EN | GPHY_CTRL_HIB_PULSE);
  467. else
  468. phy_ctrl_data &= ~(GPHY_CTRL_HIB_EN | GPHY_CTRL_HIB_PULSE);
  469. AT_WRITE_REG(hw, REG_GPHY_CTRL, phy_ctrl_data);
  470. AT_WRITE_FLUSH(hw);
  471. udelay(10);
  472. AT_WRITE_REG(hw, REG_GPHY_CTRL, phy_ctrl_data | GPHY_CTRL_EXT_RESET);
  473. AT_WRITE_FLUSH(hw);
  474. udelay(10 * GPHY_CTRL_EXT_RST_TO); /* delay 800us */
  475. /* switch clock */
  476. if (hw->nic_type == athr_l2c_b) {
  477. atl1c_read_phy_dbg(hw, MIIDBG_CFGLPSPD, &phy_data);
  478. atl1c_write_phy_dbg(hw, MIIDBG_CFGLPSPD,
  479. phy_data & ~CFGLPSPD_RSTCNT_CLK125SW);
  480. }
  481. /* tx-half amplitude issue fix */
  482. if (hw->nic_type == athr_l2c_b || hw->nic_type == athr_l2c_b2) {
  483. atl1c_read_phy_dbg(hw, MIIDBG_CABLE1TH_DET, &phy_data);
  484. phy_data |= CABLE1TH_DET_EN;
  485. atl1c_write_phy_dbg(hw, MIIDBG_CABLE1TH_DET, phy_data);
  486. }
  487. /* clear bit3 of dbgport 3B to lower voltage */
  488. if (!(hw->ctrl_flags & ATL1C_HIB_DISABLE)) {
  489. if (hw->nic_type == athr_l2c_b || hw->nic_type == athr_l2c_b2) {
  490. atl1c_read_phy_dbg(hw, MIIDBG_VOLT_CTRL, &phy_data);
  491. phy_data &= ~VOLT_CTRL_SWLOWEST;
  492. atl1c_write_phy_dbg(hw, MIIDBG_VOLT_CTRL, phy_data);
  493. }
  494. /* power saving config */
  495. phy_data =
  496. hw->nic_type == athr_l1d || hw->nic_type == athr_l1d_2 ?
  497. L1D_LEGCYPS_DEF : L1C_LEGCYPS_DEF;
  498. atl1c_write_phy_dbg(hw, MIIDBG_LEGCYPS, phy_data);
  499. /* hib */
  500. atl1c_write_phy_dbg(hw, MIIDBG_SYSMODCTRL,
  501. SYSMODCTRL_IECHOADJ_DEF);
  502. } else {
  503. /* disable pws */
  504. atl1c_read_phy_dbg(hw, MIIDBG_LEGCYPS, &phy_data);
  505. atl1c_write_phy_dbg(hw, MIIDBG_LEGCYPS,
  506. phy_data & ~LEGCYPS_EN);
  507. /* disable hibernate */
  508. atl1c_read_phy_dbg(hw, MIIDBG_HIBNEG, &phy_data);
  509. atl1c_write_phy_dbg(hw, MIIDBG_HIBNEG,
  510. phy_data & HIBNEG_PSHIB_EN);
  511. }
  512. /* disable AZ(EEE) by default */
  513. if (hw->nic_type == athr_l1d || hw->nic_type == athr_l1d_2 ||
  514. hw->nic_type == athr_l2c_b2) {
  515. AT_READ_REG(hw, REG_LPI_CTRL, &lpi_ctrl);
  516. AT_WRITE_REG(hw, REG_LPI_CTRL, lpi_ctrl & ~LPI_CTRL_EN);
  517. atl1c_write_phy_ext(hw, MIIEXT_ANEG, MIIEXT_LOCAL_EEEADV, 0);
  518. atl1c_write_phy_ext(hw, MIIEXT_PCS, MIIEXT_CLDCTRL3,
  519. L2CB_CLDCTRL3);
  520. }
  521. /* other debug port to set */
  522. atl1c_write_phy_dbg(hw, MIIDBG_ANACTRL, ANACTRL_DEF);
  523. atl1c_write_phy_dbg(hw, MIIDBG_SRDSYSMOD, SRDSYSMOD_DEF);
  524. atl1c_write_phy_dbg(hw, MIIDBG_TST10BTCFG, TST10BTCFG_DEF);
  525. /* UNH-IOL test issue, set bit7 */
  526. atl1c_write_phy_dbg(hw, MIIDBG_TST100BTCFG,
  527. TST100BTCFG_DEF | TST100BTCFG_LITCH_EN);
  528. /* set phy interrupt mask */
  529. phy_data = IER_LINK_UP | IER_LINK_DOWN;
  530. err = atl1c_write_phy_reg(hw, MII_IER, phy_data);
  531. if (err) {
  532. if (netif_msg_hw(adapter))
  533. dev_err(&pdev->dev,
  534. "Error enable PHY linkChange Interrupt\n");
  535. return err;
  536. }
  537. return 0;
  538. }
  539. int atl1c_phy_init(struct atl1c_hw *hw)
  540. {
  541. struct atl1c_adapter *adapter = (struct atl1c_adapter *)hw->adapter;
  542. struct pci_dev *pdev = adapter->pdev;
  543. int ret_val;
  544. u16 mii_bmcr_data = BMCR_RESET;
  545. if ((atl1c_read_phy_reg(hw, MII_PHYSID1, &hw->phy_id1) != 0) ||
  546. (atl1c_read_phy_reg(hw, MII_PHYSID2, &hw->phy_id2) != 0)) {
  547. dev_err(&pdev->dev, "Error get phy ID\n");
  548. return -1;
  549. }
  550. switch (hw->media_type) {
  551. case MEDIA_TYPE_AUTO_SENSOR:
  552. ret_val = atl1c_phy_setup_adv(hw);
  553. if (ret_val) {
  554. if (netif_msg_link(adapter))
  555. dev_err(&pdev->dev,
  556. "Error Setting up Auto-Negotiation\n");
  557. return ret_val;
  558. }
  559. mii_bmcr_data |= BMCR_ANENABLE | BMCR_ANRESTART;
  560. break;
  561. case MEDIA_TYPE_100M_FULL:
  562. mii_bmcr_data |= BMCR_SPEED100 | BMCR_FULLDPLX;
  563. break;
  564. case MEDIA_TYPE_100M_HALF:
  565. mii_bmcr_data |= BMCR_SPEED100;
  566. break;
  567. case MEDIA_TYPE_10M_FULL:
  568. mii_bmcr_data |= BMCR_FULLDPLX;
  569. break;
  570. case MEDIA_TYPE_10M_HALF:
  571. break;
  572. default:
  573. if (netif_msg_link(adapter))
  574. dev_err(&pdev->dev, "Wrong Media type %d\n",
  575. hw->media_type);
  576. return -1;
  577. break;
  578. }
  579. ret_val = atl1c_write_phy_reg(hw, MII_BMCR, mii_bmcr_data);
  580. if (ret_val)
  581. return ret_val;
  582. hw->phy_configured = true;
  583. return 0;
  584. }
  585. /*
  586. * Detects the current speed and duplex settings of the hardware.
  587. *
  588. * hw - Struct containing variables accessed by shared code
  589. * speed - Speed of the connection
  590. * duplex - Duplex setting of the connection
  591. */
  592. int atl1c_get_speed_and_duplex(struct atl1c_hw *hw, u16 *speed, u16 *duplex)
  593. {
  594. int err;
  595. u16 phy_data;
  596. /* Read PHY Specific Status Register (17) */
  597. err = atl1c_read_phy_reg(hw, MII_GIGA_PSSR, &phy_data);
  598. if (err)
  599. return err;
  600. if (!(phy_data & GIGA_PSSR_SPD_DPLX_RESOLVED))
  601. return -1;
  602. switch (phy_data & GIGA_PSSR_SPEED) {
  603. case GIGA_PSSR_1000MBS:
  604. *speed = SPEED_1000;
  605. break;
  606. case GIGA_PSSR_100MBS:
  607. *speed = SPEED_100;
  608. break;
  609. case GIGA_PSSR_10MBS:
  610. *speed = SPEED_10;
  611. break;
  612. default:
  613. return -1;
  614. break;
  615. }
  616. if (phy_data & GIGA_PSSR_DPLX)
  617. *duplex = FULL_DUPLEX;
  618. else
  619. *duplex = HALF_DUPLEX;
  620. return 0;
  621. }
  622. /* select one link mode to get lower power consumption */
  623. int atl1c_phy_to_ps_link(struct atl1c_hw *hw)
  624. {
  625. struct atl1c_adapter *adapter = (struct atl1c_adapter *)hw->adapter;
  626. struct pci_dev *pdev = adapter->pdev;
  627. int ret = 0;
  628. u16 autoneg_advertised = ADVERTISED_10baseT_Half;
  629. u16 save_autoneg_advertised;
  630. u16 phy_data;
  631. u16 mii_lpa_data;
  632. u16 speed = SPEED_0;
  633. u16 duplex = FULL_DUPLEX;
  634. int i;
  635. atl1c_read_phy_reg(hw, MII_BMSR, &phy_data);
  636. atl1c_read_phy_reg(hw, MII_BMSR, &phy_data);
  637. if (phy_data & BMSR_LSTATUS) {
  638. atl1c_read_phy_reg(hw, MII_LPA, &mii_lpa_data);
  639. if (mii_lpa_data & LPA_10FULL)
  640. autoneg_advertised = ADVERTISED_10baseT_Full;
  641. else if (mii_lpa_data & LPA_10HALF)
  642. autoneg_advertised = ADVERTISED_10baseT_Half;
  643. else if (mii_lpa_data & LPA_100HALF)
  644. autoneg_advertised = ADVERTISED_100baseT_Half;
  645. else if (mii_lpa_data & LPA_100FULL)
  646. autoneg_advertised = ADVERTISED_100baseT_Full;
  647. save_autoneg_advertised = hw->autoneg_advertised;
  648. hw->phy_configured = false;
  649. hw->autoneg_advertised = autoneg_advertised;
  650. if (atl1c_restart_autoneg(hw) != 0) {
  651. dev_dbg(&pdev->dev, "phy autoneg failed\n");
  652. ret = -1;
  653. }
  654. hw->autoneg_advertised = save_autoneg_advertised;
  655. if (mii_lpa_data) {
  656. for (i = 0; i < AT_SUSPEND_LINK_TIMEOUT; i++) {
  657. mdelay(100);
  658. atl1c_read_phy_reg(hw, MII_BMSR, &phy_data);
  659. atl1c_read_phy_reg(hw, MII_BMSR, &phy_data);
  660. if (phy_data & BMSR_LSTATUS) {
  661. if (atl1c_get_speed_and_duplex(hw, &speed,
  662. &duplex) != 0)
  663. dev_dbg(&pdev->dev,
  664. "get speed and duplex failed\n");
  665. break;
  666. }
  667. }
  668. }
  669. } else {
  670. speed = SPEED_10;
  671. duplex = HALF_DUPLEX;
  672. }
  673. adapter->link_speed = speed;
  674. adapter->link_duplex = duplex;
  675. return ret;
  676. }
  677. int atl1c_restart_autoneg(struct atl1c_hw *hw)
  678. {
  679. int err = 0;
  680. u16 mii_bmcr_data = BMCR_RESET;
  681. err = atl1c_phy_setup_adv(hw);
  682. if (err)
  683. return err;
  684. mii_bmcr_data |= BMCR_ANENABLE | BMCR_ANRESTART;
  685. return atl1c_write_phy_reg(hw, MII_BMCR, mii_bmcr_data);
  686. }
  687. int atl1c_power_saving(struct atl1c_hw *hw, u32 wufc)
  688. {
  689. struct atl1c_adapter *adapter = (struct atl1c_adapter *)hw->adapter;
  690. struct pci_dev *pdev = adapter->pdev;
  691. u32 master_ctrl, mac_ctrl, phy_ctrl;
  692. u32 wol_ctrl, speed;
  693. u16 phy_data;
  694. wol_ctrl = 0;
  695. speed = adapter->link_speed == SPEED_1000 ?
  696. MAC_CTRL_SPEED_1000 : MAC_CTRL_SPEED_10_100;
  697. AT_READ_REG(hw, REG_MASTER_CTRL, &master_ctrl);
  698. AT_READ_REG(hw, REG_MAC_CTRL, &mac_ctrl);
  699. AT_READ_REG(hw, REG_GPHY_CTRL, &phy_ctrl);
  700. master_ctrl &= ~MASTER_CTRL_CLK_SEL_DIS;
  701. mac_ctrl = FIELD_SETX(mac_ctrl, MAC_CTRL_SPEED, speed);
  702. mac_ctrl &= ~(MAC_CTRL_DUPLX | MAC_CTRL_RX_EN | MAC_CTRL_TX_EN);
  703. if (adapter->link_duplex == FULL_DUPLEX)
  704. mac_ctrl |= MAC_CTRL_DUPLX;
  705. phy_ctrl &= ~(GPHY_CTRL_EXT_RESET | GPHY_CTRL_CLS);
  706. phy_ctrl |= GPHY_CTRL_SEL_ANA_RST | GPHY_CTRL_HIB_PULSE |
  707. GPHY_CTRL_HIB_EN;
  708. if (!wufc) { /* without WoL */
  709. master_ctrl |= MASTER_CTRL_CLK_SEL_DIS;
  710. phy_ctrl |= GPHY_CTRL_PHY_IDDQ | GPHY_CTRL_PWDOWN_HW;
  711. AT_WRITE_REG(hw, REG_MASTER_CTRL, master_ctrl);
  712. AT_WRITE_REG(hw, REG_MAC_CTRL, mac_ctrl);
  713. AT_WRITE_REG(hw, REG_GPHY_CTRL, phy_ctrl);
  714. AT_WRITE_REG(hw, REG_WOL_CTRL, 0);
  715. hw->phy_configured = false; /* re-init PHY when resume */
  716. return 0;
  717. }
  718. phy_ctrl |= GPHY_CTRL_EXT_RESET;
  719. if (wufc & AT_WUFC_MAG) {
  720. mac_ctrl |= MAC_CTRL_RX_EN | MAC_CTRL_BC_EN;
  721. wol_ctrl |= WOL_MAGIC_EN | WOL_MAGIC_PME_EN;
  722. if (hw->nic_type == athr_l2c_b && hw->revision_id == L2CB_V11)
  723. wol_ctrl |= WOL_PATTERN_EN | WOL_PATTERN_PME_EN;
  724. }
  725. if (wufc & AT_WUFC_LNKC) {
  726. wol_ctrl |= WOL_LINK_CHG_EN | WOL_LINK_CHG_PME_EN;
  727. if (atl1c_write_phy_reg(hw, MII_IER, IER_LINK_UP) != 0) {
  728. dev_dbg(&pdev->dev, "%s: write phy MII_IER faild.\n",
  729. atl1c_driver_name);
  730. }
  731. }
  732. /* clear PHY interrupt */
  733. atl1c_read_phy_reg(hw, MII_ISR, &phy_data);
  734. dev_dbg(&pdev->dev, "%s: suspend MAC=%x,MASTER=%x,PHY=0x%x,WOL=%x\n",
  735. atl1c_driver_name, mac_ctrl, master_ctrl, phy_ctrl, wol_ctrl);
  736. AT_WRITE_REG(hw, REG_MASTER_CTRL, master_ctrl);
  737. AT_WRITE_REG(hw, REG_MAC_CTRL, mac_ctrl);
  738. AT_WRITE_REG(hw, REG_GPHY_CTRL, phy_ctrl);
  739. AT_WRITE_REG(hw, REG_WOL_CTRL, wol_ctrl);
  740. return 0;
  741. }
  742. /* configure phy after Link change Event */
  743. void atl1c_post_phy_linkchg(struct atl1c_hw *hw, u16 link_speed)
  744. {
  745. u16 phy_val;
  746. bool adj_thresh = false;
  747. if (hw->nic_type == athr_l2c_b || hw->nic_type == athr_l2c_b2 ||
  748. hw->nic_type == athr_l1d || hw->nic_type == athr_l1d_2)
  749. adj_thresh = true;
  750. if (link_speed != SPEED_0) { /* link up */
  751. /* az with brcm, half-amp */
  752. if (hw->nic_type == athr_l1d_2) {
  753. atl1c_read_phy_ext(hw, MIIEXT_PCS, MIIEXT_CLDCTRL6,
  754. &phy_val);
  755. phy_val = FIELD_GETX(phy_val, CLDCTRL6_CAB_LEN);
  756. phy_val = phy_val > CLDCTRL6_CAB_LEN_SHORT ?
  757. AZ_ANADECT_LONG : AZ_ANADECT_DEF;
  758. atl1c_write_phy_dbg(hw, MIIDBG_AZ_ANADECT, phy_val);
  759. }
  760. /* threshold adjust */
  761. if (adj_thresh && link_speed == SPEED_100 && hw->msi_lnkpatch) {
  762. atl1c_write_phy_dbg(hw, MIIDBG_MSE16DB, L1D_MSE16DB_UP);
  763. atl1c_write_phy_dbg(hw, MIIDBG_SYSMODCTRL,
  764. L1D_SYSMODCTRL_IECHOADJ_DEF);
  765. }
  766. } else { /* link down */
  767. if (adj_thresh && hw->msi_lnkpatch) {
  768. atl1c_write_phy_dbg(hw, MIIDBG_SYSMODCTRL,
  769. SYSMODCTRL_IECHOADJ_DEF);
  770. atl1c_write_phy_dbg(hw, MIIDBG_MSE16DB,
  771. L1D_MSE16DB_DOWN);
  772. }
  773. }
  774. }