sched.c 222 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071807280738074807580768077807880798080808180828083808480858086808780888089809080918092809380948095809680978098809981008101810281038104810581068107810881098110811181128113811481158116811781188119812081218122812381248125812681278128812981308131813281338134813581368137813881398140814181428143814481458146814781488149815081518152815381548155815681578158815981608161816281638164816581668167816881698170817181728173817481758176817781788179818081818182818381848185818681878188818981908191819281938194819581968197819881998200820182028203820482058206820782088209821082118212821382148215821682178218821982208221822282238224822582268227822882298230823182328233823482358236823782388239824082418242824382448245824682478248824982508251825282538254825582568257825882598260826182628263826482658266826782688269827082718272827382748275827682778278827982808281828282838284828582868287828882898290829182928293829482958296829782988299830083018302830383048305830683078308830983108311831283138314831583168317831883198320832183228323832483258326832783288329833083318332833383348335833683378338833983408341834283438344834583468347834883498350835183528353835483558356835783588359836083618362836383648365836683678368836983708371837283738374837583768377837883798380838183828383838483858386838783888389839083918392839383948395839683978398839984008401840284038404840584068407840884098410841184128413841484158416841784188419842084218422842384248425842684278428842984308431843284338434843584368437843884398440844184428443844484458446844784488449845084518452845384548455845684578458845984608461846284638464846584668467846884698470847184728473847484758476847784788479848084818482848384848485848684878488848984908491849284938494849584968497849884998500850185028503850485058506850785088509851085118512851385148515851685178518851985208521852285238524852585268527852885298530853185328533853485358536853785388539854085418542854385448545854685478548854985508551855285538554855585568557855885598560856185628563856485658566856785688569857085718572857385748575857685778578857985808581858285838584858585868587858885898590859185928593859485958596859785988599860086018602860386048605860686078608860986108611861286138614861586168617861886198620862186228623862486258626862786288629863086318632863386348635863686378638863986408641864286438644864586468647864886498650865186528653865486558656865786588659866086618662866386648665866686678668866986708671867286738674867586768677867886798680868186828683868486858686868786888689869086918692869386948695869686978698869987008701870287038704870587068707870887098710871187128713871487158716871787188719872087218722872387248725872687278728872987308731873287338734873587368737873887398740874187428743874487458746874787488749875087518752875387548755875687578758875987608761876287638764876587668767876887698770877187728773877487758776877787788779878087818782878387848785878687878788878987908791879287938794879587968797879887998800880188028803880488058806880788088809881088118812881388148815881688178818881988208821882288238824882588268827882888298830883188328833883488358836883788388839884088418842884388448845884688478848884988508851885288538854885588568857885888598860886188628863886488658866886788688869887088718872887388748875887688778878887988808881888288838884888588868887888888898890889188928893889488958896889788988899890089018902890389048905890689078908890989108911891289138914891589168917891889198920892189228923892489258926892789288929893089318932893389348935893689378938893989408941894289438944894589468947894889498950895189528953895489558956895789588959896089618962896389648965896689678968896989708971897289738974897589768977897889798980898189828983898489858986898789888989899089918992899389948995899689978998899990009001900290039004900590069007900890099010901190129013901490159016901790189019902090219022902390249025902690279028902990309031903290339034903590369037903890399040904190429043904490459046904790489049905090519052905390549055905690579058905990609061906290639064906590669067906890699070907190729073907490759076907790789079908090819082908390849085908690879088908990909091909290939094909590969097909890999100910191029103910491059106910791089109911091119112911391149115911691179118911991209121912291239124912591269127912891299130913191329133913491359136913791389139914091419142914391449145914691479148914991509151915291539154915591569157915891599160916191629163916491659166916791689169917091719172917391749175917691779178917991809181918291839184918591869187918891899190919191929193919491959196919791989199920092019202920392049205920692079208920992109211921292139214921592169217921892199220922192229223922492259226922792289229923092319232923392349235
  1. /*
  2. * kernel/sched.c
  3. *
  4. * Kernel scheduler and related syscalls
  5. *
  6. * Copyright (C) 1991-2002 Linus Torvalds
  7. *
  8. * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
  9. * make semaphores SMP safe
  10. * 1998-11-19 Implemented schedule_timeout() and related stuff
  11. * by Andrea Arcangeli
  12. * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
  13. * hybrid priority-list and round-robin design with
  14. * an array-switch method of distributing timeslices
  15. * and per-CPU runqueues. Cleanups and useful suggestions
  16. * by Davide Libenzi, preemptible kernel bits by Robert Love.
  17. * 2003-09-03 Interactivity tuning by Con Kolivas.
  18. * 2004-04-02 Scheduler domains code by Nick Piggin
  19. * 2007-04-15 Work begun on replacing all interactivity tuning with a
  20. * fair scheduling design by Con Kolivas.
  21. * 2007-05-05 Load balancing (smp-nice) and other improvements
  22. * by Peter Williams
  23. * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
  24. * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
  25. * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
  26. * Thomas Gleixner, Mike Kravetz
  27. */
  28. #include <linux/mm.h>
  29. #include <linux/module.h>
  30. #include <linux/nmi.h>
  31. #include <linux/init.h>
  32. #include <linux/uaccess.h>
  33. #include <linux/highmem.h>
  34. #include <linux/smp_lock.h>
  35. #include <asm/mmu_context.h>
  36. #include <linux/interrupt.h>
  37. #include <linux/capability.h>
  38. #include <linux/completion.h>
  39. #include <linux/kernel_stat.h>
  40. #include <linux/debug_locks.h>
  41. #include <linux/perf_event.h>
  42. #include <linux/security.h>
  43. #include <linux/notifier.h>
  44. #include <linux/profile.h>
  45. #include <linux/freezer.h>
  46. #include <linux/vmalloc.h>
  47. #include <linux/blkdev.h>
  48. #include <linux/delay.h>
  49. #include <linux/pid_namespace.h>
  50. #include <linux/smp.h>
  51. #include <linux/threads.h>
  52. #include <linux/timer.h>
  53. #include <linux/rcupdate.h>
  54. #include <linux/cpu.h>
  55. #include <linux/cpuset.h>
  56. #include <linux/percpu.h>
  57. #include <linux/proc_fs.h>
  58. #include <linux/seq_file.h>
  59. #include <linux/stop_machine.h>
  60. #include <linux/sysctl.h>
  61. #include <linux/syscalls.h>
  62. #include <linux/times.h>
  63. #include <linux/tsacct_kern.h>
  64. #include <linux/kprobes.h>
  65. #include <linux/delayacct.h>
  66. #include <linux/unistd.h>
  67. #include <linux/pagemap.h>
  68. #include <linux/hrtimer.h>
  69. #include <linux/tick.h>
  70. #include <linux/debugfs.h>
  71. #include <linux/ctype.h>
  72. #include <linux/ftrace.h>
  73. #include <linux/slab.h>
  74. #include <asm/tlb.h>
  75. #include <asm/irq_regs.h>
  76. #include <asm/mutex.h>
  77. #include "sched_cpupri.h"
  78. #include "workqueue_sched.h"
  79. #include "sched_autogroup.h"
  80. #define CREATE_TRACE_POINTS
  81. #include <trace/events/sched.h>
  82. /*
  83. * Convert user-nice values [ -20 ... 0 ... 19 ]
  84. * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
  85. * and back.
  86. */
  87. #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
  88. #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
  89. #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
  90. /*
  91. * 'User priority' is the nice value converted to something we
  92. * can work with better when scaling various scheduler parameters,
  93. * it's a [ 0 ... 39 ] range.
  94. */
  95. #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
  96. #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
  97. #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
  98. /*
  99. * Helpers for converting nanosecond timing to jiffy resolution
  100. */
  101. #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
  102. #define NICE_0_LOAD SCHED_LOAD_SCALE
  103. #define NICE_0_SHIFT SCHED_LOAD_SHIFT
  104. /*
  105. * These are the 'tuning knobs' of the scheduler:
  106. *
  107. * default timeslice is 100 msecs (used only for SCHED_RR tasks).
  108. * Timeslices get refilled after they expire.
  109. */
  110. #define DEF_TIMESLICE (100 * HZ / 1000)
  111. /*
  112. * single value that denotes runtime == period, ie unlimited time.
  113. */
  114. #define RUNTIME_INF ((u64)~0ULL)
  115. static inline int rt_policy(int policy)
  116. {
  117. if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
  118. return 1;
  119. return 0;
  120. }
  121. static inline int task_has_rt_policy(struct task_struct *p)
  122. {
  123. return rt_policy(p->policy);
  124. }
  125. /*
  126. * This is the priority-queue data structure of the RT scheduling class:
  127. */
  128. struct rt_prio_array {
  129. DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
  130. struct list_head queue[MAX_RT_PRIO];
  131. };
  132. struct rt_bandwidth {
  133. /* nests inside the rq lock: */
  134. raw_spinlock_t rt_runtime_lock;
  135. ktime_t rt_period;
  136. u64 rt_runtime;
  137. struct hrtimer rt_period_timer;
  138. };
  139. static struct rt_bandwidth def_rt_bandwidth;
  140. static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
  141. static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
  142. {
  143. struct rt_bandwidth *rt_b =
  144. container_of(timer, struct rt_bandwidth, rt_period_timer);
  145. ktime_t now;
  146. int overrun;
  147. int idle = 0;
  148. for (;;) {
  149. now = hrtimer_cb_get_time(timer);
  150. overrun = hrtimer_forward(timer, now, rt_b->rt_period);
  151. if (!overrun)
  152. break;
  153. idle = do_sched_rt_period_timer(rt_b, overrun);
  154. }
  155. return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
  156. }
  157. static
  158. void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
  159. {
  160. rt_b->rt_period = ns_to_ktime(period);
  161. rt_b->rt_runtime = runtime;
  162. raw_spin_lock_init(&rt_b->rt_runtime_lock);
  163. hrtimer_init(&rt_b->rt_period_timer,
  164. CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  165. rt_b->rt_period_timer.function = sched_rt_period_timer;
  166. }
  167. static inline int rt_bandwidth_enabled(void)
  168. {
  169. return sysctl_sched_rt_runtime >= 0;
  170. }
  171. static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
  172. {
  173. ktime_t now;
  174. if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
  175. return;
  176. if (hrtimer_active(&rt_b->rt_period_timer))
  177. return;
  178. raw_spin_lock(&rt_b->rt_runtime_lock);
  179. for (;;) {
  180. unsigned long delta;
  181. ktime_t soft, hard;
  182. if (hrtimer_active(&rt_b->rt_period_timer))
  183. break;
  184. now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
  185. hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
  186. soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
  187. hard = hrtimer_get_expires(&rt_b->rt_period_timer);
  188. delta = ktime_to_ns(ktime_sub(hard, soft));
  189. __hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
  190. HRTIMER_MODE_ABS_PINNED, 0);
  191. }
  192. raw_spin_unlock(&rt_b->rt_runtime_lock);
  193. }
  194. #ifdef CONFIG_RT_GROUP_SCHED
  195. static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
  196. {
  197. hrtimer_cancel(&rt_b->rt_period_timer);
  198. }
  199. #endif
  200. /*
  201. * sched_domains_mutex serializes calls to arch_init_sched_domains,
  202. * detach_destroy_domains and partition_sched_domains.
  203. */
  204. static DEFINE_MUTEX(sched_domains_mutex);
  205. #ifdef CONFIG_CGROUP_SCHED
  206. #include <linux/cgroup.h>
  207. struct cfs_rq;
  208. static LIST_HEAD(task_groups);
  209. /* task group related information */
  210. struct task_group {
  211. struct cgroup_subsys_state css;
  212. #ifdef CONFIG_FAIR_GROUP_SCHED
  213. /* schedulable entities of this group on each cpu */
  214. struct sched_entity **se;
  215. /* runqueue "owned" by this group on each cpu */
  216. struct cfs_rq **cfs_rq;
  217. unsigned long shares;
  218. atomic_t load_weight;
  219. #endif
  220. #ifdef CONFIG_RT_GROUP_SCHED
  221. struct sched_rt_entity **rt_se;
  222. struct rt_rq **rt_rq;
  223. struct rt_bandwidth rt_bandwidth;
  224. #endif
  225. struct rcu_head rcu;
  226. struct list_head list;
  227. struct task_group *parent;
  228. struct list_head siblings;
  229. struct list_head children;
  230. #ifdef CONFIG_SCHED_AUTOGROUP
  231. struct autogroup *autogroup;
  232. #endif
  233. };
  234. /* task_group_lock serializes the addition/removal of task groups */
  235. static DEFINE_SPINLOCK(task_group_lock);
  236. #ifdef CONFIG_FAIR_GROUP_SCHED
  237. # define ROOT_TASK_GROUP_LOAD NICE_0_LOAD
  238. /*
  239. * A weight of 0 or 1 can cause arithmetics problems.
  240. * A weight of a cfs_rq is the sum of weights of which entities
  241. * are queued on this cfs_rq, so a weight of a entity should not be
  242. * too large, so as the shares value of a task group.
  243. * (The default weight is 1024 - so there's no practical
  244. * limitation from this.)
  245. */
  246. #define MIN_SHARES 2
  247. #define MAX_SHARES (1UL << 18)
  248. static int root_task_group_load = ROOT_TASK_GROUP_LOAD;
  249. #endif
  250. /* Default task group.
  251. * Every task in system belong to this group at bootup.
  252. */
  253. struct task_group root_task_group;
  254. #endif /* CONFIG_CGROUP_SCHED */
  255. /* CFS-related fields in a runqueue */
  256. struct cfs_rq {
  257. struct load_weight load;
  258. unsigned long nr_running;
  259. u64 exec_clock;
  260. u64 min_vruntime;
  261. struct rb_root tasks_timeline;
  262. struct rb_node *rb_leftmost;
  263. struct list_head tasks;
  264. struct list_head *balance_iterator;
  265. /*
  266. * 'curr' points to currently running entity on this cfs_rq.
  267. * It is set to NULL otherwise (i.e when none are currently running).
  268. */
  269. struct sched_entity *curr, *next, *last;
  270. unsigned int nr_spread_over;
  271. #ifdef CONFIG_FAIR_GROUP_SCHED
  272. struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
  273. /*
  274. * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
  275. * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
  276. * (like users, containers etc.)
  277. *
  278. * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
  279. * list is used during load balance.
  280. */
  281. int on_list;
  282. struct list_head leaf_cfs_rq_list;
  283. struct task_group *tg; /* group that "owns" this runqueue */
  284. #ifdef CONFIG_SMP
  285. /*
  286. * the part of load.weight contributed by tasks
  287. */
  288. unsigned long task_weight;
  289. /*
  290. * h_load = weight * f(tg)
  291. *
  292. * Where f(tg) is the recursive weight fraction assigned to
  293. * this group.
  294. */
  295. unsigned long h_load;
  296. /*
  297. * Maintaining per-cpu shares distribution for group scheduling
  298. *
  299. * load_stamp is the last time we updated the load average
  300. * load_last is the last time we updated the load average and saw load
  301. * load_unacc_exec_time is currently unaccounted execution time
  302. */
  303. u64 load_avg;
  304. u64 load_period;
  305. u64 load_stamp, load_last, load_unacc_exec_time;
  306. unsigned long load_contribution;
  307. #endif
  308. #endif
  309. };
  310. /* Real-Time classes' related field in a runqueue: */
  311. struct rt_rq {
  312. struct rt_prio_array active;
  313. unsigned long rt_nr_running;
  314. #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
  315. struct {
  316. int curr; /* highest queued rt task prio */
  317. #ifdef CONFIG_SMP
  318. int next; /* next highest */
  319. #endif
  320. } highest_prio;
  321. #endif
  322. #ifdef CONFIG_SMP
  323. unsigned long rt_nr_migratory;
  324. unsigned long rt_nr_total;
  325. int overloaded;
  326. struct plist_head pushable_tasks;
  327. #endif
  328. int rt_throttled;
  329. u64 rt_time;
  330. u64 rt_runtime;
  331. /* Nests inside the rq lock: */
  332. raw_spinlock_t rt_runtime_lock;
  333. #ifdef CONFIG_RT_GROUP_SCHED
  334. unsigned long rt_nr_boosted;
  335. struct rq *rq;
  336. struct list_head leaf_rt_rq_list;
  337. struct task_group *tg;
  338. #endif
  339. };
  340. #ifdef CONFIG_SMP
  341. /*
  342. * We add the notion of a root-domain which will be used to define per-domain
  343. * variables. Each exclusive cpuset essentially defines an island domain by
  344. * fully partitioning the member cpus from any other cpuset. Whenever a new
  345. * exclusive cpuset is created, we also create and attach a new root-domain
  346. * object.
  347. *
  348. */
  349. struct root_domain {
  350. atomic_t refcount;
  351. cpumask_var_t span;
  352. cpumask_var_t online;
  353. /*
  354. * The "RT overload" flag: it gets set if a CPU has more than
  355. * one runnable RT task.
  356. */
  357. cpumask_var_t rto_mask;
  358. atomic_t rto_count;
  359. struct cpupri cpupri;
  360. };
  361. /*
  362. * By default the system creates a single root-domain with all cpus as
  363. * members (mimicking the global state we have today).
  364. */
  365. static struct root_domain def_root_domain;
  366. #endif /* CONFIG_SMP */
  367. /*
  368. * This is the main, per-CPU runqueue data structure.
  369. *
  370. * Locking rule: those places that want to lock multiple runqueues
  371. * (such as the load balancing or the thread migration code), lock
  372. * acquire operations must be ordered by ascending &runqueue.
  373. */
  374. struct rq {
  375. /* runqueue lock: */
  376. raw_spinlock_t lock;
  377. /*
  378. * nr_running and cpu_load should be in the same cacheline because
  379. * remote CPUs use both these fields when doing load calculation.
  380. */
  381. unsigned long nr_running;
  382. #define CPU_LOAD_IDX_MAX 5
  383. unsigned long cpu_load[CPU_LOAD_IDX_MAX];
  384. unsigned long last_load_update_tick;
  385. #ifdef CONFIG_NO_HZ
  386. u64 nohz_stamp;
  387. unsigned char nohz_balance_kick;
  388. #endif
  389. unsigned int skip_clock_update;
  390. /* capture load from *all* tasks on this cpu: */
  391. struct load_weight load;
  392. unsigned long nr_load_updates;
  393. u64 nr_switches;
  394. struct cfs_rq cfs;
  395. struct rt_rq rt;
  396. #ifdef CONFIG_FAIR_GROUP_SCHED
  397. /* list of leaf cfs_rq on this cpu: */
  398. struct list_head leaf_cfs_rq_list;
  399. #endif
  400. #ifdef CONFIG_RT_GROUP_SCHED
  401. struct list_head leaf_rt_rq_list;
  402. #endif
  403. /*
  404. * This is part of a global counter where only the total sum
  405. * over all CPUs matters. A task can increase this counter on
  406. * one CPU and if it got migrated afterwards it may decrease
  407. * it on another CPU. Always updated under the runqueue lock:
  408. */
  409. unsigned long nr_uninterruptible;
  410. struct task_struct *curr, *idle, *stop;
  411. unsigned long next_balance;
  412. struct mm_struct *prev_mm;
  413. u64 clock;
  414. u64 clock_task;
  415. atomic_t nr_iowait;
  416. #ifdef CONFIG_SMP
  417. struct root_domain *rd;
  418. struct sched_domain *sd;
  419. unsigned long cpu_power;
  420. unsigned char idle_at_tick;
  421. /* For active balancing */
  422. int post_schedule;
  423. int active_balance;
  424. int push_cpu;
  425. struct cpu_stop_work active_balance_work;
  426. /* cpu of this runqueue: */
  427. int cpu;
  428. int online;
  429. unsigned long avg_load_per_task;
  430. u64 rt_avg;
  431. u64 age_stamp;
  432. u64 idle_stamp;
  433. u64 avg_idle;
  434. #endif
  435. #ifdef CONFIG_IRQ_TIME_ACCOUNTING
  436. u64 prev_irq_time;
  437. #endif
  438. /* calc_load related fields */
  439. unsigned long calc_load_update;
  440. long calc_load_active;
  441. #ifdef CONFIG_SCHED_HRTICK
  442. #ifdef CONFIG_SMP
  443. int hrtick_csd_pending;
  444. struct call_single_data hrtick_csd;
  445. #endif
  446. struct hrtimer hrtick_timer;
  447. #endif
  448. #ifdef CONFIG_SCHEDSTATS
  449. /* latency stats */
  450. struct sched_info rq_sched_info;
  451. unsigned long long rq_cpu_time;
  452. /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
  453. /* sys_sched_yield() stats */
  454. unsigned int yld_count;
  455. /* schedule() stats */
  456. unsigned int sched_switch;
  457. unsigned int sched_count;
  458. unsigned int sched_goidle;
  459. /* try_to_wake_up() stats */
  460. unsigned int ttwu_count;
  461. unsigned int ttwu_local;
  462. #endif
  463. };
  464. static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
  465. static void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
  466. static inline int cpu_of(struct rq *rq)
  467. {
  468. #ifdef CONFIG_SMP
  469. return rq->cpu;
  470. #else
  471. return 0;
  472. #endif
  473. }
  474. #define rcu_dereference_check_sched_domain(p) \
  475. rcu_dereference_check((p), \
  476. rcu_read_lock_sched_held() || \
  477. lockdep_is_held(&sched_domains_mutex))
  478. /*
  479. * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
  480. * See detach_destroy_domains: synchronize_sched for details.
  481. *
  482. * The domain tree of any CPU may only be accessed from within
  483. * preempt-disabled sections.
  484. */
  485. #define for_each_domain(cpu, __sd) \
  486. for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
  487. #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
  488. #define this_rq() (&__get_cpu_var(runqueues))
  489. #define task_rq(p) cpu_rq(task_cpu(p))
  490. #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
  491. #define raw_rq() (&__raw_get_cpu_var(runqueues))
  492. #ifdef CONFIG_CGROUP_SCHED
  493. /*
  494. * Return the group to which this tasks belongs.
  495. *
  496. * We use task_subsys_state_check() and extend the RCU verification
  497. * with lockdep_is_held(&task_rq(p)->lock) because cpu_cgroup_attach()
  498. * holds that lock for each task it moves into the cgroup. Therefore
  499. * by holding that lock, we pin the task to the current cgroup.
  500. */
  501. static inline struct task_group *task_group(struct task_struct *p)
  502. {
  503. struct task_group *tg;
  504. struct cgroup_subsys_state *css;
  505. if (p->flags & PF_EXITING)
  506. return &root_task_group;
  507. css = task_subsys_state_check(p, cpu_cgroup_subsys_id,
  508. lockdep_is_held(&task_rq(p)->lock));
  509. tg = container_of(css, struct task_group, css);
  510. return autogroup_task_group(p, tg);
  511. }
  512. /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
  513. static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
  514. {
  515. #ifdef CONFIG_FAIR_GROUP_SCHED
  516. p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
  517. p->se.parent = task_group(p)->se[cpu];
  518. #endif
  519. #ifdef CONFIG_RT_GROUP_SCHED
  520. p->rt.rt_rq = task_group(p)->rt_rq[cpu];
  521. p->rt.parent = task_group(p)->rt_se[cpu];
  522. #endif
  523. }
  524. #else /* CONFIG_CGROUP_SCHED */
  525. static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
  526. static inline struct task_group *task_group(struct task_struct *p)
  527. {
  528. return NULL;
  529. }
  530. #endif /* CONFIG_CGROUP_SCHED */
  531. static void update_rq_clock_task(struct rq *rq, s64 delta);
  532. static void update_rq_clock(struct rq *rq)
  533. {
  534. s64 delta;
  535. if (rq->skip_clock_update)
  536. return;
  537. delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
  538. rq->clock += delta;
  539. update_rq_clock_task(rq, delta);
  540. }
  541. /*
  542. * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
  543. */
  544. #ifdef CONFIG_SCHED_DEBUG
  545. # define const_debug __read_mostly
  546. #else
  547. # define const_debug static const
  548. #endif
  549. /**
  550. * runqueue_is_locked
  551. * @cpu: the processor in question.
  552. *
  553. * Returns true if the current cpu runqueue is locked.
  554. * This interface allows printk to be called with the runqueue lock
  555. * held and know whether or not it is OK to wake up the klogd.
  556. */
  557. int runqueue_is_locked(int cpu)
  558. {
  559. return raw_spin_is_locked(&cpu_rq(cpu)->lock);
  560. }
  561. /*
  562. * Debugging: various feature bits
  563. */
  564. #define SCHED_FEAT(name, enabled) \
  565. __SCHED_FEAT_##name ,
  566. enum {
  567. #include "sched_features.h"
  568. };
  569. #undef SCHED_FEAT
  570. #define SCHED_FEAT(name, enabled) \
  571. (1UL << __SCHED_FEAT_##name) * enabled |
  572. const_debug unsigned int sysctl_sched_features =
  573. #include "sched_features.h"
  574. 0;
  575. #undef SCHED_FEAT
  576. #ifdef CONFIG_SCHED_DEBUG
  577. #define SCHED_FEAT(name, enabled) \
  578. #name ,
  579. static __read_mostly char *sched_feat_names[] = {
  580. #include "sched_features.h"
  581. NULL
  582. };
  583. #undef SCHED_FEAT
  584. static int sched_feat_show(struct seq_file *m, void *v)
  585. {
  586. int i;
  587. for (i = 0; sched_feat_names[i]; i++) {
  588. if (!(sysctl_sched_features & (1UL << i)))
  589. seq_puts(m, "NO_");
  590. seq_printf(m, "%s ", sched_feat_names[i]);
  591. }
  592. seq_puts(m, "\n");
  593. return 0;
  594. }
  595. static ssize_t
  596. sched_feat_write(struct file *filp, const char __user *ubuf,
  597. size_t cnt, loff_t *ppos)
  598. {
  599. char buf[64];
  600. char *cmp;
  601. int neg = 0;
  602. int i;
  603. if (cnt > 63)
  604. cnt = 63;
  605. if (copy_from_user(&buf, ubuf, cnt))
  606. return -EFAULT;
  607. buf[cnt] = 0;
  608. cmp = strstrip(buf);
  609. if (strncmp(cmp, "NO_", 3) == 0) {
  610. neg = 1;
  611. cmp += 3;
  612. }
  613. for (i = 0; sched_feat_names[i]; i++) {
  614. if (strcmp(cmp, sched_feat_names[i]) == 0) {
  615. if (neg)
  616. sysctl_sched_features &= ~(1UL << i);
  617. else
  618. sysctl_sched_features |= (1UL << i);
  619. break;
  620. }
  621. }
  622. if (!sched_feat_names[i])
  623. return -EINVAL;
  624. *ppos += cnt;
  625. return cnt;
  626. }
  627. static int sched_feat_open(struct inode *inode, struct file *filp)
  628. {
  629. return single_open(filp, sched_feat_show, NULL);
  630. }
  631. static const struct file_operations sched_feat_fops = {
  632. .open = sched_feat_open,
  633. .write = sched_feat_write,
  634. .read = seq_read,
  635. .llseek = seq_lseek,
  636. .release = single_release,
  637. };
  638. static __init int sched_init_debug(void)
  639. {
  640. debugfs_create_file("sched_features", 0644, NULL, NULL,
  641. &sched_feat_fops);
  642. return 0;
  643. }
  644. late_initcall(sched_init_debug);
  645. #endif
  646. #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
  647. /*
  648. * Number of tasks to iterate in a single balance run.
  649. * Limited because this is done with IRQs disabled.
  650. */
  651. const_debug unsigned int sysctl_sched_nr_migrate = 32;
  652. /*
  653. * period over which we average the RT time consumption, measured
  654. * in ms.
  655. *
  656. * default: 1s
  657. */
  658. const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
  659. /*
  660. * period over which we measure -rt task cpu usage in us.
  661. * default: 1s
  662. */
  663. unsigned int sysctl_sched_rt_period = 1000000;
  664. static __read_mostly int scheduler_running;
  665. /*
  666. * part of the period that we allow rt tasks to run in us.
  667. * default: 0.95s
  668. */
  669. int sysctl_sched_rt_runtime = 950000;
  670. static inline u64 global_rt_period(void)
  671. {
  672. return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
  673. }
  674. static inline u64 global_rt_runtime(void)
  675. {
  676. if (sysctl_sched_rt_runtime < 0)
  677. return RUNTIME_INF;
  678. return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
  679. }
  680. #ifndef prepare_arch_switch
  681. # define prepare_arch_switch(next) do { } while (0)
  682. #endif
  683. #ifndef finish_arch_switch
  684. # define finish_arch_switch(prev) do { } while (0)
  685. #endif
  686. static inline int task_current(struct rq *rq, struct task_struct *p)
  687. {
  688. return rq->curr == p;
  689. }
  690. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  691. static inline int task_running(struct rq *rq, struct task_struct *p)
  692. {
  693. return task_current(rq, p);
  694. }
  695. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  696. {
  697. }
  698. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  699. {
  700. #ifdef CONFIG_DEBUG_SPINLOCK
  701. /* this is a valid case when another task releases the spinlock */
  702. rq->lock.owner = current;
  703. #endif
  704. /*
  705. * If we are tracking spinlock dependencies then we have to
  706. * fix up the runqueue lock - which gets 'carried over' from
  707. * prev into current:
  708. */
  709. spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
  710. raw_spin_unlock_irq(&rq->lock);
  711. }
  712. #else /* __ARCH_WANT_UNLOCKED_CTXSW */
  713. static inline int task_running(struct rq *rq, struct task_struct *p)
  714. {
  715. #ifdef CONFIG_SMP
  716. return p->oncpu;
  717. #else
  718. return task_current(rq, p);
  719. #endif
  720. }
  721. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  722. {
  723. #ifdef CONFIG_SMP
  724. /*
  725. * We can optimise this out completely for !SMP, because the
  726. * SMP rebalancing from interrupt is the only thing that cares
  727. * here.
  728. */
  729. next->oncpu = 1;
  730. #endif
  731. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  732. raw_spin_unlock_irq(&rq->lock);
  733. #else
  734. raw_spin_unlock(&rq->lock);
  735. #endif
  736. }
  737. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  738. {
  739. #ifdef CONFIG_SMP
  740. /*
  741. * After ->oncpu is cleared, the task can be moved to a different CPU.
  742. * We must ensure this doesn't happen until the switch is completely
  743. * finished.
  744. */
  745. smp_wmb();
  746. prev->oncpu = 0;
  747. #endif
  748. #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  749. local_irq_enable();
  750. #endif
  751. }
  752. #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
  753. /*
  754. * Check whether the task is waking, we use this to synchronize ->cpus_allowed
  755. * against ttwu().
  756. */
  757. static inline int task_is_waking(struct task_struct *p)
  758. {
  759. return unlikely(p->state == TASK_WAKING);
  760. }
  761. /*
  762. * __task_rq_lock - lock the runqueue a given task resides on.
  763. * Must be called interrupts disabled.
  764. */
  765. static inline struct rq *__task_rq_lock(struct task_struct *p)
  766. __acquires(rq->lock)
  767. {
  768. struct rq *rq;
  769. for (;;) {
  770. rq = task_rq(p);
  771. raw_spin_lock(&rq->lock);
  772. if (likely(rq == task_rq(p)))
  773. return rq;
  774. raw_spin_unlock(&rq->lock);
  775. }
  776. }
  777. /*
  778. * task_rq_lock - lock the runqueue a given task resides on and disable
  779. * interrupts. Note the ordering: we can safely lookup the task_rq without
  780. * explicitly disabling preemption.
  781. */
  782. static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
  783. __acquires(rq->lock)
  784. {
  785. struct rq *rq;
  786. for (;;) {
  787. local_irq_save(*flags);
  788. rq = task_rq(p);
  789. raw_spin_lock(&rq->lock);
  790. if (likely(rq == task_rq(p)))
  791. return rq;
  792. raw_spin_unlock_irqrestore(&rq->lock, *flags);
  793. }
  794. }
  795. static void __task_rq_unlock(struct rq *rq)
  796. __releases(rq->lock)
  797. {
  798. raw_spin_unlock(&rq->lock);
  799. }
  800. static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
  801. __releases(rq->lock)
  802. {
  803. raw_spin_unlock_irqrestore(&rq->lock, *flags);
  804. }
  805. /*
  806. * this_rq_lock - lock this runqueue and disable interrupts.
  807. */
  808. static struct rq *this_rq_lock(void)
  809. __acquires(rq->lock)
  810. {
  811. struct rq *rq;
  812. local_irq_disable();
  813. rq = this_rq();
  814. raw_spin_lock(&rq->lock);
  815. return rq;
  816. }
  817. #ifdef CONFIG_SCHED_HRTICK
  818. /*
  819. * Use HR-timers to deliver accurate preemption points.
  820. *
  821. * Its all a bit involved since we cannot program an hrt while holding the
  822. * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
  823. * reschedule event.
  824. *
  825. * When we get rescheduled we reprogram the hrtick_timer outside of the
  826. * rq->lock.
  827. */
  828. /*
  829. * Use hrtick when:
  830. * - enabled by features
  831. * - hrtimer is actually high res
  832. */
  833. static inline int hrtick_enabled(struct rq *rq)
  834. {
  835. if (!sched_feat(HRTICK))
  836. return 0;
  837. if (!cpu_active(cpu_of(rq)))
  838. return 0;
  839. return hrtimer_is_hres_active(&rq->hrtick_timer);
  840. }
  841. static void hrtick_clear(struct rq *rq)
  842. {
  843. if (hrtimer_active(&rq->hrtick_timer))
  844. hrtimer_cancel(&rq->hrtick_timer);
  845. }
  846. /*
  847. * High-resolution timer tick.
  848. * Runs from hardirq context with interrupts disabled.
  849. */
  850. static enum hrtimer_restart hrtick(struct hrtimer *timer)
  851. {
  852. struct rq *rq = container_of(timer, struct rq, hrtick_timer);
  853. WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
  854. raw_spin_lock(&rq->lock);
  855. update_rq_clock(rq);
  856. rq->curr->sched_class->task_tick(rq, rq->curr, 1);
  857. raw_spin_unlock(&rq->lock);
  858. return HRTIMER_NORESTART;
  859. }
  860. #ifdef CONFIG_SMP
  861. /*
  862. * called from hardirq (IPI) context
  863. */
  864. static void __hrtick_start(void *arg)
  865. {
  866. struct rq *rq = arg;
  867. raw_spin_lock(&rq->lock);
  868. hrtimer_restart(&rq->hrtick_timer);
  869. rq->hrtick_csd_pending = 0;
  870. raw_spin_unlock(&rq->lock);
  871. }
  872. /*
  873. * Called to set the hrtick timer state.
  874. *
  875. * called with rq->lock held and irqs disabled
  876. */
  877. static void hrtick_start(struct rq *rq, u64 delay)
  878. {
  879. struct hrtimer *timer = &rq->hrtick_timer;
  880. ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
  881. hrtimer_set_expires(timer, time);
  882. if (rq == this_rq()) {
  883. hrtimer_restart(timer);
  884. } else if (!rq->hrtick_csd_pending) {
  885. __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
  886. rq->hrtick_csd_pending = 1;
  887. }
  888. }
  889. static int
  890. hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
  891. {
  892. int cpu = (int)(long)hcpu;
  893. switch (action) {
  894. case CPU_UP_CANCELED:
  895. case CPU_UP_CANCELED_FROZEN:
  896. case CPU_DOWN_PREPARE:
  897. case CPU_DOWN_PREPARE_FROZEN:
  898. case CPU_DEAD:
  899. case CPU_DEAD_FROZEN:
  900. hrtick_clear(cpu_rq(cpu));
  901. return NOTIFY_OK;
  902. }
  903. return NOTIFY_DONE;
  904. }
  905. static __init void init_hrtick(void)
  906. {
  907. hotcpu_notifier(hotplug_hrtick, 0);
  908. }
  909. #else
  910. /*
  911. * Called to set the hrtick timer state.
  912. *
  913. * called with rq->lock held and irqs disabled
  914. */
  915. static void hrtick_start(struct rq *rq, u64 delay)
  916. {
  917. __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
  918. HRTIMER_MODE_REL_PINNED, 0);
  919. }
  920. static inline void init_hrtick(void)
  921. {
  922. }
  923. #endif /* CONFIG_SMP */
  924. static void init_rq_hrtick(struct rq *rq)
  925. {
  926. #ifdef CONFIG_SMP
  927. rq->hrtick_csd_pending = 0;
  928. rq->hrtick_csd.flags = 0;
  929. rq->hrtick_csd.func = __hrtick_start;
  930. rq->hrtick_csd.info = rq;
  931. #endif
  932. hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  933. rq->hrtick_timer.function = hrtick;
  934. }
  935. #else /* CONFIG_SCHED_HRTICK */
  936. static inline void hrtick_clear(struct rq *rq)
  937. {
  938. }
  939. static inline void init_rq_hrtick(struct rq *rq)
  940. {
  941. }
  942. static inline void init_hrtick(void)
  943. {
  944. }
  945. #endif /* CONFIG_SCHED_HRTICK */
  946. /*
  947. * resched_task - mark a task 'to be rescheduled now'.
  948. *
  949. * On UP this means the setting of the need_resched flag, on SMP it
  950. * might also involve a cross-CPU call to trigger the scheduler on
  951. * the target CPU.
  952. */
  953. #ifdef CONFIG_SMP
  954. #ifndef tsk_is_polling
  955. #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
  956. #endif
  957. static void resched_task(struct task_struct *p)
  958. {
  959. int cpu;
  960. assert_raw_spin_locked(&task_rq(p)->lock);
  961. if (test_tsk_need_resched(p))
  962. return;
  963. set_tsk_need_resched(p);
  964. cpu = task_cpu(p);
  965. if (cpu == smp_processor_id())
  966. return;
  967. /* NEED_RESCHED must be visible before we test polling */
  968. smp_mb();
  969. if (!tsk_is_polling(p))
  970. smp_send_reschedule(cpu);
  971. }
  972. static void resched_cpu(int cpu)
  973. {
  974. struct rq *rq = cpu_rq(cpu);
  975. unsigned long flags;
  976. if (!raw_spin_trylock_irqsave(&rq->lock, flags))
  977. return;
  978. resched_task(cpu_curr(cpu));
  979. raw_spin_unlock_irqrestore(&rq->lock, flags);
  980. }
  981. #ifdef CONFIG_NO_HZ
  982. /*
  983. * In the semi idle case, use the nearest busy cpu for migrating timers
  984. * from an idle cpu. This is good for power-savings.
  985. *
  986. * We don't do similar optimization for completely idle system, as
  987. * selecting an idle cpu will add more delays to the timers than intended
  988. * (as that cpu's timer base may not be uptodate wrt jiffies etc).
  989. */
  990. int get_nohz_timer_target(void)
  991. {
  992. int cpu = smp_processor_id();
  993. int i;
  994. struct sched_domain *sd;
  995. for_each_domain(cpu, sd) {
  996. for_each_cpu(i, sched_domain_span(sd))
  997. if (!idle_cpu(i))
  998. return i;
  999. }
  1000. return cpu;
  1001. }
  1002. /*
  1003. * When add_timer_on() enqueues a timer into the timer wheel of an
  1004. * idle CPU then this timer might expire before the next timer event
  1005. * which is scheduled to wake up that CPU. In case of a completely
  1006. * idle system the next event might even be infinite time into the
  1007. * future. wake_up_idle_cpu() ensures that the CPU is woken up and
  1008. * leaves the inner idle loop so the newly added timer is taken into
  1009. * account when the CPU goes back to idle and evaluates the timer
  1010. * wheel for the next timer event.
  1011. */
  1012. void wake_up_idle_cpu(int cpu)
  1013. {
  1014. struct rq *rq = cpu_rq(cpu);
  1015. if (cpu == smp_processor_id())
  1016. return;
  1017. /*
  1018. * This is safe, as this function is called with the timer
  1019. * wheel base lock of (cpu) held. When the CPU is on the way
  1020. * to idle and has not yet set rq->curr to idle then it will
  1021. * be serialized on the timer wheel base lock and take the new
  1022. * timer into account automatically.
  1023. */
  1024. if (rq->curr != rq->idle)
  1025. return;
  1026. /*
  1027. * We can set TIF_RESCHED on the idle task of the other CPU
  1028. * lockless. The worst case is that the other CPU runs the
  1029. * idle task through an additional NOOP schedule()
  1030. */
  1031. set_tsk_need_resched(rq->idle);
  1032. /* NEED_RESCHED must be visible before we test polling */
  1033. smp_mb();
  1034. if (!tsk_is_polling(rq->idle))
  1035. smp_send_reschedule(cpu);
  1036. }
  1037. #endif /* CONFIG_NO_HZ */
  1038. static u64 sched_avg_period(void)
  1039. {
  1040. return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
  1041. }
  1042. static void sched_avg_update(struct rq *rq)
  1043. {
  1044. s64 period = sched_avg_period();
  1045. while ((s64)(rq->clock - rq->age_stamp) > period) {
  1046. /*
  1047. * Inline assembly required to prevent the compiler
  1048. * optimising this loop into a divmod call.
  1049. * See __iter_div_u64_rem() for another example of this.
  1050. */
  1051. asm("" : "+rm" (rq->age_stamp));
  1052. rq->age_stamp += period;
  1053. rq->rt_avg /= 2;
  1054. }
  1055. }
  1056. static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
  1057. {
  1058. rq->rt_avg += rt_delta;
  1059. sched_avg_update(rq);
  1060. }
  1061. #else /* !CONFIG_SMP */
  1062. static void resched_task(struct task_struct *p)
  1063. {
  1064. assert_raw_spin_locked(&task_rq(p)->lock);
  1065. set_tsk_need_resched(p);
  1066. }
  1067. static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
  1068. {
  1069. }
  1070. static void sched_avg_update(struct rq *rq)
  1071. {
  1072. }
  1073. #endif /* CONFIG_SMP */
  1074. #if BITS_PER_LONG == 32
  1075. # define WMULT_CONST (~0UL)
  1076. #else
  1077. # define WMULT_CONST (1UL << 32)
  1078. #endif
  1079. #define WMULT_SHIFT 32
  1080. /*
  1081. * Shift right and round:
  1082. */
  1083. #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
  1084. /*
  1085. * delta *= weight / lw
  1086. */
  1087. static unsigned long
  1088. calc_delta_mine(unsigned long delta_exec, unsigned long weight,
  1089. struct load_weight *lw)
  1090. {
  1091. u64 tmp;
  1092. if (!lw->inv_weight) {
  1093. if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
  1094. lw->inv_weight = 1;
  1095. else
  1096. lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
  1097. / (lw->weight+1);
  1098. }
  1099. tmp = (u64)delta_exec * weight;
  1100. /*
  1101. * Check whether we'd overflow the 64-bit multiplication:
  1102. */
  1103. if (unlikely(tmp > WMULT_CONST))
  1104. tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
  1105. WMULT_SHIFT/2);
  1106. else
  1107. tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
  1108. return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
  1109. }
  1110. static inline void update_load_add(struct load_weight *lw, unsigned long inc)
  1111. {
  1112. lw->weight += inc;
  1113. lw->inv_weight = 0;
  1114. }
  1115. static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
  1116. {
  1117. lw->weight -= dec;
  1118. lw->inv_weight = 0;
  1119. }
  1120. static inline void update_load_set(struct load_weight *lw, unsigned long w)
  1121. {
  1122. lw->weight = w;
  1123. lw->inv_weight = 0;
  1124. }
  1125. /*
  1126. * To aid in avoiding the subversion of "niceness" due to uneven distribution
  1127. * of tasks with abnormal "nice" values across CPUs the contribution that
  1128. * each task makes to its run queue's load is weighted according to its
  1129. * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
  1130. * scaled version of the new time slice allocation that they receive on time
  1131. * slice expiry etc.
  1132. */
  1133. #define WEIGHT_IDLEPRIO 3
  1134. #define WMULT_IDLEPRIO 1431655765
  1135. /*
  1136. * Nice levels are multiplicative, with a gentle 10% change for every
  1137. * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
  1138. * nice 1, it will get ~10% less CPU time than another CPU-bound task
  1139. * that remained on nice 0.
  1140. *
  1141. * The "10% effect" is relative and cumulative: from _any_ nice level,
  1142. * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
  1143. * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
  1144. * If a task goes up by ~10% and another task goes down by ~10% then
  1145. * the relative distance between them is ~25%.)
  1146. */
  1147. static const int prio_to_weight[40] = {
  1148. /* -20 */ 88761, 71755, 56483, 46273, 36291,
  1149. /* -15 */ 29154, 23254, 18705, 14949, 11916,
  1150. /* -10 */ 9548, 7620, 6100, 4904, 3906,
  1151. /* -5 */ 3121, 2501, 1991, 1586, 1277,
  1152. /* 0 */ 1024, 820, 655, 526, 423,
  1153. /* 5 */ 335, 272, 215, 172, 137,
  1154. /* 10 */ 110, 87, 70, 56, 45,
  1155. /* 15 */ 36, 29, 23, 18, 15,
  1156. };
  1157. /*
  1158. * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
  1159. *
  1160. * In cases where the weight does not change often, we can use the
  1161. * precalculated inverse to speed up arithmetics by turning divisions
  1162. * into multiplications:
  1163. */
  1164. static const u32 prio_to_wmult[40] = {
  1165. /* -20 */ 48388, 59856, 76040, 92818, 118348,
  1166. /* -15 */ 147320, 184698, 229616, 287308, 360437,
  1167. /* -10 */ 449829, 563644, 704093, 875809, 1099582,
  1168. /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
  1169. /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
  1170. /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
  1171. /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
  1172. /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
  1173. };
  1174. /* Time spent by the tasks of the cpu accounting group executing in ... */
  1175. enum cpuacct_stat_index {
  1176. CPUACCT_STAT_USER, /* ... user mode */
  1177. CPUACCT_STAT_SYSTEM, /* ... kernel mode */
  1178. CPUACCT_STAT_NSTATS,
  1179. };
  1180. #ifdef CONFIG_CGROUP_CPUACCT
  1181. static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
  1182. static void cpuacct_update_stats(struct task_struct *tsk,
  1183. enum cpuacct_stat_index idx, cputime_t val);
  1184. #else
  1185. static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
  1186. static inline void cpuacct_update_stats(struct task_struct *tsk,
  1187. enum cpuacct_stat_index idx, cputime_t val) {}
  1188. #endif
  1189. static inline void inc_cpu_load(struct rq *rq, unsigned long load)
  1190. {
  1191. update_load_add(&rq->load, load);
  1192. }
  1193. static inline void dec_cpu_load(struct rq *rq, unsigned long load)
  1194. {
  1195. update_load_sub(&rq->load, load);
  1196. }
  1197. #if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
  1198. typedef int (*tg_visitor)(struct task_group *, void *);
  1199. /*
  1200. * Iterate the full tree, calling @down when first entering a node and @up when
  1201. * leaving it for the final time.
  1202. */
  1203. static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
  1204. {
  1205. struct task_group *parent, *child;
  1206. int ret;
  1207. rcu_read_lock();
  1208. parent = &root_task_group;
  1209. down:
  1210. ret = (*down)(parent, data);
  1211. if (ret)
  1212. goto out_unlock;
  1213. list_for_each_entry_rcu(child, &parent->children, siblings) {
  1214. parent = child;
  1215. goto down;
  1216. up:
  1217. continue;
  1218. }
  1219. ret = (*up)(parent, data);
  1220. if (ret)
  1221. goto out_unlock;
  1222. child = parent;
  1223. parent = parent->parent;
  1224. if (parent)
  1225. goto up;
  1226. out_unlock:
  1227. rcu_read_unlock();
  1228. return ret;
  1229. }
  1230. static int tg_nop(struct task_group *tg, void *data)
  1231. {
  1232. return 0;
  1233. }
  1234. #endif
  1235. #ifdef CONFIG_SMP
  1236. /* Used instead of source_load when we know the type == 0 */
  1237. static unsigned long weighted_cpuload(const int cpu)
  1238. {
  1239. return cpu_rq(cpu)->load.weight;
  1240. }
  1241. /*
  1242. * Return a low guess at the load of a migration-source cpu weighted
  1243. * according to the scheduling class and "nice" value.
  1244. *
  1245. * We want to under-estimate the load of migration sources, to
  1246. * balance conservatively.
  1247. */
  1248. static unsigned long source_load(int cpu, int type)
  1249. {
  1250. struct rq *rq = cpu_rq(cpu);
  1251. unsigned long total = weighted_cpuload(cpu);
  1252. if (type == 0 || !sched_feat(LB_BIAS))
  1253. return total;
  1254. return min(rq->cpu_load[type-1], total);
  1255. }
  1256. /*
  1257. * Return a high guess at the load of a migration-target cpu weighted
  1258. * according to the scheduling class and "nice" value.
  1259. */
  1260. static unsigned long target_load(int cpu, int type)
  1261. {
  1262. struct rq *rq = cpu_rq(cpu);
  1263. unsigned long total = weighted_cpuload(cpu);
  1264. if (type == 0 || !sched_feat(LB_BIAS))
  1265. return total;
  1266. return max(rq->cpu_load[type-1], total);
  1267. }
  1268. static unsigned long power_of(int cpu)
  1269. {
  1270. return cpu_rq(cpu)->cpu_power;
  1271. }
  1272. static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
  1273. static unsigned long cpu_avg_load_per_task(int cpu)
  1274. {
  1275. struct rq *rq = cpu_rq(cpu);
  1276. unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
  1277. if (nr_running)
  1278. rq->avg_load_per_task = rq->load.weight / nr_running;
  1279. else
  1280. rq->avg_load_per_task = 0;
  1281. return rq->avg_load_per_task;
  1282. }
  1283. #ifdef CONFIG_FAIR_GROUP_SCHED
  1284. /*
  1285. * Compute the cpu's hierarchical load factor for each task group.
  1286. * This needs to be done in a top-down fashion because the load of a child
  1287. * group is a fraction of its parents load.
  1288. */
  1289. static int tg_load_down(struct task_group *tg, void *data)
  1290. {
  1291. unsigned long load;
  1292. long cpu = (long)data;
  1293. if (!tg->parent) {
  1294. load = cpu_rq(cpu)->load.weight;
  1295. } else {
  1296. load = tg->parent->cfs_rq[cpu]->h_load;
  1297. load *= tg->se[cpu]->load.weight;
  1298. load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
  1299. }
  1300. tg->cfs_rq[cpu]->h_load = load;
  1301. return 0;
  1302. }
  1303. static void update_h_load(long cpu)
  1304. {
  1305. walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
  1306. }
  1307. #endif
  1308. #ifdef CONFIG_PREEMPT
  1309. static void double_rq_lock(struct rq *rq1, struct rq *rq2);
  1310. /*
  1311. * fair double_lock_balance: Safely acquires both rq->locks in a fair
  1312. * way at the expense of forcing extra atomic operations in all
  1313. * invocations. This assures that the double_lock is acquired using the
  1314. * same underlying policy as the spinlock_t on this architecture, which
  1315. * reduces latency compared to the unfair variant below. However, it
  1316. * also adds more overhead and therefore may reduce throughput.
  1317. */
  1318. static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
  1319. __releases(this_rq->lock)
  1320. __acquires(busiest->lock)
  1321. __acquires(this_rq->lock)
  1322. {
  1323. raw_spin_unlock(&this_rq->lock);
  1324. double_rq_lock(this_rq, busiest);
  1325. return 1;
  1326. }
  1327. #else
  1328. /*
  1329. * Unfair double_lock_balance: Optimizes throughput at the expense of
  1330. * latency by eliminating extra atomic operations when the locks are
  1331. * already in proper order on entry. This favors lower cpu-ids and will
  1332. * grant the double lock to lower cpus over higher ids under contention,
  1333. * regardless of entry order into the function.
  1334. */
  1335. static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
  1336. __releases(this_rq->lock)
  1337. __acquires(busiest->lock)
  1338. __acquires(this_rq->lock)
  1339. {
  1340. int ret = 0;
  1341. if (unlikely(!raw_spin_trylock(&busiest->lock))) {
  1342. if (busiest < this_rq) {
  1343. raw_spin_unlock(&this_rq->lock);
  1344. raw_spin_lock(&busiest->lock);
  1345. raw_spin_lock_nested(&this_rq->lock,
  1346. SINGLE_DEPTH_NESTING);
  1347. ret = 1;
  1348. } else
  1349. raw_spin_lock_nested(&busiest->lock,
  1350. SINGLE_DEPTH_NESTING);
  1351. }
  1352. return ret;
  1353. }
  1354. #endif /* CONFIG_PREEMPT */
  1355. /*
  1356. * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
  1357. */
  1358. static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
  1359. {
  1360. if (unlikely(!irqs_disabled())) {
  1361. /* printk() doesn't work good under rq->lock */
  1362. raw_spin_unlock(&this_rq->lock);
  1363. BUG_ON(1);
  1364. }
  1365. return _double_lock_balance(this_rq, busiest);
  1366. }
  1367. static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
  1368. __releases(busiest->lock)
  1369. {
  1370. raw_spin_unlock(&busiest->lock);
  1371. lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
  1372. }
  1373. /*
  1374. * double_rq_lock - safely lock two runqueues
  1375. *
  1376. * Note this does not disable interrupts like task_rq_lock,
  1377. * you need to do so manually before calling.
  1378. */
  1379. static void double_rq_lock(struct rq *rq1, struct rq *rq2)
  1380. __acquires(rq1->lock)
  1381. __acquires(rq2->lock)
  1382. {
  1383. BUG_ON(!irqs_disabled());
  1384. if (rq1 == rq2) {
  1385. raw_spin_lock(&rq1->lock);
  1386. __acquire(rq2->lock); /* Fake it out ;) */
  1387. } else {
  1388. if (rq1 < rq2) {
  1389. raw_spin_lock(&rq1->lock);
  1390. raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
  1391. } else {
  1392. raw_spin_lock(&rq2->lock);
  1393. raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
  1394. }
  1395. }
  1396. }
  1397. /*
  1398. * double_rq_unlock - safely unlock two runqueues
  1399. *
  1400. * Note this does not restore interrupts like task_rq_unlock,
  1401. * you need to do so manually after calling.
  1402. */
  1403. static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
  1404. __releases(rq1->lock)
  1405. __releases(rq2->lock)
  1406. {
  1407. raw_spin_unlock(&rq1->lock);
  1408. if (rq1 != rq2)
  1409. raw_spin_unlock(&rq2->lock);
  1410. else
  1411. __release(rq2->lock);
  1412. }
  1413. #endif
  1414. static void calc_load_account_idle(struct rq *this_rq);
  1415. static void update_sysctl(void);
  1416. static int get_update_sysctl_factor(void);
  1417. static void update_cpu_load(struct rq *this_rq);
  1418. static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
  1419. {
  1420. set_task_rq(p, cpu);
  1421. #ifdef CONFIG_SMP
  1422. /*
  1423. * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
  1424. * successfuly executed on another CPU. We must ensure that updates of
  1425. * per-task data have been completed by this moment.
  1426. */
  1427. smp_wmb();
  1428. task_thread_info(p)->cpu = cpu;
  1429. #endif
  1430. }
  1431. static const struct sched_class rt_sched_class;
  1432. #define sched_class_highest (&stop_sched_class)
  1433. #define for_each_class(class) \
  1434. for (class = sched_class_highest; class; class = class->next)
  1435. #include "sched_stats.h"
  1436. static void inc_nr_running(struct rq *rq)
  1437. {
  1438. rq->nr_running++;
  1439. }
  1440. static void dec_nr_running(struct rq *rq)
  1441. {
  1442. rq->nr_running--;
  1443. }
  1444. static void set_load_weight(struct task_struct *p)
  1445. {
  1446. /*
  1447. * SCHED_IDLE tasks get minimal weight:
  1448. */
  1449. if (p->policy == SCHED_IDLE) {
  1450. p->se.load.weight = WEIGHT_IDLEPRIO;
  1451. p->se.load.inv_weight = WMULT_IDLEPRIO;
  1452. return;
  1453. }
  1454. p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
  1455. p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
  1456. }
  1457. static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
  1458. {
  1459. update_rq_clock(rq);
  1460. sched_info_queued(p);
  1461. p->sched_class->enqueue_task(rq, p, flags);
  1462. p->se.on_rq = 1;
  1463. }
  1464. static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
  1465. {
  1466. update_rq_clock(rq);
  1467. sched_info_dequeued(p);
  1468. p->sched_class->dequeue_task(rq, p, flags);
  1469. p->se.on_rq = 0;
  1470. }
  1471. /*
  1472. * activate_task - move a task to the runqueue.
  1473. */
  1474. static void activate_task(struct rq *rq, struct task_struct *p, int flags)
  1475. {
  1476. if (task_contributes_to_load(p))
  1477. rq->nr_uninterruptible--;
  1478. enqueue_task(rq, p, flags);
  1479. inc_nr_running(rq);
  1480. }
  1481. /*
  1482. * deactivate_task - remove a task from the runqueue.
  1483. */
  1484. static void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
  1485. {
  1486. if (task_contributes_to_load(p))
  1487. rq->nr_uninterruptible++;
  1488. dequeue_task(rq, p, flags);
  1489. dec_nr_running(rq);
  1490. }
  1491. #ifdef CONFIG_IRQ_TIME_ACCOUNTING
  1492. /*
  1493. * There are no locks covering percpu hardirq/softirq time.
  1494. * They are only modified in account_system_vtime, on corresponding CPU
  1495. * with interrupts disabled. So, writes are safe.
  1496. * They are read and saved off onto struct rq in update_rq_clock().
  1497. * This may result in other CPU reading this CPU's irq time and can
  1498. * race with irq/account_system_vtime on this CPU. We would either get old
  1499. * or new value with a side effect of accounting a slice of irq time to wrong
  1500. * task when irq is in progress while we read rq->clock. That is a worthy
  1501. * compromise in place of having locks on each irq in account_system_time.
  1502. */
  1503. static DEFINE_PER_CPU(u64, cpu_hardirq_time);
  1504. static DEFINE_PER_CPU(u64, cpu_softirq_time);
  1505. static DEFINE_PER_CPU(u64, irq_start_time);
  1506. static int sched_clock_irqtime;
  1507. void enable_sched_clock_irqtime(void)
  1508. {
  1509. sched_clock_irqtime = 1;
  1510. }
  1511. void disable_sched_clock_irqtime(void)
  1512. {
  1513. sched_clock_irqtime = 0;
  1514. }
  1515. #ifndef CONFIG_64BIT
  1516. static DEFINE_PER_CPU(seqcount_t, irq_time_seq);
  1517. static inline void irq_time_write_begin(void)
  1518. {
  1519. __this_cpu_inc(irq_time_seq.sequence);
  1520. smp_wmb();
  1521. }
  1522. static inline void irq_time_write_end(void)
  1523. {
  1524. smp_wmb();
  1525. __this_cpu_inc(irq_time_seq.sequence);
  1526. }
  1527. static inline u64 irq_time_read(int cpu)
  1528. {
  1529. u64 irq_time;
  1530. unsigned seq;
  1531. do {
  1532. seq = read_seqcount_begin(&per_cpu(irq_time_seq, cpu));
  1533. irq_time = per_cpu(cpu_softirq_time, cpu) +
  1534. per_cpu(cpu_hardirq_time, cpu);
  1535. } while (read_seqcount_retry(&per_cpu(irq_time_seq, cpu), seq));
  1536. return irq_time;
  1537. }
  1538. #else /* CONFIG_64BIT */
  1539. static inline void irq_time_write_begin(void)
  1540. {
  1541. }
  1542. static inline void irq_time_write_end(void)
  1543. {
  1544. }
  1545. static inline u64 irq_time_read(int cpu)
  1546. {
  1547. return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu);
  1548. }
  1549. #endif /* CONFIG_64BIT */
  1550. /*
  1551. * Called before incrementing preempt_count on {soft,}irq_enter
  1552. * and before decrementing preempt_count on {soft,}irq_exit.
  1553. */
  1554. void account_system_vtime(struct task_struct *curr)
  1555. {
  1556. unsigned long flags;
  1557. s64 delta;
  1558. int cpu;
  1559. if (!sched_clock_irqtime)
  1560. return;
  1561. local_irq_save(flags);
  1562. cpu = smp_processor_id();
  1563. delta = sched_clock_cpu(cpu) - __this_cpu_read(irq_start_time);
  1564. __this_cpu_add(irq_start_time, delta);
  1565. irq_time_write_begin();
  1566. /*
  1567. * We do not account for softirq time from ksoftirqd here.
  1568. * We want to continue accounting softirq time to ksoftirqd thread
  1569. * in that case, so as not to confuse scheduler with a special task
  1570. * that do not consume any time, but still wants to run.
  1571. */
  1572. if (hardirq_count())
  1573. __this_cpu_add(cpu_hardirq_time, delta);
  1574. else if (in_serving_softirq() && !(curr->flags & PF_KSOFTIRQD))
  1575. __this_cpu_add(cpu_softirq_time, delta);
  1576. irq_time_write_end();
  1577. local_irq_restore(flags);
  1578. }
  1579. EXPORT_SYMBOL_GPL(account_system_vtime);
  1580. static void update_rq_clock_task(struct rq *rq, s64 delta)
  1581. {
  1582. s64 irq_delta;
  1583. irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
  1584. /*
  1585. * Since irq_time is only updated on {soft,}irq_exit, we might run into
  1586. * this case when a previous update_rq_clock() happened inside a
  1587. * {soft,}irq region.
  1588. *
  1589. * When this happens, we stop ->clock_task and only update the
  1590. * prev_irq_time stamp to account for the part that fit, so that a next
  1591. * update will consume the rest. This ensures ->clock_task is
  1592. * monotonic.
  1593. *
  1594. * It does however cause some slight miss-attribution of {soft,}irq
  1595. * time, a more accurate solution would be to update the irq_time using
  1596. * the current rq->clock timestamp, except that would require using
  1597. * atomic ops.
  1598. */
  1599. if (irq_delta > delta)
  1600. irq_delta = delta;
  1601. rq->prev_irq_time += irq_delta;
  1602. delta -= irq_delta;
  1603. rq->clock_task += delta;
  1604. if (irq_delta && sched_feat(NONIRQ_POWER))
  1605. sched_rt_avg_update(rq, irq_delta);
  1606. }
  1607. #else /* CONFIG_IRQ_TIME_ACCOUNTING */
  1608. static void update_rq_clock_task(struct rq *rq, s64 delta)
  1609. {
  1610. rq->clock_task += delta;
  1611. }
  1612. #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
  1613. #include "sched_idletask.c"
  1614. #include "sched_fair.c"
  1615. #include "sched_rt.c"
  1616. #include "sched_autogroup.c"
  1617. #include "sched_stoptask.c"
  1618. #ifdef CONFIG_SCHED_DEBUG
  1619. # include "sched_debug.c"
  1620. #endif
  1621. void sched_set_stop_task(int cpu, struct task_struct *stop)
  1622. {
  1623. struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
  1624. struct task_struct *old_stop = cpu_rq(cpu)->stop;
  1625. if (stop) {
  1626. /*
  1627. * Make it appear like a SCHED_FIFO task, its something
  1628. * userspace knows about and won't get confused about.
  1629. *
  1630. * Also, it will make PI more or less work without too
  1631. * much confusion -- but then, stop work should not
  1632. * rely on PI working anyway.
  1633. */
  1634. sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
  1635. stop->sched_class = &stop_sched_class;
  1636. }
  1637. cpu_rq(cpu)->stop = stop;
  1638. if (old_stop) {
  1639. /*
  1640. * Reset it back to a normal scheduling class so that
  1641. * it can die in pieces.
  1642. */
  1643. old_stop->sched_class = &rt_sched_class;
  1644. }
  1645. }
  1646. /*
  1647. * __normal_prio - return the priority that is based on the static prio
  1648. */
  1649. static inline int __normal_prio(struct task_struct *p)
  1650. {
  1651. return p->static_prio;
  1652. }
  1653. /*
  1654. * Calculate the expected normal priority: i.e. priority
  1655. * without taking RT-inheritance into account. Might be
  1656. * boosted by interactivity modifiers. Changes upon fork,
  1657. * setprio syscalls, and whenever the interactivity
  1658. * estimator recalculates.
  1659. */
  1660. static inline int normal_prio(struct task_struct *p)
  1661. {
  1662. int prio;
  1663. if (task_has_rt_policy(p))
  1664. prio = MAX_RT_PRIO-1 - p->rt_priority;
  1665. else
  1666. prio = __normal_prio(p);
  1667. return prio;
  1668. }
  1669. /*
  1670. * Calculate the current priority, i.e. the priority
  1671. * taken into account by the scheduler. This value might
  1672. * be boosted by RT tasks, or might be boosted by
  1673. * interactivity modifiers. Will be RT if the task got
  1674. * RT-boosted. If not then it returns p->normal_prio.
  1675. */
  1676. static int effective_prio(struct task_struct *p)
  1677. {
  1678. p->normal_prio = normal_prio(p);
  1679. /*
  1680. * If we are RT tasks or we were boosted to RT priority,
  1681. * keep the priority unchanged. Otherwise, update priority
  1682. * to the normal priority:
  1683. */
  1684. if (!rt_prio(p->prio))
  1685. return p->normal_prio;
  1686. return p->prio;
  1687. }
  1688. /**
  1689. * task_curr - is this task currently executing on a CPU?
  1690. * @p: the task in question.
  1691. */
  1692. inline int task_curr(const struct task_struct *p)
  1693. {
  1694. return cpu_curr(task_cpu(p)) == p;
  1695. }
  1696. static inline void check_class_changed(struct rq *rq, struct task_struct *p,
  1697. const struct sched_class *prev_class,
  1698. int oldprio, int running)
  1699. {
  1700. if (prev_class != p->sched_class) {
  1701. if (prev_class->switched_from)
  1702. prev_class->switched_from(rq, p, running);
  1703. p->sched_class->switched_to(rq, p, running);
  1704. } else
  1705. p->sched_class->prio_changed(rq, p, oldprio, running);
  1706. }
  1707. static void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
  1708. {
  1709. const struct sched_class *class;
  1710. if (p->sched_class == rq->curr->sched_class) {
  1711. rq->curr->sched_class->check_preempt_curr(rq, p, flags);
  1712. } else {
  1713. for_each_class(class) {
  1714. if (class == rq->curr->sched_class)
  1715. break;
  1716. if (class == p->sched_class) {
  1717. resched_task(rq->curr);
  1718. break;
  1719. }
  1720. }
  1721. }
  1722. /*
  1723. * A queue event has occurred, and we're going to schedule. In
  1724. * this case, we can save a useless back to back clock update.
  1725. */
  1726. if (rq->curr->se.on_rq && test_tsk_need_resched(rq->curr))
  1727. rq->skip_clock_update = 1;
  1728. }
  1729. #ifdef CONFIG_SMP
  1730. /*
  1731. * Is this task likely cache-hot:
  1732. */
  1733. static int
  1734. task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
  1735. {
  1736. s64 delta;
  1737. if (p->sched_class != &fair_sched_class)
  1738. return 0;
  1739. if (unlikely(p->policy == SCHED_IDLE))
  1740. return 0;
  1741. /*
  1742. * Buddy candidates are cache hot:
  1743. */
  1744. if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
  1745. (&p->se == cfs_rq_of(&p->se)->next ||
  1746. &p->se == cfs_rq_of(&p->se)->last))
  1747. return 1;
  1748. if (sysctl_sched_migration_cost == -1)
  1749. return 1;
  1750. if (sysctl_sched_migration_cost == 0)
  1751. return 0;
  1752. delta = now - p->se.exec_start;
  1753. return delta < (s64)sysctl_sched_migration_cost;
  1754. }
  1755. void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
  1756. {
  1757. #ifdef CONFIG_SCHED_DEBUG
  1758. /*
  1759. * We should never call set_task_cpu() on a blocked task,
  1760. * ttwu() will sort out the placement.
  1761. */
  1762. WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
  1763. !(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
  1764. #endif
  1765. trace_sched_migrate_task(p, new_cpu);
  1766. if (task_cpu(p) != new_cpu) {
  1767. p->se.nr_migrations++;
  1768. perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, 1, NULL, 0);
  1769. }
  1770. __set_task_cpu(p, new_cpu);
  1771. }
  1772. struct migration_arg {
  1773. struct task_struct *task;
  1774. int dest_cpu;
  1775. };
  1776. static int migration_cpu_stop(void *data);
  1777. /*
  1778. * The task's runqueue lock must be held.
  1779. * Returns true if you have to wait for migration thread.
  1780. */
  1781. static bool migrate_task(struct task_struct *p, struct rq *rq)
  1782. {
  1783. /*
  1784. * If the task is not on a runqueue (and not running), then
  1785. * the next wake-up will properly place the task.
  1786. */
  1787. return p->se.on_rq || task_running(rq, p);
  1788. }
  1789. /*
  1790. * wait_task_inactive - wait for a thread to unschedule.
  1791. *
  1792. * If @match_state is nonzero, it's the @p->state value just checked and
  1793. * not expected to change. If it changes, i.e. @p might have woken up,
  1794. * then return zero. When we succeed in waiting for @p to be off its CPU,
  1795. * we return a positive number (its total switch count). If a second call
  1796. * a short while later returns the same number, the caller can be sure that
  1797. * @p has remained unscheduled the whole time.
  1798. *
  1799. * The caller must ensure that the task *will* unschedule sometime soon,
  1800. * else this function might spin for a *long* time. This function can't
  1801. * be called with interrupts off, or it may introduce deadlock with
  1802. * smp_call_function() if an IPI is sent by the same process we are
  1803. * waiting to become inactive.
  1804. */
  1805. unsigned long wait_task_inactive(struct task_struct *p, long match_state)
  1806. {
  1807. unsigned long flags;
  1808. int running, on_rq;
  1809. unsigned long ncsw;
  1810. struct rq *rq;
  1811. for (;;) {
  1812. /*
  1813. * We do the initial early heuristics without holding
  1814. * any task-queue locks at all. We'll only try to get
  1815. * the runqueue lock when things look like they will
  1816. * work out!
  1817. */
  1818. rq = task_rq(p);
  1819. /*
  1820. * If the task is actively running on another CPU
  1821. * still, just relax and busy-wait without holding
  1822. * any locks.
  1823. *
  1824. * NOTE! Since we don't hold any locks, it's not
  1825. * even sure that "rq" stays as the right runqueue!
  1826. * But we don't care, since "task_running()" will
  1827. * return false if the runqueue has changed and p
  1828. * is actually now running somewhere else!
  1829. */
  1830. while (task_running(rq, p)) {
  1831. if (match_state && unlikely(p->state != match_state))
  1832. return 0;
  1833. cpu_relax();
  1834. }
  1835. /*
  1836. * Ok, time to look more closely! We need the rq
  1837. * lock now, to be *sure*. If we're wrong, we'll
  1838. * just go back and repeat.
  1839. */
  1840. rq = task_rq_lock(p, &flags);
  1841. trace_sched_wait_task(p);
  1842. running = task_running(rq, p);
  1843. on_rq = p->se.on_rq;
  1844. ncsw = 0;
  1845. if (!match_state || p->state == match_state)
  1846. ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
  1847. task_rq_unlock(rq, &flags);
  1848. /*
  1849. * If it changed from the expected state, bail out now.
  1850. */
  1851. if (unlikely(!ncsw))
  1852. break;
  1853. /*
  1854. * Was it really running after all now that we
  1855. * checked with the proper locks actually held?
  1856. *
  1857. * Oops. Go back and try again..
  1858. */
  1859. if (unlikely(running)) {
  1860. cpu_relax();
  1861. continue;
  1862. }
  1863. /*
  1864. * It's not enough that it's not actively running,
  1865. * it must be off the runqueue _entirely_, and not
  1866. * preempted!
  1867. *
  1868. * So if it was still runnable (but just not actively
  1869. * running right now), it's preempted, and we should
  1870. * yield - it could be a while.
  1871. */
  1872. if (unlikely(on_rq)) {
  1873. schedule_timeout_uninterruptible(1);
  1874. continue;
  1875. }
  1876. /*
  1877. * Ahh, all good. It wasn't running, and it wasn't
  1878. * runnable, which means that it will never become
  1879. * running in the future either. We're all done!
  1880. */
  1881. break;
  1882. }
  1883. return ncsw;
  1884. }
  1885. /***
  1886. * kick_process - kick a running thread to enter/exit the kernel
  1887. * @p: the to-be-kicked thread
  1888. *
  1889. * Cause a process which is running on another CPU to enter
  1890. * kernel-mode, without any delay. (to get signals handled.)
  1891. *
  1892. * NOTE: this function doesnt have to take the runqueue lock,
  1893. * because all it wants to ensure is that the remote task enters
  1894. * the kernel. If the IPI races and the task has been migrated
  1895. * to another CPU then no harm is done and the purpose has been
  1896. * achieved as well.
  1897. */
  1898. void kick_process(struct task_struct *p)
  1899. {
  1900. int cpu;
  1901. preempt_disable();
  1902. cpu = task_cpu(p);
  1903. if ((cpu != smp_processor_id()) && task_curr(p))
  1904. smp_send_reschedule(cpu);
  1905. preempt_enable();
  1906. }
  1907. EXPORT_SYMBOL_GPL(kick_process);
  1908. #endif /* CONFIG_SMP */
  1909. #ifdef CONFIG_SMP
  1910. /*
  1911. * ->cpus_allowed is protected by either TASK_WAKING or rq->lock held.
  1912. */
  1913. static int select_fallback_rq(int cpu, struct task_struct *p)
  1914. {
  1915. int dest_cpu;
  1916. const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));
  1917. /* Look for allowed, online CPU in same node. */
  1918. for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask)
  1919. if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
  1920. return dest_cpu;
  1921. /* Any allowed, online CPU? */
  1922. dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_active_mask);
  1923. if (dest_cpu < nr_cpu_ids)
  1924. return dest_cpu;
  1925. /* No more Mr. Nice Guy. */
  1926. dest_cpu = cpuset_cpus_allowed_fallback(p);
  1927. /*
  1928. * Don't tell them about moving exiting tasks or
  1929. * kernel threads (both mm NULL), since they never
  1930. * leave kernel.
  1931. */
  1932. if (p->mm && printk_ratelimit()) {
  1933. printk(KERN_INFO "process %d (%s) no longer affine to cpu%d\n",
  1934. task_pid_nr(p), p->comm, cpu);
  1935. }
  1936. return dest_cpu;
  1937. }
  1938. /*
  1939. * The caller (fork, wakeup) owns TASK_WAKING, ->cpus_allowed is stable.
  1940. */
  1941. static inline
  1942. int select_task_rq(struct rq *rq, struct task_struct *p, int sd_flags, int wake_flags)
  1943. {
  1944. int cpu = p->sched_class->select_task_rq(rq, p, sd_flags, wake_flags);
  1945. /*
  1946. * In order not to call set_task_cpu() on a blocking task we need
  1947. * to rely on ttwu() to place the task on a valid ->cpus_allowed
  1948. * cpu.
  1949. *
  1950. * Since this is common to all placement strategies, this lives here.
  1951. *
  1952. * [ this allows ->select_task() to simply return task_cpu(p) and
  1953. * not worry about this generic constraint ]
  1954. */
  1955. if (unlikely(!cpumask_test_cpu(cpu, &p->cpus_allowed) ||
  1956. !cpu_online(cpu)))
  1957. cpu = select_fallback_rq(task_cpu(p), p);
  1958. return cpu;
  1959. }
  1960. static void update_avg(u64 *avg, u64 sample)
  1961. {
  1962. s64 diff = sample - *avg;
  1963. *avg += diff >> 3;
  1964. }
  1965. #endif
  1966. static inline void ttwu_activate(struct task_struct *p, struct rq *rq,
  1967. bool is_sync, bool is_migrate, bool is_local,
  1968. unsigned long en_flags)
  1969. {
  1970. schedstat_inc(p, se.statistics.nr_wakeups);
  1971. if (is_sync)
  1972. schedstat_inc(p, se.statistics.nr_wakeups_sync);
  1973. if (is_migrate)
  1974. schedstat_inc(p, se.statistics.nr_wakeups_migrate);
  1975. if (is_local)
  1976. schedstat_inc(p, se.statistics.nr_wakeups_local);
  1977. else
  1978. schedstat_inc(p, se.statistics.nr_wakeups_remote);
  1979. activate_task(rq, p, en_flags);
  1980. }
  1981. static inline void ttwu_post_activation(struct task_struct *p, struct rq *rq,
  1982. int wake_flags, bool success)
  1983. {
  1984. trace_sched_wakeup(p, success);
  1985. check_preempt_curr(rq, p, wake_flags);
  1986. p->state = TASK_RUNNING;
  1987. #ifdef CONFIG_SMP
  1988. if (p->sched_class->task_woken)
  1989. p->sched_class->task_woken(rq, p);
  1990. if (unlikely(rq->idle_stamp)) {
  1991. u64 delta = rq->clock - rq->idle_stamp;
  1992. u64 max = 2*sysctl_sched_migration_cost;
  1993. if (delta > max)
  1994. rq->avg_idle = max;
  1995. else
  1996. update_avg(&rq->avg_idle, delta);
  1997. rq->idle_stamp = 0;
  1998. }
  1999. #endif
  2000. /* if a worker is waking up, notify workqueue */
  2001. if ((p->flags & PF_WQ_WORKER) && success)
  2002. wq_worker_waking_up(p, cpu_of(rq));
  2003. }
  2004. /**
  2005. * try_to_wake_up - wake up a thread
  2006. * @p: the thread to be awakened
  2007. * @state: the mask of task states that can be woken
  2008. * @wake_flags: wake modifier flags (WF_*)
  2009. *
  2010. * Put it on the run-queue if it's not already there. The "current"
  2011. * thread is always on the run-queue (except when the actual
  2012. * re-schedule is in progress), and as such you're allowed to do
  2013. * the simpler "current->state = TASK_RUNNING" to mark yourself
  2014. * runnable without the overhead of this.
  2015. *
  2016. * Returns %true if @p was woken up, %false if it was already running
  2017. * or @state didn't match @p's state.
  2018. */
  2019. static int try_to_wake_up(struct task_struct *p, unsigned int state,
  2020. int wake_flags)
  2021. {
  2022. int cpu, orig_cpu, this_cpu, success = 0;
  2023. unsigned long flags;
  2024. unsigned long en_flags = ENQUEUE_WAKEUP;
  2025. struct rq *rq;
  2026. this_cpu = get_cpu();
  2027. smp_wmb();
  2028. rq = task_rq_lock(p, &flags);
  2029. if (!(p->state & state))
  2030. goto out;
  2031. if (p->se.on_rq)
  2032. goto out_running;
  2033. cpu = task_cpu(p);
  2034. orig_cpu = cpu;
  2035. #ifdef CONFIG_SMP
  2036. if (unlikely(task_running(rq, p)))
  2037. goto out_activate;
  2038. /*
  2039. * In order to handle concurrent wakeups and release the rq->lock
  2040. * we put the task in TASK_WAKING state.
  2041. *
  2042. * First fix up the nr_uninterruptible count:
  2043. */
  2044. if (task_contributes_to_load(p)) {
  2045. if (likely(cpu_online(orig_cpu)))
  2046. rq->nr_uninterruptible--;
  2047. else
  2048. this_rq()->nr_uninterruptible--;
  2049. }
  2050. p->state = TASK_WAKING;
  2051. if (p->sched_class->task_waking) {
  2052. p->sched_class->task_waking(rq, p);
  2053. en_flags |= ENQUEUE_WAKING;
  2054. }
  2055. cpu = select_task_rq(rq, p, SD_BALANCE_WAKE, wake_flags);
  2056. if (cpu != orig_cpu)
  2057. set_task_cpu(p, cpu);
  2058. __task_rq_unlock(rq);
  2059. rq = cpu_rq(cpu);
  2060. raw_spin_lock(&rq->lock);
  2061. /*
  2062. * We migrated the task without holding either rq->lock, however
  2063. * since the task is not on the task list itself, nobody else
  2064. * will try and migrate the task, hence the rq should match the
  2065. * cpu we just moved it to.
  2066. */
  2067. WARN_ON(task_cpu(p) != cpu);
  2068. WARN_ON(p->state != TASK_WAKING);
  2069. #ifdef CONFIG_SCHEDSTATS
  2070. schedstat_inc(rq, ttwu_count);
  2071. if (cpu == this_cpu)
  2072. schedstat_inc(rq, ttwu_local);
  2073. else {
  2074. struct sched_domain *sd;
  2075. for_each_domain(this_cpu, sd) {
  2076. if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
  2077. schedstat_inc(sd, ttwu_wake_remote);
  2078. break;
  2079. }
  2080. }
  2081. }
  2082. #endif /* CONFIG_SCHEDSTATS */
  2083. out_activate:
  2084. #endif /* CONFIG_SMP */
  2085. ttwu_activate(p, rq, wake_flags & WF_SYNC, orig_cpu != cpu,
  2086. cpu == this_cpu, en_flags);
  2087. success = 1;
  2088. out_running:
  2089. ttwu_post_activation(p, rq, wake_flags, success);
  2090. out:
  2091. task_rq_unlock(rq, &flags);
  2092. put_cpu();
  2093. return success;
  2094. }
  2095. /**
  2096. * try_to_wake_up_local - try to wake up a local task with rq lock held
  2097. * @p: the thread to be awakened
  2098. *
  2099. * Put @p on the run-queue if it's not already there. The caller must
  2100. * ensure that this_rq() is locked, @p is bound to this_rq() and not
  2101. * the current task. this_rq() stays locked over invocation.
  2102. */
  2103. static void try_to_wake_up_local(struct task_struct *p)
  2104. {
  2105. struct rq *rq = task_rq(p);
  2106. bool success = false;
  2107. BUG_ON(rq != this_rq());
  2108. BUG_ON(p == current);
  2109. lockdep_assert_held(&rq->lock);
  2110. if (!(p->state & TASK_NORMAL))
  2111. return;
  2112. if (!p->se.on_rq) {
  2113. if (likely(!task_running(rq, p))) {
  2114. schedstat_inc(rq, ttwu_count);
  2115. schedstat_inc(rq, ttwu_local);
  2116. }
  2117. ttwu_activate(p, rq, false, false, true, ENQUEUE_WAKEUP);
  2118. success = true;
  2119. }
  2120. ttwu_post_activation(p, rq, 0, success);
  2121. }
  2122. /**
  2123. * wake_up_process - Wake up a specific process
  2124. * @p: The process to be woken up.
  2125. *
  2126. * Attempt to wake up the nominated process and move it to the set of runnable
  2127. * processes. Returns 1 if the process was woken up, 0 if it was already
  2128. * running.
  2129. *
  2130. * It may be assumed that this function implies a write memory barrier before
  2131. * changing the task state if and only if any tasks are woken up.
  2132. */
  2133. int wake_up_process(struct task_struct *p)
  2134. {
  2135. return try_to_wake_up(p, TASK_ALL, 0);
  2136. }
  2137. EXPORT_SYMBOL(wake_up_process);
  2138. int wake_up_state(struct task_struct *p, unsigned int state)
  2139. {
  2140. return try_to_wake_up(p, state, 0);
  2141. }
  2142. /*
  2143. * Perform scheduler related setup for a newly forked process p.
  2144. * p is forked by current.
  2145. *
  2146. * __sched_fork() is basic setup used by init_idle() too:
  2147. */
  2148. static void __sched_fork(struct task_struct *p)
  2149. {
  2150. p->se.exec_start = 0;
  2151. p->se.sum_exec_runtime = 0;
  2152. p->se.prev_sum_exec_runtime = 0;
  2153. p->se.nr_migrations = 0;
  2154. #ifdef CONFIG_SCHEDSTATS
  2155. memset(&p->se.statistics, 0, sizeof(p->se.statistics));
  2156. #endif
  2157. INIT_LIST_HEAD(&p->rt.run_list);
  2158. p->se.on_rq = 0;
  2159. INIT_LIST_HEAD(&p->se.group_node);
  2160. #ifdef CONFIG_PREEMPT_NOTIFIERS
  2161. INIT_HLIST_HEAD(&p->preempt_notifiers);
  2162. #endif
  2163. }
  2164. /*
  2165. * fork()/clone()-time setup:
  2166. */
  2167. void sched_fork(struct task_struct *p, int clone_flags)
  2168. {
  2169. int cpu = get_cpu();
  2170. __sched_fork(p);
  2171. /*
  2172. * We mark the process as running here. This guarantees that
  2173. * nobody will actually run it, and a signal or other external
  2174. * event cannot wake it up and insert it on the runqueue either.
  2175. */
  2176. p->state = TASK_RUNNING;
  2177. /*
  2178. * Revert to default priority/policy on fork if requested.
  2179. */
  2180. if (unlikely(p->sched_reset_on_fork)) {
  2181. if (p->policy == SCHED_FIFO || p->policy == SCHED_RR) {
  2182. p->policy = SCHED_NORMAL;
  2183. p->normal_prio = p->static_prio;
  2184. }
  2185. if (PRIO_TO_NICE(p->static_prio) < 0) {
  2186. p->static_prio = NICE_TO_PRIO(0);
  2187. p->normal_prio = p->static_prio;
  2188. set_load_weight(p);
  2189. }
  2190. /*
  2191. * We don't need the reset flag anymore after the fork. It has
  2192. * fulfilled its duty:
  2193. */
  2194. p->sched_reset_on_fork = 0;
  2195. }
  2196. /*
  2197. * Make sure we do not leak PI boosting priority to the child.
  2198. */
  2199. p->prio = current->normal_prio;
  2200. if (!rt_prio(p->prio))
  2201. p->sched_class = &fair_sched_class;
  2202. if (p->sched_class->task_fork)
  2203. p->sched_class->task_fork(p);
  2204. /*
  2205. * The child is not yet in the pid-hash so no cgroup attach races,
  2206. * and the cgroup is pinned to this child due to cgroup_fork()
  2207. * is ran before sched_fork().
  2208. *
  2209. * Silence PROVE_RCU.
  2210. */
  2211. rcu_read_lock();
  2212. set_task_cpu(p, cpu);
  2213. rcu_read_unlock();
  2214. #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
  2215. if (likely(sched_info_on()))
  2216. memset(&p->sched_info, 0, sizeof(p->sched_info));
  2217. #endif
  2218. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  2219. p->oncpu = 0;
  2220. #endif
  2221. #ifdef CONFIG_PREEMPT
  2222. /* Want to start with kernel preemption disabled. */
  2223. task_thread_info(p)->preempt_count = 1;
  2224. #endif
  2225. #ifdef CONFIG_SMP
  2226. plist_node_init(&p->pushable_tasks, MAX_PRIO);
  2227. #endif
  2228. put_cpu();
  2229. }
  2230. /*
  2231. * wake_up_new_task - wake up a newly created task for the first time.
  2232. *
  2233. * This function will do some initial scheduler statistics housekeeping
  2234. * that must be done for every newly created context, then puts the task
  2235. * on the runqueue and wakes it.
  2236. */
  2237. void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
  2238. {
  2239. unsigned long flags;
  2240. struct rq *rq;
  2241. int cpu __maybe_unused = get_cpu();
  2242. #ifdef CONFIG_SMP
  2243. rq = task_rq_lock(p, &flags);
  2244. p->state = TASK_WAKING;
  2245. /*
  2246. * Fork balancing, do it here and not earlier because:
  2247. * - cpus_allowed can change in the fork path
  2248. * - any previously selected cpu might disappear through hotplug
  2249. *
  2250. * We set TASK_WAKING so that select_task_rq() can drop rq->lock
  2251. * without people poking at ->cpus_allowed.
  2252. */
  2253. cpu = select_task_rq(rq, p, SD_BALANCE_FORK, 0);
  2254. set_task_cpu(p, cpu);
  2255. p->state = TASK_RUNNING;
  2256. task_rq_unlock(rq, &flags);
  2257. #endif
  2258. rq = task_rq_lock(p, &flags);
  2259. activate_task(rq, p, 0);
  2260. trace_sched_wakeup_new(p, 1);
  2261. check_preempt_curr(rq, p, WF_FORK);
  2262. #ifdef CONFIG_SMP
  2263. if (p->sched_class->task_woken)
  2264. p->sched_class->task_woken(rq, p);
  2265. #endif
  2266. task_rq_unlock(rq, &flags);
  2267. put_cpu();
  2268. }
  2269. #ifdef CONFIG_PREEMPT_NOTIFIERS
  2270. /**
  2271. * preempt_notifier_register - tell me when current is being preempted & rescheduled
  2272. * @notifier: notifier struct to register
  2273. */
  2274. void preempt_notifier_register(struct preempt_notifier *notifier)
  2275. {
  2276. hlist_add_head(&notifier->link, &current->preempt_notifiers);
  2277. }
  2278. EXPORT_SYMBOL_GPL(preempt_notifier_register);
  2279. /**
  2280. * preempt_notifier_unregister - no longer interested in preemption notifications
  2281. * @notifier: notifier struct to unregister
  2282. *
  2283. * This is safe to call from within a preemption notifier.
  2284. */
  2285. void preempt_notifier_unregister(struct preempt_notifier *notifier)
  2286. {
  2287. hlist_del(&notifier->link);
  2288. }
  2289. EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
  2290. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  2291. {
  2292. struct preempt_notifier *notifier;
  2293. struct hlist_node *node;
  2294. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  2295. notifier->ops->sched_in(notifier, raw_smp_processor_id());
  2296. }
  2297. static void
  2298. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  2299. struct task_struct *next)
  2300. {
  2301. struct preempt_notifier *notifier;
  2302. struct hlist_node *node;
  2303. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  2304. notifier->ops->sched_out(notifier, next);
  2305. }
  2306. #else /* !CONFIG_PREEMPT_NOTIFIERS */
  2307. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  2308. {
  2309. }
  2310. static void
  2311. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  2312. struct task_struct *next)
  2313. {
  2314. }
  2315. #endif /* CONFIG_PREEMPT_NOTIFIERS */
  2316. /**
  2317. * prepare_task_switch - prepare to switch tasks
  2318. * @rq: the runqueue preparing to switch
  2319. * @prev: the current task that is being switched out
  2320. * @next: the task we are going to switch to.
  2321. *
  2322. * This is called with the rq lock held and interrupts off. It must
  2323. * be paired with a subsequent finish_task_switch after the context
  2324. * switch.
  2325. *
  2326. * prepare_task_switch sets up locking and calls architecture specific
  2327. * hooks.
  2328. */
  2329. static inline void
  2330. prepare_task_switch(struct rq *rq, struct task_struct *prev,
  2331. struct task_struct *next)
  2332. {
  2333. sched_info_switch(prev, next);
  2334. perf_event_task_sched_out(prev, next);
  2335. fire_sched_out_preempt_notifiers(prev, next);
  2336. prepare_lock_switch(rq, next);
  2337. prepare_arch_switch(next);
  2338. trace_sched_switch(prev, next);
  2339. }
  2340. /**
  2341. * finish_task_switch - clean up after a task-switch
  2342. * @rq: runqueue associated with task-switch
  2343. * @prev: the thread we just switched away from.
  2344. *
  2345. * finish_task_switch must be called after the context switch, paired
  2346. * with a prepare_task_switch call before the context switch.
  2347. * finish_task_switch will reconcile locking set up by prepare_task_switch,
  2348. * and do any other architecture-specific cleanup actions.
  2349. *
  2350. * Note that we may have delayed dropping an mm in context_switch(). If
  2351. * so, we finish that here outside of the runqueue lock. (Doing it
  2352. * with the lock held can cause deadlocks; see schedule() for
  2353. * details.)
  2354. */
  2355. static void finish_task_switch(struct rq *rq, struct task_struct *prev)
  2356. __releases(rq->lock)
  2357. {
  2358. struct mm_struct *mm = rq->prev_mm;
  2359. long prev_state;
  2360. rq->prev_mm = NULL;
  2361. /*
  2362. * A task struct has one reference for the use as "current".
  2363. * If a task dies, then it sets TASK_DEAD in tsk->state and calls
  2364. * schedule one last time. The schedule call will never return, and
  2365. * the scheduled task must drop that reference.
  2366. * The test for TASK_DEAD must occur while the runqueue locks are
  2367. * still held, otherwise prev could be scheduled on another cpu, die
  2368. * there before we look at prev->state, and then the reference would
  2369. * be dropped twice.
  2370. * Manfred Spraul <manfred@colorfullife.com>
  2371. */
  2372. prev_state = prev->state;
  2373. finish_arch_switch(prev);
  2374. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  2375. local_irq_disable();
  2376. #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
  2377. perf_event_task_sched_in(current);
  2378. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  2379. local_irq_enable();
  2380. #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
  2381. finish_lock_switch(rq, prev);
  2382. fire_sched_in_preempt_notifiers(current);
  2383. if (mm)
  2384. mmdrop(mm);
  2385. if (unlikely(prev_state == TASK_DEAD)) {
  2386. /*
  2387. * Remove function-return probe instances associated with this
  2388. * task and put them back on the free list.
  2389. */
  2390. kprobe_flush_task(prev);
  2391. put_task_struct(prev);
  2392. }
  2393. }
  2394. #ifdef CONFIG_SMP
  2395. /* assumes rq->lock is held */
  2396. static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
  2397. {
  2398. if (prev->sched_class->pre_schedule)
  2399. prev->sched_class->pre_schedule(rq, prev);
  2400. }
  2401. /* rq->lock is NOT held, but preemption is disabled */
  2402. static inline void post_schedule(struct rq *rq)
  2403. {
  2404. if (rq->post_schedule) {
  2405. unsigned long flags;
  2406. raw_spin_lock_irqsave(&rq->lock, flags);
  2407. if (rq->curr->sched_class->post_schedule)
  2408. rq->curr->sched_class->post_schedule(rq);
  2409. raw_spin_unlock_irqrestore(&rq->lock, flags);
  2410. rq->post_schedule = 0;
  2411. }
  2412. }
  2413. #else
  2414. static inline void pre_schedule(struct rq *rq, struct task_struct *p)
  2415. {
  2416. }
  2417. static inline void post_schedule(struct rq *rq)
  2418. {
  2419. }
  2420. #endif
  2421. /**
  2422. * schedule_tail - first thing a freshly forked thread must call.
  2423. * @prev: the thread we just switched away from.
  2424. */
  2425. asmlinkage void schedule_tail(struct task_struct *prev)
  2426. __releases(rq->lock)
  2427. {
  2428. struct rq *rq = this_rq();
  2429. finish_task_switch(rq, prev);
  2430. /*
  2431. * FIXME: do we need to worry about rq being invalidated by the
  2432. * task_switch?
  2433. */
  2434. post_schedule(rq);
  2435. #ifdef __ARCH_WANT_UNLOCKED_CTXSW
  2436. /* In this case, finish_task_switch does not reenable preemption */
  2437. preempt_enable();
  2438. #endif
  2439. if (current->set_child_tid)
  2440. put_user(task_pid_vnr(current), current->set_child_tid);
  2441. }
  2442. /*
  2443. * context_switch - switch to the new MM and the new
  2444. * thread's register state.
  2445. */
  2446. static inline void
  2447. context_switch(struct rq *rq, struct task_struct *prev,
  2448. struct task_struct *next)
  2449. {
  2450. struct mm_struct *mm, *oldmm;
  2451. prepare_task_switch(rq, prev, next);
  2452. mm = next->mm;
  2453. oldmm = prev->active_mm;
  2454. /*
  2455. * For paravirt, this is coupled with an exit in switch_to to
  2456. * combine the page table reload and the switch backend into
  2457. * one hypercall.
  2458. */
  2459. arch_start_context_switch(prev);
  2460. if (!mm) {
  2461. next->active_mm = oldmm;
  2462. atomic_inc(&oldmm->mm_count);
  2463. enter_lazy_tlb(oldmm, next);
  2464. } else
  2465. switch_mm(oldmm, mm, next);
  2466. if (!prev->mm) {
  2467. prev->active_mm = NULL;
  2468. rq->prev_mm = oldmm;
  2469. }
  2470. /*
  2471. * Since the runqueue lock will be released by the next
  2472. * task (which is an invalid locking op but in the case
  2473. * of the scheduler it's an obvious special-case), so we
  2474. * do an early lockdep release here:
  2475. */
  2476. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  2477. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  2478. #endif
  2479. /* Here we just switch the register state and the stack. */
  2480. switch_to(prev, next, prev);
  2481. barrier();
  2482. /*
  2483. * this_rq must be evaluated again because prev may have moved
  2484. * CPUs since it called schedule(), thus the 'rq' on its stack
  2485. * frame will be invalid.
  2486. */
  2487. finish_task_switch(this_rq(), prev);
  2488. }
  2489. /*
  2490. * nr_running, nr_uninterruptible and nr_context_switches:
  2491. *
  2492. * externally visible scheduler statistics: current number of runnable
  2493. * threads, current number of uninterruptible-sleeping threads, total
  2494. * number of context switches performed since bootup.
  2495. */
  2496. unsigned long nr_running(void)
  2497. {
  2498. unsigned long i, sum = 0;
  2499. for_each_online_cpu(i)
  2500. sum += cpu_rq(i)->nr_running;
  2501. return sum;
  2502. }
  2503. unsigned long nr_uninterruptible(void)
  2504. {
  2505. unsigned long i, sum = 0;
  2506. for_each_possible_cpu(i)
  2507. sum += cpu_rq(i)->nr_uninterruptible;
  2508. /*
  2509. * Since we read the counters lockless, it might be slightly
  2510. * inaccurate. Do not allow it to go below zero though:
  2511. */
  2512. if (unlikely((long)sum < 0))
  2513. sum = 0;
  2514. return sum;
  2515. }
  2516. unsigned long long nr_context_switches(void)
  2517. {
  2518. int i;
  2519. unsigned long long sum = 0;
  2520. for_each_possible_cpu(i)
  2521. sum += cpu_rq(i)->nr_switches;
  2522. return sum;
  2523. }
  2524. unsigned long nr_iowait(void)
  2525. {
  2526. unsigned long i, sum = 0;
  2527. for_each_possible_cpu(i)
  2528. sum += atomic_read(&cpu_rq(i)->nr_iowait);
  2529. return sum;
  2530. }
  2531. unsigned long nr_iowait_cpu(int cpu)
  2532. {
  2533. struct rq *this = cpu_rq(cpu);
  2534. return atomic_read(&this->nr_iowait);
  2535. }
  2536. unsigned long this_cpu_load(void)
  2537. {
  2538. struct rq *this = this_rq();
  2539. return this->cpu_load[0];
  2540. }
  2541. /* Variables and functions for calc_load */
  2542. static atomic_long_t calc_load_tasks;
  2543. static unsigned long calc_load_update;
  2544. unsigned long avenrun[3];
  2545. EXPORT_SYMBOL(avenrun);
  2546. static long calc_load_fold_active(struct rq *this_rq)
  2547. {
  2548. long nr_active, delta = 0;
  2549. nr_active = this_rq->nr_running;
  2550. nr_active += (long) this_rq->nr_uninterruptible;
  2551. if (nr_active != this_rq->calc_load_active) {
  2552. delta = nr_active - this_rq->calc_load_active;
  2553. this_rq->calc_load_active = nr_active;
  2554. }
  2555. return delta;
  2556. }
  2557. static unsigned long
  2558. calc_load(unsigned long load, unsigned long exp, unsigned long active)
  2559. {
  2560. load *= exp;
  2561. load += active * (FIXED_1 - exp);
  2562. load += 1UL << (FSHIFT - 1);
  2563. return load >> FSHIFT;
  2564. }
  2565. #ifdef CONFIG_NO_HZ
  2566. /*
  2567. * For NO_HZ we delay the active fold to the next LOAD_FREQ update.
  2568. *
  2569. * When making the ILB scale, we should try to pull this in as well.
  2570. */
  2571. static atomic_long_t calc_load_tasks_idle;
  2572. static void calc_load_account_idle(struct rq *this_rq)
  2573. {
  2574. long delta;
  2575. delta = calc_load_fold_active(this_rq);
  2576. if (delta)
  2577. atomic_long_add(delta, &calc_load_tasks_idle);
  2578. }
  2579. static long calc_load_fold_idle(void)
  2580. {
  2581. long delta = 0;
  2582. /*
  2583. * Its got a race, we don't care...
  2584. */
  2585. if (atomic_long_read(&calc_load_tasks_idle))
  2586. delta = atomic_long_xchg(&calc_load_tasks_idle, 0);
  2587. return delta;
  2588. }
  2589. /**
  2590. * fixed_power_int - compute: x^n, in O(log n) time
  2591. *
  2592. * @x: base of the power
  2593. * @frac_bits: fractional bits of @x
  2594. * @n: power to raise @x to.
  2595. *
  2596. * By exploiting the relation between the definition of the natural power
  2597. * function: x^n := x*x*...*x (x multiplied by itself for n times), and
  2598. * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i,
  2599. * (where: n_i \elem {0, 1}, the binary vector representing n),
  2600. * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is
  2601. * of course trivially computable in O(log_2 n), the length of our binary
  2602. * vector.
  2603. */
  2604. static unsigned long
  2605. fixed_power_int(unsigned long x, unsigned int frac_bits, unsigned int n)
  2606. {
  2607. unsigned long result = 1UL << frac_bits;
  2608. if (n) for (;;) {
  2609. if (n & 1) {
  2610. result *= x;
  2611. result += 1UL << (frac_bits - 1);
  2612. result >>= frac_bits;
  2613. }
  2614. n >>= 1;
  2615. if (!n)
  2616. break;
  2617. x *= x;
  2618. x += 1UL << (frac_bits - 1);
  2619. x >>= frac_bits;
  2620. }
  2621. return result;
  2622. }
  2623. /*
  2624. * a1 = a0 * e + a * (1 - e)
  2625. *
  2626. * a2 = a1 * e + a * (1 - e)
  2627. * = (a0 * e + a * (1 - e)) * e + a * (1 - e)
  2628. * = a0 * e^2 + a * (1 - e) * (1 + e)
  2629. *
  2630. * a3 = a2 * e + a * (1 - e)
  2631. * = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e)
  2632. * = a0 * e^3 + a * (1 - e) * (1 + e + e^2)
  2633. *
  2634. * ...
  2635. *
  2636. * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1]
  2637. * = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e)
  2638. * = a0 * e^n + a * (1 - e^n)
  2639. *
  2640. * [1] application of the geometric series:
  2641. *
  2642. * n 1 - x^(n+1)
  2643. * S_n := \Sum x^i = -------------
  2644. * i=0 1 - x
  2645. */
  2646. static unsigned long
  2647. calc_load_n(unsigned long load, unsigned long exp,
  2648. unsigned long active, unsigned int n)
  2649. {
  2650. return calc_load(load, fixed_power_int(exp, FSHIFT, n), active);
  2651. }
  2652. /*
  2653. * NO_HZ can leave us missing all per-cpu ticks calling
  2654. * calc_load_account_active(), but since an idle CPU folds its delta into
  2655. * calc_load_tasks_idle per calc_load_account_idle(), all we need to do is fold
  2656. * in the pending idle delta if our idle period crossed a load cycle boundary.
  2657. *
  2658. * Once we've updated the global active value, we need to apply the exponential
  2659. * weights adjusted to the number of cycles missed.
  2660. */
  2661. static void calc_global_nohz(unsigned long ticks)
  2662. {
  2663. long delta, active, n;
  2664. if (time_before(jiffies, calc_load_update))
  2665. return;
  2666. /*
  2667. * If we crossed a calc_load_update boundary, make sure to fold
  2668. * any pending idle changes, the respective CPUs might have
  2669. * missed the tick driven calc_load_account_active() update
  2670. * due to NO_HZ.
  2671. */
  2672. delta = calc_load_fold_idle();
  2673. if (delta)
  2674. atomic_long_add(delta, &calc_load_tasks);
  2675. /*
  2676. * If we were idle for multiple load cycles, apply them.
  2677. */
  2678. if (ticks >= LOAD_FREQ) {
  2679. n = ticks / LOAD_FREQ;
  2680. active = atomic_long_read(&calc_load_tasks);
  2681. active = active > 0 ? active * FIXED_1 : 0;
  2682. avenrun[0] = calc_load_n(avenrun[0], EXP_1, active, n);
  2683. avenrun[1] = calc_load_n(avenrun[1], EXP_5, active, n);
  2684. avenrun[2] = calc_load_n(avenrun[2], EXP_15, active, n);
  2685. calc_load_update += n * LOAD_FREQ;
  2686. }
  2687. /*
  2688. * Its possible the remainder of the above division also crosses
  2689. * a LOAD_FREQ period, the regular check in calc_global_load()
  2690. * which comes after this will take care of that.
  2691. *
  2692. * Consider us being 11 ticks before a cycle completion, and us
  2693. * sleeping for 4*LOAD_FREQ + 22 ticks, then the above code will
  2694. * age us 4 cycles, and the test in calc_global_load() will
  2695. * pick up the final one.
  2696. */
  2697. }
  2698. #else
  2699. static void calc_load_account_idle(struct rq *this_rq)
  2700. {
  2701. }
  2702. static inline long calc_load_fold_idle(void)
  2703. {
  2704. return 0;
  2705. }
  2706. static void calc_global_nohz(unsigned long ticks)
  2707. {
  2708. }
  2709. #endif
  2710. /**
  2711. * get_avenrun - get the load average array
  2712. * @loads: pointer to dest load array
  2713. * @offset: offset to add
  2714. * @shift: shift count to shift the result left
  2715. *
  2716. * These values are estimates at best, so no need for locking.
  2717. */
  2718. void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
  2719. {
  2720. loads[0] = (avenrun[0] + offset) << shift;
  2721. loads[1] = (avenrun[1] + offset) << shift;
  2722. loads[2] = (avenrun[2] + offset) << shift;
  2723. }
  2724. /*
  2725. * calc_load - update the avenrun load estimates 10 ticks after the
  2726. * CPUs have updated calc_load_tasks.
  2727. */
  2728. void calc_global_load(unsigned long ticks)
  2729. {
  2730. long active;
  2731. calc_global_nohz(ticks);
  2732. if (time_before(jiffies, calc_load_update + 10))
  2733. return;
  2734. active = atomic_long_read(&calc_load_tasks);
  2735. active = active > 0 ? active * FIXED_1 : 0;
  2736. avenrun[0] = calc_load(avenrun[0], EXP_1, active);
  2737. avenrun[1] = calc_load(avenrun[1], EXP_5, active);
  2738. avenrun[2] = calc_load(avenrun[2], EXP_15, active);
  2739. calc_load_update += LOAD_FREQ;
  2740. }
  2741. /*
  2742. * Called from update_cpu_load() to periodically update this CPU's
  2743. * active count.
  2744. */
  2745. static void calc_load_account_active(struct rq *this_rq)
  2746. {
  2747. long delta;
  2748. if (time_before(jiffies, this_rq->calc_load_update))
  2749. return;
  2750. delta = calc_load_fold_active(this_rq);
  2751. delta += calc_load_fold_idle();
  2752. if (delta)
  2753. atomic_long_add(delta, &calc_load_tasks);
  2754. this_rq->calc_load_update += LOAD_FREQ;
  2755. }
  2756. /*
  2757. * The exact cpuload at various idx values, calculated at every tick would be
  2758. * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
  2759. *
  2760. * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
  2761. * on nth tick when cpu may be busy, then we have:
  2762. * load = ((2^idx - 1) / 2^idx)^(n-1) * load
  2763. * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
  2764. *
  2765. * decay_load_missed() below does efficient calculation of
  2766. * load = ((2^idx - 1) / 2^idx)^(n-1) * load
  2767. * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
  2768. *
  2769. * The calculation is approximated on a 128 point scale.
  2770. * degrade_zero_ticks is the number of ticks after which load at any
  2771. * particular idx is approximated to be zero.
  2772. * degrade_factor is a precomputed table, a row for each load idx.
  2773. * Each column corresponds to degradation factor for a power of two ticks,
  2774. * based on 128 point scale.
  2775. * Example:
  2776. * row 2, col 3 (=12) says that the degradation at load idx 2 after
  2777. * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
  2778. *
  2779. * With this power of 2 load factors, we can degrade the load n times
  2780. * by looking at 1 bits in n and doing as many mult/shift instead of
  2781. * n mult/shifts needed by the exact degradation.
  2782. */
  2783. #define DEGRADE_SHIFT 7
  2784. static const unsigned char
  2785. degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
  2786. static const unsigned char
  2787. degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
  2788. {0, 0, 0, 0, 0, 0, 0, 0},
  2789. {64, 32, 8, 0, 0, 0, 0, 0},
  2790. {96, 72, 40, 12, 1, 0, 0},
  2791. {112, 98, 75, 43, 15, 1, 0},
  2792. {120, 112, 98, 76, 45, 16, 2} };
  2793. /*
  2794. * Update cpu_load for any missed ticks, due to tickless idle. The backlog
  2795. * would be when CPU is idle and so we just decay the old load without
  2796. * adding any new load.
  2797. */
  2798. static unsigned long
  2799. decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
  2800. {
  2801. int j = 0;
  2802. if (!missed_updates)
  2803. return load;
  2804. if (missed_updates >= degrade_zero_ticks[idx])
  2805. return 0;
  2806. if (idx == 1)
  2807. return load >> missed_updates;
  2808. while (missed_updates) {
  2809. if (missed_updates % 2)
  2810. load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
  2811. missed_updates >>= 1;
  2812. j++;
  2813. }
  2814. return load;
  2815. }
  2816. /*
  2817. * Update rq->cpu_load[] statistics. This function is usually called every
  2818. * scheduler tick (TICK_NSEC). With tickless idle this will not be called
  2819. * every tick. We fix it up based on jiffies.
  2820. */
  2821. static void update_cpu_load(struct rq *this_rq)
  2822. {
  2823. unsigned long this_load = this_rq->load.weight;
  2824. unsigned long curr_jiffies = jiffies;
  2825. unsigned long pending_updates;
  2826. int i, scale;
  2827. this_rq->nr_load_updates++;
  2828. /* Avoid repeated calls on same jiffy, when moving in and out of idle */
  2829. if (curr_jiffies == this_rq->last_load_update_tick)
  2830. return;
  2831. pending_updates = curr_jiffies - this_rq->last_load_update_tick;
  2832. this_rq->last_load_update_tick = curr_jiffies;
  2833. /* Update our load: */
  2834. this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
  2835. for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
  2836. unsigned long old_load, new_load;
  2837. /* scale is effectively 1 << i now, and >> i divides by scale */
  2838. old_load = this_rq->cpu_load[i];
  2839. old_load = decay_load_missed(old_load, pending_updates - 1, i);
  2840. new_load = this_load;
  2841. /*
  2842. * Round up the averaging division if load is increasing. This
  2843. * prevents us from getting stuck on 9 if the load is 10, for
  2844. * example.
  2845. */
  2846. if (new_load > old_load)
  2847. new_load += scale - 1;
  2848. this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
  2849. }
  2850. sched_avg_update(this_rq);
  2851. }
  2852. static void update_cpu_load_active(struct rq *this_rq)
  2853. {
  2854. update_cpu_load(this_rq);
  2855. calc_load_account_active(this_rq);
  2856. }
  2857. #ifdef CONFIG_SMP
  2858. /*
  2859. * sched_exec - execve() is a valuable balancing opportunity, because at
  2860. * this point the task has the smallest effective memory and cache footprint.
  2861. */
  2862. void sched_exec(void)
  2863. {
  2864. struct task_struct *p = current;
  2865. unsigned long flags;
  2866. struct rq *rq;
  2867. int dest_cpu;
  2868. rq = task_rq_lock(p, &flags);
  2869. dest_cpu = p->sched_class->select_task_rq(rq, p, SD_BALANCE_EXEC, 0);
  2870. if (dest_cpu == smp_processor_id())
  2871. goto unlock;
  2872. /*
  2873. * select_task_rq() can race against ->cpus_allowed
  2874. */
  2875. if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed) &&
  2876. likely(cpu_active(dest_cpu)) && migrate_task(p, rq)) {
  2877. struct migration_arg arg = { p, dest_cpu };
  2878. task_rq_unlock(rq, &flags);
  2879. stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
  2880. return;
  2881. }
  2882. unlock:
  2883. task_rq_unlock(rq, &flags);
  2884. }
  2885. #endif
  2886. DEFINE_PER_CPU(struct kernel_stat, kstat);
  2887. EXPORT_PER_CPU_SYMBOL(kstat);
  2888. /*
  2889. * Return any ns on the sched_clock that have not yet been accounted in
  2890. * @p in case that task is currently running.
  2891. *
  2892. * Called with task_rq_lock() held on @rq.
  2893. */
  2894. static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
  2895. {
  2896. u64 ns = 0;
  2897. if (task_current(rq, p)) {
  2898. update_rq_clock(rq);
  2899. ns = rq->clock_task - p->se.exec_start;
  2900. if ((s64)ns < 0)
  2901. ns = 0;
  2902. }
  2903. return ns;
  2904. }
  2905. unsigned long long task_delta_exec(struct task_struct *p)
  2906. {
  2907. unsigned long flags;
  2908. struct rq *rq;
  2909. u64 ns = 0;
  2910. rq = task_rq_lock(p, &flags);
  2911. ns = do_task_delta_exec(p, rq);
  2912. task_rq_unlock(rq, &flags);
  2913. return ns;
  2914. }
  2915. /*
  2916. * Return accounted runtime for the task.
  2917. * In case the task is currently running, return the runtime plus current's
  2918. * pending runtime that have not been accounted yet.
  2919. */
  2920. unsigned long long task_sched_runtime(struct task_struct *p)
  2921. {
  2922. unsigned long flags;
  2923. struct rq *rq;
  2924. u64 ns = 0;
  2925. rq = task_rq_lock(p, &flags);
  2926. ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
  2927. task_rq_unlock(rq, &flags);
  2928. return ns;
  2929. }
  2930. /*
  2931. * Return sum_exec_runtime for the thread group.
  2932. * In case the task is currently running, return the sum plus current's
  2933. * pending runtime that have not been accounted yet.
  2934. *
  2935. * Note that the thread group might have other running tasks as well,
  2936. * so the return value not includes other pending runtime that other
  2937. * running tasks might have.
  2938. */
  2939. unsigned long long thread_group_sched_runtime(struct task_struct *p)
  2940. {
  2941. struct task_cputime totals;
  2942. unsigned long flags;
  2943. struct rq *rq;
  2944. u64 ns;
  2945. rq = task_rq_lock(p, &flags);
  2946. thread_group_cputime(p, &totals);
  2947. ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
  2948. task_rq_unlock(rq, &flags);
  2949. return ns;
  2950. }
  2951. /*
  2952. * Account user cpu time to a process.
  2953. * @p: the process that the cpu time gets accounted to
  2954. * @cputime: the cpu time spent in user space since the last update
  2955. * @cputime_scaled: cputime scaled by cpu frequency
  2956. */
  2957. void account_user_time(struct task_struct *p, cputime_t cputime,
  2958. cputime_t cputime_scaled)
  2959. {
  2960. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  2961. cputime64_t tmp;
  2962. /* Add user time to process. */
  2963. p->utime = cputime_add(p->utime, cputime);
  2964. p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
  2965. account_group_user_time(p, cputime);
  2966. /* Add user time to cpustat. */
  2967. tmp = cputime_to_cputime64(cputime);
  2968. if (TASK_NICE(p) > 0)
  2969. cpustat->nice = cputime64_add(cpustat->nice, tmp);
  2970. else
  2971. cpustat->user = cputime64_add(cpustat->user, tmp);
  2972. cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
  2973. /* Account for user time used */
  2974. acct_update_integrals(p);
  2975. }
  2976. /*
  2977. * Account guest cpu time to a process.
  2978. * @p: the process that the cpu time gets accounted to
  2979. * @cputime: the cpu time spent in virtual machine since the last update
  2980. * @cputime_scaled: cputime scaled by cpu frequency
  2981. */
  2982. static void account_guest_time(struct task_struct *p, cputime_t cputime,
  2983. cputime_t cputime_scaled)
  2984. {
  2985. cputime64_t tmp;
  2986. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  2987. tmp = cputime_to_cputime64(cputime);
  2988. /* Add guest time to process. */
  2989. p->utime = cputime_add(p->utime, cputime);
  2990. p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
  2991. account_group_user_time(p, cputime);
  2992. p->gtime = cputime_add(p->gtime, cputime);
  2993. /* Add guest time to cpustat. */
  2994. if (TASK_NICE(p) > 0) {
  2995. cpustat->nice = cputime64_add(cpustat->nice, tmp);
  2996. cpustat->guest_nice = cputime64_add(cpustat->guest_nice, tmp);
  2997. } else {
  2998. cpustat->user = cputime64_add(cpustat->user, tmp);
  2999. cpustat->guest = cputime64_add(cpustat->guest, tmp);
  3000. }
  3001. }
  3002. /*
  3003. * Account system cpu time to a process.
  3004. * @p: the process that the cpu time gets accounted to
  3005. * @hardirq_offset: the offset to subtract from hardirq_count()
  3006. * @cputime: the cpu time spent in kernel space since the last update
  3007. * @cputime_scaled: cputime scaled by cpu frequency
  3008. */
  3009. void account_system_time(struct task_struct *p, int hardirq_offset,
  3010. cputime_t cputime, cputime_t cputime_scaled)
  3011. {
  3012. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3013. cputime64_t tmp;
  3014. if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
  3015. account_guest_time(p, cputime, cputime_scaled);
  3016. return;
  3017. }
  3018. /* Add system time to process. */
  3019. p->stime = cputime_add(p->stime, cputime);
  3020. p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
  3021. account_group_system_time(p, cputime);
  3022. /* Add system time to cpustat. */
  3023. tmp = cputime_to_cputime64(cputime);
  3024. if (hardirq_count() - hardirq_offset)
  3025. cpustat->irq = cputime64_add(cpustat->irq, tmp);
  3026. else if (in_serving_softirq())
  3027. cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
  3028. else
  3029. cpustat->system = cputime64_add(cpustat->system, tmp);
  3030. cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);
  3031. /* Account for system time used */
  3032. acct_update_integrals(p);
  3033. }
  3034. /*
  3035. * Account for involuntary wait time.
  3036. * @steal: the cpu time spent in involuntary wait
  3037. */
  3038. void account_steal_time(cputime_t cputime)
  3039. {
  3040. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3041. cputime64_t cputime64 = cputime_to_cputime64(cputime);
  3042. cpustat->steal = cputime64_add(cpustat->steal, cputime64);
  3043. }
  3044. /*
  3045. * Account for idle time.
  3046. * @cputime: the cpu time spent in idle wait
  3047. */
  3048. void account_idle_time(cputime_t cputime)
  3049. {
  3050. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3051. cputime64_t cputime64 = cputime_to_cputime64(cputime);
  3052. struct rq *rq = this_rq();
  3053. if (atomic_read(&rq->nr_iowait) > 0)
  3054. cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
  3055. else
  3056. cpustat->idle = cputime64_add(cpustat->idle, cputime64);
  3057. }
  3058. #ifndef CONFIG_VIRT_CPU_ACCOUNTING
  3059. /*
  3060. * Account a single tick of cpu time.
  3061. * @p: the process that the cpu time gets accounted to
  3062. * @user_tick: indicates if the tick is a user or a system tick
  3063. */
  3064. void account_process_tick(struct task_struct *p, int user_tick)
  3065. {
  3066. cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
  3067. struct rq *rq = this_rq();
  3068. if (user_tick)
  3069. account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
  3070. else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
  3071. account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
  3072. one_jiffy_scaled);
  3073. else
  3074. account_idle_time(cputime_one_jiffy);
  3075. }
  3076. /*
  3077. * Account multiple ticks of steal time.
  3078. * @p: the process from which the cpu time has been stolen
  3079. * @ticks: number of stolen ticks
  3080. */
  3081. void account_steal_ticks(unsigned long ticks)
  3082. {
  3083. account_steal_time(jiffies_to_cputime(ticks));
  3084. }
  3085. /*
  3086. * Account multiple ticks of idle time.
  3087. * @ticks: number of stolen ticks
  3088. */
  3089. void account_idle_ticks(unsigned long ticks)
  3090. {
  3091. account_idle_time(jiffies_to_cputime(ticks));
  3092. }
  3093. #endif
  3094. /*
  3095. * Use precise platform statistics if available:
  3096. */
  3097. #ifdef CONFIG_VIRT_CPU_ACCOUNTING
  3098. void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
  3099. {
  3100. *ut = p->utime;
  3101. *st = p->stime;
  3102. }
  3103. void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
  3104. {
  3105. struct task_cputime cputime;
  3106. thread_group_cputime(p, &cputime);
  3107. *ut = cputime.utime;
  3108. *st = cputime.stime;
  3109. }
  3110. #else
  3111. #ifndef nsecs_to_cputime
  3112. # define nsecs_to_cputime(__nsecs) nsecs_to_jiffies(__nsecs)
  3113. #endif
  3114. void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
  3115. {
  3116. cputime_t rtime, utime = p->utime, total = cputime_add(utime, p->stime);
  3117. /*
  3118. * Use CFS's precise accounting:
  3119. */
  3120. rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
  3121. if (total) {
  3122. u64 temp = rtime;
  3123. temp *= utime;
  3124. do_div(temp, total);
  3125. utime = (cputime_t)temp;
  3126. } else
  3127. utime = rtime;
  3128. /*
  3129. * Compare with previous values, to keep monotonicity:
  3130. */
  3131. p->prev_utime = max(p->prev_utime, utime);
  3132. p->prev_stime = max(p->prev_stime, cputime_sub(rtime, p->prev_utime));
  3133. *ut = p->prev_utime;
  3134. *st = p->prev_stime;
  3135. }
  3136. /*
  3137. * Must be called with siglock held.
  3138. */
  3139. void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
  3140. {
  3141. struct signal_struct *sig = p->signal;
  3142. struct task_cputime cputime;
  3143. cputime_t rtime, utime, total;
  3144. thread_group_cputime(p, &cputime);
  3145. total = cputime_add(cputime.utime, cputime.stime);
  3146. rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
  3147. if (total) {
  3148. u64 temp = rtime;
  3149. temp *= cputime.utime;
  3150. do_div(temp, total);
  3151. utime = (cputime_t)temp;
  3152. } else
  3153. utime = rtime;
  3154. sig->prev_utime = max(sig->prev_utime, utime);
  3155. sig->prev_stime = max(sig->prev_stime,
  3156. cputime_sub(rtime, sig->prev_utime));
  3157. *ut = sig->prev_utime;
  3158. *st = sig->prev_stime;
  3159. }
  3160. #endif
  3161. /*
  3162. * This function gets called by the timer code, with HZ frequency.
  3163. * We call it with interrupts disabled.
  3164. *
  3165. * It also gets called by the fork code, when changing the parent's
  3166. * timeslices.
  3167. */
  3168. void scheduler_tick(void)
  3169. {
  3170. int cpu = smp_processor_id();
  3171. struct rq *rq = cpu_rq(cpu);
  3172. struct task_struct *curr = rq->curr;
  3173. sched_clock_tick();
  3174. raw_spin_lock(&rq->lock);
  3175. update_rq_clock(rq);
  3176. update_cpu_load_active(rq);
  3177. curr->sched_class->task_tick(rq, curr, 0);
  3178. raw_spin_unlock(&rq->lock);
  3179. perf_event_task_tick();
  3180. #ifdef CONFIG_SMP
  3181. rq->idle_at_tick = idle_cpu(cpu);
  3182. trigger_load_balance(rq, cpu);
  3183. #endif
  3184. }
  3185. notrace unsigned long get_parent_ip(unsigned long addr)
  3186. {
  3187. if (in_lock_functions(addr)) {
  3188. addr = CALLER_ADDR2;
  3189. if (in_lock_functions(addr))
  3190. addr = CALLER_ADDR3;
  3191. }
  3192. return addr;
  3193. }
  3194. #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
  3195. defined(CONFIG_PREEMPT_TRACER))
  3196. void __kprobes add_preempt_count(int val)
  3197. {
  3198. #ifdef CONFIG_DEBUG_PREEMPT
  3199. /*
  3200. * Underflow?
  3201. */
  3202. if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
  3203. return;
  3204. #endif
  3205. preempt_count() += val;
  3206. #ifdef CONFIG_DEBUG_PREEMPT
  3207. /*
  3208. * Spinlock count overflowing soon?
  3209. */
  3210. DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
  3211. PREEMPT_MASK - 10);
  3212. #endif
  3213. if (preempt_count() == val)
  3214. trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
  3215. }
  3216. EXPORT_SYMBOL(add_preempt_count);
  3217. void __kprobes sub_preempt_count(int val)
  3218. {
  3219. #ifdef CONFIG_DEBUG_PREEMPT
  3220. /*
  3221. * Underflow?
  3222. */
  3223. if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
  3224. return;
  3225. /*
  3226. * Is the spinlock portion underflowing?
  3227. */
  3228. if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
  3229. !(preempt_count() & PREEMPT_MASK)))
  3230. return;
  3231. #endif
  3232. if (preempt_count() == val)
  3233. trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
  3234. preempt_count() -= val;
  3235. }
  3236. EXPORT_SYMBOL(sub_preempt_count);
  3237. #endif
  3238. /*
  3239. * Print scheduling while atomic bug:
  3240. */
  3241. static noinline void __schedule_bug(struct task_struct *prev)
  3242. {
  3243. struct pt_regs *regs = get_irq_regs();
  3244. printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
  3245. prev->comm, prev->pid, preempt_count());
  3246. debug_show_held_locks(prev);
  3247. print_modules();
  3248. if (irqs_disabled())
  3249. print_irqtrace_events(prev);
  3250. if (regs)
  3251. show_regs(regs);
  3252. else
  3253. dump_stack();
  3254. }
  3255. /*
  3256. * Various schedule()-time debugging checks and statistics:
  3257. */
  3258. static inline void schedule_debug(struct task_struct *prev)
  3259. {
  3260. /*
  3261. * Test if we are atomic. Since do_exit() needs to call into
  3262. * schedule() atomically, we ignore that path for now.
  3263. * Otherwise, whine if we are scheduling when we should not be.
  3264. */
  3265. if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
  3266. __schedule_bug(prev);
  3267. profile_hit(SCHED_PROFILING, __builtin_return_address(0));
  3268. schedstat_inc(this_rq(), sched_count);
  3269. #ifdef CONFIG_SCHEDSTATS
  3270. if (unlikely(prev->lock_depth >= 0)) {
  3271. schedstat_inc(this_rq(), rq_sched_info.bkl_count);
  3272. schedstat_inc(prev, sched_info.bkl_count);
  3273. }
  3274. #endif
  3275. }
  3276. static void put_prev_task(struct rq *rq, struct task_struct *prev)
  3277. {
  3278. if (prev->se.on_rq)
  3279. update_rq_clock(rq);
  3280. prev->sched_class->put_prev_task(rq, prev);
  3281. }
  3282. /*
  3283. * Pick up the highest-prio task:
  3284. */
  3285. static inline struct task_struct *
  3286. pick_next_task(struct rq *rq)
  3287. {
  3288. const struct sched_class *class;
  3289. struct task_struct *p;
  3290. /*
  3291. * Optimization: we know that if all tasks are in
  3292. * the fair class we can call that function directly:
  3293. */
  3294. if (likely(rq->nr_running == rq->cfs.nr_running)) {
  3295. p = fair_sched_class.pick_next_task(rq);
  3296. if (likely(p))
  3297. return p;
  3298. }
  3299. for_each_class(class) {
  3300. p = class->pick_next_task(rq);
  3301. if (p)
  3302. return p;
  3303. }
  3304. BUG(); /* the idle class will always have a runnable task */
  3305. }
  3306. /*
  3307. * schedule() is the main scheduler function.
  3308. */
  3309. asmlinkage void __sched schedule(void)
  3310. {
  3311. struct task_struct *prev, *next;
  3312. unsigned long *switch_count;
  3313. struct rq *rq;
  3314. int cpu;
  3315. need_resched:
  3316. preempt_disable();
  3317. cpu = smp_processor_id();
  3318. rq = cpu_rq(cpu);
  3319. rcu_note_context_switch(cpu);
  3320. prev = rq->curr;
  3321. release_kernel_lock(prev);
  3322. need_resched_nonpreemptible:
  3323. schedule_debug(prev);
  3324. if (sched_feat(HRTICK))
  3325. hrtick_clear(rq);
  3326. raw_spin_lock_irq(&rq->lock);
  3327. switch_count = &prev->nivcsw;
  3328. if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
  3329. if (unlikely(signal_pending_state(prev->state, prev))) {
  3330. prev->state = TASK_RUNNING;
  3331. } else {
  3332. /*
  3333. * If a worker is going to sleep, notify and
  3334. * ask workqueue whether it wants to wake up a
  3335. * task to maintain concurrency. If so, wake
  3336. * up the task.
  3337. */
  3338. if (prev->flags & PF_WQ_WORKER) {
  3339. struct task_struct *to_wakeup;
  3340. to_wakeup = wq_worker_sleeping(prev, cpu);
  3341. if (to_wakeup)
  3342. try_to_wake_up_local(to_wakeup);
  3343. }
  3344. deactivate_task(rq, prev, DEQUEUE_SLEEP);
  3345. }
  3346. switch_count = &prev->nvcsw;
  3347. }
  3348. pre_schedule(rq, prev);
  3349. if (unlikely(!rq->nr_running))
  3350. idle_balance(cpu, rq);
  3351. put_prev_task(rq, prev);
  3352. next = pick_next_task(rq);
  3353. clear_tsk_need_resched(prev);
  3354. rq->skip_clock_update = 0;
  3355. if (likely(prev != next)) {
  3356. rq->nr_switches++;
  3357. rq->curr = next;
  3358. ++*switch_count;
  3359. context_switch(rq, prev, next); /* unlocks the rq */
  3360. /*
  3361. * The context switch have flipped the stack from under us
  3362. * and restored the local variables which were saved when
  3363. * this task called schedule() in the past. prev == current
  3364. * is still correct, but it can be moved to another cpu/rq.
  3365. */
  3366. cpu = smp_processor_id();
  3367. rq = cpu_rq(cpu);
  3368. } else
  3369. raw_spin_unlock_irq(&rq->lock);
  3370. post_schedule(rq);
  3371. if (unlikely(reacquire_kernel_lock(prev)))
  3372. goto need_resched_nonpreemptible;
  3373. preempt_enable_no_resched();
  3374. if (need_resched())
  3375. goto need_resched;
  3376. }
  3377. EXPORT_SYMBOL(schedule);
  3378. #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
  3379. /*
  3380. * Look out! "owner" is an entirely speculative pointer
  3381. * access and not reliable.
  3382. */
  3383. int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner)
  3384. {
  3385. unsigned int cpu;
  3386. struct rq *rq;
  3387. if (!sched_feat(OWNER_SPIN))
  3388. return 0;
  3389. #ifdef CONFIG_DEBUG_PAGEALLOC
  3390. /*
  3391. * Need to access the cpu field knowing that
  3392. * DEBUG_PAGEALLOC could have unmapped it if
  3393. * the mutex owner just released it and exited.
  3394. */
  3395. if (probe_kernel_address(&owner->cpu, cpu))
  3396. return 0;
  3397. #else
  3398. cpu = owner->cpu;
  3399. #endif
  3400. /*
  3401. * Even if the access succeeded (likely case),
  3402. * the cpu field may no longer be valid.
  3403. */
  3404. if (cpu >= nr_cpumask_bits)
  3405. return 0;
  3406. /*
  3407. * We need to validate that we can do a
  3408. * get_cpu() and that we have the percpu area.
  3409. */
  3410. if (!cpu_online(cpu))
  3411. return 0;
  3412. rq = cpu_rq(cpu);
  3413. for (;;) {
  3414. /*
  3415. * Owner changed, break to re-assess state.
  3416. */
  3417. if (lock->owner != owner) {
  3418. /*
  3419. * If the lock has switched to a different owner,
  3420. * we likely have heavy contention. Return 0 to quit
  3421. * optimistic spinning and not contend further:
  3422. */
  3423. if (lock->owner)
  3424. return 0;
  3425. break;
  3426. }
  3427. /*
  3428. * Is that owner really running on that cpu?
  3429. */
  3430. if (task_thread_info(rq->curr) != owner || need_resched())
  3431. return 0;
  3432. arch_mutex_cpu_relax();
  3433. }
  3434. return 1;
  3435. }
  3436. #endif
  3437. #ifdef CONFIG_PREEMPT
  3438. /*
  3439. * this is the entry point to schedule() from in-kernel preemption
  3440. * off of preempt_enable. Kernel preemptions off return from interrupt
  3441. * occur there and call schedule directly.
  3442. */
  3443. asmlinkage void __sched notrace preempt_schedule(void)
  3444. {
  3445. struct thread_info *ti = current_thread_info();
  3446. /*
  3447. * If there is a non-zero preempt_count or interrupts are disabled,
  3448. * we do not want to preempt the current task. Just return..
  3449. */
  3450. if (likely(ti->preempt_count || irqs_disabled()))
  3451. return;
  3452. do {
  3453. add_preempt_count_notrace(PREEMPT_ACTIVE);
  3454. schedule();
  3455. sub_preempt_count_notrace(PREEMPT_ACTIVE);
  3456. /*
  3457. * Check again in case we missed a preemption opportunity
  3458. * between schedule and now.
  3459. */
  3460. barrier();
  3461. } while (need_resched());
  3462. }
  3463. EXPORT_SYMBOL(preempt_schedule);
  3464. /*
  3465. * this is the entry point to schedule() from kernel preemption
  3466. * off of irq context.
  3467. * Note, that this is called and return with irqs disabled. This will
  3468. * protect us against recursive calling from irq.
  3469. */
  3470. asmlinkage void __sched preempt_schedule_irq(void)
  3471. {
  3472. struct thread_info *ti = current_thread_info();
  3473. /* Catch callers which need to be fixed */
  3474. BUG_ON(ti->preempt_count || !irqs_disabled());
  3475. do {
  3476. add_preempt_count(PREEMPT_ACTIVE);
  3477. local_irq_enable();
  3478. schedule();
  3479. local_irq_disable();
  3480. sub_preempt_count(PREEMPT_ACTIVE);
  3481. /*
  3482. * Check again in case we missed a preemption opportunity
  3483. * between schedule and now.
  3484. */
  3485. barrier();
  3486. } while (need_resched());
  3487. }
  3488. #endif /* CONFIG_PREEMPT */
  3489. int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
  3490. void *key)
  3491. {
  3492. return try_to_wake_up(curr->private, mode, wake_flags);
  3493. }
  3494. EXPORT_SYMBOL(default_wake_function);
  3495. /*
  3496. * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
  3497. * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
  3498. * number) then we wake all the non-exclusive tasks and one exclusive task.
  3499. *
  3500. * There are circumstances in which we can try to wake a task which has already
  3501. * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
  3502. * zero in this (rare) case, and we handle it by continuing to scan the queue.
  3503. */
  3504. static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
  3505. int nr_exclusive, int wake_flags, void *key)
  3506. {
  3507. wait_queue_t *curr, *next;
  3508. list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
  3509. unsigned flags = curr->flags;
  3510. if (curr->func(curr, mode, wake_flags, key) &&
  3511. (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
  3512. break;
  3513. }
  3514. }
  3515. /**
  3516. * __wake_up - wake up threads blocked on a waitqueue.
  3517. * @q: the waitqueue
  3518. * @mode: which threads
  3519. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  3520. * @key: is directly passed to the wakeup function
  3521. *
  3522. * It may be assumed that this function implies a write memory barrier before
  3523. * changing the task state if and only if any tasks are woken up.
  3524. */
  3525. void __wake_up(wait_queue_head_t *q, unsigned int mode,
  3526. int nr_exclusive, void *key)
  3527. {
  3528. unsigned long flags;
  3529. spin_lock_irqsave(&q->lock, flags);
  3530. __wake_up_common(q, mode, nr_exclusive, 0, key);
  3531. spin_unlock_irqrestore(&q->lock, flags);
  3532. }
  3533. EXPORT_SYMBOL(__wake_up);
  3534. /*
  3535. * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
  3536. */
  3537. void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
  3538. {
  3539. __wake_up_common(q, mode, 1, 0, NULL);
  3540. }
  3541. EXPORT_SYMBOL_GPL(__wake_up_locked);
  3542. void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
  3543. {
  3544. __wake_up_common(q, mode, 1, 0, key);
  3545. }
  3546. /**
  3547. * __wake_up_sync_key - wake up threads blocked on a waitqueue.
  3548. * @q: the waitqueue
  3549. * @mode: which threads
  3550. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  3551. * @key: opaque value to be passed to wakeup targets
  3552. *
  3553. * The sync wakeup differs that the waker knows that it will schedule
  3554. * away soon, so while the target thread will be woken up, it will not
  3555. * be migrated to another CPU - ie. the two threads are 'synchronized'
  3556. * with each other. This can prevent needless bouncing between CPUs.
  3557. *
  3558. * On UP it can prevent extra preemption.
  3559. *
  3560. * It may be assumed that this function implies a write memory barrier before
  3561. * changing the task state if and only if any tasks are woken up.
  3562. */
  3563. void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
  3564. int nr_exclusive, void *key)
  3565. {
  3566. unsigned long flags;
  3567. int wake_flags = WF_SYNC;
  3568. if (unlikely(!q))
  3569. return;
  3570. if (unlikely(!nr_exclusive))
  3571. wake_flags = 0;
  3572. spin_lock_irqsave(&q->lock, flags);
  3573. __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
  3574. spin_unlock_irqrestore(&q->lock, flags);
  3575. }
  3576. EXPORT_SYMBOL_GPL(__wake_up_sync_key);
  3577. /*
  3578. * __wake_up_sync - see __wake_up_sync_key()
  3579. */
  3580. void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
  3581. {
  3582. __wake_up_sync_key(q, mode, nr_exclusive, NULL);
  3583. }
  3584. EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
  3585. /**
  3586. * complete: - signals a single thread waiting on this completion
  3587. * @x: holds the state of this particular completion
  3588. *
  3589. * This will wake up a single thread waiting on this completion. Threads will be
  3590. * awakened in the same order in which they were queued.
  3591. *
  3592. * See also complete_all(), wait_for_completion() and related routines.
  3593. *
  3594. * It may be assumed that this function implies a write memory barrier before
  3595. * changing the task state if and only if any tasks are woken up.
  3596. */
  3597. void complete(struct completion *x)
  3598. {
  3599. unsigned long flags;
  3600. spin_lock_irqsave(&x->wait.lock, flags);
  3601. x->done++;
  3602. __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
  3603. spin_unlock_irqrestore(&x->wait.lock, flags);
  3604. }
  3605. EXPORT_SYMBOL(complete);
  3606. /**
  3607. * complete_all: - signals all threads waiting on this completion
  3608. * @x: holds the state of this particular completion
  3609. *
  3610. * This will wake up all threads waiting on this particular completion event.
  3611. *
  3612. * It may be assumed that this function implies a write memory barrier before
  3613. * changing the task state if and only if any tasks are woken up.
  3614. */
  3615. void complete_all(struct completion *x)
  3616. {
  3617. unsigned long flags;
  3618. spin_lock_irqsave(&x->wait.lock, flags);
  3619. x->done += UINT_MAX/2;
  3620. __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
  3621. spin_unlock_irqrestore(&x->wait.lock, flags);
  3622. }
  3623. EXPORT_SYMBOL(complete_all);
  3624. static inline long __sched
  3625. do_wait_for_common(struct completion *x, long timeout, int state)
  3626. {
  3627. if (!x->done) {
  3628. DECLARE_WAITQUEUE(wait, current);
  3629. __add_wait_queue_tail_exclusive(&x->wait, &wait);
  3630. do {
  3631. if (signal_pending_state(state, current)) {
  3632. timeout = -ERESTARTSYS;
  3633. break;
  3634. }
  3635. __set_current_state(state);
  3636. spin_unlock_irq(&x->wait.lock);
  3637. timeout = schedule_timeout(timeout);
  3638. spin_lock_irq(&x->wait.lock);
  3639. } while (!x->done && timeout);
  3640. __remove_wait_queue(&x->wait, &wait);
  3641. if (!x->done)
  3642. return timeout;
  3643. }
  3644. x->done--;
  3645. return timeout ?: 1;
  3646. }
  3647. static long __sched
  3648. wait_for_common(struct completion *x, long timeout, int state)
  3649. {
  3650. might_sleep();
  3651. spin_lock_irq(&x->wait.lock);
  3652. timeout = do_wait_for_common(x, timeout, state);
  3653. spin_unlock_irq(&x->wait.lock);
  3654. return timeout;
  3655. }
  3656. /**
  3657. * wait_for_completion: - waits for completion of a task
  3658. * @x: holds the state of this particular completion
  3659. *
  3660. * This waits to be signaled for completion of a specific task. It is NOT
  3661. * interruptible and there is no timeout.
  3662. *
  3663. * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
  3664. * and interrupt capability. Also see complete().
  3665. */
  3666. void __sched wait_for_completion(struct completion *x)
  3667. {
  3668. wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
  3669. }
  3670. EXPORT_SYMBOL(wait_for_completion);
  3671. /**
  3672. * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
  3673. * @x: holds the state of this particular completion
  3674. * @timeout: timeout value in jiffies
  3675. *
  3676. * This waits for either a completion of a specific task to be signaled or for a
  3677. * specified timeout to expire. The timeout is in jiffies. It is not
  3678. * interruptible.
  3679. */
  3680. unsigned long __sched
  3681. wait_for_completion_timeout(struct completion *x, unsigned long timeout)
  3682. {
  3683. return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
  3684. }
  3685. EXPORT_SYMBOL(wait_for_completion_timeout);
  3686. /**
  3687. * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
  3688. * @x: holds the state of this particular completion
  3689. *
  3690. * This waits for completion of a specific task to be signaled. It is
  3691. * interruptible.
  3692. */
  3693. int __sched wait_for_completion_interruptible(struct completion *x)
  3694. {
  3695. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
  3696. if (t == -ERESTARTSYS)
  3697. return t;
  3698. return 0;
  3699. }
  3700. EXPORT_SYMBOL(wait_for_completion_interruptible);
  3701. /**
  3702. * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
  3703. * @x: holds the state of this particular completion
  3704. * @timeout: timeout value in jiffies
  3705. *
  3706. * This waits for either a completion of a specific task to be signaled or for a
  3707. * specified timeout to expire. It is interruptible. The timeout is in jiffies.
  3708. */
  3709. long __sched
  3710. wait_for_completion_interruptible_timeout(struct completion *x,
  3711. unsigned long timeout)
  3712. {
  3713. return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
  3714. }
  3715. EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
  3716. /**
  3717. * wait_for_completion_killable: - waits for completion of a task (killable)
  3718. * @x: holds the state of this particular completion
  3719. *
  3720. * This waits to be signaled for completion of a specific task. It can be
  3721. * interrupted by a kill signal.
  3722. */
  3723. int __sched wait_for_completion_killable(struct completion *x)
  3724. {
  3725. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
  3726. if (t == -ERESTARTSYS)
  3727. return t;
  3728. return 0;
  3729. }
  3730. EXPORT_SYMBOL(wait_for_completion_killable);
  3731. /**
  3732. * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
  3733. * @x: holds the state of this particular completion
  3734. * @timeout: timeout value in jiffies
  3735. *
  3736. * This waits for either a completion of a specific task to be
  3737. * signaled or for a specified timeout to expire. It can be
  3738. * interrupted by a kill signal. The timeout is in jiffies.
  3739. */
  3740. long __sched
  3741. wait_for_completion_killable_timeout(struct completion *x,
  3742. unsigned long timeout)
  3743. {
  3744. return wait_for_common(x, timeout, TASK_KILLABLE);
  3745. }
  3746. EXPORT_SYMBOL(wait_for_completion_killable_timeout);
  3747. /**
  3748. * try_wait_for_completion - try to decrement a completion without blocking
  3749. * @x: completion structure
  3750. *
  3751. * Returns: 0 if a decrement cannot be done without blocking
  3752. * 1 if a decrement succeeded.
  3753. *
  3754. * If a completion is being used as a counting completion,
  3755. * attempt to decrement the counter without blocking. This
  3756. * enables us to avoid waiting if the resource the completion
  3757. * is protecting is not available.
  3758. */
  3759. bool try_wait_for_completion(struct completion *x)
  3760. {
  3761. unsigned long flags;
  3762. int ret = 1;
  3763. spin_lock_irqsave(&x->wait.lock, flags);
  3764. if (!x->done)
  3765. ret = 0;
  3766. else
  3767. x->done--;
  3768. spin_unlock_irqrestore(&x->wait.lock, flags);
  3769. return ret;
  3770. }
  3771. EXPORT_SYMBOL(try_wait_for_completion);
  3772. /**
  3773. * completion_done - Test to see if a completion has any waiters
  3774. * @x: completion structure
  3775. *
  3776. * Returns: 0 if there are waiters (wait_for_completion() in progress)
  3777. * 1 if there are no waiters.
  3778. *
  3779. */
  3780. bool completion_done(struct completion *x)
  3781. {
  3782. unsigned long flags;
  3783. int ret = 1;
  3784. spin_lock_irqsave(&x->wait.lock, flags);
  3785. if (!x->done)
  3786. ret = 0;
  3787. spin_unlock_irqrestore(&x->wait.lock, flags);
  3788. return ret;
  3789. }
  3790. EXPORT_SYMBOL(completion_done);
  3791. static long __sched
  3792. sleep_on_common(wait_queue_head_t *q, int state, long timeout)
  3793. {
  3794. unsigned long flags;
  3795. wait_queue_t wait;
  3796. init_waitqueue_entry(&wait, current);
  3797. __set_current_state(state);
  3798. spin_lock_irqsave(&q->lock, flags);
  3799. __add_wait_queue(q, &wait);
  3800. spin_unlock(&q->lock);
  3801. timeout = schedule_timeout(timeout);
  3802. spin_lock_irq(&q->lock);
  3803. __remove_wait_queue(q, &wait);
  3804. spin_unlock_irqrestore(&q->lock, flags);
  3805. return timeout;
  3806. }
  3807. void __sched interruptible_sleep_on(wait_queue_head_t *q)
  3808. {
  3809. sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  3810. }
  3811. EXPORT_SYMBOL(interruptible_sleep_on);
  3812. long __sched
  3813. interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
  3814. {
  3815. return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
  3816. }
  3817. EXPORT_SYMBOL(interruptible_sleep_on_timeout);
  3818. void __sched sleep_on(wait_queue_head_t *q)
  3819. {
  3820. sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  3821. }
  3822. EXPORT_SYMBOL(sleep_on);
  3823. long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
  3824. {
  3825. return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
  3826. }
  3827. EXPORT_SYMBOL(sleep_on_timeout);
  3828. #ifdef CONFIG_RT_MUTEXES
  3829. /*
  3830. * rt_mutex_setprio - set the current priority of a task
  3831. * @p: task
  3832. * @prio: prio value (kernel-internal form)
  3833. *
  3834. * This function changes the 'effective' priority of a task. It does
  3835. * not touch ->normal_prio like __setscheduler().
  3836. *
  3837. * Used by the rt_mutex code to implement priority inheritance logic.
  3838. */
  3839. void rt_mutex_setprio(struct task_struct *p, int prio)
  3840. {
  3841. unsigned long flags;
  3842. int oldprio, on_rq, running;
  3843. struct rq *rq;
  3844. const struct sched_class *prev_class;
  3845. BUG_ON(prio < 0 || prio > MAX_PRIO);
  3846. rq = task_rq_lock(p, &flags);
  3847. trace_sched_pi_setprio(p, prio);
  3848. oldprio = p->prio;
  3849. prev_class = p->sched_class;
  3850. on_rq = p->se.on_rq;
  3851. running = task_current(rq, p);
  3852. if (on_rq)
  3853. dequeue_task(rq, p, 0);
  3854. if (running)
  3855. p->sched_class->put_prev_task(rq, p);
  3856. if (rt_prio(prio))
  3857. p->sched_class = &rt_sched_class;
  3858. else
  3859. p->sched_class = &fair_sched_class;
  3860. p->prio = prio;
  3861. if (running)
  3862. p->sched_class->set_curr_task(rq);
  3863. if (on_rq) {
  3864. enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
  3865. check_class_changed(rq, p, prev_class, oldprio, running);
  3866. }
  3867. task_rq_unlock(rq, &flags);
  3868. }
  3869. #endif
  3870. void set_user_nice(struct task_struct *p, long nice)
  3871. {
  3872. int old_prio, delta, on_rq;
  3873. unsigned long flags;
  3874. struct rq *rq;
  3875. if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
  3876. return;
  3877. /*
  3878. * We have to be careful, if called from sys_setpriority(),
  3879. * the task might be in the middle of scheduling on another CPU.
  3880. */
  3881. rq = task_rq_lock(p, &flags);
  3882. /*
  3883. * The RT priorities are set via sched_setscheduler(), but we still
  3884. * allow the 'normal' nice value to be set - but as expected
  3885. * it wont have any effect on scheduling until the task is
  3886. * SCHED_FIFO/SCHED_RR:
  3887. */
  3888. if (task_has_rt_policy(p)) {
  3889. p->static_prio = NICE_TO_PRIO(nice);
  3890. goto out_unlock;
  3891. }
  3892. on_rq = p->se.on_rq;
  3893. if (on_rq)
  3894. dequeue_task(rq, p, 0);
  3895. p->static_prio = NICE_TO_PRIO(nice);
  3896. set_load_weight(p);
  3897. old_prio = p->prio;
  3898. p->prio = effective_prio(p);
  3899. delta = p->prio - old_prio;
  3900. if (on_rq) {
  3901. enqueue_task(rq, p, 0);
  3902. /*
  3903. * If the task increased its priority or is running and
  3904. * lowered its priority, then reschedule its CPU:
  3905. */
  3906. if (delta < 0 || (delta > 0 && task_running(rq, p)))
  3907. resched_task(rq->curr);
  3908. }
  3909. out_unlock:
  3910. task_rq_unlock(rq, &flags);
  3911. }
  3912. EXPORT_SYMBOL(set_user_nice);
  3913. /*
  3914. * can_nice - check if a task can reduce its nice value
  3915. * @p: task
  3916. * @nice: nice value
  3917. */
  3918. int can_nice(const struct task_struct *p, const int nice)
  3919. {
  3920. /* convert nice value [19,-20] to rlimit style value [1,40] */
  3921. int nice_rlim = 20 - nice;
  3922. return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
  3923. capable(CAP_SYS_NICE));
  3924. }
  3925. #ifdef __ARCH_WANT_SYS_NICE
  3926. /*
  3927. * sys_nice - change the priority of the current process.
  3928. * @increment: priority increment
  3929. *
  3930. * sys_setpriority is a more generic, but much slower function that
  3931. * does similar things.
  3932. */
  3933. SYSCALL_DEFINE1(nice, int, increment)
  3934. {
  3935. long nice, retval;
  3936. /*
  3937. * Setpriority might change our priority at the same moment.
  3938. * We don't have to worry. Conceptually one call occurs first
  3939. * and we have a single winner.
  3940. */
  3941. if (increment < -40)
  3942. increment = -40;
  3943. if (increment > 40)
  3944. increment = 40;
  3945. nice = TASK_NICE(current) + increment;
  3946. if (nice < -20)
  3947. nice = -20;
  3948. if (nice > 19)
  3949. nice = 19;
  3950. if (increment < 0 && !can_nice(current, nice))
  3951. return -EPERM;
  3952. retval = security_task_setnice(current, nice);
  3953. if (retval)
  3954. return retval;
  3955. set_user_nice(current, nice);
  3956. return 0;
  3957. }
  3958. #endif
  3959. /**
  3960. * task_prio - return the priority value of a given task.
  3961. * @p: the task in question.
  3962. *
  3963. * This is the priority value as seen by users in /proc.
  3964. * RT tasks are offset by -200. Normal tasks are centered
  3965. * around 0, value goes from -16 to +15.
  3966. */
  3967. int task_prio(const struct task_struct *p)
  3968. {
  3969. return p->prio - MAX_RT_PRIO;
  3970. }
  3971. /**
  3972. * task_nice - return the nice value of a given task.
  3973. * @p: the task in question.
  3974. */
  3975. int task_nice(const struct task_struct *p)
  3976. {
  3977. return TASK_NICE(p);
  3978. }
  3979. EXPORT_SYMBOL(task_nice);
  3980. /**
  3981. * idle_cpu - is a given cpu idle currently?
  3982. * @cpu: the processor in question.
  3983. */
  3984. int idle_cpu(int cpu)
  3985. {
  3986. return cpu_curr(cpu) == cpu_rq(cpu)->idle;
  3987. }
  3988. /**
  3989. * idle_task - return the idle task for a given cpu.
  3990. * @cpu: the processor in question.
  3991. */
  3992. struct task_struct *idle_task(int cpu)
  3993. {
  3994. return cpu_rq(cpu)->idle;
  3995. }
  3996. /**
  3997. * find_process_by_pid - find a process with a matching PID value.
  3998. * @pid: the pid in question.
  3999. */
  4000. static struct task_struct *find_process_by_pid(pid_t pid)
  4001. {
  4002. return pid ? find_task_by_vpid(pid) : current;
  4003. }
  4004. /* Actually do priority change: must hold rq lock. */
  4005. static void
  4006. __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
  4007. {
  4008. BUG_ON(p->se.on_rq);
  4009. p->policy = policy;
  4010. p->rt_priority = prio;
  4011. p->normal_prio = normal_prio(p);
  4012. /* we are holding p->pi_lock already */
  4013. p->prio = rt_mutex_getprio(p);
  4014. if (rt_prio(p->prio))
  4015. p->sched_class = &rt_sched_class;
  4016. else
  4017. p->sched_class = &fair_sched_class;
  4018. set_load_weight(p);
  4019. }
  4020. /*
  4021. * check the target process has a UID that matches the current process's
  4022. */
  4023. static bool check_same_owner(struct task_struct *p)
  4024. {
  4025. const struct cred *cred = current_cred(), *pcred;
  4026. bool match;
  4027. rcu_read_lock();
  4028. pcred = __task_cred(p);
  4029. match = (cred->euid == pcred->euid ||
  4030. cred->euid == pcred->uid);
  4031. rcu_read_unlock();
  4032. return match;
  4033. }
  4034. static int __sched_setscheduler(struct task_struct *p, int policy,
  4035. const struct sched_param *param, bool user)
  4036. {
  4037. int retval, oldprio, oldpolicy = -1, on_rq, running;
  4038. unsigned long flags;
  4039. const struct sched_class *prev_class;
  4040. struct rq *rq;
  4041. int reset_on_fork;
  4042. /* may grab non-irq protected spin_locks */
  4043. BUG_ON(in_interrupt());
  4044. recheck:
  4045. /* double check policy once rq lock held */
  4046. if (policy < 0) {
  4047. reset_on_fork = p->sched_reset_on_fork;
  4048. policy = oldpolicy = p->policy;
  4049. } else {
  4050. reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
  4051. policy &= ~SCHED_RESET_ON_FORK;
  4052. if (policy != SCHED_FIFO && policy != SCHED_RR &&
  4053. policy != SCHED_NORMAL && policy != SCHED_BATCH &&
  4054. policy != SCHED_IDLE)
  4055. return -EINVAL;
  4056. }
  4057. /*
  4058. * Valid priorities for SCHED_FIFO and SCHED_RR are
  4059. * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
  4060. * SCHED_BATCH and SCHED_IDLE is 0.
  4061. */
  4062. if (param->sched_priority < 0 ||
  4063. (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
  4064. (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
  4065. return -EINVAL;
  4066. if (rt_policy(policy) != (param->sched_priority != 0))
  4067. return -EINVAL;
  4068. /*
  4069. * Allow unprivileged RT tasks to decrease priority:
  4070. */
  4071. if (user && !capable(CAP_SYS_NICE)) {
  4072. if (rt_policy(policy)) {
  4073. unsigned long rlim_rtprio =
  4074. task_rlimit(p, RLIMIT_RTPRIO);
  4075. /* can't set/change the rt policy */
  4076. if (policy != p->policy && !rlim_rtprio)
  4077. return -EPERM;
  4078. /* can't increase priority */
  4079. if (param->sched_priority > p->rt_priority &&
  4080. param->sched_priority > rlim_rtprio)
  4081. return -EPERM;
  4082. }
  4083. /*
  4084. * Like positive nice levels, dont allow tasks to
  4085. * move out of SCHED_IDLE either:
  4086. */
  4087. if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
  4088. return -EPERM;
  4089. /* can't change other user's priorities */
  4090. if (!check_same_owner(p))
  4091. return -EPERM;
  4092. /* Normal users shall not reset the sched_reset_on_fork flag */
  4093. if (p->sched_reset_on_fork && !reset_on_fork)
  4094. return -EPERM;
  4095. }
  4096. if (user) {
  4097. retval = security_task_setscheduler(p);
  4098. if (retval)
  4099. return retval;
  4100. }
  4101. /*
  4102. * make sure no PI-waiters arrive (or leave) while we are
  4103. * changing the priority of the task:
  4104. */
  4105. raw_spin_lock_irqsave(&p->pi_lock, flags);
  4106. /*
  4107. * To be able to change p->policy safely, the apropriate
  4108. * runqueue lock must be held.
  4109. */
  4110. rq = __task_rq_lock(p);
  4111. /*
  4112. * Changing the policy of the stop threads its a very bad idea
  4113. */
  4114. if (p == rq->stop) {
  4115. __task_rq_unlock(rq);
  4116. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  4117. return -EINVAL;
  4118. }
  4119. #ifdef CONFIG_RT_GROUP_SCHED
  4120. if (user) {
  4121. /*
  4122. * Do not allow realtime tasks into groups that have no runtime
  4123. * assigned.
  4124. */
  4125. if (rt_bandwidth_enabled() && rt_policy(policy) &&
  4126. task_group(p)->rt_bandwidth.rt_runtime == 0 &&
  4127. !task_group_is_autogroup(task_group(p))) {
  4128. __task_rq_unlock(rq);
  4129. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  4130. return -EPERM;
  4131. }
  4132. }
  4133. #endif
  4134. /* recheck policy now with rq lock held */
  4135. if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
  4136. policy = oldpolicy = -1;
  4137. __task_rq_unlock(rq);
  4138. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  4139. goto recheck;
  4140. }
  4141. on_rq = p->se.on_rq;
  4142. running = task_current(rq, p);
  4143. if (on_rq)
  4144. deactivate_task(rq, p, 0);
  4145. if (running)
  4146. p->sched_class->put_prev_task(rq, p);
  4147. p->sched_reset_on_fork = reset_on_fork;
  4148. oldprio = p->prio;
  4149. prev_class = p->sched_class;
  4150. __setscheduler(rq, p, policy, param->sched_priority);
  4151. if (running)
  4152. p->sched_class->set_curr_task(rq);
  4153. if (on_rq) {
  4154. activate_task(rq, p, 0);
  4155. check_class_changed(rq, p, prev_class, oldprio, running);
  4156. }
  4157. __task_rq_unlock(rq);
  4158. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  4159. rt_mutex_adjust_pi(p);
  4160. return 0;
  4161. }
  4162. /**
  4163. * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
  4164. * @p: the task in question.
  4165. * @policy: new policy.
  4166. * @param: structure containing the new RT priority.
  4167. *
  4168. * NOTE that the task may be already dead.
  4169. */
  4170. int sched_setscheduler(struct task_struct *p, int policy,
  4171. const struct sched_param *param)
  4172. {
  4173. return __sched_setscheduler(p, policy, param, true);
  4174. }
  4175. EXPORT_SYMBOL_GPL(sched_setscheduler);
  4176. /**
  4177. * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
  4178. * @p: the task in question.
  4179. * @policy: new policy.
  4180. * @param: structure containing the new RT priority.
  4181. *
  4182. * Just like sched_setscheduler, only don't bother checking if the
  4183. * current context has permission. For example, this is needed in
  4184. * stop_machine(): we create temporary high priority worker threads,
  4185. * but our caller might not have that capability.
  4186. */
  4187. int sched_setscheduler_nocheck(struct task_struct *p, int policy,
  4188. const struct sched_param *param)
  4189. {
  4190. return __sched_setscheduler(p, policy, param, false);
  4191. }
  4192. static int
  4193. do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
  4194. {
  4195. struct sched_param lparam;
  4196. struct task_struct *p;
  4197. int retval;
  4198. if (!param || pid < 0)
  4199. return -EINVAL;
  4200. if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
  4201. return -EFAULT;
  4202. rcu_read_lock();
  4203. retval = -ESRCH;
  4204. p = find_process_by_pid(pid);
  4205. if (p != NULL)
  4206. retval = sched_setscheduler(p, policy, &lparam);
  4207. rcu_read_unlock();
  4208. return retval;
  4209. }
  4210. /**
  4211. * sys_sched_setscheduler - set/change the scheduler policy and RT priority
  4212. * @pid: the pid in question.
  4213. * @policy: new policy.
  4214. * @param: structure containing the new RT priority.
  4215. */
  4216. SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
  4217. struct sched_param __user *, param)
  4218. {
  4219. /* negative values for policy are not valid */
  4220. if (policy < 0)
  4221. return -EINVAL;
  4222. return do_sched_setscheduler(pid, policy, param);
  4223. }
  4224. /**
  4225. * sys_sched_setparam - set/change the RT priority of a thread
  4226. * @pid: the pid in question.
  4227. * @param: structure containing the new RT priority.
  4228. */
  4229. SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
  4230. {
  4231. return do_sched_setscheduler(pid, -1, param);
  4232. }
  4233. /**
  4234. * sys_sched_getscheduler - get the policy (scheduling class) of a thread
  4235. * @pid: the pid in question.
  4236. */
  4237. SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
  4238. {
  4239. struct task_struct *p;
  4240. int retval;
  4241. if (pid < 0)
  4242. return -EINVAL;
  4243. retval = -ESRCH;
  4244. rcu_read_lock();
  4245. p = find_process_by_pid(pid);
  4246. if (p) {
  4247. retval = security_task_getscheduler(p);
  4248. if (!retval)
  4249. retval = p->policy
  4250. | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
  4251. }
  4252. rcu_read_unlock();
  4253. return retval;
  4254. }
  4255. /**
  4256. * sys_sched_getparam - get the RT priority of a thread
  4257. * @pid: the pid in question.
  4258. * @param: structure containing the RT priority.
  4259. */
  4260. SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
  4261. {
  4262. struct sched_param lp;
  4263. struct task_struct *p;
  4264. int retval;
  4265. if (!param || pid < 0)
  4266. return -EINVAL;
  4267. rcu_read_lock();
  4268. p = find_process_by_pid(pid);
  4269. retval = -ESRCH;
  4270. if (!p)
  4271. goto out_unlock;
  4272. retval = security_task_getscheduler(p);
  4273. if (retval)
  4274. goto out_unlock;
  4275. lp.sched_priority = p->rt_priority;
  4276. rcu_read_unlock();
  4277. /*
  4278. * This one might sleep, we cannot do it with a spinlock held ...
  4279. */
  4280. retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
  4281. return retval;
  4282. out_unlock:
  4283. rcu_read_unlock();
  4284. return retval;
  4285. }
  4286. long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
  4287. {
  4288. cpumask_var_t cpus_allowed, new_mask;
  4289. struct task_struct *p;
  4290. int retval;
  4291. get_online_cpus();
  4292. rcu_read_lock();
  4293. p = find_process_by_pid(pid);
  4294. if (!p) {
  4295. rcu_read_unlock();
  4296. put_online_cpus();
  4297. return -ESRCH;
  4298. }
  4299. /* Prevent p going away */
  4300. get_task_struct(p);
  4301. rcu_read_unlock();
  4302. if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
  4303. retval = -ENOMEM;
  4304. goto out_put_task;
  4305. }
  4306. if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
  4307. retval = -ENOMEM;
  4308. goto out_free_cpus_allowed;
  4309. }
  4310. retval = -EPERM;
  4311. if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
  4312. goto out_unlock;
  4313. retval = security_task_setscheduler(p);
  4314. if (retval)
  4315. goto out_unlock;
  4316. cpuset_cpus_allowed(p, cpus_allowed);
  4317. cpumask_and(new_mask, in_mask, cpus_allowed);
  4318. again:
  4319. retval = set_cpus_allowed_ptr(p, new_mask);
  4320. if (!retval) {
  4321. cpuset_cpus_allowed(p, cpus_allowed);
  4322. if (!cpumask_subset(new_mask, cpus_allowed)) {
  4323. /*
  4324. * We must have raced with a concurrent cpuset
  4325. * update. Just reset the cpus_allowed to the
  4326. * cpuset's cpus_allowed
  4327. */
  4328. cpumask_copy(new_mask, cpus_allowed);
  4329. goto again;
  4330. }
  4331. }
  4332. out_unlock:
  4333. free_cpumask_var(new_mask);
  4334. out_free_cpus_allowed:
  4335. free_cpumask_var(cpus_allowed);
  4336. out_put_task:
  4337. put_task_struct(p);
  4338. put_online_cpus();
  4339. return retval;
  4340. }
  4341. static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
  4342. struct cpumask *new_mask)
  4343. {
  4344. if (len < cpumask_size())
  4345. cpumask_clear(new_mask);
  4346. else if (len > cpumask_size())
  4347. len = cpumask_size();
  4348. return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
  4349. }
  4350. /**
  4351. * sys_sched_setaffinity - set the cpu affinity of a process
  4352. * @pid: pid of the process
  4353. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  4354. * @user_mask_ptr: user-space pointer to the new cpu mask
  4355. */
  4356. SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
  4357. unsigned long __user *, user_mask_ptr)
  4358. {
  4359. cpumask_var_t new_mask;
  4360. int retval;
  4361. if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
  4362. return -ENOMEM;
  4363. retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
  4364. if (retval == 0)
  4365. retval = sched_setaffinity(pid, new_mask);
  4366. free_cpumask_var(new_mask);
  4367. return retval;
  4368. }
  4369. long sched_getaffinity(pid_t pid, struct cpumask *mask)
  4370. {
  4371. struct task_struct *p;
  4372. unsigned long flags;
  4373. struct rq *rq;
  4374. int retval;
  4375. get_online_cpus();
  4376. rcu_read_lock();
  4377. retval = -ESRCH;
  4378. p = find_process_by_pid(pid);
  4379. if (!p)
  4380. goto out_unlock;
  4381. retval = security_task_getscheduler(p);
  4382. if (retval)
  4383. goto out_unlock;
  4384. rq = task_rq_lock(p, &flags);
  4385. cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
  4386. task_rq_unlock(rq, &flags);
  4387. out_unlock:
  4388. rcu_read_unlock();
  4389. put_online_cpus();
  4390. return retval;
  4391. }
  4392. /**
  4393. * sys_sched_getaffinity - get the cpu affinity of a process
  4394. * @pid: pid of the process
  4395. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  4396. * @user_mask_ptr: user-space pointer to hold the current cpu mask
  4397. */
  4398. SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
  4399. unsigned long __user *, user_mask_ptr)
  4400. {
  4401. int ret;
  4402. cpumask_var_t mask;
  4403. if ((len * BITS_PER_BYTE) < nr_cpu_ids)
  4404. return -EINVAL;
  4405. if (len & (sizeof(unsigned long)-1))
  4406. return -EINVAL;
  4407. if (!alloc_cpumask_var(&mask, GFP_KERNEL))
  4408. return -ENOMEM;
  4409. ret = sched_getaffinity(pid, mask);
  4410. if (ret == 0) {
  4411. size_t retlen = min_t(size_t, len, cpumask_size());
  4412. if (copy_to_user(user_mask_ptr, mask, retlen))
  4413. ret = -EFAULT;
  4414. else
  4415. ret = retlen;
  4416. }
  4417. free_cpumask_var(mask);
  4418. return ret;
  4419. }
  4420. /**
  4421. * sys_sched_yield - yield the current processor to other threads.
  4422. *
  4423. * This function yields the current CPU to other tasks. If there are no
  4424. * other threads running on this CPU then this function will return.
  4425. */
  4426. SYSCALL_DEFINE0(sched_yield)
  4427. {
  4428. struct rq *rq = this_rq_lock();
  4429. schedstat_inc(rq, yld_count);
  4430. current->sched_class->yield_task(rq);
  4431. /*
  4432. * Since we are going to call schedule() anyway, there's
  4433. * no need to preempt or enable interrupts:
  4434. */
  4435. __release(rq->lock);
  4436. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  4437. do_raw_spin_unlock(&rq->lock);
  4438. preempt_enable_no_resched();
  4439. schedule();
  4440. return 0;
  4441. }
  4442. static inline int should_resched(void)
  4443. {
  4444. return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
  4445. }
  4446. static void __cond_resched(void)
  4447. {
  4448. add_preempt_count(PREEMPT_ACTIVE);
  4449. schedule();
  4450. sub_preempt_count(PREEMPT_ACTIVE);
  4451. }
  4452. int __sched _cond_resched(void)
  4453. {
  4454. if (should_resched()) {
  4455. __cond_resched();
  4456. return 1;
  4457. }
  4458. return 0;
  4459. }
  4460. EXPORT_SYMBOL(_cond_resched);
  4461. /*
  4462. * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
  4463. * call schedule, and on return reacquire the lock.
  4464. *
  4465. * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
  4466. * operations here to prevent schedule() from being called twice (once via
  4467. * spin_unlock(), once by hand).
  4468. */
  4469. int __cond_resched_lock(spinlock_t *lock)
  4470. {
  4471. int resched = should_resched();
  4472. int ret = 0;
  4473. lockdep_assert_held(lock);
  4474. if (spin_needbreak(lock) || resched) {
  4475. spin_unlock(lock);
  4476. if (resched)
  4477. __cond_resched();
  4478. else
  4479. cpu_relax();
  4480. ret = 1;
  4481. spin_lock(lock);
  4482. }
  4483. return ret;
  4484. }
  4485. EXPORT_SYMBOL(__cond_resched_lock);
  4486. int __sched __cond_resched_softirq(void)
  4487. {
  4488. BUG_ON(!in_softirq());
  4489. if (should_resched()) {
  4490. local_bh_enable();
  4491. __cond_resched();
  4492. local_bh_disable();
  4493. return 1;
  4494. }
  4495. return 0;
  4496. }
  4497. EXPORT_SYMBOL(__cond_resched_softirq);
  4498. /**
  4499. * yield - yield the current processor to other threads.
  4500. *
  4501. * This is a shortcut for kernel-space yielding - it marks the
  4502. * thread runnable and calls sys_sched_yield().
  4503. */
  4504. void __sched yield(void)
  4505. {
  4506. set_current_state(TASK_RUNNING);
  4507. sys_sched_yield();
  4508. }
  4509. EXPORT_SYMBOL(yield);
  4510. /*
  4511. * This task is about to go to sleep on IO. Increment rq->nr_iowait so
  4512. * that process accounting knows that this is a task in IO wait state.
  4513. */
  4514. void __sched io_schedule(void)
  4515. {
  4516. struct rq *rq = raw_rq();
  4517. delayacct_blkio_start();
  4518. atomic_inc(&rq->nr_iowait);
  4519. current->in_iowait = 1;
  4520. schedule();
  4521. current->in_iowait = 0;
  4522. atomic_dec(&rq->nr_iowait);
  4523. delayacct_blkio_end();
  4524. }
  4525. EXPORT_SYMBOL(io_schedule);
  4526. long __sched io_schedule_timeout(long timeout)
  4527. {
  4528. struct rq *rq = raw_rq();
  4529. long ret;
  4530. delayacct_blkio_start();
  4531. atomic_inc(&rq->nr_iowait);
  4532. current->in_iowait = 1;
  4533. ret = schedule_timeout(timeout);
  4534. current->in_iowait = 0;
  4535. atomic_dec(&rq->nr_iowait);
  4536. delayacct_blkio_end();
  4537. return ret;
  4538. }
  4539. /**
  4540. * sys_sched_get_priority_max - return maximum RT priority.
  4541. * @policy: scheduling class.
  4542. *
  4543. * this syscall returns the maximum rt_priority that can be used
  4544. * by a given scheduling class.
  4545. */
  4546. SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
  4547. {
  4548. int ret = -EINVAL;
  4549. switch (policy) {
  4550. case SCHED_FIFO:
  4551. case SCHED_RR:
  4552. ret = MAX_USER_RT_PRIO-1;
  4553. break;
  4554. case SCHED_NORMAL:
  4555. case SCHED_BATCH:
  4556. case SCHED_IDLE:
  4557. ret = 0;
  4558. break;
  4559. }
  4560. return ret;
  4561. }
  4562. /**
  4563. * sys_sched_get_priority_min - return minimum RT priority.
  4564. * @policy: scheduling class.
  4565. *
  4566. * this syscall returns the minimum rt_priority that can be used
  4567. * by a given scheduling class.
  4568. */
  4569. SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
  4570. {
  4571. int ret = -EINVAL;
  4572. switch (policy) {
  4573. case SCHED_FIFO:
  4574. case SCHED_RR:
  4575. ret = 1;
  4576. break;
  4577. case SCHED_NORMAL:
  4578. case SCHED_BATCH:
  4579. case SCHED_IDLE:
  4580. ret = 0;
  4581. }
  4582. return ret;
  4583. }
  4584. /**
  4585. * sys_sched_rr_get_interval - return the default timeslice of a process.
  4586. * @pid: pid of the process.
  4587. * @interval: userspace pointer to the timeslice value.
  4588. *
  4589. * this syscall writes the default timeslice value of a given process
  4590. * into the user-space timespec buffer. A value of '0' means infinity.
  4591. */
  4592. SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
  4593. struct timespec __user *, interval)
  4594. {
  4595. struct task_struct *p;
  4596. unsigned int time_slice;
  4597. unsigned long flags;
  4598. struct rq *rq;
  4599. int retval;
  4600. struct timespec t;
  4601. if (pid < 0)
  4602. return -EINVAL;
  4603. retval = -ESRCH;
  4604. rcu_read_lock();
  4605. p = find_process_by_pid(pid);
  4606. if (!p)
  4607. goto out_unlock;
  4608. retval = security_task_getscheduler(p);
  4609. if (retval)
  4610. goto out_unlock;
  4611. rq = task_rq_lock(p, &flags);
  4612. time_slice = p->sched_class->get_rr_interval(rq, p);
  4613. task_rq_unlock(rq, &flags);
  4614. rcu_read_unlock();
  4615. jiffies_to_timespec(time_slice, &t);
  4616. retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
  4617. return retval;
  4618. out_unlock:
  4619. rcu_read_unlock();
  4620. return retval;
  4621. }
  4622. static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
  4623. void sched_show_task(struct task_struct *p)
  4624. {
  4625. unsigned long free = 0;
  4626. unsigned state;
  4627. state = p->state ? __ffs(p->state) + 1 : 0;
  4628. printk(KERN_INFO "%-15.15s %c", p->comm,
  4629. state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
  4630. #if BITS_PER_LONG == 32
  4631. if (state == TASK_RUNNING)
  4632. printk(KERN_CONT " running ");
  4633. else
  4634. printk(KERN_CONT " %08lx ", thread_saved_pc(p));
  4635. #else
  4636. if (state == TASK_RUNNING)
  4637. printk(KERN_CONT " running task ");
  4638. else
  4639. printk(KERN_CONT " %016lx ", thread_saved_pc(p));
  4640. #endif
  4641. #ifdef CONFIG_DEBUG_STACK_USAGE
  4642. free = stack_not_used(p);
  4643. #endif
  4644. printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
  4645. task_pid_nr(p), task_pid_nr(p->real_parent),
  4646. (unsigned long)task_thread_info(p)->flags);
  4647. show_stack(p, NULL);
  4648. }
  4649. void show_state_filter(unsigned long state_filter)
  4650. {
  4651. struct task_struct *g, *p;
  4652. #if BITS_PER_LONG == 32
  4653. printk(KERN_INFO
  4654. " task PC stack pid father\n");
  4655. #else
  4656. printk(KERN_INFO
  4657. " task PC stack pid father\n");
  4658. #endif
  4659. read_lock(&tasklist_lock);
  4660. do_each_thread(g, p) {
  4661. /*
  4662. * reset the NMI-timeout, listing all files on a slow
  4663. * console might take alot of time:
  4664. */
  4665. touch_nmi_watchdog();
  4666. if (!state_filter || (p->state & state_filter))
  4667. sched_show_task(p);
  4668. } while_each_thread(g, p);
  4669. touch_all_softlockup_watchdogs();
  4670. #ifdef CONFIG_SCHED_DEBUG
  4671. sysrq_sched_debug_show();
  4672. #endif
  4673. read_unlock(&tasklist_lock);
  4674. /*
  4675. * Only show locks if all tasks are dumped:
  4676. */
  4677. if (!state_filter)
  4678. debug_show_all_locks();
  4679. }
  4680. void __cpuinit init_idle_bootup_task(struct task_struct *idle)
  4681. {
  4682. idle->sched_class = &idle_sched_class;
  4683. }
  4684. /**
  4685. * init_idle - set up an idle thread for a given CPU
  4686. * @idle: task in question
  4687. * @cpu: cpu the idle task belongs to
  4688. *
  4689. * NOTE: this function does not set the idle thread's NEED_RESCHED
  4690. * flag, to make booting more robust.
  4691. */
  4692. void __cpuinit init_idle(struct task_struct *idle, int cpu)
  4693. {
  4694. struct rq *rq = cpu_rq(cpu);
  4695. unsigned long flags;
  4696. raw_spin_lock_irqsave(&rq->lock, flags);
  4697. __sched_fork(idle);
  4698. idle->state = TASK_RUNNING;
  4699. idle->se.exec_start = sched_clock();
  4700. cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
  4701. /*
  4702. * We're having a chicken and egg problem, even though we are
  4703. * holding rq->lock, the cpu isn't yet set to this cpu so the
  4704. * lockdep check in task_group() will fail.
  4705. *
  4706. * Similar case to sched_fork(). / Alternatively we could
  4707. * use task_rq_lock() here and obtain the other rq->lock.
  4708. *
  4709. * Silence PROVE_RCU
  4710. */
  4711. rcu_read_lock();
  4712. __set_task_cpu(idle, cpu);
  4713. rcu_read_unlock();
  4714. rq->curr = rq->idle = idle;
  4715. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  4716. idle->oncpu = 1;
  4717. #endif
  4718. raw_spin_unlock_irqrestore(&rq->lock, flags);
  4719. /* Set the preempt count _outside_ the spinlocks! */
  4720. #if defined(CONFIG_PREEMPT)
  4721. task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
  4722. #else
  4723. task_thread_info(idle)->preempt_count = 0;
  4724. #endif
  4725. /*
  4726. * The idle tasks have their own, simple scheduling class:
  4727. */
  4728. idle->sched_class = &idle_sched_class;
  4729. ftrace_graph_init_task(idle);
  4730. }
  4731. /*
  4732. * In a system that switches off the HZ timer nohz_cpu_mask
  4733. * indicates which cpus entered this state. This is used
  4734. * in the rcu update to wait only for active cpus. For system
  4735. * which do not switch off the HZ timer nohz_cpu_mask should
  4736. * always be CPU_BITS_NONE.
  4737. */
  4738. cpumask_var_t nohz_cpu_mask;
  4739. /*
  4740. * Increase the granularity value when there are more CPUs,
  4741. * because with more CPUs the 'effective latency' as visible
  4742. * to users decreases. But the relationship is not linear,
  4743. * so pick a second-best guess by going with the log2 of the
  4744. * number of CPUs.
  4745. *
  4746. * This idea comes from the SD scheduler of Con Kolivas:
  4747. */
  4748. static int get_update_sysctl_factor(void)
  4749. {
  4750. unsigned int cpus = min_t(int, num_online_cpus(), 8);
  4751. unsigned int factor;
  4752. switch (sysctl_sched_tunable_scaling) {
  4753. case SCHED_TUNABLESCALING_NONE:
  4754. factor = 1;
  4755. break;
  4756. case SCHED_TUNABLESCALING_LINEAR:
  4757. factor = cpus;
  4758. break;
  4759. case SCHED_TUNABLESCALING_LOG:
  4760. default:
  4761. factor = 1 + ilog2(cpus);
  4762. break;
  4763. }
  4764. return factor;
  4765. }
  4766. static void update_sysctl(void)
  4767. {
  4768. unsigned int factor = get_update_sysctl_factor();
  4769. #define SET_SYSCTL(name) \
  4770. (sysctl_##name = (factor) * normalized_sysctl_##name)
  4771. SET_SYSCTL(sched_min_granularity);
  4772. SET_SYSCTL(sched_latency);
  4773. SET_SYSCTL(sched_wakeup_granularity);
  4774. #undef SET_SYSCTL
  4775. }
  4776. static inline void sched_init_granularity(void)
  4777. {
  4778. update_sysctl();
  4779. }
  4780. #ifdef CONFIG_SMP
  4781. /*
  4782. * This is how migration works:
  4783. *
  4784. * 1) we invoke migration_cpu_stop() on the target CPU using
  4785. * stop_one_cpu().
  4786. * 2) stopper starts to run (implicitly forcing the migrated thread
  4787. * off the CPU)
  4788. * 3) it checks whether the migrated task is still in the wrong runqueue.
  4789. * 4) if it's in the wrong runqueue then the migration thread removes
  4790. * it and puts it into the right queue.
  4791. * 5) stopper completes and stop_one_cpu() returns and the migration
  4792. * is done.
  4793. */
  4794. /*
  4795. * Change a given task's CPU affinity. Migrate the thread to a
  4796. * proper CPU and schedule it away if the CPU it's executing on
  4797. * is removed from the allowed bitmask.
  4798. *
  4799. * NOTE: the caller must have a valid reference to the task, the
  4800. * task must not exit() & deallocate itself prematurely. The
  4801. * call is not atomic; no spinlocks may be held.
  4802. */
  4803. int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
  4804. {
  4805. unsigned long flags;
  4806. struct rq *rq;
  4807. unsigned int dest_cpu;
  4808. int ret = 0;
  4809. /*
  4810. * Serialize against TASK_WAKING so that ttwu() and wunt() can
  4811. * drop the rq->lock and still rely on ->cpus_allowed.
  4812. */
  4813. again:
  4814. while (task_is_waking(p))
  4815. cpu_relax();
  4816. rq = task_rq_lock(p, &flags);
  4817. if (task_is_waking(p)) {
  4818. task_rq_unlock(rq, &flags);
  4819. goto again;
  4820. }
  4821. if (!cpumask_intersects(new_mask, cpu_active_mask)) {
  4822. ret = -EINVAL;
  4823. goto out;
  4824. }
  4825. if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
  4826. !cpumask_equal(&p->cpus_allowed, new_mask))) {
  4827. ret = -EINVAL;
  4828. goto out;
  4829. }
  4830. if (p->sched_class->set_cpus_allowed)
  4831. p->sched_class->set_cpus_allowed(p, new_mask);
  4832. else {
  4833. cpumask_copy(&p->cpus_allowed, new_mask);
  4834. p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
  4835. }
  4836. /* Can the task run on the task's current CPU? If so, we're done */
  4837. if (cpumask_test_cpu(task_cpu(p), new_mask))
  4838. goto out;
  4839. dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
  4840. if (migrate_task(p, rq)) {
  4841. struct migration_arg arg = { p, dest_cpu };
  4842. /* Need help from migration thread: drop lock and wait. */
  4843. task_rq_unlock(rq, &flags);
  4844. stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
  4845. tlb_migrate_finish(p->mm);
  4846. return 0;
  4847. }
  4848. out:
  4849. task_rq_unlock(rq, &flags);
  4850. return ret;
  4851. }
  4852. EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
  4853. /*
  4854. * Move (not current) task off this cpu, onto dest cpu. We're doing
  4855. * this because either it can't run here any more (set_cpus_allowed()
  4856. * away from this CPU, or CPU going down), or because we're
  4857. * attempting to rebalance this task on exec (sched_exec).
  4858. *
  4859. * So we race with normal scheduler movements, but that's OK, as long
  4860. * as the task is no longer on this CPU.
  4861. *
  4862. * Returns non-zero if task was successfully migrated.
  4863. */
  4864. static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
  4865. {
  4866. struct rq *rq_dest, *rq_src;
  4867. int ret = 0;
  4868. if (unlikely(!cpu_active(dest_cpu)))
  4869. return ret;
  4870. rq_src = cpu_rq(src_cpu);
  4871. rq_dest = cpu_rq(dest_cpu);
  4872. double_rq_lock(rq_src, rq_dest);
  4873. /* Already moved. */
  4874. if (task_cpu(p) != src_cpu)
  4875. goto done;
  4876. /* Affinity changed (again). */
  4877. if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
  4878. goto fail;
  4879. /*
  4880. * If we're not on a rq, the next wake-up will ensure we're
  4881. * placed properly.
  4882. */
  4883. if (p->se.on_rq) {
  4884. deactivate_task(rq_src, p, 0);
  4885. set_task_cpu(p, dest_cpu);
  4886. activate_task(rq_dest, p, 0);
  4887. check_preempt_curr(rq_dest, p, 0);
  4888. }
  4889. done:
  4890. ret = 1;
  4891. fail:
  4892. double_rq_unlock(rq_src, rq_dest);
  4893. return ret;
  4894. }
  4895. /*
  4896. * migration_cpu_stop - this will be executed by a highprio stopper thread
  4897. * and performs thread migration by bumping thread off CPU then
  4898. * 'pushing' onto another runqueue.
  4899. */
  4900. static int migration_cpu_stop(void *data)
  4901. {
  4902. struct migration_arg *arg = data;
  4903. /*
  4904. * The original target cpu might have gone down and we might
  4905. * be on another cpu but it doesn't matter.
  4906. */
  4907. local_irq_disable();
  4908. __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
  4909. local_irq_enable();
  4910. return 0;
  4911. }
  4912. #ifdef CONFIG_HOTPLUG_CPU
  4913. /*
  4914. * Ensures that the idle task is using init_mm right before its cpu goes
  4915. * offline.
  4916. */
  4917. void idle_task_exit(void)
  4918. {
  4919. struct mm_struct *mm = current->active_mm;
  4920. BUG_ON(cpu_online(smp_processor_id()));
  4921. if (mm != &init_mm)
  4922. switch_mm(mm, &init_mm, current);
  4923. mmdrop(mm);
  4924. }
  4925. /*
  4926. * While a dead CPU has no uninterruptible tasks queued at this point,
  4927. * it might still have a nonzero ->nr_uninterruptible counter, because
  4928. * for performance reasons the counter is not stricly tracking tasks to
  4929. * their home CPUs. So we just add the counter to another CPU's counter,
  4930. * to keep the global sum constant after CPU-down:
  4931. */
  4932. static void migrate_nr_uninterruptible(struct rq *rq_src)
  4933. {
  4934. struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
  4935. rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
  4936. rq_src->nr_uninterruptible = 0;
  4937. }
  4938. /*
  4939. * remove the tasks which were accounted by rq from calc_load_tasks.
  4940. */
  4941. static void calc_global_load_remove(struct rq *rq)
  4942. {
  4943. atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
  4944. rq->calc_load_active = 0;
  4945. }
  4946. /*
  4947. * Migrate all tasks from the rq, sleeping tasks will be migrated by
  4948. * try_to_wake_up()->select_task_rq().
  4949. *
  4950. * Called with rq->lock held even though we'er in stop_machine() and
  4951. * there's no concurrency possible, we hold the required locks anyway
  4952. * because of lock validation efforts.
  4953. */
  4954. static void migrate_tasks(unsigned int dead_cpu)
  4955. {
  4956. struct rq *rq = cpu_rq(dead_cpu);
  4957. struct task_struct *next, *stop = rq->stop;
  4958. int dest_cpu;
  4959. /*
  4960. * Fudge the rq selection such that the below task selection loop
  4961. * doesn't get stuck on the currently eligible stop task.
  4962. *
  4963. * We're currently inside stop_machine() and the rq is either stuck
  4964. * in the stop_machine_cpu_stop() loop, or we're executing this code,
  4965. * either way we should never end up calling schedule() until we're
  4966. * done here.
  4967. */
  4968. rq->stop = NULL;
  4969. for ( ; ; ) {
  4970. /*
  4971. * There's this thread running, bail when that's the only
  4972. * remaining thread.
  4973. */
  4974. if (rq->nr_running == 1)
  4975. break;
  4976. next = pick_next_task(rq);
  4977. BUG_ON(!next);
  4978. next->sched_class->put_prev_task(rq, next);
  4979. /* Find suitable destination for @next, with force if needed. */
  4980. dest_cpu = select_fallback_rq(dead_cpu, next);
  4981. raw_spin_unlock(&rq->lock);
  4982. __migrate_task(next, dead_cpu, dest_cpu);
  4983. raw_spin_lock(&rq->lock);
  4984. }
  4985. rq->stop = stop;
  4986. }
  4987. #endif /* CONFIG_HOTPLUG_CPU */
  4988. #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
  4989. static struct ctl_table sd_ctl_dir[] = {
  4990. {
  4991. .procname = "sched_domain",
  4992. .mode = 0555,
  4993. },
  4994. {}
  4995. };
  4996. static struct ctl_table sd_ctl_root[] = {
  4997. {
  4998. .procname = "kernel",
  4999. .mode = 0555,
  5000. .child = sd_ctl_dir,
  5001. },
  5002. {}
  5003. };
  5004. static struct ctl_table *sd_alloc_ctl_entry(int n)
  5005. {
  5006. struct ctl_table *entry =
  5007. kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
  5008. return entry;
  5009. }
  5010. static void sd_free_ctl_entry(struct ctl_table **tablep)
  5011. {
  5012. struct ctl_table *entry;
  5013. /*
  5014. * In the intermediate directories, both the child directory and
  5015. * procname are dynamically allocated and could fail but the mode
  5016. * will always be set. In the lowest directory the names are
  5017. * static strings and all have proc handlers.
  5018. */
  5019. for (entry = *tablep; entry->mode; entry++) {
  5020. if (entry->child)
  5021. sd_free_ctl_entry(&entry->child);
  5022. if (entry->proc_handler == NULL)
  5023. kfree(entry->procname);
  5024. }
  5025. kfree(*tablep);
  5026. *tablep = NULL;
  5027. }
  5028. static void
  5029. set_table_entry(struct ctl_table *entry,
  5030. const char *procname, void *data, int maxlen,
  5031. mode_t mode, proc_handler *proc_handler)
  5032. {
  5033. entry->procname = procname;
  5034. entry->data = data;
  5035. entry->maxlen = maxlen;
  5036. entry->mode = mode;
  5037. entry->proc_handler = proc_handler;
  5038. }
  5039. static struct ctl_table *
  5040. sd_alloc_ctl_domain_table(struct sched_domain *sd)
  5041. {
  5042. struct ctl_table *table = sd_alloc_ctl_entry(13);
  5043. if (table == NULL)
  5044. return NULL;
  5045. set_table_entry(&table[0], "min_interval", &sd->min_interval,
  5046. sizeof(long), 0644, proc_doulongvec_minmax);
  5047. set_table_entry(&table[1], "max_interval", &sd->max_interval,
  5048. sizeof(long), 0644, proc_doulongvec_minmax);
  5049. set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
  5050. sizeof(int), 0644, proc_dointvec_minmax);
  5051. set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
  5052. sizeof(int), 0644, proc_dointvec_minmax);
  5053. set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
  5054. sizeof(int), 0644, proc_dointvec_minmax);
  5055. set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
  5056. sizeof(int), 0644, proc_dointvec_minmax);
  5057. set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
  5058. sizeof(int), 0644, proc_dointvec_minmax);
  5059. set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
  5060. sizeof(int), 0644, proc_dointvec_minmax);
  5061. set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
  5062. sizeof(int), 0644, proc_dointvec_minmax);
  5063. set_table_entry(&table[9], "cache_nice_tries",
  5064. &sd->cache_nice_tries,
  5065. sizeof(int), 0644, proc_dointvec_minmax);
  5066. set_table_entry(&table[10], "flags", &sd->flags,
  5067. sizeof(int), 0644, proc_dointvec_minmax);
  5068. set_table_entry(&table[11], "name", sd->name,
  5069. CORENAME_MAX_SIZE, 0444, proc_dostring);
  5070. /* &table[12] is terminator */
  5071. return table;
  5072. }
  5073. static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
  5074. {
  5075. struct ctl_table *entry, *table;
  5076. struct sched_domain *sd;
  5077. int domain_num = 0, i;
  5078. char buf[32];
  5079. for_each_domain(cpu, sd)
  5080. domain_num++;
  5081. entry = table = sd_alloc_ctl_entry(domain_num + 1);
  5082. if (table == NULL)
  5083. return NULL;
  5084. i = 0;
  5085. for_each_domain(cpu, sd) {
  5086. snprintf(buf, 32, "domain%d", i);
  5087. entry->procname = kstrdup(buf, GFP_KERNEL);
  5088. entry->mode = 0555;
  5089. entry->child = sd_alloc_ctl_domain_table(sd);
  5090. entry++;
  5091. i++;
  5092. }
  5093. return table;
  5094. }
  5095. static struct ctl_table_header *sd_sysctl_header;
  5096. static void register_sched_domain_sysctl(void)
  5097. {
  5098. int i, cpu_num = num_possible_cpus();
  5099. struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
  5100. char buf[32];
  5101. WARN_ON(sd_ctl_dir[0].child);
  5102. sd_ctl_dir[0].child = entry;
  5103. if (entry == NULL)
  5104. return;
  5105. for_each_possible_cpu(i) {
  5106. snprintf(buf, 32, "cpu%d", i);
  5107. entry->procname = kstrdup(buf, GFP_KERNEL);
  5108. entry->mode = 0555;
  5109. entry->child = sd_alloc_ctl_cpu_table(i);
  5110. entry++;
  5111. }
  5112. WARN_ON(sd_sysctl_header);
  5113. sd_sysctl_header = register_sysctl_table(sd_ctl_root);
  5114. }
  5115. /* may be called multiple times per register */
  5116. static void unregister_sched_domain_sysctl(void)
  5117. {
  5118. if (sd_sysctl_header)
  5119. unregister_sysctl_table(sd_sysctl_header);
  5120. sd_sysctl_header = NULL;
  5121. if (sd_ctl_dir[0].child)
  5122. sd_free_ctl_entry(&sd_ctl_dir[0].child);
  5123. }
  5124. #else
  5125. static void register_sched_domain_sysctl(void)
  5126. {
  5127. }
  5128. static void unregister_sched_domain_sysctl(void)
  5129. {
  5130. }
  5131. #endif
  5132. static void set_rq_online(struct rq *rq)
  5133. {
  5134. if (!rq->online) {
  5135. const struct sched_class *class;
  5136. cpumask_set_cpu(rq->cpu, rq->rd->online);
  5137. rq->online = 1;
  5138. for_each_class(class) {
  5139. if (class->rq_online)
  5140. class->rq_online(rq);
  5141. }
  5142. }
  5143. }
  5144. static void set_rq_offline(struct rq *rq)
  5145. {
  5146. if (rq->online) {
  5147. const struct sched_class *class;
  5148. for_each_class(class) {
  5149. if (class->rq_offline)
  5150. class->rq_offline(rq);
  5151. }
  5152. cpumask_clear_cpu(rq->cpu, rq->rd->online);
  5153. rq->online = 0;
  5154. }
  5155. }
  5156. /*
  5157. * migration_call - callback that gets triggered when a CPU is added.
  5158. * Here we can start up the necessary migration thread for the new CPU.
  5159. */
  5160. static int __cpuinit
  5161. migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
  5162. {
  5163. int cpu = (long)hcpu;
  5164. unsigned long flags;
  5165. struct rq *rq = cpu_rq(cpu);
  5166. switch (action & ~CPU_TASKS_FROZEN) {
  5167. case CPU_UP_PREPARE:
  5168. rq->calc_load_update = calc_load_update;
  5169. break;
  5170. case CPU_ONLINE:
  5171. /* Update our root-domain */
  5172. raw_spin_lock_irqsave(&rq->lock, flags);
  5173. if (rq->rd) {
  5174. BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
  5175. set_rq_online(rq);
  5176. }
  5177. raw_spin_unlock_irqrestore(&rq->lock, flags);
  5178. break;
  5179. #ifdef CONFIG_HOTPLUG_CPU
  5180. case CPU_DYING:
  5181. /* Update our root-domain */
  5182. raw_spin_lock_irqsave(&rq->lock, flags);
  5183. if (rq->rd) {
  5184. BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
  5185. set_rq_offline(rq);
  5186. }
  5187. migrate_tasks(cpu);
  5188. BUG_ON(rq->nr_running != 1); /* the migration thread */
  5189. raw_spin_unlock_irqrestore(&rq->lock, flags);
  5190. migrate_nr_uninterruptible(rq);
  5191. calc_global_load_remove(rq);
  5192. break;
  5193. #endif
  5194. }
  5195. return NOTIFY_OK;
  5196. }
  5197. /*
  5198. * Register at high priority so that task migration (migrate_all_tasks)
  5199. * happens before everything else. This has to be lower priority than
  5200. * the notifier in the perf_event subsystem, though.
  5201. */
  5202. static struct notifier_block __cpuinitdata migration_notifier = {
  5203. .notifier_call = migration_call,
  5204. .priority = CPU_PRI_MIGRATION,
  5205. };
  5206. static int __cpuinit sched_cpu_active(struct notifier_block *nfb,
  5207. unsigned long action, void *hcpu)
  5208. {
  5209. switch (action & ~CPU_TASKS_FROZEN) {
  5210. case CPU_ONLINE:
  5211. case CPU_DOWN_FAILED:
  5212. set_cpu_active((long)hcpu, true);
  5213. return NOTIFY_OK;
  5214. default:
  5215. return NOTIFY_DONE;
  5216. }
  5217. }
  5218. static int __cpuinit sched_cpu_inactive(struct notifier_block *nfb,
  5219. unsigned long action, void *hcpu)
  5220. {
  5221. switch (action & ~CPU_TASKS_FROZEN) {
  5222. case CPU_DOWN_PREPARE:
  5223. set_cpu_active((long)hcpu, false);
  5224. return NOTIFY_OK;
  5225. default:
  5226. return NOTIFY_DONE;
  5227. }
  5228. }
  5229. static int __init migration_init(void)
  5230. {
  5231. void *cpu = (void *)(long)smp_processor_id();
  5232. int err;
  5233. /* Initialize migration for the boot CPU */
  5234. err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
  5235. BUG_ON(err == NOTIFY_BAD);
  5236. migration_call(&migration_notifier, CPU_ONLINE, cpu);
  5237. register_cpu_notifier(&migration_notifier);
  5238. /* Register cpu active notifiers */
  5239. cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
  5240. cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
  5241. return 0;
  5242. }
  5243. early_initcall(migration_init);
  5244. #endif
  5245. #ifdef CONFIG_SMP
  5246. #ifdef CONFIG_SCHED_DEBUG
  5247. static __read_mostly int sched_domain_debug_enabled;
  5248. static int __init sched_domain_debug_setup(char *str)
  5249. {
  5250. sched_domain_debug_enabled = 1;
  5251. return 0;
  5252. }
  5253. early_param("sched_debug", sched_domain_debug_setup);
  5254. static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
  5255. struct cpumask *groupmask)
  5256. {
  5257. struct sched_group *group = sd->groups;
  5258. char str[256];
  5259. cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
  5260. cpumask_clear(groupmask);
  5261. printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
  5262. if (!(sd->flags & SD_LOAD_BALANCE)) {
  5263. printk("does not load-balance\n");
  5264. if (sd->parent)
  5265. printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
  5266. " has parent");
  5267. return -1;
  5268. }
  5269. printk(KERN_CONT "span %s level %s\n", str, sd->name);
  5270. if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
  5271. printk(KERN_ERR "ERROR: domain->span does not contain "
  5272. "CPU%d\n", cpu);
  5273. }
  5274. if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
  5275. printk(KERN_ERR "ERROR: domain->groups does not contain"
  5276. " CPU%d\n", cpu);
  5277. }
  5278. printk(KERN_DEBUG "%*s groups:", level + 1, "");
  5279. do {
  5280. if (!group) {
  5281. printk("\n");
  5282. printk(KERN_ERR "ERROR: group is NULL\n");
  5283. break;
  5284. }
  5285. if (!group->cpu_power) {
  5286. printk(KERN_CONT "\n");
  5287. printk(KERN_ERR "ERROR: domain->cpu_power not "
  5288. "set\n");
  5289. break;
  5290. }
  5291. if (!cpumask_weight(sched_group_cpus(group))) {
  5292. printk(KERN_CONT "\n");
  5293. printk(KERN_ERR "ERROR: empty group\n");
  5294. break;
  5295. }
  5296. if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
  5297. printk(KERN_CONT "\n");
  5298. printk(KERN_ERR "ERROR: repeated CPUs\n");
  5299. break;
  5300. }
  5301. cpumask_or(groupmask, groupmask, sched_group_cpus(group));
  5302. cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
  5303. printk(KERN_CONT " %s", str);
  5304. if (group->cpu_power != SCHED_LOAD_SCALE) {
  5305. printk(KERN_CONT " (cpu_power = %d)",
  5306. group->cpu_power);
  5307. }
  5308. group = group->next;
  5309. } while (group != sd->groups);
  5310. printk(KERN_CONT "\n");
  5311. if (!cpumask_equal(sched_domain_span(sd), groupmask))
  5312. printk(KERN_ERR "ERROR: groups don't span domain->span\n");
  5313. if (sd->parent &&
  5314. !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
  5315. printk(KERN_ERR "ERROR: parent span is not a superset "
  5316. "of domain->span\n");
  5317. return 0;
  5318. }
  5319. static void sched_domain_debug(struct sched_domain *sd, int cpu)
  5320. {
  5321. cpumask_var_t groupmask;
  5322. int level = 0;
  5323. if (!sched_domain_debug_enabled)
  5324. return;
  5325. if (!sd) {
  5326. printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
  5327. return;
  5328. }
  5329. printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
  5330. if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
  5331. printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
  5332. return;
  5333. }
  5334. for (;;) {
  5335. if (sched_domain_debug_one(sd, cpu, level, groupmask))
  5336. break;
  5337. level++;
  5338. sd = sd->parent;
  5339. if (!sd)
  5340. break;
  5341. }
  5342. free_cpumask_var(groupmask);
  5343. }
  5344. #else /* !CONFIG_SCHED_DEBUG */
  5345. # define sched_domain_debug(sd, cpu) do { } while (0)
  5346. #endif /* CONFIG_SCHED_DEBUG */
  5347. static int sd_degenerate(struct sched_domain *sd)
  5348. {
  5349. if (cpumask_weight(sched_domain_span(sd)) == 1)
  5350. return 1;
  5351. /* Following flags need at least 2 groups */
  5352. if (sd->flags & (SD_LOAD_BALANCE |
  5353. SD_BALANCE_NEWIDLE |
  5354. SD_BALANCE_FORK |
  5355. SD_BALANCE_EXEC |
  5356. SD_SHARE_CPUPOWER |
  5357. SD_SHARE_PKG_RESOURCES)) {
  5358. if (sd->groups != sd->groups->next)
  5359. return 0;
  5360. }
  5361. /* Following flags don't use groups */
  5362. if (sd->flags & (SD_WAKE_AFFINE))
  5363. return 0;
  5364. return 1;
  5365. }
  5366. static int
  5367. sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
  5368. {
  5369. unsigned long cflags = sd->flags, pflags = parent->flags;
  5370. if (sd_degenerate(parent))
  5371. return 1;
  5372. if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
  5373. return 0;
  5374. /* Flags needing groups don't count if only 1 group in parent */
  5375. if (parent->groups == parent->groups->next) {
  5376. pflags &= ~(SD_LOAD_BALANCE |
  5377. SD_BALANCE_NEWIDLE |
  5378. SD_BALANCE_FORK |
  5379. SD_BALANCE_EXEC |
  5380. SD_SHARE_CPUPOWER |
  5381. SD_SHARE_PKG_RESOURCES);
  5382. if (nr_node_ids == 1)
  5383. pflags &= ~SD_SERIALIZE;
  5384. }
  5385. if (~cflags & pflags)
  5386. return 0;
  5387. return 1;
  5388. }
  5389. static void free_rootdomain(struct root_domain *rd)
  5390. {
  5391. synchronize_sched();
  5392. cpupri_cleanup(&rd->cpupri);
  5393. free_cpumask_var(rd->rto_mask);
  5394. free_cpumask_var(rd->online);
  5395. free_cpumask_var(rd->span);
  5396. kfree(rd);
  5397. }
  5398. static void rq_attach_root(struct rq *rq, struct root_domain *rd)
  5399. {
  5400. struct root_domain *old_rd = NULL;
  5401. unsigned long flags;
  5402. raw_spin_lock_irqsave(&rq->lock, flags);
  5403. if (rq->rd) {
  5404. old_rd = rq->rd;
  5405. if (cpumask_test_cpu(rq->cpu, old_rd->online))
  5406. set_rq_offline(rq);
  5407. cpumask_clear_cpu(rq->cpu, old_rd->span);
  5408. /*
  5409. * If we dont want to free the old_rt yet then
  5410. * set old_rd to NULL to skip the freeing later
  5411. * in this function:
  5412. */
  5413. if (!atomic_dec_and_test(&old_rd->refcount))
  5414. old_rd = NULL;
  5415. }
  5416. atomic_inc(&rd->refcount);
  5417. rq->rd = rd;
  5418. cpumask_set_cpu(rq->cpu, rd->span);
  5419. if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
  5420. set_rq_online(rq);
  5421. raw_spin_unlock_irqrestore(&rq->lock, flags);
  5422. if (old_rd)
  5423. free_rootdomain(old_rd);
  5424. }
  5425. static int init_rootdomain(struct root_domain *rd)
  5426. {
  5427. memset(rd, 0, sizeof(*rd));
  5428. if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
  5429. goto out;
  5430. if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
  5431. goto free_span;
  5432. if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
  5433. goto free_online;
  5434. if (cpupri_init(&rd->cpupri) != 0)
  5435. goto free_rto_mask;
  5436. return 0;
  5437. free_rto_mask:
  5438. free_cpumask_var(rd->rto_mask);
  5439. free_online:
  5440. free_cpumask_var(rd->online);
  5441. free_span:
  5442. free_cpumask_var(rd->span);
  5443. out:
  5444. return -ENOMEM;
  5445. }
  5446. static void init_defrootdomain(void)
  5447. {
  5448. init_rootdomain(&def_root_domain);
  5449. atomic_set(&def_root_domain.refcount, 1);
  5450. }
  5451. static struct root_domain *alloc_rootdomain(void)
  5452. {
  5453. struct root_domain *rd;
  5454. rd = kmalloc(sizeof(*rd), GFP_KERNEL);
  5455. if (!rd)
  5456. return NULL;
  5457. if (init_rootdomain(rd) != 0) {
  5458. kfree(rd);
  5459. return NULL;
  5460. }
  5461. return rd;
  5462. }
  5463. /*
  5464. * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
  5465. * hold the hotplug lock.
  5466. */
  5467. static void
  5468. cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
  5469. {
  5470. struct rq *rq = cpu_rq(cpu);
  5471. struct sched_domain *tmp;
  5472. for (tmp = sd; tmp; tmp = tmp->parent)
  5473. tmp->span_weight = cpumask_weight(sched_domain_span(tmp));
  5474. /* Remove the sched domains which do not contribute to scheduling. */
  5475. for (tmp = sd; tmp; ) {
  5476. struct sched_domain *parent = tmp->parent;
  5477. if (!parent)
  5478. break;
  5479. if (sd_parent_degenerate(tmp, parent)) {
  5480. tmp->parent = parent->parent;
  5481. if (parent->parent)
  5482. parent->parent->child = tmp;
  5483. } else
  5484. tmp = tmp->parent;
  5485. }
  5486. if (sd && sd_degenerate(sd)) {
  5487. sd = sd->parent;
  5488. if (sd)
  5489. sd->child = NULL;
  5490. }
  5491. sched_domain_debug(sd, cpu);
  5492. rq_attach_root(rq, rd);
  5493. rcu_assign_pointer(rq->sd, sd);
  5494. }
  5495. /* cpus with isolated domains */
  5496. static cpumask_var_t cpu_isolated_map;
  5497. /* Setup the mask of cpus configured for isolated domains */
  5498. static int __init isolated_cpu_setup(char *str)
  5499. {
  5500. alloc_bootmem_cpumask_var(&cpu_isolated_map);
  5501. cpulist_parse(str, cpu_isolated_map);
  5502. return 1;
  5503. }
  5504. __setup("isolcpus=", isolated_cpu_setup);
  5505. /*
  5506. * init_sched_build_groups takes the cpumask we wish to span, and a pointer
  5507. * to a function which identifies what group(along with sched group) a CPU
  5508. * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
  5509. * (due to the fact that we keep track of groups covered with a struct cpumask).
  5510. *
  5511. * init_sched_build_groups will build a circular linked list of the groups
  5512. * covered by the given span, and will set each group's ->cpumask correctly,
  5513. * and ->cpu_power to 0.
  5514. */
  5515. static void
  5516. init_sched_build_groups(const struct cpumask *span,
  5517. const struct cpumask *cpu_map,
  5518. int (*group_fn)(int cpu, const struct cpumask *cpu_map,
  5519. struct sched_group **sg,
  5520. struct cpumask *tmpmask),
  5521. struct cpumask *covered, struct cpumask *tmpmask)
  5522. {
  5523. struct sched_group *first = NULL, *last = NULL;
  5524. int i;
  5525. cpumask_clear(covered);
  5526. for_each_cpu(i, span) {
  5527. struct sched_group *sg;
  5528. int group = group_fn(i, cpu_map, &sg, tmpmask);
  5529. int j;
  5530. if (cpumask_test_cpu(i, covered))
  5531. continue;
  5532. cpumask_clear(sched_group_cpus(sg));
  5533. sg->cpu_power = 0;
  5534. for_each_cpu(j, span) {
  5535. if (group_fn(j, cpu_map, NULL, tmpmask) != group)
  5536. continue;
  5537. cpumask_set_cpu(j, covered);
  5538. cpumask_set_cpu(j, sched_group_cpus(sg));
  5539. }
  5540. if (!first)
  5541. first = sg;
  5542. if (last)
  5543. last->next = sg;
  5544. last = sg;
  5545. }
  5546. last->next = first;
  5547. }
  5548. #define SD_NODES_PER_DOMAIN 16
  5549. #ifdef CONFIG_NUMA
  5550. /**
  5551. * find_next_best_node - find the next node to include in a sched_domain
  5552. * @node: node whose sched_domain we're building
  5553. * @used_nodes: nodes already in the sched_domain
  5554. *
  5555. * Find the next node to include in a given scheduling domain. Simply
  5556. * finds the closest node not already in the @used_nodes map.
  5557. *
  5558. * Should use nodemask_t.
  5559. */
  5560. static int find_next_best_node(int node, nodemask_t *used_nodes)
  5561. {
  5562. int i, n, val, min_val, best_node = 0;
  5563. min_val = INT_MAX;
  5564. for (i = 0; i < nr_node_ids; i++) {
  5565. /* Start at @node */
  5566. n = (node + i) % nr_node_ids;
  5567. if (!nr_cpus_node(n))
  5568. continue;
  5569. /* Skip already used nodes */
  5570. if (node_isset(n, *used_nodes))
  5571. continue;
  5572. /* Simple min distance search */
  5573. val = node_distance(node, n);
  5574. if (val < min_val) {
  5575. min_val = val;
  5576. best_node = n;
  5577. }
  5578. }
  5579. node_set(best_node, *used_nodes);
  5580. return best_node;
  5581. }
  5582. /**
  5583. * sched_domain_node_span - get a cpumask for a node's sched_domain
  5584. * @node: node whose cpumask we're constructing
  5585. * @span: resulting cpumask
  5586. *
  5587. * Given a node, construct a good cpumask for its sched_domain to span. It
  5588. * should be one that prevents unnecessary balancing, but also spreads tasks
  5589. * out optimally.
  5590. */
  5591. static void sched_domain_node_span(int node, struct cpumask *span)
  5592. {
  5593. nodemask_t used_nodes;
  5594. int i;
  5595. cpumask_clear(span);
  5596. nodes_clear(used_nodes);
  5597. cpumask_or(span, span, cpumask_of_node(node));
  5598. node_set(node, used_nodes);
  5599. for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
  5600. int next_node = find_next_best_node(node, &used_nodes);
  5601. cpumask_or(span, span, cpumask_of_node(next_node));
  5602. }
  5603. }
  5604. #endif /* CONFIG_NUMA */
  5605. int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
  5606. /*
  5607. * The cpus mask in sched_group and sched_domain hangs off the end.
  5608. *
  5609. * ( See the the comments in include/linux/sched.h:struct sched_group
  5610. * and struct sched_domain. )
  5611. */
  5612. struct static_sched_group {
  5613. struct sched_group sg;
  5614. DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
  5615. };
  5616. struct static_sched_domain {
  5617. struct sched_domain sd;
  5618. DECLARE_BITMAP(span, CONFIG_NR_CPUS);
  5619. };
  5620. struct s_data {
  5621. #ifdef CONFIG_NUMA
  5622. int sd_allnodes;
  5623. cpumask_var_t domainspan;
  5624. cpumask_var_t covered;
  5625. cpumask_var_t notcovered;
  5626. #endif
  5627. cpumask_var_t nodemask;
  5628. cpumask_var_t this_sibling_map;
  5629. cpumask_var_t this_core_map;
  5630. cpumask_var_t this_book_map;
  5631. cpumask_var_t send_covered;
  5632. cpumask_var_t tmpmask;
  5633. struct sched_group **sched_group_nodes;
  5634. struct root_domain *rd;
  5635. };
  5636. enum s_alloc {
  5637. sa_sched_groups = 0,
  5638. sa_rootdomain,
  5639. sa_tmpmask,
  5640. sa_send_covered,
  5641. sa_this_book_map,
  5642. sa_this_core_map,
  5643. sa_this_sibling_map,
  5644. sa_nodemask,
  5645. sa_sched_group_nodes,
  5646. #ifdef CONFIG_NUMA
  5647. sa_notcovered,
  5648. sa_covered,
  5649. sa_domainspan,
  5650. #endif
  5651. sa_none,
  5652. };
  5653. /*
  5654. * SMT sched-domains:
  5655. */
  5656. #ifdef CONFIG_SCHED_SMT
  5657. static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
  5658. static DEFINE_PER_CPU(struct static_sched_group, sched_groups);
  5659. static int
  5660. cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
  5661. struct sched_group **sg, struct cpumask *unused)
  5662. {
  5663. if (sg)
  5664. *sg = &per_cpu(sched_groups, cpu).sg;
  5665. return cpu;
  5666. }
  5667. #endif /* CONFIG_SCHED_SMT */
  5668. /*
  5669. * multi-core sched-domains:
  5670. */
  5671. #ifdef CONFIG_SCHED_MC
  5672. static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
  5673. static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
  5674. static int
  5675. cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
  5676. struct sched_group **sg, struct cpumask *mask)
  5677. {
  5678. int group;
  5679. #ifdef CONFIG_SCHED_SMT
  5680. cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
  5681. group = cpumask_first(mask);
  5682. #else
  5683. group = cpu;
  5684. #endif
  5685. if (sg)
  5686. *sg = &per_cpu(sched_group_core, group).sg;
  5687. return group;
  5688. }
  5689. #endif /* CONFIG_SCHED_MC */
  5690. /*
  5691. * book sched-domains:
  5692. */
  5693. #ifdef CONFIG_SCHED_BOOK
  5694. static DEFINE_PER_CPU(struct static_sched_domain, book_domains);
  5695. static DEFINE_PER_CPU(struct static_sched_group, sched_group_book);
  5696. static int
  5697. cpu_to_book_group(int cpu, const struct cpumask *cpu_map,
  5698. struct sched_group **sg, struct cpumask *mask)
  5699. {
  5700. int group = cpu;
  5701. #ifdef CONFIG_SCHED_MC
  5702. cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
  5703. group = cpumask_first(mask);
  5704. #elif defined(CONFIG_SCHED_SMT)
  5705. cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
  5706. group = cpumask_first(mask);
  5707. #endif
  5708. if (sg)
  5709. *sg = &per_cpu(sched_group_book, group).sg;
  5710. return group;
  5711. }
  5712. #endif /* CONFIG_SCHED_BOOK */
  5713. static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
  5714. static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
  5715. static int
  5716. cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
  5717. struct sched_group **sg, struct cpumask *mask)
  5718. {
  5719. int group;
  5720. #ifdef CONFIG_SCHED_BOOK
  5721. cpumask_and(mask, cpu_book_mask(cpu), cpu_map);
  5722. group = cpumask_first(mask);
  5723. #elif defined(CONFIG_SCHED_MC)
  5724. cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
  5725. group = cpumask_first(mask);
  5726. #elif defined(CONFIG_SCHED_SMT)
  5727. cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
  5728. group = cpumask_first(mask);
  5729. #else
  5730. group = cpu;
  5731. #endif
  5732. if (sg)
  5733. *sg = &per_cpu(sched_group_phys, group).sg;
  5734. return group;
  5735. }
  5736. #ifdef CONFIG_NUMA
  5737. /*
  5738. * The init_sched_build_groups can't handle what we want to do with node
  5739. * groups, so roll our own. Now each node has its own list of groups which
  5740. * gets dynamically allocated.
  5741. */
  5742. static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
  5743. static struct sched_group ***sched_group_nodes_bycpu;
  5744. static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
  5745. static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
  5746. static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
  5747. struct sched_group **sg,
  5748. struct cpumask *nodemask)
  5749. {
  5750. int group;
  5751. cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
  5752. group = cpumask_first(nodemask);
  5753. if (sg)
  5754. *sg = &per_cpu(sched_group_allnodes, group).sg;
  5755. return group;
  5756. }
  5757. static void init_numa_sched_groups_power(struct sched_group *group_head)
  5758. {
  5759. struct sched_group *sg = group_head;
  5760. int j;
  5761. if (!sg)
  5762. return;
  5763. do {
  5764. for_each_cpu(j, sched_group_cpus(sg)) {
  5765. struct sched_domain *sd;
  5766. sd = &per_cpu(phys_domains, j).sd;
  5767. if (j != group_first_cpu(sd->groups)) {
  5768. /*
  5769. * Only add "power" once for each
  5770. * physical package.
  5771. */
  5772. continue;
  5773. }
  5774. sg->cpu_power += sd->groups->cpu_power;
  5775. }
  5776. sg = sg->next;
  5777. } while (sg != group_head);
  5778. }
  5779. static int build_numa_sched_groups(struct s_data *d,
  5780. const struct cpumask *cpu_map, int num)
  5781. {
  5782. struct sched_domain *sd;
  5783. struct sched_group *sg, *prev;
  5784. int n, j;
  5785. cpumask_clear(d->covered);
  5786. cpumask_and(d->nodemask, cpumask_of_node(num), cpu_map);
  5787. if (cpumask_empty(d->nodemask)) {
  5788. d->sched_group_nodes[num] = NULL;
  5789. goto out;
  5790. }
  5791. sched_domain_node_span(num, d->domainspan);
  5792. cpumask_and(d->domainspan, d->domainspan, cpu_map);
  5793. sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
  5794. GFP_KERNEL, num);
  5795. if (!sg) {
  5796. printk(KERN_WARNING "Can not alloc domain group for node %d\n",
  5797. num);
  5798. return -ENOMEM;
  5799. }
  5800. d->sched_group_nodes[num] = sg;
  5801. for_each_cpu(j, d->nodemask) {
  5802. sd = &per_cpu(node_domains, j).sd;
  5803. sd->groups = sg;
  5804. }
  5805. sg->cpu_power = 0;
  5806. cpumask_copy(sched_group_cpus(sg), d->nodemask);
  5807. sg->next = sg;
  5808. cpumask_or(d->covered, d->covered, d->nodemask);
  5809. prev = sg;
  5810. for (j = 0; j < nr_node_ids; j++) {
  5811. n = (num + j) % nr_node_ids;
  5812. cpumask_complement(d->notcovered, d->covered);
  5813. cpumask_and(d->tmpmask, d->notcovered, cpu_map);
  5814. cpumask_and(d->tmpmask, d->tmpmask, d->domainspan);
  5815. if (cpumask_empty(d->tmpmask))
  5816. break;
  5817. cpumask_and(d->tmpmask, d->tmpmask, cpumask_of_node(n));
  5818. if (cpumask_empty(d->tmpmask))
  5819. continue;
  5820. sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
  5821. GFP_KERNEL, num);
  5822. if (!sg) {
  5823. printk(KERN_WARNING
  5824. "Can not alloc domain group for node %d\n", j);
  5825. return -ENOMEM;
  5826. }
  5827. sg->cpu_power = 0;
  5828. cpumask_copy(sched_group_cpus(sg), d->tmpmask);
  5829. sg->next = prev->next;
  5830. cpumask_or(d->covered, d->covered, d->tmpmask);
  5831. prev->next = sg;
  5832. prev = sg;
  5833. }
  5834. out:
  5835. return 0;
  5836. }
  5837. #endif /* CONFIG_NUMA */
  5838. #ifdef CONFIG_NUMA
  5839. /* Free memory allocated for various sched_group structures */
  5840. static void free_sched_groups(const struct cpumask *cpu_map,
  5841. struct cpumask *nodemask)
  5842. {
  5843. int cpu, i;
  5844. for_each_cpu(cpu, cpu_map) {
  5845. struct sched_group **sched_group_nodes
  5846. = sched_group_nodes_bycpu[cpu];
  5847. if (!sched_group_nodes)
  5848. continue;
  5849. for (i = 0; i < nr_node_ids; i++) {
  5850. struct sched_group *oldsg, *sg = sched_group_nodes[i];
  5851. cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
  5852. if (cpumask_empty(nodemask))
  5853. continue;
  5854. if (sg == NULL)
  5855. continue;
  5856. sg = sg->next;
  5857. next_sg:
  5858. oldsg = sg;
  5859. sg = sg->next;
  5860. kfree(oldsg);
  5861. if (oldsg != sched_group_nodes[i])
  5862. goto next_sg;
  5863. }
  5864. kfree(sched_group_nodes);
  5865. sched_group_nodes_bycpu[cpu] = NULL;
  5866. }
  5867. }
  5868. #else /* !CONFIG_NUMA */
  5869. static void free_sched_groups(const struct cpumask *cpu_map,
  5870. struct cpumask *nodemask)
  5871. {
  5872. }
  5873. #endif /* CONFIG_NUMA */
  5874. /*
  5875. * Initialize sched groups cpu_power.
  5876. *
  5877. * cpu_power indicates the capacity of sched group, which is used while
  5878. * distributing the load between different sched groups in a sched domain.
  5879. * Typically cpu_power for all the groups in a sched domain will be same unless
  5880. * there are asymmetries in the topology. If there are asymmetries, group
  5881. * having more cpu_power will pickup more load compared to the group having
  5882. * less cpu_power.
  5883. */
  5884. static void init_sched_groups_power(int cpu, struct sched_domain *sd)
  5885. {
  5886. struct sched_domain *child;
  5887. struct sched_group *group;
  5888. long power;
  5889. int weight;
  5890. WARN_ON(!sd || !sd->groups);
  5891. if (cpu != group_first_cpu(sd->groups))
  5892. return;
  5893. sd->groups->group_weight = cpumask_weight(sched_group_cpus(sd->groups));
  5894. child = sd->child;
  5895. sd->groups->cpu_power = 0;
  5896. if (!child) {
  5897. power = SCHED_LOAD_SCALE;
  5898. weight = cpumask_weight(sched_domain_span(sd));
  5899. /*
  5900. * SMT siblings share the power of a single core.
  5901. * Usually multiple threads get a better yield out of
  5902. * that one core than a single thread would have,
  5903. * reflect that in sd->smt_gain.
  5904. */
  5905. if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
  5906. power *= sd->smt_gain;
  5907. power /= weight;
  5908. power >>= SCHED_LOAD_SHIFT;
  5909. }
  5910. sd->groups->cpu_power += power;
  5911. return;
  5912. }
  5913. /*
  5914. * Add cpu_power of each child group to this groups cpu_power.
  5915. */
  5916. group = child->groups;
  5917. do {
  5918. sd->groups->cpu_power += group->cpu_power;
  5919. group = group->next;
  5920. } while (group != child->groups);
  5921. }
  5922. /*
  5923. * Initializers for schedule domains
  5924. * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
  5925. */
  5926. #ifdef CONFIG_SCHED_DEBUG
  5927. # define SD_INIT_NAME(sd, type) sd->name = #type
  5928. #else
  5929. # define SD_INIT_NAME(sd, type) do { } while (0)
  5930. #endif
  5931. #define SD_INIT(sd, type) sd_init_##type(sd)
  5932. #define SD_INIT_FUNC(type) \
  5933. static noinline void sd_init_##type(struct sched_domain *sd) \
  5934. { \
  5935. memset(sd, 0, sizeof(*sd)); \
  5936. *sd = SD_##type##_INIT; \
  5937. sd->level = SD_LV_##type; \
  5938. SD_INIT_NAME(sd, type); \
  5939. }
  5940. SD_INIT_FUNC(CPU)
  5941. #ifdef CONFIG_NUMA
  5942. SD_INIT_FUNC(ALLNODES)
  5943. SD_INIT_FUNC(NODE)
  5944. #endif
  5945. #ifdef CONFIG_SCHED_SMT
  5946. SD_INIT_FUNC(SIBLING)
  5947. #endif
  5948. #ifdef CONFIG_SCHED_MC
  5949. SD_INIT_FUNC(MC)
  5950. #endif
  5951. #ifdef CONFIG_SCHED_BOOK
  5952. SD_INIT_FUNC(BOOK)
  5953. #endif
  5954. static int default_relax_domain_level = -1;
  5955. static int __init setup_relax_domain_level(char *str)
  5956. {
  5957. unsigned long val;
  5958. val = simple_strtoul(str, NULL, 0);
  5959. if (val < SD_LV_MAX)
  5960. default_relax_domain_level = val;
  5961. return 1;
  5962. }
  5963. __setup("relax_domain_level=", setup_relax_domain_level);
  5964. static void set_domain_attribute(struct sched_domain *sd,
  5965. struct sched_domain_attr *attr)
  5966. {
  5967. int request;
  5968. if (!attr || attr->relax_domain_level < 0) {
  5969. if (default_relax_domain_level < 0)
  5970. return;
  5971. else
  5972. request = default_relax_domain_level;
  5973. } else
  5974. request = attr->relax_domain_level;
  5975. if (request < sd->level) {
  5976. /* turn off idle balance on this domain */
  5977. sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
  5978. } else {
  5979. /* turn on idle balance on this domain */
  5980. sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
  5981. }
  5982. }
  5983. static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
  5984. const struct cpumask *cpu_map)
  5985. {
  5986. switch (what) {
  5987. case sa_sched_groups:
  5988. free_sched_groups(cpu_map, d->tmpmask); /* fall through */
  5989. d->sched_group_nodes = NULL;
  5990. case sa_rootdomain:
  5991. free_rootdomain(d->rd); /* fall through */
  5992. case sa_tmpmask:
  5993. free_cpumask_var(d->tmpmask); /* fall through */
  5994. case sa_send_covered:
  5995. free_cpumask_var(d->send_covered); /* fall through */
  5996. case sa_this_book_map:
  5997. free_cpumask_var(d->this_book_map); /* fall through */
  5998. case sa_this_core_map:
  5999. free_cpumask_var(d->this_core_map); /* fall through */
  6000. case sa_this_sibling_map:
  6001. free_cpumask_var(d->this_sibling_map); /* fall through */
  6002. case sa_nodemask:
  6003. free_cpumask_var(d->nodemask); /* fall through */
  6004. case sa_sched_group_nodes:
  6005. #ifdef CONFIG_NUMA
  6006. kfree(d->sched_group_nodes); /* fall through */
  6007. case sa_notcovered:
  6008. free_cpumask_var(d->notcovered); /* fall through */
  6009. case sa_covered:
  6010. free_cpumask_var(d->covered); /* fall through */
  6011. case sa_domainspan:
  6012. free_cpumask_var(d->domainspan); /* fall through */
  6013. #endif
  6014. case sa_none:
  6015. break;
  6016. }
  6017. }
  6018. static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
  6019. const struct cpumask *cpu_map)
  6020. {
  6021. #ifdef CONFIG_NUMA
  6022. if (!alloc_cpumask_var(&d->domainspan, GFP_KERNEL))
  6023. return sa_none;
  6024. if (!alloc_cpumask_var(&d->covered, GFP_KERNEL))
  6025. return sa_domainspan;
  6026. if (!alloc_cpumask_var(&d->notcovered, GFP_KERNEL))
  6027. return sa_covered;
  6028. /* Allocate the per-node list of sched groups */
  6029. d->sched_group_nodes = kcalloc(nr_node_ids,
  6030. sizeof(struct sched_group *), GFP_KERNEL);
  6031. if (!d->sched_group_nodes) {
  6032. printk(KERN_WARNING "Can not alloc sched group node list\n");
  6033. return sa_notcovered;
  6034. }
  6035. sched_group_nodes_bycpu[cpumask_first(cpu_map)] = d->sched_group_nodes;
  6036. #endif
  6037. if (!alloc_cpumask_var(&d->nodemask, GFP_KERNEL))
  6038. return sa_sched_group_nodes;
  6039. if (!alloc_cpumask_var(&d->this_sibling_map, GFP_KERNEL))
  6040. return sa_nodemask;
  6041. if (!alloc_cpumask_var(&d->this_core_map, GFP_KERNEL))
  6042. return sa_this_sibling_map;
  6043. if (!alloc_cpumask_var(&d->this_book_map, GFP_KERNEL))
  6044. return sa_this_core_map;
  6045. if (!alloc_cpumask_var(&d->send_covered, GFP_KERNEL))
  6046. return sa_this_book_map;
  6047. if (!alloc_cpumask_var(&d->tmpmask, GFP_KERNEL))
  6048. return sa_send_covered;
  6049. d->rd = alloc_rootdomain();
  6050. if (!d->rd) {
  6051. printk(KERN_WARNING "Cannot alloc root domain\n");
  6052. return sa_tmpmask;
  6053. }
  6054. return sa_rootdomain;
  6055. }
  6056. static struct sched_domain *__build_numa_sched_domains(struct s_data *d,
  6057. const struct cpumask *cpu_map, struct sched_domain_attr *attr, int i)
  6058. {
  6059. struct sched_domain *sd = NULL;
  6060. #ifdef CONFIG_NUMA
  6061. struct sched_domain *parent;
  6062. d->sd_allnodes = 0;
  6063. if (cpumask_weight(cpu_map) >
  6064. SD_NODES_PER_DOMAIN * cpumask_weight(d->nodemask)) {
  6065. sd = &per_cpu(allnodes_domains, i).sd;
  6066. SD_INIT(sd, ALLNODES);
  6067. set_domain_attribute(sd, attr);
  6068. cpumask_copy(sched_domain_span(sd), cpu_map);
  6069. cpu_to_allnodes_group(i, cpu_map, &sd->groups, d->tmpmask);
  6070. d->sd_allnodes = 1;
  6071. }
  6072. parent = sd;
  6073. sd = &per_cpu(node_domains, i).sd;
  6074. SD_INIT(sd, NODE);
  6075. set_domain_attribute(sd, attr);
  6076. sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
  6077. sd->parent = parent;
  6078. if (parent)
  6079. parent->child = sd;
  6080. cpumask_and(sched_domain_span(sd), sched_domain_span(sd), cpu_map);
  6081. #endif
  6082. return sd;
  6083. }
  6084. static struct sched_domain *__build_cpu_sched_domain(struct s_data *d,
  6085. const struct cpumask *cpu_map, struct sched_domain_attr *attr,
  6086. struct sched_domain *parent, int i)
  6087. {
  6088. struct sched_domain *sd;
  6089. sd = &per_cpu(phys_domains, i).sd;
  6090. SD_INIT(sd, CPU);
  6091. set_domain_attribute(sd, attr);
  6092. cpumask_copy(sched_domain_span(sd), d->nodemask);
  6093. sd->parent = parent;
  6094. if (parent)
  6095. parent->child = sd;
  6096. cpu_to_phys_group(i, cpu_map, &sd->groups, d->tmpmask);
  6097. return sd;
  6098. }
  6099. static struct sched_domain *__build_book_sched_domain(struct s_data *d,
  6100. const struct cpumask *cpu_map, struct sched_domain_attr *attr,
  6101. struct sched_domain *parent, int i)
  6102. {
  6103. struct sched_domain *sd = parent;
  6104. #ifdef CONFIG_SCHED_BOOK
  6105. sd = &per_cpu(book_domains, i).sd;
  6106. SD_INIT(sd, BOOK);
  6107. set_domain_attribute(sd, attr);
  6108. cpumask_and(sched_domain_span(sd), cpu_map, cpu_book_mask(i));
  6109. sd->parent = parent;
  6110. parent->child = sd;
  6111. cpu_to_book_group(i, cpu_map, &sd->groups, d->tmpmask);
  6112. #endif
  6113. return sd;
  6114. }
  6115. static struct sched_domain *__build_mc_sched_domain(struct s_data *d,
  6116. const struct cpumask *cpu_map, struct sched_domain_attr *attr,
  6117. struct sched_domain *parent, int i)
  6118. {
  6119. struct sched_domain *sd = parent;
  6120. #ifdef CONFIG_SCHED_MC
  6121. sd = &per_cpu(core_domains, i).sd;
  6122. SD_INIT(sd, MC);
  6123. set_domain_attribute(sd, attr);
  6124. cpumask_and(sched_domain_span(sd), cpu_map, cpu_coregroup_mask(i));
  6125. sd->parent = parent;
  6126. parent->child = sd;
  6127. cpu_to_core_group(i, cpu_map, &sd->groups, d->tmpmask);
  6128. #endif
  6129. return sd;
  6130. }
  6131. static struct sched_domain *__build_smt_sched_domain(struct s_data *d,
  6132. const struct cpumask *cpu_map, struct sched_domain_attr *attr,
  6133. struct sched_domain *parent, int i)
  6134. {
  6135. struct sched_domain *sd = parent;
  6136. #ifdef CONFIG_SCHED_SMT
  6137. sd = &per_cpu(cpu_domains, i).sd;
  6138. SD_INIT(sd, SIBLING);
  6139. set_domain_attribute(sd, attr);
  6140. cpumask_and(sched_domain_span(sd), cpu_map, topology_thread_cpumask(i));
  6141. sd->parent = parent;
  6142. parent->child = sd;
  6143. cpu_to_cpu_group(i, cpu_map, &sd->groups, d->tmpmask);
  6144. #endif
  6145. return sd;
  6146. }
  6147. static void build_sched_groups(struct s_data *d, enum sched_domain_level l,
  6148. const struct cpumask *cpu_map, int cpu)
  6149. {
  6150. switch (l) {
  6151. #ifdef CONFIG_SCHED_SMT
  6152. case SD_LV_SIBLING: /* set up CPU (sibling) groups */
  6153. cpumask_and(d->this_sibling_map, cpu_map,
  6154. topology_thread_cpumask(cpu));
  6155. if (cpu == cpumask_first(d->this_sibling_map))
  6156. init_sched_build_groups(d->this_sibling_map, cpu_map,
  6157. &cpu_to_cpu_group,
  6158. d->send_covered, d->tmpmask);
  6159. break;
  6160. #endif
  6161. #ifdef CONFIG_SCHED_MC
  6162. case SD_LV_MC: /* set up multi-core groups */
  6163. cpumask_and(d->this_core_map, cpu_map, cpu_coregroup_mask(cpu));
  6164. if (cpu == cpumask_first(d->this_core_map))
  6165. init_sched_build_groups(d->this_core_map, cpu_map,
  6166. &cpu_to_core_group,
  6167. d->send_covered, d->tmpmask);
  6168. break;
  6169. #endif
  6170. #ifdef CONFIG_SCHED_BOOK
  6171. case SD_LV_BOOK: /* set up book groups */
  6172. cpumask_and(d->this_book_map, cpu_map, cpu_book_mask(cpu));
  6173. if (cpu == cpumask_first(d->this_book_map))
  6174. init_sched_build_groups(d->this_book_map, cpu_map,
  6175. &cpu_to_book_group,
  6176. d->send_covered, d->tmpmask);
  6177. break;
  6178. #endif
  6179. case SD_LV_CPU: /* set up physical groups */
  6180. cpumask_and(d->nodemask, cpumask_of_node(cpu), cpu_map);
  6181. if (!cpumask_empty(d->nodemask))
  6182. init_sched_build_groups(d->nodemask, cpu_map,
  6183. &cpu_to_phys_group,
  6184. d->send_covered, d->tmpmask);
  6185. break;
  6186. #ifdef CONFIG_NUMA
  6187. case SD_LV_ALLNODES:
  6188. init_sched_build_groups(cpu_map, cpu_map, &cpu_to_allnodes_group,
  6189. d->send_covered, d->tmpmask);
  6190. break;
  6191. #endif
  6192. default:
  6193. break;
  6194. }
  6195. }
  6196. /*
  6197. * Build sched domains for a given set of cpus and attach the sched domains
  6198. * to the individual cpus
  6199. */
  6200. static int __build_sched_domains(const struct cpumask *cpu_map,
  6201. struct sched_domain_attr *attr)
  6202. {
  6203. enum s_alloc alloc_state = sa_none;
  6204. struct s_data d;
  6205. struct sched_domain *sd;
  6206. int i;
  6207. #ifdef CONFIG_NUMA
  6208. d.sd_allnodes = 0;
  6209. #endif
  6210. alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
  6211. if (alloc_state != sa_rootdomain)
  6212. goto error;
  6213. alloc_state = sa_sched_groups;
  6214. /*
  6215. * Set up domains for cpus specified by the cpu_map.
  6216. */
  6217. for_each_cpu(i, cpu_map) {
  6218. cpumask_and(d.nodemask, cpumask_of_node(cpu_to_node(i)),
  6219. cpu_map);
  6220. sd = __build_numa_sched_domains(&d, cpu_map, attr, i);
  6221. sd = __build_cpu_sched_domain(&d, cpu_map, attr, sd, i);
  6222. sd = __build_book_sched_domain(&d, cpu_map, attr, sd, i);
  6223. sd = __build_mc_sched_domain(&d, cpu_map, attr, sd, i);
  6224. sd = __build_smt_sched_domain(&d, cpu_map, attr, sd, i);
  6225. }
  6226. for_each_cpu(i, cpu_map) {
  6227. build_sched_groups(&d, SD_LV_SIBLING, cpu_map, i);
  6228. build_sched_groups(&d, SD_LV_BOOK, cpu_map, i);
  6229. build_sched_groups(&d, SD_LV_MC, cpu_map, i);
  6230. }
  6231. /* Set up physical groups */
  6232. for (i = 0; i < nr_node_ids; i++)
  6233. build_sched_groups(&d, SD_LV_CPU, cpu_map, i);
  6234. #ifdef CONFIG_NUMA
  6235. /* Set up node groups */
  6236. if (d.sd_allnodes)
  6237. build_sched_groups(&d, SD_LV_ALLNODES, cpu_map, 0);
  6238. for (i = 0; i < nr_node_ids; i++)
  6239. if (build_numa_sched_groups(&d, cpu_map, i))
  6240. goto error;
  6241. #endif
  6242. /* Calculate CPU power for physical packages and nodes */
  6243. #ifdef CONFIG_SCHED_SMT
  6244. for_each_cpu(i, cpu_map) {
  6245. sd = &per_cpu(cpu_domains, i).sd;
  6246. init_sched_groups_power(i, sd);
  6247. }
  6248. #endif
  6249. #ifdef CONFIG_SCHED_MC
  6250. for_each_cpu(i, cpu_map) {
  6251. sd = &per_cpu(core_domains, i).sd;
  6252. init_sched_groups_power(i, sd);
  6253. }
  6254. #endif
  6255. #ifdef CONFIG_SCHED_BOOK
  6256. for_each_cpu(i, cpu_map) {
  6257. sd = &per_cpu(book_domains, i).sd;
  6258. init_sched_groups_power(i, sd);
  6259. }
  6260. #endif
  6261. for_each_cpu(i, cpu_map) {
  6262. sd = &per_cpu(phys_domains, i).sd;
  6263. init_sched_groups_power(i, sd);
  6264. }
  6265. #ifdef CONFIG_NUMA
  6266. for (i = 0; i < nr_node_ids; i++)
  6267. init_numa_sched_groups_power(d.sched_group_nodes[i]);
  6268. if (d.sd_allnodes) {
  6269. struct sched_group *sg;
  6270. cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
  6271. d.tmpmask);
  6272. init_numa_sched_groups_power(sg);
  6273. }
  6274. #endif
  6275. /* Attach the domains */
  6276. for_each_cpu(i, cpu_map) {
  6277. #ifdef CONFIG_SCHED_SMT
  6278. sd = &per_cpu(cpu_domains, i).sd;
  6279. #elif defined(CONFIG_SCHED_MC)
  6280. sd = &per_cpu(core_domains, i).sd;
  6281. #elif defined(CONFIG_SCHED_BOOK)
  6282. sd = &per_cpu(book_domains, i).sd;
  6283. #else
  6284. sd = &per_cpu(phys_domains, i).sd;
  6285. #endif
  6286. cpu_attach_domain(sd, d.rd, i);
  6287. }
  6288. d.sched_group_nodes = NULL; /* don't free this we still need it */
  6289. __free_domain_allocs(&d, sa_tmpmask, cpu_map);
  6290. return 0;
  6291. error:
  6292. __free_domain_allocs(&d, alloc_state, cpu_map);
  6293. return -ENOMEM;
  6294. }
  6295. static int build_sched_domains(const struct cpumask *cpu_map)
  6296. {
  6297. return __build_sched_domains(cpu_map, NULL);
  6298. }
  6299. static cpumask_var_t *doms_cur; /* current sched domains */
  6300. static int ndoms_cur; /* number of sched domains in 'doms_cur' */
  6301. static struct sched_domain_attr *dattr_cur;
  6302. /* attribues of custom domains in 'doms_cur' */
  6303. /*
  6304. * Special case: If a kmalloc of a doms_cur partition (array of
  6305. * cpumask) fails, then fallback to a single sched domain,
  6306. * as determined by the single cpumask fallback_doms.
  6307. */
  6308. static cpumask_var_t fallback_doms;
  6309. /*
  6310. * arch_update_cpu_topology lets virtualized architectures update the
  6311. * cpu core maps. It is supposed to return 1 if the topology changed
  6312. * or 0 if it stayed the same.
  6313. */
  6314. int __attribute__((weak)) arch_update_cpu_topology(void)
  6315. {
  6316. return 0;
  6317. }
  6318. cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
  6319. {
  6320. int i;
  6321. cpumask_var_t *doms;
  6322. doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
  6323. if (!doms)
  6324. return NULL;
  6325. for (i = 0; i < ndoms; i++) {
  6326. if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
  6327. free_sched_domains(doms, i);
  6328. return NULL;
  6329. }
  6330. }
  6331. return doms;
  6332. }
  6333. void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
  6334. {
  6335. unsigned int i;
  6336. for (i = 0; i < ndoms; i++)
  6337. free_cpumask_var(doms[i]);
  6338. kfree(doms);
  6339. }
  6340. /*
  6341. * Set up scheduler domains and groups. Callers must hold the hotplug lock.
  6342. * For now this just excludes isolated cpus, but could be used to
  6343. * exclude other special cases in the future.
  6344. */
  6345. static int arch_init_sched_domains(const struct cpumask *cpu_map)
  6346. {
  6347. int err;
  6348. arch_update_cpu_topology();
  6349. ndoms_cur = 1;
  6350. doms_cur = alloc_sched_domains(ndoms_cur);
  6351. if (!doms_cur)
  6352. doms_cur = &fallback_doms;
  6353. cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
  6354. dattr_cur = NULL;
  6355. err = build_sched_domains(doms_cur[0]);
  6356. register_sched_domain_sysctl();
  6357. return err;
  6358. }
  6359. static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
  6360. struct cpumask *tmpmask)
  6361. {
  6362. free_sched_groups(cpu_map, tmpmask);
  6363. }
  6364. /*
  6365. * Detach sched domains from a group of cpus specified in cpu_map
  6366. * These cpus will now be attached to the NULL domain
  6367. */
  6368. static void detach_destroy_domains(const struct cpumask *cpu_map)
  6369. {
  6370. /* Save because hotplug lock held. */
  6371. static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
  6372. int i;
  6373. for_each_cpu(i, cpu_map)
  6374. cpu_attach_domain(NULL, &def_root_domain, i);
  6375. synchronize_sched();
  6376. arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
  6377. }
  6378. /* handle null as "default" */
  6379. static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
  6380. struct sched_domain_attr *new, int idx_new)
  6381. {
  6382. struct sched_domain_attr tmp;
  6383. /* fast path */
  6384. if (!new && !cur)
  6385. return 1;
  6386. tmp = SD_ATTR_INIT;
  6387. return !memcmp(cur ? (cur + idx_cur) : &tmp,
  6388. new ? (new + idx_new) : &tmp,
  6389. sizeof(struct sched_domain_attr));
  6390. }
  6391. /*
  6392. * Partition sched domains as specified by the 'ndoms_new'
  6393. * cpumasks in the array doms_new[] of cpumasks. This compares
  6394. * doms_new[] to the current sched domain partitioning, doms_cur[].
  6395. * It destroys each deleted domain and builds each new domain.
  6396. *
  6397. * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
  6398. * The masks don't intersect (don't overlap.) We should setup one
  6399. * sched domain for each mask. CPUs not in any of the cpumasks will
  6400. * not be load balanced. If the same cpumask appears both in the
  6401. * current 'doms_cur' domains and in the new 'doms_new', we can leave
  6402. * it as it is.
  6403. *
  6404. * The passed in 'doms_new' should be allocated using
  6405. * alloc_sched_domains. This routine takes ownership of it and will
  6406. * free_sched_domains it when done with it. If the caller failed the
  6407. * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
  6408. * and partition_sched_domains() will fallback to the single partition
  6409. * 'fallback_doms', it also forces the domains to be rebuilt.
  6410. *
  6411. * If doms_new == NULL it will be replaced with cpu_online_mask.
  6412. * ndoms_new == 0 is a special case for destroying existing domains,
  6413. * and it will not create the default domain.
  6414. *
  6415. * Call with hotplug lock held
  6416. */
  6417. void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
  6418. struct sched_domain_attr *dattr_new)
  6419. {
  6420. int i, j, n;
  6421. int new_topology;
  6422. mutex_lock(&sched_domains_mutex);
  6423. /* always unregister in case we don't destroy any domains */
  6424. unregister_sched_domain_sysctl();
  6425. /* Let architecture update cpu core mappings. */
  6426. new_topology = arch_update_cpu_topology();
  6427. n = doms_new ? ndoms_new : 0;
  6428. /* Destroy deleted domains */
  6429. for (i = 0; i < ndoms_cur; i++) {
  6430. for (j = 0; j < n && !new_topology; j++) {
  6431. if (cpumask_equal(doms_cur[i], doms_new[j])
  6432. && dattrs_equal(dattr_cur, i, dattr_new, j))
  6433. goto match1;
  6434. }
  6435. /* no match - a current sched domain not in new doms_new[] */
  6436. detach_destroy_domains(doms_cur[i]);
  6437. match1:
  6438. ;
  6439. }
  6440. if (doms_new == NULL) {
  6441. ndoms_cur = 0;
  6442. doms_new = &fallback_doms;
  6443. cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
  6444. WARN_ON_ONCE(dattr_new);
  6445. }
  6446. /* Build new domains */
  6447. for (i = 0; i < ndoms_new; i++) {
  6448. for (j = 0; j < ndoms_cur && !new_topology; j++) {
  6449. if (cpumask_equal(doms_new[i], doms_cur[j])
  6450. && dattrs_equal(dattr_new, i, dattr_cur, j))
  6451. goto match2;
  6452. }
  6453. /* no match - add a new doms_new */
  6454. __build_sched_domains(doms_new[i],
  6455. dattr_new ? dattr_new + i : NULL);
  6456. match2:
  6457. ;
  6458. }
  6459. /* Remember the new sched domains */
  6460. if (doms_cur != &fallback_doms)
  6461. free_sched_domains(doms_cur, ndoms_cur);
  6462. kfree(dattr_cur); /* kfree(NULL) is safe */
  6463. doms_cur = doms_new;
  6464. dattr_cur = dattr_new;
  6465. ndoms_cur = ndoms_new;
  6466. register_sched_domain_sysctl();
  6467. mutex_unlock(&sched_domains_mutex);
  6468. }
  6469. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  6470. static void arch_reinit_sched_domains(void)
  6471. {
  6472. get_online_cpus();
  6473. /* Destroy domains first to force the rebuild */
  6474. partition_sched_domains(0, NULL, NULL);
  6475. rebuild_sched_domains();
  6476. put_online_cpus();
  6477. }
  6478. static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
  6479. {
  6480. unsigned int level = 0;
  6481. if (sscanf(buf, "%u", &level) != 1)
  6482. return -EINVAL;
  6483. /*
  6484. * level is always be positive so don't check for
  6485. * level < POWERSAVINGS_BALANCE_NONE which is 0
  6486. * What happens on 0 or 1 byte write,
  6487. * need to check for count as well?
  6488. */
  6489. if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
  6490. return -EINVAL;
  6491. if (smt)
  6492. sched_smt_power_savings = level;
  6493. else
  6494. sched_mc_power_savings = level;
  6495. arch_reinit_sched_domains();
  6496. return count;
  6497. }
  6498. #ifdef CONFIG_SCHED_MC
  6499. static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
  6500. struct sysdev_class_attribute *attr,
  6501. char *page)
  6502. {
  6503. return sprintf(page, "%u\n", sched_mc_power_savings);
  6504. }
  6505. static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
  6506. struct sysdev_class_attribute *attr,
  6507. const char *buf, size_t count)
  6508. {
  6509. return sched_power_savings_store(buf, count, 0);
  6510. }
  6511. static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
  6512. sched_mc_power_savings_show,
  6513. sched_mc_power_savings_store);
  6514. #endif
  6515. #ifdef CONFIG_SCHED_SMT
  6516. static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
  6517. struct sysdev_class_attribute *attr,
  6518. char *page)
  6519. {
  6520. return sprintf(page, "%u\n", sched_smt_power_savings);
  6521. }
  6522. static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
  6523. struct sysdev_class_attribute *attr,
  6524. const char *buf, size_t count)
  6525. {
  6526. return sched_power_savings_store(buf, count, 1);
  6527. }
  6528. static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
  6529. sched_smt_power_savings_show,
  6530. sched_smt_power_savings_store);
  6531. #endif
  6532. int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
  6533. {
  6534. int err = 0;
  6535. #ifdef CONFIG_SCHED_SMT
  6536. if (smt_capable())
  6537. err = sysfs_create_file(&cls->kset.kobj,
  6538. &attr_sched_smt_power_savings.attr);
  6539. #endif
  6540. #ifdef CONFIG_SCHED_MC
  6541. if (!err && mc_capable())
  6542. err = sysfs_create_file(&cls->kset.kobj,
  6543. &attr_sched_mc_power_savings.attr);
  6544. #endif
  6545. return err;
  6546. }
  6547. #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
  6548. /*
  6549. * Update cpusets according to cpu_active mask. If cpusets are
  6550. * disabled, cpuset_update_active_cpus() becomes a simple wrapper
  6551. * around partition_sched_domains().
  6552. */
  6553. static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
  6554. void *hcpu)
  6555. {
  6556. switch (action & ~CPU_TASKS_FROZEN) {
  6557. case CPU_ONLINE:
  6558. case CPU_DOWN_FAILED:
  6559. cpuset_update_active_cpus();
  6560. return NOTIFY_OK;
  6561. default:
  6562. return NOTIFY_DONE;
  6563. }
  6564. }
  6565. static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
  6566. void *hcpu)
  6567. {
  6568. switch (action & ~CPU_TASKS_FROZEN) {
  6569. case CPU_DOWN_PREPARE:
  6570. cpuset_update_active_cpus();
  6571. return NOTIFY_OK;
  6572. default:
  6573. return NOTIFY_DONE;
  6574. }
  6575. }
  6576. static int update_runtime(struct notifier_block *nfb,
  6577. unsigned long action, void *hcpu)
  6578. {
  6579. int cpu = (int)(long)hcpu;
  6580. switch (action) {
  6581. case CPU_DOWN_PREPARE:
  6582. case CPU_DOWN_PREPARE_FROZEN:
  6583. disable_runtime(cpu_rq(cpu));
  6584. return NOTIFY_OK;
  6585. case CPU_DOWN_FAILED:
  6586. case CPU_DOWN_FAILED_FROZEN:
  6587. case CPU_ONLINE:
  6588. case CPU_ONLINE_FROZEN:
  6589. enable_runtime(cpu_rq(cpu));
  6590. return NOTIFY_OK;
  6591. default:
  6592. return NOTIFY_DONE;
  6593. }
  6594. }
  6595. void __init sched_init_smp(void)
  6596. {
  6597. cpumask_var_t non_isolated_cpus;
  6598. alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
  6599. alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
  6600. #if defined(CONFIG_NUMA)
  6601. sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
  6602. GFP_KERNEL);
  6603. BUG_ON(sched_group_nodes_bycpu == NULL);
  6604. #endif
  6605. get_online_cpus();
  6606. mutex_lock(&sched_domains_mutex);
  6607. arch_init_sched_domains(cpu_active_mask);
  6608. cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
  6609. if (cpumask_empty(non_isolated_cpus))
  6610. cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
  6611. mutex_unlock(&sched_domains_mutex);
  6612. put_online_cpus();
  6613. hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
  6614. hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
  6615. /* RT runtime code needs to handle some hotplug events */
  6616. hotcpu_notifier(update_runtime, 0);
  6617. init_hrtick();
  6618. /* Move init over to a non-isolated CPU */
  6619. if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
  6620. BUG();
  6621. sched_init_granularity();
  6622. free_cpumask_var(non_isolated_cpus);
  6623. init_sched_rt_class();
  6624. }
  6625. #else
  6626. void __init sched_init_smp(void)
  6627. {
  6628. sched_init_granularity();
  6629. }
  6630. #endif /* CONFIG_SMP */
  6631. const_debug unsigned int sysctl_timer_migration = 1;
  6632. int in_sched_functions(unsigned long addr)
  6633. {
  6634. return in_lock_functions(addr) ||
  6635. (addr >= (unsigned long)__sched_text_start
  6636. && addr < (unsigned long)__sched_text_end);
  6637. }
  6638. static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
  6639. {
  6640. cfs_rq->tasks_timeline = RB_ROOT;
  6641. INIT_LIST_HEAD(&cfs_rq->tasks);
  6642. #ifdef CONFIG_FAIR_GROUP_SCHED
  6643. cfs_rq->rq = rq;
  6644. #endif
  6645. cfs_rq->min_vruntime = (u64)(-(1LL << 20));
  6646. }
  6647. static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
  6648. {
  6649. struct rt_prio_array *array;
  6650. int i;
  6651. array = &rt_rq->active;
  6652. for (i = 0; i < MAX_RT_PRIO; i++) {
  6653. INIT_LIST_HEAD(array->queue + i);
  6654. __clear_bit(i, array->bitmap);
  6655. }
  6656. /* delimiter for bitsearch: */
  6657. __set_bit(MAX_RT_PRIO, array->bitmap);
  6658. #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
  6659. rt_rq->highest_prio.curr = MAX_RT_PRIO;
  6660. #ifdef CONFIG_SMP
  6661. rt_rq->highest_prio.next = MAX_RT_PRIO;
  6662. #endif
  6663. #endif
  6664. #ifdef CONFIG_SMP
  6665. rt_rq->rt_nr_migratory = 0;
  6666. rt_rq->overloaded = 0;
  6667. plist_head_init_raw(&rt_rq->pushable_tasks, &rq->lock);
  6668. #endif
  6669. rt_rq->rt_time = 0;
  6670. rt_rq->rt_throttled = 0;
  6671. rt_rq->rt_runtime = 0;
  6672. raw_spin_lock_init(&rt_rq->rt_runtime_lock);
  6673. #ifdef CONFIG_RT_GROUP_SCHED
  6674. rt_rq->rt_nr_boosted = 0;
  6675. rt_rq->rq = rq;
  6676. #endif
  6677. }
  6678. #ifdef CONFIG_FAIR_GROUP_SCHED
  6679. static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
  6680. struct sched_entity *se, int cpu,
  6681. struct sched_entity *parent)
  6682. {
  6683. struct rq *rq = cpu_rq(cpu);
  6684. tg->cfs_rq[cpu] = cfs_rq;
  6685. init_cfs_rq(cfs_rq, rq);
  6686. cfs_rq->tg = tg;
  6687. tg->se[cpu] = se;
  6688. /* se could be NULL for root_task_group */
  6689. if (!se)
  6690. return;
  6691. if (!parent)
  6692. se->cfs_rq = &rq->cfs;
  6693. else
  6694. se->cfs_rq = parent->my_q;
  6695. se->my_q = cfs_rq;
  6696. update_load_set(&se->load, 0);
  6697. se->parent = parent;
  6698. }
  6699. #endif
  6700. #ifdef CONFIG_RT_GROUP_SCHED
  6701. static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
  6702. struct sched_rt_entity *rt_se, int cpu,
  6703. struct sched_rt_entity *parent)
  6704. {
  6705. struct rq *rq = cpu_rq(cpu);
  6706. tg->rt_rq[cpu] = rt_rq;
  6707. init_rt_rq(rt_rq, rq);
  6708. rt_rq->tg = tg;
  6709. rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
  6710. tg->rt_se[cpu] = rt_se;
  6711. if (!rt_se)
  6712. return;
  6713. if (!parent)
  6714. rt_se->rt_rq = &rq->rt;
  6715. else
  6716. rt_se->rt_rq = parent->my_q;
  6717. rt_se->my_q = rt_rq;
  6718. rt_se->parent = parent;
  6719. INIT_LIST_HEAD(&rt_se->run_list);
  6720. }
  6721. #endif
  6722. void __init sched_init(void)
  6723. {
  6724. int i, j;
  6725. unsigned long alloc_size = 0, ptr;
  6726. #ifdef CONFIG_FAIR_GROUP_SCHED
  6727. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  6728. #endif
  6729. #ifdef CONFIG_RT_GROUP_SCHED
  6730. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  6731. #endif
  6732. #ifdef CONFIG_CPUMASK_OFFSTACK
  6733. alloc_size += num_possible_cpus() * cpumask_size();
  6734. #endif
  6735. if (alloc_size) {
  6736. ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
  6737. #ifdef CONFIG_FAIR_GROUP_SCHED
  6738. root_task_group.se = (struct sched_entity **)ptr;
  6739. ptr += nr_cpu_ids * sizeof(void **);
  6740. root_task_group.cfs_rq = (struct cfs_rq **)ptr;
  6741. ptr += nr_cpu_ids * sizeof(void **);
  6742. #endif /* CONFIG_FAIR_GROUP_SCHED */
  6743. #ifdef CONFIG_RT_GROUP_SCHED
  6744. root_task_group.rt_se = (struct sched_rt_entity **)ptr;
  6745. ptr += nr_cpu_ids * sizeof(void **);
  6746. root_task_group.rt_rq = (struct rt_rq **)ptr;
  6747. ptr += nr_cpu_ids * sizeof(void **);
  6748. #endif /* CONFIG_RT_GROUP_SCHED */
  6749. #ifdef CONFIG_CPUMASK_OFFSTACK
  6750. for_each_possible_cpu(i) {
  6751. per_cpu(load_balance_tmpmask, i) = (void *)ptr;
  6752. ptr += cpumask_size();
  6753. }
  6754. #endif /* CONFIG_CPUMASK_OFFSTACK */
  6755. }
  6756. #ifdef CONFIG_SMP
  6757. init_defrootdomain();
  6758. #endif
  6759. init_rt_bandwidth(&def_rt_bandwidth,
  6760. global_rt_period(), global_rt_runtime());
  6761. #ifdef CONFIG_RT_GROUP_SCHED
  6762. init_rt_bandwidth(&root_task_group.rt_bandwidth,
  6763. global_rt_period(), global_rt_runtime());
  6764. #endif /* CONFIG_RT_GROUP_SCHED */
  6765. #ifdef CONFIG_CGROUP_SCHED
  6766. list_add(&root_task_group.list, &task_groups);
  6767. INIT_LIST_HEAD(&root_task_group.children);
  6768. autogroup_init(&init_task);
  6769. #endif /* CONFIG_CGROUP_SCHED */
  6770. for_each_possible_cpu(i) {
  6771. struct rq *rq;
  6772. rq = cpu_rq(i);
  6773. raw_spin_lock_init(&rq->lock);
  6774. rq->nr_running = 0;
  6775. rq->calc_load_active = 0;
  6776. rq->calc_load_update = jiffies + LOAD_FREQ;
  6777. init_cfs_rq(&rq->cfs, rq);
  6778. init_rt_rq(&rq->rt, rq);
  6779. #ifdef CONFIG_FAIR_GROUP_SCHED
  6780. root_task_group.shares = root_task_group_load;
  6781. INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
  6782. /*
  6783. * How much cpu bandwidth does root_task_group get?
  6784. *
  6785. * In case of task-groups formed thr' the cgroup filesystem, it
  6786. * gets 100% of the cpu resources in the system. This overall
  6787. * system cpu resource is divided among the tasks of
  6788. * root_task_group and its child task-groups in a fair manner,
  6789. * based on each entity's (task or task-group's) weight
  6790. * (se->load.weight).
  6791. *
  6792. * In other words, if root_task_group has 10 tasks of weight
  6793. * 1024) and two child groups A0 and A1 (of weight 1024 each),
  6794. * then A0's share of the cpu resource is:
  6795. *
  6796. * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
  6797. *
  6798. * We achieve this by letting root_task_group's tasks sit
  6799. * directly in rq->cfs (i.e root_task_group->se[] = NULL).
  6800. */
  6801. init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
  6802. #endif /* CONFIG_FAIR_GROUP_SCHED */
  6803. rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
  6804. #ifdef CONFIG_RT_GROUP_SCHED
  6805. INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
  6806. init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
  6807. #endif
  6808. for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
  6809. rq->cpu_load[j] = 0;
  6810. rq->last_load_update_tick = jiffies;
  6811. #ifdef CONFIG_SMP
  6812. rq->sd = NULL;
  6813. rq->rd = NULL;
  6814. rq->cpu_power = SCHED_LOAD_SCALE;
  6815. rq->post_schedule = 0;
  6816. rq->active_balance = 0;
  6817. rq->next_balance = jiffies;
  6818. rq->push_cpu = 0;
  6819. rq->cpu = i;
  6820. rq->online = 0;
  6821. rq->idle_stamp = 0;
  6822. rq->avg_idle = 2*sysctl_sched_migration_cost;
  6823. rq_attach_root(rq, &def_root_domain);
  6824. #ifdef CONFIG_NO_HZ
  6825. rq->nohz_balance_kick = 0;
  6826. init_sched_softirq_csd(&per_cpu(remote_sched_softirq_cb, i));
  6827. #endif
  6828. #endif
  6829. init_rq_hrtick(rq);
  6830. atomic_set(&rq->nr_iowait, 0);
  6831. }
  6832. set_load_weight(&init_task);
  6833. #ifdef CONFIG_PREEMPT_NOTIFIERS
  6834. INIT_HLIST_HEAD(&init_task.preempt_notifiers);
  6835. #endif
  6836. #ifdef CONFIG_SMP
  6837. open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
  6838. #endif
  6839. #ifdef CONFIG_RT_MUTEXES
  6840. plist_head_init_raw(&init_task.pi_waiters, &init_task.pi_lock);
  6841. #endif
  6842. /*
  6843. * The boot idle thread does lazy MMU switching as well:
  6844. */
  6845. atomic_inc(&init_mm.mm_count);
  6846. enter_lazy_tlb(&init_mm, current);
  6847. /*
  6848. * Make us the idle thread. Technically, schedule() should not be
  6849. * called from this thread, however somewhere below it might be,
  6850. * but because we are the idle thread, we just pick up running again
  6851. * when this runqueue becomes "idle".
  6852. */
  6853. init_idle(current, smp_processor_id());
  6854. calc_load_update = jiffies + LOAD_FREQ;
  6855. /*
  6856. * During early bootup we pretend to be a normal task:
  6857. */
  6858. current->sched_class = &fair_sched_class;
  6859. /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
  6860. zalloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
  6861. #ifdef CONFIG_SMP
  6862. #ifdef CONFIG_NO_HZ
  6863. zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
  6864. alloc_cpumask_var(&nohz.grp_idle_mask, GFP_NOWAIT);
  6865. atomic_set(&nohz.load_balancer, nr_cpu_ids);
  6866. atomic_set(&nohz.first_pick_cpu, nr_cpu_ids);
  6867. atomic_set(&nohz.second_pick_cpu, nr_cpu_ids);
  6868. #endif
  6869. /* May be allocated at isolcpus cmdline parse time */
  6870. if (cpu_isolated_map == NULL)
  6871. zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
  6872. #endif /* SMP */
  6873. scheduler_running = 1;
  6874. }
  6875. #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
  6876. static inline int preempt_count_equals(int preempt_offset)
  6877. {
  6878. int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
  6879. return (nested == PREEMPT_INATOMIC_BASE + preempt_offset);
  6880. }
  6881. void __might_sleep(const char *file, int line, int preempt_offset)
  6882. {
  6883. #ifdef in_atomic
  6884. static unsigned long prev_jiffy; /* ratelimiting */
  6885. if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
  6886. system_state != SYSTEM_RUNNING || oops_in_progress)
  6887. return;
  6888. if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
  6889. return;
  6890. prev_jiffy = jiffies;
  6891. printk(KERN_ERR
  6892. "BUG: sleeping function called from invalid context at %s:%d\n",
  6893. file, line);
  6894. printk(KERN_ERR
  6895. "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
  6896. in_atomic(), irqs_disabled(),
  6897. current->pid, current->comm);
  6898. debug_show_held_locks(current);
  6899. if (irqs_disabled())
  6900. print_irqtrace_events(current);
  6901. dump_stack();
  6902. #endif
  6903. }
  6904. EXPORT_SYMBOL(__might_sleep);
  6905. #endif
  6906. #ifdef CONFIG_MAGIC_SYSRQ
  6907. static void normalize_task(struct rq *rq, struct task_struct *p)
  6908. {
  6909. int on_rq;
  6910. on_rq = p->se.on_rq;
  6911. if (on_rq)
  6912. deactivate_task(rq, p, 0);
  6913. __setscheduler(rq, p, SCHED_NORMAL, 0);
  6914. if (on_rq) {
  6915. activate_task(rq, p, 0);
  6916. resched_task(rq->curr);
  6917. }
  6918. }
  6919. void normalize_rt_tasks(void)
  6920. {
  6921. struct task_struct *g, *p;
  6922. unsigned long flags;
  6923. struct rq *rq;
  6924. read_lock_irqsave(&tasklist_lock, flags);
  6925. do_each_thread(g, p) {
  6926. /*
  6927. * Only normalize user tasks:
  6928. */
  6929. if (!p->mm)
  6930. continue;
  6931. p->se.exec_start = 0;
  6932. #ifdef CONFIG_SCHEDSTATS
  6933. p->se.statistics.wait_start = 0;
  6934. p->se.statistics.sleep_start = 0;
  6935. p->se.statistics.block_start = 0;
  6936. #endif
  6937. if (!rt_task(p)) {
  6938. /*
  6939. * Renice negative nice level userspace
  6940. * tasks back to 0:
  6941. */
  6942. if (TASK_NICE(p) < 0 && p->mm)
  6943. set_user_nice(p, 0);
  6944. continue;
  6945. }
  6946. raw_spin_lock(&p->pi_lock);
  6947. rq = __task_rq_lock(p);
  6948. normalize_task(rq, p);
  6949. __task_rq_unlock(rq);
  6950. raw_spin_unlock(&p->pi_lock);
  6951. } while_each_thread(g, p);
  6952. read_unlock_irqrestore(&tasklist_lock, flags);
  6953. }
  6954. #endif /* CONFIG_MAGIC_SYSRQ */
  6955. #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
  6956. /*
  6957. * These functions are only useful for the IA64 MCA handling, or kdb.
  6958. *
  6959. * They can only be called when the whole system has been
  6960. * stopped - every CPU needs to be quiescent, and no scheduling
  6961. * activity can take place. Using them for anything else would
  6962. * be a serious bug, and as a result, they aren't even visible
  6963. * under any other configuration.
  6964. */
  6965. /**
  6966. * curr_task - return the current task for a given cpu.
  6967. * @cpu: the processor in question.
  6968. *
  6969. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  6970. */
  6971. struct task_struct *curr_task(int cpu)
  6972. {
  6973. return cpu_curr(cpu);
  6974. }
  6975. #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
  6976. #ifdef CONFIG_IA64
  6977. /**
  6978. * set_curr_task - set the current task for a given cpu.
  6979. * @cpu: the processor in question.
  6980. * @p: the task pointer to set.
  6981. *
  6982. * Description: This function must only be used when non-maskable interrupts
  6983. * are serviced on a separate stack. It allows the architecture to switch the
  6984. * notion of the current task on a cpu in a non-blocking manner. This function
  6985. * must be called with all CPU's synchronized, and interrupts disabled, the
  6986. * and caller must save the original value of the current task (see
  6987. * curr_task() above) and restore that value before reenabling interrupts and
  6988. * re-starting the system.
  6989. *
  6990. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  6991. */
  6992. void set_curr_task(int cpu, struct task_struct *p)
  6993. {
  6994. cpu_curr(cpu) = p;
  6995. }
  6996. #endif
  6997. #ifdef CONFIG_FAIR_GROUP_SCHED
  6998. static void free_fair_sched_group(struct task_group *tg)
  6999. {
  7000. int i;
  7001. for_each_possible_cpu(i) {
  7002. if (tg->cfs_rq)
  7003. kfree(tg->cfs_rq[i]);
  7004. if (tg->se)
  7005. kfree(tg->se[i]);
  7006. }
  7007. kfree(tg->cfs_rq);
  7008. kfree(tg->se);
  7009. }
  7010. static
  7011. int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
  7012. {
  7013. struct cfs_rq *cfs_rq;
  7014. struct sched_entity *se;
  7015. struct rq *rq;
  7016. int i;
  7017. tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
  7018. if (!tg->cfs_rq)
  7019. goto err;
  7020. tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
  7021. if (!tg->se)
  7022. goto err;
  7023. tg->shares = NICE_0_LOAD;
  7024. for_each_possible_cpu(i) {
  7025. rq = cpu_rq(i);
  7026. cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
  7027. GFP_KERNEL, cpu_to_node(i));
  7028. if (!cfs_rq)
  7029. goto err;
  7030. se = kzalloc_node(sizeof(struct sched_entity),
  7031. GFP_KERNEL, cpu_to_node(i));
  7032. if (!se)
  7033. goto err_free_rq;
  7034. init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
  7035. }
  7036. return 1;
  7037. err_free_rq:
  7038. kfree(cfs_rq);
  7039. err:
  7040. return 0;
  7041. }
  7042. static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
  7043. {
  7044. struct rq *rq = cpu_rq(cpu);
  7045. unsigned long flags;
  7046. /*
  7047. * Only empty task groups can be destroyed; so we can speculatively
  7048. * check on_list without danger of it being re-added.
  7049. */
  7050. if (!tg->cfs_rq[cpu]->on_list)
  7051. return;
  7052. raw_spin_lock_irqsave(&rq->lock, flags);
  7053. list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
  7054. raw_spin_unlock_irqrestore(&rq->lock, flags);
  7055. }
  7056. #else /* !CONFG_FAIR_GROUP_SCHED */
  7057. static inline void free_fair_sched_group(struct task_group *tg)
  7058. {
  7059. }
  7060. static inline
  7061. int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
  7062. {
  7063. return 1;
  7064. }
  7065. static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
  7066. {
  7067. }
  7068. #endif /* CONFIG_FAIR_GROUP_SCHED */
  7069. #ifdef CONFIG_RT_GROUP_SCHED
  7070. static void free_rt_sched_group(struct task_group *tg)
  7071. {
  7072. int i;
  7073. destroy_rt_bandwidth(&tg->rt_bandwidth);
  7074. for_each_possible_cpu(i) {
  7075. if (tg->rt_rq)
  7076. kfree(tg->rt_rq[i]);
  7077. if (tg->rt_se)
  7078. kfree(tg->rt_se[i]);
  7079. }
  7080. kfree(tg->rt_rq);
  7081. kfree(tg->rt_se);
  7082. }
  7083. static
  7084. int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
  7085. {
  7086. struct rt_rq *rt_rq;
  7087. struct sched_rt_entity *rt_se;
  7088. struct rq *rq;
  7089. int i;
  7090. tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
  7091. if (!tg->rt_rq)
  7092. goto err;
  7093. tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
  7094. if (!tg->rt_se)
  7095. goto err;
  7096. init_rt_bandwidth(&tg->rt_bandwidth,
  7097. ktime_to_ns(def_rt_bandwidth.rt_period), 0);
  7098. for_each_possible_cpu(i) {
  7099. rq = cpu_rq(i);
  7100. rt_rq = kzalloc_node(sizeof(struct rt_rq),
  7101. GFP_KERNEL, cpu_to_node(i));
  7102. if (!rt_rq)
  7103. goto err;
  7104. rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
  7105. GFP_KERNEL, cpu_to_node(i));
  7106. if (!rt_se)
  7107. goto err_free_rq;
  7108. init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]);
  7109. }
  7110. return 1;
  7111. err_free_rq:
  7112. kfree(rt_rq);
  7113. err:
  7114. return 0;
  7115. }
  7116. #else /* !CONFIG_RT_GROUP_SCHED */
  7117. static inline void free_rt_sched_group(struct task_group *tg)
  7118. {
  7119. }
  7120. static inline
  7121. int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
  7122. {
  7123. return 1;
  7124. }
  7125. #endif /* CONFIG_RT_GROUP_SCHED */
  7126. #ifdef CONFIG_CGROUP_SCHED
  7127. static void free_sched_group(struct task_group *tg)
  7128. {
  7129. free_fair_sched_group(tg);
  7130. free_rt_sched_group(tg);
  7131. autogroup_free(tg);
  7132. kfree(tg);
  7133. }
  7134. /* allocate runqueue etc for a new task group */
  7135. struct task_group *sched_create_group(struct task_group *parent)
  7136. {
  7137. struct task_group *tg;
  7138. unsigned long flags;
  7139. tg = kzalloc(sizeof(*tg), GFP_KERNEL);
  7140. if (!tg)
  7141. return ERR_PTR(-ENOMEM);
  7142. if (!alloc_fair_sched_group(tg, parent))
  7143. goto err;
  7144. if (!alloc_rt_sched_group(tg, parent))
  7145. goto err;
  7146. spin_lock_irqsave(&task_group_lock, flags);
  7147. list_add_rcu(&tg->list, &task_groups);
  7148. WARN_ON(!parent); /* root should already exist */
  7149. tg->parent = parent;
  7150. INIT_LIST_HEAD(&tg->children);
  7151. list_add_rcu(&tg->siblings, &parent->children);
  7152. spin_unlock_irqrestore(&task_group_lock, flags);
  7153. return tg;
  7154. err:
  7155. free_sched_group(tg);
  7156. return ERR_PTR(-ENOMEM);
  7157. }
  7158. /* rcu callback to free various structures associated with a task group */
  7159. static void free_sched_group_rcu(struct rcu_head *rhp)
  7160. {
  7161. /* now it should be safe to free those cfs_rqs */
  7162. free_sched_group(container_of(rhp, struct task_group, rcu));
  7163. }
  7164. /* Destroy runqueue etc associated with a task group */
  7165. void sched_destroy_group(struct task_group *tg)
  7166. {
  7167. unsigned long flags;
  7168. int i;
  7169. /* end participation in shares distribution */
  7170. for_each_possible_cpu(i)
  7171. unregister_fair_sched_group(tg, i);
  7172. spin_lock_irqsave(&task_group_lock, flags);
  7173. list_del_rcu(&tg->list);
  7174. list_del_rcu(&tg->siblings);
  7175. spin_unlock_irqrestore(&task_group_lock, flags);
  7176. /* wait for possible concurrent references to cfs_rqs complete */
  7177. call_rcu(&tg->rcu, free_sched_group_rcu);
  7178. }
  7179. /* change task's runqueue when it moves between groups.
  7180. * The caller of this function should have put the task in its new group
  7181. * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
  7182. * reflect its new group.
  7183. */
  7184. void sched_move_task(struct task_struct *tsk)
  7185. {
  7186. int on_rq, running;
  7187. unsigned long flags;
  7188. struct rq *rq;
  7189. rq = task_rq_lock(tsk, &flags);
  7190. running = task_current(rq, tsk);
  7191. on_rq = tsk->se.on_rq;
  7192. if (on_rq)
  7193. dequeue_task(rq, tsk, 0);
  7194. if (unlikely(running))
  7195. tsk->sched_class->put_prev_task(rq, tsk);
  7196. #ifdef CONFIG_FAIR_GROUP_SCHED
  7197. if (tsk->sched_class->task_move_group)
  7198. tsk->sched_class->task_move_group(tsk, on_rq);
  7199. else
  7200. #endif
  7201. set_task_rq(tsk, task_cpu(tsk));
  7202. if (unlikely(running))
  7203. tsk->sched_class->set_curr_task(rq);
  7204. if (on_rq)
  7205. enqueue_task(rq, tsk, 0);
  7206. task_rq_unlock(rq, &flags);
  7207. }
  7208. #endif /* CONFIG_CGROUP_SCHED */
  7209. #ifdef CONFIG_FAIR_GROUP_SCHED
  7210. static DEFINE_MUTEX(shares_mutex);
  7211. int sched_group_set_shares(struct task_group *tg, unsigned long shares)
  7212. {
  7213. int i;
  7214. unsigned long flags;
  7215. /*
  7216. * We can't change the weight of the root cgroup.
  7217. */
  7218. if (!tg->se[0])
  7219. return -EINVAL;
  7220. if (shares < MIN_SHARES)
  7221. shares = MIN_SHARES;
  7222. else if (shares > MAX_SHARES)
  7223. shares = MAX_SHARES;
  7224. mutex_lock(&shares_mutex);
  7225. if (tg->shares == shares)
  7226. goto done;
  7227. tg->shares = shares;
  7228. for_each_possible_cpu(i) {
  7229. struct rq *rq = cpu_rq(i);
  7230. struct sched_entity *se;
  7231. se = tg->se[i];
  7232. /* Propagate contribution to hierarchy */
  7233. raw_spin_lock_irqsave(&rq->lock, flags);
  7234. for_each_sched_entity(se)
  7235. update_cfs_shares(group_cfs_rq(se), 0);
  7236. raw_spin_unlock_irqrestore(&rq->lock, flags);
  7237. }
  7238. done:
  7239. mutex_unlock(&shares_mutex);
  7240. return 0;
  7241. }
  7242. unsigned long sched_group_shares(struct task_group *tg)
  7243. {
  7244. return tg->shares;
  7245. }
  7246. #endif
  7247. #ifdef CONFIG_RT_GROUP_SCHED
  7248. /*
  7249. * Ensure that the real time constraints are schedulable.
  7250. */
  7251. static DEFINE_MUTEX(rt_constraints_mutex);
  7252. static unsigned long to_ratio(u64 period, u64 runtime)
  7253. {
  7254. if (runtime == RUNTIME_INF)
  7255. return 1ULL << 20;
  7256. return div64_u64(runtime << 20, period);
  7257. }
  7258. /* Must be called with tasklist_lock held */
  7259. static inline int tg_has_rt_tasks(struct task_group *tg)
  7260. {
  7261. struct task_struct *g, *p;
  7262. do_each_thread(g, p) {
  7263. if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
  7264. return 1;
  7265. } while_each_thread(g, p);
  7266. return 0;
  7267. }
  7268. struct rt_schedulable_data {
  7269. struct task_group *tg;
  7270. u64 rt_period;
  7271. u64 rt_runtime;
  7272. };
  7273. static int tg_schedulable(struct task_group *tg, void *data)
  7274. {
  7275. struct rt_schedulable_data *d = data;
  7276. struct task_group *child;
  7277. unsigned long total, sum = 0;
  7278. u64 period, runtime;
  7279. period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  7280. runtime = tg->rt_bandwidth.rt_runtime;
  7281. if (tg == d->tg) {
  7282. period = d->rt_period;
  7283. runtime = d->rt_runtime;
  7284. }
  7285. /*
  7286. * Cannot have more runtime than the period.
  7287. */
  7288. if (runtime > period && runtime != RUNTIME_INF)
  7289. return -EINVAL;
  7290. /*
  7291. * Ensure we don't starve existing RT tasks.
  7292. */
  7293. if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
  7294. return -EBUSY;
  7295. total = to_ratio(period, runtime);
  7296. /*
  7297. * Nobody can have more than the global setting allows.
  7298. */
  7299. if (total > to_ratio(global_rt_period(), global_rt_runtime()))
  7300. return -EINVAL;
  7301. /*
  7302. * The sum of our children's runtime should not exceed our own.
  7303. */
  7304. list_for_each_entry_rcu(child, &tg->children, siblings) {
  7305. period = ktime_to_ns(child->rt_bandwidth.rt_period);
  7306. runtime = child->rt_bandwidth.rt_runtime;
  7307. if (child == d->tg) {
  7308. period = d->rt_period;
  7309. runtime = d->rt_runtime;
  7310. }
  7311. sum += to_ratio(period, runtime);
  7312. }
  7313. if (sum > total)
  7314. return -EINVAL;
  7315. return 0;
  7316. }
  7317. static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
  7318. {
  7319. struct rt_schedulable_data data = {
  7320. .tg = tg,
  7321. .rt_period = period,
  7322. .rt_runtime = runtime,
  7323. };
  7324. return walk_tg_tree(tg_schedulable, tg_nop, &data);
  7325. }
  7326. static int tg_set_bandwidth(struct task_group *tg,
  7327. u64 rt_period, u64 rt_runtime)
  7328. {
  7329. int i, err = 0;
  7330. mutex_lock(&rt_constraints_mutex);
  7331. read_lock(&tasklist_lock);
  7332. err = __rt_schedulable(tg, rt_period, rt_runtime);
  7333. if (err)
  7334. goto unlock;
  7335. raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  7336. tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
  7337. tg->rt_bandwidth.rt_runtime = rt_runtime;
  7338. for_each_possible_cpu(i) {
  7339. struct rt_rq *rt_rq = tg->rt_rq[i];
  7340. raw_spin_lock(&rt_rq->rt_runtime_lock);
  7341. rt_rq->rt_runtime = rt_runtime;
  7342. raw_spin_unlock(&rt_rq->rt_runtime_lock);
  7343. }
  7344. raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  7345. unlock:
  7346. read_unlock(&tasklist_lock);
  7347. mutex_unlock(&rt_constraints_mutex);
  7348. return err;
  7349. }
  7350. int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
  7351. {
  7352. u64 rt_runtime, rt_period;
  7353. rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  7354. rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
  7355. if (rt_runtime_us < 0)
  7356. rt_runtime = RUNTIME_INF;
  7357. return tg_set_bandwidth(tg, rt_period, rt_runtime);
  7358. }
  7359. long sched_group_rt_runtime(struct task_group *tg)
  7360. {
  7361. u64 rt_runtime_us;
  7362. if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
  7363. return -1;
  7364. rt_runtime_us = tg->rt_bandwidth.rt_runtime;
  7365. do_div(rt_runtime_us, NSEC_PER_USEC);
  7366. return rt_runtime_us;
  7367. }
  7368. int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
  7369. {
  7370. u64 rt_runtime, rt_period;
  7371. rt_period = (u64)rt_period_us * NSEC_PER_USEC;
  7372. rt_runtime = tg->rt_bandwidth.rt_runtime;
  7373. if (rt_period == 0)
  7374. return -EINVAL;
  7375. return tg_set_bandwidth(tg, rt_period, rt_runtime);
  7376. }
  7377. long sched_group_rt_period(struct task_group *tg)
  7378. {
  7379. u64 rt_period_us;
  7380. rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
  7381. do_div(rt_period_us, NSEC_PER_USEC);
  7382. return rt_period_us;
  7383. }
  7384. static int sched_rt_global_constraints(void)
  7385. {
  7386. u64 runtime, period;
  7387. int ret = 0;
  7388. if (sysctl_sched_rt_period <= 0)
  7389. return -EINVAL;
  7390. runtime = global_rt_runtime();
  7391. period = global_rt_period();
  7392. /*
  7393. * Sanity check on the sysctl variables.
  7394. */
  7395. if (runtime > period && runtime != RUNTIME_INF)
  7396. return -EINVAL;
  7397. mutex_lock(&rt_constraints_mutex);
  7398. read_lock(&tasklist_lock);
  7399. ret = __rt_schedulable(NULL, 0, 0);
  7400. read_unlock(&tasklist_lock);
  7401. mutex_unlock(&rt_constraints_mutex);
  7402. return ret;
  7403. }
  7404. int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
  7405. {
  7406. /* Don't accept realtime tasks when there is no way for them to run */
  7407. if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
  7408. return 0;
  7409. return 1;
  7410. }
  7411. #else /* !CONFIG_RT_GROUP_SCHED */
  7412. static int sched_rt_global_constraints(void)
  7413. {
  7414. unsigned long flags;
  7415. int i;
  7416. if (sysctl_sched_rt_period <= 0)
  7417. return -EINVAL;
  7418. /*
  7419. * There's always some RT tasks in the root group
  7420. * -- migration, kstopmachine etc..
  7421. */
  7422. if (sysctl_sched_rt_runtime == 0)
  7423. return -EBUSY;
  7424. raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
  7425. for_each_possible_cpu(i) {
  7426. struct rt_rq *rt_rq = &cpu_rq(i)->rt;
  7427. raw_spin_lock(&rt_rq->rt_runtime_lock);
  7428. rt_rq->rt_runtime = global_rt_runtime();
  7429. raw_spin_unlock(&rt_rq->rt_runtime_lock);
  7430. }
  7431. raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
  7432. return 0;
  7433. }
  7434. #endif /* CONFIG_RT_GROUP_SCHED */
  7435. int sched_rt_handler(struct ctl_table *table, int write,
  7436. void __user *buffer, size_t *lenp,
  7437. loff_t *ppos)
  7438. {
  7439. int ret;
  7440. int old_period, old_runtime;
  7441. static DEFINE_MUTEX(mutex);
  7442. mutex_lock(&mutex);
  7443. old_period = sysctl_sched_rt_period;
  7444. old_runtime = sysctl_sched_rt_runtime;
  7445. ret = proc_dointvec(table, write, buffer, lenp, ppos);
  7446. if (!ret && write) {
  7447. ret = sched_rt_global_constraints();
  7448. if (ret) {
  7449. sysctl_sched_rt_period = old_period;
  7450. sysctl_sched_rt_runtime = old_runtime;
  7451. } else {
  7452. def_rt_bandwidth.rt_runtime = global_rt_runtime();
  7453. def_rt_bandwidth.rt_period =
  7454. ns_to_ktime(global_rt_period());
  7455. }
  7456. }
  7457. mutex_unlock(&mutex);
  7458. return ret;
  7459. }
  7460. #ifdef CONFIG_CGROUP_SCHED
  7461. /* return corresponding task_group object of a cgroup */
  7462. static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
  7463. {
  7464. return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
  7465. struct task_group, css);
  7466. }
  7467. static struct cgroup_subsys_state *
  7468. cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7469. {
  7470. struct task_group *tg, *parent;
  7471. if (!cgrp->parent) {
  7472. /* This is early initialization for the top cgroup */
  7473. return &root_task_group.css;
  7474. }
  7475. parent = cgroup_tg(cgrp->parent);
  7476. tg = sched_create_group(parent);
  7477. if (IS_ERR(tg))
  7478. return ERR_PTR(-ENOMEM);
  7479. return &tg->css;
  7480. }
  7481. static void
  7482. cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7483. {
  7484. struct task_group *tg = cgroup_tg(cgrp);
  7485. sched_destroy_group(tg);
  7486. }
  7487. static int
  7488. cpu_cgroup_can_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
  7489. {
  7490. #ifdef CONFIG_RT_GROUP_SCHED
  7491. if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
  7492. return -EINVAL;
  7493. #else
  7494. /* We don't support RT-tasks being in separate groups */
  7495. if (tsk->sched_class != &fair_sched_class)
  7496. return -EINVAL;
  7497. #endif
  7498. return 0;
  7499. }
  7500. static int
  7501. cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
  7502. struct task_struct *tsk, bool threadgroup)
  7503. {
  7504. int retval = cpu_cgroup_can_attach_task(cgrp, tsk);
  7505. if (retval)
  7506. return retval;
  7507. if (threadgroup) {
  7508. struct task_struct *c;
  7509. rcu_read_lock();
  7510. list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
  7511. retval = cpu_cgroup_can_attach_task(cgrp, c);
  7512. if (retval) {
  7513. rcu_read_unlock();
  7514. return retval;
  7515. }
  7516. }
  7517. rcu_read_unlock();
  7518. }
  7519. return 0;
  7520. }
  7521. static void
  7522. cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
  7523. struct cgroup *old_cont, struct task_struct *tsk,
  7524. bool threadgroup)
  7525. {
  7526. sched_move_task(tsk);
  7527. if (threadgroup) {
  7528. struct task_struct *c;
  7529. rcu_read_lock();
  7530. list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
  7531. sched_move_task(c);
  7532. }
  7533. rcu_read_unlock();
  7534. }
  7535. }
  7536. static void
  7537. cpu_cgroup_exit(struct cgroup_subsys *ss, struct task_struct *task)
  7538. {
  7539. /*
  7540. * cgroup_exit() is called in the copy_process() failure path.
  7541. * Ignore this case since the task hasn't ran yet, this avoids
  7542. * trying to poke a half freed task state from generic code.
  7543. */
  7544. if (!(task->flags & PF_EXITING))
  7545. return;
  7546. sched_move_task(task);
  7547. }
  7548. #ifdef CONFIG_FAIR_GROUP_SCHED
  7549. static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
  7550. u64 shareval)
  7551. {
  7552. return sched_group_set_shares(cgroup_tg(cgrp), shareval);
  7553. }
  7554. static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
  7555. {
  7556. struct task_group *tg = cgroup_tg(cgrp);
  7557. return (u64) tg->shares;
  7558. }
  7559. #endif /* CONFIG_FAIR_GROUP_SCHED */
  7560. #ifdef CONFIG_RT_GROUP_SCHED
  7561. static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
  7562. s64 val)
  7563. {
  7564. return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
  7565. }
  7566. static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
  7567. {
  7568. return sched_group_rt_runtime(cgroup_tg(cgrp));
  7569. }
  7570. static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
  7571. u64 rt_period_us)
  7572. {
  7573. return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
  7574. }
  7575. static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
  7576. {
  7577. return sched_group_rt_period(cgroup_tg(cgrp));
  7578. }
  7579. #endif /* CONFIG_RT_GROUP_SCHED */
  7580. static struct cftype cpu_files[] = {
  7581. #ifdef CONFIG_FAIR_GROUP_SCHED
  7582. {
  7583. .name = "shares",
  7584. .read_u64 = cpu_shares_read_u64,
  7585. .write_u64 = cpu_shares_write_u64,
  7586. },
  7587. #endif
  7588. #ifdef CONFIG_RT_GROUP_SCHED
  7589. {
  7590. .name = "rt_runtime_us",
  7591. .read_s64 = cpu_rt_runtime_read,
  7592. .write_s64 = cpu_rt_runtime_write,
  7593. },
  7594. {
  7595. .name = "rt_period_us",
  7596. .read_u64 = cpu_rt_period_read_uint,
  7597. .write_u64 = cpu_rt_period_write_uint,
  7598. },
  7599. #endif
  7600. };
  7601. static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
  7602. {
  7603. return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
  7604. }
  7605. struct cgroup_subsys cpu_cgroup_subsys = {
  7606. .name = "cpu",
  7607. .create = cpu_cgroup_create,
  7608. .destroy = cpu_cgroup_destroy,
  7609. .can_attach = cpu_cgroup_can_attach,
  7610. .attach = cpu_cgroup_attach,
  7611. .exit = cpu_cgroup_exit,
  7612. .populate = cpu_cgroup_populate,
  7613. .subsys_id = cpu_cgroup_subsys_id,
  7614. .early_init = 1,
  7615. };
  7616. #endif /* CONFIG_CGROUP_SCHED */
  7617. #ifdef CONFIG_CGROUP_CPUACCT
  7618. /*
  7619. * CPU accounting code for task groups.
  7620. *
  7621. * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
  7622. * (balbir@in.ibm.com).
  7623. */
  7624. /* track cpu usage of a group of tasks and its child groups */
  7625. struct cpuacct {
  7626. struct cgroup_subsys_state css;
  7627. /* cpuusage holds pointer to a u64-type object on every cpu */
  7628. u64 __percpu *cpuusage;
  7629. struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
  7630. struct cpuacct *parent;
  7631. };
  7632. struct cgroup_subsys cpuacct_subsys;
  7633. /* return cpu accounting group corresponding to this container */
  7634. static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
  7635. {
  7636. return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
  7637. struct cpuacct, css);
  7638. }
  7639. /* return cpu accounting group to which this task belongs */
  7640. static inline struct cpuacct *task_ca(struct task_struct *tsk)
  7641. {
  7642. return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
  7643. struct cpuacct, css);
  7644. }
  7645. /* create a new cpu accounting group */
  7646. static struct cgroup_subsys_state *cpuacct_create(
  7647. struct cgroup_subsys *ss, struct cgroup *cgrp)
  7648. {
  7649. struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
  7650. int i;
  7651. if (!ca)
  7652. goto out;
  7653. ca->cpuusage = alloc_percpu(u64);
  7654. if (!ca->cpuusage)
  7655. goto out_free_ca;
  7656. for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
  7657. if (percpu_counter_init(&ca->cpustat[i], 0))
  7658. goto out_free_counters;
  7659. if (cgrp->parent)
  7660. ca->parent = cgroup_ca(cgrp->parent);
  7661. return &ca->css;
  7662. out_free_counters:
  7663. while (--i >= 0)
  7664. percpu_counter_destroy(&ca->cpustat[i]);
  7665. free_percpu(ca->cpuusage);
  7666. out_free_ca:
  7667. kfree(ca);
  7668. out:
  7669. return ERR_PTR(-ENOMEM);
  7670. }
  7671. /* destroy an existing cpu accounting group */
  7672. static void
  7673. cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7674. {
  7675. struct cpuacct *ca = cgroup_ca(cgrp);
  7676. int i;
  7677. for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
  7678. percpu_counter_destroy(&ca->cpustat[i]);
  7679. free_percpu(ca->cpuusage);
  7680. kfree(ca);
  7681. }
  7682. static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
  7683. {
  7684. u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
  7685. u64 data;
  7686. #ifndef CONFIG_64BIT
  7687. /*
  7688. * Take rq->lock to make 64-bit read safe on 32-bit platforms.
  7689. */
  7690. raw_spin_lock_irq(&cpu_rq(cpu)->lock);
  7691. data = *cpuusage;
  7692. raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
  7693. #else
  7694. data = *cpuusage;
  7695. #endif
  7696. return data;
  7697. }
  7698. static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
  7699. {
  7700. u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
  7701. #ifndef CONFIG_64BIT
  7702. /*
  7703. * Take rq->lock to make 64-bit write safe on 32-bit platforms.
  7704. */
  7705. raw_spin_lock_irq(&cpu_rq(cpu)->lock);
  7706. *cpuusage = val;
  7707. raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
  7708. #else
  7709. *cpuusage = val;
  7710. #endif
  7711. }
  7712. /* return total cpu usage (in nanoseconds) of a group */
  7713. static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
  7714. {
  7715. struct cpuacct *ca = cgroup_ca(cgrp);
  7716. u64 totalcpuusage = 0;
  7717. int i;
  7718. for_each_present_cpu(i)
  7719. totalcpuusage += cpuacct_cpuusage_read(ca, i);
  7720. return totalcpuusage;
  7721. }
  7722. static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
  7723. u64 reset)
  7724. {
  7725. struct cpuacct *ca = cgroup_ca(cgrp);
  7726. int err = 0;
  7727. int i;
  7728. if (reset) {
  7729. err = -EINVAL;
  7730. goto out;
  7731. }
  7732. for_each_present_cpu(i)
  7733. cpuacct_cpuusage_write(ca, i, 0);
  7734. out:
  7735. return err;
  7736. }
  7737. static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
  7738. struct seq_file *m)
  7739. {
  7740. struct cpuacct *ca = cgroup_ca(cgroup);
  7741. u64 percpu;
  7742. int i;
  7743. for_each_present_cpu(i) {
  7744. percpu = cpuacct_cpuusage_read(ca, i);
  7745. seq_printf(m, "%llu ", (unsigned long long) percpu);
  7746. }
  7747. seq_printf(m, "\n");
  7748. return 0;
  7749. }
  7750. static const char *cpuacct_stat_desc[] = {
  7751. [CPUACCT_STAT_USER] = "user",
  7752. [CPUACCT_STAT_SYSTEM] = "system",
  7753. };
  7754. static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
  7755. struct cgroup_map_cb *cb)
  7756. {
  7757. struct cpuacct *ca = cgroup_ca(cgrp);
  7758. int i;
  7759. for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
  7760. s64 val = percpu_counter_read(&ca->cpustat[i]);
  7761. val = cputime64_to_clock_t(val);
  7762. cb->fill(cb, cpuacct_stat_desc[i], val);
  7763. }
  7764. return 0;
  7765. }
  7766. static struct cftype files[] = {
  7767. {
  7768. .name = "usage",
  7769. .read_u64 = cpuusage_read,
  7770. .write_u64 = cpuusage_write,
  7771. },
  7772. {
  7773. .name = "usage_percpu",
  7774. .read_seq_string = cpuacct_percpu_seq_read,
  7775. },
  7776. {
  7777. .name = "stat",
  7778. .read_map = cpuacct_stats_show,
  7779. },
  7780. };
  7781. static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7782. {
  7783. return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
  7784. }
  7785. /*
  7786. * charge this task's execution time to its accounting group.
  7787. *
  7788. * called with rq->lock held.
  7789. */
  7790. static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
  7791. {
  7792. struct cpuacct *ca;
  7793. int cpu;
  7794. if (unlikely(!cpuacct_subsys.active))
  7795. return;
  7796. cpu = task_cpu(tsk);
  7797. rcu_read_lock();
  7798. ca = task_ca(tsk);
  7799. for (; ca; ca = ca->parent) {
  7800. u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
  7801. *cpuusage += cputime;
  7802. }
  7803. rcu_read_unlock();
  7804. }
  7805. /*
  7806. * When CONFIG_VIRT_CPU_ACCOUNTING is enabled one jiffy can be very large
  7807. * in cputime_t units. As a result, cpuacct_update_stats calls
  7808. * percpu_counter_add with values large enough to always overflow the
  7809. * per cpu batch limit causing bad SMP scalability.
  7810. *
  7811. * To fix this we scale percpu_counter_batch by cputime_one_jiffy so we
  7812. * batch the same amount of time with CONFIG_VIRT_CPU_ACCOUNTING disabled
  7813. * and enabled. We cap it at INT_MAX which is the largest allowed batch value.
  7814. */
  7815. #ifdef CONFIG_SMP
  7816. #define CPUACCT_BATCH \
  7817. min_t(long, percpu_counter_batch * cputime_one_jiffy, INT_MAX)
  7818. #else
  7819. #define CPUACCT_BATCH 0
  7820. #endif
  7821. /*
  7822. * Charge the system/user time to the task's accounting group.
  7823. */
  7824. static void cpuacct_update_stats(struct task_struct *tsk,
  7825. enum cpuacct_stat_index idx, cputime_t val)
  7826. {
  7827. struct cpuacct *ca;
  7828. int batch = CPUACCT_BATCH;
  7829. if (unlikely(!cpuacct_subsys.active))
  7830. return;
  7831. rcu_read_lock();
  7832. ca = task_ca(tsk);
  7833. do {
  7834. __percpu_counter_add(&ca->cpustat[idx], val, batch);
  7835. ca = ca->parent;
  7836. } while (ca);
  7837. rcu_read_unlock();
  7838. }
  7839. struct cgroup_subsys cpuacct_subsys = {
  7840. .name = "cpuacct",
  7841. .create = cpuacct_create,
  7842. .destroy = cpuacct_destroy,
  7843. .populate = cpuacct_populate,
  7844. .subsys_id = cpuacct_subsys_id,
  7845. };
  7846. #endif /* CONFIG_CGROUP_CPUACCT */