amd64_edac.c 70 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730
  1. #include "amd64_edac.h"
  2. #include <asm/amd_nb.h>
  3. static struct edac_pci_ctl_info *amd64_ctl_pci;
  4. static int report_gart_errors;
  5. module_param(report_gart_errors, int, 0644);
  6. /*
  7. * Set by command line parameter. If BIOS has enabled the ECC, this override is
  8. * cleared to prevent re-enabling the hardware by this driver.
  9. */
  10. static int ecc_enable_override;
  11. module_param(ecc_enable_override, int, 0644);
  12. static struct msr __percpu *msrs;
  13. /*
  14. * count successfully initialized driver instances for setup_pci_device()
  15. */
  16. static atomic_t drv_instances = ATOMIC_INIT(0);
  17. /* Per-node driver instances */
  18. static struct mem_ctl_info **mcis;
  19. static struct ecc_settings **ecc_stngs;
  20. /*
  21. * Valid scrub rates for the K8 hardware memory scrubber. We map the scrubbing
  22. * bandwidth to a valid bit pattern. The 'set' operation finds the 'matching-
  23. * or higher value'.
  24. *
  25. *FIXME: Produce a better mapping/linearisation.
  26. */
  27. struct scrubrate {
  28. u32 scrubval; /* bit pattern for scrub rate */
  29. u32 bandwidth; /* bandwidth consumed (bytes/sec) */
  30. } scrubrates[] = {
  31. { 0x01, 1600000000UL},
  32. { 0x02, 800000000UL},
  33. { 0x03, 400000000UL},
  34. { 0x04, 200000000UL},
  35. { 0x05, 100000000UL},
  36. { 0x06, 50000000UL},
  37. { 0x07, 25000000UL},
  38. { 0x08, 12284069UL},
  39. { 0x09, 6274509UL},
  40. { 0x0A, 3121951UL},
  41. { 0x0B, 1560975UL},
  42. { 0x0C, 781440UL},
  43. { 0x0D, 390720UL},
  44. { 0x0E, 195300UL},
  45. { 0x0F, 97650UL},
  46. { 0x10, 48854UL},
  47. { 0x11, 24427UL},
  48. { 0x12, 12213UL},
  49. { 0x13, 6101UL},
  50. { 0x14, 3051UL},
  51. { 0x15, 1523UL},
  52. { 0x16, 761UL},
  53. { 0x00, 0UL}, /* scrubbing off */
  54. };
  55. static int __amd64_read_pci_cfg_dword(struct pci_dev *pdev, int offset,
  56. u32 *val, const char *func)
  57. {
  58. int err = 0;
  59. err = pci_read_config_dword(pdev, offset, val);
  60. if (err)
  61. amd64_warn("%s: error reading F%dx%03x.\n",
  62. func, PCI_FUNC(pdev->devfn), offset);
  63. return err;
  64. }
  65. int __amd64_write_pci_cfg_dword(struct pci_dev *pdev, int offset,
  66. u32 val, const char *func)
  67. {
  68. int err = 0;
  69. err = pci_write_config_dword(pdev, offset, val);
  70. if (err)
  71. amd64_warn("%s: error writing to F%dx%03x.\n",
  72. func, PCI_FUNC(pdev->devfn), offset);
  73. return err;
  74. }
  75. /*
  76. *
  77. * Depending on the family, F2 DCT reads need special handling:
  78. *
  79. * K8: has a single DCT only
  80. *
  81. * F10h: each DCT has its own set of regs
  82. * DCT0 -> F2x040..
  83. * DCT1 -> F2x140..
  84. *
  85. * F15h: we select which DCT we access using F1x10C[DctCfgSel]
  86. *
  87. */
  88. static int k8_read_dct_pci_cfg(struct amd64_pvt *pvt, int addr, u32 *val,
  89. const char *func)
  90. {
  91. if (addr >= 0x100)
  92. return -EINVAL;
  93. return __amd64_read_pci_cfg_dword(pvt->F2, addr, val, func);
  94. }
  95. static int f10_read_dct_pci_cfg(struct amd64_pvt *pvt, int addr, u32 *val,
  96. const char *func)
  97. {
  98. return __amd64_read_pci_cfg_dword(pvt->F2, addr, val, func);
  99. }
  100. static int f15_read_dct_pci_cfg(struct amd64_pvt *pvt, int addr, u32 *val,
  101. const char *func)
  102. {
  103. u32 reg = 0;
  104. u8 dct = 0;
  105. if (addr >= 0x140 && addr <= 0x1a0) {
  106. dct = 1;
  107. addr -= 0x100;
  108. }
  109. amd64_read_pci_cfg(pvt->F1, DCT_CFG_SEL, &reg);
  110. reg &= 0xfffffffe;
  111. reg |= dct;
  112. amd64_write_pci_cfg(pvt->F1, DCT_CFG_SEL, reg);
  113. return __amd64_read_pci_cfg_dword(pvt->F2, addr, val, func);
  114. }
  115. /*
  116. * Memory scrubber control interface. For K8, memory scrubbing is handled by
  117. * hardware and can involve L2 cache, dcache as well as the main memory. With
  118. * F10, this is extended to L3 cache scrubbing on CPU models sporting that
  119. * functionality.
  120. *
  121. * This causes the "units" for the scrubbing speed to vary from 64 byte blocks
  122. * (dram) over to cache lines. This is nasty, so we will use bandwidth in
  123. * bytes/sec for the setting.
  124. *
  125. * Currently, we only do dram scrubbing. If the scrubbing is done in software on
  126. * other archs, we might not have access to the caches directly.
  127. */
  128. /*
  129. * scan the scrub rate mapping table for a close or matching bandwidth value to
  130. * issue. If requested is too big, then use last maximum value found.
  131. */
  132. static int __amd64_set_scrub_rate(struct pci_dev *ctl, u32 new_bw, u32 min_rate)
  133. {
  134. u32 scrubval;
  135. int i;
  136. /*
  137. * map the configured rate (new_bw) to a value specific to the AMD64
  138. * memory controller and apply to register. Search for the first
  139. * bandwidth entry that is greater or equal than the setting requested
  140. * and program that. If at last entry, turn off DRAM scrubbing.
  141. */
  142. for (i = 0; i < ARRAY_SIZE(scrubrates); i++) {
  143. /*
  144. * skip scrub rates which aren't recommended
  145. * (see F10 BKDG, F3x58)
  146. */
  147. if (scrubrates[i].scrubval < min_rate)
  148. continue;
  149. if (scrubrates[i].bandwidth <= new_bw)
  150. break;
  151. /*
  152. * if no suitable bandwidth found, turn off DRAM scrubbing
  153. * entirely by falling back to the last element in the
  154. * scrubrates array.
  155. */
  156. }
  157. scrubval = scrubrates[i].scrubval;
  158. pci_write_bits32(ctl, SCRCTRL, scrubval, 0x001F);
  159. if (scrubval)
  160. return scrubrates[i].bandwidth;
  161. return 0;
  162. }
  163. static int amd64_set_scrub_rate(struct mem_ctl_info *mci, u32 bw)
  164. {
  165. struct amd64_pvt *pvt = mci->pvt_info;
  166. u32 min_scrubrate = 0x5;
  167. if (boot_cpu_data.x86 == 0xf)
  168. min_scrubrate = 0x0;
  169. return __amd64_set_scrub_rate(pvt->F3, bw, min_scrubrate);
  170. }
  171. static int amd64_get_scrub_rate(struct mem_ctl_info *mci)
  172. {
  173. struct amd64_pvt *pvt = mci->pvt_info;
  174. u32 scrubval = 0;
  175. int i, retval = -EINVAL;
  176. amd64_read_pci_cfg(pvt->F3, SCRCTRL, &scrubval);
  177. scrubval = scrubval & 0x001F;
  178. amd64_debug("pci-read, sdram scrub control value: %d\n", scrubval);
  179. for (i = 0; i < ARRAY_SIZE(scrubrates); i++) {
  180. if (scrubrates[i].scrubval == scrubval) {
  181. retval = scrubrates[i].bandwidth;
  182. break;
  183. }
  184. }
  185. return retval;
  186. }
  187. /*
  188. * returns true if the SysAddr given by sys_addr matches the
  189. * DRAM base/limit associated with node_id
  190. */
  191. static bool amd64_base_limit_match(struct amd64_pvt *pvt, u64 sys_addr, int nid)
  192. {
  193. u64 addr;
  194. /* The K8 treats this as a 40-bit value. However, bits 63-40 will be
  195. * all ones if the most significant implemented address bit is 1.
  196. * Here we discard bits 63-40. See section 3.4.2 of AMD publication
  197. * 24592: AMD x86-64 Architecture Programmer's Manual Volume 1
  198. * Application Programming.
  199. */
  200. addr = sys_addr & 0x000000ffffffffffull;
  201. return ((addr >= get_dram_base(pvt, nid)) &&
  202. (addr <= get_dram_limit(pvt, nid)));
  203. }
  204. /*
  205. * Attempt to map a SysAddr to a node. On success, return a pointer to the
  206. * mem_ctl_info structure for the node that the SysAddr maps to.
  207. *
  208. * On failure, return NULL.
  209. */
  210. static struct mem_ctl_info *find_mc_by_sys_addr(struct mem_ctl_info *mci,
  211. u64 sys_addr)
  212. {
  213. struct amd64_pvt *pvt;
  214. int node_id;
  215. u32 intlv_en, bits;
  216. /*
  217. * Here we use the DRAM Base (section 3.4.4.1) and DRAM Limit (section
  218. * 3.4.4.2) registers to map the SysAddr to a node ID.
  219. */
  220. pvt = mci->pvt_info;
  221. /*
  222. * The value of this field should be the same for all DRAM Base
  223. * registers. Therefore we arbitrarily choose to read it from the
  224. * register for node 0.
  225. */
  226. intlv_en = dram_intlv_en(pvt, 0);
  227. if (intlv_en == 0) {
  228. for (node_id = 0; node_id < DRAM_RANGES; node_id++) {
  229. if (amd64_base_limit_match(pvt, sys_addr, node_id))
  230. goto found;
  231. }
  232. goto err_no_match;
  233. }
  234. if (unlikely((intlv_en != 0x01) &&
  235. (intlv_en != 0x03) &&
  236. (intlv_en != 0x07))) {
  237. amd64_warn("DRAM Base[IntlvEn] junk value: 0x%x, BIOS bug?\n", intlv_en);
  238. return NULL;
  239. }
  240. bits = (((u32) sys_addr) >> 12) & intlv_en;
  241. for (node_id = 0; ; ) {
  242. if ((dram_intlv_sel(pvt, node_id) & intlv_en) == bits)
  243. break; /* intlv_sel field matches */
  244. if (++node_id >= DRAM_RANGES)
  245. goto err_no_match;
  246. }
  247. /* sanity test for sys_addr */
  248. if (unlikely(!amd64_base_limit_match(pvt, sys_addr, node_id))) {
  249. amd64_warn("%s: sys_addr 0x%llx falls outside base/limit address"
  250. "range for node %d with node interleaving enabled.\n",
  251. __func__, sys_addr, node_id);
  252. return NULL;
  253. }
  254. found:
  255. return edac_mc_find(node_id);
  256. err_no_match:
  257. debugf2("sys_addr 0x%lx doesn't match any node\n",
  258. (unsigned long)sys_addr);
  259. return NULL;
  260. }
  261. /*
  262. * compute the CS base address of the @csrow on the DRAM controller @dct.
  263. * For details see F2x[5C:40] in the processor's BKDG
  264. */
  265. static void get_cs_base_and_mask(struct amd64_pvt *pvt, int csrow, u8 dct,
  266. u64 *base, u64 *mask)
  267. {
  268. u64 csbase, csmask, base_bits, mask_bits;
  269. u8 addr_shift;
  270. if (boot_cpu_data.x86 == 0xf && pvt->ext_model < K8_REV_F) {
  271. csbase = pvt->csels[dct].csbases[csrow];
  272. csmask = pvt->csels[dct].csmasks[csrow];
  273. base_bits = GENMASK(21, 31) | GENMASK(9, 15);
  274. mask_bits = GENMASK(21, 29) | GENMASK(9, 15);
  275. addr_shift = 4;
  276. } else {
  277. csbase = pvt->csels[dct].csbases[csrow];
  278. csmask = pvt->csels[dct].csmasks[csrow >> 1];
  279. addr_shift = 8;
  280. if (boot_cpu_data.x86 == 0x15)
  281. base_bits = mask_bits = GENMASK(19,30) | GENMASK(5,13);
  282. else
  283. base_bits = mask_bits = GENMASK(19,28) | GENMASK(5,13);
  284. }
  285. *base = (csbase & base_bits) << addr_shift;
  286. *mask = ~0ULL;
  287. /* poke holes for the csmask */
  288. *mask &= ~(mask_bits << addr_shift);
  289. /* OR them in */
  290. *mask |= (csmask & mask_bits) << addr_shift;
  291. }
  292. #define for_each_chip_select(i, dct, pvt) \
  293. for (i = 0; i < pvt->csels[dct].b_cnt; i++)
  294. #define chip_select_base(i, dct, pvt) \
  295. pvt->csels[dct].csbases[i]
  296. #define for_each_chip_select_mask(i, dct, pvt) \
  297. for (i = 0; i < pvt->csels[dct].m_cnt; i++)
  298. /*
  299. * @input_addr is an InputAddr associated with the node given by mci. Return the
  300. * csrow that input_addr maps to, or -1 on failure (no csrow claims input_addr).
  301. */
  302. static int input_addr_to_csrow(struct mem_ctl_info *mci, u64 input_addr)
  303. {
  304. struct amd64_pvt *pvt;
  305. int csrow;
  306. u64 base, mask;
  307. pvt = mci->pvt_info;
  308. for_each_chip_select(csrow, 0, pvt) {
  309. if (!csrow_enabled(csrow, 0, pvt))
  310. continue;
  311. get_cs_base_and_mask(pvt, csrow, 0, &base, &mask);
  312. mask = ~mask;
  313. if ((input_addr & mask) == (base & mask)) {
  314. debugf2("InputAddr 0x%lx matches csrow %d (node %d)\n",
  315. (unsigned long)input_addr, csrow,
  316. pvt->mc_node_id);
  317. return csrow;
  318. }
  319. }
  320. debugf2("no matching csrow for InputAddr 0x%lx (MC node %d)\n",
  321. (unsigned long)input_addr, pvt->mc_node_id);
  322. return -1;
  323. }
  324. /*
  325. * Obtain info from the DRAM Hole Address Register (section 3.4.8, pub #26094)
  326. * for the node represented by mci. Info is passed back in *hole_base,
  327. * *hole_offset, and *hole_size. Function returns 0 if info is valid or 1 if
  328. * info is invalid. Info may be invalid for either of the following reasons:
  329. *
  330. * - The revision of the node is not E or greater. In this case, the DRAM Hole
  331. * Address Register does not exist.
  332. *
  333. * - The DramHoleValid bit is cleared in the DRAM Hole Address Register,
  334. * indicating that its contents are not valid.
  335. *
  336. * The values passed back in *hole_base, *hole_offset, and *hole_size are
  337. * complete 32-bit values despite the fact that the bitfields in the DHAR
  338. * only represent bits 31-24 of the base and offset values.
  339. */
  340. int amd64_get_dram_hole_info(struct mem_ctl_info *mci, u64 *hole_base,
  341. u64 *hole_offset, u64 *hole_size)
  342. {
  343. struct amd64_pvt *pvt = mci->pvt_info;
  344. u64 base;
  345. /* only revE and later have the DRAM Hole Address Register */
  346. if (boot_cpu_data.x86 == 0xf && pvt->ext_model < K8_REV_E) {
  347. debugf1(" revision %d for node %d does not support DHAR\n",
  348. pvt->ext_model, pvt->mc_node_id);
  349. return 1;
  350. }
  351. /* valid for Fam10h and above */
  352. if (boot_cpu_data.x86 >= 0x10 && !dhar_mem_hoist_valid(pvt)) {
  353. debugf1(" Dram Memory Hoisting is DISABLED on this system\n");
  354. return 1;
  355. }
  356. if (!dhar_valid(pvt)) {
  357. debugf1(" Dram Memory Hoisting is DISABLED on this node %d\n",
  358. pvt->mc_node_id);
  359. return 1;
  360. }
  361. /* This node has Memory Hoisting */
  362. /* +------------------+--------------------+--------------------+-----
  363. * | memory | DRAM hole | relocated |
  364. * | [0, (x - 1)] | [x, 0xffffffff] | addresses from |
  365. * | | | DRAM hole |
  366. * | | | [0x100000000, |
  367. * | | | (0x100000000+ |
  368. * | | | (0xffffffff-x))] |
  369. * +------------------+--------------------+--------------------+-----
  370. *
  371. * Above is a diagram of physical memory showing the DRAM hole and the
  372. * relocated addresses from the DRAM hole. As shown, the DRAM hole
  373. * starts at address x (the base address) and extends through address
  374. * 0xffffffff. The DRAM Hole Address Register (DHAR) relocates the
  375. * addresses in the hole so that they start at 0x100000000.
  376. */
  377. base = dhar_base(pvt);
  378. *hole_base = base;
  379. *hole_size = (0x1ull << 32) - base;
  380. if (boot_cpu_data.x86 > 0xf)
  381. *hole_offset = f10_dhar_offset(pvt);
  382. else
  383. *hole_offset = k8_dhar_offset(pvt);
  384. debugf1(" DHAR info for node %d base 0x%lx offset 0x%lx size 0x%lx\n",
  385. pvt->mc_node_id, (unsigned long)*hole_base,
  386. (unsigned long)*hole_offset, (unsigned long)*hole_size);
  387. return 0;
  388. }
  389. EXPORT_SYMBOL_GPL(amd64_get_dram_hole_info);
  390. /*
  391. * Return the DramAddr that the SysAddr given by @sys_addr maps to. It is
  392. * assumed that sys_addr maps to the node given by mci.
  393. *
  394. * The first part of section 3.4.4 (p. 70) shows how the DRAM Base (section
  395. * 3.4.4.1) and DRAM Limit (section 3.4.4.2) registers are used to translate a
  396. * SysAddr to a DramAddr. If the DRAM Hole Address Register (DHAR) is enabled,
  397. * then it is also involved in translating a SysAddr to a DramAddr. Sections
  398. * 3.4.8 and 3.5.8.2 describe the DHAR and how it is used for memory hoisting.
  399. * These parts of the documentation are unclear. I interpret them as follows:
  400. *
  401. * When node n receives a SysAddr, it processes the SysAddr as follows:
  402. *
  403. * 1. It extracts the DRAMBase and DRAMLimit values from the DRAM Base and DRAM
  404. * Limit registers for node n. If the SysAddr is not within the range
  405. * specified by the base and limit values, then node n ignores the Sysaddr
  406. * (since it does not map to node n). Otherwise continue to step 2 below.
  407. *
  408. * 2. If the DramHoleValid bit of the DHAR for node n is clear, the DHAR is
  409. * disabled so skip to step 3 below. Otherwise see if the SysAddr is within
  410. * the range of relocated addresses (starting at 0x100000000) from the DRAM
  411. * hole. If not, skip to step 3 below. Else get the value of the
  412. * DramHoleOffset field from the DHAR. To obtain the DramAddr, subtract the
  413. * offset defined by this value from the SysAddr.
  414. *
  415. * 3. Obtain the base address for node n from the DRAMBase field of the DRAM
  416. * Base register for node n. To obtain the DramAddr, subtract the base
  417. * address from the SysAddr, as shown near the start of section 3.4.4 (p.70).
  418. */
  419. static u64 sys_addr_to_dram_addr(struct mem_ctl_info *mci, u64 sys_addr)
  420. {
  421. struct amd64_pvt *pvt = mci->pvt_info;
  422. u64 dram_base, hole_base, hole_offset, hole_size, dram_addr;
  423. int ret = 0;
  424. dram_base = get_dram_base(pvt, pvt->mc_node_id);
  425. ret = amd64_get_dram_hole_info(mci, &hole_base, &hole_offset,
  426. &hole_size);
  427. if (!ret) {
  428. if ((sys_addr >= (1ull << 32)) &&
  429. (sys_addr < ((1ull << 32) + hole_size))) {
  430. /* use DHAR to translate SysAddr to DramAddr */
  431. dram_addr = sys_addr - hole_offset;
  432. debugf2("using DHAR to translate SysAddr 0x%lx to "
  433. "DramAddr 0x%lx\n",
  434. (unsigned long)sys_addr,
  435. (unsigned long)dram_addr);
  436. return dram_addr;
  437. }
  438. }
  439. /*
  440. * Translate the SysAddr to a DramAddr as shown near the start of
  441. * section 3.4.4 (p. 70). Although sys_addr is a 64-bit value, the k8
  442. * only deals with 40-bit values. Therefore we discard bits 63-40 of
  443. * sys_addr below. If bit 39 of sys_addr is 1 then the bits we
  444. * discard are all 1s. Otherwise the bits we discard are all 0s. See
  445. * section 3.4.2 of AMD publication 24592: AMD x86-64 Architecture
  446. * Programmer's Manual Volume 1 Application Programming.
  447. */
  448. dram_addr = (sys_addr & GENMASK(0, 39)) - dram_base;
  449. debugf2("using DRAM Base register to translate SysAddr 0x%lx to "
  450. "DramAddr 0x%lx\n", (unsigned long)sys_addr,
  451. (unsigned long)dram_addr);
  452. return dram_addr;
  453. }
  454. /*
  455. * @intlv_en is the value of the IntlvEn field from a DRAM Base register
  456. * (section 3.4.4.1). Return the number of bits from a SysAddr that are used
  457. * for node interleaving.
  458. */
  459. static int num_node_interleave_bits(unsigned intlv_en)
  460. {
  461. static const int intlv_shift_table[] = { 0, 1, 0, 2, 0, 0, 0, 3 };
  462. int n;
  463. BUG_ON(intlv_en > 7);
  464. n = intlv_shift_table[intlv_en];
  465. return n;
  466. }
  467. /* Translate the DramAddr given by @dram_addr to an InputAddr. */
  468. static u64 dram_addr_to_input_addr(struct mem_ctl_info *mci, u64 dram_addr)
  469. {
  470. struct amd64_pvt *pvt;
  471. int intlv_shift;
  472. u64 input_addr;
  473. pvt = mci->pvt_info;
  474. /*
  475. * See the start of section 3.4.4 (p. 70, BKDG #26094, K8, revA-E)
  476. * concerning translating a DramAddr to an InputAddr.
  477. */
  478. intlv_shift = num_node_interleave_bits(dram_intlv_en(pvt, 0));
  479. input_addr = ((dram_addr >> intlv_shift) & GENMASK(12, 35)) +
  480. (dram_addr & 0xfff);
  481. debugf2(" Intlv Shift=%d DramAddr=0x%lx maps to InputAddr=0x%lx\n",
  482. intlv_shift, (unsigned long)dram_addr,
  483. (unsigned long)input_addr);
  484. return input_addr;
  485. }
  486. /*
  487. * Translate the SysAddr represented by @sys_addr to an InputAddr. It is
  488. * assumed that @sys_addr maps to the node given by mci.
  489. */
  490. static u64 sys_addr_to_input_addr(struct mem_ctl_info *mci, u64 sys_addr)
  491. {
  492. u64 input_addr;
  493. input_addr =
  494. dram_addr_to_input_addr(mci, sys_addr_to_dram_addr(mci, sys_addr));
  495. debugf2("SysAdddr 0x%lx translates to InputAddr 0x%lx\n",
  496. (unsigned long)sys_addr, (unsigned long)input_addr);
  497. return input_addr;
  498. }
  499. /*
  500. * @input_addr is an InputAddr associated with the node represented by mci.
  501. * Translate @input_addr to a DramAddr and return the result.
  502. */
  503. static u64 input_addr_to_dram_addr(struct mem_ctl_info *mci, u64 input_addr)
  504. {
  505. struct amd64_pvt *pvt;
  506. int node_id, intlv_shift;
  507. u64 bits, dram_addr;
  508. u32 intlv_sel;
  509. /*
  510. * Near the start of section 3.4.4 (p. 70, BKDG #26094, K8, revA-E)
  511. * shows how to translate a DramAddr to an InputAddr. Here we reverse
  512. * this procedure. When translating from a DramAddr to an InputAddr, the
  513. * bits used for node interleaving are discarded. Here we recover these
  514. * bits from the IntlvSel field of the DRAM Limit register (section
  515. * 3.4.4.2) for the node that input_addr is associated with.
  516. */
  517. pvt = mci->pvt_info;
  518. node_id = pvt->mc_node_id;
  519. BUG_ON((node_id < 0) || (node_id > 7));
  520. intlv_shift = num_node_interleave_bits(dram_intlv_en(pvt, 0));
  521. if (intlv_shift == 0) {
  522. debugf1(" InputAddr 0x%lx translates to DramAddr of "
  523. "same value\n", (unsigned long)input_addr);
  524. return input_addr;
  525. }
  526. bits = ((input_addr & GENMASK(12, 35)) << intlv_shift) +
  527. (input_addr & 0xfff);
  528. intlv_sel = dram_intlv_sel(pvt, node_id) & ((1 << intlv_shift) - 1);
  529. dram_addr = bits + (intlv_sel << 12);
  530. debugf1("InputAddr 0x%lx translates to DramAddr 0x%lx "
  531. "(%d node interleave bits)\n", (unsigned long)input_addr,
  532. (unsigned long)dram_addr, intlv_shift);
  533. return dram_addr;
  534. }
  535. /*
  536. * @dram_addr is a DramAddr that maps to the node represented by mci. Convert
  537. * @dram_addr to a SysAddr.
  538. */
  539. static u64 dram_addr_to_sys_addr(struct mem_ctl_info *mci, u64 dram_addr)
  540. {
  541. struct amd64_pvt *pvt = mci->pvt_info;
  542. u64 hole_base, hole_offset, hole_size, base, sys_addr;
  543. int ret = 0;
  544. ret = amd64_get_dram_hole_info(mci, &hole_base, &hole_offset,
  545. &hole_size);
  546. if (!ret) {
  547. if ((dram_addr >= hole_base) &&
  548. (dram_addr < (hole_base + hole_size))) {
  549. sys_addr = dram_addr + hole_offset;
  550. debugf1("using DHAR to translate DramAddr 0x%lx to "
  551. "SysAddr 0x%lx\n", (unsigned long)dram_addr,
  552. (unsigned long)sys_addr);
  553. return sys_addr;
  554. }
  555. }
  556. base = get_dram_base(pvt, pvt->mc_node_id);
  557. sys_addr = dram_addr + base;
  558. /*
  559. * The sys_addr we have computed up to this point is a 40-bit value
  560. * because the k8 deals with 40-bit values. However, the value we are
  561. * supposed to return is a full 64-bit physical address. The AMD
  562. * x86-64 architecture specifies that the most significant implemented
  563. * address bit through bit 63 of a physical address must be either all
  564. * 0s or all 1s. Therefore we sign-extend the 40-bit sys_addr to a
  565. * 64-bit value below. See section 3.4.2 of AMD publication 24592:
  566. * AMD x86-64 Architecture Programmer's Manual Volume 1 Application
  567. * Programming.
  568. */
  569. sys_addr |= ~((sys_addr & (1ull << 39)) - 1);
  570. debugf1(" Node %d, DramAddr 0x%lx to SysAddr 0x%lx\n",
  571. pvt->mc_node_id, (unsigned long)dram_addr,
  572. (unsigned long)sys_addr);
  573. return sys_addr;
  574. }
  575. /*
  576. * @input_addr is an InputAddr associated with the node given by mci. Translate
  577. * @input_addr to a SysAddr.
  578. */
  579. static inline u64 input_addr_to_sys_addr(struct mem_ctl_info *mci,
  580. u64 input_addr)
  581. {
  582. return dram_addr_to_sys_addr(mci,
  583. input_addr_to_dram_addr(mci, input_addr));
  584. }
  585. /*
  586. * Find the minimum and maximum InputAddr values that map to the given @csrow.
  587. * Pass back these values in *input_addr_min and *input_addr_max.
  588. */
  589. static void find_csrow_limits(struct mem_ctl_info *mci, int csrow,
  590. u64 *input_addr_min, u64 *input_addr_max)
  591. {
  592. struct amd64_pvt *pvt;
  593. u64 base, mask;
  594. pvt = mci->pvt_info;
  595. BUG_ON((csrow < 0) || (csrow >= pvt->csels[0].b_cnt));
  596. get_cs_base_and_mask(pvt, csrow, 0, &base, &mask);
  597. *input_addr_min = base & ~mask;
  598. *input_addr_max = base | mask;
  599. }
  600. /* Map the Error address to a PAGE and PAGE OFFSET. */
  601. static inline void error_address_to_page_and_offset(u64 error_address,
  602. u32 *page, u32 *offset)
  603. {
  604. *page = (u32) (error_address >> PAGE_SHIFT);
  605. *offset = ((u32) error_address) & ~PAGE_MASK;
  606. }
  607. /*
  608. * @sys_addr is an error address (a SysAddr) extracted from the MCA NB Address
  609. * Low (section 3.6.4.5) and MCA NB Address High (section 3.6.4.6) registers
  610. * of a node that detected an ECC memory error. mci represents the node that
  611. * the error address maps to (possibly different from the node that detected
  612. * the error). Return the number of the csrow that sys_addr maps to, or -1 on
  613. * error.
  614. */
  615. static int sys_addr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr)
  616. {
  617. int csrow;
  618. csrow = input_addr_to_csrow(mci, sys_addr_to_input_addr(mci, sys_addr));
  619. if (csrow == -1)
  620. amd64_mc_err(mci, "Failed to translate InputAddr to csrow for "
  621. "address 0x%lx\n", (unsigned long)sys_addr);
  622. return csrow;
  623. }
  624. static int get_channel_from_ecc_syndrome(struct mem_ctl_info *, u16);
  625. /*
  626. * Determine if the DIMMs have ECC enabled. ECC is enabled ONLY if all the DIMMs
  627. * are ECC capable.
  628. */
  629. static enum edac_type amd64_determine_edac_cap(struct amd64_pvt *pvt)
  630. {
  631. u8 bit;
  632. enum dev_type edac_cap = EDAC_FLAG_NONE;
  633. bit = (boot_cpu_data.x86 > 0xf || pvt->ext_model >= K8_REV_F)
  634. ? 19
  635. : 17;
  636. if (pvt->dclr0 & BIT(bit))
  637. edac_cap = EDAC_FLAG_SECDED;
  638. return edac_cap;
  639. }
  640. static void amd64_debug_display_dimm_sizes(int ctrl, struct amd64_pvt *pvt);
  641. static void amd64_dump_dramcfg_low(u32 dclr, int chan)
  642. {
  643. debugf1("F2x%d90 (DRAM Cfg Low): 0x%08x\n", chan, dclr);
  644. debugf1(" DIMM type: %sbuffered; all DIMMs support ECC: %s\n",
  645. (dclr & BIT(16)) ? "un" : "",
  646. (dclr & BIT(19)) ? "yes" : "no");
  647. debugf1(" PAR/ERR parity: %s\n",
  648. (dclr & BIT(8)) ? "enabled" : "disabled");
  649. if (boot_cpu_data.x86 == 0x10)
  650. debugf1(" DCT 128bit mode width: %s\n",
  651. (dclr & BIT(11)) ? "128b" : "64b");
  652. debugf1(" x4 logical DIMMs present: L0: %s L1: %s L2: %s L3: %s\n",
  653. (dclr & BIT(12)) ? "yes" : "no",
  654. (dclr & BIT(13)) ? "yes" : "no",
  655. (dclr & BIT(14)) ? "yes" : "no",
  656. (dclr & BIT(15)) ? "yes" : "no");
  657. }
  658. /* Display and decode various NB registers for debug purposes. */
  659. static void dump_misc_regs(struct amd64_pvt *pvt)
  660. {
  661. debugf1("F3xE8 (NB Cap): 0x%08x\n", pvt->nbcap);
  662. debugf1(" NB two channel DRAM capable: %s\n",
  663. (pvt->nbcap & NBCAP_DCT_DUAL) ? "yes" : "no");
  664. debugf1(" ECC capable: %s, ChipKill ECC capable: %s\n",
  665. (pvt->nbcap & NBCAP_SECDED) ? "yes" : "no",
  666. (pvt->nbcap & NBCAP_CHIPKILL) ? "yes" : "no");
  667. amd64_dump_dramcfg_low(pvt->dclr0, 0);
  668. debugf1("F3xB0 (Online Spare): 0x%08x\n", pvt->online_spare);
  669. debugf1("F1xF0 (DRAM Hole Address): 0x%08x, base: 0x%08x, "
  670. "offset: 0x%08x\n",
  671. pvt->dhar, dhar_base(pvt),
  672. (boot_cpu_data.x86 == 0xf) ? k8_dhar_offset(pvt)
  673. : f10_dhar_offset(pvt));
  674. debugf1(" DramHoleValid: %s\n", dhar_valid(pvt) ? "yes" : "no");
  675. amd64_debug_display_dimm_sizes(0, pvt);
  676. /* everything below this point is Fam10h and above */
  677. if (boot_cpu_data.x86 == 0xf)
  678. return;
  679. amd64_debug_display_dimm_sizes(1, pvt);
  680. amd64_info("using %s syndromes.\n", ((pvt->syn_type == 8) ? "x8" : "x4"));
  681. /* Only if NOT ganged does dclr1 have valid info */
  682. if (!dct_ganging_enabled(pvt))
  683. amd64_dump_dramcfg_low(pvt->dclr1, 1);
  684. }
  685. /*
  686. * see BKDG, F2x[1,0][5C:40], F2[1,0][6C:60]
  687. */
  688. static void prep_chip_selects(struct amd64_pvt *pvt)
  689. {
  690. if (boot_cpu_data.x86 == 0xf && pvt->ext_model < K8_REV_F) {
  691. pvt->csels[0].b_cnt = pvt->csels[1].b_cnt = 8;
  692. pvt->csels[0].m_cnt = pvt->csels[1].m_cnt = 8;
  693. } else {
  694. pvt->csels[0].b_cnt = pvt->csels[1].b_cnt = 8;
  695. pvt->csels[0].m_cnt = pvt->csels[1].m_cnt = 4;
  696. }
  697. }
  698. /*
  699. * Function 2 Offset F10_DCSB0; read in the DCS Base and DCS Mask registers
  700. */
  701. static void read_dct_base_mask(struct amd64_pvt *pvt)
  702. {
  703. int cs;
  704. prep_chip_selects(pvt);
  705. for_each_chip_select(cs, 0, pvt) {
  706. u32 reg0 = DCSB0 + (cs * 4);
  707. u32 reg1 = DCSB1 + (cs * 4);
  708. u32 *base0 = &pvt->csels[0].csbases[cs];
  709. u32 *base1 = &pvt->csels[1].csbases[cs];
  710. if (!amd64_read_dct_pci_cfg(pvt, reg0, base0))
  711. debugf0(" DCSB0[%d]=0x%08x reg: F2x%x\n",
  712. cs, *base0, reg0);
  713. if (boot_cpu_data.x86 == 0xf || dct_ganging_enabled(pvt))
  714. continue;
  715. if (!amd64_read_dct_pci_cfg(pvt, reg1, base1))
  716. debugf0(" DCSB1[%d]=0x%08x reg: F2x%x\n",
  717. cs, *base1, reg1);
  718. }
  719. for_each_chip_select_mask(cs, 0, pvt) {
  720. u32 reg0 = DCSM0 + (cs * 4);
  721. u32 reg1 = DCSM1 + (cs * 4);
  722. u32 *mask0 = &pvt->csels[0].csmasks[cs];
  723. u32 *mask1 = &pvt->csels[1].csmasks[cs];
  724. if (!amd64_read_dct_pci_cfg(pvt, reg0, mask0))
  725. debugf0(" DCSM0[%d]=0x%08x reg: F2x%x\n",
  726. cs, *mask0, reg0);
  727. if (boot_cpu_data.x86 == 0xf || dct_ganging_enabled(pvt))
  728. continue;
  729. if (!amd64_read_dct_pci_cfg(pvt, reg1, mask1))
  730. debugf0(" DCSM1[%d]=0x%08x reg: F2x%x\n",
  731. cs, *mask1, reg1);
  732. }
  733. }
  734. static enum mem_type amd64_determine_memory_type(struct amd64_pvt *pvt, int cs)
  735. {
  736. enum mem_type type;
  737. /* F15h supports only DDR3 */
  738. if (boot_cpu_data.x86 >= 0x15)
  739. type = (pvt->dclr0 & BIT(16)) ? MEM_DDR3 : MEM_RDDR3;
  740. else if (boot_cpu_data.x86 == 0x10 || pvt->ext_model >= K8_REV_F) {
  741. if (pvt->dchr0 & DDR3_MODE)
  742. type = (pvt->dclr0 & BIT(16)) ? MEM_DDR3 : MEM_RDDR3;
  743. else
  744. type = (pvt->dclr0 & BIT(16)) ? MEM_DDR2 : MEM_RDDR2;
  745. } else {
  746. type = (pvt->dclr0 & BIT(18)) ? MEM_DDR : MEM_RDDR;
  747. }
  748. amd64_info("CS%d: %s\n", cs, edac_mem_types[type]);
  749. return type;
  750. }
  751. /* Get the number of DCT channels the memory controller is using. */
  752. static int k8_early_channel_count(struct amd64_pvt *pvt)
  753. {
  754. int flag;
  755. if (pvt->ext_model >= K8_REV_F)
  756. /* RevF (NPT) and later */
  757. flag = pvt->dclr0 & WIDTH_128;
  758. else
  759. /* RevE and earlier */
  760. flag = pvt->dclr0 & REVE_WIDTH_128;
  761. /* not used */
  762. pvt->dclr1 = 0;
  763. return (flag) ? 2 : 1;
  764. }
  765. /* On F10h and later ErrAddr is MC4_ADDR[47:1] */
  766. static u64 get_error_address(struct mce *m)
  767. {
  768. u8 start_bit = 1;
  769. u8 end_bit = 47;
  770. if (boot_cpu_data.x86 == 0xf) {
  771. start_bit = 3;
  772. end_bit = 39;
  773. }
  774. return m->addr & GENMASK(start_bit, end_bit);
  775. }
  776. static void read_dram_base_limit_regs(struct amd64_pvt *pvt, unsigned range)
  777. {
  778. u32 off = range << 3;
  779. amd64_read_pci_cfg(pvt->F1, DRAM_BASE_LO + off, &pvt->ranges[range].base.lo);
  780. amd64_read_pci_cfg(pvt->F1, DRAM_LIMIT_LO + off, &pvt->ranges[range].lim.lo);
  781. if (boot_cpu_data.x86 == 0xf)
  782. return;
  783. if (!dram_rw(pvt, range))
  784. return;
  785. amd64_read_pci_cfg(pvt->F1, DRAM_BASE_HI + off, &pvt->ranges[range].base.hi);
  786. amd64_read_pci_cfg(pvt->F1, DRAM_LIMIT_HI + off, &pvt->ranges[range].lim.hi);
  787. }
  788. static void k8_map_sysaddr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr,
  789. u16 syndrome)
  790. {
  791. struct mem_ctl_info *src_mci;
  792. struct amd64_pvt *pvt = mci->pvt_info;
  793. int channel, csrow;
  794. u32 page, offset;
  795. /* CHIPKILL enabled */
  796. if (pvt->nbcfg & NBCFG_CHIPKILL) {
  797. channel = get_channel_from_ecc_syndrome(mci, syndrome);
  798. if (channel < 0) {
  799. /*
  800. * Syndrome didn't map, so we don't know which of the
  801. * 2 DIMMs is in error. So we need to ID 'both' of them
  802. * as suspect.
  803. */
  804. amd64_mc_warn(mci, "unknown syndrome 0x%04x - possible "
  805. "error reporting race\n", syndrome);
  806. edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
  807. return;
  808. }
  809. } else {
  810. /*
  811. * non-chipkill ecc mode
  812. *
  813. * The k8 documentation is unclear about how to determine the
  814. * channel number when using non-chipkill memory. This method
  815. * was obtained from email communication with someone at AMD.
  816. * (Wish the email was placed in this comment - norsk)
  817. */
  818. channel = ((sys_addr & BIT(3)) != 0);
  819. }
  820. /*
  821. * Find out which node the error address belongs to. This may be
  822. * different from the node that detected the error.
  823. */
  824. src_mci = find_mc_by_sys_addr(mci, sys_addr);
  825. if (!src_mci) {
  826. amd64_mc_err(mci, "failed to map error addr 0x%lx to a node\n",
  827. (unsigned long)sys_addr);
  828. edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
  829. return;
  830. }
  831. /* Now map the sys_addr to a CSROW */
  832. csrow = sys_addr_to_csrow(src_mci, sys_addr);
  833. if (csrow < 0) {
  834. edac_mc_handle_ce_no_info(src_mci, EDAC_MOD_STR);
  835. } else {
  836. error_address_to_page_and_offset(sys_addr, &page, &offset);
  837. edac_mc_handle_ce(src_mci, page, offset, syndrome, csrow,
  838. channel, EDAC_MOD_STR);
  839. }
  840. }
  841. static int ddr2_cs_size(unsigned i, bool dct_width)
  842. {
  843. unsigned shift = 0;
  844. if (i <= 2)
  845. shift = i;
  846. else if (!(i & 0x1))
  847. shift = i >> 1;
  848. else
  849. shift = (i + 1) >> 1;
  850. return 128 << (shift + !!dct_width);
  851. }
  852. static int k8_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
  853. unsigned cs_mode)
  854. {
  855. u32 dclr = dct ? pvt->dclr1 : pvt->dclr0;
  856. if (pvt->ext_model >= K8_REV_F) {
  857. WARN_ON(cs_mode > 11);
  858. return ddr2_cs_size(cs_mode, dclr & WIDTH_128);
  859. }
  860. else if (pvt->ext_model >= K8_REV_D) {
  861. WARN_ON(cs_mode > 10);
  862. if (cs_mode == 3 || cs_mode == 8)
  863. return 32 << (cs_mode - 1);
  864. else
  865. return 32 << cs_mode;
  866. }
  867. else {
  868. WARN_ON(cs_mode > 6);
  869. return 32 << cs_mode;
  870. }
  871. }
  872. /*
  873. * Get the number of DCT channels in use.
  874. *
  875. * Return:
  876. * number of Memory Channels in operation
  877. * Pass back:
  878. * contents of the DCL0_LOW register
  879. */
  880. static int f1x_early_channel_count(struct amd64_pvt *pvt)
  881. {
  882. int i, j, channels = 0;
  883. /* On F10h, if we are in 128 bit mode, then we are using 2 channels */
  884. if (boot_cpu_data.x86 == 0x10 && (pvt->dclr0 & WIDTH_128))
  885. return 2;
  886. /*
  887. * Need to check if in unganged mode: In such, there are 2 channels,
  888. * but they are not in 128 bit mode and thus the above 'dclr0' status
  889. * bit will be OFF.
  890. *
  891. * Need to check DCT0[0] and DCT1[0] to see if only one of them has
  892. * their CSEnable bit on. If so, then SINGLE DIMM case.
  893. */
  894. debugf0("Data width is not 128 bits - need more decoding\n");
  895. /*
  896. * Check DRAM Bank Address Mapping values for each DIMM to see if there
  897. * is more than just one DIMM present in unganged mode. Need to check
  898. * both controllers since DIMMs can be placed in either one.
  899. */
  900. for (i = 0; i < 2; i++) {
  901. u32 dbam = (i ? pvt->dbam1 : pvt->dbam0);
  902. for (j = 0; j < 4; j++) {
  903. if (DBAM_DIMM(j, dbam) > 0) {
  904. channels++;
  905. break;
  906. }
  907. }
  908. }
  909. if (channels > 2)
  910. channels = 2;
  911. amd64_info("MCT channel count: %d\n", channels);
  912. return channels;
  913. }
  914. static int ddr3_cs_size(unsigned i, bool dct_width)
  915. {
  916. unsigned shift = 0;
  917. int cs_size = 0;
  918. if (i == 0 || i == 3 || i == 4)
  919. cs_size = -1;
  920. else if (i <= 2)
  921. shift = i;
  922. else if (i == 12)
  923. shift = 7;
  924. else if (!(i & 0x1))
  925. shift = i >> 1;
  926. else
  927. shift = (i + 1) >> 1;
  928. if (cs_size != -1)
  929. cs_size = (128 * (1 << !!dct_width)) << shift;
  930. return cs_size;
  931. }
  932. static int f10_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
  933. unsigned cs_mode)
  934. {
  935. u32 dclr = dct ? pvt->dclr1 : pvt->dclr0;
  936. WARN_ON(cs_mode > 11);
  937. if (pvt->dchr0 & DDR3_MODE || pvt->dchr1 & DDR3_MODE)
  938. return ddr3_cs_size(cs_mode, dclr & WIDTH_128);
  939. else
  940. return ddr2_cs_size(cs_mode, dclr & WIDTH_128);
  941. }
  942. /*
  943. * F15h supports only 64bit DCT interfaces
  944. */
  945. static int f15_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
  946. unsigned cs_mode)
  947. {
  948. WARN_ON(cs_mode > 12);
  949. return ddr3_cs_size(cs_mode, false);
  950. }
  951. static void read_dram_ctl_register(struct amd64_pvt *pvt)
  952. {
  953. if (boot_cpu_data.x86 == 0xf)
  954. return;
  955. if (!amd64_read_dct_pci_cfg(pvt, DCT_SEL_LO, &pvt->dct_sel_lo)) {
  956. debugf0("F2x110 (DCTSelLow): 0x%08x, High range addrs at: 0x%x\n",
  957. pvt->dct_sel_lo, dct_sel_baseaddr(pvt));
  958. debugf0(" DCTs operate in %s mode.\n",
  959. (dct_ganging_enabled(pvt) ? "ganged" : "unganged"));
  960. if (!dct_ganging_enabled(pvt))
  961. debugf0(" Address range split per DCT: %s\n",
  962. (dct_high_range_enabled(pvt) ? "yes" : "no"));
  963. debugf0(" data interleave for ECC: %s, "
  964. "DRAM cleared since last warm reset: %s\n",
  965. (dct_data_intlv_enabled(pvt) ? "enabled" : "disabled"),
  966. (dct_memory_cleared(pvt) ? "yes" : "no"));
  967. debugf0(" channel interleave: %s, "
  968. "interleave bits selector: 0x%x\n",
  969. (dct_interleave_enabled(pvt) ? "enabled" : "disabled"),
  970. dct_sel_interleave_addr(pvt));
  971. }
  972. amd64_read_dct_pci_cfg(pvt, DCT_SEL_HI, &pvt->dct_sel_hi);
  973. }
  974. /*
  975. * Determine channel (DCT) based on the interleaving mode: F10h BKDG, 2.8.9 Memory
  976. * Interleaving Modes.
  977. */
  978. static u8 f1x_determine_channel(struct amd64_pvt *pvt, u64 sys_addr,
  979. bool hi_range_sel, u8 intlv_en)
  980. {
  981. u32 dct_sel_high = (pvt->dct_sel_lo >> 1) & 1;
  982. if (dct_ganging_enabled(pvt))
  983. return 0;
  984. if (hi_range_sel)
  985. return dct_sel_high;
  986. /*
  987. * see F2x110[DctSelIntLvAddr] - channel interleave mode
  988. */
  989. if (dct_interleave_enabled(pvt)) {
  990. u8 intlv_addr = dct_sel_interleave_addr(pvt);
  991. /* return DCT select function: 0=DCT0, 1=DCT1 */
  992. if (!intlv_addr)
  993. return sys_addr >> 6 & 1;
  994. if (intlv_addr & 0x2) {
  995. u8 shift = intlv_addr & 0x1 ? 9 : 6;
  996. u32 temp = hweight_long((u32) ((sys_addr >> 16) & 0x1F)) % 2;
  997. return ((sys_addr >> shift) & 1) ^ temp;
  998. }
  999. return (sys_addr >> (12 + hweight8(intlv_en))) & 1;
  1000. }
  1001. if (dct_high_range_enabled(pvt))
  1002. return ~dct_sel_high & 1;
  1003. return 0;
  1004. }
  1005. /* Convert the sys_addr to the normalized DCT address */
  1006. static u64 f1x_get_norm_dct_addr(struct amd64_pvt *pvt, int range,
  1007. u64 sys_addr, bool hi_rng,
  1008. u32 dct_sel_base_addr)
  1009. {
  1010. u64 chan_off;
  1011. u64 dram_base = get_dram_base(pvt, range);
  1012. u64 hole_off = f10_dhar_offset(pvt);
  1013. u32 hole_valid = dhar_valid(pvt);
  1014. u64 dct_sel_base_off = (pvt->dct_sel_hi & 0xFFFFFC00) << 16;
  1015. if (hi_rng) {
  1016. /*
  1017. * if
  1018. * base address of high range is below 4Gb
  1019. * (bits [47:27] at [31:11])
  1020. * DRAM address space on this DCT is hoisted above 4Gb &&
  1021. * sys_addr > 4Gb
  1022. *
  1023. * remove hole offset from sys_addr
  1024. * else
  1025. * remove high range offset from sys_addr
  1026. */
  1027. if ((!(dct_sel_base_addr >> 16) ||
  1028. dct_sel_base_addr < dhar_base(pvt)) &&
  1029. hole_valid &&
  1030. (sys_addr >= BIT_64(32)))
  1031. chan_off = hole_off;
  1032. else
  1033. chan_off = dct_sel_base_off;
  1034. } else {
  1035. /*
  1036. * if
  1037. * we have a valid hole &&
  1038. * sys_addr > 4Gb
  1039. *
  1040. * remove hole
  1041. * else
  1042. * remove dram base to normalize to DCT address
  1043. */
  1044. if (hole_valid && (sys_addr >= BIT_64(32)))
  1045. chan_off = hole_off;
  1046. else
  1047. chan_off = dram_base;
  1048. }
  1049. return (sys_addr & GENMASK(6,47)) - (chan_off & GENMASK(23,47));
  1050. }
  1051. /*
  1052. * checks if the csrow passed in is marked as SPARED, if so returns the new
  1053. * spare row
  1054. */
  1055. static int f10_process_possible_spare(struct amd64_pvt *pvt, u8 dct, int csrow)
  1056. {
  1057. int tmp_cs;
  1058. if (online_spare_swap_done(pvt, dct) &&
  1059. csrow == online_spare_bad_dramcs(pvt, dct)) {
  1060. for_each_chip_select(tmp_cs, dct, pvt) {
  1061. if (chip_select_base(tmp_cs, dct, pvt) & 0x2) {
  1062. csrow = tmp_cs;
  1063. break;
  1064. }
  1065. }
  1066. }
  1067. return csrow;
  1068. }
  1069. /*
  1070. * Iterate over the DRAM DCT "base" and "mask" registers looking for a
  1071. * SystemAddr match on the specified 'ChannelSelect' and 'NodeID'
  1072. *
  1073. * Return:
  1074. * -EINVAL: NOT FOUND
  1075. * 0..csrow = Chip-Select Row
  1076. */
  1077. static int f1x_lookup_addr_in_dct(u64 in_addr, u32 nid, u8 dct)
  1078. {
  1079. struct mem_ctl_info *mci;
  1080. struct amd64_pvt *pvt;
  1081. u64 cs_base, cs_mask;
  1082. int cs_found = -EINVAL;
  1083. int csrow;
  1084. mci = mcis[nid];
  1085. if (!mci)
  1086. return cs_found;
  1087. pvt = mci->pvt_info;
  1088. debugf1("input addr: 0x%llx, DCT: %d\n", in_addr, dct);
  1089. for_each_chip_select(csrow, dct, pvt) {
  1090. if (!csrow_enabled(csrow, dct, pvt))
  1091. continue;
  1092. get_cs_base_and_mask(pvt, csrow, dct, &cs_base, &cs_mask);
  1093. debugf1(" CSROW=%d CSBase=0x%llx CSMask=0x%llx\n",
  1094. csrow, cs_base, cs_mask);
  1095. cs_mask = ~cs_mask;
  1096. debugf1(" (InputAddr & ~CSMask)=0x%llx "
  1097. "(CSBase & ~CSMask)=0x%llx\n",
  1098. (in_addr & cs_mask), (cs_base & cs_mask));
  1099. if ((in_addr & cs_mask) == (cs_base & cs_mask)) {
  1100. cs_found = f10_process_possible_spare(pvt, dct, csrow);
  1101. debugf1(" MATCH csrow=%d\n", cs_found);
  1102. break;
  1103. }
  1104. }
  1105. return cs_found;
  1106. }
  1107. /*
  1108. * See F2x10C. Non-interleaved graphics framebuffer memory under the 16G is
  1109. * swapped with a region located at the bottom of memory so that the GPU can use
  1110. * the interleaved region and thus two channels.
  1111. */
  1112. static u64 f1x_swap_interleaved_region(struct amd64_pvt *pvt, u64 sys_addr)
  1113. {
  1114. u32 swap_reg, swap_base, swap_limit, rgn_size, tmp_addr;
  1115. if (boot_cpu_data.x86 == 0x10) {
  1116. /* only revC3 and revE have that feature */
  1117. if (boot_cpu_data.x86_model < 4 ||
  1118. (boot_cpu_data.x86_model < 0xa &&
  1119. boot_cpu_data.x86_mask < 3))
  1120. return sys_addr;
  1121. }
  1122. amd64_read_dct_pci_cfg(pvt, SWAP_INTLV_REG, &swap_reg);
  1123. if (!(swap_reg & 0x1))
  1124. return sys_addr;
  1125. swap_base = (swap_reg >> 3) & 0x7f;
  1126. swap_limit = (swap_reg >> 11) & 0x7f;
  1127. rgn_size = (swap_reg >> 20) & 0x7f;
  1128. tmp_addr = sys_addr >> 27;
  1129. if (!(sys_addr >> 34) &&
  1130. (((tmp_addr >= swap_base) &&
  1131. (tmp_addr <= swap_limit)) ||
  1132. (tmp_addr < rgn_size)))
  1133. return sys_addr ^ (u64)swap_base << 27;
  1134. return sys_addr;
  1135. }
  1136. /* For a given @dram_range, check if @sys_addr falls within it. */
  1137. static int f1x_match_to_this_node(struct amd64_pvt *pvt, int range,
  1138. u64 sys_addr, int *nid, int *chan_sel)
  1139. {
  1140. int cs_found = -EINVAL;
  1141. u64 chan_addr;
  1142. u32 dct_sel_base;
  1143. u8 channel;
  1144. bool high_range = false;
  1145. u8 node_id = dram_dst_node(pvt, range);
  1146. u8 intlv_en = dram_intlv_en(pvt, range);
  1147. u32 intlv_sel = dram_intlv_sel(pvt, range);
  1148. debugf1("(range %d) SystemAddr= 0x%llx Limit=0x%llx\n",
  1149. range, sys_addr, get_dram_limit(pvt, range));
  1150. if (dhar_valid(pvt) &&
  1151. dhar_base(pvt) <= sys_addr &&
  1152. sys_addr < BIT_64(32)) {
  1153. amd64_warn("Huh? Address is in the MMIO hole: 0x%016llx\n",
  1154. sys_addr);
  1155. return -EINVAL;
  1156. }
  1157. if (intlv_en &&
  1158. (intlv_sel != ((sys_addr >> 12) & intlv_en))) {
  1159. amd64_warn("Botched intlv bits, en: 0x%x, sel: 0x%x\n",
  1160. intlv_en, intlv_sel);
  1161. return -EINVAL;
  1162. }
  1163. sys_addr = f1x_swap_interleaved_region(pvt, sys_addr);
  1164. dct_sel_base = dct_sel_baseaddr(pvt);
  1165. /*
  1166. * check whether addresses >= DctSelBaseAddr[47:27] are to be used to
  1167. * select between DCT0 and DCT1.
  1168. */
  1169. if (dct_high_range_enabled(pvt) &&
  1170. !dct_ganging_enabled(pvt) &&
  1171. ((sys_addr >> 27) >= (dct_sel_base >> 11)))
  1172. high_range = true;
  1173. channel = f1x_determine_channel(pvt, sys_addr, high_range, intlv_en);
  1174. chan_addr = f1x_get_norm_dct_addr(pvt, range, sys_addr,
  1175. high_range, dct_sel_base);
  1176. /* Remove node interleaving, see F1x120 */
  1177. if (intlv_en)
  1178. chan_addr = ((chan_addr >> (12 + hweight8(intlv_en))) << 12) |
  1179. (chan_addr & 0xfff);
  1180. /* remove channel interleave */
  1181. if (dct_interleave_enabled(pvt) &&
  1182. !dct_high_range_enabled(pvt) &&
  1183. !dct_ganging_enabled(pvt)) {
  1184. if (dct_sel_interleave_addr(pvt) != 1) {
  1185. if (dct_sel_interleave_addr(pvt) == 0x3)
  1186. /* hash 9 */
  1187. chan_addr = ((chan_addr >> 10) << 9) |
  1188. (chan_addr & 0x1ff);
  1189. else
  1190. /* A[6] or hash 6 */
  1191. chan_addr = ((chan_addr >> 7) << 6) |
  1192. (chan_addr & 0x3f);
  1193. } else
  1194. /* A[12] */
  1195. chan_addr = ((chan_addr >> 13) << 12) |
  1196. (chan_addr & 0xfff);
  1197. }
  1198. debugf1(" Normalized DCT addr: 0x%llx\n", chan_addr);
  1199. cs_found = f1x_lookup_addr_in_dct(chan_addr, node_id, channel);
  1200. if (cs_found >= 0) {
  1201. *nid = node_id;
  1202. *chan_sel = channel;
  1203. }
  1204. return cs_found;
  1205. }
  1206. static int f1x_translate_sysaddr_to_cs(struct amd64_pvt *pvt, u64 sys_addr,
  1207. int *node, int *chan_sel)
  1208. {
  1209. int range, cs_found = -EINVAL;
  1210. for (range = 0; range < DRAM_RANGES; range++) {
  1211. if (!dram_rw(pvt, range))
  1212. continue;
  1213. if ((get_dram_base(pvt, range) <= sys_addr) &&
  1214. (get_dram_limit(pvt, range) >= sys_addr)) {
  1215. cs_found = f1x_match_to_this_node(pvt, range,
  1216. sys_addr, node,
  1217. chan_sel);
  1218. if (cs_found >= 0)
  1219. break;
  1220. }
  1221. }
  1222. return cs_found;
  1223. }
  1224. /*
  1225. * For reference see "2.8.5 Routing DRAM Requests" in F10 BKDG. This code maps
  1226. * a @sys_addr to NodeID, DCT (channel) and chip select (CSROW).
  1227. *
  1228. * The @sys_addr is usually an error address received from the hardware
  1229. * (MCX_ADDR).
  1230. */
  1231. static void f1x_map_sysaddr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr,
  1232. u16 syndrome)
  1233. {
  1234. struct amd64_pvt *pvt = mci->pvt_info;
  1235. u32 page, offset;
  1236. int nid, csrow, chan = 0;
  1237. csrow = f1x_translate_sysaddr_to_cs(pvt, sys_addr, &nid, &chan);
  1238. if (csrow < 0) {
  1239. edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
  1240. return;
  1241. }
  1242. error_address_to_page_and_offset(sys_addr, &page, &offset);
  1243. /*
  1244. * We need the syndromes for channel detection only when we're
  1245. * ganged. Otherwise @chan should already contain the channel at
  1246. * this point.
  1247. */
  1248. if (dct_ganging_enabled(pvt))
  1249. chan = get_channel_from_ecc_syndrome(mci, syndrome);
  1250. if (chan >= 0)
  1251. edac_mc_handle_ce(mci, page, offset, syndrome, csrow, chan,
  1252. EDAC_MOD_STR);
  1253. else
  1254. /*
  1255. * Channel unknown, report all channels on this CSROW as failed.
  1256. */
  1257. for (chan = 0; chan < mci->csrows[csrow].nr_channels; chan++)
  1258. edac_mc_handle_ce(mci, page, offset, syndrome,
  1259. csrow, chan, EDAC_MOD_STR);
  1260. }
  1261. /*
  1262. * debug routine to display the memory sizes of all logical DIMMs and its
  1263. * CSROWs
  1264. */
  1265. static void amd64_debug_display_dimm_sizes(int ctrl, struct amd64_pvt *pvt)
  1266. {
  1267. int dimm, size0, size1, factor = 0;
  1268. u32 *dcsb = ctrl ? pvt->csels[1].csbases : pvt->csels[0].csbases;
  1269. u32 dbam = ctrl ? pvt->dbam1 : pvt->dbam0;
  1270. if (boot_cpu_data.x86 == 0xf) {
  1271. if (pvt->dclr0 & WIDTH_128)
  1272. factor = 1;
  1273. /* K8 families < revF not supported yet */
  1274. if (pvt->ext_model < K8_REV_F)
  1275. return;
  1276. else
  1277. WARN_ON(ctrl != 0);
  1278. }
  1279. dbam = (ctrl && !dct_ganging_enabled(pvt)) ? pvt->dbam1 : pvt->dbam0;
  1280. dcsb = (ctrl && !dct_ganging_enabled(pvt)) ? pvt->csels[1].csbases
  1281. : pvt->csels[0].csbases;
  1282. debugf1("F2x%d80 (DRAM Bank Address Mapping): 0x%08x\n", ctrl, dbam);
  1283. edac_printk(KERN_DEBUG, EDAC_MC, "DCT%d chip selects:\n", ctrl);
  1284. /* Dump memory sizes for DIMM and its CSROWs */
  1285. for (dimm = 0; dimm < 4; dimm++) {
  1286. size0 = 0;
  1287. if (dcsb[dimm*2] & DCSB_CS_ENABLE)
  1288. size0 = pvt->ops->dbam_to_cs(pvt, ctrl,
  1289. DBAM_DIMM(dimm, dbam));
  1290. size1 = 0;
  1291. if (dcsb[dimm*2 + 1] & DCSB_CS_ENABLE)
  1292. size1 = pvt->ops->dbam_to_cs(pvt, ctrl,
  1293. DBAM_DIMM(dimm, dbam));
  1294. amd64_info(EDAC_MC ": %d: %5dMB %d: %5dMB\n",
  1295. dimm * 2, size0 << factor,
  1296. dimm * 2 + 1, size1 << factor);
  1297. }
  1298. }
  1299. static struct amd64_family_type amd64_family_types[] = {
  1300. [K8_CPUS] = {
  1301. .ctl_name = "K8",
  1302. .f1_id = PCI_DEVICE_ID_AMD_K8_NB_ADDRMAP,
  1303. .f3_id = PCI_DEVICE_ID_AMD_K8_NB_MISC,
  1304. .ops = {
  1305. .early_channel_count = k8_early_channel_count,
  1306. .map_sysaddr_to_csrow = k8_map_sysaddr_to_csrow,
  1307. .dbam_to_cs = k8_dbam_to_chip_select,
  1308. .read_dct_pci_cfg = k8_read_dct_pci_cfg,
  1309. }
  1310. },
  1311. [F10_CPUS] = {
  1312. .ctl_name = "F10h",
  1313. .f1_id = PCI_DEVICE_ID_AMD_10H_NB_MAP,
  1314. .f3_id = PCI_DEVICE_ID_AMD_10H_NB_MISC,
  1315. .ops = {
  1316. .early_channel_count = f1x_early_channel_count,
  1317. .map_sysaddr_to_csrow = f1x_map_sysaddr_to_csrow,
  1318. .dbam_to_cs = f10_dbam_to_chip_select,
  1319. .read_dct_pci_cfg = f10_read_dct_pci_cfg,
  1320. }
  1321. },
  1322. [F15_CPUS] = {
  1323. .ctl_name = "F15h",
  1324. .ops = {
  1325. .early_channel_count = f1x_early_channel_count,
  1326. .map_sysaddr_to_csrow = f1x_map_sysaddr_to_csrow,
  1327. .dbam_to_cs = f15_dbam_to_chip_select,
  1328. .read_dct_pci_cfg = f15_read_dct_pci_cfg,
  1329. }
  1330. },
  1331. };
  1332. static struct pci_dev *pci_get_related_function(unsigned int vendor,
  1333. unsigned int device,
  1334. struct pci_dev *related)
  1335. {
  1336. struct pci_dev *dev = NULL;
  1337. dev = pci_get_device(vendor, device, dev);
  1338. while (dev) {
  1339. if ((dev->bus->number == related->bus->number) &&
  1340. (PCI_SLOT(dev->devfn) == PCI_SLOT(related->devfn)))
  1341. break;
  1342. dev = pci_get_device(vendor, device, dev);
  1343. }
  1344. return dev;
  1345. }
  1346. /*
  1347. * These are tables of eigenvectors (one per line) which can be used for the
  1348. * construction of the syndrome tables. The modified syndrome search algorithm
  1349. * uses those to find the symbol in error and thus the DIMM.
  1350. *
  1351. * Algorithm courtesy of Ross LaFetra from AMD.
  1352. */
  1353. static u16 x4_vectors[] = {
  1354. 0x2f57, 0x1afe, 0x66cc, 0xdd88,
  1355. 0x11eb, 0x3396, 0x7f4c, 0xeac8,
  1356. 0x0001, 0x0002, 0x0004, 0x0008,
  1357. 0x1013, 0x3032, 0x4044, 0x8088,
  1358. 0x106b, 0x30d6, 0x70fc, 0xe0a8,
  1359. 0x4857, 0xc4fe, 0x13cc, 0x3288,
  1360. 0x1ac5, 0x2f4a, 0x5394, 0xa1e8,
  1361. 0x1f39, 0x251e, 0xbd6c, 0x6bd8,
  1362. 0x15c1, 0x2a42, 0x89ac, 0x4758,
  1363. 0x2b03, 0x1602, 0x4f0c, 0xca08,
  1364. 0x1f07, 0x3a0e, 0x6b04, 0xbd08,
  1365. 0x8ba7, 0x465e, 0x244c, 0x1cc8,
  1366. 0x2b87, 0x164e, 0x642c, 0xdc18,
  1367. 0x40b9, 0x80de, 0x1094, 0x20e8,
  1368. 0x27db, 0x1eb6, 0x9dac, 0x7b58,
  1369. 0x11c1, 0x2242, 0x84ac, 0x4c58,
  1370. 0x1be5, 0x2d7a, 0x5e34, 0xa718,
  1371. 0x4b39, 0x8d1e, 0x14b4, 0x28d8,
  1372. 0x4c97, 0xc87e, 0x11fc, 0x33a8,
  1373. 0x8e97, 0x497e, 0x2ffc, 0x1aa8,
  1374. 0x16b3, 0x3d62, 0x4f34, 0x8518,
  1375. 0x1e2f, 0x391a, 0x5cac, 0xf858,
  1376. 0x1d9f, 0x3b7a, 0x572c, 0xfe18,
  1377. 0x15f5, 0x2a5a, 0x5264, 0xa3b8,
  1378. 0x1dbb, 0x3b66, 0x715c, 0xe3f8,
  1379. 0x4397, 0xc27e, 0x17fc, 0x3ea8,
  1380. 0x1617, 0x3d3e, 0x6464, 0xb8b8,
  1381. 0x23ff, 0x12aa, 0xab6c, 0x56d8,
  1382. 0x2dfb, 0x1ba6, 0x913c, 0x7328,
  1383. 0x185d, 0x2ca6, 0x7914, 0x9e28,
  1384. 0x171b, 0x3e36, 0x7d7c, 0xebe8,
  1385. 0x4199, 0x82ee, 0x19f4, 0x2e58,
  1386. 0x4807, 0xc40e, 0x130c, 0x3208,
  1387. 0x1905, 0x2e0a, 0x5804, 0xac08,
  1388. 0x213f, 0x132a, 0xadfc, 0x5ba8,
  1389. 0x19a9, 0x2efe, 0xb5cc, 0x6f88,
  1390. };
  1391. static u16 x8_vectors[] = {
  1392. 0x0145, 0x028a, 0x2374, 0x43c8, 0xa1f0, 0x0520, 0x0a40, 0x1480,
  1393. 0x0211, 0x0422, 0x0844, 0x1088, 0x01b0, 0x44e0, 0x23c0, 0xed80,
  1394. 0x1011, 0x0116, 0x022c, 0x0458, 0x08b0, 0x8c60, 0x2740, 0x4e80,
  1395. 0x0411, 0x0822, 0x1044, 0x0158, 0x02b0, 0x2360, 0x46c0, 0xab80,
  1396. 0x0811, 0x1022, 0x012c, 0x0258, 0x04b0, 0x4660, 0x8cc0, 0x2780,
  1397. 0x2071, 0x40e2, 0xa0c4, 0x0108, 0x0210, 0x0420, 0x0840, 0x1080,
  1398. 0x4071, 0x80e2, 0x0104, 0x0208, 0x0410, 0x0820, 0x1040, 0x2080,
  1399. 0x8071, 0x0102, 0x0204, 0x0408, 0x0810, 0x1020, 0x2040, 0x4080,
  1400. 0x019d, 0x03d6, 0x136c, 0x2198, 0x50b0, 0xb2e0, 0x0740, 0x0e80,
  1401. 0x0189, 0x03ea, 0x072c, 0x0e58, 0x1cb0, 0x56e0, 0x37c0, 0xf580,
  1402. 0x01fd, 0x0376, 0x06ec, 0x0bb8, 0x1110, 0x2220, 0x4440, 0x8880,
  1403. 0x0163, 0x02c6, 0x1104, 0x0758, 0x0eb0, 0x2be0, 0x6140, 0xc280,
  1404. 0x02fd, 0x01c6, 0x0b5c, 0x1108, 0x07b0, 0x25a0, 0x8840, 0x6180,
  1405. 0x0801, 0x012e, 0x025c, 0x04b8, 0x1370, 0x26e0, 0x57c0, 0xb580,
  1406. 0x0401, 0x0802, 0x015c, 0x02b8, 0x22b0, 0x13e0, 0x7140, 0xe280,
  1407. 0x0201, 0x0402, 0x0804, 0x01b8, 0x11b0, 0x31a0, 0x8040, 0x7180,
  1408. 0x0101, 0x0202, 0x0404, 0x0808, 0x1010, 0x2020, 0x4040, 0x8080,
  1409. 0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080,
  1410. 0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000, 0x8000,
  1411. };
  1412. static int decode_syndrome(u16 syndrome, u16 *vectors, int num_vecs,
  1413. int v_dim)
  1414. {
  1415. unsigned int i, err_sym;
  1416. for (err_sym = 0; err_sym < num_vecs / v_dim; err_sym++) {
  1417. u16 s = syndrome;
  1418. int v_idx = err_sym * v_dim;
  1419. int v_end = (err_sym + 1) * v_dim;
  1420. /* walk over all 16 bits of the syndrome */
  1421. for (i = 1; i < (1U << 16); i <<= 1) {
  1422. /* if bit is set in that eigenvector... */
  1423. if (v_idx < v_end && vectors[v_idx] & i) {
  1424. u16 ev_comp = vectors[v_idx++];
  1425. /* ... and bit set in the modified syndrome, */
  1426. if (s & i) {
  1427. /* remove it. */
  1428. s ^= ev_comp;
  1429. if (!s)
  1430. return err_sym;
  1431. }
  1432. } else if (s & i)
  1433. /* can't get to zero, move to next symbol */
  1434. break;
  1435. }
  1436. }
  1437. debugf0("syndrome(%x) not found\n", syndrome);
  1438. return -1;
  1439. }
  1440. static int map_err_sym_to_channel(int err_sym, int sym_size)
  1441. {
  1442. if (sym_size == 4)
  1443. switch (err_sym) {
  1444. case 0x20:
  1445. case 0x21:
  1446. return 0;
  1447. break;
  1448. case 0x22:
  1449. case 0x23:
  1450. return 1;
  1451. break;
  1452. default:
  1453. return err_sym >> 4;
  1454. break;
  1455. }
  1456. /* x8 symbols */
  1457. else
  1458. switch (err_sym) {
  1459. /* imaginary bits not in a DIMM */
  1460. case 0x10:
  1461. WARN(1, KERN_ERR "Invalid error symbol: 0x%x\n",
  1462. err_sym);
  1463. return -1;
  1464. break;
  1465. case 0x11:
  1466. return 0;
  1467. break;
  1468. case 0x12:
  1469. return 1;
  1470. break;
  1471. default:
  1472. return err_sym >> 3;
  1473. break;
  1474. }
  1475. return -1;
  1476. }
  1477. static int get_channel_from_ecc_syndrome(struct mem_ctl_info *mci, u16 syndrome)
  1478. {
  1479. struct amd64_pvt *pvt = mci->pvt_info;
  1480. int err_sym = -1;
  1481. if (pvt->syn_type == 8)
  1482. err_sym = decode_syndrome(syndrome, x8_vectors,
  1483. ARRAY_SIZE(x8_vectors),
  1484. pvt->syn_type);
  1485. else if (pvt->syn_type == 4)
  1486. err_sym = decode_syndrome(syndrome, x4_vectors,
  1487. ARRAY_SIZE(x4_vectors),
  1488. pvt->syn_type);
  1489. else {
  1490. amd64_warn("Illegal syndrome type: %u\n", pvt->syn_type);
  1491. return err_sym;
  1492. }
  1493. return map_err_sym_to_channel(err_sym, pvt->syn_type);
  1494. }
  1495. /*
  1496. * Handle any Correctable Errors (CEs) that have occurred. Check for valid ERROR
  1497. * ADDRESS and process.
  1498. */
  1499. static void amd64_handle_ce(struct mem_ctl_info *mci, struct mce *m)
  1500. {
  1501. struct amd64_pvt *pvt = mci->pvt_info;
  1502. u64 sys_addr;
  1503. u16 syndrome;
  1504. /* Ensure that the Error Address is VALID */
  1505. if (!(m->status & MCI_STATUS_ADDRV)) {
  1506. amd64_mc_err(mci, "HW has no ERROR_ADDRESS available\n");
  1507. edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
  1508. return;
  1509. }
  1510. sys_addr = get_error_address(m);
  1511. syndrome = extract_syndrome(m->status);
  1512. amd64_mc_err(mci, "CE ERROR_ADDRESS= 0x%llx\n", sys_addr);
  1513. pvt->ops->map_sysaddr_to_csrow(mci, sys_addr, syndrome);
  1514. }
  1515. /* Handle any Un-correctable Errors (UEs) */
  1516. static void amd64_handle_ue(struct mem_ctl_info *mci, struct mce *m)
  1517. {
  1518. struct mem_ctl_info *log_mci, *src_mci = NULL;
  1519. int csrow;
  1520. u64 sys_addr;
  1521. u32 page, offset;
  1522. log_mci = mci;
  1523. if (!(m->status & MCI_STATUS_ADDRV)) {
  1524. amd64_mc_err(mci, "HW has no ERROR_ADDRESS available\n");
  1525. edac_mc_handle_ue_no_info(log_mci, EDAC_MOD_STR);
  1526. return;
  1527. }
  1528. sys_addr = get_error_address(m);
  1529. /*
  1530. * Find out which node the error address belongs to. This may be
  1531. * different from the node that detected the error.
  1532. */
  1533. src_mci = find_mc_by_sys_addr(mci, sys_addr);
  1534. if (!src_mci) {
  1535. amd64_mc_err(mci, "ERROR ADDRESS (0x%lx) NOT mapped to a MC\n",
  1536. (unsigned long)sys_addr);
  1537. edac_mc_handle_ue_no_info(log_mci, EDAC_MOD_STR);
  1538. return;
  1539. }
  1540. log_mci = src_mci;
  1541. csrow = sys_addr_to_csrow(log_mci, sys_addr);
  1542. if (csrow < 0) {
  1543. amd64_mc_err(mci, "ERROR_ADDRESS (0x%lx) NOT mapped to CS\n",
  1544. (unsigned long)sys_addr);
  1545. edac_mc_handle_ue_no_info(log_mci, EDAC_MOD_STR);
  1546. } else {
  1547. error_address_to_page_and_offset(sys_addr, &page, &offset);
  1548. edac_mc_handle_ue(log_mci, page, offset, csrow, EDAC_MOD_STR);
  1549. }
  1550. }
  1551. static inline void __amd64_decode_bus_error(struct mem_ctl_info *mci,
  1552. struct mce *m)
  1553. {
  1554. u16 ec = EC(m->status);
  1555. u8 xec = XEC(m->status, 0x1f);
  1556. u8 ecc_type = (m->status >> 45) & 0x3;
  1557. /* Bail early out if this was an 'observed' error */
  1558. if (PP(ec) == NBSL_PP_OBS)
  1559. return;
  1560. /* Do only ECC errors */
  1561. if (xec && xec != F10_NBSL_EXT_ERR_ECC)
  1562. return;
  1563. if (ecc_type == 2)
  1564. amd64_handle_ce(mci, m);
  1565. else if (ecc_type == 1)
  1566. amd64_handle_ue(mci, m);
  1567. }
  1568. void amd64_decode_bus_error(int node_id, struct mce *m, u32 nbcfg)
  1569. {
  1570. struct mem_ctl_info *mci = mcis[node_id];
  1571. __amd64_decode_bus_error(mci, m);
  1572. }
  1573. /*
  1574. * Use pvt->F2 which contains the F2 CPU PCI device to get the related
  1575. * F1 (AddrMap) and F3 (Misc) devices. Return negative value on error.
  1576. */
  1577. static int reserve_mc_sibling_devs(struct amd64_pvt *pvt, u16 f1_id, u16 f3_id)
  1578. {
  1579. /* Reserve the ADDRESS MAP Device */
  1580. pvt->F1 = pci_get_related_function(pvt->F2->vendor, f1_id, pvt->F2);
  1581. if (!pvt->F1) {
  1582. amd64_err("error address map device not found: "
  1583. "vendor %x device 0x%x (broken BIOS?)\n",
  1584. PCI_VENDOR_ID_AMD, f1_id);
  1585. return -ENODEV;
  1586. }
  1587. /* Reserve the MISC Device */
  1588. pvt->F3 = pci_get_related_function(pvt->F2->vendor, f3_id, pvt->F2);
  1589. if (!pvt->F3) {
  1590. pci_dev_put(pvt->F1);
  1591. pvt->F1 = NULL;
  1592. amd64_err("error F3 device not found: "
  1593. "vendor %x device 0x%x (broken BIOS?)\n",
  1594. PCI_VENDOR_ID_AMD, f3_id);
  1595. return -ENODEV;
  1596. }
  1597. debugf1("F1: %s\n", pci_name(pvt->F1));
  1598. debugf1("F2: %s\n", pci_name(pvt->F2));
  1599. debugf1("F3: %s\n", pci_name(pvt->F3));
  1600. return 0;
  1601. }
  1602. static void free_mc_sibling_devs(struct amd64_pvt *pvt)
  1603. {
  1604. pci_dev_put(pvt->F1);
  1605. pci_dev_put(pvt->F3);
  1606. }
  1607. /*
  1608. * Retrieve the hardware registers of the memory controller (this includes the
  1609. * 'Address Map' and 'Misc' device regs)
  1610. */
  1611. static void read_mc_regs(struct amd64_pvt *pvt)
  1612. {
  1613. u64 msr_val;
  1614. u32 tmp;
  1615. int range;
  1616. /*
  1617. * Retrieve TOP_MEM and TOP_MEM2; no masking off of reserved bits since
  1618. * those are Read-As-Zero
  1619. */
  1620. rdmsrl(MSR_K8_TOP_MEM1, pvt->top_mem);
  1621. debugf0(" TOP_MEM: 0x%016llx\n", pvt->top_mem);
  1622. /* check first whether TOP_MEM2 is enabled */
  1623. rdmsrl(MSR_K8_SYSCFG, msr_val);
  1624. if (msr_val & (1U << 21)) {
  1625. rdmsrl(MSR_K8_TOP_MEM2, pvt->top_mem2);
  1626. debugf0(" TOP_MEM2: 0x%016llx\n", pvt->top_mem2);
  1627. } else
  1628. debugf0(" TOP_MEM2 disabled.\n");
  1629. amd64_read_pci_cfg(pvt->F3, NBCAP, &pvt->nbcap);
  1630. read_dram_ctl_register(pvt);
  1631. for (range = 0; range < DRAM_RANGES; range++) {
  1632. u8 rw;
  1633. /* read settings for this DRAM range */
  1634. read_dram_base_limit_regs(pvt, range);
  1635. rw = dram_rw(pvt, range);
  1636. if (!rw)
  1637. continue;
  1638. debugf1(" DRAM range[%d], base: 0x%016llx; limit: 0x%016llx\n",
  1639. range,
  1640. get_dram_base(pvt, range),
  1641. get_dram_limit(pvt, range));
  1642. debugf1(" IntlvEn=%s; Range access: %s%s IntlvSel=%d DstNode=%d\n",
  1643. dram_intlv_en(pvt, range) ? "Enabled" : "Disabled",
  1644. (rw & 0x1) ? "R" : "-",
  1645. (rw & 0x2) ? "W" : "-",
  1646. dram_intlv_sel(pvt, range),
  1647. dram_dst_node(pvt, range));
  1648. }
  1649. read_dct_base_mask(pvt);
  1650. amd64_read_pci_cfg(pvt->F1, DHAR, &pvt->dhar);
  1651. amd64_read_dct_pci_cfg(pvt, DBAM0, &pvt->dbam0);
  1652. amd64_read_pci_cfg(pvt->F3, F10_ONLINE_SPARE, &pvt->online_spare);
  1653. amd64_read_dct_pci_cfg(pvt, DCLR0, &pvt->dclr0);
  1654. amd64_read_dct_pci_cfg(pvt, DCHR0, &pvt->dchr0);
  1655. if (!dct_ganging_enabled(pvt)) {
  1656. amd64_read_dct_pci_cfg(pvt, DCLR1, &pvt->dclr1);
  1657. amd64_read_dct_pci_cfg(pvt, DCHR1, &pvt->dchr1);
  1658. }
  1659. if (boot_cpu_data.x86 >= 0x10) {
  1660. amd64_read_pci_cfg(pvt->F3, EXT_NB_MCA_CFG, &tmp);
  1661. amd64_read_dct_pci_cfg(pvt, DBAM1, &pvt->dbam1);
  1662. }
  1663. if (boot_cpu_data.x86 == 0x10 &&
  1664. boot_cpu_data.x86_model > 7 &&
  1665. /* F3x180[EccSymbolSize]=1 => x8 symbols */
  1666. tmp & BIT(25))
  1667. pvt->syn_type = 8;
  1668. else
  1669. pvt->syn_type = 4;
  1670. dump_misc_regs(pvt);
  1671. }
  1672. /*
  1673. * NOTE: CPU Revision Dependent code
  1674. *
  1675. * Input:
  1676. * @csrow_nr ChipSelect Row Number (0..NUM_CHIPSELECTS-1)
  1677. * k8 private pointer to -->
  1678. * DRAM Bank Address mapping register
  1679. * node_id
  1680. * DCL register where dual_channel_active is
  1681. *
  1682. * The DBAM register consists of 4 sets of 4 bits each definitions:
  1683. *
  1684. * Bits: CSROWs
  1685. * 0-3 CSROWs 0 and 1
  1686. * 4-7 CSROWs 2 and 3
  1687. * 8-11 CSROWs 4 and 5
  1688. * 12-15 CSROWs 6 and 7
  1689. *
  1690. * Values range from: 0 to 15
  1691. * The meaning of the values depends on CPU revision and dual-channel state,
  1692. * see relevant BKDG more info.
  1693. *
  1694. * The memory controller provides for total of only 8 CSROWs in its current
  1695. * architecture. Each "pair" of CSROWs normally represents just one DIMM in
  1696. * single channel or two (2) DIMMs in dual channel mode.
  1697. *
  1698. * The following code logic collapses the various tables for CSROW based on CPU
  1699. * revision.
  1700. *
  1701. * Returns:
  1702. * The number of PAGE_SIZE pages on the specified CSROW number it
  1703. * encompasses
  1704. *
  1705. */
  1706. static u32 amd64_csrow_nr_pages(struct amd64_pvt *pvt, u8 dct, int csrow_nr)
  1707. {
  1708. u32 cs_mode, nr_pages;
  1709. /*
  1710. * The math on this doesn't look right on the surface because x/2*4 can
  1711. * be simplified to x*2 but this expression makes use of the fact that
  1712. * it is integral math where 1/2=0. This intermediate value becomes the
  1713. * number of bits to shift the DBAM register to extract the proper CSROW
  1714. * field.
  1715. */
  1716. cs_mode = (pvt->dbam0 >> ((csrow_nr / 2) * 4)) & 0xF;
  1717. nr_pages = pvt->ops->dbam_to_cs(pvt, dct, cs_mode) << (20 - PAGE_SHIFT);
  1718. /*
  1719. * If dual channel then double the memory size of single channel.
  1720. * Channel count is 1 or 2
  1721. */
  1722. nr_pages <<= (pvt->channel_count - 1);
  1723. debugf0(" (csrow=%d) DBAM map index= %d\n", csrow_nr, cs_mode);
  1724. debugf0(" nr_pages= %u channel-count = %d\n",
  1725. nr_pages, pvt->channel_count);
  1726. return nr_pages;
  1727. }
  1728. /*
  1729. * Initialize the array of csrow attribute instances, based on the values
  1730. * from pci config hardware registers.
  1731. */
  1732. static int init_csrows(struct mem_ctl_info *mci)
  1733. {
  1734. struct csrow_info *csrow;
  1735. struct amd64_pvt *pvt = mci->pvt_info;
  1736. u64 input_addr_min, input_addr_max, sys_addr, base, mask;
  1737. u32 val;
  1738. int i, empty = 1;
  1739. amd64_read_pci_cfg(pvt->F3, NBCFG, &val);
  1740. pvt->nbcfg = val;
  1741. debugf0("node %d, NBCFG=0x%08x[ChipKillEccCap: %d|DramEccEn: %d]\n",
  1742. pvt->mc_node_id, val,
  1743. !!(val & NBCFG_CHIPKILL), !!(val & NBCFG_ECC_ENABLE));
  1744. for_each_chip_select(i, 0, pvt) {
  1745. csrow = &mci->csrows[i];
  1746. if (!csrow_enabled(i, 0, pvt)) {
  1747. debugf1("----CSROW %d EMPTY for node %d\n", i,
  1748. pvt->mc_node_id);
  1749. continue;
  1750. }
  1751. debugf1("----CSROW %d VALID for MC node %d\n",
  1752. i, pvt->mc_node_id);
  1753. empty = 0;
  1754. csrow->nr_pages = amd64_csrow_nr_pages(pvt, 0, i);
  1755. find_csrow_limits(mci, i, &input_addr_min, &input_addr_max);
  1756. sys_addr = input_addr_to_sys_addr(mci, input_addr_min);
  1757. csrow->first_page = (u32) (sys_addr >> PAGE_SHIFT);
  1758. sys_addr = input_addr_to_sys_addr(mci, input_addr_max);
  1759. csrow->last_page = (u32) (sys_addr >> PAGE_SHIFT);
  1760. get_cs_base_and_mask(pvt, i, 0, &base, &mask);
  1761. csrow->page_mask = ~mask;
  1762. /* 8 bytes of resolution */
  1763. csrow->mtype = amd64_determine_memory_type(pvt, i);
  1764. debugf1(" for MC node %d csrow %d:\n", pvt->mc_node_id, i);
  1765. debugf1(" input_addr_min: 0x%lx input_addr_max: 0x%lx\n",
  1766. (unsigned long)input_addr_min,
  1767. (unsigned long)input_addr_max);
  1768. debugf1(" sys_addr: 0x%lx page_mask: 0x%lx\n",
  1769. (unsigned long)sys_addr, csrow->page_mask);
  1770. debugf1(" nr_pages: %u first_page: 0x%lx "
  1771. "last_page: 0x%lx\n",
  1772. (unsigned)csrow->nr_pages,
  1773. csrow->first_page, csrow->last_page);
  1774. /*
  1775. * determine whether CHIPKILL or JUST ECC or NO ECC is operating
  1776. */
  1777. if (pvt->nbcfg & NBCFG_ECC_ENABLE)
  1778. csrow->edac_mode =
  1779. (pvt->nbcfg & NBCFG_CHIPKILL) ?
  1780. EDAC_S4ECD4ED : EDAC_SECDED;
  1781. else
  1782. csrow->edac_mode = EDAC_NONE;
  1783. }
  1784. return empty;
  1785. }
  1786. /* get all cores on this DCT */
  1787. static void get_cpus_on_this_dct_cpumask(struct cpumask *mask, int nid)
  1788. {
  1789. int cpu;
  1790. for_each_online_cpu(cpu)
  1791. if (amd_get_nb_id(cpu) == nid)
  1792. cpumask_set_cpu(cpu, mask);
  1793. }
  1794. /* check MCG_CTL on all the cpus on this node */
  1795. static bool amd64_nb_mce_bank_enabled_on_node(int nid)
  1796. {
  1797. cpumask_var_t mask;
  1798. int cpu, nbe;
  1799. bool ret = false;
  1800. if (!zalloc_cpumask_var(&mask, GFP_KERNEL)) {
  1801. amd64_warn("%s: Error allocating mask\n", __func__);
  1802. return false;
  1803. }
  1804. get_cpus_on_this_dct_cpumask(mask, nid);
  1805. rdmsr_on_cpus(mask, MSR_IA32_MCG_CTL, msrs);
  1806. for_each_cpu(cpu, mask) {
  1807. struct msr *reg = per_cpu_ptr(msrs, cpu);
  1808. nbe = reg->l & MSR_MCGCTL_NBE;
  1809. debugf0("core: %u, MCG_CTL: 0x%llx, NB MSR is %s\n",
  1810. cpu, reg->q,
  1811. (nbe ? "enabled" : "disabled"));
  1812. if (!nbe)
  1813. goto out;
  1814. }
  1815. ret = true;
  1816. out:
  1817. free_cpumask_var(mask);
  1818. return ret;
  1819. }
  1820. static int toggle_ecc_err_reporting(struct ecc_settings *s, u8 nid, bool on)
  1821. {
  1822. cpumask_var_t cmask;
  1823. int cpu;
  1824. if (!zalloc_cpumask_var(&cmask, GFP_KERNEL)) {
  1825. amd64_warn("%s: error allocating mask\n", __func__);
  1826. return false;
  1827. }
  1828. get_cpus_on_this_dct_cpumask(cmask, nid);
  1829. rdmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs);
  1830. for_each_cpu(cpu, cmask) {
  1831. struct msr *reg = per_cpu_ptr(msrs, cpu);
  1832. if (on) {
  1833. if (reg->l & MSR_MCGCTL_NBE)
  1834. s->flags.nb_mce_enable = 1;
  1835. reg->l |= MSR_MCGCTL_NBE;
  1836. } else {
  1837. /*
  1838. * Turn off NB MCE reporting only when it was off before
  1839. */
  1840. if (!s->flags.nb_mce_enable)
  1841. reg->l &= ~MSR_MCGCTL_NBE;
  1842. }
  1843. }
  1844. wrmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs);
  1845. free_cpumask_var(cmask);
  1846. return 0;
  1847. }
  1848. static bool enable_ecc_error_reporting(struct ecc_settings *s, u8 nid,
  1849. struct pci_dev *F3)
  1850. {
  1851. bool ret = true;
  1852. u32 value, mask = 0x3; /* UECC/CECC enable */
  1853. if (toggle_ecc_err_reporting(s, nid, ON)) {
  1854. amd64_warn("Error enabling ECC reporting over MCGCTL!\n");
  1855. return false;
  1856. }
  1857. amd64_read_pci_cfg(F3, NBCTL, &value);
  1858. s->old_nbctl = value & mask;
  1859. s->nbctl_valid = true;
  1860. value |= mask;
  1861. amd64_write_pci_cfg(F3, NBCTL, value);
  1862. amd64_read_pci_cfg(F3, NBCFG, &value);
  1863. debugf0("1: node %d, NBCFG=0x%08x[DramEccEn: %d]\n",
  1864. nid, value, !!(value & NBCFG_ECC_ENABLE));
  1865. if (!(value & NBCFG_ECC_ENABLE)) {
  1866. amd64_warn("DRAM ECC disabled on this node, enabling...\n");
  1867. s->flags.nb_ecc_prev = 0;
  1868. /* Attempt to turn on DRAM ECC Enable */
  1869. value |= NBCFG_ECC_ENABLE;
  1870. amd64_write_pci_cfg(F3, NBCFG, value);
  1871. amd64_read_pci_cfg(F3, NBCFG, &value);
  1872. if (!(value & NBCFG_ECC_ENABLE)) {
  1873. amd64_warn("Hardware rejected DRAM ECC enable,"
  1874. "check memory DIMM configuration.\n");
  1875. ret = false;
  1876. } else {
  1877. amd64_info("Hardware accepted DRAM ECC Enable\n");
  1878. }
  1879. } else {
  1880. s->flags.nb_ecc_prev = 1;
  1881. }
  1882. debugf0("2: node %d, NBCFG=0x%08x[DramEccEn: %d]\n",
  1883. nid, value, !!(value & NBCFG_ECC_ENABLE));
  1884. return ret;
  1885. }
  1886. static void restore_ecc_error_reporting(struct ecc_settings *s, u8 nid,
  1887. struct pci_dev *F3)
  1888. {
  1889. u32 value, mask = 0x3; /* UECC/CECC enable */
  1890. if (!s->nbctl_valid)
  1891. return;
  1892. amd64_read_pci_cfg(F3, NBCTL, &value);
  1893. value &= ~mask;
  1894. value |= s->old_nbctl;
  1895. amd64_write_pci_cfg(F3, NBCTL, value);
  1896. /* restore previous BIOS DRAM ECC "off" setting we force-enabled */
  1897. if (!s->flags.nb_ecc_prev) {
  1898. amd64_read_pci_cfg(F3, NBCFG, &value);
  1899. value &= ~NBCFG_ECC_ENABLE;
  1900. amd64_write_pci_cfg(F3, NBCFG, value);
  1901. }
  1902. /* restore the NB Enable MCGCTL bit */
  1903. if (toggle_ecc_err_reporting(s, nid, OFF))
  1904. amd64_warn("Error restoring NB MCGCTL settings!\n");
  1905. }
  1906. /*
  1907. * EDAC requires that the BIOS have ECC enabled before
  1908. * taking over the processing of ECC errors. A command line
  1909. * option allows to force-enable hardware ECC later in
  1910. * enable_ecc_error_reporting().
  1911. */
  1912. static const char *ecc_msg =
  1913. "ECC disabled in the BIOS or no ECC capability, module will not load.\n"
  1914. " Either enable ECC checking or force module loading by setting "
  1915. "'ecc_enable_override'.\n"
  1916. " (Note that use of the override may cause unknown side effects.)\n";
  1917. static bool ecc_enabled(struct pci_dev *F3, u8 nid)
  1918. {
  1919. u32 value;
  1920. u8 ecc_en = 0;
  1921. bool nb_mce_en = false;
  1922. amd64_read_pci_cfg(F3, NBCFG, &value);
  1923. ecc_en = !!(value & NBCFG_ECC_ENABLE);
  1924. amd64_info("DRAM ECC %s.\n", (ecc_en ? "enabled" : "disabled"));
  1925. nb_mce_en = amd64_nb_mce_bank_enabled_on_node(nid);
  1926. if (!nb_mce_en)
  1927. amd64_notice("NB MCE bank disabled, set MSR "
  1928. "0x%08x[4] on node %d to enable.\n",
  1929. MSR_IA32_MCG_CTL, nid);
  1930. if (!ecc_en || !nb_mce_en) {
  1931. amd64_notice("%s", ecc_msg);
  1932. return false;
  1933. }
  1934. return true;
  1935. }
  1936. struct mcidev_sysfs_attribute sysfs_attrs[ARRAY_SIZE(amd64_dbg_attrs) +
  1937. ARRAY_SIZE(amd64_inj_attrs) +
  1938. 1];
  1939. struct mcidev_sysfs_attribute terminator = { .attr = { .name = NULL } };
  1940. static void set_mc_sysfs_attrs(struct mem_ctl_info *mci)
  1941. {
  1942. unsigned int i = 0, j = 0;
  1943. for (; i < ARRAY_SIZE(amd64_dbg_attrs); i++)
  1944. sysfs_attrs[i] = amd64_dbg_attrs[i];
  1945. if (boot_cpu_data.x86 >= 0x10)
  1946. for (j = 0; j < ARRAY_SIZE(amd64_inj_attrs); j++, i++)
  1947. sysfs_attrs[i] = amd64_inj_attrs[j];
  1948. sysfs_attrs[i] = terminator;
  1949. mci->mc_driver_sysfs_attributes = sysfs_attrs;
  1950. }
  1951. static void setup_mci_misc_attrs(struct mem_ctl_info *mci)
  1952. {
  1953. struct amd64_pvt *pvt = mci->pvt_info;
  1954. mci->mtype_cap = MEM_FLAG_DDR2 | MEM_FLAG_RDDR2;
  1955. mci->edac_ctl_cap = EDAC_FLAG_NONE;
  1956. if (pvt->nbcap & NBCAP_SECDED)
  1957. mci->edac_ctl_cap |= EDAC_FLAG_SECDED;
  1958. if (pvt->nbcap & NBCAP_CHIPKILL)
  1959. mci->edac_ctl_cap |= EDAC_FLAG_S4ECD4ED;
  1960. mci->edac_cap = amd64_determine_edac_cap(pvt);
  1961. mci->mod_name = EDAC_MOD_STR;
  1962. mci->mod_ver = EDAC_AMD64_VERSION;
  1963. mci->ctl_name = pvt->ctl_name;
  1964. mci->dev_name = pci_name(pvt->F2);
  1965. mci->ctl_page_to_phys = NULL;
  1966. /* memory scrubber interface */
  1967. mci->set_sdram_scrub_rate = amd64_set_scrub_rate;
  1968. mci->get_sdram_scrub_rate = amd64_get_scrub_rate;
  1969. }
  1970. /*
  1971. * returns a pointer to the family descriptor on success, NULL otherwise.
  1972. */
  1973. static struct amd64_family_type *amd64_per_family_init(struct amd64_pvt *pvt)
  1974. {
  1975. u8 fam = boot_cpu_data.x86;
  1976. struct amd64_family_type *fam_type = NULL;
  1977. switch (fam) {
  1978. case 0xf:
  1979. fam_type = &amd64_family_types[K8_CPUS];
  1980. pvt->ops = &amd64_family_types[K8_CPUS].ops;
  1981. pvt->ctl_name = fam_type->ctl_name;
  1982. break;
  1983. case 0x10:
  1984. fam_type = &amd64_family_types[F10_CPUS];
  1985. pvt->ops = &amd64_family_types[F10_CPUS].ops;
  1986. pvt->ctl_name = fam_type->ctl_name;
  1987. break;
  1988. default:
  1989. amd64_err("Unsupported family!\n");
  1990. return NULL;
  1991. }
  1992. pvt->ext_model = boot_cpu_data.x86_model >> 4;
  1993. amd64_info("%s %sdetected (node %d).\n", pvt->ctl_name,
  1994. (fam == 0xf ?
  1995. (pvt->ext_model >= K8_REV_F ? "revF or later "
  1996. : "revE or earlier ")
  1997. : ""), pvt->mc_node_id);
  1998. return fam_type;
  1999. }
  2000. static int amd64_init_one_instance(struct pci_dev *F2)
  2001. {
  2002. struct amd64_pvt *pvt = NULL;
  2003. struct amd64_family_type *fam_type = NULL;
  2004. struct mem_ctl_info *mci = NULL;
  2005. int err = 0, ret;
  2006. u8 nid = get_node_id(F2);
  2007. ret = -ENOMEM;
  2008. pvt = kzalloc(sizeof(struct amd64_pvt), GFP_KERNEL);
  2009. if (!pvt)
  2010. goto err_ret;
  2011. pvt->mc_node_id = nid;
  2012. pvt->F2 = F2;
  2013. ret = -EINVAL;
  2014. fam_type = amd64_per_family_init(pvt);
  2015. if (!fam_type)
  2016. goto err_free;
  2017. ret = -ENODEV;
  2018. err = reserve_mc_sibling_devs(pvt, fam_type->f1_id, fam_type->f3_id);
  2019. if (err)
  2020. goto err_free;
  2021. read_mc_regs(pvt);
  2022. /*
  2023. * We need to determine how many memory channels there are. Then use
  2024. * that information for calculating the size of the dynamic instance
  2025. * tables in the 'mci' structure.
  2026. */
  2027. ret = -EINVAL;
  2028. pvt->channel_count = pvt->ops->early_channel_count(pvt);
  2029. if (pvt->channel_count < 0)
  2030. goto err_siblings;
  2031. ret = -ENOMEM;
  2032. mci = edac_mc_alloc(0, pvt->csels[0].b_cnt, pvt->channel_count, nid);
  2033. if (!mci)
  2034. goto err_siblings;
  2035. mci->pvt_info = pvt;
  2036. mci->dev = &pvt->F2->dev;
  2037. setup_mci_misc_attrs(mci);
  2038. if (init_csrows(mci))
  2039. mci->edac_cap = EDAC_FLAG_NONE;
  2040. set_mc_sysfs_attrs(mci);
  2041. ret = -ENODEV;
  2042. if (edac_mc_add_mc(mci)) {
  2043. debugf1("failed edac_mc_add_mc()\n");
  2044. goto err_add_mc;
  2045. }
  2046. /* register stuff with EDAC MCE */
  2047. if (report_gart_errors)
  2048. amd_report_gart_errors(true);
  2049. amd_register_ecc_decoder(amd64_decode_bus_error);
  2050. mcis[nid] = mci;
  2051. atomic_inc(&drv_instances);
  2052. return 0;
  2053. err_add_mc:
  2054. edac_mc_free(mci);
  2055. err_siblings:
  2056. free_mc_sibling_devs(pvt);
  2057. err_free:
  2058. kfree(pvt);
  2059. err_ret:
  2060. return ret;
  2061. }
  2062. static int __devinit amd64_probe_one_instance(struct pci_dev *pdev,
  2063. const struct pci_device_id *mc_type)
  2064. {
  2065. u8 nid = get_node_id(pdev);
  2066. struct pci_dev *F3 = node_to_amd_nb(nid)->misc;
  2067. struct ecc_settings *s;
  2068. int ret = 0;
  2069. ret = pci_enable_device(pdev);
  2070. if (ret < 0) {
  2071. debugf0("ret=%d\n", ret);
  2072. return -EIO;
  2073. }
  2074. ret = -ENOMEM;
  2075. s = kzalloc(sizeof(struct ecc_settings), GFP_KERNEL);
  2076. if (!s)
  2077. goto err_out;
  2078. ecc_stngs[nid] = s;
  2079. if (!ecc_enabled(F3, nid)) {
  2080. ret = -ENODEV;
  2081. if (!ecc_enable_override)
  2082. goto err_enable;
  2083. amd64_warn("Forcing ECC on!\n");
  2084. if (!enable_ecc_error_reporting(s, nid, F3))
  2085. goto err_enable;
  2086. }
  2087. ret = amd64_init_one_instance(pdev);
  2088. if (ret < 0) {
  2089. amd64_err("Error probing instance: %d\n", nid);
  2090. restore_ecc_error_reporting(s, nid, F3);
  2091. }
  2092. return ret;
  2093. err_enable:
  2094. kfree(s);
  2095. ecc_stngs[nid] = NULL;
  2096. err_out:
  2097. return ret;
  2098. }
  2099. static void __devexit amd64_remove_one_instance(struct pci_dev *pdev)
  2100. {
  2101. struct mem_ctl_info *mci;
  2102. struct amd64_pvt *pvt;
  2103. u8 nid = get_node_id(pdev);
  2104. struct pci_dev *F3 = node_to_amd_nb(nid)->misc;
  2105. struct ecc_settings *s = ecc_stngs[nid];
  2106. /* Remove from EDAC CORE tracking list */
  2107. mci = edac_mc_del_mc(&pdev->dev);
  2108. if (!mci)
  2109. return;
  2110. pvt = mci->pvt_info;
  2111. restore_ecc_error_reporting(s, nid, F3);
  2112. free_mc_sibling_devs(pvt);
  2113. /* unregister from EDAC MCE */
  2114. amd_report_gart_errors(false);
  2115. amd_unregister_ecc_decoder(amd64_decode_bus_error);
  2116. kfree(ecc_stngs[nid]);
  2117. ecc_stngs[nid] = NULL;
  2118. /* Free the EDAC CORE resources */
  2119. mci->pvt_info = NULL;
  2120. mcis[nid] = NULL;
  2121. kfree(pvt);
  2122. edac_mc_free(mci);
  2123. }
  2124. /*
  2125. * This table is part of the interface for loading drivers for PCI devices. The
  2126. * PCI core identifies what devices are on a system during boot, and then
  2127. * inquiry this table to see if this driver is for a given device found.
  2128. */
  2129. static const struct pci_device_id amd64_pci_table[] __devinitdata = {
  2130. {
  2131. .vendor = PCI_VENDOR_ID_AMD,
  2132. .device = PCI_DEVICE_ID_AMD_K8_NB_MEMCTL,
  2133. .subvendor = PCI_ANY_ID,
  2134. .subdevice = PCI_ANY_ID,
  2135. .class = 0,
  2136. .class_mask = 0,
  2137. },
  2138. {
  2139. .vendor = PCI_VENDOR_ID_AMD,
  2140. .device = PCI_DEVICE_ID_AMD_10H_NB_DRAM,
  2141. .subvendor = PCI_ANY_ID,
  2142. .subdevice = PCI_ANY_ID,
  2143. .class = 0,
  2144. .class_mask = 0,
  2145. },
  2146. {0, }
  2147. };
  2148. MODULE_DEVICE_TABLE(pci, amd64_pci_table);
  2149. static struct pci_driver amd64_pci_driver = {
  2150. .name = EDAC_MOD_STR,
  2151. .probe = amd64_probe_one_instance,
  2152. .remove = __devexit_p(amd64_remove_one_instance),
  2153. .id_table = amd64_pci_table,
  2154. };
  2155. static void setup_pci_device(void)
  2156. {
  2157. struct mem_ctl_info *mci;
  2158. struct amd64_pvt *pvt;
  2159. if (amd64_ctl_pci)
  2160. return;
  2161. mci = mcis[0];
  2162. if (mci) {
  2163. pvt = mci->pvt_info;
  2164. amd64_ctl_pci =
  2165. edac_pci_create_generic_ctl(&pvt->F2->dev, EDAC_MOD_STR);
  2166. if (!amd64_ctl_pci) {
  2167. pr_warning("%s(): Unable to create PCI control\n",
  2168. __func__);
  2169. pr_warning("%s(): PCI error report via EDAC not set\n",
  2170. __func__);
  2171. }
  2172. }
  2173. }
  2174. static int __init amd64_edac_init(void)
  2175. {
  2176. int err = -ENODEV;
  2177. edac_printk(KERN_INFO, EDAC_MOD_STR, EDAC_AMD64_VERSION "\n");
  2178. opstate_init();
  2179. if (amd_cache_northbridges() < 0)
  2180. goto err_ret;
  2181. err = -ENOMEM;
  2182. mcis = kzalloc(amd_nb_num() * sizeof(mcis[0]), GFP_KERNEL);
  2183. ecc_stngs = kzalloc(amd_nb_num() * sizeof(ecc_stngs[0]), GFP_KERNEL);
  2184. if (!(mcis && ecc_stngs))
  2185. goto err_ret;
  2186. msrs = msrs_alloc();
  2187. if (!msrs)
  2188. goto err_free;
  2189. err = pci_register_driver(&amd64_pci_driver);
  2190. if (err)
  2191. goto err_pci;
  2192. err = -ENODEV;
  2193. if (!atomic_read(&drv_instances))
  2194. goto err_no_instances;
  2195. setup_pci_device();
  2196. return 0;
  2197. err_no_instances:
  2198. pci_unregister_driver(&amd64_pci_driver);
  2199. err_pci:
  2200. msrs_free(msrs);
  2201. msrs = NULL;
  2202. err_free:
  2203. kfree(mcis);
  2204. mcis = NULL;
  2205. kfree(ecc_stngs);
  2206. ecc_stngs = NULL;
  2207. err_ret:
  2208. return err;
  2209. }
  2210. static void __exit amd64_edac_exit(void)
  2211. {
  2212. if (amd64_ctl_pci)
  2213. edac_pci_release_generic_ctl(amd64_ctl_pci);
  2214. pci_unregister_driver(&amd64_pci_driver);
  2215. kfree(ecc_stngs);
  2216. ecc_stngs = NULL;
  2217. kfree(mcis);
  2218. mcis = NULL;
  2219. msrs_free(msrs);
  2220. msrs = NULL;
  2221. }
  2222. module_init(amd64_edac_init);
  2223. module_exit(amd64_edac_exit);
  2224. MODULE_LICENSE("GPL");
  2225. MODULE_AUTHOR("SoftwareBitMaker: Doug Thompson, "
  2226. "Dave Peterson, Thayne Harbaugh");
  2227. MODULE_DESCRIPTION("MC support for AMD64 memory controllers - "
  2228. EDAC_AMD64_VERSION);
  2229. module_param(edac_op_state, int, 0444);
  2230. MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");